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Abstract

Little is known about how neural representations of natural sounds differ across species. For
example, speech and music play a unique role in human hearing, yet it is unclear how auditory
representations of speech and music differ between humans and other animals. Using functional
Ultrasound imaging, we measured responses in ferrets to a set of natural and spectrotemporally-
matched synthetic sounds previously tested in humans. Ferrets showed similar lower-level
frequency and modulation tuning to that observed in humans. But while humans showed
prominent selectivity for natural vs. synthetic speech and music in non-primary regions, ferret
responses to natural and synthetic sounds were closely matched throughout primary and non-
primary auditory cortex, even when tested with ferret vocalizations. This finding reveals that
auditory representations in humans and ferrets diverge sharply at late stages of cortical
processing, potentially driven by higher-order processing demands in speech and music.
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Introduction

Surprisingly little is known about how sensory representations of natural stimuli differ across
species (Theunissen and Elie, 2014). This question is central to understanding how evolution and
development shape sensory representations (Moore and Woolley, 2019) as well as developing
animal models of human brain functions. Audition provides a natural test case because speech
and music play a unique role in human hearing (Zatorre et al., 2002; Hickok and Poeppel, 2007
Patel, 2012). While human knowledge of speech and music clearly differs from other species
(Pinker and Jackendoff, 2005), it remains unclear how neural representations of speech and
music differ from those in other species, particularly within the auditory cortex. Few studies have
directly compared neural responses to natural sounds between humans and other animals, and
those which have done so, have often observed similar responses. For example, both humans
and non-human primates show regions that respond preferentially to conspecific vocalizations
(Belin et al., 2000; Petkov et al., 2008). Human auditory cortex exhibits selectivity for speech
phonemes (Mesgarani et al., 2014; Di Liberto et al., 2015), but much of this selectivity can be
predicted by simple forms of spectrotemporal modulation tuning (Mesgarani et al., 2014), and
perhaps as a consequence, can be observed in other animals such as ferrets (Mesgarani et al.,
2008; Steinschneider et al.,, 2013). Consistent with this finding, maps of spectrotemporal
modulation, measured using natural sounds, appear coarsely similar between humans and
macaques (Erb et al., 2019) although temporal modulations present in speech may be over-
represented in humans. Thus, it remains unclear if the representation of natural sounds in auditory
cortex differs substantially between humans and other animals, and if so, how.

A key challenge is that representations of natural stimuli are transformed across different stages
of sensory processing, and species may share some but not all representational stages.
Moreover, responses at different sensory stages are often correlated across natural stimuli (de
Heer et al., 2017), making them difficult to disentangle. Speech and music, for example, have
distinctive patterns of spectrotemporal modulation energy (Singh and Theunissen, 2003; Ding et
al., 2017), as well as higher-order structure (e.g. syllabic and harmonic structure) that is not well
captured by modulation (Norman-Haignere and McDermott, 2018). To isolate neural selectivity
for higher-order structure, we recently developed a method for synthesizing sounds whose
spectrotemporal modulation statistics are closely matched to a corresponding set of natural
sounds (Norman-Haignere and McDermott, 2018). Because the synthetic sounds are otherwise
unconstrained, they lack perceptually salient higher-order structure, which is particularly true for
complex natural sounds like speech and music which are poorly captured by modulation statistics,
unlike many other natural sounds (McDermott and Simoncelli, 2011). We found that human
primary auditory cortex responds similarly to natural and spectrotemporally synthetic sounds,
while non-primary regions respond selectively to the natural sounds. Most of this selectivity is
driven by preferential responses to natural vs. synthetic speech and music in non-primary auditory
cortex. The specificity for speech and music could be due to their ecological relevance in humans
and/or the fact that speech and music are more complex than other sounds, and thus perceptually
differ more from their synthetic counterparts. But notably, the response preference for natural
speech and music cannot be explained by speech semantics, since similar responses are
observed for native and foreign speech (Norman-Haignere et al., 2015; Overath et al., 2015), or
explicit musical training, since music selectivity is robust in humans without any training
(Boebinger et al., 2020). These findings suggest that human non-primary regions respond
selectively to higher-order acoustic features that both cannot be explained by lower-level
modulation statistics and do not yet reflect explicit semantic knowledge.

The goal of the present study was to test whether such higher-order selectivity is present in other
species. We test three key hypotheses: (1) higher-order selectivity in humans reflects a generic
mechanism present across species for analyzing complex sounds like speech and music (2)
higher-order selectivity reflects an adaptation to ecologically relevant sounds such as speech and
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83 music in humans or vocalizations in other species (3) higher-order selectivity reflects a specific
84  adaptation in humans, potentially driven by the unique demands of speech and music perception,
85 that is not generically present in other species even for ecologically relevant sounds. We
86 addressed this question by measuring cortical responses in ferrets — one of the most common
87 animal models used to study auditory cortex (Nelken et al., 2008) — to the same set of natural and
88  synthetic sounds previously tested in humans, as well as natural and synthetic ferret vocalizations.
89 Responses were measured using functional UltraSound imaging (fUS) (Macé et al., 2011,
90 Bimbard et al., 2018), a newly developed wide-field imaging technique that like fMRI detects
91 changes in neural activity via changes in blood-flow (movement of blood induces a doppler effect
92 detectable with ultrasound). fUS has substantially better spatial resolution than fMRI making it
93 applicable to small animals like ferrets. We found that tuning for spectrotemporal modulations
94  presentin both natural and synthetic sounds was similar between humans and animals, and could
95 be quantitatively predicted across species, consistent with prior findings (Mesgarani et al., 2008;
96 Erbetal., 2019). But unlike humans, ferret responses to natural and synthetic sounds were similar
97  throughout primary and non-primary auditory cortex even when comparing natural and synthetic
98 ferretvocalizations; and the small differences that were present in ferrets were weak and spatially
99 scattered, unlike the selectivity observed in humans. This finding reveals that auditory
100 representations in humans and ferrets diverge substantially at late stages of acoustic processing.
101
102  Results
103
104 Experiment I: Comparing ferret cortical responses to natural versus synthetic sounds
105 We measured cortical responses with fUS to the same 36 natural sounds tested previously in
106 humans plus 4 additional ferret vocalizations (Experiment Il tested many more ferret
107  vocalizations). The 36 natural sounds included speech, music, and other environmental sounds
108 (see Table S1). For each natural sound, we synthesized 4 sounds that were matched on acoustic
109 statistics of increasing complexity (Fig 1A): (1) cochlear energy statistics (2) temporal modulation
110 statistics (3) spectral modulation statistics and (4) spectrotemporal modulation statistics.
111  Cochlear-matched sounds had a similar frequency spectrum, but their modulation content was
112 unconstrained and thus differed from the natural sounds. Modulation-matched sounds were
113  additionally constrained in their temporal and/or spectral modulation rates, measured by linearly
114  filtering a cochleagram representation with filters tuned to different modulation rates (modulation-
115 matched sounds also had matched cochlear statistics in order to isolate the contribution of
116  modulation). The modulation-matched sounds audibly differ from their natural counterparts,
117  particularly for complex sounds like speech and music that contain higher-order structure not
118 captured by frequency and modulation statistics (listen to example sounds here). We focused on
119 time-averaged statistics because the hemodynamic response measured by both fMRI and fUS
120 reflects a time-averaged measure of neural activity. As a consequence, each of the synthetic
121  sounds can be thought of as being matched under a different model of the fUS or fMRI response
122 (Norman-Haignere and McDermott, 2018).
123
124  We measured fUS responses throughout primary and non-primary ferret auditory cortex (Fig 1B).
125  We first plot the response timecourse to all 40 natural sounds for one example voxel in non-
126  primary auditory cortex (dPEG) (Fig 1C). We plot the original timecourse of the voxel as well as
127 a denoised version computed by projecting the timecourse onto a small number of reliable
128 components, which we found substantially improved prediction accuracy in left-out data (see
129 Methods for details). As expected and similar to fMRI, we observed a gradual build-up of the
130 hemodynamic response after stimulus onset. The shape of the response timecourse was similar
131  across stimuli, but the magnitude of the response varied, and we thus summarized the response
132  of each voxel to each sound by its time-averaged response magnitude (the same approach used
133  in our prior fMRI study).
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Figure 1. Schematic of stimuli and imaging protocol. A, Cochleagrams for two example natural sounds
(left column) and corresponding synthetic sounds (right four columns) that were matched to the natural
sounds along a set of acoustic statistics of increasing complexity. Statistics were measured by filtering a
cochleagram with filters tuned to temporal, spectral or joint spectrotemporal modulations. The natural sounds
were diverse, and were grouped into 10 different categories shown at right. English and Non-English speech
are separated out because all of the human subjects tested in our prior study were native English speakers,
and so the distinction is meaningful in humans. B, Schematic of the imaging procedure. A three-dimensional
volume covering all of ferret auditory cortex was acquired through successive coronal slices. Auditory cortical
regions (colored regions) were mapped with anatomical and functional markers. The rightmost image shows
a single ultrasound image with overlaid region boundaries. Auditory regions: dPEG: dorsal posterior
ectosylvian gyrus; AEG: anterior ectosylvian gyrus; VP: ventral posterior auditory field; ADF: anterior dorsal
field; AAF: anterior auditory field. Non-auditory regions: hpc: hippocampus; SSG: suprasylvian gyrus; LG:
lateral gyrus. Anatomical markers: pss: posterior sylvian sulcus; sss: superior sylvian sulcus. C, Response
timecourse of a single voxel to all natural sounds, measured from raw (left) and denoised data (right). Each
line reflects a different sound, and its color indicates the sound’s category. The gray region shows the time
window when sound was present. The location of this voxel corresponds to the highlighted voxel in panel B.

We next plot the time-averaged response of two example voxels — one in primary auditory cortex
(Al) and one in a non-primary area (dPEG) — to natural and corresponding synthetic sounds that
have been matched on the full spectrotemporal modulation model (Fig 2A). For comparison, we
plot the test-retest reliability of each voxel across repeated presentations of the same sound (Fig
2B), as well as corresponding figures from two example voxels in human primary/non-primary
auditory cortex (Fig 2C-D; these voxels are re-plotted from our prior paper). As in our prior study,
we quantified the similarity of responses to natural and synthetic sounds using the normalized
squared error (NSE). The NSE takes a value of O if responses to natural and synthetic sounds
are the same, and 1 if there is no correspondence between the two (see Methods for details).
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Figure 2: Dissimilarity of responses to natural vs. synthetic sounds in ferrets and humans. A,
Response of two example fUS voxels to natural and corresponding synthetic sounds with matched
spectrotemporal modulation statistics. Each dot shows the time-averaged response to a single pair of
natural/synthetic sounds (after denoising), with colors indicating the sound category. The example voxels
come from primary (top, Al) and non-primary (bottom, dPEG) regions of the ferret auditory cortex. The
normalized squared error (NSE) quantifies the dissimilarity of responses. B, Test-retest response of the
example voxels across all natural (0) and synthetic (+) sounds (odd vs. even repetitions). The responses
were highly reliable due to the denoising procedure. C-D, Same as panel A-B, but showing two example
voxels from human primary/non-primary auditory cortex. E, Maps plotting the dissimilarity of responses to
natural vs. synthetic sounds from one ferret hemisphere (top row) and from humans (bottom row). Each
column shows results for a different set of synthetic sounds. The synthetic sounds were constrained by
statistics of increasing complexity from left to right: just cochlear statistics, cochlear + temporal modulation
statistics, cochlear + spectral modulation statistics, and cochlear + spectrotemporal modulation statistics.
Dissimilarity was quantified using the normalized squared error (NSE), corrected for noise using the test-
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retest reliability of the voxel responses. Ferret maps show a “surface” view from above of the sylvian gyri,
similar to the map in humans. Surface views were computed by averaging activity perpendicular to the cortical
surface. The border between primary and non-primary auditory cortex is shown with a white line in both
species, and was defined using tonotopic gradients. Areal boundaries in the ferret are also shown (dashed
thin lines). This panel shows results from one hemisphere of one animal (Ferret T, left hemisphere), but
results were similar in other animals/hemispheres (Fig S1). The human map is a group map averaged across
many subjects, but results were similar in individual subjects (Norman-Haignere and McDermott, 2018). F,
Voxels were binned based on their distance to primary auditory cortex (defined tonotopically). This figure
plots the median NSE value in each bin. Each thin line corresponds to a single ferret hemisphere (gray) or a
single human subject averaged across hemispheres (gold) (results were very similar in the left and right
hemisphere of humans). Thick lines show the average across all hemispheres/subjects.

Both the primary and non-primary ferret voxels produced nearly identical responses to natural
and corresponding synthetic sounds (NSEs: 0.042, 0.045), suggesting that spectrotemporal
modulation are sufficient to account for the responses in these voxels. The human primary voxel
also showed similar responses to natural and synthetic responses, and the NSE for natural vs.
synthetic sounds (0.1) was similar to the test-retest NSE (0.094), indicating that the response was
about as similar as possible given the noise ceiling. In contrast, the human non-primary voxel
responded substantially more to the natural speech (green) and music (blue) than matched
synthetics, yielding a high NSE value (0.73). This pattern demonstrates that spectrotemporal
modulations are insufficient to drive the response of the human non-primary voxel, plausibly
because it responds to higher-order features that are not captured by modulation statistics.

We quantified this trend across voxels by plotting maps of the noise-corrected NSE between
natural and synthetic sounds (Fig 2E shows one hemisphere of one animal, but results were very
similar in other hemispheres of other animals, see Fig S1). We show separate maps for each of
the different sets of statistics used to constrain the synthetic sounds (cochlear, temporal
modulation, spectral modulation and spectrotemporal modulation). Each map shows a view from
above auditory cortex, computed by averaging NSE values perpendicular to the cortical sheet.
We summarized the data in this way, because we found that maps were very similar across the
different layers within a cortical column. Below we plot corresponding maps from humans. The
human maps are based on data averaged across subjects, but similar results were observed in
individual subjects (Norman-Haignere and McDermott, 2018).

In ferrets, we observed a similar pattern throughout both primary and non-primary regions:
responses became more similar as we matched additional acoustic features with NSE values
close to 0 for sounds matched on the full spectrotemporal model. This pattern contrasts sharply
with that observed in humans, where we observed a clear and substantial rise in NSE values
when moving from primary to non-primary auditory cortex even for sounds matched on joint
spectrotemporal modulations statistics. We quantified these effects by measuring NSE values
using ROIs binned based on distance to primary auditory cortex, as was done previously in
humans (Fig 2F). This analysis revealed a substantial and significant rise in NSEs when matching
additional acoustic features in ferrets (NSE spectrotemporal < NSE temporal < NSE spectral <
NSE cochlear, p < 0.01 via a bootstrapping analysis across the sound set). But there was little
difference in NSEs between ferret primary and non-primary regions, with NSE values close to
zero in all regions for spectrotemporally matched synthetics. In contrast, every human subject
tested showed larger NSE values in non-primary regions, yielding a significant species difference
(p < 0.01 via a sign-test comparing each ferret to all of the human subjects tested; see Methods
for details). This finding demonstrates that higher-order selectivity for complex natural sounds like
speech and music is not a generic feature of higher-order processing in mammals.

Assessing and comparing selectivity for frequency and modulation across species
Our NSE maps suggest that ferret cortical responses are selective for frequency and modulation,
but do not reveal how this selectivity is organized or whether it is similar to that in humans. While
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it is not feasible to inspect or plot all individual voxels, we found that fUS responses like human
fMRI responses are low-dimensional and can be explained as the weighted sum of a small number
of component response patterns. This observation served as the basis for our denoising
procedure, as well as a useful way to examining ferret cortical selectivity and comparing that
selectivity with humans. We found that we could discriminate approximately 8 distinct component
response patterns before over-fitting to noise (Fig S2C).

A B Component f1 C D E
NSE =0.03
Tonotopy measured = 3 .
with pure tones S 2 ] < §
g g o o 2 s 3
G S Lo 3 £0.25
A Q-1 S ‘ g 07
pss ® 10123 182 649 2314 7896 © 1 4 1664
) Natural sounds Frequency (Hz) Temp (Hz)
Tmm =
- NSE = 0.034
Ferret T, left © -
2 2 .’ c 5
& & sos o 4
602 Hz g o s K]
1430 Hz 9 1 ” o 0 T 1 DS.T
3400 Hz g G
8087 Hz 2 Pa S-04 §025 %7
W 19234 Hz 1 2 182 649 2314 7896 © 1 4 1664
Natural sounds Frequency (Hz) Temp (Hz)
English speech Speech correlation
“ No%-EngIFi)sh speech Component 3 NSE = 0.065 0.4p X UD.S
® |nstrumental music 5SS © 9 4 . | 5 0.8
* Vocal music <3 . c %
¢ Human nonvocal €15 L = 4
Animal nonvocal " £e = &
* Nonspeech vocal 0.14 S ‘“' R 2 0.7
Mechanical 0 R Speech 3- 80.25 0
» Environmental 014 o * & 07
Ferret vocalizations e 1 156 2 182 649 2314 7896 1 4 1664
Natural sounds Frequency (Hz) Temp (Hz)

Figure 3: Organization of frequency and modulation selectivity in ferret auditory cortex, revealed by
component analysis. A, For reference with the weight maps in panel B, a tonotopic map is shown, measured
using pure tones. The map is from one hemisphere of one animal (Ferret T, left). B, Voxel weight maps from
three components, inferred using responses to natural and synthetic sounds (see Fig S3 for all 8 components
and Fig S4 for all hemispheres). Each map was computed by averaging weights perpendicular to the cortical
surface, which was done because the weights were very similar across layers within a column (see Fig S4C).
The maps for components f1 and f2 closely mirrored the high and low-frequency tonotopic gradients
respectively. C, Component response to natural and spectrotemporally-matched synthetic sounds, colored
based on category labels (labels shown at the bottom left of the figure). Components f1 and f2 did not respond
selectively to particular categories. Component f3 responded preferentially to speech sounds. D, Correlation
of component responses with energy at different audio frequencies, measured from a cochleagram. Inset for
f3 shows the correlation pattern that would be expected from a response that was perfectly selective for
speech (i.e. 1 for speech, 0 for all other sounds). E, Correlations with modulation energy at different temporal
and spectral rates. Inset shows the correlation pattern that would be expected for a perfectly speech-selective
response.

We first examined the selectivity of the inferred response patterns and their anatomical distribution
of weights in the brain (Fig 3 shows three example components; Fig S3 shows all 8 components).
All of the component response profiles showed significant correlations with measures of energy
at different cochlear frequencies and spectrotemporal modulation rates (Fig 3D-E) (p < 0.01 for
all components for both frequency and modulation features; statistics computed via a permutation
test across the sound set). Two components (f1 & f2) had responses that correlated with energy
at high and low-frequencies respectively, with voxel weights that mirrored the tonotopic gradients
measured in these animals (compare Fig 3B and 3A; see Fig S4 for all hemispheres/animals),
similar to the tonotopic components previously identified in humans (Norman-Haignere et al.,
2015) (Fig S5, components hl and h2). We also observed components with weak frequency
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264  tuning but prominent tuning for spectrotemporal modulations (Fig S3), again similar to humans.
265 Perhaps surprisingly, one component (f3) responded selectively to speech sounds, and its
266  response correlated with energy at frequency and modulation rates characteristic of speech
267  (insetsin Fig 3D-E, bottom row). But notably, all of the inferred components, including the speech-
268  selective component, produced very similar responses to natural and synthetic sounds (Fig 3C),
269  suggesting that their selectivity can be explained by their tuning for frequency and modulation.
270  This contrasts with the speech- and music-selective components previously observed in humans,
271  which responded selectively to natural speech and music, respectively, and which clustered in
272  distinct non-primary regions of human auditory cortex (see Fig S5, components h5 and h6). This
273  finding shows that selectivity for natural speech compared with other natural sounds is in fact not
274  unique to humans, and thus that comparing responses to natural vs. synthetic sounds is critical
275 to revealing representational differences between species.
276
277 Overall, the frequency and modulation selectivity evident in the ferret components appeared
278  similar to that in humans (Norman-Haignere et al., 2015). To quantitatively evaluate similarity, we
279  attempted to predict the response of each human component, inferred from our prior work, from
280 those in the ferrets (Fig S6) and vice versa (Fig S7). We found that much of the component
281  response variation to synthetic sounds could be predicted across species (Fig S6B&D, STA&C).
282  This finding is consistent with the hypothesis that tuning for frequency and modulation is similar
283  across species, since the synthetic sounds only varied in their frequency and modulation statistics.
284  In contrast, differences between natural vs. synthetic sounds were only robust in humans and as
285 a consequence could not be predicted from responses in ferrets (Fig S6C&E). Thus, selectivity
286 for frequency and modulation is both qualitatively and quantitatively similar across species,
287  despite large and substantial differences in higher-order tuning.
288
289  Experiment ll: Testing the importance of ecological relevance
290  The results of Experiment | show that higher-order selectivity in humans is not a generic feature
291  of auditory processing for complex sounds. However, the results could still be explained by a
292 difference in ecological relevance, since differences between natural and synthetic sounds in
293  humans are mostly driven by speech and music (Norman-Haignere and McDermott, 2018) and
294  Experiment | included more speech (8) and music (10) sounds than ferret vocalizations (4). To
295 test this possibility, we performed a second experiment that included many more ferret
296  vocalizations (30) (Fig 4A), as well as a smaller number of speech (14) and music (16) sounds to
297 allow comparison with Experiment |I. We only synthesized sounds matched in their full
298  spectrotemporal modulation statistics to be able to test a broader sound set.
299
300 Using a video recording of the animals’ face (Fig 4B), we found that the ferrets showed greater
301 spontaneous movements during the presentation of the natural ferret vocalizations compared with
302 both the synthetic sounds and the other natural sounds (Fig 4C; see Fig S8 for additional plots
303 from individual animals and finer-grained vocalization categories). This observation demonstrates
304 that natural ferret vocalizations contain additional structure that is missing from their synthetic
305 counterparts, and that this additional structure is sufficiently salient to cause a spontaneous
306 increase in motion without any overt training. Moreover, the behavioral differences between
307 natural and synthetic vocalizations were greater than those for speech (p < 0.001 via Wilcoxon
308 signed-rank test) and music (p < 0.05), demonstrating that the additional structure present in
309 vocalizations is more salient to the ferret than the additional structure present in natural speech
310 and music. To prevent this motion from affecting the ultrasound responses, we designed a
311 denoising procedure that greatly minimized correlations between the ultrasound responses and
312  motion without removing sound-evoked activity (see Methods and Appendix).
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Figure 4. Testing the importance of ecological relevance. A, Experiment || measured responses to a
much larger number of ferret vocalizations (30), as well as a smaller number of speech (14) and music (16)
sounds, unlike Experiment | which only tested 4 ferret vocalizations. Cochleagrams for an example natural
and synthetic vocalization (a “pup call”) are plotted. B, The animal’s spontaneous movements were monitored
with a video recording of the animal’s face. Motion was measured as the mean absolute deviation between
adjacent video frames, averaged across pixels. C, Average evoked movement amplitude for natural (shaded)
and synthetic (unshaded) sounds broken down by category. Each dot represents one recording session.
Significant differences between natural and synthetic sounds, and between categories of natural sounds are
plotted (paired Wilcoxon test, p<0.001: ***). Evoked movement amplitude was normalized by the standard
deviation across sounds for each recording session prior to averaging across sound category (necessary
because absolute pixel deviations cannot be meaningfully compared across sessions). Results were
consistent across ferrets (Fig S8A). Both animals moved substantially more during natural ferret vocalizations
compared with both matched synthetics as well as speech and music. D, Map showing the dissimilarity
between natural and spectrotemporally matched synthetic sounds from Experiment Il for one hemisphere
(Ferret T, left; see Fig S8B for all hemispheres), measured using the noise-corrected NSE across sounds.
NSE values were low across auditory cortex, replicating the first experiment. E, Maps showing the average
difference between responses to natural and synthetic sounds for vocalizations, speech, music, and others
sounds, normalized for each voxel by the standard deviation across all sounds. Results are shown for the
same ferret hemisphere (T, left) for both Experiment | and Il. Humans were only tested in Experiment I. F,
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333 NSE for different sound categories, plotted as a function of distance to primary auditory cortex (binned as in
334 Fig 2F). Shaded area represents +/- 1 s.e.m. (Fig S8D plots NSEs for individual sounds) G, Same as panel
335 F but showing results from Experiment II.

336

337 Despite this clear behavioral difference, we nonetheless found that voxel responses to natural
338 and synthetic sounds were similar throughout primary and non-primary regions, yielding small
339 NSE values (Fig 4D). This result demonstrates that our key findings from Experiment | are not
340 due to the weak ecological relevance of the tested sounds, since a qualitatively similar result was

341 obtained in Experiment Il when half of the sounds were ferret vocalizations.
342

343  To directly test if ferrets showed selective responses to natural vs. synthetic ferret vocalizations,
344  we computed maps showing the average difference between natural vs. synthetic sounds for
345 different categories, using data from both Experiments | and Il (Fig 4E). We also separately
346 measured the NSE for sounds from different categories (Fig 4F-G; note the normalization term in
347 the NSE was computed using all sounds to avoid inadvertently normalizing out meaningful
348 differences between sounds/categories). We plot the median NSE for sounds from different
349 categories as a function of distance to primary auditory cortex for each animal and experiment
350 (Fig 4F-G; Fig S8D shows the distribution of NSE values for individual sound pairs). This analysis
351 revealed that NSE values in ferrets were slightly elevated for ferret vocalizations compared with
352 other categories (Fig 4F-G), consistent with their ecological relevance. This effect, however, was
353 small and inconsistent, reaching significance in only one of the two animals in Experiment Il
354 (Ferret A, p <0.005, Wilcoxon test) (the effect was significant in both animals in Experiment I, but
355 this experiment only tested 4 ferret vocalizations). Moreover, the small differences that were
356 present between natural and synthetic sounds were spatially distributed throughout primary and
357 non-primary regions, and very similar to those for speech, music and other natural sounds (Fig
358 4E). In contrast, humans showed large and selective responses to speech and music that were
359 concentrated in distinct non-primary regions (lateral for speech and anterior/posterior for music)
360 and clearly different from those for other natural sounds (Fig 4E). Thus, ferrets do not show any
361 of the neural signatures of higher-order selectivity that we previously identified in humans (large
362 effect size, spatially clustered responses, and a clear non-primary bias), even for con-specific
363  vocalizations, which produced clear behavioral differences reflecting their ecological significance.
364

365 Discussion

366

367 Our study reveals a prominent divergence in the representation of natural sounds between
368 humans and ferrets. Using a recently developed wide-field imaging technique (functional
369 Ultrasound), we measured cortical responses in the ferret to a set of natural and
370 spectrotemporally-matched synthetic sounds previously tested in humans. We found that
371 selectivity for frequency and modulation statistics in the synthetic sounds was similar across
372  species. But unlike humans, who showed selective responses to natural vs. synthetic speech and
373 music in non-primary regions, ferrets cortical responses to natural and synthetic sounds were
374  similar throughout primary and non-primary auditory cortex, even when tested with ferret
375 vocalizations. This finding suggests that higher-order selectivity in humans for natural vs. synthetic
376  speech/music (1) does not reflect a species-generic mechanism for analyzing complex sounds
377 and (2) does not reflect a species-generic adaptation for coding ecologically relevant sounds like
378 con-specific vocalizations. Instead, our findings suggest that auditory representations in humans
379 fundamentally diverge from ferrets at higher-order processing stages, plausibly driven by the
380 unique demands of speech and music.

381

382  Species differences in the representation of natural sounds

383 The central challenge of sensory coding is that behaviorally relevant information is often not
384  explicit in the inputs to sensory systems. As a consequence, sensory systems transform their
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385 inputs into higher-order representations that expose behaviorally relevant properties of stimuli
386 (DiCarlo and Cox, 2007; Mizrahi et al., 2014; Theunissen and Elie, 2014). The early stages of this
387 transformation are thought to be conserved across many species. For example, all mammals
388 transduce sound pressure waveforms into a frequency-specific representation of sound energy in
389 the cochlea, although the resolution and frequency range of cochlear tuning differ across species
390 (Bruns and Schmieszek, 1980; Koppl et al., 1993; Joris et al., 2011; Walker et al., 2019). But it
391 has remained unclear whether representations at later stages are similarly conserved across
392 species.
393
394  Only a few studies have attempted to compare cortical representations of natural sounds between
395 humans and other animals, and these studies have typically found similar representations in
396 auditory cortex. Studies of speech phonemes in ferrets (Mesgarani et al., 2008) and macaques
397 (Steinschneider et al., 2013) have replicated many neural phenomena observed in humans
398 (Mesgarani et al., 2014). A recent fMRI study found that maps of spectrotemporal modulation
399 tuning, measured using natural sounds, are coarsely similar between humans and macaques,
400 although slow temporal modulations which are prominent in speech were better decoded in
401 humans compared with macaques (Erb et al., 2019), potentially analogous to prior findings of
402 enhanced cochlear frequency tuning for behaviorally relevant sound frequencies (Bruns and
403 Schmieszek, 1980; Koppl et al., 1993). Thus, prior work has revealed quantitative differences in
404  the extent and resolution of neural tuning for different acoustic frequencies and modulation rates.
405 But it has remained unclear whether there are qualitative differences in how natural sounds are
406 represented across species.
407
408 Our study demonstrates that human non-primary regions exhibit a form of higher-order acoustic
409 selectivity that is almost completely absent in ferrets. Ferret cortical responses to natural and
410 spectrotemporally matched synthetic sounds were closely matched throughout their auditory
411  cortex, and the small differences that we observed were scattered throughout primary and non-
412 primary regions (Fig 4E), unlike the pattern observed in humans. As a consequence, the
413 differences that we observed between natural and synthetic sounds in humans were not
414  predictable from cortical responses in ferrets (Fig S6C), even though we could predict responses
415 to synthetic sounds across species (Fig S6B&E). This higher-order selectivity is unlikely to be
416 explained by explicit semantic knowledge about speech or music, since similar responses are
417  observed for foreign speech (Norman-Haignere et al., 2015; Norman-Haignere and McDermott,
418  2018) and music selectivity is robust in listeners without musical training (Boebinger et al., 2020).
419 These results suggest that humans develop or have evolved a higher-order stage of acoustic
420 analysis, potentially specific to speech and music, that cannot be explained by standard frequency
421 and modulation statistics and is largely absent from the ferret brain. This specificity for speech
422  and music could be due to their acoustic complexity, their behavioral relevance to humans, or a
423  combination of the two.
424
425 By comparison, our study suggests that there is a substantial amount of cross-species overlap in
426  the cortical representation of frequency and modulation features. Both humans and ferrets
427  exhibited tonotopically organized selectivity for different frequencies. Moreover, modulation
428  selectivity accounted for a large fraction of the cortical responses (Fig 2E), even in primary
429 auditory cortex, which emphasizes the importance of modulation tuning in both humans and
430 ferrets. Like humans, ferrets showed spatially organized selectivity for different temporal and
431 spectral modulation rates, that coarsely mimicked the types of selectivity we have previously
432 observed in humans, replicating prior findings (Erb et al.,, 2019). And this selectivity was
433  sufficiently similar that we could quantitatively predict response patterns to the synthetic sounds
434  across species. These results do not imply that frequency and modulation tuning is the same
435  across species, but do suggest that the organization is qualitatively similar.
436
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437  Our results also do not imply that ferrets lack higher-order acoustic representations. Indeed, we
438 found that ferrets’ spontaneous movements robustly discriminated between natural and synthetic
439 ferret vocalizations, demonstrating behavioral sensitivity to the features which distinguish these
440  sound sets, and this sensitivity was greater for ferret vocalizations than for either speech or music.
441  But the manner in which species-relevant higher-order features are represented is likely distinct
442  between humans and ferrets. Consistent with this idea, we found that differences between natural
443  and synthetic sounds are weak, distributed throughout primary and non-primary regions, and
444 show a mix of enhanced and suppressive responses (Fig 4E), unlike the strong, selective, and
445 localized responses observed in human non-primary regions.
446
447  Our findings are broadly consistent with a recent study that compared responses to simple tone
448 and noise stimuli between humans and macaques (Norman-Haignere et al., 2019). This study
449 found that selective responses to tones vs. noise were larger in both primary and non-primary
450 regions of human auditory cortex compared with macaques, which might reflect the importance
451  of speech and music in humans where harmonic structure plays a central role. Our finding are
452  unlikely to reflect greater tone selectivity because we have previously shown that non-primary
453  regions respond preferentially to natural vs. temporally scrambled sounds with similar spectral
454  properties (Norman-Haignere et al., 2015; Overath et al., 2015) (in addition we have found in pilot
455  experiments that speech-selective regions respond strongly to whispered speech which lack tonal
456  structure). Moreover, the prior study tested only two types of sounds (tones and noises) and thus
457  was unable to broadly characterize how auditory representations differ between species. Here,
458 we tested a wide and diverse range of natural and synthetic sounds that differ on many different
459  ecologically relevant dimensions, and thus were able to compare the overall functional
460 organization between humans and ferrets. As a consequence, we were able to identify a
461 substantial divergence in neural representations at a specific point in the cortical hierarchy.
462
463 Methodological advances
464  Our findings were enabled by a recently developed synthesis method, that makes it possible to
465 synthesize sounds with frequency and modulation statistics that are closely matched to those in
466  natural sounds (Norman-Haignere and McDermott, 2018). Because the synthetics are otherwise
467  unconstrained, they lack higher-order acoustic properties present in complex natural sounds like
468 speech and music (e.g. syllabic structure; musical notes, harmonies and rhythms). Comparing
469 neural responses to natural and synthetic sounds thus provides a way to isolate responses to
470  higher-order properties of natural stimuli that cannot be accounted for by modulation statistics.
471  This methodological advance was critical to differentiating human and ferret cortical responses.
472  Indeed, when considering natural or synthetic sounds alone, we observed very similar responses
473  between species. We even observed selective responses to speech compared with other natural
474  sounds in the ferret auditory cortex, due to the fact that speech has a unique range of
475  spectrotemporal modulations. Thus, if we had only tested natural sounds, we might have
476  concluded that speech and music-selective responses in the human non-primary auditory cortex
477  reflect the same types of acoustic representations present in ferrets.
478
479  Our study illustrates the utility of wide-field imaging methods in comparing the brain organization
480 of different species (Bimbard et al., 2018; Milham et al., 2018). Most animal physiology studies
481 focus on measuring responses from single neurons or small clusters of neurons in a single brain
482  region. While this approach is clearly essential to understanding the neural code at a fine grain,
483  studying a single brain region can obscure larger-scale trends that are evident across the cortex.
484  Indeed, if we had only measured responses in a single region of auditory cortex, we would have
485 missed the most striking difference between humans and ferrets: the emergence of selective
486  responses to natural sounds in non-primary regions of humans but not ferrets (Fig 2E).
487
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488 Functional ultrasound imaging provides a powerful way of studying large-scale functional
489  organization in small animals such as ferrets, since it has much better spatial resolution than fMRI
490 (Macé et al., 2011; Bimbard et al.,, 2018). Because fUS responses are noisy, prior studies,
491 including those from our own lab, have only been able to characterize responses to a single
492  stimulus dimension, such as frequency, typically using a small stimulus set (Gesnik et al., 2017;
493 Bimbard et al., 2018). Here, we developed a denoising method that made it possible to measure
494  highly reliable responses to over a hundred stimuli in a single experiment. We were able to recover
495 at least as many response dimensions as those detectable with fMRI and humans, and those
496 response dimensions exhibited selectivity for a wide range of frequencies and modulation rates.
497  Our study thus pushes the limits of what is possible using ultrasound imaging, and establishes
498 fUS as an ideal method for studying the large-scale functional organization of the animal brain.
499
500 Assumptions and limitations
501 The natural and synthetic sounds we tested were closely matched in their time-averaged cochlear
502 frequency and modulation statistics, measured using a standard model of cochlear and cortical
503 modulation tuning (Chi et al., 2005; Norman-Haignere and McDermott, 2018). We focused on
504 time-averaged statistics because fMRI and fUS reflect time-averaged measures of neural activity,
505 due to the temporally slow nature of hemodynamic responses. Thus, a similar response to natural
506 and synthetic sounds indicates that the statistics being matched are sufficient to explain the voxel
507 response. By contrast, a divergent voxel response indicates that the voxel responds to features
508 of sound that are not captured by the model.
509
510 While divergent responses by themselves do not demonstrate a higher-order response, there are
511 several reasons to think that the selectivity we observed in human non-primary regions is due to
512 higher-order tuning. First, the fact that differences between natural and synthetic speech/music
513 were much larger in non-primary regions clearly suggests that these differences are driven by
514  higher-order processing above and beyond that present in primary auditory cortex, where
515 spectrotemporal modulations appear to explain much of the voxel response. Second, the natural
516 and synthetic sounds produced by our synthesis procedure are in practice closely matched on a
517  wide variety on spectrotemporal filterbank models (Norman-Haignere and McDermott, 2018). As
518 a consequence, highly divergent responses to natural and synthetic sounds rule out many such
519 models. Third, the fact that responses were consistently larger for natural speech/music vs.
520 synthetic speech/music suggests that these non-primary regions respond selectively to features
521 in natural sounds that are not explicitly captured by spectrotemporal modulations and are thus
522 absent from the synthetic sounds.
523
524  As with any study, our conclusions are limited by the precision and coverage of our neural
525 measurements. For example, fine-grained temporal codes, which have been suggested to play
526  an important role in vocalization encoding (Schnupp et al., 2006), cannot be detected with fUS.
527  However, we note that the resolution of fUS is substantially better than fMRI, particularly in the
528 spatial dimension (voxel sizes were more than 1000 times smaller) and thus the species
529 differences we observed are unlikely to be explained by differences in the resolution of fUS vs.
530 fMRI. Itis also possible that ferrets might show more prominent differences between natural and
531 synthetic sounds outside of auditory cortex. But even if this were true, it would still demonstrate a
532 clear species difference because humans show robust selectivity for natural sounds in non-
533  primary regions just outside of primary auditory cortex, while ferrets evidently do not.
534
535 Possible nature and causes of differences in higher-order selectivity
536 What features might non-primary human auditory cortex represent, given that spectrotemporal
537 modulations do not explain all of the response? Although these regions respond selectively to
538 speech and music, they are not driven by semantic meaning or explicit musical training (Overath
539 et al.,, 2015; Boebinger et al., 2020), are located just beyond primary auditory cortex, and show
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540 evidence of having short integration periods on the scale of hundreds of milliseconds (Overath et
541 al., 2015). This pattern suggests nonlinear selectivity for short-term temporal and spectral
542  structure present in speech syllables or musical notes (e.g. harmonic structure, pitch contours,
543 and local periodicity). This hypothesis is consistent with recent work showing sensitivity to
544  phonotactics in non-primary regions of the superior temporal gyrus (Leonard et al., 2015;
545 Brodbeck et al., 2018; Di Liberto et al., 2019), and with a recent study showing that deep neural
546 networks trained to perform challenging speech and music tasks are better able to predict
547  responses in non-primary regions of human auditory cortex (Kell et al., 2018).
548
549  Why don’t we observe similar neural selectivity in ferrets for vocalizations? Ferret vocalizations
550 clearly exhibit additional structure not captured by spectrotemporal modulations, since the animals
551 showed large and spontaneous increases in motion for natural vs. synthetic vocalizations. This
552 increase in motion was greater for vocalizations than for either speech or music, clearly reflecting
553  the behavioral significance of vocalizations to ferrets. However, this additional structure may play
554  aless-essential role in their everyday hearing compared with that of speech and music in humans.
555  Other animals that depend more on higher-order acoustic representations might show more
556  human-like selectivity in non-primary regions. For example, marmosets have a relatively complex
557  vocal repertoire (Agamaite et al., 2015) and depend more heavily on vocalizations than many
558 other species (Eliades and Miller, 2017), and thus might exhibit more prominent selectivity for
559 higher-order properties in their calls. It may also be possible to experimentally enhance selectivity
560 for higher-order properties via extensive exposure and training, particularly at an early age of
561 development (Polley et al., 2006; Srihasam et al., 2014). All of these questions could be
562 addressed in future work using the methods developed here.
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563 Methods

564

565 Animal preparation

566 Experiments were performed in two head-fixed awake ferrets (A and T), across one or both
567 hemispheres (Study 1: Aueft, Aright, Tleft, Tright; Study 2: Aleft, Tiet, and Tright). Ferret A was a mother
568 (had one litter of pups), while ferret T was a virgin. Experiments were approved by the French
569  Ministry of Agriculture (protocol authorization: 21022) and strictly comply with the European
570 directives on the protection of animals used for scientific purposes (2010/63/EU). Animal
571 preparation and fUS imaging were performed as in Bimbard et al. (2018). Briefly, a metal headpost
572 was surgically implanted on the skull under anaesthesia. After recovery from surgery, a
573 craniotomy was performed over auditory cortex and then sealed with an ultrasound-transparent
574  Polymethylpentene (TPX™) cover, embedded in an implant of dental cement. Animals could then
575 recover for one week, with unrestricted access to food, water and environmental enrichment.
576  Imaging windows were maintained across weeks with appropriate interventions when tissue and
577  bone regrowth were shadowing brain areas of interest.

578

579 Ultrasound imaging

580 fUS data are collected as a series of 2D images or ‘slices’. Slices were collected in the coronal
581 plane and were spaced 0.4 mm apart. The slice plane was varied across sessions in order to
582 cover the region-of-interest which included both primary and non-primary regions of auditory
583 cortex. One or two sessions were performed on each day of recording. The resolution of each
584 voxelwas 0.1 x 0.1 x ~0.4 mm (the latter dimension, called elevation, being slightly dependent on
585 the depth of the voxel). The overall voxel volume (0.004 mm?3) was more than a thousand times
586 smaller than the voxel volume used in our human study (which was either 8 or 17.64 mm?3
587 depending on the subjects/paradigm), which helps to account for their smaller brain.

588

589 A separate “Power Doppler” image/slice was acquired every second. Each of these images was
590 computed by first collecting 300 sub-images or ‘frames’ in a short 600 ms time interval (500 Hz
591 sampling rate). Those 300 frames were then filtered to discard global tissue motion from the signal
592 (Demené et al., 2015) (the first 55 principal components were discarded because they mainly
593 reflect motion; see Demené et al., 2015 for details). The blood signal energy also known as Power
594  Doppler was computed for each voxel by summing the squared magnitudes across the 300
595 frames separately for each pixel (Macé et al., 2011). Power Doppler is approximately proportional
596 to blood volume (Macé et al., 2011).

597

598 Each of the 300 frames was itself computed from 11 tilted plane wave emissions (-10° to 10° with
599 2° steps) fired at a pulse repetition frequency of 5500 Hz. Frames were reconstructed from these
600 plane wave emissions using an in-house, GPU-parallelized delay-and-sum beamforming
601 algorithm (Macé et al., 2011).

602

603  Stimuli for Experiment |

604  We tested 40 natural sounds: 36 sounds from our prior experiment plus 4 ferret vocalizations (fight
605 call, pup call, fear vocalization, and play call). Each natural sound was 10 seconds in duration.
606 For each natural sound, we synthesized four synthetic sounds, matched on a different set of
607 acoustic statistics of increasing complexity: cochlear, temporal modulation, spectral modulation,
608 and spectrotemporal modulation. The modulation-matched synthetics were also matched in their
609 cochlear statistics to ensure that differences between cochlear and modulation-matched sounds
610 must be due to the addition of modulation statistics. The natural and synthetic sounds were
611 identical to those in our prior paper, except for the four additional ferret vocalizations, which were
612 synthesized using the same algorithm. We briefly review the algorithm below.

613
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614  Cochlear statistics were measured from a cochleagram representation of sound, computed by
615 convolving the sound waveform with filters designed to mimic the pseudo-logarithmic frequency
616  resolution of cochlear responses (McDermott and Simoncelli, 2011). The cochleagram for each
617 sound was composed of the compressed envelopes of these filter responses (compression is
618 designed to mimic the effects of cochlear amplification at low sound levels). Modulation statistics
619 were measured from filtered cochleagrams, computed by convolving each cochleagram in time
620 and frequency with a filter designed to highlight modulations at a particular temporal rate and/or
621  spectral scale (Chi et al., 2005). The temporal and spectral modulation filters were only modulated
622 intime or frequency, respectively. There were 9 temporal filters (best rates: 0.5, 1, 2, 4, 8, 16, 32,
623 64, and 128 Hz) and 6 spectral filters (best scales: 0.25, 0.5, 1, 2, 4, 8 cycles per octave).
624  Spectrotemporal filters were created by taking the outer-product of all pairs of temporal and
625 spectral filters in the 2D fourier domain, which results in oriented gabor-like filters.
626
627 Our synthesis algorithm matches time-averaged statistics of the cochleagrams and filtered
628 cochleagrams via a histogram-matching procedure that implicitly matches all time-averaged
629 statistics of the responses (separately for each frequency channel of the cochleagrams and
630 filtered cochleagrams). This choice is motivated by the fact that both fMRI and fUS reflect time-
631 averaged measures of neural activity, because the temporal resolution of hemodynamic changes
632 is much slower than the underlying neuronal activity. As a consequence, if the fMRI or fUS
633 response is driven by a particular set of acoustic features, we would expect two sounds with
634  similar time-averaged statistics for those features to yield a similar response. We can therefore
635 think of the natural and synthetic sounds as being matched under a particular model of the fMRI
636 or fUS response (a more formal derivation of this idea is given in Norman-Haignere et al., 2018).
637
638 We note that the filters used to compute the cochleagram were designed to match the frequency
639 resolution of the human cochlea, which is thought to be somewhat finer than the frequency
640 resolution of the ferret cochlea (Walker et al., 2019). In general, synthesizing sounds from broader
641 filters results in synthetics that differ slightly more from the originals. And thus if we had used
642 cochlear filters designed to mimic the frequency tuning of the ferret cochlea, we would expect the
643 cochlear-matched synthetic sounds to differ slightly more from the natural sounds. However, given
644 that we already observed highly divergent responses to natural and cochlear-matched synthetic
645 sounds in both species, it is unlikely that using broader cochlear filters would change our findings.
646 In general, we have found the matching procedure is not highly sensitive to the details of the filters
647 used. For example, we have found that sounds matched on the spectrotemporal filters used here
648 and taken from Chi et al. (2005), are also well matched on filters with half the bandwidth, with
649 phases that have been randomized, and with completely random filters (Norman-Haignere and
650 McDermott, 2018).
651
652  Stimuli for Experiment Il
653  Experiment Il tested a larger set of 30 ferret vocalizations (5 fight calls, 17 single-pup calls, and 8
654 multi-pup calls where the calls from different pups overlapped in time). The vocalizations
655 consisted of recordings from several labs (our own, Stephen David’s and Andrew King’s
656 laboratories). For comparison, we also tested 14 speech sounds and 16 music sounds, yielding
657 60 natural sounds in total. For each natural sound, we created a synthetic sound matched on the
658  full spectrotemporal model. We did not synthesize sounds for the sub-models (cochlear, temporal
659 modulation, and spectral modulation), since our goal was to test if there were divergent responses
660 to natural and synthetic ferret vocalizations for spectrotemporally-matched sounds, like those
661 presentin human non-primary auditory cortex for speech and music sounds.
662
663 Procedure for presenting stimuli
664 Sounds were played through calibrated earphones (Sennheiser IES00 earphones, HDVA 600
665 amplifier, 65 dB) while recording hemodynamic responses via fUS imaging. In our prior fMRI
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666 experiments in humans, we had to chop the 10 second stimuli into 2-second excerpts in order to
667 presentthe sounds in between scan acquisitions, because MRI acquisitions produce a loud sound
668 that would otherwise interfere with hearing the stimuli. Because fUS imaging produces no audible
669 noise, we were able to present the entire 10 second sound without interruption. The experiment
670 was composed of a series of 20-second trials, and fUS acquisitions were synchronized to trial
671 onset. On each trial, a single 10-second sound was played, with 7 seconds of silence before the
672 sound to establish a response baseline, and 3 seconds of post-stimulus silence to allow the
673 response to return to baseline. There was a randomly chosen 3 to 5 second gap between each
674  trial. Sounds were presented in random order, and each sound was repeated 4 times.
675
676 Mapping of tonotopic organization with pure tones
677  Tonotopic organization was assessed using previously described methods (Bimbard et al., 2018).
678 Inshort, responses were measured to 2-second long pure tones from 5 different frequencies (602
679 Hz, 1430 Hz, 3400 Hz, 8087 Hz, 19234 Hz). The tones were played in random order, with 20
680 trials/frequency. Data was denoised using the same method described in Denoising Part I:
681 Removing components outside of cortex. Tonotopic maps were created by determining the best
682 frequency of each voxel, defined as the tone evoking the largest Power Doppler signal. We then
683  used these functional landmarks in combination with brain and vascular anatomy to establish the
684  borders between primary and non-primary areas in all hemispheres, as well as to compare them
685 to those obtained with natural sounds (see Fig S4A).
686
687 Brain map display
688 Views from above were obtained by computing the average of the variable of interest in each
689 vertical column of voxels from the upper part of the manually defined cortical mask. This is
690 justified by the fact that measures were coherent across depth (see Fig S4 for examples).
691 However, we note that having a three-dimensional view prevents us from missing specific
692 responsive areas sometimes buried in the depth of the sulci.
693
694
695 Normalized Squared Error (NSE) maps
696 Like fMRI, the response timecourse of each fUS voxel shows a gradual build-up of activity after a
697  stimulus, due to the slow and gradual nature of blood flow changes. The shape of this response
698 timecourse is similar across different sounds, but the magnitude varies (Fig 1C) (fMRI responses
699 show the same pattern). We therefore measured the response magnitude of each voxel by
700 averaging the response to each sound across time (from 3 to 11 seconds post-stimulus onset),
701  yielding one number per sound. Responses were measured from denoised data. We describe the
702  denoising procedure at the end of the Methods because it is more involved than our other
703 analyses.
704
705 We compared the response magnitude to natural and corresponding synthetic sounds using the
706 normalized squared error (NSE), the same metric used in humans. The NSE takes a value of O if
707  the response to natural and synthetic sounds is identical, and 1 if there is no correspondence
708 between responses to natural and synthetic sounds. The NSE is defined as:

709
3 u([x —y1%)
Zi () NSE = ) ¥ n0?) = ZeOR®)

712 where x and y are response vectors across the sounds being compared (i.e. natural and
713  synthetic) and u(.) indicates the vector mean. We noise-corrected the NSE using the test-retest
714  reliability of the voxel responses (see Norman-Haignere et al., 2018 for details). However, we
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715 measured the NSE from denoised data, which was highly reliable, and our correction procedure
716  thus only had a small effect on the resulting values.
717
718  Annular ROl analyses.
719  We used the same annular ROI analyses from our prior paper to quantify the change in NSE
720  values (or lack thereof) across the cortex. We binned voxels based on their distance to the center
721  of primary auditory cortex, defined tonotopically. We used smaller bin sizes in ferrets (0.5 mm)
722  than humans (5 mm) due to their smaller brains (results were not sensitive to the choice of bin
723  size). Figure 2F plots the median NSE value in each bin, plotted separately for each human
724  subject and for each hemisphere of each ferret. To statistically compare different models (e.g.
725 cochlear vs. spectrotemporal), we averaged the NSE values across all bins and
726  hemispheres/subjects separately for each model, bootstrapped the resulting statistics by
727 resampling across the sound set (1000 times), and counted the fraction of samples that
728 overlapped between models (multiplying by 2 to arrive at a two-sided p-value). To compare
729  species, we measured the slope of the NSE vs. distance curve separately for each
730 hemisphere/animal. We found that the slope in every hemisphere of every ferret was less than
731 the slope of every hemisphere of every human subject, which is significant with a sign test (p <
732 0.01; for each ferret hemisphere there were 8 human subjects to compare with).
733
734  Component analyses
735 To investigate the organization of fUS responses to the sound set, we applied the same voxel
736  decomposition used in our prior work in humans to identify a small number of component response
737  patterns that explained a large fraction of the response variation. Like all factorization methods,
738 each voxel is modeled as the weighted sum of a set of canonical response patterns that are
739 shared across voxels. The decomposition algorithm is similar to standard algorithms for
740 independent component analysis (ICA) in that it identifies components that have a non-Gaussian
741  distribution of weights across voxels by minimizing the entropy of the weights (the Gaussian
742  distribution has the highest entropy of any distribution with fixed variance). This optimization
743  criterion is motivated by the fact that independent variables become more Gaussian when they
744 are linearly mixed, and non-Gaussianity thus provides a statistical signature that can be used to
745 unmix the latent variables. Our algorithm differs from standard algorithms for ICA in that it
746  estimates entropy using a histogram, which is effective if there are many voxels, as is the case
747  with fMRI and fUS (40882 fUS voxels for experiment I, 38366 fUS voxels for experiment I1).
748
749  We applied our analyses to the denoised response timecourse of each voxel across all sounds
750 (each column of the data matrix contained the concatenated response timecourse of one voxel
751 across all sounds). Our main analysis was performed on voxels concatenated across both animals
752 tested. The results however were similar when the analysis was performed on data from each
753 animal. The number of components was determined via a cross-validation procedure described
754  in the section on denoising.
755
756  We examined the inferred components by plotting and comparing their response profiles to the
757  natural and synthetic sounds, as well as plotting their anatomical weights in the brain. We also
758 correlated the response profiles across all sounds with measures of cochlear and spectrotemporal
759  modulation energy. Cochlear energy was computed by averaging the cochleagram for each sound
760 across time. Spectrotemporal modulation energy was calculated by measuring the strength of
761  modulations in the filtered cochleagrams (which highlight modulations at a particular temporal rate
762  and/or spectral scale). Modulation strength was computed as the standard deviation across time
763  of each frequency channel of the filtered cochleagram. The channel-specific energies were then
764  averaged across frequency, yielding one number per sound and spectrotemporal modulation rate.
765
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766  We used a permutation test across the sound set to assess the significance of correlations with
767  frequency and modulation features. Specifically, we measured the maximum correlation across
768 all frequencies and all modulation rates tested, and we compared these values with those from a
769  null distribution computed by permuting the correspondence across sounds between the features
770 and the component responses (1000 permutations). We counted the fraction of samples that
771  overlapped the null distribution and multiplied by two in order to arrive at a two-sided p-value. For
772 every component, we found that correlations with frequency and modulation features were
773  significant (p < 0.01).
774
775  Predicting human components from ferret responses
776  To quantify which component response patterns were shared across species, we tried to linearly
777  predict components across species (Fig S6/S7). Each component was defined by its average
778 response to the 36 natural and corresponding synthetic sounds, matched on the full
779  spectrotemporal model. We attempted to predict each human component from all of the ferret
780 components and vice versa, using cross-validated ridge regression (9 folds). The ridge parameter
781  was chosen using nested cross-validation within the training set (also 9 folds; testing a wide range
782  from 2190 to 2190), Each fold contained pairs of corresponding natural and synthetic sound, so that
783  there would be no overlap between the train and test sounds.
784
785 For each component, we separately measured how well we could predict the response to
786  synthetic sounds (Fig S6B/S7A) — which isolates selectivity for frequency and modulation
787  statistics present in natural sounds — as well as how well we could predict the difference between
788 responses to natural vs. synthetic sounds (Fig S6C/FigS7B) — which isolates selectivity for
789 features in natural sounds that are not explained by frequency and modulation statistics. We
790 quantified prediction accuracy using the noise-corrected NSE, and we used (1 — NSE)."2 as a
791 measure of explained variance. This choice is motivated by the fact (1 — NSE) is equivalent to the
792  Pearson correlation for signals with equal mean and variance and thus (1 — NSE).*2 is analogous
793 to the squared Pearson correlation, which is a standard measure of explained variance.
794
795 We multiplied these explained variance estimates by the total response variance of each
796 component for either synthetic sounds or for the difference between natural and synthetic sounds
797  (Fig S6D/Fig S7C shows the total variance alongside the fraction of that total variance explained
798 by the cross-species prediction). We noise-corrected the total variance using the equation below:
799
800

801 (2)

802

803 where r; and r, are two independent response measurements. Below we give a brief derivation
804  of this equation, where r; and r, are expressed as the sum of a shared signal (s) that is repeated
805 across measurements plus independent noise (n, and n,) which is not. This derivation utilizes the
806 fact that the variance of independent signals that are summed or subtracted is equal to the sum
807  of their respective variances.

var(r, +r,) —var(r, —ry)
4

808
var(ry +r,) —var(ry —r,)  var([s + ny] + [s + n,]) —var([s + n;] — [s + n,])
809 3 2 =
810 _ var(2s + n, + ni) —var(n, —n,)
811 _ 4va;‘(s)
812 = var(s)
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813

814  The two independent measurements used for noise correction were derived from different human
815 or ferret subjects. The measurements were computed by attempting to predict group components
816 from each individual subject using the same cross-validated regression procedure described
817 above. The two measurements in ferrets came from the two animals tested (A and T). And the
818 two measurements in humans came from averaging across two non-overlapping sets of subjects
819 (4 in each group; groups chosen to have similar SNR).

820

821  For this analysis, the components were normalized so that the RMS magnitude of their weights
822 was equal. As a consequence, components that explained more response variance also had
823 larger response magnitudes. We also adjusted the total variance across all components to equal
824 1.

825

826 Comparing the similarity of natural and synthetic sounds from different categories. We
827 computed maps showing the average difference between natural and synthetic sounds from
828 different categories (Fig 4E). So that the scale of the differences could be compared across
829 species, we divided the measured differences by the standard deviation of each voxel's response
830 across all sounds. We also separately measured the NSE for sounds from different categories
831 (Fig 4F,G). The normalization term in the NSE equation (denominator of equation 1) was
832 averaged across all sounds in order to ensure that the normalization was the same for all
833 sounds/categories and thus that we were not inadvertently normalizing-away meaningful
834  differences between the sounds/categories.

835

836 Denoising Part I: Removing components outside of cortex

837  Ultrasound responses in awake animals are noisy, which has limited its usage to mapping simple
838 stimulus dimensions (e.g. frequency) where a single stimulus can be repeated many times
839 (Bimbard et al., 2018). To overcome this issue, we developed a denoising procedure that
840 substantially increased the reliability of the voxel responses (Fig S9). The procedure had two
841 parts. The first part, which is described in this section, removed prominent signals outside of
842  cortex, which are likely to reflect movement or other sources of noise. The second part enhanced
843 reliable signals. Code implementing the denoising procedures will be made available upon
844  publication.

845

846  We separated voxels into those inside and outside of cortex, since responses outside of the cortex
847 by definition do not contain stimulus-driven cortical responses, but do contain sources of noise
848 like motion. We then used canonical correlation analysis (CCA) to find a set of response
849 timecourses that were robustly present both inside and outside of cortex, since such timecourses
850 are both likely to reflect noise and likely to distort the responses-of-interest. We projected-out the
851 top 20 canonical components (CCs) from the data set, which we found scrubbed the data of
852  motion-related signals (Fig S9A; motion described below).

853

854  This analysis was complicated by one key fact: the animals reliably moved more during the
855 presentation of some sounds (Fig 4C). Thus, noise-induced activity outside-of-cortex is likely to
856 be correlated with sound-driven neural responses inside-of-cortex, and removing CCs will thus
857 remove both noise and genuine sound-driven activity. To overcome this issue, we took advantage
858  of the fact that sound-driven responses will by definition be reliable across repeated presentations
859 of the same sound, while motion-induced activity will vary from trial-to-trial for the same sound.
860 We thus found canonical components where the residual activity after removing trial-averaged
861 responses was shared between responses inside and outside of cortex, and we then removed
862 the contribution of these components from the data. We give a detailed description and motivation
863  of this procedure in the Appendix, and show the results of a simple simulation demonstrating its
864 efficacy.
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865

866  To assess the effect of this procedure on our fUS data, we measured how well it removed signals
867 that were correlated with motion (Fig S9A). Motion was measured using a video recording of the
868 animals’ face. We measured the motion energy in the video as the average absolute deviation
869 across adjacent frames, summed across all pixels. We correlated this motion timecourse with the
870 residual timecourse of every voxel after subtracting off trial-averaged activity. Figure S9A plots
871 the mean absolute correlation value across voxels as a function of the number of canonical
872 components removed (motion can induce both increased and decreased fUS signal and thus it
873 was necessary to take the absolute value of the correlation before averaging). We found that
874  removing the top 20 CCs substantially reduced motion correlations.

875

876  We also found that removing the top 20 CCs removed the spatial striping in the voxel responses,
877  which is a stereotyped feature of motion due to the interaction between motion and blood vessels.
878 To illustrate this effect, Figure S9B shows the average difference between responses to natural
879  vs. synthetic sounds in Experiment Il (vocalization experiment). Before denoising, this difference
880 map shows a clear striping pattern likely due to the fact that the animals moved more during the
881 presentation of the natural vs. synthetic sounds. The denoising procedure largely eliminated this
882  striping pattern.

883

884 Denoising Part II: Enhancing signal using DSS

885  After removing components likely to be driven by noise, we applied a second procedure designed
886 to enhance reliable components in the data. Our procedure is a variant of a method that is often
887 referred to as “denoising source separation” (DSS) or “joint decorrelation” (de Cheveigné and
888 Parra, 2014). In contrast with principal component analysis (PCA), which finds components that
889 have high variance, DSS emphasizes components that have high variance after applying a
890 “biasing” operation that is designed to enhance some aspect of the data. The procedure begins
891 by whitening the data such that all response dimensions have equal variance, the biasing
892 operation is applied, and PCA is then used to extract the components with highest variance after
893 biasing. In our case, we biased the data to enhance response components that were reliable
894  across stimulus repetitions and across the slices from all animals. We note that unlike fMRI, data
895 from different slices come from different sessions. As a consequence, the noise from different
896 slices will be independent. Thus, any response components that are consistent across slices and
897 animals are likely to reflect true, stimulus-driven responses.

898

899 The input to our analysis was a set of matrices. Each matrix contained data from a single stimulus
900 repetition and slice. Only voxels from inside of cortex were analyzed. Each column of each matrix
901 contained the response timecourse of one voxel to all of the sounds (concatenated), denoised
902 using the procedure described in Part I. The response of each voxel was converted to units of
903 percent signal change (the same units used for fMRI analyses) by subtracting and dividing by the
904  pre-stimulus period (also known as percent Cerebral Blood Volume or %CBV in the fUS literature).
905

906  Our analysis involved five steps:

907

908 1. We whitened each matrix individually.

909

910 2. We averaged the whitened response timecourses across repetitions, thus enhancing
911 responses that are reliable across repetitions.

912

913 3. We concatenated the repetition-averaged matrices for all slices across the voxel dimension,
914  thus boosting signal that is shared across slices and animals.

915
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916 4. We extracted the top N principal components (PCs) with the highest variance from the
917 concatenated data matrix. The number of components was selected using cross-validation
918 (described below). Because the matrices for each individual repetition and slice have been
919 whitened, the PCs extracted in this step will not reflect the components with highest variance, but
920 will instead reflect the components that are the most reliable across repetitions and across
921 slices/animals. We thus refer to these components as “reliable components” (R).
922
923 5. We then projected the data onto the top N reliable components (R):

924
925 4) Dyenoisea = RR™D
926
927 where D is the denoised response matrix from Part I.
928

929 We used cross-validation to test the efficacy of this denoising procedure and select the number
930 of components (Fig S2).

931

932 The analysis involved the following steps:

933

934 1. We divided the sound set into training (75%) and test (25%) sounds. Each set contained
935 corresponding natural and synthetic sounds so that there would be no overlap between train and
936 test sets. We attempted to balance the train and test sets across categories, such that each split
937 had the same number of sounds from each category.

938

939 2. Using responses to just the train sounds (D;.4in), We computed reliable components (Ryyqin)
940 using the procedure just described (steps 1-4).

941

942 3. We calculated voxel weights for these components:

943

944 (5) W= R;-rainDtrain
945

946 4. We used this weight matrix, which was derived entirely from train data, to denoise responses
947  to the test sounds:

948

949 (6) Dtest-denoisea = Reest W
950 (7 Riest = DtestW+
951

952 To evaluate whether the denoising procedure improved predictions, we measured responses to
953 the test sound set using two independent splits of data (odd or even repetitions). We then
954  correlated the responses across the two splits either before or after denoising.

955

956 Figure S2A plots the split-half correlation of each voxel before vs. after denoising for every voxel
957 in cortex (using an 8-component model). For this analysis, we either denoised one split of data
958 (blue dots) or both splits of data (green dots). Denoising one split provides a fairer test of whether
959 the denoising procedure enhances SNR, while denoising both splits demonstrates the overall
960 boost in reliability. We also plot the upper bound on the split-half correlation when denoising one
961 split of data (black line), which is given by the square root of the split-half reliability of the original
962 data. We found that our denoising procedure substantially increased reliability with the denoised-
963 correlations remaining close to the upper bound. When denoising both splits, the split-half
964 correlations were close to 1, indicating a highly reliable response.

965
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Figure S2B plots a map in one animal of the split-half correlations when denoising one split of
data along with a map of the upper bound. As is evident, the denoised correlations remain close
to the upper bound throughout primary and non-primary auditory cortex.

Figure S2C shows the median split-half correlation across voxels as a function of the number of
components. Performance was best using ~8 components in both experiments.
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Experiment |

. Woman speaking
. Man speaking

. Spanish

French

. Italian

. German

. Hindi

. Russian

. Big band music

. Bluegrass

. Cello

. Orchestra

. Piano

. Saxophone

. Violin

. Latin music

. Country song

. R&B song

. Biting & chewing
20. Finger tapping
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Experiment Il

1. Spanish
2. French
3. ltalian
4. German
5. Hindi

6. Russian
7. English 1

14. English 7

15. Rock and Roll (50’s)
16. Rock and Roll (60’s)
17. Classical organ

18. Classical symphony
19. Disco

. African drumming
21. Funk

. Jazz

21.
22,
23.
24.
25.
26.
20
28.
29.
30.

K
o

22

VL.

33.
34.
35.
36.

o
37

38.

40.

23.
24.
25.
26.
27
28.
29.
30.
. Ferret fight call 1

31

35,

Walking on leaves
Scratching
Walking in heels
Writing on paper
Heart beat
Cicadas

Crickets

Baby Crying
Breathing

Clock ticking

. Siren

Keyboard Typing
Chimes
Chopping food
Crumpling paper
Keys jingling
Ferret fight call
Ferret pup call

Ferret fear vocalization
"

Ferret play call

Salsa

Musical

Pop

Progressive rock
Reggae

Epic music

R&B song
Techno

Ferret fight call 5

Category labels

B English speech

B Non-english speech
B Instrumental music
B Vocal music

B Human nonvocal
B Animal nonvocal
B Non-speech vocal
[ Mechanical

B Environmental

[ Ferret vocalizations

Category labels

B Speech

B Music

. Ferret fight calls

[] single pup calls

] Multiple pup calls

Table S1: List of sounds used in both experiments.
Names of sounds used in Experiments | and Il, grouped by category at both fine and coarse

scales.

Speech

Music

Other sounds

Ferret
vocalizations

| Speech
| Music

Ferret
vocalizations
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Figure S1. Dissimilarity maps for all hemispheres and animals. Same format as Figure 2E.
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1102
1103  Figure S2. The effect of enhancing reliable signal using a procedure similar to “DSS” (see

1104  Denoising Part Il in Methods) (de Cheveigné and Parra, 2014). A, Voxel responses were denoised
1105 by projecting their timecourse onto components that were reliably present across repetitions,
1106  slices and animals. This figure plots the test-retest correlation across independent splits of data
1107  before (x-axis) and after (y-axis) denoising (data from Experiment |). Each dot corresponds to a
1108 single voxel. We denoised either one split of data (blue dots) or both splits of data (green dots).
1109 Denoising one split provides a fairer test of whether the denoising procedure enhances SNR.
1110  Denoising both splits shows the overall effect on response reliability. The theoretical upper-bound
1111  for denoising one split of data is shown by the black line. The denoising procedure substantially
1112 increased data reliability, with the one-split correlations hugging the upper-bound. This plot shows
1113 results from an 8-component model. B, This figure plots split-half correlations for denoised data
1114  (one split) as a map (upper panel), along with a map showing the upper bound (right). Denoised
1115 correlations were close to their upper bound throughout auditory cortex. C, This figure plots the
1116  median denoised correlation across voxels (one split) as a function of the number of components
1117 used in the denoising procedure. Gray line plots the upper bound. Shaded areas correspond to
1118 95% confidence interval, computed via bootstrapping across the sound set. Results are shown
1119 for both Experiments | (left) and Il (right). Predictions were near their maximum using ~8
1120 components in both experiments (the 8-component mark is shown by the vertical dashed line).
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Figure S3. Results from all 8 ferret components. Same format as Figure 3, except for panel
B, which plots the temporal response of the components. Black line shows the average across alll
natural sounds. Colored lines correspond to major categories (see Table S1): speech (green),
music (blue), vocalizations (pink) and other sounds (brown). Note that the temporal shape varies
across components, but is very similar across sounds/categories within a component, which is
why we summarized component responses by their time-averaged response to each sound.
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Figure S4. Component weight maps from all hemispheres and ferrets. A, For reference with
the weight maps in panel B, tonotopic maps measured using pure tones are shown for all
hemispheres. B, Voxel weight maps from the three components shown in Figure 3 for all
hemispheres of all ferrets tested. C, Voxel weights for three example coronal slices from Ferret
T, left hemisphere. Grey outlines in panel B indicate their location in the “surface” view. Each slice
corresponds to one vertical strip from the maps in panel B. The same slices are shown for all
three components.
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1136
1137  Figure S5. Human components. This figure shows the anatomy and response properties of the

1138 six human components inferred in prior work (Norman-Haignere et al., 2015; Norman-Haignere
1139 and McDermott, 2018). Same format as Figure 3, which plots ferret components. Weight maps
1140 (panel A) plot group-averaged maps across subjects.
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A Human components (see fig S5 for more details)
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Figure S6. Predicting human component responses from ferrets. This figure plots the results
of trying to predict the six human components inferred from our prior work (Norman-Haignere et
al., 2015; Norman-Haignere and McDermott, 2018) from the eight ferret components inferred here
(see Fig S7 for the reverse). A, For reference, the response of the six human components to
natural and spectrotemporally matched synthetic sounds is re-plotted here. Components h1-h4
produced similar responses to natural and synthetic sounds, and had weights that clustered in
and around primary auditory cortex (Fig S5). Components h5 and h6 responded selectively to
natural speech and natural music, respectively, and had weights that clustered in non-primary
regions. B, This panel plots the measured response of each human component to
spectrotemporally matched synthetic sounds, along with the predicted response from ferrets. C,
This panel plots the difference between responses to natural and spectrotemporally-matched
synthetic sounds along with the predicted difference from the ferret components. D, Plots the total
response variance (white bars) of each human component to synthetic sounds (left) and to the
difference between natural and synthetic sounds (right) along with the fraction of that total
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response variance predictable from ferrets (gray bars) (all variance measures are noise-
corrected). Error bars show the 95% confidence interval, computed via bootstrapping across the

sound set. E, Same as D, but averaged across components.
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1163  Figure S7. Results of predicting ferret components from human components. Same format
1164  as Fig S6B-E.
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Figure S8. Results of Experiment Il from other hemispheres. A-C, Same format as Fig 4C-E,
except that in panel A the vocalizations are split into sub-categories: fight calls, single pup calls,
multiple pup calls. Movement amplitude is shown for each animal separately. D, This panel shows
the distribution of NSE values for all pairs of natural and synthetic sounds (median across all
voxels), grouped by category. The numerator in the NSE calculation is simply the squared error
for that sound pair, and the denominator is computed in the normal way using responses to all
sounds (equation 1). Dots show individual sound pairs and box-plots show the median, central
50% and central 92% (whiskers) of the distribution.
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A Effect of removing components outside of cortex on correlation with movement B natural vs synthetic sounds
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Figure S9. The effect of removing outside-of-cortex components on motion correlations.
Voxel responses were denoised by removing components from outside of cortex, which are likely
to reflect artifacts like motion (see Denoising Part | in Methods). A, Effect of removing components
from outside of cortex on correlations with movement. We measured the correlation of each
voxel’s response with movement, measured from a video recording of the animal’s face (absolute
deviation between adjacent frames). Each line shows the average absolute correlation across
voxels for a single recording session / slice. Correlation values are plotted as a function of the
number of removed components. Motion correlations were substantially reduced by removing the
top 20 components (vertical dotted line). B, The average difference between responses to natural
vs synthetic sounds for an example slice before and after removing the top 20 out-of-cortex
components. Motion induces a stereotyped “striping” pattern due to its effect on blood vessels,
which is evident in the map computed from raw data, likely because ferrets moved substantially
more during natural vs. synthetic sounds (particular for ferret vocalizations; Figure 4C). The
striping pattern is largely removed by the denoising procedure.
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1190 Appendix: Recentered CCA
1191
1192  Derivation. The goal of the denoising procedure described in Part | was to remove artifactual
1193 components that were present both inside and outside of cortex, since such components are both
1194 likely to be artifactual and likely to distort the responses-of-interest. The key complication was that
1195 motion-induced artifacts are likely to be correlated with true sound-driven neural activity because
1196 the animals reliably moved more during the presentation of some sounds. To deal with this issue,
1197 we used the fact that motion will vary from trial-to-trial for repeated presentations of the same
1198 sound, while sound-driven responses by definition will not. Here, we give a more formal derivation
1199  of our procedure. We refer to our method as “recentered CCA” (rCCA) for reasons that will
1200  become clear below.
1201
1202  We represent the data for each voxel as an unrolled vector (d,) that contains its response
1203 timecourse across all sounds and repetitions. We assume these voxel responses are
1204  contaminated by a set of K artifactual component timecourses {a;}. We thus model each voxel
1205 as a weighted sum of these artifactual components plus a sound-driven response timecourse (s,,):
1206
K
1207 (8) d, = Z a Wy, + S,

K
1208

1209  Actual voxel responses are also corrupted by voxel-specific noise, which would add an additional
1210 error term to the above equation. In practice, the error term has no effect on our derivation so we
1211  omit it for simplicity (we verified our analysis was robust to voxel-specific noise using simulations,
1212 which are described below).
1213
1214  To denoise our data, we need to estimate the artifactual timecourses {a,} and their weights (w;, ,)
1215 so that we can subtract them out. If the artifactual components {a,} were uncorrelated with the
1216  sound-driven responses (s,,) we could estimate them by performing CCA on voxel responses from
1217 inside and outside of cortex, since only the artifacts would be correlated. However, we expect
1218 sound-driven responses to be correlated with motion artifacts, and the components inferred by
1219  CCA will thus reflect a mixture of sound-driven and artifactual activity.
1220
1221  To overcome this problem, we first subtract-out the average response of each voxel across
1222  repeated presentations of the same sound (d,). This “recentering” operation removes sound-
1223  driven activity, which by definition is the same across repeated presentations of the same sound:
1224

N
1225  (9) d, = Z 1 We o

k
1226

1227  where the dot above a variable indicates its response after recentering (not its time derivative).
1228 Because sound-driven responses have been eliminated, applying CCA to the recentered voxel
1229  responses should yield an estimate of the recentered artifacts (a,) and their weights (w, ,) (note
1230 that CCA actually yields a set of components that span a similar subspace as the artifactual
1231 components, which is equivalent from the perspective of denoising). To simplify notation in the
1232 equations below, we assume this estimate is exact (i.e. CCA exactly returns a; and wy, ,,).

1233

1234  Since the weights (wy ;) are the same for original (d,) and recentered (d,) data, we are halfway
1235 done. All that is left is to estimate the original artifact components before recentering (a;), which
1236  can be done using the original data before recentering (d,)). o see this, first note that canonical
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1237 components are by construction a linear projection of the data used to compute them, and thus,
1238  we can write:

74
1239 (10) a, = z dyBrs
v

1240

1241  We can use the reconstruction weights () in the above equation to get an estimate of the
1242  original artifactual components by applying them to the original data before recentering:

1243

14

1244 (11) a~ ) e
v

1245

1246  To see this, we expand the above equation:

1247

74 74 N
1248 (12) Z dvﬁk,j = Z (Z Qg Wi, + Sv> ﬁk,v

v k'
N |4 |4
ag z Wk’,vﬁk,v + Z Svﬁk,v
v v
1250

1251  The first term in the above equation exactly equals a; because w,, and g, , are by construction
1252 pseudoinverses of each other (i.e. Xy wy,Bx» is 1 when k' = k and 0 otherwise). The second
1253 term can be made small by estimating and applying reconstruction weights using only data from
1254  outside of cortex, where sound-driven responses are weak.

1255

1256  We thus have a procedure for estimating both the original artifactual responses (a;) and their
1257  weights (wy ;), and can denoise our data by simply subtracting them out:

1258

1249 (13) _

v
kl

K

1250 (14) d, - Z 4 Wi o
k
1260

1261 Procedure. We now give the specific steps used to implement the above procedure using matrix
1262  notation. The inputs to the analysis were two matrices (D;,, D,,:), €ach of which contained voxel
1263 responses from inside and outside of cortex. Each column of each matrix contained the response
1264  timecourse of a single voxel, concatenated across all sounds and repetitions (i.e. d,, in the above
1265  derivation). We also computed recentered data matrices (D;,,, D,,:) by subtracting out trial-
1266  averaged activity (i.e. d,,).

1267

1268 CCA can be performed by whitening each input matrix individually, concatenating the whitened
1269 data matrices, and then computing the principal components of the concatenated matrices (de
1270  Cheveigné et al., 2019). Our procedure is an elaborated version of this basic design:

1271

1272 1. The recentered data matrices were reduced in dimensionality and whitened. We implemented
1273  this step using the singular value decomposition (SVD), which factors the data matrix as the
1274  product of two orthonormal matrices (U and V), scaled by a diagonal matrix of singular values (S):
1275

1276 (15) Din = UinginVin

1277 (16) Dout = Uoutsoutvout
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1278
1279  The reduced and whitened data was given by selecting the top 250 components and removing
1280 the diagonal S matrix:

1281

1282 17) Din—white = Uinl:,1: 2501V, [1: 250,:]
1283 (18) Dout—white = Uout[: ,1: 250]V0ut[1: 250, :]
1284

1285 2. We concatenated the whitened data matrices from inside and outside of cortex across the voxel
1286  dimension:

1287

1288 (19) Dcat = [Din-whites Dout-white]

1289

1290 3. We computed the top N principal components from the concatenated matrix using the SVD:
1291

1292 (20) Dcat = Uccscchc

1293

1294 U, contains the timecourses of the canonical components (CCs), ordered by variance, which
1295 provide an estimate of the artifactual components after recentering (i.e. a,). The corresponding
1296  weights (i.e. wy ,,) for voxels inside of cortex were computed by projecting the recentered data

1297  onto Ug:

1298

1299 (21) Wi, = ULD;,
1300

1301  where + indicates the matrix pseudo-inverse.

1302

1303 4. The original artifactual components before recentering (i.e. a;) were estimated by learning a
1304  set of reconstruction weights (B) using recentered data from outside of cortex, and then applying
1305 these weights to the original data before recentering:

1306

1307 (22) B=D}, U,
1308 (23) Uge = DyytB
1309

1310 U, is an estimate of the artifactual components before recentering (i.e. ay).

1311

1312 5. Finally, we subtracted out the contribution of the artifactual components to each voxel inside of
1313  cortex, estimated by simply multiplying the component responses and weights:

1314

1315 (24) Daenvisea = Din — UccWin

1316

1317

1318 Simulation. We created a simple simulation to test our method. We simulated 1000 voxel
1319 responses, both inside and outside of cortex, using equation 8. For voxels outside of cortex, we
1320 set the sound-driven responses to 0. We also added voxel-specific noise to make the denoising
1321 task more realistic/difficult (sampled from a Gaussian). Results were very similar across a variety
1322  of noise levels.

1323

1324  To induce correlations between the artifactual (a;) and sound-driven responses (s,,), we forced
1325 them to share a subspace. Specifically, we computed the sound-driven responses as a weighted
1326  sum of a set of 10 component timecourses (results did not depend on this parameter), thus forcing
1327 the responses to be low-dimensional, as we found to be the case:

1328
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10

1320 (25) so= ) wmy,
j=1
1330
1331 The artifactual timecourses were then computed as a weighted sum of these same 10
1332 components timecourses plus a timecourse that was unigue to each artifactual component:
1333

10
1334 (26) a, = pz w;nj . + (1—p)by

j=1
1335
1336 where p controls the strength of the dependence between the sound-driven and artifactual
1337 components with a value of 1 indicating complete dependence and 0 indicating no dependence.
1338  All of responses and weights (u;, by, m;,, n;,) were sampled from a unit-variance Gaussian.
1339  Sound-driven responses were constrained to be the same across repetitions by sampling the
1340  latent timecourses u; once per sound, and then simply repeating the sampled values across
1341 repetitions. In contrast, a unique b, was sampled for every repetition of every sound to account
1342  for the fact that the artifacts like motion will vary from trial-to-trial. We sampled 20 artifactual
1343  timecourses using equation 26.
1344
1345 We applied both standard CCA and our modified rCCA method to the simulated data. We
1346 measured the median NSE between the true and estimated sound-driven responses (s,),
1347  computed using the two methods as a function of the strength of the dependence (p) between
1348 sound-driven and artifactual timecourses (Fig A1A). For comparison, we also plot the NSE for
1349 raw voxels (i.e. before any denoising) as well as the minimum possible NSE (noise floor) given
1350 the voxel-specific noise (which cannot possibly be removed using CCA or rCCA). When the
1351 dependence is low, both CCA and rCCA yield similarly good results, as expected. As the
1352 dependence increases, CCA performs substantially worse, while rCCA continues to perform well
1353  up until the point when the dependence becomes so strong that sound-driven and artifactual
1354  timecourses are nearly indistinguishable. Results were not highly sensitive to the number of
1355 components removed as long as the number of removed components was equal to or greater
1356  than the number of artifactual components (Figure A1B).
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1357

1358 Figure Al: Simulation results. A. Median NSE across simulated voxels between the true and
1359 estimated sound-driven responses (s,), computed using raw/undenoised data (light green line),
1360 standard CCA (dark green line), and recentered CCA (red line). Results are shown as a function of
1361 the strength of the dependence (p) between sound-driven and artifactual timecourses. The minimum
1362 possible NSE (noise floor) given the level of voxel-specific noise is also shown. B. Same as panel A,

1363  but showing results as a function of the number of components removed for a fixed value of p (set to
1364 0.5).
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