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Abstract 26 

The malaria vector, Anopheles stephensi, which is typically restricted to South Asia and the Middle 27 

East, was recently detected in the Horn of Africa. Controlling the spread of this vector could involve 28 

integrated vector control that considers the status of insecticide resistance of multiple vector species in the 29 

region. Previous reports indicate that the knockdown resistance mutations (kdr) in the voltage-gated sodium 30 

channel (vgsc) are absent in both pyrethroid resistant and sensitive variants of An. stephensi in east Ethiopia 31 

but similar information on other vector species in the same areas is limited.  In this study, kdr and the 32 

neighboring intron was analyzed in An. stephensi, An. arabiensis, and Culex pipiens s. l. collected in east 33 

Ethiopia between 2016 and 2017. Sequence analysis revealed that all of Cx. pipiens s.l. (n = 42) and 71.6% 34 

of the An. arabiensis (n=67) carried kdr L1014F known to confer target-site pyrethroid resistance. Intronic 35 

variation was only observed in An. stephensi (segregating sites = 6, haplotypes = 3) previously shown to 36 

have no kdr mutations. In addition, no evidence of non-neutral evolutionary processes was detected at the 37 

An. stephensi kdr intron which further supports target-site mechanism not being a major resistance 38 

mechanism in this An. stephensi population. Overall, these results suggest differences in evolved 39 

mechanisms of pyrethroid/DDT resistance in populations of vector species from the same region. Variation 40 

in insecticide resistance mechanisms in East Ethiopian mosquito vectors highlight possible species or 41 

population specific biological factors and distinct environmental exposures that shape their evolution.   42 

  43 
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BACKGROUND 44 

Vector-borne diseases are major public health concern, of which malaria remains a leading threat 45 

with 228 million cases reported in 2018  1. In Ethiopia, where both Plasmodium vivax and P. falciparum 46 

are prevalent and multiple Anopheles vector populations are present,1.5 million malaria cases were 47 

reported in 2017  2. Malaria control in Ethiopia and the rest of Africa is now challenged with the recent 48 

discoveries of An. stephensi, a malaria vector, which is typically restricted to South Asia and the Middle 49 

East, in the Horn of Africa and recently demonstrated to transmit local Plasmodium  3, 4, 5, 6. Among 50 

several approaches to mitigating the An. stephensi is integrated vector control that target multiple vectors. 51 

Integrated vector control has the benefits of cutting costs and while minimizing adverse outcomes of 52 

single-target vector control on non-target species populations.  7  53 

Integrated vector control strategies based on insecticides should account for insecticide resistance 54 

status of the different vectors. In Ethiopia, insecticides like pyrethroids have been deployed through 55 

indoor residual spraying and long-lasting insecticidal nets (LLIN). Exacerbated by the use of insecticides 56 

in the agricultural industries, widespread insecticide resistance has been reported across multiple vector 57 

species  8. In Culicidae, the main mechanisms of resistance to pyrethroids include target-site and 58 

metabolic-based resistance  9. Pyrethroid based target-site resistance is caused by mutations in the 59 

voltage-gated sodium channel leading to altered neurological response to insecticides in mosquitoes [i.e. 60 

knockdown resistance (kdr), reviewed in  10]. Knockdown resistance is broadly studied and is widely 61 

reported across species of Culicidae including Anopheles spp.  9 and Culex pipiens s.l.  11.  In Anopheles, 62 

kdr involves the substitution of leucine (TTA) with phenylalanine (TTT) or serine (TCA) in the voltage 63 

gated sodium channel protein, commonly known as kdr mutations L1014F and L1014S  12. Similar 64 

mutations that confer resistance to pyrethroids (also known as L1014F and L1014S) are observed in the 65 

vgsc of Culex mosquitoes.  66 

For metabolic resistance, the insecticide is degraded, sequestered or exported out of the cell 67 

before it can bind to its target 9. Metabolic resistance has not been linked to a single trackable genetic 68 
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variant in most species. However, previous functional studies have found the over-expression of 69 

detoxification enzymes such as cytochrome P450s lead to metabolic resistance  9, 13.   70 

In Ethiopia, pyrethroid and DDT resistance have been reported in much of the northern and 71 

western portion of the country in the primary malaria vector An. arabiensis  14, 15, 16, 17.  In An. 72 

arabiensis, both target-site and metabolic resistance play a role in pyrethroid and DDT resistance. In 73 

eastern Ethiopia, a recent investigation revealed An. stephensi were resistant to pyrethroids, although, the 74 

L1014F and L1014S mutations were absent  18. An. arabiensis insecticide resistance in eastern Ethiopia 75 

has not been well characterized. Even more so, the status of insecticide resistance in Cx. pipiens s.l. (most 76 

likely Cx. quinquefasciatus) is unknown throughout most of the country.  77 

Knowing the status of resistance to pyrethroids across vector species in a region can provide insight 78 

into the effectiveness of particular insecticides used to target multiple species. Genetic analyses of putative 79 

insecticide resistance loci across local vector populations, can provide information on the range of 80 

mechanisms of insecticide resistance in a region. While kdr L1014F and L1014S mutation frequencies 81 

provide preliminary evidence of target-site resistance to pyrethroids, analysis of the variation in neighboring 82 

intronic region provides information of the long-term impact of pyrethroids on the evolution of the mosquito 83 

populations. Tests for neutrality, such as Tajima’s D  19, can be used to evaluate the genetic diversity of 84 

the kdr locus including the intronic region to determine if the patterns differ from expectations under neutral 85 

evolution. It is expected that if the kdr locus was under selection due to pressure from the pyrethroids, then 86 

we hypothesize that a selective sweep would have led to decreased nucleotide diversity of linked alleles  87 

20, 21. Thus, these analyses are helpful in clarifying the mechanisms of resistance, the current status of 88 

pyrethroid resistance, and predicting the risk of resistance emerging locally. Here we examine the 89 

nucleotide diversity surrounding the kdr locus to test for the hypothesis of selective sweeps in An. stephensi, 90 

An. arabiensis, and Culex pipiens s. l. collected in east Ethiopia.   91 

 92 
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METHODS 93 

The study involved sequencing of a portion of the vgsc gene that contains loci that when mutated can confer 94 

resistance to pyrethroids. For An. stephensi, data came from sequences generated in a previous study  18 95 

and generated in the present study. An. arabiensis and Culex sequence data was also generated in this study 96 

as detailed below.  97 

Sample collection and species identification 98 

An. stephensi were collected from Kebri Dehar in 2016 as part the first detection of this species in Ethiopia 99 

4. Mosquitoes were collected as larvae and lab-reared for testing for resistance to insecticides as previously 100 

detailed 18. An. arabiensis and Culex specimens collected in east Ethiopia in 2017 were included in this 101 

study. An. arabiensis species identification was based on morphological keys and molecular analysis of 102 

internal transcribed spacer 2 (ITS2) and cytochrome oxidase I (COI) loci as reported previously  22. An. 103 

arabiensis were collected using CDC light traps (John W. Hock, Gainesville, FL, USA) over four different 104 

collection times at two sites, Meki (east-central Ethiopia) and Harewe (northeast) in 2017. Harewe and 105 

Meki are about 350 km northwest and 600 km west of Kebri Dehar, respectively (Fig 1).  106 

Fig. 1 Collection sites. 107 

Culex specimens were collected using CDC light traps in Kebri Dehar in 2017. Morphological key and 108 

sequencing of ITS2 locus were used for Culex identification using a previously published PCR protocol  4. 109 

All amplicons were cleaned using Exosap and sequenced using Sanger technology with ABI BigDyeTM 110 

Terminator v3.1 chemistry (Thermofisher, Santa Clara, CA) according to manufacturer recommendations 111 

and run on a 3130 Genetic Analyzer (Thermo Fisher, Santa Clara, CA). Sequences were cleaned and 112 

analyzed using CodonCode Aligner Program V. 6.0.2 (CodonCode Corporation, Centerville, MA). ITS2 113 

sequences from Culex specimen were submitted as queries to the National Center for Biotechnology 114 

Information's (NCBI) Basic Local Alignment Search Tool (BLAST) for species identification  23.   115 

Amplification and sequencing of kdr loci 116 
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Once species or species complex identification was complete, samples were processed. For kdr mutation 117 

analysis, polymerase chain reaction (PCR) was used to amplify the region of the vgsc gene that housed the 118 

homologous kdr 1014 and a neighboring downstream intron in all specimens (reference sequences used for 119 

An. stephensi, An. arabiensis and Culex pipiens sl. were JF304952, GU248311, and BN001092, 120 

respectively). One leg from each mosquito specimen or extracted DNA was used as individual templates 121 

for PCR. Each species required a different PCR protocol. DNA extraction were performed using DNEasy 122 

Qiagen kit (Qiagen, Valencia, USA). All PCR reactions were performed at 25µl total with 12.5 ul 2X 123 

Promega Hot Start Master Mix (Promega Corporation, Madison, USA) and the primer conditions listed in 124 

Tab 1. An. stephensi kdr amplification was completed according to Singh et al.,  24  with modifications as 125 

detailed in Yared et al., 18.  Temperature cycling was as follows: 95°C for 5 min, followed by 35 cycles of 126 

95°C for 30 sec, 50°C for 30 sec, 72°C for 45 sec, and a final extension of 72 °C for 7 min.  Amplifications 127 

of the kdr fragment from An. arabiensis were completed according to methods in Verhaeghen et al  25. 128 

Temperature cycling was as follows: 95°C for 1 min, followed by 30 cycles of 95°C for 30 sec, 52°C for 129 

30 sec, 72°C for 1 min, and a final extension of 72°C for 10 min.  Amplifications of the kdr fragment from 130 

Culex pipiens s.l were completed according methods in Chen et al  26.  Temperature cycling was as follows: 131 

94°C for 5 min, followed by 30 cycles of 94°C for 40 sec, 58°C for 30 sec, 72°C for 40 sec, and a final 132 

extension of 72°C for 8 min.      133 

All amplicons were cleaned using Exosap and sequenced using Sanger technology with ABI BigDyeTM 134 

Terminator v3.1 chemistry (Thermofisher, Santa Clara, CA) according to manufacturer recommendations 135 

and run on a 3130 Genetic Analyzer (Thermo Fisher, Santa Clara, CA).  136 

 137 

Sequence analysis 138 

Sequences were submitted as queries to the National Center for Biotechnology Information's 139 

(NCBI) Basic Local Alignment Search Tool (BLAST) to confirm correct loci were amplified. Sequences 140 

were then aligned in CodonCode (CodonCode Corp., Dedham, MA, USA) by species or species complex 141 
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to identify kdr L1014F or L1014S mutations based on reference sequence details from previous reports  18, 142 

24, 25.  Heterozygous genotypes at kdr was determined based on the number of peaks observed in the 143 

chromatogram, with each peak indicate a different alleles. The kdr allele and genotype frequencies were 144 

then calculated and compared across species.  145 

We determined the level of diversity in the neighboring intron downstream of the kdr 1014 in Culex 146 

spp., An. arabiensis, and An. stephensi for additional evidence of selection on that locus. In addition to the 147 

sequences generated in this study, we included sequences from resistant and non-resistant An. stephensi 148 

analyzed in a previous study on insecticide resistance in An. stephensi  18.  We calculated the number of 149 

segregating sites, nucleotide diversity, the estimated number of haplotypes, and haplotype diversity using 150 

the program DNAsp v5  27. Haplotypes were reconstructed using Phase 2.1  28, HAPAR, and fastPHASE  151 

29 algorithms in DNAsp. The neighboring downstream intron was also tested for neutrality using Tajima’s 152 

D 19, Fu’s F  30, and Fu and Li’s D* and F* tests  31.  153 

RESULTS 154 

Prior to insecticide resistance genotyping, all Culex ITS2 sequences were analyzed to identify 155 

species. All sequences were identical and had equivalent high matching scores for two members of the Cx. 156 

pipiens complex: Cx. p. quinquefasciatus and Cx. p. pipiens. Because we could not identify these mosquitos 157 

to species, we will refer to these specimens by the broader taxonomic classification, Cx. pipiens s. l. (i.e., 158 

Cx. pipiens complex) in this study. An. arabiensis species identification was detailed in previous study  22. 159 

In total, 10, 33, and 24 An. arabiensis were collected in Harewe in November 2016, Harewe in July/August 160 

2017, and Meki in July 2017 collections, respectively.  161 

Kdr analysis 162 

The kdr fragments were sequenced for An. stephensi, Cx. pipiens s.l., and An. arabiensis.  The 163 

sequencing resulted in 184, 452, and 290 base pair fragments for An. stephensi, Cx. pipiens s. l. and An. 164 

arabiensis, respectively. The percent of each kdr genotype observed by species is shown in Fig 2. A total 165 
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of 131 An. stephensi were analyzed, including 80 newly reported sequences. None of the An. stephensi 166 

analyzed in this study carried a mutation at the kdr 1014. All 42 Cx. pipiens s.l. specimens collected at the 167 

same site carried kdr L1014F mutations as homozygous.  Of the 67 An. arabiensis, 71.6% carried the kdr 168 

L1014F mutation (heterozygous and homozygous). The allele frequency of L1014F mutation varied across 169 

An. arabiensis collections, where the highest frequency was observed in Harewe in November 2016 170 

(100%).  L1014F allele frequency for Harewe July/August 2017 and in Meki July 2017 collections were 171 

86.4% and 10%, respectively. No L101S mutations were detected in Cx. pipiens s.l. or An. arabiensis.  172 

Fig. 2 Frequency of kdr 1014 genotypes in An. stephensi, Culex pipiens s.l., and An. arabiensis 173 

collections.  174 

 A portion of the neighboring downstream intron for each species was analyzed to evaluate the 175 

level of diversity (Fig 3). Intron analysis revealed no polymorphisms for either Cx. pipiens or An. arabiensis 176 

(for both L1014F and L1014 wild type specimens). Of the 131 An. stephensi specimens from Kebri Dehar 177 

examined for kdr mutations, six segregating sites were detected, and three haplotypes predicted. Genetic 178 

diversity estimates are reported in Tab 2.  179 

To further evaluate the potential functional significance of the kdr locus in An. stephensi based on 180 

evidence of positive selection, we performed tests for neutrality at the An. stephensi kdr intron. No evidence 181 

of non-neutral processes was detected in An. stephensi for the kdr locus (Tab 3). The absence of variation 182 

in An. arabiensis and Cx. pipiens s.l. kdr introns precluded tests for neutrality.  183 

Fig. 3 Summary of kdr haplotypes across three Culicidae species in east Ethiopia. Solid lines 184 

depict the exon housing the kdr locus and dotted lines depict the downstream intron. Green square 185 

indicates the presence of the kdr L1014F. Triangles denote single nucleotide polymorphisms 186 

(SNPs) found in the intron relative to the most prevalent intron haplotype. 187 

 188 

  189 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.05.13.093898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.093898
http://creativecommons.org/licenses/by/4.0/


Anopheles and Culex knockdown resistance mutations in Ethiopia 

DISCUSSION 190 

Our results reveal variation at the kdr locus across different vector species found in east Ethiopia 191 

suggesting different mechanisms of pyrethroid/DDT resistance. Notably, the kdr L1014F mutation was not 192 

observed consistently across the species included in this study.  Unlike the An. stephensi, that carried no 193 

L1014F mutations, both Cx. pipiens sl. and An. arabiensis carried the L1014F. Based on these findings, it 194 

is likely that Cx. pipiens s.l. and An. arabiensis should not share the same mechanisms of pyrethroid 195 

resistance as An. stephensi. We also observed differences in the nucleotide diversity of the neighboring 196 

intronic region of the three species.  While An. stephensi exhibited multiple segregating sites and resultant 197 

haplotypes, only a single intronic haplotype is observed for An. arabiensis and Cx. pipiens s.l.  These data 198 

may point to distinct differences in biological and environmental factors that shape each species/population.  199 

From a species standpoint, behaviors shaped by both their biology and environment, like feeding and resting 200 

preferences may impact the degree of exposure to insecticides. Cx. pipiens sl tend toward exophilic behavior 201 

and feed generally during the day up to the early evening outdoors. An. stephensi and An. arabiensis both 202 

feed at night, however, An. stephensi is mostly endophilic while An. arabiensis is exophilic.  203 

In addition to species level differences, the different patterns of kdr variation may be explained by 204 

multiple evolutionary processes acting on each population sampled: 1) The data may reflect different levels 205 

of selective pressure occurring at each location, such that the populations that were under selective pressure 206 

from insecticides exhibited kdr mutations and no intronic variation. 2) The variation could also reflect 207 

previous demographic events, like recent drops in population size or population introductions resulting in 208 

a bottleneck and a decline in intronic variation. We can best evaluate these possibilities in the context of 209 

variation at other regions of the genomes in these mosquitoes. The COI have been previously analyzed in 210 

the An. arabiensis and An. stephensi (Carter et al. 2018, Carter el 2019). While multiple COI haplotypes 211 

were observed for each An. arabiensis collection, only a single COI haplotype was identified in the An. 212 

stephensi.  The higher level of diversity in COI in An. arabiensis relative to the kdr intronic region supports 213 

that selective pressure rather than population bottleneck has shaped the variation at the kdr. The opposite 214 
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pattern observed in the An. stephensi gives greater support for the absence of selection on that locus in that 215 

species. The degree of variation at kdr in An. stephensi may also reflect the likely notion of this species 216 

being a recent introduction to that region, so it would not have had the same years of exposure to the local 217 

pressure that would cause evolved target-site resistance in the local vector populations.  No COI data was 218 

available for the Cx. pipiens s.l. in this study, and both population bottleneck and/or selection on the kdr 219 

locus remain plausible explanations for the lack of variation.   220 

The multiple collections that comprised our An. arabiensis sample set provide preliminary insight 221 

into the basis for population kdr variation within a species. We observed a range of kdr allele frequencies 222 

across the An. arabiensis sample collections.  The collections differ by location and/ or date of collection, 223 

suggesting the geography or timing could play a role in the variation in kdr L014 frequencies observed.  224 

Additional surveillance in a larger sample size is needed to verify the importance of geographic and 225 

temporal factors shaping the frequency of the mutation. Another notable observation, was the shared intron 226 

haplotype between the An. arabiensis that carried the L1014F mutation to those that did not. The 227 

mosquitoes that carried the once advantageous allele may suffer fitness costs in the absence of the selective 228 

pressure, which would result in a rebound of the wild-type allele at that locus. These findings underline the 229 

value of investigating the kdr intronic variation for evidence of fluctuating selective pressures and the 230 

potential for the emergence of insecticide resistance in the future.  231 

Several limitations to these studies should be considered. The An. stephensi were collected as larvae 232 

and pupae and the An. arabiensis and Cx. pipiens s.l. were collected as wild-caught adults. This method of 233 

collection may pose a concern that the immature specimen set would not reflect the natural diversity of the 234 

wild-caught adult population. Concerns with clonality however are lowered when considering the level of 235 

diversity observed at the An. stephensi kdr locus and at the ace-1R locus (3 haplotypes detected; data not 236 

shown). In addition, while An. stephensi phenotypic resistance has been reported for east Ethiopia, 237 

phenotypic data on An. arabiensis and its association with kdr has only been studied for portions of the 238 

country outside of east Ethiopia. Also, the association of kdr mutations and phenotypic resistance in Cx. 239 
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pipiens sl observed in other parts of the world have not been confirmed in Ethiopia. Follow-up studies 240 

would benefit from additional bioassay tests for An. arabiensis and Cx. pipiens in east Ethiopia in junction 241 

with the molecular analysis of kdr. Finally, given the geographic variation in kdr mutation frequencies 242 

observed in An. arabiensis, future studies should look at the frequency of kdr mutations of these vectors in 243 

other regions in Ethiopia to confirm the status of target-site pyrethroid/ DDT resistance.  244 

In conclusion, the different patterns of diversity at the kdr loci across species indicate that Culicidae 245 

in east Ethiopia likely have different mechanisms of resistance profiles. Both An. arabiensis and Cx. pipiens 246 

sample sets revealed notable L1014F allele frequencies that confer target-site resistance and absence of 247 

intron variation that tells of selective pressure on that locus in those species. Additional investigations are 248 

needed to determine the mechanisms and genetic basis of pyrethroid resistance (metabolic, cuticle, or 249 

another undiscovered mechanism) in An. stephensi. These finding emphasize the need for careful 250 

consideration of molecular approaches used to evaluate insecticide resistance status across multiple species 251 

and will inform the development and future implementation of novel integrated vector control strategies.  252 
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Tables 285 

Tab 1. List of primer and conditions used for PCR amplification of portions of the voltage gated sodium 286 

channel gene. 287 

Assay Primer Sequence Annealing 

Temperature 

(˚C) 

Final Primer 

Concentration 

(µM) 

An. stephensi KdrF GGACCAYGATTTGCCAAGAT 50 1.25 

 VGS_1R  CGAAATTGGACAAAAGCAAGG 50 1.25 

An. arabiensis Agd1 ATAGATTCCCCGACCATG 52 1.25 

 Agd2 AGACAAGGATGATGAACC 52 1.25 

Culex Cpp1 CCTGCCACGGTGGAACTTC 58 1 

 Cpp2 GGACAAAAGCAAGGCTAAGAA 58 1 

 288 
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Tab 2. Genetic diversity estimates for kdr neighboring downstream intron in the vgsc for An. stephensi, 290 

An. arabiensis, and Cx. pipiens s.l., where n = number of genes (two per individuals), S = number of 291 

polymorphic (i.e., segregating) sites, K = average number of pairwise nucleotide differences, Pi = 292 

nucleotide diversity, h = number of Haplotypes, Hd = haplotype diversity. 293 

Species n S k Pi h Hd 

An. stephensi 262 6 0.996 0.00545 3 0.225 

An. arabiensis 134 0 0 0 1 0 

Cx. pipiens s.l. 84 0 0 0 1 0 

 294 
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Tab 3. Tests for neutrality for downstream kdr intron for An. stephensi. All p-value > 0.10. 296 

Test Estimate 

n 258 

Tajima’s D 0.03839 

Fu’s F 3.556 

Fu and Li’s D 1.04354 

Fu and Li’s F 0.82943 

 297 
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Figures 299 

Fig. 1 Collection sites. 300 
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Fig. 2 Frequency of kdr 1014 genotypes in An. stephensi, Culex pipiens s.l., and An. arabiensis collections.  311 
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Fig. 3 Summary of kdr haplotypes across three Culicidae species in east Ethiopia. Solid lines depict the 314 

exon housing the kdr locus and dotted lines depict the downstream intron. Green square indicates the 315 

presence of the kdr L1014F. Triangles denote single nucleotide polymorphisms (SNPs) found in the 316 

intron relative to the most prevalent intron haplotype. 317 

 318 
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