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Abstract 19 

Little is known about how neural representations of natural sounds differ across species. For 20 

example, speech and music play a unique role in human hearing, yet it is unclear how auditory 21 

representations of speech and music differ between humans and other animals. Using functional 22 

Ultrasound imaging, we measured responses in ferrets to a set of natural and spectrotemporally-23 

matched synthetic sounds previously tested in humans. Ferrets showed similar lower-level 24 

frequency and modulation tuning to that observed in humans. But while humans showed 25 

prominent selectivity for natural vs. synthetic speech and music in non-primary regions, ferret 26 

responses to natural and synthetic sounds were closely matched throughout primary and non-27 

primary auditory cortex, even when tested with ferret vocalizations. This finding reveals that 28 

auditory representations in humans and ferrets diverge sharply at late stages of cortical 29 

processing, potentially driven by higher-order processing demands in speech and music.  30 
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Introduction 31 

 32 

Surprisingly little is known about how sensory representations of natural stimuli differ across 33 

species (Theunissen and Elie, 2014). This question is central to understanding how evolution and 34 

development shape sensory representations (Moore and Woolley, 2019) as well as developing 35 

animal models of human brain functions. Audition provides a natural test case because speech 36 

and music play a unique role in human hearing (Zatorre et al., 2002; Hickok and Poeppel, 2007; 37 

Patel, 2012). While human knowledge of speech and music clearly differs from other species 38 

(Pinker and Jackendoff, 2005), it remains unclear how neural representations of speech and 39 

music differ from those in other species, particularly within the auditory cortex. Few studies have 40 

directly compared neural responses to natural sounds between humans and other animals, and 41 

those which have done so, have often observed similar responses. For example, both humans 42 

and non-human primates show regions that respond preferentially to conspecific vocalizations 43 

(Belin et al., 2000; Petkov et al., 2008). Human auditory cortex exhibits selectivity for speech 44 

phonemes (Mesgarani et al., 2014; Di Liberto et al., 2015), but much of this selectivity can be 45 

predicted by simple forms of spectrotemporal modulation tuning (Mesgarani et al., 2014), and 46 

perhaps as a consequence, can be observed in other animals such as ferrets (Mesgarani et al., 47 

2008; Steinschneider et al., 2013). Consistent with this finding, maps of spectrotemporal 48 

modulation, measured using natural sounds, appear coarsely similar between humans and 49 

macaques (Erb et al., 2019) although temporal modulations present in speech may be over-50 

represented in humans. Thus, it remains unclear if the representation of natural sounds in auditory 51 

cortex differs substantially between humans and other animals, and if so, how. 52 

 53 

A key challenge is that representations of natural stimuli are transformed across different stages 54 

of sensory processing, and species may share some but not all representational stages. 55 

Moreover, responses at different sensory stages are often correlated across natural stimuli (de 56 

Heer et al., 2017), making them difficult to disentangle. Speech and music, for example, have 57 

distinctive patterns of spectrotemporal modulation energy (Singh and Theunissen, 2003; Ding et 58 

al., 2017), as well as higher-order structure (e.g. syllabic and harmonic structure) that is not well 59 

captured by modulation (Norman-Haignere and McDermott, 2018). To isolate neural selectivity 60 

for higher-order structure, we recently developed a method for synthesizing sounds whose 61 

spectrotemporal modulation statistics are closely matched to a corresponding set of natural 62 

sounds (Norman-Haignere and McDermott, 2018). Because the synthetic sounds are otherwise 63 

unconstrained, they lack perceptually salient higher-order structure, which is particularly true for 64 

complex natural sounds like speech and music which are poorly captured by modulation statistics, 65 

unlike many other natural sounds (McDermott and Simoncelli, 2011). We found that human 66 

primary auditory cortex responds similarly to natural and spectrotemporally synthetic sounds, 67 

while non-primary regions respond selectively to the natural sounds. Most of this selectivity is 68 

driven by preferential responses to natural vs. synthetic speech and music in non-primary auditory 69 

cortex. The specificity for speech and music could be due to their ecological relevance in humans 70 

and/or the fact that speech and music are more complex than other sounds, and thus perceptually 71 

differ more from their synthetic counterparts. But notably, the response preference for natural 72 

speech and music cannot be explained by speech semantics, since similar responses are 73 

observed for native and foreign speech (Norman-Haignere et al., 2015; Overath et al., 2015), or 74 

explicit musical training, since music selectivity is robust in humans without any training 75 

(Boebinger et al., 2020). These findings suggest that human non-primary regions respond 76 

selectively to higher-order acoustic features that both cannot be explained by lower-level 77 

modulation statistics and do not yet reflect explicit semantic knowledge. 78 

The goal of the present study was to test whether such higher-order selectivity is present in other 79 

species. We test three key hypotheses: (1) higher-order selectivity in humans reflects a generic 80 

mechanism present across species for analyzing complex sounds like speech and music (2) 81 

higher-order selectivity reflects an adaptation to ecologically relevant sounds such as speech and 82 
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music in humans or vocalizations in other species (3) higher-order selectivity reflects a specific 83 

adaptation in humans, potentially driven by the unique demands of speech and music perception, 84 

that is not generically present in other species even for ecologically relevant sounds. We 85 

addressed this question by measuring cortical responses in ferrets – one of the most common 86 

animal models used to study auditory cortex (Nelken et al., 2008) – to the same set of natural and 87 

synthetic sounds previously tested in humans, as well as natural and synthetic ferret vocalizations. 88 

Responses were measured using functional UltraSound imaging (fUS) (Macé et al., 2011; 89 

Bimbard et al., 2018), a newly developed wide-field imaging technique that like fMRI detects 90 

changes in neural activity via changes in blood-flow (movement of blood induces a doppler effect 91 

detectable with ultrasound). fUS has substantially better spatial resolution than fMRI making it 92 

applicable to small animals like ferrets. We found that tuning for spectrotemporal modulations 93 

present in both natural and synthetic sounds was similar between humans and animals, and could 94 

be quantitatively predicted across species, consistent with prior findings (Mesgarani et al., 2008; 95 

Erb et al., 2019). But unlike humans, ferret responses to natural and synthetic sounds were similar 96 

throughout primary and non-primary auditory cortex even when comparing natural and synthetic 97 

ferret vocalizations; and the small differences that were present in ferrets were weak and spatially 98 

scattered, unlike the selectivity observed in humans. This finding reveals that auditory 99 

representations in humans and ferrets diverge substantially at late stages of acoustic processing.  100 

 101 

Results 102 

 103 

Experiment I: Comparing ferret cortical responses to natural versus synthetic sounds 104 

We measured cortical responses with fUS to the same 36 natural sounds tested previously in 105 

humans plus 4 additional ferret vocalizations (Experiment II tested many more ferret 106 

vocalizations). The 36 natural sounds included speech, music, and other environmental sounds 107 

(see Table S1). For each natural sound, we synthesized 4 sounds that were matched on acoustic 108 

statistics of increasing complexity (Fig 1A): (1) cochlear energy statistics (2) temporal modulation 109 

statistics (3) spectral modulation statistics and (4) spectrotemporal modulation statistics. 110 

Cochlear-matched sounds had a similar frequency spectrum, but their modulation content was 111 

unconstrained and thus differed from the natural sounds. Modulation-matched sounds were 112 

additionally constrained in their temporal and/or spectral modulation rates, measured by linearly 113 

filtering a cochleagram representation with filters tuned to different modulation rates (modulation-114 

matched sounds also had matched cochlear statistics in order to isolate the contribution of 115 

modulation). The modulation-matched sounds audibly differ from their natural counterparts, 116 

particularly for complex sounds like speech and music that contain higher-order structure not 117 

captured by frequency and modulation statistics (listen to example sounds here). We focused on 118 

time-averaged statistics because the hemodynamic response measured by both fMRI and fUS 119 

reflects a time-averaged measure of neural activity. As a consequence, each of the synthetic 120 

sounds can be thought of as being matched under a different model of the fUS or fMRI response 121 

(Norman-Haignere and McDermott, 2018). 122 

 123 

We measured fUS responses throughout primary and non-primary ferret auditory cortex (Fig 1B). 124 

We first plot the response timecourse to all 40 natural sounds for one example voxel in non-125 

primary auditory cortex (dPEG) (Fig 1C). We plot the original timecourse of the voxel as well as 126 

a denoised version computed by projecting the timecourse onto a small number of reliable 127 

components, which we found substantially improved prediction accuracy in left-out data (see 128 

Methods for details). As expected and similar to fMRI, we observed a gradual build-up of the 129 

hemodynamic response after stimulus onset. The shape of the response timecourse was similar 130 

across stimuli, but the magnitude of the response varied, and we thus summarized the response 131 

of each voxel to each sound by its time-averaged response magnitude (the same approach used 132 

in our prior fMRI study).  133 
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 134 
Figure 1. Schematic of stimuli and imaging protocol. A, Cochleagrams for two example natural sounds 135 
(left column) and corresponding synthetic sounds (right four columns) that were matched to the natural 136 
sounds along a set of acoustic statistics of increasing complexity. Statistics were measured by filtering a 137 
cochleagram with filters tuned to temporal, spectral or joint spectrotemporal modulations. The natural sounds 138 
were diverse, and were grouped into 10 different categories shown at right. English and Non-English speech 139 
are separated out because all of the human subjects tested in our prior study were native English speakers, 140 
and so the distinction is meaningful in humans. B, Schematic of the imaging procedure. A three-dimensional 141 
volume covering all of ferret auditory cortex was acquired through successive coronal slices. Auditory cortical 142 
regions (colored regions) were mapped with anatomical and functional markers. The rightmost image shows 143 
a single ultrasound image with overlaid region boundaries. Auditory regions: dPEG: dorsal posterior 144 
ectosylvian gyrus; AEG: anterior ectosylvian gyrus; VP: ventral posterior auditory field; ADF: anterior dorsal 145 
field; AAF: anterior auditory field. Non-auditory regions: hpc: hippocampus; SSG: suprasylvian gyrus; LG: 146 
lateral gyrus. Anatomical markers: pss: posterior sylvian sulcus; sss: superior sylvian sulcus. C, Response 147 
timecourse of a single voxel to all natural sounds, measured from raw (left) and denoised data (right). Each 148 
line reflects a different sound, and its color indicates the sound’s category. The gray region shows the time 149 
window when sound was present. The location of this voxel corresponds to the highlighted voxel in panel B.  150 

 151 

We next plot the time-averaged response of two example voxels – one in primary auditory cortex 152 

(A1) and one in a non-primary area (dPEG) – to natural and corresponding synthetic sounds that 153 

have been matched on the full spectrotemporal modulation model (Fig 2A). For comparison, we 154 

plot the test-retest reliability of each voxel across repeated presentations of the same sound (Fig 155 

2B), as well as corresponding figures from two example voxels in human primary/non-primary 156 

auditory cortex (Fig 2C-D; these voxels are re-plotted from our prior paper). As in our prior study, 157 

we quantified the similarity of responses to natural and synthetic sounds using the normalized 158 

squared error (NSE). The NSE takes a value of 0 if responses to natural and synthetic sounds 159 

are the same, and 1 if there is no correspondence between the two (see Methods for details).  160 

 161 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.09.30.321695doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321695
http://creativecommons.org/licenses/by-nd/4.0/


 

 5 

 162 
Figure 2: Dissimilarity of responses to natural vs. synthetic sounds in ferrets and humans. A, 163 
Response of two example fUS voxels to natural and corresponding synthetic sounds with matched 164 
spectrotemporal modulation statistics. Each dot shows the time-averaged response to a single pair of 165 
natural/synthetic sounds (after denoising), with colors indicating the sound category. The example voxels 166 
come from primary (top, A1) and non-primary (bottom, dPEG) regions of the ferret auditory cortex. The 167 
normalized squared error (NSE) quantifies the dissimilarity of responses. B, Test-retest response of the 168 
example voxels across all natural (o) and synthetic (+) sounds  (odd vs. even repetitions). The responses 169 
were highly reliable due to the denoising procedure. C-D, Same as panel A-B, but showing two example 170 
voxels from human primary/non-primary auditory cortex. E, Maps plotting the dissimilarity of responses to 171 
natural vs. synthetic sounds from one ferret hemisphere (top row) and from humans (bottom row). Each 172 
column shows results for a different set of synthetic sounds. The synthetic sounds were constrained by 173 
statistics of increasing complexity from left to right: just cochlear statistics, cochlear + temporal modulation 174 
statistics, cochlear + spectral modulation statistics, and cochlear + spectrotemporal modulation statistics. 175 
Dissimilarity was quantified using the normalized squared error (NSE), corrected for noise using the test-176 
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retest reliability of the voxel responses. Ferret maps show a “surface” view from above of the sylvian gyri, 177 
similar to the map in humans. Surface views were computed by averaging activity perpendicular to the cortical 178 
surface. The border between primary and non-primary auditory cortex is shown with a white line in both 179 
species, and was defined using tonotopic gradients. Areal boundaries in the ferret are also shown (dashed 180 
thin lines). This panel shows results from one hemisphere of one animal (Ferret T, left hemisphere), but 181 
results were similar in other animals/hemispheres (Fig  S1). The human map is a group map averaged across 182 
many subjects, but results were similar in individual subjects (Norman-Haignere and McDermott, 2018). F, 183 
Voxels were binned based on their distance to primary auditory cortex (defined tonotopically). This figure 184 
plots the median NSE value in each bin. Each thin line corresponds to a single ferret hemisphere (gray) or a 185 
single human subject averaged across hemispheres (gold) (results were very similar in the left and right 186 
hemisphere of humans). Thick lines show the average across all hemispheres/subjects.  187 
 188 

Both the primary and non-primary ferret voxels produced nearly identical responses to natural 189 

and corresponding synthetic sounds (NSEs: 0.042, 0.045), suggesting that spectrotemporal 190 

modulation are sufficient to account for the responses in these voxels. The human primary voxel 191 

also showed similar responses to natural and synthetic responses, and the NSE for natural vs. 192 

synthetic sounds (0.1) was similar to the test-retest NSE (0.094), indicating that the response was 193 

about as similar as possible given the noise ceiling. In contrast, the human non-primary voxel 194 

responded substantially more to the natural speech (green) and music (blue) than matched 195 

synthetics, yielding a high NSE value (0.73). This pattern demonstrates that spectrotemporal 196 

modulations are insufficient to drive the response of the human non-primary voxel, plausibly 197 

because it responds to higher-order features that are not captured by modulation statistics.  198 

 199 

We quantified this trend across voxels by plotting maps of the noise-corrected NSE between 200 

natural and synthetic sounds (Fig 2E shows one hemisphere of one animal, but results were very 201 

similar in other hemispheres of other animals, see Fig S1). We show separate maps for each of 202 

the different sets of statistics used to constrain the synthetic sounds (cochlear, temporal 203 

modulation, spectral modulation and spectrotemporal modulation). Each map shows a view from 204 

above auditory cortex, computed by averaging NSE values perpendicular to the cortical sheet. 205 

We summarized the data in this way, because we found that maps were very similar across the 206 

different layers within a cortical column. Below we plot corresponding maps from humans. The 207 

human maps are based on data averaged across subjects, but similar results were observed in 208 

individual subjects (Norman-Haignere and McDermott, 2018).  209 

 210 

In ferrets, we observed a similar pattern throughout both primary and non-primary regions: 211 

responses became more similar as we matched additional acoustic features with NSE values 212 

close to 0 for sounds matched on the full spectrotemporal model. This pattern contrasts sharply 213 

with that observed in humans, where we observed a clear and substantial rise in NSE values 214 

when moving from primary to non-primary auditory cortex even for sounds matched on joint 215 

spectrotemporal modulations statistics. We quantified these effects by measuring NSE values 216 

using ROIs binned based on distance to primary auditory cortex, as was done previously in 217 

humans (Fig 2F). This analysis revealed a substantial and significant rise in NSEs when matching 218 

additional acoustic features in ferrets (NSE spectrotemporal < NSE temporal < NSE spectral < 219 

NSE cochlear, p < 0.01 via a bootstrapping analysis across the sound set). But there was little 220 

difference in NSEs between ferret primary and non-primary regions, with NSE values close to 221 

zero in all regions for spectrotemporally matched synthetics. In contrast, every human subject 222 

tested showed larger NSE values in non-primary regions, yielding a significant species difference 223 

(p < 0.01 via a sign-test comparing each ferret to all of the human subjects tested; see Methods 224 

for details). This finding demonstrates that higher-order selectivity for complex natural sounds like 225 

speech and music is not a generic feature of higher-order processing in mammals.  226 

 227 

Assessing and comparing selectivity for frequency and modulation across species 228 

Our NSE maps suggest that ferret cortical responses are selective for frequency and modulation, 229 

but do not reveal how this selectivity is organized or whether it is similar to that in humans. While 230 
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it is not feasible to inspect or plot all individual voxels, we found that fUS responses like human 231 

fMRI responses are low-dimensional and can be explained as the weighted sum of a small number 232 

of component response patterns. This observation served as the basis for our denoising 233 

procedure, as well as a useful way to examining ferret cortical selectivity and comparing that 234 

selectivity with humans. We found that we could discriminate approximately 8 distinct component 235 

response patterns before over-fitting to noise (Fig S2C).  236 

 237 
Figure 3: Organization of frequency and modulation selectivity in ferret auditory cortex, revealed by 238 
component analysis. A, For reference with the weight maps in panel B, a tonotopic map is shown, measured 239 
using pure tones. The map is from one hemisphere of one animal (Ferret T, left). B, Voxel weight maps from 240 
three components, inferred using responses to natural and synthetic sounds (see Fig S3 for all 8 components 241 
and Fig S4 for all hemispheres). Each map was computed by averaging weights perpendicular to the cortical 242 
surface, which was done because the weights were very similar across layers within a column (see Fig S4C). 243 
The maps for components f1 and f2 closely mirrored the high and low-frequency tonotopic gradients 244 
respectively. C, Component response to natural and spectrotemporally-matched synthetic sounds, colored 245 
based on category labels (labels shown at the bottom left of the figure). Components f1 and f2 did not respond 246 
selectively to particular categories. Component f3 responded preferentially to speech sounds. D, Correlation 247 
of component responses with energy at different audio frequencies, measured from a cochleagram. Inset for 248 
f3 shows the correlation pattern that would be expected from a response that was perfectly selective for 249 
speech (i.e. 1 for speech, 0 for all other sounds). E, Correlations with modulation energy at different temporal 250 
and spectral rates. Inset shows the correlation pattern that would be expected for a perfectly speech-selective 251 
response. 252 

 253 

We first examined the selectivity of the inferred response patterns and their anatomical distribution 254 

of weights in the brain (Fig 3 shows three example components; Fig S3 shows all 8 components). 255 

All of the component response profiles showed significant correlations with measures of energy 256 

at different cochlear frequencies and spectrotemporal modulation rates (Fig 3D-E) (p < 0.01 for 257 

all components for both frequency and modulation features; statistics computed via a permutation 258 

test across the sound set). Two components (f1 & f2) had responses that correlated with energy 259 

at high and low-frequencies respectively, with voxel weights that mirrored the tonotopic gradients 260 

measured in these animals (compare Fig 3B and 3A; see Fig S4 for all hemispheres/animals), 261 

similar to the tonotopic components previously identified in humans (Norman-Haignere et al., 262 

2015) (Fig S5, components h1 and h2). We also observed components with weak frequency 263 
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tuning but prominent tuning for spectrotemporal modulations (Fig S3), again similar to humans. 264 

Perhaps surprisingly, one component (f3) responded selectively to speech sounds, and its 265 

response correlated with energy at frequency and modulation rates characteristic of speech 266 

(insets in Fig 3D-E, bottom row). But notably, all of the inferred components, including the speech-267 

selective component, produced very similar responses to natural and synthetic sounds (Fig 3C), 268 

suggesting that their selectivity can be explained by their tuning for frequency and modulation. 269 

This contrasts with the speech- and music-selective components previously observed in humans, 270 

which responded selectively to natural speech and music, respectively, and which clustered in 271 

distinct non-primary regions of human auditory cortex (see Fig S5, components h5 and h6). This 272 

finding shows that selectivity for natural speech compared with other natural sounds is in fact not 273 

unique to humans, and thus that comparing responses to natural vs. synthetic sounds is critical 274 

to revealing representational differences between species.   275 

 276 

Overall, the frequency and modulation selectivity evident in the ferret components appeared 277 

similar to that in humans (Norman-Haignere et al., 2015). To quantitatively evaluate similarity, we 278 

attempted to predict the response of each human component, inferred from our prior work, from 279 

those in the ferrets (Fig S6) and vice versa (Fig S7). We found that much of the component 280 

response variation to synthetic sounds could be predicted across species (Fig S6B&D, S7A&C). 281 

This finding is consistent with the hypothesis that tuning for frequency and modulation is similar 282 

across species, since the synthetic sounds only varied in their frequency and modulation statistics. 283 

In contrast, differences between natural vs. synthetic sounds were only robust in humans and as 284 

a consequence could not be predicted from responses in ferrets (Fig S6C&E). Thus, selectivity 285 

for frequency and modulation is both qualitatively and quantitatively similar across species, 286 

despite large and substantial differences in higher-order tuning.   287 

 288 

Experiment II: Testing the importance of ecological relevance  289 

The results of Experiment I show that higher-order selectivity in humans is not a generic feature 290 

of auditory processing for complex sounds. However, the results could still be explained by a 291 

difference in ecological relevance, since differences between natural and synthetic sounds in 292 

humans are mostly driven by speech and music (Norman-Haignere and McDermott, 2018) and 293 

Experiment I included more speech (8) and music (10) sounds than ferret vocalizations (4). To 294 

test this possibility, we performed a second experiment that included many more ferret 295 

vocalizations (30) (Fig 4A), as well as a smaller number of speech (14) and music (16) sounds to 296 

allow comparison with Experiment I. We only synthesized sounds matched in their full 297 

spectrotemporal modulation statistics to be able to test a broader sound set.  298 

 299 

Using a video recording of the animals’ face (Fig 4B), we found that the ferrets showed greater 300 

spontaneous movements during the presentation of the natural ferret vocalizations compared with 301 

both the synthetic sounds and the other natural sounds (Fig 4C; see Fig S8 for additional plots 302 

from individual animals and finer-grained vocalization categories). This observation demonstrates 303 

that natural ferret vocalizations contain additional structure that is missing from their synthetic 304 

counterparts, and that this additional structure is sufficiently salient to cause a spontaneous 305 

increase in motion without any overt training. Moreover, the behavioral differences between 306 

natural and synthetic vocalizations were greater than those for speech (p < 0.001 via Wilcoxon 307 

signed-rank test) and music (p < 0.05), demonstrating that the additional structure present in 308 

vocalizations is more salient to the ferret than the additional structure present in natural speech 309 

and music. To prevent this motion from affecting the ultrasound responses, we designed a 310 

denoising procedure that greatly minimized correlations between the ultrasound responses and 311 

motion without removing sound-evoked activity (see Methods and Appendix).  312 
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 313 
Figure 4. Testing the importance of ecological relevance. A, Experiment II measured responses to a 314 
much larger number of ferret vocalizations (30), as well as a smaller number of speech (14) and music (16) 315 
sounds, unlike Experiment I which only tested 4 ferret vocalizations. Cochleagrams for an example natural 316 
and synthetic vocalization (a “pup call”) are plotted. B, The animal’s spontaneous movements were monitored 317 
with a video recording of the animal’s face. Motion was measured as the mean absolute deviation between 318 
adjacent video frames, averaged across pixels. C, Average evoked movement amplitude for natural (shaded) 319 
and synthetic (unshaded) sounds broken down by category. Each dot represents one recording session. 320 
Significant differences between natural and synthetic sounds, and between categories of natural sounds are 321 
plotted (paired Wilcoxon test, p<0.001: ***). Evoked movement amplitude was normalized by the standard 322 
deviation across sounds for each recording session prior to averaging across sound category (necessary 323 
because absolute pixel deviations cannot be meaningfully compared across sessions). Results were 324 
consistent across ferrets (Fig S8A). Both animals moved substantially more during natural ferret vocalizations 325 
compared with both matched synthetics as well as speech and music. D, Map showing the dissimilarity 326 
between natural and spectrotemporally matched synthetic sounds from Experiment II for one hemisphere 327 
(Ferret T, left; see Fig S8B for all hemispheres), measured using the noise-corrected NSE across sounds. 328 
NSE values were low across auditory cortex, replicating the first experiment. E, Maps showing the average 329 
difference between responses to natural and synthetic sounds for vocalizations, speech, music, and others 330 
sounds, normalized for each voxel by the standard deviation across all sounds. Results are shown for the 331 
same ferret hemisphere (T, left) for both Experiment I and II. Humans were only tested in Experiment I. F, 332 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.09.30.321695doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321695
http://creativecommons.org/licenses/by-nd/4.0/


 

 10 

NSE for different sound categories, plotted as a function of distance to primary auditory cortex (binned as in 333 
Fig 2F). Shaded area represents +/- 1 s.e.m. (Fig S8D plots NSEs for individual sounds) G, Same as panel 334 
F but showing results from Experiment II.  335 

 336 

Despite this clear behavioral difference, we nonetheless found that voxel responses to natural 337 

and synthetic sounds were similar throughout primary and non-primary regions, yielding small 338 

NSE values (Fig 4D). This result demonstrates that our key findings from Experiment I are not 339 

due to the weak ecological relevance of the tested sounds, since a qualitatively similar result was 340 

obtained in Experiment II when half of the sounds were ferret vocalizations.  341 
 342 

To directly test if ferrets showed selective responses to natural vs. synthetic ferret vocalizations, 343 

we computed maps showing the average difference between natural vs. synthetic sounds for 344 

different categories, using data from both Experiments I and II (Fig 4E). We also separately 345 

measured the NSE for sounds from different categories (Fig 4F-G; note the normalization term in 346 

the NSE was computed using all sounds to avoid inadvertently normalizing out meaningful 347 

differences between sounds/categories). We plot the median NSE for sounds from different 348 

categories as a function of distance to primary auditory cortex for each animal and experiment 349 

(Fig 4F-G; Fig S8D shows the distribution of NSE values for individual sound pairs). This analysis 350 

revealed that NSE values in ferrets were slightly elevated for ferret vocalizations compared with 351 

other categories (Fig 4F-G), consistent with their ecological relevance. This effect, however, was 352 

small and inconsistent, reaching significance in only one of the two animals in Experiment II 353 

(Ferret A, p < 0.005, Wilcoxon test) (the effect was significant in both animals in Experiment I, but 354 

this experiment only tested 4 ferret vocalizations). Moreover, the small differences that were 355 

present between natural and synthetic sounds were spatially distributed throughout primary and 356 

non-primary regions, and very similar to those for speech, music and other natural sounds (Fig 357 

4E). In contrast, humans showed large and selective responses to speech and music that were 358 

concentrated in distinct non-primary regions (lateral for speech and anterior/posterior for music) 359 

and clearly different from those for other natural sounds (Fig 4E). Thus, ferrets do not show any 360 

of the neural signatures of higher-order selectivity that we previously identified in humans (large 361 

effect size, spatially clustered responses, and a clear non-primary bias), even for con-specific 362 

vocalizations, which produced clear behavioral differences reflecting their ecological significance.  363 

 364 

Discussion 365 

 366 

Our study reveals a prominent divergence in the representation of natural sounds between 367 

humans and ferrets. Using a recently developed wide-field imaging technique (functional 368 

Ultrasound), we measured cortical responses in the ferret to a set of natural and 369 

spectrotemporally-matched synthetic sounds previously tested in humans. We found that 370 

selectivity for frequency and modulation statistics in the synthetic sounds was similar across 371 

species. But unlike humans, who showed selective responses to natural vs. synthetic speech and 372 

music in non-primary regions, ferrets cortical responses to natural and synthetic sounds were 373 

similar throughout primary and non-primary auditory cortex, even when tested with ferret 374 

vocalizations. This finding suggests that higher-order selectivity in humans for natural vs. synthetic 375 

speech/music (1) does not reflect a species-generic mechanism for analyzing complex sounds 376 

and (2) does not reflect a species-generic adaptation for coding ecologically relevant sounds like 377 

con-specific vocalizations. Instead, our findings suggest that auditory representations in humans 378 

fundamentally diverge from ferrets at higher-order processing stages, plausibly driven by the 379 

unique demands of speech and music.  380 

 381 

Species differences in the representation of natural sounds 382 

The central challenge of sensory coding is that behaviorally relevant information is often not 383 

explicit in the inputs to sensory systems. As a consequence, sensory systems transform their 384 
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inputs into higher-order representations that expose behaviorally relevant properties of stimuli 385 

(DiCarlo and Cox, 2007; Mizrahi et al., 2014; Theunissen and Elie, 2014). The early stages of this 386 

transformation are thought to be conserved across many species. For example, all mammals 387 

transduce sound pressure waveforms into a frequency-specific representation of sound energy in 388 

the cochlea, although the resolution and frequency range of cochlear tuning differ across species 389 

(Bruns and Schmieszek, 1980; Köppl et al., 1993; Joris et al., 2011; Walker et al., 2019). But it 390 

has remained unclear whether representations at later stages are similarly conserved across 391 

species. 392 

 393 

Only a few studies have attempted to compare cortical representations of natural sounds between 394 

humans and other animals, and these studies have typically found similar representations in 395 

auditory cortex. Studies of speech phonemes in ferrets (Mesgarani et al., 2008) and macaques 396 

(Steinschneider et al., 2013) have replicated many neural phenomena observed in humans 397 

(Mesgarani et al., 2014). A recent fMRI study found that maps of spectrotemporal modulation 398 

tuning, measured using natural sounds, are coarsely similar between humans and macaques, 399 

although slow temporal modulations which are prominent in speech were better decoded in 400 

humans compared with macaques (Erb et al., 2019), potentially analogous to prior findings of 401 

enhanced cochlear frequency tuning for behaviorally relevant sound frequencies (Bruns and 402 

Schmieszek, 1980; Köppl et al., 1993). Thus, prior work has revealed quantitative differences in 403 

the extent and resolution of neural tuning for different acoustic frequencies and modulation rates. 404 

But it has remained unclear whether there are qualitative differences in how natural sounds are 405 

represented across species.  406 

 407 

Our study demonstrates that human non-primary regions exhibit a form of higher-order acoustic 408 

selectivity that is almost completely absent in ferrets. Ferret cortical responses to natural and 409 

spectrotemporally matched synthetic sounds were closely matched throughout their auditory 410 

cortex, and the small differences that we observed were scattered throughout primary and non-411 

primary regions (Fig 4E), unlike the pattern observed in humans. As a consequence, the 412 

differences that we observed between natural and synthetic sounds in humans were not 413 

predictable from cortical responses in ferrets (Fig S6C), even though we could predict responses 414 

to synthetic sounds across species (Fig S6B&E). This higher-order selectivity is unlikely to be 415 

explained by explicit semantic knowledge about speech or music, since similar responses are 416 

observed for foreign speech (Norman-Haignere et al., 2015; Norman-Haignere and McDermott, 417 

2018) and music selectivity is robust in listeners without musical training (Boebinger et al., 2020). 418 

These results suggest that humans develop or have evolved a higher-order stage of acoustic 419 

analysis, potentially specific to speech and music, that cannot be explained by standard frequency 420 

and modulation statistics and is largely absent from the ferret brain. This specificity for speech 421 

and music could be due to their acoustic complexity, their behavioral relevance to humans, or a 422 

combination of the two. 423 

 424 

By comparison, our study suggests that there is a substantial amount of cross-species overlap in 425 

the cortical representation of frequency and modulation features. Both humans and ferrets 426 

exhibited tonotopically organized selectivity for different frequencies. Moreover, modulation 427 

selectivity accounted for a large fraction of the cortical responses (Fig 2E), even in primary 428 

auditory cortex, which emphasizes the importance of modulation tuning in both humans and 429 

ferrets. Like humans, ferrets showed spatially organized selectivity for different temporal and 430 

spectral modulation rates, that coarsely mimicked the types of selectivity we have previously 431 

observed in humans, replicating prior findings (Erb et al., 2019). And this selectivity was 432 

sufficiently similar that we could quantitatively predict response patterns to the synthetic sounds 433 

across species. These results do not imply that frequency and modulation tuning is the same 434 

across species, but do suggest that the organization is qualitatively similar.  435 

 436 
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Our results also do not imply that ferrets lack higher-order acoustic representations. Indeed, we 437 

found that ferrets’ spontaneous movements robustly discriminated between natural and synthetic 438 

ferret vocalizations, demonstrating behavioral sensitivity to the features which distinguish these 439 

sound sets, and this sensitivity was greater for ferret vocalizations than for either speech or music. 440 

But the manner in which species-relevant higher-order features are represented is likely distinct 441 

between humans and ferrets. Consistent with this idea, we found that differences between natural 442 

and synthetic sounds are weak, distributed throughout primary and non-primary regions, and 443 

show a mix of enhanced and suppressive responses (Fig 4E), unlike the strong, selective, and 444 

localized responses observed in human non-primary regions. 445 

 446 

Our findings are broadly consistent with a recent study that compared responses to simple tone 447 

and noise stimuli between humans and macaques (Norman-Haignere et al., 2019). This study 448 

found that selective responses to tones vs. noise were larger in both primary and non-primary 449 

regions of human auditory cortex compared with macaques, which might reflect the importance 450 

of speech and music in humans where harmonic structure plays a central role. Our finding are 451 

unlikely to reflect greater tone selectivity because we have previously shown that non-primary 452 

regions respond preferentially to natural vs. temporally scrambled sounds with similar spectral 453 

properties (Norman-Haignere et al., 2015; Overath et al., 2015) (in addition we have found in pilot 454 

experiments that speech-selective regions respond strongly to whispered speech which lack tonal 455 

structure). Moreover, the prior study tested only two types of sounds (tones and noises) and thus 456 

was unable to broadly characterize how auditory representations differ between species. Here, 457 

we tested a wide and diverse range of natural and synthetic sounds that differ on many different 458 

ecologically relevant dimensions, and thus were able to compare the overall functional 459 

organization between humans and ferrets. As a consequence, we were able to identify a 460 

substantial divergence in neural representations at a specific point in the cortical hierarchy.  461 

 462 

Methodological advances 463 

Our findings were enabled by a recently developed synthesis method, that makes it possible to 464 

synthesize sounds with frequency and modulation statistics that are closely matched to those in 465 

natural sounds (Norman-Haignere and McDermott, 2018). Because the synthetics are otherwise 466 

unconstrained, they lack higher-order acoustic properties present in complex natural sounds like 467 

speech and music (e.g. syllabic structure; musical notes, harmonies and rhythms). Comparing 468 

neural responses to natural and synthetic sounds thus provides a way to isolate responses to 469 

higher-order properties of natural stimuli that cannot be accounted for by modulation statistics. 470 

This methodological advance was critical to differentiating human and ferret cortical responses. 471 

Indeed, when considering natural or synthetic sounds alone, we observed very similar responses 472 

between species. We even observed selective responses to speech compared with other natural 473 

sounds in the ferret auditory cortex, due to the fact that speech has a unique range of 474 

spectrotemporal modulations. Thus, if we had only tested natural sounds, we might have 475 

concluded that speech and music-selective responses in the human non-primary auditory cortex 476 

reflect the same types of acoustic representations present in ferrets.  477 

 478 

Our study illustrates the utility of wide-field imaging methods in comparing the brain organization 479 

of different species (Bimbard et al., 2018; Milham et al., 2018). Most animal physiology studies 480 

focus on measuring responses from single neurons or small clusters of neurons in a single brain 481 

region. While this approach is clearly essential to understanding the neural code at a fine grain, 482 

studying a single brain region can obscure larger-scale trends that are evident across the cortex. 483 

Indeed, if we had only measured responses in a single region of auditory cortex, we would have 484 

missed the most striking difference between humans and ferrets: the emergence of selective 485 

responses to natural sounds in non-primary regions of humans but not ferrets (Fig 2E). 486 

 487 
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Functional ultrasound imaging provides a powerful way of studying large-scale functional 488 

organization in small animals such as ferrets, since it has much better spatial resolution than fMRI 489 

(Macé et al., 2011; Bimbard et al., 2018). Because fUS responses are noisy, prior studies, 490 

including those from our own lab, have only been able to characterize responses to a single 491 

stimulus dimension, such as frequency, typically using a small stimulus set (Gesnik et al., 2017; 492 

Bimbard et al., 2018). Here, we developed a denoising method that made it possible to measure 493 

highly reliable responses to over a hundred stimuli in a single experiment. We were able to recover 494 

at least as many response dimensions as those detectable with fMRI and humans, and those 495 

response dimensions exhibited selectivity for a wide range of frequencies and modulation rates. 496 

Our study thus pushes the limits of what is possible using ultrasound imaging, and establishes 497 

fUS as an ideal method for studying the large-scale functional organization of the animal brain. 498 

 499 

Assumptions and limitations 500 

The natural and synthetic sounds we tested were closely matched in their time-averaged cochlear 501 

frequency and modulation statistics, measured using a standard model of cochlear and cortical 502 

modulation tuning (Chi et al., 2005; Norman-Haignere and McDermott, 2018). We focused on 503 

time-averaged statistics because fMRI and fUS reflect time-averaged measures of neural activity, 504 

due to the temporally slow nature of hemodynamic responses. Thus, a similar response to natural 505 

and synthetic sounds indicates that the statistics being matched are sufficient to explain the voxel 506 

response. By contrast, a divergent voxel response indicates that the voxel responds to features 507 

of sound that are not captured by the model. 508 

 509 

While divergent responses by themselves do not demonstrate a higher-order response, there are 510 

several reasons to think that the selectivity we observed in human non-primary regions is due to 511 

higher-order tuning. First, the fact that differences between natural and synthetic speech/music 512 

were much larger in non-primary regions clearly suggests that these differences are driven by 513 

higher-order processing above and beyond that present in primary auditory cortex, where 514 

spectrotemporal modulations appear to explain much of the voxel response. Second, the natural 515 

and synthetic sounds produced by our synthesis procedure are in practice closely matched on a 516 

wide variety on spectrotemporal filterbank models (Norman-Haignere and McDermott, 2018). As 517 

a consequence, highly divergent responses to natural and synthetic sounds rule out many such 518 

models. Third, the fact that responses were consistently larger for natural speech/music vs. 519 

synthetic speech/music suggests that these non-primary regions respond selectively to features 520 

in natural sounds that are not explicitly captured by spectrotemporal modulations and are thus 521 

absent from the synthetic sounds. 522 

 523 

As with any study, our conclusions are limited by the precision and coverage of our neural 524 

measurements. For example, fine-grained temporal codes, which have been suggested to play 525 

an important role in vocalization encoding (Schnupp et al., 2006), cannot be detected with fUS. 526 

However, we note that the resolution of fUS is substantially better than fMRI, particularly in the 527 

spatial dimension (voxel sizes were more than 1000 times smaller) and thus the species 528 

differences we observed are unlikely to be explained by differences in the resolution of fUS vs. 529 

fMRI. It is also possible that ferrets might show more prominent differences between natural and 530 

synthetic sounds outside of auditory cortex. But even if this were true, it would still demonstrate a 531 

clear species difference because humans show robust selectivity for natural sounds in non-532 

primary regions just outside of primary auditory cortex, while ferrets evidently do not.  533 

 534 

Possible nature and causes of differences in higher-order selectivity 535 

What features might non-primary human auditory cortex represent, given that spectrotemporal 536 

modulations do not explain all of the response? Although these regions respond selectively to 537 

speech and music, they are not driven by semantic meaning or explicit musical training (Overath 538 

et al., 2015; Boebinger et al., 2020), are located just beyond primary auditory cortex, and show 539 
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evidence of having short integration periods on the scale of hundreds of milliseconds (Overath et 540 

al., 2015). This pattern suggests nonlinear selectivity for short-term temporal and spectral 541 

structure present in speech syllables or musical notes (e.g. harmonic structure, pitch contours, 542 

and local periodicity). This hypothesis is consistent with recent work showing sensitivity to 543 

phonotactics in non-primary regions of the superior temporal gyrus (Leonard et al., 2015; 544 

Brodbeck et al., 2018; Di Liberto et al., 2019), and with a recent study showing that deep neural 545 

networks trained to perform challenging speech and music tasks are better able to predict 546 

responses in non-primary regions of human auditory cortex (Kell et al., 2018).  547 

 548 

Why don’t we observe similar neural selectivity in ferrets for vocalizations? Ferret vocalizations 549 

clearly exhibit additional structure not captured by spectrotemporal modulations, since the animals 550 

showed large and spontaneous increases in motion for natural vs. synthetic vocalizations. This 551 

increase in motion was greater for vocalizations than for either speech or music, clearly reflecting 552 

the behavioral significance of vocalizations to ferrets. However, this additional structure may play 553 

a less-essential role in their everyday hearing compared with that of speech and music in humans. 554 

Other animals that depend more on higher-order acoustic representations might show more 555 

human-like selectivity in non-primary regions. For example, marmosets have a relatively complex 556 

vocal repertoire (Agamaite et al., 2015) and depend more heavily on vocalizations than many 557 

other species (Eliades and Miller, 2017), and thus might exhibit more prominent selectivity for 558 

higher-order properties in their calls. It may also be possible to experimentally enhance selectivity 559 

for higher-order properties via extensive exposure and training, particularly at an early age of 560 

development (Polley et al., 2006; Srihasam et al., 2014). All of these questions could be 561 

addressed in future work using the methods developed here.  562 
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Methods 563 

 564 

Animal preparation 565 

Experiments were performed in two head-fixed awake ferrets (A and T), across one or both 566 

hemispheres (Study 1: Aleft, Aright, Tleft, Tright; Study 2: Aleft, Tleft, and Tright). Ferret A was a mother 567 

(had one litter of pups), while ferret T was a virgin. Experiments were approved by the French 568 

Ministry of Agriculture (protocol authorization: 21022) and strictly comply with the European 569 

directives on the protection of animals used for scientific purposes (2010/63/EU). Animal 570 

preparation and fUS imaging were performed as in Bimbard et al. (2018). Briefly, a metal headpost 571 

was surgically implanted on the skull under anaesthesia. After recovery from surgery, a 572 

craniotomy was performed over auditory cortex and then sealed with an ultrasound-transparent 573 

Polymethylpentene  (TPX™) cover, embedded in an implant of dental cement. Animals could then 574 

recover for one week, with unrestricted access to food, water and environmental enrichment. 575 

Imaging windows were maintained across weeks with appropriate interventions when tissue and 576 

bone regrowth were shadowing brain areas of interest.  577 

 578 

Ultrasound imaging 579 

fUS data are collected as a series of 2D images or ‘slices’. Slices were collected in the coronal 580 

plane and were spaced 0.4 mm apart. The slice plane was varied across sessions in order to 581 

cover the region-of-interest which included both primary and non-primary regions of auditory 582 

cortex. One or two sessions were performed on each day of recording. The resolution of each 583 

voxel was 0.1 x 0.1 x ~0.4 mm (the latter dimension, called elevation, being slightly dependent on 584 

the depth of the voxel). The overall voxel volume (0.004 mm3) was more than a thousand times 585 

smaller than the voxel volume used in our human study (which was either 8 or 17.64 mm3 586 

depending on the subjects/paradigm), which helps to account for their smaller brain.  587 

 588 

A separate “Power Doppler” image/slice was acquired every second. Each of these images was 589 

computed by first collecting 300 sub-images or ‘frames’ in a short 600 ms time interval (500 Hz 590 

sampling rate). Those 300 frames were then filtered to discard global tissue motion from the signal 591 

(Demené et al., 2015) (the first 55 principal components were discarded because they mainly 592 

reflect motion; see Demené et al., 2015 for details). The blood signal energy also known as Power 593 

Doppler was computed for each voxel by summing the squared magnitudes across the 300 594 

frames separately for each pixel (Macé et al., 2011). Power Doppler is approximately proportional 595 

to blood volume (Macé et al., 2011).  596 

 597 

Each of the 300 frames was itself computed from 11 tilted plane wave emissions (-10° to 10° with 598 

2° steps) fired at a pulse repetition frequency of 5500 Hz. Frames were reconstructed from these 599 

plane wave emissions using an in-house, GPU-parallelized delay-and-sum beamforming 600 

algorithm (Macé et al., 2011).  601 

 602 

Stimuli for Experiment I 603 

We tested 40 natural sounds: 36 sounds from our prior experiment plus 4 ferret vocalizations (fight 604 

call, pup call, fear vocalization, and play call). Each natural sound was 10 seconds in duration. 605 

For each natural sound, we synthesized four synthetic sounds, matched on a different set of 606 

acoustic statistics of increasing complexity: cochlear, temporal modulation, spectral modulation, 607 

and spectrotemporal modulation. The modulation-matched synthetics were also matched in their 608 

cochlear statistics to ensure that differences between cochlear and modulation-matched sounds 609 

must be due to the addition of modulation statistics. The natural and synthetic sounds were 610 

identical to those in our prior paper, except for the four additional ferret vocalizations, which were 611 

synthesized using the same algorithm. We briefly review the algorithm below. 612 

 613 
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Cochlear statistics were measured from a cochleagram representation of sound, computed by 614 

convolving the sound waveform with filters designed to mimic the pseudo-logarithmic frequency 615 

resolution of cochlear responses (McDermott and Simoncelli, 2011). The cochleagram for each 616 

sound was composed of the compressed envelopes of these filter responses (compression is 617 

designed to mimic the effects of cochlear amplification at low sound levels). Modulation statistics 618 

were measured from filtered cochleagrams, computed by convolving each cochleagram in time 619 

and frequency with a filter designed to highlight modulations at a particular temporal rate and/or 620 

spectral scale (Chi et al., 2005). The temporal and spectral modulation filters were only modulated 621 

in time or frequency, respectively. There were 9 temporal filters (best rates: 0.5, 1, 2, 4, 8, 16, 32, 622 

64, and 128 Hz) and 6 spectral filters (best scales: 0.25, 0.5, 1, 2, 4, 8 cycles per octave). 623 

Spectrotemporal filters were created by taking the outer-product of all pairs of temporal and 624 

spectral filters in the 2D fourier domain, which results in oriented gabor-like filters.  625 

 626 

Our synthesis algorithm matches time-averaged statistics of the cochleagrams and filtered 627 

cochleagrams via a histogram-matching procedure that implicitly matches all time-averaged 628 

statistics of the responses (separately for each frequency channel of the cochleagrams and 629 

filtered cochleagrams). This choice is motivated by the fact that both fMRI and fUS reflect time-630 

averaged measures of neural activity, because the temporal resolution of hemodynamic changes 631 

is much slower than the underlying neuronal activity. As a consequence, if the fMRI or fUS 632 

response is driven by a particular set of acoustic features, we would expect two sounds with 633 

similar time-averaged statistics for those features to yield a similar response. We can therefore 634 

think of the natural and synthetic sounds as being matched under a particular model of the fMRI 635 

or fUS response (a more formal derivation of this idea is given in Norman-Haignere et al., 2018).   636 

 637 

We note that the filters used to compute the cochleagram were designed to match the frequency 638 

resolution of the human cochlea, which is thought to be somewhat finer than the frequency 639 

resolution of the ferret cochlea (Walker et al., 2019). In general, synthesizing sounds from broader 640 

filters results in synthetics that differ slightly more from the originals. And thus if we had used 641 

cochlear filters designed to mimic the frequency tuning of the ferret cochlea, we would expect the 642 

cochlear-matched synthetic sounds to differ slightly more from the natural sounds. However, given 643 

that we already observed highly divergent responses to natural and cochlear-matched synthetic 644 

sounds in both species, it is unlikely that using broader cochlear filters would change our findings. 645 

In general, we have found the matching procedure is not highly sensitive to the details of the filters 646 

used. For example, we have found that sounds matched on the spectrotemporal filters used here 647 

and taken from Chi et al. (2005), are also well matched on filters with half the bandwidth, with 648 

phases that have been randomized, and with completely random filters (Norman-Haignere and 649 

McDermott, 2018).   650 

 651 

Stimuli for Experiment II 652 

Experiment II tested a larger set of 30 ferret vocalizations (5 fight calls, 17 single-pup calls, and 8 653 

multi-pup calls where the calls from different pups overlapped in time). The vocalizations 654 

consisted of recordings from several labs (our own, Stephen David’s and Andrew King’s 655 

laboratories). For comparison, we also tested 14 speech sounds and 16 music sounds, yielding 656 

60 natural sounds in total. For each natural sound, we created a synthetic sound matched on the 657 

full spectrotemporal model. We did not synthesize sounds for the sub-models (cochlear, temporal 658 

modulation, and spectral modulation), since our goal was to test if there were divergent responses 659 

to natural and synthetic ferret vocalizations for spectrotemporally-matched sounds, like those 660 

present in human non-primary auditory cortex for speech and music sounds.  661 

 662 

Procedure for presenting stimuli 663 

Sounds were played through calibrated earphones (Sennheiser IE800 earphones, HDVA 600 664 

amplifier, 65 dB) while recording hemodynamic responses via fUS imaging. In our prior fMRI 665 
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experiments in humans, we had to chop the 10 second stimuli into 2-second excerpts in order to 666 

present the sounds in between scan acquisitions, because MRI acquisitions produce a loud sound 667 

that would otherwise interfere with hearing the stimuli. Because fUS imaging produces no audible 668 

noise, we were able to present the entire 10 second sound without interruption. The experiment 669 

was composed of a series of 20-second trials, and fUS acquisitions were synchronized to trial 670 

onset. On each trial, a single 10-second sound was played, with 7 seconds of silence before the 671 

sound to establish a response baseline, and 3 seconds of post-stimulus silence to allow the 672 

response to return to baseline. There was a randomly chosen 3 to 5 second gap between each 673 

trial. Sounds were presented in random order, and each sound was repeated 4 times. 674 

 675 

Mapping of tonotopic organization with pure tones 676 

Tonotopic organization was assessed using previously described methods (Bimbard et al., 2018). 677 

In short, responses were measured to 2-second long pure tones from 5 different frequencies (602 678 

Hz, 1430 Hz, 3400 Hz, 8087 Hz, 19234 Hz). The tones were played in random order, with 20 679 

trials/frequency. Data was denoised using the same method described in Denoising Part I: 680 

Removing components outside of cortex. Tonotopic maps were created by determining the best 681 

frequency of each voxel, defined as the tone evoking the largest Power Doppler signal. We then 682 

used these functional landmarks in combination with brain and vascular anatomy to establish the 683 

borders between primary and non-primary areas in all hemispheres, as well as to compare them 684 

to those obtained with natural sounds (see Fig S4A). 685 

 686 

Brain map display 687 

Views from above were obtained by computing the average of the variable of interest in each 688 

vertical column of voxels from the upper part of the manually defined cortical mask. This is 689 

justified by the fact that measures were coherent across depth (see Fig S4 for examples). 690 

However, we note that having a three-dimensional view prevents us from missing specific 691 

responsive areas sometimes buried in the depth of the sulci. 692 

 693 

 694 

Normalized Squared Error (NSE) maps 695 

Like fMRI, the response timecourse of each fUS voxel shows a gradual build-up of activity after a 696 

stimulus, due to the slow and gradual nature of blood flow changes. The shape of this response 697 

timecourse is similar across different sounds, but the magnitude varies (Fig 1C) (fMRI responses 698 

show the same pattern). We therefore measured the response magnitude of each voxel by 699 

averaging the response to each sound across time (from 3 to 11 seconds post-stimulus onset), 700 

yielding one number per sound. Responses were measured from denoised data. We describe the 701 

denoising procedure at the end of the Methods because it is more involved than our other 702 

analyses.   703 

 704 

We compared the response magnitude to natural and corresponding synthetic sounds using the 705 

normalized squared error (NSE), the same metric used in humans. The NSE takes a value of 0 if 706 

the response to natural and synthetic sounds is identical, and 1 if there is no correspondence 707 

between responses to natural and synthetic sounds. The NSE is defined as: 708 

 709 

     (1)                                                       𝑁𝑆𝐸 =
𝜇([𝒙 − 𝒚]2)

𝜇(𝒙2) + 𝜇(𝒚2) − 2𝜇(𝒙)𝜇(𝒚)
 710 

 711 

where 𝒙 and 𝒚 are response vectors across the sounds being compared (i.e. natural and 712 

synthetic) and 𝜇(. ) indicates the vector mean. We noise-corrected the NSE using the test-retest 713 

reliability of the voxel responses (see Norman-Haignere et al., 2018 for details). However, we 714 
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measured the NSE from denoised data, which was highly reliable, and our correction procedure 715 

thus only had a small effect on the resulting values. 716 

 717 

Annular ROI analyses.  718 

We used the same annular ROI analyses from our prior paper to quantify the change in NSE 719 

values (or lack thereof) across the cortex. We binned voxels based on their distance to the center 720 

of primary auditory cortex, defined tonotopically. We used smaller bin sizes in ferrets (0.5 mm) 721 

than humans (5 mm) due to their smaller brains (results were not sensitive to the choice of bin 722 

size). Figure 2F plots the median NSE value in each bin, plotted separately for each human 723 

subject and for each hemisphere of each ferret. To statistically compare different models (e.g. 724 

cochlear vs. spectrotemporal), we averaged the NSE values across all bins and 725 

hemispheres/subjects separately for each model, bootstrapped the resulting statistics by 726 

resampling across the sound set (1000 times), and counted the fraction of samples that 727 

overlapped between models (multiplying by 2 to arrive at a two-sided p-value). To compare 728 

species, we measured the slope of the NSE vs. distance curve separately for each 729 

hemisphere/animal. We found that the slope in every hemisphere of every ferret was less than 730 

the slope of every hemisphere of every human subject, which is significant with a sign test (p < 731 

0.01; for each ferret hemisphere there were 8 human subjects to compare with). 732 

 733 

Component analyses 734 

To investigate the organization of fUS responses to the sound set, we applied the same voxel 735 

decomposition used in our prior work in humans to identify a small number of component response 736 

patterns that explained a large fraction of the response variation. Like all factorization methods, 737 

each voxel is modeled as the weighted sum of a set of canonical response patterns that are 738 

shared across voxels. The decomposition algorithm is similar to standard algorithms for 739 

independent component analysis (ICA) in that it identifies components that have a non-Gaussian 740 

distribution of weights across voxels by minimizing the entropy of the weights (the Gaussian 741 

distribution has the highest entropy of any distribution with fixed variance). This optimization 742 

criterion is motivated by the fact that independent variables become more Gaussian when they 743 

are linearly mixed, and non-Gaussianity thus provides a statistical signature that can be used to 744 

unmix the latent variables. Our algorithm differs from standard algorithms for ICA in that it 745 

estimates entropy using a histogram, which is effective if there are many voxels, as is the case 746 

with fMRI and fUS (40882 fUS voxels for experiment I, 38366 fUS voxels for experiment II). 747 

 748 

We applied our analyses to the denoised response timecourse of each voxel across all sounds 749 

(each column of the data matrix contained the concatenated response timecourse of one voxel 750 

across all sounds). Our main analysis was performed on voxels concatenated across both animals 751 

tested. The results however were similar when the analysis was performed on data from each 752 

animal. The number of components was determined via a cross-validation procedure described 753 

in the section on denoising.  754 

 755 

We examined the inferred components by plotting and comparing their response profiles to the 756 

natural and synthetic sounds, as well as plotting their anatomical weights in the brain. We also 757 

correlated the response profiles across all sounds with measures of cochlear and spectrotemporal 758 

modulation energy. Cochlear energy was computed by averaging the cochleagram for each sound 759 

across time. Spectrotemporal modulation energy was calculated by measuring the strength of 760 

modulations in the filtered cochleagrams (which highlight modulations at a particular temporal rate 761 

and/or spectral scale). Modulation strength was computed as the standard deviation across time 762 

of each frequency channel of the filtered cochleagram. The channel-specific energies were then 763 

averaged across frequency, yielding one number per sound and spectrotemporal modulation rate.  764 

 765 
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We used a permutation test across the sound set to assess the significance of correlations with 766 

frequency and modulation features. Specifically, we measured the maximum correlation across 767 

all frequencies and all modulation rates tested, and we compared these values with those from a 768 

null distribution computed by permuting the correspondence across sounds between the features 769 

and the component responses (1000 permutations). We counted the fraction of samples that 770 

overlapped the null distribution and multiplied by two in order to arrive at a two-sided p-value. For 771 

every component, we found that correlations with frequency and modulation features were 772 

significant (p < 0.01). 773 

 774 

Predicting human components from ferret responses 775 

To quantify which component response patterns were shared across species, we tried to linearly 776 

predict components across species (Fig S6/S7). Each component was defined by its average 777 

response to the 36 natural and corresponding synthetic sounds, matched on the full 778 

spectrotemporal model. We attempted to predict each human component from all of the ferret 779 

components and vice versa, using cross-validated ridge regression (9 folds). The ridge parameter 780 

was chosen using nested cross-validation within the training set (also 9 folds; testing a wide range 781 

from 2-100 to 2100). Each fold contained pairs of corresponding natural and synthetic sound, so that 782 

there would be no overlap between the train and test sounds. 783 

 784 

For each component, we separately measured how well we could predict the response to 785 

synthetic sounds (Fig S6B/S7A) – which isolates selectivity for frequency and modulation 786 

statistics present in natural sounds – as well as how well we could predict the difference between 787 

responses to natural vs. synthetic sounds (Fig S6C/FigS7B) – which isolates selectivity for 788 

features in natural sounds that are not explained by frequency and modulation statistics. We 789 

quantified prediction accuracy using the noise-corrected NSE, and we used (1 − 𝑁𝑆𝐸). ^2 as a 790 

measure of explained variance. This choice is motivated by the fact (1 − 𝑁𝑆𝐸) is equivalent to the 791 

Pearson correlation for signals with equal mean and variance and thus (1 − 𝑁𝑆𝐸). ^2 is analogous 792 

to the squared Pearson correlation, which is a standard measure of explained variance.  793 

 794 

We multiplied these explained variance estimates by the total response variance of each 795 

component for either synthetic sounds or for the difference between natural and synthetic sounds 796 

(Fig S6D/Fig S7C shows the total variance alongside the fraction of that total variance explained 797 

by the cross-species prediction). We noise-corrected the total variance using the equation below: 798 

 799 

 800 

     (2)                                                           
𝑣𝑎𝑟(𝑟1 + 𝑟2) − 𝑣𝑎𝑟(𝑟1 − 𝑟2)

4
 801 

 802 

where 𝑟1 and 𝑟2 are two independent response measurements. Below we give a brief derivation 803 

of this equation, where 𝑟1 and 𝑟2 are expressed as the sum of a shared signal (𝑠) that is repeated 804 

across measurements plus independent noise (𝑛1 and 𝑛2) which is not. This derivation utilizes the 805 

fact that the variance of independent signals that are summed or subtracted is equal to the sum 806 

of their respective variances.   807 

 808 

     (3)                  
𝑣𝑎𝑟(𝑟1 + 𝑟2) − 𝑣𝑎𝑟(𝑟1 − 𝑟2)

4
=

𝑣𝑎𝑟([𝑠 + 𝑛1] + [𝑠 + 𝑛2]) − 𝑣𝑎𝑟([𝑠 + 𝑛1] − [𝑠 + 𝑛2])

4
 809 

                                                                                    =
𝑣𝑎𝑟(2𝑠 + 𝑛1 + 𝑛2) − 𝑣𝑎𝑟(𝑛1 − 𝑛2)

4
 810 

=
4𝑣𝑎𝑟(𝑠)

4
 811 

= 𝑣𝑎𝑟(𝑠) 812 
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 813 

The two independent measurements used for noise correction were derived from different human 814 

or ferret subjects. The measurements were computed by attempting to predict group components 815 

from each individual subject using the same cross-validated regression procedure described 816 

above. The two measurements in ferrets came from the two animals tested (A and T). And the 817 

two measurements in humans came from averaging across two non-overlapping sets of subjects 818 

(4 in each group; groups chosen to have similar SNR).  819 

 820 

For this analysis, the components were normalized so that the RMS magnitude of their weights 821 

was equal. As a consequence, components that explained more response variance also had 822 

larger response magnitudes. We also adjusted the total variance across all components to equal 823 

1. 824 

 825 

Comparing the similarity of natural and synthetic sounds from different categories. We 826 

computed maps showing the average difference between natural and synthetic sounds from 827 

different categories (Fig 4E). So that the scale of the differences could be compared across  828 

species, we divided the measured differences by the standard deviation of each voxel’s response 829 

across all sounds. We also separately measured the NSE for sounds from different categories 830 

(Fig 4F,G). The normalization term in the NSE equation (denominator of equation 1) was 831 

averaged across all sounds in order to ensure that the normalization was the same for all 832 

sounds/categories and thus that we were not inadvertently normalizing-away meaningful 833 

differences between the sounds/categories.  834 

 835 

Denoising Part I: Removing components outside of cortex 836 

Ultrasound responses in awake animals are noisy, which has limited its usage to mapping simple 837 

stimulus dimensions (e.g. frequency) where a single stimulus can be repeated many times 838 

(Bimbard et al., 2018). To overcome this issue, we developed a denoising procedure that 839 

substantially increased the reliability of the voxel responses (Fig S9). The procedure had two 840 

parts. The first part, which is described in this section, removed prominent signals outside of 841 

cortex, which are likely to reflect movement or other sources of noise. The second part enhanced 842 

reliable signals. Code implementing the denoising procedures will be made available upon 843 

publication. 844 

 845 

We separated voxels into those inside and outside of cortex, since responses outside of the cortex 846 

by definition do not contain stimulus-driven cortical responses, but do contain sources of noise 847 

like motion. We then used canonical correlation analysis (CCA) to find a set of response 848 

timecourses that were robustly present both inside and outside of cortex, since such timecourses 849 

are both likely to reflect noise and likely to distort the responses-of-interest. We projected-out the 850 

top 20 canonical components (CCs) from the data set, which we found scrubbed the data of 851 

motion-related signals (Fig S9A; motion described below).  852 

 853 

This analysis was complicated by one key fact: the animals reliably moved more during the 854 

presentation of some sounds (Fig 4C). Thus, noise-induced activity outside-of-cortex is likely to 855 

be correlated with sound-driven neural responses inside-of-cortex, and removing CCs will thus 856 

remove both noise and genuine sound-driven activity. To overcome this issue, we took advantage 857 

of the fact that sound-driven responses will by definition be reliable across repeated presentations 858 

of the same sound, while motion-induced activity will vary from trial-to-trial for the same sound. 859 

We thus found canonical components where the residual activity after removing trial-averaged 860 

responses was shared between responses inside and outside of cortex, and we then removed 861 

the contribution of these components from the data. We give a detailed description and motivation 862 

of this procedure in the Appendix, and show the results of a simple simulation demonstrating its 863 

efficacy.     864 
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 865 

To assess the effect of this procedure on our fUS data, we measured how well it removed signals 866 

that were correlated with motion (Fig S9A). Motion was measured using a video recording of the 867 

animals’ face. We measured the motion energy in the video as the average absolute deviation 868 

across adjacent frames, summed across all pixels. We correlated this motion timecourse with the 869 

residual timecourse of every voxel after subtracting off trial-averaged activity. Figure S9A plots 870 

the mean absolute correlation value across voxels as a function of the number of canonical 871 

components removed (motion can induce both increased and decreased fUS signal and thus it 872 

was necessary to take the absolute value of the correlation before averaging). We found that 873 

removing the top 20 CCs substantially reduced motion correlations.  874 

 875 

We also found that removing the top 20 CCs removed the spatial striping in the voxel responses, 876 

which is a stereotyped feature of motion due to the interaction between motion and blood vessels. 877 

To illustrate this effect, Figure S9B shows the average difference between responses to natural 878 

vs. synthetic sounds in Experiment II (vocalization experiment). Before denoising, this difference 879 

map shows a clear striping pattern likely due to the fact that the animals moved more during the 880 

presentation of the natural vs. synthetic sounds. The denoising procedure largely eliminated this 881 

striping pattern. 882 

 883 

Denoising Part II: Enhancing signal using DSS 884 

After removing components likely to be driven by noise, we applied a second procedure designed 885 

to enhance reliable components in the data. Our procedure is a variant of a method that is often 886 

referred to as “denoising source separation” (DSS) or “joint decorrelation” (de Cheveigné and 887 

Parra, 2014). In contrast with principal component analysis (PCA), which finds components that 888 

have high variance, DSS emphasizes components that have high variance after applying a 889 

“biasing” operation that is designed to enhance some aspect of the data. The procedure begins 890 

by whitening the data such that all response dimensions have equal variance, the biasing 891 

operation is applied, and PCA is then used to extract the components with highest variance after 892 

biasing. In our case, we biased the data to enhance response components that were reliable 893 

across stimulus repetitions and across the slices from all animals. We note that unlike fMRI, data 894 

from different slices come from different sessions. As a consequence, the noise from different 895 

slices will be independent. Thus, any response components that are consistent across slices and 896 

animals are likely to reflect true, stimulus-driven responses. 897 

 898 

The input to our analysis was a set of matrices. Each matrix contained data from a single stimulus 899 

repetition and slice. Only voxels from inside of cortex were analyzed. Each column of each matrix 900 

contained the response timecourse of one voxel to all of the sounds (concatenated), denoised 901 

using the procedure described in Part I. The response of each voxel was converted to units of 902 

percent signal change (the same units used for fMRI analyses) by subtracting and dividing by the 903 

pre-stimulus period (also known as percent Cerebral Blood Volume or %CBV in the fUS literature).  904 

 905 

Our analysis involved five steps: 906 

 907 

1. We whitened each matrix individually.  908 

 909 

2. We averaged the whitened response timecourses across repetitions, thus enhancing 910 

responses that are reliable across repetitions.  911 

 912 

3. We concatenated the repetition-averaged matrices for all slices across the voxel dimension, 913 

thus boosting signal that is shared across slices and animals. 914 

 915 
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4. We extracted the top N principal components (PCs) with the highest variance from the 916 

concatenated data matrix. The number of components was selected using cross-validation 917 

(described below). Because the matrices for each individual repetition and slice have been 918 

whitened, the PCs extracted in this step will not reflect the components with highest variance, but 919 

will instead reflect the components that are the most reliable across repetitions and across 920 

slices/animals. We thus refer to these components as “reliable components” (𝑅).  921 

 922 

5. We then projected the data onto the top N reliable components (𝑅): 923 

 924 

     (4)                                                            𝐷𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = 𝑅𝑅+𝐷 925 

 926 

where 𝐷 is the denoised response matrix from Part I. 927 

 928 

We used cross-validation to test the efficacy of this denoising procedure and select the number 929 

of components (Fig S2).  930 

 931 

The analysis involved the following steps: 932 

 933 

1. We divided the sound set into training (75%) and test (25%) sounds. Each set contained 934 

corresponding natural and synthetic sounds so that there would be no overlap between train and 935 

test sets. We attempted to balance the train and test sets across categories, such that each split 936 

had the same number of sounds from each category.  937 

 938 

2. Using responses to just the train sounds (𝐷𝑡𝑟𝑎𝑖𝑛), we computed reliable components (𝑅𝑡𝑟𝑎𝑖𝑛) 939 

using the procedure just described (steps 1-4). 940 

 941 

3. We calculated voxel weights for these components: 942 

 943 

     (5)                                                                               𝑊 = 𝑅𝑡𝑟𝑎𝑖𝑛
+ 𝐷𝑡𝑟𝑎𝑖𝑛 944 

 945 

4. We used this weight matrix, which was derived entirely from train data, to denoise responses 946 

to the test sounds: 947 

 948 

     (6)                                                       𝐷𝑡𝑒𝑠𝑡−𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = 𝑅𝑡𝑒𝑠𝑡𝑊 949 

     (7)                                                                        𝑅𝑡𝑒𝑠𝑡 = 𝐷𝑡𝑒𝑠𝑡𝑊+ 950 

 951 

To evaluate whether the denoising procedure improved predictions, we measured responses to 952 

the test sound set using two independent splits of data (odd or even repetitions). We then 953 

correlated the responses across the two splits either before or after denoising.  954 

 955 

Figure S2A plots the split-half correlation of each voxel before vs. after denoising for every voxel 956 

in cortex (using an 8-component model). For this analysis, we either denoised one split of data 957 

(blue dots) or both splits of data (green dots). Denoising one split provides a fairer test of whether 958 

the denoising procedure enhances SNR, while denoising both splits demonstrates the overall 959 

boost in reliability. We also plot the upper bound on the split-half correlation when denoising one 960 

split of data (black line), which is given by the square root of the split-half reliability of the original 961 

data. We found that our denoising procedure substantially increased reliability with the denoised-962 

correlations remaining close to the upper bound. When denoising both splits, the split-half 963 

correlations were close to 1, indicating a highly reliable response.  964 

 965 
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Figure S2B plots a map in one animal of the split-half correlations when denoising one split of 966 

data along with a map of the upper bound. As is evident, the denoised correlations remain close 967 

to the upper bound throughout primary and non-primary auditory cortex.  968 

 969 

Figure S2C shows the median split-half correlation across voxels as a function of the number of 970 

components. Performance was best using ~8 components in both experiments.  971 

  972 
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 1093 
Table S1: List of sounds used in both experiments. 1094 

Names of sounds used in Experiments I and II, grouped by category at both fine and coarse 1095 

scales.   1096 
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Supplementary information 1097 

 1098 

 1099 

 1100 
Figure S1. Dissimilarity maps for all hemispheres and animals. Same format as Figure 2E.  1101 
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 1102 
Figure S2. The effect of enhancing reliable signal using a procedure similar to “DSS” (see 1103 

Denoising Part II in Methods) (de Cheveigné and Parra, 2014). A, Voxel responses were denoised 1104 

by projecting their timecourse onto components that were reliably present across repetitions, 1105 

slices and animals. This figure plots the test-retest correlation across independent splits of data 1106 

before (x-axis) and after (y-axis) denoising (data from Experiment I). Each dot corresponds to a 1107 

single voxel. We denoised either one split of data (blue dots) or both splits of data (green dots). 1108 

Denoising one split provides a fairer test of whether the denoising procedure enhances SNR. 1109 

Denoising both splits shows the overall effect on response reliability. The theoretical upper-bound 1110 

for denoising one split of data is shown by the black line. The denoising procedure substantially 1111 

increased data reliability, with the one-split correlations hugging the upper-bound. This plot shows 1112 

results from an 8-component model. B, This figure plots split-half correlations for denoised data 1113 

(one split) as a map (upper panel), along with a map showing the upper bound (right). Denoised 1114 

correlations were close to their upper bound throughout auditory cortex. C, This figure plots the 1115 

median denoised correlation across voxels (one split) as a function of the number of components 1116 

used in the denoising procedure. Gray line plots the upper bound. Shaded areas correspond to 1117 

95% confidence interval, computed via bootstrapping across the sound set. Results are shown 1118 

for both Experiments I (left) and II (right). Predictions were near their maximum using ~8 1119 

components in both experiments (the 8-component mark is shown by the vertical dashed line).1120 
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Figure S3. Results from all 8 ferret components. Same format as Figure 3, except for panel 1122 

B, which plots the temporal response of the components. Black line shows the average across all 1123 

natural sounds. Colored lines correspond to major categories (see Table S1): speech (green), 1124 

music (blue), vocalizations (pink) and other sounds (brown). Note that the temporal shape varies 1125 

across components, but is very similar across sounds/categories within a component, which is 1126 

why we summarized component responses by their time-averaged response to each sound.   1127 
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 1128 
Figure S4. Component weight maps from all hemispheres and ferrets. A, For reference with 1129 

the weight maps in panel B, tonotopic maps measured using pure tones are shown for all 1130 

hemispheres. B, Voxel weight maps from the three components shown in Figure 3 for all 1131 

hemispheres of all ferrets tested. C, Voxel weights for three example coronal slices from Ferret 1132 

T, left hemisphere. Grey outlines in panel B indicate their location in the “surface” view. Each slice 1133 

corresponds to one vertical strip from the maps in panel B. The same slices are shown for all 1134 

three components. 1135 
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 1136 
Figure S5. Human components. This figure shows the anatomy and response properties of the 1137 

six human components inferred in prior work (Norman-Haignere et al., 2015; Norman-Haignere 1138 

and McDermott, 2018). Same format as Figure 3, which plots ferret components. Weight maps 1139 

(panel A) plot group-averaged maps across subjects.  1140 

  1141 
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 1142 
Figure S6. Predicting human component responses from ferrets. This figure plots the results 1143 

of trying to predict the six human components inferred from our prior work (Norman-Haignere et 1144 

al., 2015; Norman-Haignere and McDermott, 2018) from the eight ferret components inferred here 1145 

(see Fig S7 for the reverse). A, For reference, the response of the six human components to 1146 

natural and spectrotemporally matched synthetic sounds is re-plotted here. Components h1-h4 1147 

produced similar responses to natural and synthetic sounds, and had weights that clustered in 1148 

and around primary auditory cortex (Fig S5). Components h5 and h6 responded selectively to 1149 

natural speech and natural music, respectively, and had weights that clustered in non-primary 1150 

regions. B, This panel plots the measured response of each human component to 1151 

spectrotemporally matched synthetic sounds, along with the predicted response from ferrets. C, 1152 

This panel plots the difference between responses to natural and spectrotemporally-matched 1153 

synthetic sounds along with the predicted difference from the ferret components. D, Plots the total 1154 

response variance (white bars) of each human component to synthetic sounds (left) and to the 1155 

difference between natural and synthetic sounds (right) along with the fraction of that total 1156 
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response variance predictable from ferrets (gray bars) (all variance measures are noise-1157 

corrected). Error bars show the 95% confidence interval, computed via bootstrapping across the 1158 

sound set. E, Same as D, but averaged across components. 1159 

 1160 
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 1162 
Figure S7. Results of predicting ferret components from human components. Same format 1163 

as Fig S6B-E. 1164 

  1165 
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 1166 
Figure S8. Results of Experiment II from other hemispheres. A-C, Same format as Fig 4C-E, 1167 

except that in panel A the vocalizations are split into sub-categories: fight calls, single pup calls, 1168 

multiple pup calls. Movement amplitude is shown for each animal separately. D, This panel shows 1169 

the distribution of NSE values for all pairs of natural and synthetic sounds (median across all 1170 

voxels), grouped by category. The numerator in the NSE calculation is simply the squared error 1171 

for that sound pair, and the denominator is computed in the normal way using responses to all 1172 

sounds (equation 1). Dots show individual sound pairs and box-plots show the median, central 1173 

50% and central 92% (whiskers) of the distribution.  1174 
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 1175 
Figure S9. The effect of removing outside-of-cortex components on motion correlations. 1176 

Voxel responses were denoised by removing components from outside of cortex, which are likely 1177 

to reflect artifacts like motion (see Denoising Part I in Methods). A, Effect of removing components 1178 

from outside of cortex on correlations with movement. We measured the correlation of each 1179 

voxel’s response with movement, measured from a video recording of the animal’s face (absolute 1180 

deviation between adjacent frames). Each line shows the average absolute correlation across 1181 

voxels for a single recording session / slice. Correlation values are plotted as a function of the 1182 

number of removed components. Motion correlations were substantially reduced by removing the 1183 

top 20 components (vertical dotted line). B, The average difference between responses to natural 1184 

vs synthetic sounds for an example slice before and after removing the top 20 out-of-cortex 1185 

components. Motion induces a stereotyped “striping” pattern due to its effect on blood vessels, 1186 

which is evident in the map computed from raw data, likely because ferrets moved substantially 1187 

more during natural vs. synthetic sounds (particular for ferret vocalizations; Figure 4C). The 1188 

striping pattern is largely removed by the denoising procedure. 1189 
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Appendix: Recentered CCA 1190 

 1191 

Derivation. The goal of the denoising procedure described in Part I was to remove artifactual 1192 

components that were present both inside and outside of cortex, since such components are both 1193 

likely to be artifactual and likely to distort the responses-of-interest. The key complication was that 1194 

motion-induced artifacts are likely to be correlated with true sound-driven neural activity because 1195 

the animals reliably moved more during the presentation of some sounds. To deal with this issue, 1196 

we used the fact that motion will vary from trial-to-trial for repeated presentations of the same 1197 

sound, while sound-driven responses by definition will not. Here, we give a more formal derivation 1198 

of our procedure. We refer to our method as “recentered CCA” (rCCA) for reasons that will 1199 

become clear below. 1200 

 1201 

We represent the data for each voxel as an unrolled vector (𝒅𝒗) that contains its response 1202 

timecourse across all sounds and repetitions. We assume these voxel responses are 1203 

contaminated by a set of K artifactual component timecourses {𝒂𝒌}. We thus model each voxel 1204 

as a weighted sum of these artifactual components plus a sound-driven response timecourse (𝒔𝒗): 1205 

 1206 

     (8)                                                                       𝒅𝒗 = ∑ 𝒂𝒌

𝐾

𝑘

𝑤𝑘,𝑣 + 𝒔𝒗 1207 

 1208 

Actual voxel responses are also corrupted by voxel-specific noise, which would add an additional 1209 

error term to the above equation. In practice, the error term has no effect on our derivation so we 1210 

omit it for simplicity (we verified our analysis was robust to voxel-specific noise using simulations, 1211 

which are described below).  1212 

 1213 

To denoise our data, we need to estimate the artifactual timecourses {𝒂𝒌} and their weights (𝑤𝑘,𝑣) 1214 

so that we can subtract them out. If the artifactual components {𝒂𝒌} were uncorrelated with the 1215 

sound-driven responses (𝒔𝒗) we could estimate them by performing CCA on voxel responses from 1216 

inside and outside of cortex, since only the artifacts would be correlated. However, we expect 1217 

sound-driven responses to be correlated with motion artifacts, and the components inferred by 1218 

CCA will thus reflect a mixture of sound-driven and artifactual activity. 1219 

 1220 

To overcome this problem, we first subtract-out the average response of each voxel across 1221 

repeated presentations of the same sound (𝒅̇𝒗). This “recentering” operation removes sound-1222 

driven activity, which by definition is the same across repeated presentations of the same sound:  1223 

 1224 

     (9)                                                                       𝒅̇𝒗 = ∑ 𝒂̇𝒌

𝑁

𝑘

𝑤𝑘,𝑣 1225 

 1226 

where the dot above a variable indicates its response after recentering (not its time derivative). 1227 

Because sound-driven responses have been eliminated, applying CCA to the recentered voxel 1228 

responses should yield an estimate of the recentered artifacts (𝒂̇𝒌) and their weights (𝑤𝑘,𝑣) (note 1229 

that CCA actually yields a set of components that span a similar subspace as the artifactual 1230 

components, which is equivalent from the perspective of denoising). To simplify notation in the 1231 

equations below, we assume this estimate is exact (i.e. CCA exactly returns 𝒂̇𝒌 and 𝑤𝑘,𝑣). 1232 

 1233 

Since the weights (𝑤𝑘,𝑗) are the same for original (𝒅𝒗) and recentered (𝒅̇𝒗) data, we are halfway 1234 

done. All that is left is to estimate the original artifact components before recentering (𝒂𝒌), which 1235 

can be done using the original data before recentering (𝒅𝒗)). o see this, first note that canonical 1236 
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components are by construction a linear projection of the data used to compute them, and thus, 1237 

we can write: 1238 

     (10)                                                                       𝒂̇𝒌 =  ∑ 𝒅̇𝒗𝛽𝑘,𝑣

𝑉

𝑣

 1239 

 1240 

We can use the reconstruction weights (𝛽𝑘,𝑣) in the above equation to get an estimate of the 1241 

original artifactual components by applying them to the original data before recentering:  1242 

 1243 

     (11)                                                                       𝒂𝒌 ≈  ∑ 𝒅𝒗𝛽𝑘,𝑣

𝑉

𝑣

 1244 

 1245 

To see this, we expand the above equation: 1246 

 1247 

     (12)                                                       ∑ 𝒅𝒗𝛽𝑘,𝑗

𝑉

𝑣

= ∑ (∑ 𝒂𝒌′

𝑁

𝑘′

𝑤𝑘′,𝑣 + 𝒔𝒗) 𝛽𝑘,𝑣

𝑉

𝑣

 1248 

     (13)                                                                            = ∑ 𝒂𝒌′

𝑁

𝑘′

∑ 𝑤𝑘′,𝑣𝛽𝑘,𝑣

𝑽

𝒗

+ ∑ 𝒔𝒗𝛽𝑘,𝑣

𝑽

𝒗

 1249 

 1250 

The first term in the above equation exactly equals 𝒂𝒌 because 𝑤𝑘′,𝑣 and 𝛽𝑘,𝑣 are by construction 1251 

pseudoinverses of each other (i.e. ∑ 𝑤𝑘′,𝑣𝛽𝑘,𝑣
𝑽
𝒗  is 1 when 𝑘′ = 𝑘 and 0 otherwise). The second 1252 

term can be made small by estimating and applying reconstruction weights using only data from 1253 

outside of cortex, where sound-driven responses are weak. 1254 

 1255 

We thus have a procedure for estimating both the original artifactual responses (𝒂𝒌) and their 1256 

weights (𝑤𝑘,𝑗), and can denoise our data by simply subtracting them out: 1257 

 1258 

     (14)                                                                           𝒅𝒗 − ∑ 𝒂𝒌

𝐾

𝑘

𝑤𝑘,𝑣 1259 

 1260 

Procedure. We now give the specific steps used to implement the above procedure using matrix 1261 

notation. The inputs to the analysis were two matrices (𝐷𝑖𝑛, 𝐷𝑜𝑢𝑡), each of which contained voxel 1262 

responses from inside and outside of cortex. Each column of each matrix contained the response 1263 

timecourse of a single voxel, concatenated across all sounds and repetitions (i.e. 𝒅𝒗 in the above 1264 

derivation). We also computed recentered data matrices (𝐷̇𝑖𝑛, 𝐷̇𝑜𝑢𝑡) by subtracting out trial-1265 

averaged activity (i.e. 𝒅̇𝒗). 1266 

 1267 

CCA can be performed by whitening each input matrix individually, concatenating the whitened 1268 

data matrices, and then computing the principal components of the concatenated matrices (de 1269 

Cheveigné et al., 2019). Our procedure is an elaborated version of this basic design: 1270 

 1271 

1. The recentered data matrices were reduced in dimensionality and whitened. We implemented 1272 

this step using the singular value decomposition (SVD), which factors the data matrix as the 1273 

product of two orthonormal matrices (𝑈 and 𝑉), scaled by a diagonal matrix of singular values (𝑆): 1274 

 1275 

     (15)                                                                        𝐷̇𝑖𝑛 = 𝑈̇𝑖𝑛𝑆̇𝑖𝑛𝑉̇𝑖𝑛 1276 

     (16)                                                                      𝐷̇𝑜𝑢𝑡 = 𝑈̇𝑜𝑢𝑡𝑆̇𝑜𝑢𝑡𝑉̇𝑜𝑢𝑡 1277 
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 1278 

The reduced and whitened data was given by selecting the top 250 components and removing 1279 

the diagonal S matrix:  1280 

 1281 

     (17)                                                          𝐷̇𝑖𝑛−𝑤ℎ𝑖𝑡𝑒 = 𝑈̇𝑖𝑛[: ,1: 250]𝑉̇𝑖𝑛[1: 250, : ] 1282 

     (18)                                                        𝐷̇𝑜𝑢𝑡−𝑤ℎ𝑖𝑡𝑒 = 𝑈̇𝑜𝑢𝑡[: ,1: 250]𝑉̇𝑜𝑢𝑡[1: 250, : ] 1283 

 1284 

2. We concatenated the whitened data matrices from inside and outside of cortex across the voxel 1285 

dimension: 1286 

 1287 

     (19)                                                                     𝐷̇𝑐𝑎𝑡 = [𝐷̇𝑖𝑛−𝑤ℎ𝑖𝑡𝑒 , 𝐷̇𝑜𝑢𝑡−𝑤ℎ𝑖𝑡𝑒] 1288 

 1289 

3. We computed the top N principal components from the concatenated matrix using the SVD:  1290 

 1291 

     (20)                                                                     𝐷̇𝑐𝑎𝑡 = 𝑈̇𝐶𝐶𝑆̇𝐶𝐶𝑉̇𝑐𝑐 1292 

 1293 

𝑈̇𝐶𝐶 contains the timecourses of the canonical components (CCs), ordered by variance, which 1294 

provide an estimate of the artifactual components after recentering (i.e. 𝒂̇𝒌). The corresponding 1295 

weights (i.e. 𝑤𝑘,𝑣) for voxels inside of cortex were computed by projecting the recentered data 1296 

onto 𝑈̇𝐶𝐶: 1297 

 1298 

     (21)                                                                       𝑊in =  𝑈̇𝑐𝑐
+ 𝐷̇𝑖𝑛 1299 

 1300 

where + indicates the matrix pseudo-inverse.  1301 

 1302 

4. The original artifactual components before recentering (i.e. 𝒂𝒌) were estimated by learning a 1303 

set of reconstruction weights (Β) using recentered data from outside of cortex, and then applying 1304 

these weights to the original data before recentering: 1305 

 1306 

     (22)                                                                           Β = 𝐷̇𝑜𝑢𝑡
+ 𝑈̇𝑐𝑐 1307 

     (23)                                                                       𝑈𝑐𝑐 = 𝐷𝑜𝑢𝑡Β 1308 

 1309 

𝑈𝑐𝑐 is an estimate of the artifactual components before recentering (i.e. 𝒂𝒌). 1310 

 1311 

5. Finally, we subtracted out the contribution of the artifactual components to each voxel inside of 1312 

cortex, estimated by simply multiplying the component responses and weights: 1313 

 1314 

     (24)                                                           𝐷𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 =  𝐷𝑖𝑛 − 𝑈𝑐𝑐𝑊𝑖𝑛  1315 

 1316 

 1317 

Simulation. We created a simple simulation to test our method. We simulated 1000 voxel 1318 

responses, both inside and outside of cortex, using equation 8. For voxels outside of cortex, we 1319 

set the sound-driven responses to 0. We also added voxel-specific noise to make the denoising 1320 

task more realistic/difficult (sampled from a Gaussian). Results were very similar across a variety 1321 

of noise levels. 1322 

 1323 

To induce correlations between the artifactual (𝒂𝒌) and sound-driven responses (𝒔𝒗), we forced 1324 

them to share a subspace. Specifically, we computed the sound-driven responses as a weighted 1325 

sum of a set of 10 component timecourses (results did not depend on this parameter), thus forcing 1326 

the responses to be low-dimensional, as we found to be the case: 1327 

 1328 
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     (25)                                                                     𝒔𝒗 = ∑ 𝒖𝒋

10

𝑗=1

𝑚𝑗,𝑣 1329 

 1330 

The artifactual timecourses were then computed as a weighted sum of these same 10 1331 

components timecourses plus a timecourse that was unique to each artifactual component: 1332 

 1333 

     (26)                                                                     𝒂𝒌 =  𝑝 ∑ 𝒖𝒋

10

𝑗=1

𝑛𝑗,𝑘 + (1 − 𝑝)𝒃𝒌 1334 

 1335 

where 𝑝 controls the strength of the dependence between the sound-driven and artifactual 1336 

components with a value of 1 indicating complete dependence and 0 indicating no dependence. 1337 

All of responses and weights (𝒖𝒋, 𝒃𝒌, 𝑚𝑗,𝑣, 𝑛𝑗,𝑘) were sampled from a unit-variance Gaussian. 1338 

Sound-driven responses were constrained to be the same across repetitions by sampling the 1339 

latent timecourses 𝒖𝒋 once per sound, and then simply repeating the sampled values across 1340 

repetitions. In contrast, a unique 𝒃𝒌 was sampled for every repetition of every sound to account 1341 

for the fact that the artifacts like motion will vary from trial-to-trial. We sampled 20 artifactual 1342 

timecourses using equation 26. 1343 

 1344 

We applied both standard CCA and our modified rCCA method to the simulated data. We 1345 

measured the median NSE between the true and estimated sound-driven responses (𝒔𝒗), 1346 

computed using the two methods as a function of the strength of the dependence (𝑝) between 1347 

sound-driven and artifactual timecourses (Fig A1A). For comparison, we also plot the NSE for 1348 

raw voxels (i.e. before any denoising) as well as the minimum possible NSE (noise floor) given 1349 

the voxel-specific noise (which cannot possibly be removed using CCA or rCCA). When the 1350 

dependence is low, both CCA and rCCA yield similarly good results, as expected. As the 1351 

dependence increases, CCA performs substantially worse, while rCCA continues to perform well 1352 

up until the point when the dependence becomes so strong that sound-driven and artifactual 1353 

timecourses are nearly indistinguishable. Results were not highly sensitive to the number of 1354 

components removed as long as the number of removed components was equal to or greater 1355 

than the number of artifactual components (Figure A1B).  1356 
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 1357 
Figure A1: Simulation results. A. Median NSE across simulated voxels between the true and 1358 

estimated sound-driven responses (𝒔𝒗), computed using raw/undenoised data (light green line), 1359 
standard CCA (dark green line), and recentered CCA (red line). Results are shown as a function of 1360 
the strength of the dependence (𝑝) between sound-driven and artifactual timecourses. The minimum 1361 
possible NSE (noise floor) given the level of voxel-specific noise is also shown. B. Same as panel A, 1362 
but showing results as a function of the number of components removed for a fixed value of 𝑝 (set to 1363 
0.5). 1364 

 1365 
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