

1 Distinct higher-order representations of natural sounds in human and ferret 2 auditory cortex

3

4 Authors

5 Agnès Landemard^{1,*}, Célian Bimbard^{1,2,*}, Charlie Demené³, Shihab Shamma^{1,4}, Sam Norman-
6 Haignere^{1,5,6,#} and Yves Boubenec^{1,#}

7 *, #: equal contribution

8

9 ¹Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale
10 Supérieure PSL Research University, CNRS, Paris France

11 ²Current address: UCL Institute of Ophthalmology, University College London, Gower Street,
12 London WC1E 6AE, UK

13 ³Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, Paris France

14 ⁴Institute for Systems Research, Department of Electrical and Computer Engineering, University
15 of Maryland, College Park, MD 20742, USA

16 ⁵HHMI Postdoctoral Fellow of the Life Sciences Research Foundation, Baltimore MD USA

17 ⁶Zuckerman Mind Brain Behavior Institute, Columbia University, New York NY USA

18

19 Abstract

20 Little is known about how neural representations of natural sounds differ across species. For
21 example, speech and music play a unique role in human hearing, yet it is unclear how auditory
22 representations of speech and music differ between humans and other animals. Using functional
23 Ultrasound imaging, we measured responses in ferrets to a set of natural and spectrotemporally-
24 matched synthetic sounds previously tested in humans. Ferrets showed similar lower-level
25 frequency and modulation tuning to that observed in humans. But while humans showed
26 prominent selectivity for natural vs. synthetic speech and music in non-primary regions, ferret
27 responses to natural and synthetic sounds were closely matched throughout primary and non-
28 primary auditory cortex, even when tested with ferret vocalizations. This finding reveals that
29 auditory representations in humans and ferrets diverge sharply at late stages of cortical
30 processing, potentially driven by higher-order processing demands in speech and music.

31 Introduction

32

33 Surprisingly little is known about how sensory representations of natural stimuli differ across
34 species (Theunissen and Elie, 2014). This question is central to understanding how evolution and
35 development shape sensory representations (Moore and Woolley, 2019) as well as developing
36 animal models of human brain functions. Audition provides a natural test case because speech
37 and music play a unique role in human hearing (Zatorre et al., 2002; Hickok and Poeppel, 2007;
38 Patel, 2012). While human knowledge of speech and music clearly differs from other species
39 (Pinker and Jackendoff, 2005), it remains unclear how neural representations of speech and
40 music differ from those in other species, particularly within the auditory cortex. Few studies have
41 directly compared neural responses to natural sounds between humans and other animals, and
42 those which have done so, have often observed similar responses. For example, both humans
43 and non-human primates show regions that respond preferentially to conspecific vocalizations
44 (Belin et al., 2000; Petkov et al., 2008). Human auditory cortex exhibits selectivity for speech
45 phonemes (Mesgarani et al., 2014; Di Liberto et al., 2015), but much of this selectivity can be
46 predicted by simple forms of spectrotemporal modulation tuning (Mesgarani et al., 2014), and
47 perhaps as a consequence, can be observed in other animals such as ferrets (Mesgarani et al.,
48 2008; Steinschneider et al., 2013). Consistent with this finding, maps of spectrotemporal
49 modulation, measured using natural sounds, appear coarsely similar between humans and
50 macaques (Erb et al., 2019) although temporal modulations present in speech may be over-
51 represented in humans. Thus, it remains unclear if the representation of natural sounds in auditory
52 cortex differs substantially between humans and other animals, and if so, how.

53

54 A key challenge is that representations of natural stimuli are transformed across different stages
55 of sensory processing, and species may share some but not all representational stages.
56 Moreover, responses at different sensory stages are often correlated across natural stimuli (de
57 Heer et al., 2017), making them difficult to disentangle. Speech and music, for example, have
58 distinctive patterns of spectrotemporal modulation energy (Singh and Theunissen, 2003; Ding et
59 al., 2017), as well as higher-order structure (e.g. syllabic and harmonic structure) that is not well
60 captured by modulation (Norman-Haignere and McDermott, 2018). To isolate neural selectivity
61 for higher-order structure, we recently developed a method for synthesizing sounds whose
62 spectrotemporal modulation statistics are closely matched to a corresponding set of natural
63 sounds (Norman-Haignere and McDermott, 2018). Because the synthetic sounds are otherwise
64 unconstrained, they lack perceptually salient higher-order structure, which is particularly true for
65 complex natural sounds like speech and music which are poorly captured by modulation statistics,
66 unlike many other natural sounds (McDermott and Simoncelli, 2011). We found that human
67 primary auditory cortex responds similarly to natural and spectrotemporally synthetic sounds,
68 while non-primary regions respond selectively to the natural sounds. Most of this selectivity is
69 driven by preferential responses to natural vs. synthetic speech and music in non-primary auditory
70 cortex. The specificity for speech and music could be due to their ecological relevance in humans
71 and/or the fact that speech and music are more complex than other sounds, and thus perceptually
72 differ more from their synthetic counterparts. But notably, the response preference for natural
73 speech and music cannot be explained by speech semantics, since similar responses are
74 observed for native and foreign speech (Norman-Haignere et al., 2015; Overath et al., 2015), or
75 explicit musical training, since music selectivity is robust in humans without any training
76 (Boebinger et al., 2020). These findings suggest that human non-primary regions respond
77 selectively to higher-order acoustic features that both cannot be explained by lower-level
78 modulation statistics and do not yet reflect explicit semantic knowledge.

79 The goal of the present study was to test whether such higher-order selectivity is present in other
80 species. We test three key hypotheses: (1) higher-order selectivity in humans reflects a generic
81 mechanism present across species for analyzing complex sounds like speech and music (2)
82 higher-order selectivity reflects an adaptation to ecologically relevant sounds such as speech and

83 music in humans or vocalizations in other species (3) higher-order selectivity reflects a specific
84 adaptation in humans, potentially driven by the unique demands of speech and music perception,
85 that is not generically present in other species even for ecologically relevant sounds. We
86 addressed this question by measuring cortical responses in ferrets – one of the most common
87 animal models used to study auditory cortex (Nelken et al., 2008) – to the same set of natural and
88 synthetic sounds previously tested in humans, as well as natural and synthetic ferret vocalizations.
89 Responses were measured using functional UltraSound imaging (fUS) (Macé et al., 2011;
90 Bimbard et al., 2018), a newly developed wide-field imaging technique that like fMRI detects
91 changes in neural activity via changes in blood-flow (movement of blood induces a doppler effect
92 detectable with ultrasound). fUS has substantially better spatial resolution than fMRI making it
93 applicable to small animals like ferrets. We found that tuning for spectrot temporal modulations
94 present in both natural and synthetic sounds was similar between humans and animals, and could
95 be quantitatively predicted across species, consistent with prior findings (Mesgarani et al., 2008;
96 Erb et al., 2019). But unlike humans, ferret responses to natural and synthetic sounds were similar
97 throughout primary and non-primary auditory cortex even when comparing natural and synthetic
98 ferret vocalizations; and the small differences that were present in ferrets were weak and spatially
99 scattered, unlike the selectivity observed in humans. This finding reveals that auditory
100 representations in humans and ferrets diverge substantially at late stages of acoustic processing.
101

102 Results

103 **Experiment I: Comparing ferret cortical responses to natural versus synthetic sounds**

104 We measured cortical responses with fUS to the same 36 natural sounds tested previously in
105 humans plus 4 additional ferret vocalizations (Experiment II tested many more ferret
106 vocalizations). The 36 natural sounds included speech, music, and other environmental sounds
107 (see **Table S1**). For each natural sound, we synthesized 4 sounds that were matched on acoustic
108 statistics of increasing complexity (**Fig 1A**): (1) cochlear energy statistics (2) temporal modulation
109 statistics (3) spectral modulation statistics and (4) spectrot temporal modulation statistics.
110 Cochlear-matched sounds had a similar frequency spectrum, but their modulation content was
111 unconstrained and thus differed from the natural sounds. Modulation-matched sounds were
112 additionally constrained in their temporal and/or spectral modulation rates, measured by linearly
113 filtering a cochleagram representation with filters tuned to different modulation rates (modulation-
114 matched sounds also had matched cochlear statistics in order to isolate the contribution of
115 modulation). The modulation-matched sounds audibly differ from their natural counterparts,
116 particularly for complex sounds like speech and music that contain higher-order structure not
117 captured by frequency and modulation statistics (listen to example sounds [here](#)). We focused on
118 time-averaged statistics because the hemodynamic response measured by both fMRI and fUS
119 reflects a time-averaged measure of neural activity. As a consequence, each of the synthetic
120 sounds can be thought of as being matched under a different model of the fUS or fMRI response
121 (Norman-Haignere and McDermott, 2018).
122

123 We measured fUS responses throughout primary and non-primary ferret auditory cortex (**Fig 1B**).
124 We first plot the response timecourse to all 40 natural sounds for one example voxel in non-
125 primary auditory cortex (dPEG) (**Fig 1C**). We plot the original timecourse of the voxel as well as
126 a denoised version computed by projecting the timecourse onto a small number of reliable
127 components, which we found substantially improved prediction accuracy in left-out data (see
128 Methods for details). As expected and similar to fMRI, we observed a gradual build-up of the
129 hemodynamic response after stimulus onset. The shape of the response timecourse was similar
130 across stimuli, but the magnitude of the response varied, and we thus summarized the response
131 of each voxel to each sound by its time-averaged response magnitude (the same approach used
132 in our prior fMRI study).
133

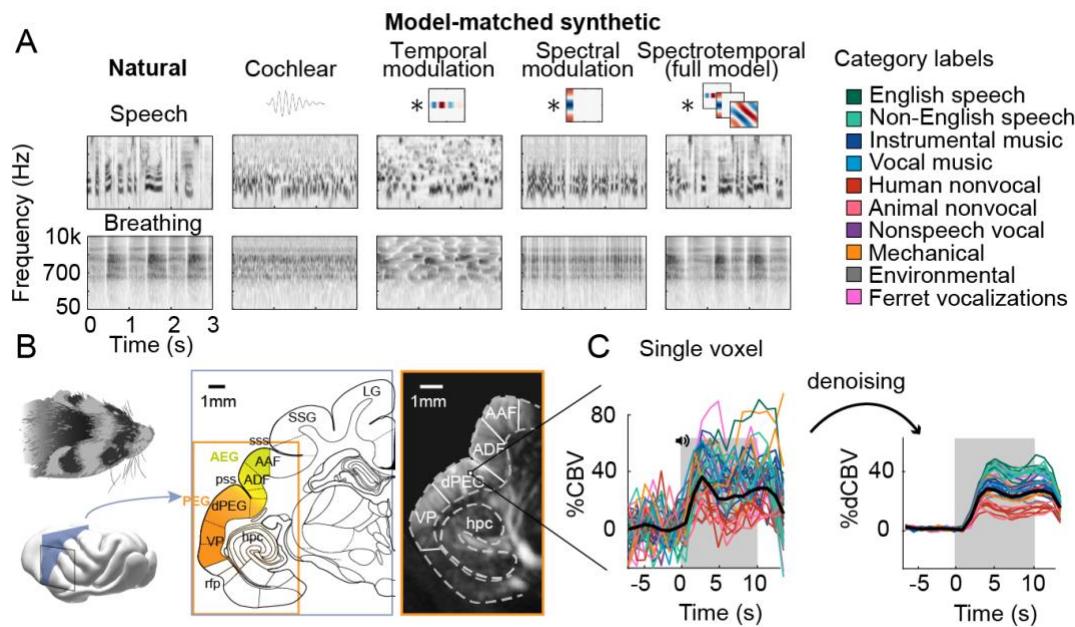


Figure 1. Schematic of stimuli and imaging protocol. **A**, Cochleograms for two example natural sounds (left column) and corresponding synthetic sounds (right four columns) that were matched to the natural sounds along a set of acoustic statistics of increasing complexity. Statistics were measured by filtering a cochleogram with filters tuned to temporal, spectral or joint spectrotemporal modulations. The natural sounds were diverse, and were grouped into 10 different categories shown at right. English and Non-English speech are separated out because all of the human subjects tested in our prior study were native English speakers, and so the distinction is meaningful in humans. **B**, Schematic of the imaging procedure. A three-dimensional volume covering all of ferret auditory cortex was acquired through successive coronal slices. Auditory cortical regions (colored regions) were mapped with anatomical and functional markers. The rightmost image shows a single ultrasound image with overlaid region boundaries. Auditory regions: dPEG: dorsal posterior ectosylvian gyrus; AEG: anterior ectosylvian gyrus; VP: ventral posterior auditory field; ADF: anterior dorsal field; AAF: anterior auditory field. Non-auditory regions: hpc: hippocampus; SSG: suprasylvian gyrus; LG: lateral gyrus. Anatomical markers: pss: posterior sylvian sulcus; sss: superior sylvian sulcus. **C**, Response timecourse of a single voxel to all natural sounds, measured from raw (left) and denoised data (right). Each line reflects a different sound, and its color indicates the sound's category. The gray region shows the time window when sound was present. The location of this voxel corresponds to the highlighted voxel in panel B.

We next plot the time-averaged response of two example voxels – one in primary auditory cortex (A1) and one in a non-primary area (dPEG) – to natural and corresponding synthetic sounds that have been matched on the full spectrotemporal modulation model (**Fig 2A**). For comparison, we plot the test-retest reliability of each voxel across repeated presentations of the same sound (**Fig 2B**), as well as corresponding figures from two example voxels in human primary/non-primary auditory cortex (**Fig 2C-D**; these voxels are re-plotted from our prior paper). As in our prior study, we quantified the similarity of responses to natural and synthetic sounds using the normalized squared error (NSE). The NSE takes a value of 0 if responses to natural and synthetic sounds are the same, and 1 if there is no correspondence between the two (see Methods for details).

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

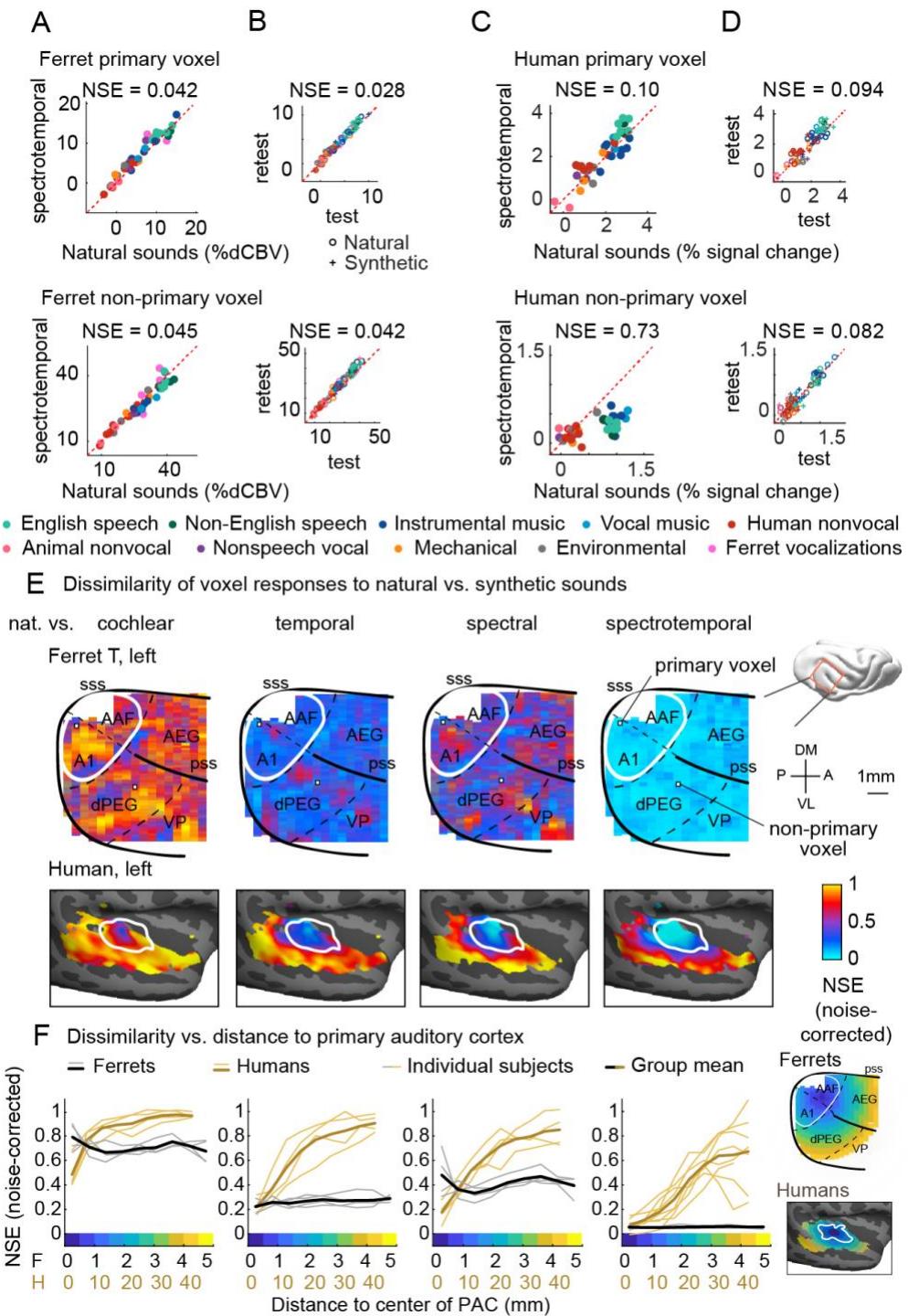


Figure 2: Dissimilarity of responses to natural vs. synthetic sounds in ferrets and humans. **A**, Response of two example fUS voxels to natural and corresponding synthetic sounds with matched spectrotemporal modulation statistics. Each dot shows the time-averaged response to a single pair of natural/synthetic sounds (after denoising), with colors indicating the sound category. The example voxels come from primary (top, A1) and non-primary (bottom, dPEG) regions of the ferret auditory cortex. The normalized squared error (NSE) quantifies the dissimilarity of responses. **B**, Test-retest response of the example voxels across all natural (o) and synthetic (+) sounds (odd vs. even repetitions). The responses were highly reliable due to the denoising procedure. **C-D**, Same as panel A-B, but showing two example voxels from human primary/non-primary auditory cortex. **E**, Maps plotting the dissimilarity of responses to natural vs. synthetic sounds from one ferret hemisphere (top row) and from humans (bottom row). Each column shows results for a different set of synthetic sounds. The synthetic sounds were constrained by statistics of increasing complexity from left to right: just cochlear statistics, cochlear + temporal modulation statistics, cochlear + spectral modulation statistics, and cochlear + spectrotemporal modulation statistics. Dissimilarity was quantified using the normalized squared error (NSE), corrected for noise using the test-

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177 retest reliability of the voxel responses. Ferret maps show a “surface” view from above of the sylvian gyri,
178 similar to the map in humans. Surface views were computed by averaging activity perpendicular to the cortical
179 surface. The border between primary and non-primary auditory cortex is shown with a white line in both
180 species, and was defined using tonotopic gradients. Areal boundaries in the ferret are also shown (dashed
181 thin lines). This panel shows results from one hemisphere of one animal (Ferret T, left hemisphere), but
182 results were similar in other animals/hemispheres (**Fig S1**). The human map is a group map averaged across
183 many subjects, but results were similar in individual subjects (Norman-Haignere and McDermott, 2018). **F**,
184 Voxels were binned based on their distance to primary auditory cortex (defined tonotopically). This figure
185 plots the median NSE value in each bin. Each thin line corresponds to a single ferret hemisphere (gray) or a
186 single human subject averaged across hemispheres (gold) (results were very similar in the left and right
187 hemisphere of humans). Thick lines show the average across all hemispheres/subjects.

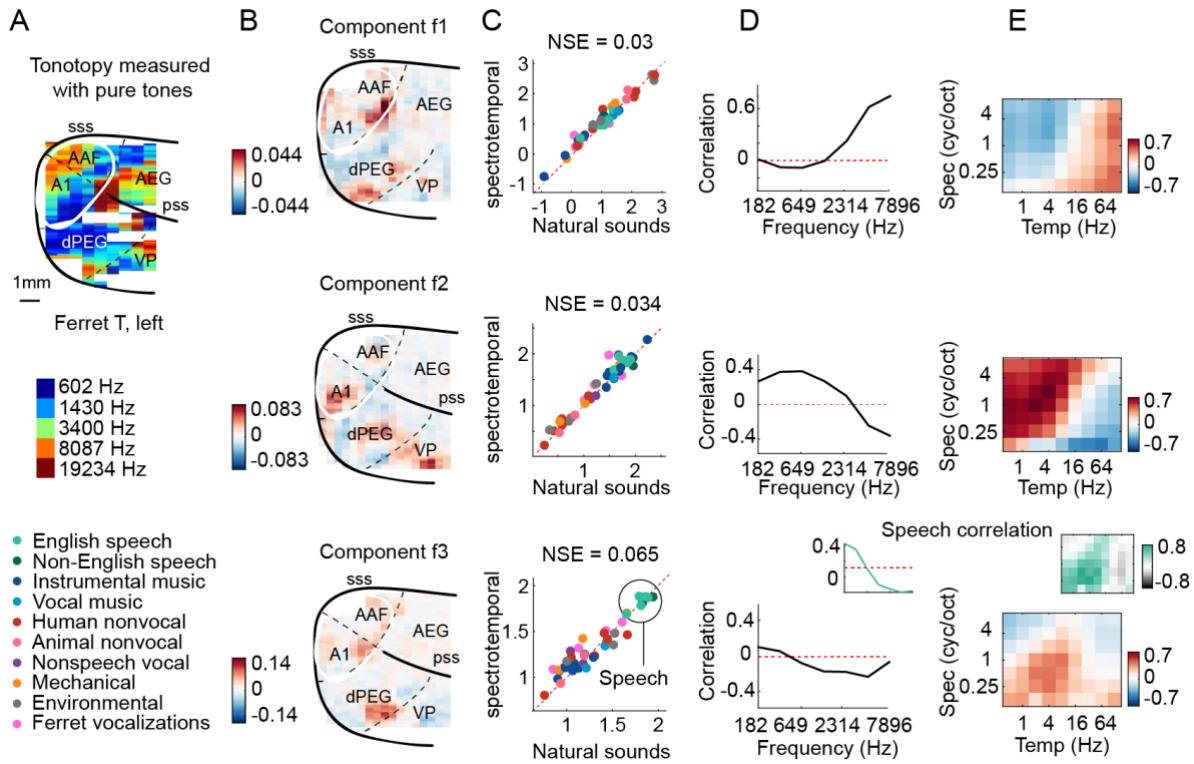
188
189 Both the primary and non-primary ferret voxels produced nearly identical responses to natural
190 and corresponding synthetic sounds (NSEs: 0.042, 0.045), suggesting that spectrotemporal
191 modulation are sufficient to account for the responses in these voxels. The human primary voxel
192 also showed similar responses to natural and synthetic responses, and the NSE for natural vs.
193 synthetic sounds (0.1) was similar to the test-retest NSE (0.094), indicating that the response was
194 about as similar as possible given the noise ceiling. In contrast, the human non-primary voxel
195 responded substantially more to the natural speech (green) and music (blue) than matched
196 synthetics, yielding a high NSE value (0.73). This pattern demonstrates that spectrotemporal
197 modulations are insufficient to drive the response of the human non-primary voxel, plausibly
198 because it responds to higher-order features that are not captured by modulation statistics.
199

200 We quantified this trend across voxels by plotting maps of the noise-corrected NSE between
201 natural and synthetic sounds (**Fig 2E** shows one hemisphere of one animal, but results were very
202 similar in other hemispheres of other animals, see **Fig S1**). We show separate maps for each of
203 the different sets of statistics used to constrain the synthetic sounds (cochlear, temporal
204 modulation, spectral modulation and spectrotemporal modulation). Each map shows a view from
205 above auditory cortex, computed by averaging NSE values perpendicular to the cortical sheet.
206 We summarized the data in this way, because we found that maps were very similar across the
207 different layers within a cortical column. Below we plot corresponding maps from humans. The
208 human maps are based on data averaged across subjects, but similar results were observed in
209 individual subjects (Norman-Haignere and McDermott, 2018).
210

211 In ferrets, we observed a similar pattern throughout both primary and non-primary regions:
212 responses became more similar as we matched additional acoustic features with NSE values
213 close to 0 for sounds matched on the full spectrotemporal model. This pattern contrasts sharply
214 with that observed in humans, where we observed a clear and substantial rise in NSE values
215 when moving from primary to non-primary auditory cortex even for sounds matched on joint
216 spectrotemporal modulations statistics. We quantified these effects by measuring NSE values
217 using ROIs binned based on distance to primary auditory cortex, as was done previously in
218 humans (**Fig 2F**). This analysis revealed a substantial and significant rise in NSEs when matching
219 additional acoustic features in ferrets (NSE spectrotemporal < NSE temporal < NSE spectral <
220 NSE cochlear, $p < 0.01$ via a bootstrapping analysis across the sound set). But there was little
221 difference in NSEs between ferret primary and non-primary regions, with NSE values close to
222 zero in all regions for spectrotemporally matched synthetics. In contrast, every human subject
223 tested showed larger NSE values in non-primary regions, yielding a significant species difference
224 ($p < 0.01$ via a sign-test comparing each ferret to all of the human subjects tested; see Methods
225 for details). This finding demonstrates that higher-order selectivity for complex natural sounds like
226 speech and music is not a generic feature of higher-order processing in mammals.
227

228 **Assessing and comparing selectivity for frequency and modulation across species**
229 Our NSE maps suggest that ferret cortical responses are selective for frequency and modulation,
230 but do not reveal how this selectivity is organized or whether it is similar to that in humans. While

231 it is not feasible to inspect or plot all individual voxels, we found that fUS responses like human
 232 fMRI responses are low-dimensional and can be explained as the weighted sum of a small number
 233 of component response patterns. This observation served as the basis for our denoising
 234 procedure, as well as a useful way to examining ferret cortical selectivity and comparing that
 235 selectivity with humans. We found that we could discriminate approximately 8 distinct component
 236 response patterns before over-fitting to noise (**Fig S2C**).



237
 238 **Figure 3: Organization of frequency and modulation selectivity in ferret auditory cortex, revealed by**
 239 **component analysis.** **A**, For reference with the weight maps in panel B, a tonotopic map is shown, measured
 240 using pure tones. The map is from one hemisphere of one animal (Ferret T, left). **B**, Voxel weight maps from
 241 three components, inferred using responses to natural and synthetic sounds (see **Fig S3** for all 8 components
 242 and **Fig S4** for all hemispheres). Each map was computed by averaging weights perpendicular to the cortical
 243 surface, which was done because the weights were very similar across layers within a column (see **Fig S4C**).
 244 The maps for components f1 and f2 closely mirrored the high and low-frequency tonotopic gradients
 245 respectively. **C**, Component response to natural and spectrotemporally-matched synthetic sounds, colored
 246 based on category labels (labels shown at the bottom left of the figure). Components f1 and f2 did not respond
 247 selectively to particular categories. Component f3 responded preferentially to speech sounds. **D**, Correlation
 248 of component responses with energy at different audio frequencies, measured from a cochleagram. Inset for
 249 f3 shows the correlation pattern that would be expected from a response that was perfectly selective for
 250 speech (i.e. 1 for speech, 0 for all other sounds). **E**, Correlations with modulation energy at different temporal
 251 and spectral rates. Inset shows the correlation pattern that would be expected for a perfectly speech-selective
 252 response.

253
 254 We first examined the selectivity of the inferred response patterns and their anatomical distribution
 255 of weights in the brain (**Fig 3** shows three example components; **Fig S3** shows all 8 components).
 256 All of the component response profiles showed significant correlations with measures of energy
 257 at different cochlear frequencies and spectrotemporal modulation rates (**Fig 3D-E**) ($p < 0.01$ for
 258 all components for both frequency and modulation features; statistics computed via a permutation
 259 test across the sound set). Two components (f1 & f2) had responses that correlated with energy
 260 at high and low-frequencies respectively, with voxel weights that mirrored the tonotopic gradients
 261 measured in these animals (compare **Fig 3B** and **3A**; see **Fig S4** for all hemispheres/animals),
 262 similar to the tonotopic components previously identified in humans (Norman-Haignere et al.,
 263 2015) (**Fig S5**, components h1 and h2). We also observed components with weak frequency

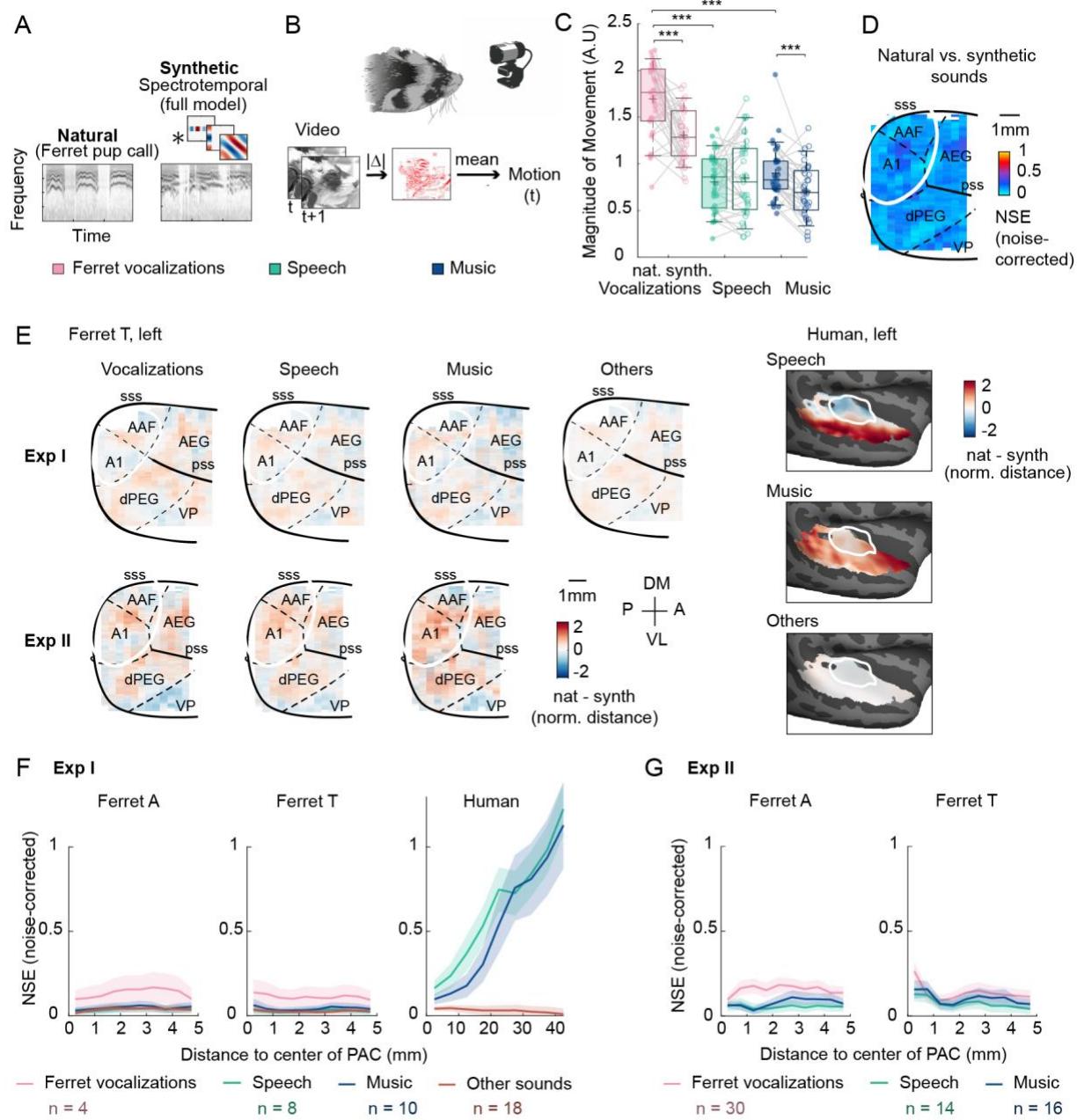
264 tuning but prominent tuning for spectrotemporal modulations (**Fig S3**), again similar to humans.
265 Perhaps surprisingly, one component (f3) responded selectively to speech sounds, and its
266 response correlated with energy at frequency and modulation rates characteristic of speech
267 (insets in **Fig 3D-E**, bottom row). But notably, all of the inferred components, including the speech-
268 selective component, produced very similar responses to natural and synthetic sounds (**Fig 3C**),
269 suggesting that their selectivity can be explained by their tuning for frequency and modulation.
270 This contrasts with the speech- and music-selective components previously observed in humans,
271 which responded selectively to natural speech and music, respectively, and which clustered in
272 distinct non-primary regions of human auditory cortex (see **Fig S5**, components h5 and h6). This
273 finding shows that selectivity for natural speech compared with other natural sounds is in fact not
274 unique to humans, and thus that comparing responses to natural vs. synthetic sounds is critical
275 to revealing representational differences between species.
276

277 Overall, the frequency and modulation selectivity evident in the ferret components appeared
278 similar to that in humans (Norman-Haignere et al., 2015). To quantitatively evaluate similarity, we
279 attempted to predict the response of each human component, inferred from our prior work, from
280 those in the ferrets (**Fig S6**) and vice versa (**Fig S7**). We found that much of the component
281 response variation to synthetic sounds could be predicted across species (**Fig S6B&D, S7A&C**).
282 This finding is consistent with the hypothesis that tuning for frequency and modulation is similar
283 across species, since the synthetic sounds only varied in their frequency and modulation statistics.
284 In contrast, differences between natural vs. synthetic sounds were only robust in humans and as
285 a consequence could not be predicted from responses in ferrets (**Fig S6C&E**). Thus, selectivity
286 for frequency and modulation is both qualitatively and quantitatively similar across species,
287 despite large and substantial differences in higher-order tuning.
288

289 **Experiment II: Testing the importance of ecological relevance**

290 The results of Experiment I show that higher-order selectivity in humans is not a generic feature
291 of auditory processing for complex sounds. However, the results could still be explained by a
292 difference in ecological relevance, since differences between natural and synthetic sounds in
293 humans are mostly driven by speech and music (Norman-Haignere and McDermott, 2018) and
294 Experiment I included more speech (8) and music (10) sounds than ferret vocalizations (4). To
295 test this possibility, we performed a second experiment that included many more ferret
296 vocalizations (30) (**Fig 4A**), as well as a smaller number of speech (14) and music (16) sounds to
297 allow comparison with Experiment I. We only synthesized sounds matched in their full
298 spectrotemporal modulation statistics to be able to test a broader sound set.
299

300 Using a video recording of the animals' face (**Fig 4B**), we found that the ferrets showed greater
301 spontaneous movements during the presentation of the natural ferret vocalizations compared with
302 both the synthetic sounds and the other natural sounds (**Fig 4C**; see **Fig S8** for additional plots
303 from individual animals and finer-grained vocalization categories). This observation demonstrates
304 that natural ferret vocalizations contain additional structure that is missing from their synthetic
305 counterparts, and that this additional structure is sufficiently salient to cause a spontaneous
306 increase in motion without any overt training. Moreover, the behavioral differences between
307 natural and synthetic vocalizations were greater than those for speech ($p < 0.001$ via Wilcoxon
308 signed-rank test) and music ($p < 0.05$), demonstrating that the additional structure present in
309 vocalizations is more salient to the ferret than the additional structure present in natural speech
310 and music. To prevent this motion from affecting the ultrasound responses, we designed a
311 denoising procedure that greatly minimized correlations between the ultrasound responses and
312 motion without removing sound-evoked activity (see Methods and Appendix).



313
314 **Figure 4. Testing the importance of ecological relevance.** **A**, Experiment II measured responses to a
315 much larger number of ferret vocalizations (30), as well as a smaller number of speech (14) and music (16)
316 sounds, unlike Experiment I which only tested 4 ferret vocalizations. Cochleograms for an example natural
317 and synthetic vocalization (a “pup call”) are plotted. **B**, The animal’s spontaneous movements were monitored
318 with a video recording of the animal’s face. Motion was measured as the mean absolute deviation between
319 adjacent video frames, averaged across pixels. **C**, Average evoked movement amplitude for natural (shaded)
320 and synthetic (unshaded) sounds broken down by category. Each dot represents one recording session.
321 Significant differences between natural and synthetic sounds, and between categories of natural sounds are
322 plotted (paired Wilcoxon test, $p < 0.001$: ***). Evoked movement amplitude was normalized by the standard
323 deviation across sounds for each recording session prior to averaging across sound category (necessary
324 because absolute pixel deviations cannot be meaningfully compared across sessions). Results were
325 consistent across ferrets (Fig S8A). Both animals moved substantially more during natural ferret vocalizations
326 compared with both matched synthetics as well as speech and music. **D**, Map showing the dissimilarity
327 between natural and spectrotemporally matched synthetic sounds from Experiment II for one hemisphere
328 (Ferret T, left; see Fig S8B for all hemispheres), measured using the noise-corrected NSE across sounds.
329 NSE values were low across auditory cortex, replicating the first experiment. **E**, Maps showing the average
330 difference between responses to natural and synthetic sounds for vocalizations, speech, music, and others
331 sounds, normalized for each voxel by the standard deviation across all sounds. Results are shown for the
332 same ferret hemisphere (T, left) for both Experiment I and II. Humans were only tested in Experiment I. **F**,

333 NSE for different sound categories, plotted as a function of distance to primary auditory cortex (binned as in
334 **Fig 2F**). Shaded area represents +/- 1 s.e.m. (**Fig S8D** plots NSEs for individual sounds) **G**, Same as panel
335 **F** but showing results from Experiment II.
336
337 Despite this clear behavioral difference, we nonetheless found that voxel responses to natural
338 and synthetic sounds were similar throughout primary and non-primary regions, yielding small
339 NSE values (**Fig 4D**). This result demonstrates that our key findings from Experiment I are not
340 due to the weak ecological relevance of the tested sounds, since a qualitatively similar result was
341 obtained in Experiment II when half of the sounds were ferret vocalizations.
342
343 To directly test if ferrets showed selective responses to natural vs. synthetic ferret vocalizations,
344 we computed maps showing the average difference between natural vs. synthetic sounds for
345 different categories, using data from both Experiments I and II (**Fig 4E**). We also separately
346 measured the NSE for sounds from different categories (**Fig 4F-G**; note the normalization term in
347 the NSE was computed using all sounds to avoid inadvertently normalizing out meaningful
348 differences between sounds/categories). We plot the median NSE for sounds from different
349 categories as a function of distance to primary auditory cortex for each animal and experiment
350 (**Fig 4F-G**; **Fig S8D** shows the distribution of NSE values for individual sound pairs). This analysis
351 revealed that NSE values in ferrets were slightly elevated for ferret vocalizations compared with
352 other categories (**Fig 4F-G**), consistent with their ecological relevance. This effect, however, was
353 small and inconsistent, reaching significance in only one of the two animals in Experiment II
354 (Ferret A, $p < 0.005$, Wilcoxon test) (the effect was significant in both animals in Experiment I, but
355 this experiment only tested 4 ferret vocalizations). Moreover, the small differences that were
356 present between natural and synthetic sounds were spatially distributed throughout primary and
357 non-primary regions, and very similar to those for speech, music and other natural sounds (**Fig**
358 **4E**). In contrast, humans showed large and selective responses to speech and music that were
359 concentrated in distinct non-primary regions (lateral for speech and anterior/posterior for music)
360 and clearly different from those for other natural sounds (**Fig 4E**). Thus, ferrets do not show any
361 of the neural signatures of higher-order selectivity that we previously identified in humans (large
362 effect size, spatially clustered responses, and a clear non-primary bias), even for con-specific
363 vocalizations, which produced clear behavioral differences reflecting their ecological significance.
364

365 **Discussion**

366

367 Our study reveals a prominent divergence in the representation of natural sounds between
368 humans and ferrets. Using a recently developed wide-field imaging technique (functional
369 Ultrasound), we measured cortical responses in the ferret to a set of natural and
370 spectrotemporally-matched synthetic sounds previously tested in humans. We found that
371 selectivity for frequency and modulation statistics in the synthetic sounds was similar across
372 species. But unlike humans, who showed selective responses to natural vs. synthetic speech and
373 music in non-primary regions, ferrets cortical responses to natural and synthetic sounds were
374 similar throughout primary and non-primary auditory cortex, even when tested with ferret
375 vocalizations. This finding suggests that higher-order selectivity in humans for natural vs. synthetic
376 speech/music (1) does not reflect a species-generic mechanism for analyzing complex sounds
377 and (2) does not reflect a species-generic adaptation for coding ecologically relevant sounds like
378 con-specific vocalizations. Instead, our findings suggest that auditory representations in humans
379 fundamentally diverge from ferrets at higher-order processing stages, plausibly driven by the
380 unique demands of speech and music.
381

382

Species differences in the representation of natural sounds

383 The central challenge of sensory coding is that behaviorally relevant information is often not
384 explicit in the inputs to sensory systems. As a consequence, sensory systems transform their

385 inputs into higher-order representations that expose behaviorally relevant properties of stimuli
386 (DiCarlo and Cox, 2007; Mizrahi et al., 2014; Theunissen and Elie, 2014). The early stages of this
387 transformation are thought to be conserved across many species. For example, all mammals
388 transduce sound pressure waveforms into a frequency-specific representation of sound energy in
389 the cochlea, although the resolution and frequency range of cochlear tuning differ across species
390 (Bruns and Schmieszek, 1980; Köppl et al., 1993; Joris et al., 2011; Walker et al., 2019). But it
391 has remained unclear whether representations at later stages are similarly conserved across
392 species.

393
394 Only a few studies have attempted to compare cortical representations of natural sounds between
395 humans and other animals, and these studies have typically found similar representations in
396 auditory cortex. Studies of speech phonemes in ferrets (Mesgarani et al., 2008) and macaques
397 (Steinschneider et al., 2013) have replicated many neural phenomena observed in humans
398 (Mesgarani et al., 2014). A recent fMRI study found that maps of spectrotemporal modulation
399 tuning, measured using natural sounds, are coarsely similar between humans and macaques,
400 although slow temporal modulations which are prominent in speech were better decoded in
401 humans compared with macaques (Erb et al., 2019), potentially analogous to prior findings of
402 enhanced cochlear frequency tuning for behaviorally relevant sound frequencies (Bruns and
403 Schmieszek, 1980; Köppl et al., 1993). Thus, prior work has revealed quantitative differences in
404 the extent and resolution of neural tuning for different acoustic frequencies and modulation rates.
405 But it has remained unclear whether there are qualitative differences in how natural sounds are
406 represented across species.

407
408 Our study demonstrates that human non-primary regions exhibit a form of higher-order acoustic
409 selectivity that is almost completely absent in ferrets. Ferret cortical responses to natural and
410 spectrotemporally matched synthetic sounds were closely matched throughout their auditory
411 cortex, and the small differences that we observed were scattered throughout primary and non-
412 primary regions (**Fig 4E**), unlike the pattern observed in humans. As a consequence, the
413 differences that we observed between natural and synthetic sounds in humans were not
414 predictable from cortical responses in ferrets (**Fig S6C**), even though we could predict responses
415 to synthetic sounds across species (**Fig S6B&E**). This higher-order selectivity is unlikely to be
416 explained by explicit semantic knowledge about speech or music, since similar responses are
417 observed for foreign speech (Norman-Haignere et al., 2015; Norman-Haignere and McDermott,
418 2018) and music selectivity is robust in listeners without musical training (Boebinger et al., 2020).
419 These results suggest that humans develop or have evolved a higher-order stage of acoustic
420 analysis, potentially specific to speech and music, that cannot be explained by standard frequency
421 and modulation statistics and is largely absent from the ferret brain. This specificity for speech
422 and music could be due to their acoustic complexity, their behavioral relevance to humans, or a
423 combination of the two.

424
425 By comparison, our study suggests that there is a substantial amount of cross-species overlap in
426 the cortical representation of frequency and modulation features. Both humans and ferrets
427 exhibited tonotopically organized selectivity for different frequencies. Moreover, modulation
428 selectivity accounted for a large fraction of the cortical responses (**Fig 2E**), even in primary
429 auditory cortex, which emphasizes the importance of modulation tuning in both humans and
430 ferrets. Like humans, ferrets showed spatially organized selectivity for different temporal and
431 spectral modulation rates, that coarsely mimicked the types of selectivity we have previously
432 observed in humans, replicating prior findings (Erb et al., 2019). And this selectivity was
433 sufficiently similar that we could quantitatively predict response patterns to the synthetic sounds
434 across species. These results do not imply that frequency and modulation tuning is the same
435 across species, but do suggest that the organization is qualitatively similar.

436

437 Our results also do not imply that ferrets lack higher-order acoustic representations. Indeed, we
438 found that ferrets' spontaneous movements robustly discriminated between natural and synthetic
439 ferret vocalizations, demonstrating behavioral sensitivity to the features which distinguish these
440 sound sets, and this sensitivity was greater for ferret vocalizations than for either speech or music.
441 But the manner in which species-relevant higher-order features are represented is likely distinct
442 between humans and ferrets. Consistent with this idea, we found that differences between natural
443 and synthetic sounds are weak, distributed throughout primary and non-primary regions, and
444 show a mix of enhanced and suppressive responses (**Fig 4E**), unlike the strong, selective, and
445 localized responses observed in human non-primary regions.
446

447 Our findings are broadly consistent with a recent study that compared responses to simple tone
448 and noise stimuli between humans and macaques (Norman-Haignere et al., 2019). This study
449 found that selective responses to tones vs. noise were larger in both primary and non-primary
450 regions of human auditory cortex compared with macaques, which might reflect the importance
451 of speech and music in humans where harmonic structure plays a central role. Our finding are
452 unlikely to reflect greater tone selectivity because we have previously shown that non-primary
453 regions respond preferentially to natural vs. temporally scrambled sounds with similar spectral
454 properties (Norman-Haignere et al., 2015; Overath et al., 2015) (in addition we have found in pilot
455 experiments that speech-selective regions respond strongly to whispered speech which lack tonal
456 structure). Moreover, the prior study tested only two types of sounds (tones and noises) and thus
457 was unable to broadly characterize how auditory representations differ between species. Here,
458 we tested a wide and diverse range of natural and synthetic sounds that differ on many different
459 ecologically relevant dimensions, and thus were able to compare the overall functional
460 organization between humans and ferrets. As a consequence, we were able to identify a
461 substantial divergence in neural representations at a specific point in the cortical hierarchy.
462

463 ***Methodological advances***

464 Our findings were enabled by a recently developed synthesis method, that makes it possible to
465 synthesize sounds with frequency and modulation statistics that are closely matched to those in
466 natural sounds (Norman-Haignere and McDermott, 2018). Because the synthetics are otherwise
467 unconstrained, they lack higher-order acoustic properties present in complex natural sounds like
468 speech and music (e.g. syllabic structure; musical notes, harmonies and rhythms). Comparing
469 neural responses to natural and synthetic sounds thus provides a way to isolate responses to
470 higher-order properties of natural stimuli that cannot be accounted for by modulation statistics.
471 This methodological advance was critical to differentiating human and ferret cortical responses.
472 Indeed, when considering natural or synthetic sounds alone, we observed very similar responses
473 between species. We even observed selective responses to speech compared with other natural
474 sounds in the ferret auditory cortex, due to the fact that speech has a unique range of
475 spectrotemporal modulations. Thus, if we had only tested natural sounds, we might have
476 concluded that speech and music-selective responses in the human non-primary auditory cortex
477 reflect the same types of acoustic representations present in ferrets.
478

479 Our study illustrates the utility of wide-field imaging methods in comparing the brain organization
480 of different species (Bimbard et al., 2018; Milham et al., 2018). Most animal physiology studies
481 focus on measuring responses from single neurons or small clusters of neurons in a single brain
482 region. While this approach is clearly essential to understanding the neural code at a fine grain,
483 studying a single brain region can obscure larger-scale trends that are evident across the cortex.
484 Indeed, if we had only measured responses in a single region of auditory cortex, we would have
485 missed the most striking difference between humans and ferrets: the emergence of selective
486 responses to natural sounds in non-primary regions of humans but not ferrets (**Fig 2E**).
487

488 Functional ultrasound imaging provides a powerful way of studying large-scale functional
489 organization in small animals such as ferrets, since it has much better spatial resolution than fMRI
490 (Macé et al., 2011; Bimbard et al., 2018). Because fUS responses are noisy, prior studies,
491 including those from our own lab, have only been able to characterize responses to a single
492 stimulus dimension, such as frequency, typically using a small stimulus set (Gesnik et al., 2017;
493 Bimbard et al., 2018). Here, we developed a denoising method that made it possible to measure
494 highly reliable responses to over a hundred stimuli in a single experiment. We were able to recover
495 at least as many response dimensions as those detectable with fMRI and humans, and those
496 response dimensions exhibited selectivity for a wide range of frequencies and modulation rates.
497 Our study thus pushes the limits of what is possible using ultrasound imaging, and establishes
498 fUS as an ideal method for studying the large-scale functional organization of the animal brain.
499

500 **Assumptions and limitations**

501 The natural and synthetic sounds we tested were closely matched in their time-averaged cochlear
502 frequency and modulation statistics, measured using a standard model of cochlear and cortical
503 modulation tuning (Chi et al., 2005; Norman-Haignere and McDermott, 2018). We focused on
504 time-averaged statistics because fMRI and fUS reflect time-averaged measures of neural activity,
505 due to the temporally slow nature of hemodynamic responses. Thus, a similar response to natural
506 and synthetic sounds indicates that the statistics being matched are sufficient to explain the voxel
507 response. By contrast, a divergent voxel response indicates that the voxel responds to features
508 of sound that are not captured by the model.

509 While divergent responses by themselves do not demonstrate a higher-order response, there are
510 several reasons to think that the selectivity we observed in human non-primary regions is due to
511 higher-order tuning. First, the fact that differences between natural and synthetic speech/music
512 were much larger in non-primary regions clearly suggests that these differences are driven by
513 higher-order processing above and beyond that present in primary auditory cortex, where
514 spectrotemporal modulations appear to explain much of the voxel response. Second, the natural
515 and synthetic sounds produced by our synthesis procedure are in practice closely matched on a
516 wide variety on spectrotemporal filterbank models (Norman-Haignere and McDermott, 2018). As
517 a consequence, highly divergent responses to natural and synthetic sounds rule out many such
518 models. Third, the fact that responses were consistently larger for natural speech/music vs.
519 synthetic speech/music suggests that these non-primary regions respond selectively to features
520 in natural sounds that are not explicitly captured by spectrotemporal modulations and are thus
521 absent from the synthetic sounds.

522 As with any study, our conclusions are limited by the precision and coverage of our neural
523 measurements. For example, fine-grained temporal codes, which have been suggested to play
524 an important role in vocalization encoding (Schnupp et al., 2006), cannot be detected with fUS.
525 However, we note that the resolution of fUS is substantially better than fMRI, particularly in the
526 spatial dimension (voxel sizes were more than 1000 times smaller) and thus the species
527 differences we observed are unlikely to be explained by differences in the resolution of fUS vs.
528 fMRI. It is also possible that ferrets might show more prominent differences between natural and
529 synthetic sounds outside of auditory cortex. But even if this were true, it would still demonstrate a
530 clear species difference because humans show robust selectivity for natural sounds in non-
531 primary regions just outside of primary auditory cortex, while ferrets evidently do not.
532

533 **Possible nature and causes of differences in higher-order selectivity**

534 What features might non-primary human auditory cortex represent, given that spectrotemporal
535 modulations do not explain all of the response? Although these regions respond selectively to
536 speech and music, they are not driven by semantic meaning or explicit musical training (Overath
537 et al., 2015; Boebinger et al., 2020), are located just beyond primary auditory cortex, and show

540 evidence of having short integration periods on the scale of hundreds of milliseconds (Overath et
541 al., 2015). This pattern suggests nonlinear selectivity for short-term temporal and spectral
542 structure present in speech syllables or musical notes (e.g. harmonic structure, pitch contours,
543 and local periodicity). This hypothesis is consistent with recent work showing sensitivity to
544 phonotactics in non-primary regions of the superior temporal gyrus (Leonard et al., 2015;
545 Brodbeck et al., 2018; Di Liberto et al., 2019), and with a recent study showing that deep neural
546 networks trained to perform challenging speech and music tasks are better able to predict
547 responses in non-primary regions of human auditory cortex (Kell et al., 2018).

548

549 Why don't we observe similar neural selectivity in ferrets for vocalizations? Ferret vocalizations
550 clearly exhibit additional structure not captured by spectrotemporal modulations, since the animals
551 showed large and spontaneous increases in motion for natural vs. synthetic vocalizations. This
552 increase in motion was greater for vocalizations than for either speech or music, clearly reflecting
553 the behavioral significance of vocalizations to ferrets. However, this additional structure may play
554 a less-essential role in their everyday hearing compared with that of speech and music in humans.
555 Other animals that depend more on higher-order acoustic representations might show more
556 human-like selectivity in non-primary regions. For example, marmosets have a relatively complex
557 vocal repertoire (Agamaite et al., 2015) and depend more heavily on vocalizations than many
558 other species (Eliades and Miller, 2017), and thus might exhibit more prominent selectivity for
559 higher-order properties in their calls. It may also be possible to experimentally enhance selectivity
560 for higher-order properties via extensive exposure and training, particularly at an early age of
561 development (Polley et al., 2006; Srihasam et al., 2014). All of these questions could be
562 addressed in future work using the methods developed here.

563 Methods

564

565 Animal preparation

566 Experiments were performed in two head-fixed awake ferrets (A and T), across one or both
567 hemispheres (Study 1: A_{left}, A_{right}, T_{left}, T_{right}; Study 2: A_{left}, T_{left}, and T_{right}). Ferret A was a mother
568 (had one litter of pups), while ferret T was a virgin. Experiments were approved by the French
569 Ministry of Agriculture (protocol authorization: 21022) and strictly comply with the European
570 directives on the protection of animals used for scientific purposes (2010/63/EU). Animal
571 preparation and fUS imaging were performed as in Bimbard et al. (2018). Briefly, a metal headpost
572 was surgically implanted on the skull under anaesthesia. After recovery from surgery, a
573 craniotomy was performed over auditory cortex and then sealed with an ultrasound-transparent
574 Polymethylpentene (TPX™) cover, embedded in an implant of dental cement. Animals could then
575 recover for one week, with unrestricted access to food, water and environmental enrichment.
576 Imaging windows were maintained across weeks with appropriate interventions when tissue and
577 bone regrowth were shadowing brain areas of interest.

578

579 Ultrasound imaging

580 fUS data are collected as a series of 2D images or 'slices'. Slices were collected in the coronal
581 plane and were spaced 0.4 mm apart. The slice plane was varied across sessions in order to
582 cover the region-of-interest which included both primary and non-primary regions of auditory
583 cortex. One or two sessions were performed on each day of recording. The resolution of each
584 voxel was 0.1 x 0.1 x ~0.4 mm (the latter dimension, called elevation, being slightly dependent on
585 the depth of the voxel). The overall voxel volume (0.004 mm³) was more than a thousand times
586 smaller than the voxel volume used in our human study (which was either 8 or 17.64 mm³
587 depending on the subjects/paradigm), which helps to account for their smaller brain.

588

589 A separate "Power Doppler" image/slice was acquired every second. Each of these images was
590 computed by first collecting 300 sub-images or 'frames' in a short 600 ms time interval (500 Hz
591 sampling rate). Those 300 frames were then filtered to discard global tissue motion from the signal
592 (Demené et al., 2015) (the first 55 principal components were discarded because they mainly
593 reflect motion; see Demené et al., 2015 for details). The blood signal energy also known as Power
594 Doppler was computed for each voxel by summing the squared magnitudes across the 300
595 frames separately for each pixel (Macé et al., 2011). Power Doppler is approximately proportional
596 to blood volume (Macé et al., 2011).

597

598 Each of the 300 frames was itself computed from 11 tilted plane wave emissions (-10° to 10° with
599 2° steps) fired at a pulse repetition frequency of 5500 Hz. Frames were reconstructed from these
600 plane wave emissions using an in-house, GPU-parallelized delay-and-sum beamforming
601 algorithm (Macé et al., 2011).

602

603 Stimuli for Experiment I

604 We tested 40 natural sounds: 36 sounds from our prior experiment plus 4 ferret vocalizations (fight
605 call, pup call, fear vocalization, and play call). Each natural sound was 10 seconds in duration.
606 For each natural sound, we synthesized four synthetic sounds, matched on a different set of
607 acoustic statistics of increasing complexity: cochlear, temporal modulation, spectral modulation,
608 and spectrotemporal modulation. The modulation-matched synthetics were also matched in their
609 cochlear statistics to ensure that differences between cochlear and modulation-matched sounds
610 must be due to the addition of modulation statistics. The natural and synthetic sounds were
611 identical to those in our prior paper, except for the four additional ferret vocalizations, which were
612 synthesized using the same algorithm. We briefly review the algorithm below.

613

614 Cochlear statistics were measured from a cochleagram representation of sound, computed by
615 convolving the sound waveform with filters designed to mimic the pseudo-logarithmic frequency
616 resolution of cochlear responses (McDermott and Simoncelli, 2011). The cochleagram for each
617 sound was composed of the compressed envelopes of these filter responses (compression is
618 designed to mimic the effects of cochlear amplification at low sound levels). Modulation statistics
619 were measured from filtered cochleograms, computed by convolving each cochleagram in time
620 and frequency with a filter designed to highlight modulations at a particular temporal rate and/or
621 spectral scale (Chi et al., 2005). The temporal and spectral modulation filters were only modulated
622 in time or frequency, respectively. There were 9 temporal filters (best rates: 0.5, 1, 2, 4, 8, 16, 32,
623 64, and 128 Hz) and 6 spectral filters (best scales: 0.25, 0.5, 1, 2, 4, 8 cycles per octave).
624 Spectrot temporal filters were created by taking the outer-product of all pairs of temporal and
625 spectral filters in the 2D fourier domain, which results in oriented gabor-like filters.
626

627 Our synthesis algorithm matches time-averaged statistics of the cochleograms and filtered
628 cochleograms via a histogram-matching procedure that implicitly matches all time-averaged
629 statistics of the responses (separately for each frequency channel of the cochleograms and
630 filtered cochleograms). This choice is motivated by the fact that both fMRI and fUS reflect time-
631 averaged measures of neural activity, because the temporal resolution of hemodynamic changes
632 is much slower than the underlying neuronal activity. As a consequence, if the fMRI or fUS
633 response is driven by a particular set of acoustic features, we would expect two sounds with
634 similar time-averaged statistics for those features to yield a similar response. We can therefore
635 think of the natural and synthetic sounds as being matched under a particular model of the fMRI
636 or fUS response (a more formal derivation of this idea is given in Norman-Haignere et al., 2018).
637

638 We note that the filters used to compute the cochleagram were designed to match the frequency
639 resolution of the human cochlea, which is thought to be somewhat finer than the frequency
640 resolution of the ferret cochlea (Walker et al., 2019). In general, synthesizing sounds from broader
641 filters results in synthetics that differ slightly more from the originals. And thus if we had used
642 cochlear filters designed to mimic the frequency tuning of the ferret cochlea, we would expect the
643 cochlear-matched synthetic sounds to differ slightly more from the natural sounds. However, given
644 that we already observed highly divergent responses to natural and cochlear-matched synthetic
645 sounds in both species, it is unlikely that using broader cochlear filters would change our findings.
646 In general, we have found the matching procedure is not highly sensitive to the details of the filters
647 used. For example, we have found that sounds matched on the spectrot temporal filters used here
648 and taken from Chi et al. (2005), are also well matched on filters with half the bandwidth, with
649 phases that have been randomized, and with completely random filters (Norman-Haignere and
650 McDermott, 2018).
651

652 **Stimuli for Experiment II**

653 Experiment II tested a larger set of 30 ferret vocalizations (5 fight calls, 17 single-pup calls, and 8
654 multi-pup calls where the calls from different pups overlapped in time). The vocalizations
655 consisted of recordings from several labs (our own, Stephen David's and Andrew King's
656 laboratories). For comparison, we also tested 14 speech sounds and 16 music sounds, yielding
657 60 natural sounds in total. For each natural sound, we created a synthetic sound matched on the
658 full spectrot temporal model. We did not synthesize sounds for the sub-models (cochlear, temporal
659 modulation, and spectral modulation), since our goal was to test if there were divergent responses
660 to natural and synthetic ferret vocalizations for spectrotemporally-matched sounds, like those
661 present in human non-primary auditory cortex for speech and music sounds.
662

663 **Procedure for presenting stimuli**

664 Sounds were played through calibrated earphones (Sennheiser IE800 earphones, HDVA 600
665 amplifier, 65 dB) while recording hemodynamic responses via fUS imaging. In our prior fMRI

666 experiments in humans, we had to chop the 10 second stimuli into 2-second excerpts in order to
667 present the sounds in between scan acquisitions, because MRI acquisitions produce a loud sound
668 that would otherwise interfere with hearing the stimuli. Because fUS imaging produces no audible
669 noise, we were able to present the entire 10 second sound without interruption. The experiment
670 was composed of a series of 20-second trials, and fUS acquisitions were synchronized to trial
671 onset. On each trial, a single 10-second sound was played, with 7 seconds of silence before the
672 sound to establish a response baseline, and 3 seconds of post-stimulus silence to allow the
673 response to return to baseline. There was a randomly chosen 3 to 5 second gap between each
674 trial. Sounds were presented in random order, and each sound was repeated 4 times.
675

676 **Mapping of tonotopic organization with pure tones**

677 Tonotopic organization was assessed using previously described methods (Bimbard et al., 2018).
678 In short, responses were measured to 2-second long pure tones from 5 different frequencies (602
679 Hz, 1430 Hz, 3400 Hz, 8087 Hz, 19234 Hz). The tones were played in random order, with 20
680 trials/frequency. Data was denoised using the same method described in *Denoising Part I: 681
682 Removing components outside of cortex*. Tonotopic maps were created by determining the best
683 frequency of each voxel, defined as the tone evoking the largest Power Doppler signal. We then
684 used these functional landmarks in combination with brain and vascular anatomy to establish the
685 borders between primary and non-primary areas in all hemispheres, as well as to compare them
686 to those obtained with natural sounds (see **Fig S4A**).
687

688 **Brain map display**

689 Views from above were obtained by computing the average of the variable of interest in each
690 vertical column of voxels from the upper part of the manually defined cortical mask. This is
691 justified by the fact that measures were coherent across depth (see **Fig S4** for examples).
692 However, we note that having a three-dimensional view prevents us from missing specific
693 responsive areas sometimes buried in the depth of the sulci.
694

695 **Normalized Squared Error (NSE) maps**

696 Like fMRI, the response timecourse of each fUS voxel shows a gradual build-up of activity after a
697 stimulus, due to the slow and gradual nature of blood flow changes. The shape of this response
698 timecourse is similar across different sounds, but the magnitude varies (**Fig 1C**) (fMRI responses
699 show the same pattern). We therefore measured the response magnitude of each voxel by
700 averaging the response to each sound across time (from 3 to 11 seconds post-stimulus onset),
701 yielding one number per sound. Responses were measured from denoised data. We describe the
702 denoising procedure at the end of the Methods because it is more involved than our other
703 analyses.
704

705 We compared the response magnitude to natural and corresponding synthetic sounds using the
706 normalized squared error (NSE), the same metric used in humans. The NSE takes a value of 0 if
707 the response to natural and synthetic sounds is identical, and 1 if there is no correspondence
708 between responses to natural and synthetic sounds. The NSE is defined as:
709

$$710 \quad (1) \quad NSE = \frac{\mu([x - y]^2)}{\mu(x^2) + \mu(y^2) - 2\mu(x)\mu(y)}$$

711 where x and y are response vectors across the sounds being compared (i.e. natural and
712 synthetic) and $\mu(\cdot)$ indicates the vector mean. We noise-corrected the NSE using the test-retest
713 reliability of the voxel responses (see Norman-Haignere et al., 2018 for details). However, we
714

715 measured the NSE from denoised data, which was highly reliable, and our correction procedure
716 thus only had a small effect on the resulting values.
717

718 **Annular ROI analyses.**

719 We used the same annular ROI analyses from our prior paper to quantify the change in NSE
720 values (or lack thereof) across the cortex. We binned voxels based on their distance to the center
721 of primary auditory cortex, defined tonotopically. We used smaller bin sizes in ferrets (0.5 mm)
722 than humans (5 mm) due to their smaller brains (results were not sensitive to the choice of bin
723 size). **Figure 2F** plots the median NSE value in each bin, plotted separately for each human
724 subject and for each hemisphere of each ferret. To statistically compare different models (e.g.
725 cochlear vs. spectrot temporal), we averaged the NSE values across all bins and
726 hemispheres/subjects separately for each model, bootstrapped the resulting statistics by
727 resampling across the sound set (1000 times), and counted the fraction of samples that
728 overlapped between models (multiplying by 2 to arrive at a two-sided p-value). To compare
729 species, we measured the slope of the NSE vs. distance curve separately for each
730 hemisphere/animal. We found that the slope in every hemisphere of every ferret was less than
731 the slope of every hemisphere of every human subject, which is significant with a sign test ($p <$
732 0.01; for each ferret hemisphere there were 8 human subjects to compare with).
733

734 **Component analyses**

735 To investigate the organization of fUS responses to the sound set, we applied the same voxel
736 decomposition used in our prior work in humans to identify a small number of component response
737 patterns that explained a large fraction of the response variation. Like all factorization methods,
738 each voxel is modeled as the weighted sum of a set of canonical response patterns that are
739 shared across voxels. The decomposition algorithm is similar to standard algorithms for
740 independent component analysis (ICA) in that it identifies components that have a non-Gaussian
741 distribution of weights across voxels by minimizing the entropy of the weights (the Gaussian
742 distribution has the highest entropy of any distribution with fixed variance). This optimization
743 criterion is motivated by the fact that independent variables become more Gaussian when they
744 are linearly mixed, and non-Gaussianity thus provides a statistical signature that can be used to
745 unmix the latent variables. Our algorithm differs from standard algorithms for ICA in that it
746 estimates entropy using a histogram, which is effective if there are many voxels, as is the case
747 with fMRI and fUS (40882 fUS voxels for experiment I, 38366 fUS voxels for experiment II).
748

749 We applied our analyses to the denoised response timecourse of each voxel across all sounds
750 (each column of the data matrix contained the concatenated response timecourse of one voxel
751 across all sounds). Our main analysis was performed on voxels concatenated across both animals
752 tested. The results however were similar when the analysis was performed on data from each
753 animal. The number of components was determined via a cross-validation procedure described
754 in the section on denoising.
755

756 We examined the inferred components by plotting and comparing their response profiles to the
757 natural and synthetic sounds, as well as plotting their anatomical weights in the brain. We also
758 correlated the response profiles across all sounds with measures of cochlear and spectrot temporal
759 modulation energy. Cochlear energy was computed by averaging the cochleagram for each sound
760 across time. Spectrot temporal modulation energy was calculated by measuring the strength of
761 modulations in the filtered cochleograms (which highlight modulations at a particular temporal rate
762 and/or spectral scale). Modulation strength was computed as the standard deviation across time
763 of each frequency channel of the filtered cochleagram. The channel-specific energies were then
764 averaged across frequency, yielding one number per sound and spectrot temporal modulation rate.
765

766 We used a permutation test across the sound set to assess the significance of correlations with
767 frequency and modulation features. Specifically, we measured the maximum correlation across
768 all frequencies and all modulation rates tested, and we compared these values with those from a
769 null distribution computed by permuting the correspondence across sounds between the features
770 and the component responses (1000 permutations). We counted the fraction of samples that
771 overlapped the null distribution and multiplied by two in order to arrive at a two-sided p-value. For
772 every component, we found that correlations with frequency and modulation features were
773 significant ($p < 0.01$).
774

775 **Predicting human components from ferret responses**

776 To quantify which component response patterns were shared across species, we tried to linearly
777 predict components across species (**Fig S6/S7**). Each component was defined by its average
778 response to the 36 natural and corresponding synthetic sounds, matched on the full
779 spectrotemporal model. We attempted to predict each human component from all of the ferret
780 components and vice versa, using cross-validated ridge regression (9 folds). The ridge parameter
781 was chosen using nested cross-validation within the training set (also 9 folds; testing a wide range
782 from 2^{-100} to 2^{100}). Each fold contained pairs of corresponding natural and synthetic sound, so that
783 there would be no overlap between the train and test sounds.
784

785 For each component, we separately measured how well we could predict the response to
786 synthetic sounds (**Fig S6B/S7A**) – which isolates selectivity for frequency and modulation
787 statistics present in natural sounds – as well as how well we could predict the difference between
788 responses to natural vs. synthetic sounds (**Fig S6C/FigS7B**) – which isolates selectivity for
789 features in natural sounds that are not explained by frequency and modulation statistics. We
790 quantified prediction accuracy using the noise-corrected NSE, and we used $(1 - NSE)^2$ as a
791 measure of explained variance. This choice is motivated by the fact $(1 - NSE)$ is equivalent to the
792 Pearson correlation for signals with equal mean and variance and thus $(1 - NSE)^2$ is analogous
793 to the squared Pearson correlation, which is a standard measure of explained variance.
794

795 We multiplied these explained variance estimates by the total response variance of each
796 component for either synthetic sounds or for the difference between natural and synthetic sounds
797 (**Fig S6D/Fig S7C** shows the total variance alongside the fraction of that total variance explained
798 by the cross-species prediction). We noise-corrected the total variance using the equation below:
799
800

$$801 \quad (2) \quad \frac{\text{var}(r_1 + r_2) - \text{var}(r_1 - r_2)}{4}$$

802 where r_1 and r_2 are two independent response measurements. Below we give a brief derivation
803 of this equation, where r_1 and r_2 are expressed as the sum of a shared signal (s) that is repeated
804 across measurements plus independent noise (n_1 and n_2) which is not. This derivation utilizes the
805 fact that the variance of independent signals that are summed or subtracted is equal to the sum
806 of their respective variances.
807

$$809 \quad (3) \quad \frac{\text{var}(r_1 + r_2) - \text{var}(r_1 - r_2)}{4} = \frac{\text{var}([s + n_1] + [s + n_2]) - \text{var}([s + n_1] - [s + n_2])}{4}$$
$$= \frac{\text{var}(2s + n_1 + n_2) - \text{var}(n_1 - n_2)}{4}$$
$$= \frac{4\text{var}(s)}{4}$$
$$= \text{var}(s)$$

813
814
815
816
817
818
819

The two independent measurements used for noise correction were derived from different human or ferret subjects. The measurements were computed by attempting to predict group components from each individual subject using the same cross-validated regression procedure described above. The two measurements in ferrets came from the two animals tested (A and T). And the two measurements in humans came from averaging across two non-overlapping sets of subjects (4 in each group; groups chosen to have similar SNR).

820
821
822
823
824

For this analysis, the components were normalized so that the RMS magnitude of their weights was equal. As a consequence, components that explained more response variance also had larger response magnitudes. We also adjusted the total variance across all components to equal 1.

825
826
827
828
829
830
831
832
833
834

Comparing the similarity of natural and synthetic sounds from different categories. We computed maps showing the average difference between natural and synthetic sounds from different categories (**Fig 4E**). So that the scale of the differences could be compared across species, we divided the measured differences by the standard deviation of each voxel's response across all sounds. We also separately measured the NSE for sounds from different categories (**Fig 4F,G**). The normalization term in the NSE equation (denominator of equation 1) was averaged across all sounds in order to ensure that the normalization was the same for all sounds/categories and thus that we were not inadvertently normalizing-away meaningful differences between the sounds/categories.

835
836

Denoising Part I: Removing components outside of cortex

837
838
839
840
841
842
843
844

Ultrasound responses in awake animals are noisy, which has limited its usage to mapping simple stimulus dimensions (e.g. frequency) where a single stimulus can be repeated many times (Bimbard et al., 2018). To overcome this issue, we developed a denoising procedure that substantially increased the reliability of the voxel responses (**Fig S9**). The procedure had two parts. The first part, which is described in this section, removed prominent signals outside of cortex, which are likely to reflect movement or other sources of noise. The second part enhanced reliable signals. Code implementing the denoising procedures will be made available upon publication.

845

We separated voxels into those inside and outside of cortex, since responses outside of the cortex by definition do not contain stimulus-driven cortical responses, but do contain sources of noise like motion. We then used canonical correlation analysis (CCA) to find a set of response timecourses that were robustly present both inside and outside of cortex, since such timecourses are both likely to reflect noise and likely to distort the responses-of-interest. We projected-out the top 20 canonical components (CCs) from the data set, which we found scrubbed the data of motion-related signals (**Fig S9A**; motion described below).

853

This analysis was complicated by one key fact: the animals reliably moved more during the presentation of some sounds (**Fig 4C**). Thus, noise-induced activity outside-of-cortex is likely to be correlated with sound-driven neural responses inside-of-cortex, and removing CCs will thus remove both noise and genuine sound-driven activity. To overcome this issue, we took advantage of the fact that sound-driven responses will by definition be reliable across repeated presentations of the same sound, while motion-induced activity will vary from trial-to-trial for the same sound. We thus found canonical components where the residual activity after removing trial-averaged responses was shared between responses inside and outside of cortex, and we then removed the contribution of these components from the data. We give a detailed description and motivation of this procedure in the **Appendix**, and show the results of a simple simulation demonstrating its efficacy.

865

866 To assess the effect of this procedure on our fUS data, we measured how well it removed signals
867 that were correlated with motion (**Fig S9A**). Motion was measured using a video recording of the
868 animals' face. We measured the motion energy in the video as the average absolute deviation
869 across adjacent frames, summed across all pixels. We correlated this motion timecourse with the
870 residual timecourse of every voxel after subtracting off trial-averaged activity. **Figure S9A** plots
871 the mean absolute correlation value across voxels as a function of the number of canonical
872 components removed (motion can induce both increased and decreased fUS signal and thus it
873 was necessary to take the absolute value of the correlation before averaging). We found that
874 removing the top 20 CCs substantially reduced motion correlations.
875

876

877 We also found that removing the top 20 CCs removed the spatial striping in the voxel responses,
878 which is a stereotyped feature of motion due to the interaction between motion and blood vessels.
879 To illustrate this effect, **Figure S9B** shows the average difference between responses to natural
880 vs. synthetic sounds in Experiment II (vocalization experiment). Before denoising, this difference
881 map shows a clear striping pattern likely due to the fact that the animals moved more during the
882 presentation of the natural vs. synthetic sounds. The denoising procedure largely eliminated this
883 striping pattern.

884

884 **Denoising Part II: Enhancing signal using DSS**

885 After removing components likely to be driven by noise, we applied a second procedure designed
886 to enhance reliable components in the data. Our procedure is a variant of a method that is often
887 referred to as "denoising source separation" (DSS) or "joint decorrelation" (de Cheveigné and
888 Parra, 2014). In contrast with principal component analysis (PCA), which finds components that
889 have high variance, DSS emphasizes components that have high variance after applying a
890 "biasing" operation that is designed to enhance some aspect of the data. The procedure begins
891 by whitening the data such that all response dimensions have equal variance, the biasing
892 operation is applied, and PCA is then used to extract the components with highest variance after
893 biasing. In our case, we biased the data to enhance response components that were reliable
894 across stimulus repetitions and across the slices from all animals. We note that unlike fMRI, data
895 from different slices come from different sessions. As a consequence, the noise from different
896 slices will be independent. Thus, any response components that are consistent across slices and
897 animals are likely to reflect true, stimulus-driven responses.
898

899

900 The input to our analysis was a set of matrices. Each matrix contained data from a single stimulus
901 repetition and slice. Only voxels from inside of cortex were analyzed. Each column of each matrix
902 contained the response timecourse of one voxel to all of the sounds (concatenated), denoised
903 using the procedure described in Part I. The response of each voxel was converted to units of
904 percent signal change (the same units used for fMRI analyses) by subtracting and dividing by the
905 pre-stimulus period (also known as percent Cerebral Blood Volume or %CBV in the fUS literature).
906

907

908 Our analysis involved five steps:
909

910

911 1. We whitened each matrix individually.
912

913

914 2. We averaged the whitened response timecourses across repetitions, thus enhancing
915 responses that are reliable across repetitions.
916

917

918 3. We concatenated the repetition-averaged matrices for all slices across the voxel dimension,
919 thus boosting signal that is shared across slices and animals.
920

921

916 4. We extracted the top N principal components (PCs) with the highest variance from the
917 concatenated data matrix. The number of components was selected using cross-validation
918 (described below). Because the matrices for each individual repetition and slice have been
919 whitened, the PCs extracted in this step will *not* reflect the components with highest variance, but
920 will instead reflect the components that are the most reliable across repetitions and across
921 slices/animals. We thus refer to these components as “reliable components” (R).
922

923 5. We then projected the data onto the top N reliable components (R):
924

925 (4)
$$D_{denoised} = RR^+D$$

926

927 where D is the denoised response matrix from Part I.
928

929 We used cross-validation to test the efficacy of this denoising procedure and select the number
930 of components (**Fig S2**).
931

932 The analysis involved the following steps:
933

934 1. We divided the sound set into training (75%) and test (25%) sounds. Each set contained
935 corresponding natural and synthetic sounds so that there would be no overlap between train and
936 test sets. We attempted to balance the train and test sets across categories, such that each split
937 had the same number of sounds from each category.
938

939 2. Using responses to just the train sounds (D_{train}), we computed reliable components (R_{train})
940 using the procedure just described (steps 1-4).
941

942 3. We calculated voxel weights for these components:
943

944 (5)
$$W = R_{train}^+ D_{train}$$

945

946 4. We used this weight matrix, which was derived entirely from train data, to denoise responses
947 to the test sounds:
948

949 (6)
$$D_{test-denoised} = R_{test} W$$

950 (7)
$$R_{test} = D_{test} W^+$$

951

952 To evaluate whether the denoising procedure improved predictions, we measured responses to
953 the test sound set using two independent splits of data (odd or even repetitions). We then
954 correlated the responses across the two splits either before or after denoising.
955

956 **Figure S2A** plots the split-half correlation of each voxel before vs. after denoising for every voxel
957 in cortex (using an 8-component model). For this analysis, we either denoised one split of data
958 (blue dots) or both splits of data (green dots). Denoising one split provides a fairer test of whether
959 the denoising procedure enhances SNR, while denoising both splits demonstrates the overall
960 boost in reliability. We also plot the upper bound on the split-half correlation when denoising one
961 split of data (black line), which is given by the square root of the split-half reliability of the original
962 data. We found that our denoising procedure substantially increased reliability with the denoised-
963 correlations remaining close to the upper bound. When denoising both splits, the split-half
964 correlations were close to 1, indicating a highly reliable response.
965

966 **Figure S2B** plots a map in one animal of the split-half correlations when denoising one split of
967 data along with a map of the upper bound. As is evident, the denoised correlations remain close
968 to the upper bound throughout primary and non-primary auditory cortex.

969

970 **Figure S2C** shows the median split-half correlation across voxels as a function of the number of
971 components. Performance was best using ~8 components in both experiments.

972

973

974 **Acknowledgements**

975 We thank Sophie Bagur for careful reading of the manuscript and precious comments. This work
976 was supported by ANR-17-EURE-0017 and the NVIDIA Corporation (NVidia GPU Grant
977 program), an AMX doctoral fellowship to AL, CDSN doctoral fellowship and EMBO ALTF 740-
978 2019 postdoctoral fellowship to CB, grants from National Institutes of Health (NIDCD, DC005779)
979 and ERC Advanced grant 787836-NEUME to SAS, postdoctoral grants to SNH from the HHMI
980 (through the Life Sciences Research Foundation) and the NIH (K99/R00 award), ANR-10-IDEX-
981 0001-02 and ANR-JCJC-DynaMiC to YB.

982

983 **Author contributions**

984 AL, CB and YB designed the experiments. SNH designed sound stimuli. CD provided technical
985 support. AL and CB recorded the data. AL, CB, SNH and YB designed and carried out the
986 analyses and statistical testing. CD and SAS provided feedback on the manuscript. AL, CB,
987 SNH and YB wrote all aspects of the manuscript.

988

989 References

990

991 Agamaite JA, Chang C-J, Osmanski MS, Wang X (2015) A quantitative acoustic analysis of the
992 vocal repertoire of the common marmoset (*Callithrix jacchus*). *The Journal of the*
993 *Acoustical Society of America* 138:2906–2928.

994 Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory
995 cortex. *Nature* 403:309–312.

996 Bimbard C, Demene C, Girard C, Radtke-Schuller S, Shamma S, Tanter M, Boubenec Y (2018)
997 Multi-scale mapping along the auditory hierarchy using high-resolution functional
998 UltraSound in the awake ferret. *Elife* 7:e35028.

999 Boebinger D, Norman-Haignere S, McDermott J, Kanwisher N (2020) Cortical music selectivity
1000 does not require musical training. *bioRxiv*.

1001 Brodbeck C, Hong LE, Simon JZ (2018) Rapid transformation from auditory to linguistic
1002 representations of continuous speech. *Current Biology* 28:3976–3983.

1003 Bruns V, Schmieszek E (1980) Cochlear innervation in the greater horseshoe bat:
1004 demonstration of an acoustic fovea. *Hearing research* 3:27–43.

1005 Chi T, Ru P, Shamma SA (2005) Multiresolution spectrot temporal analysis of complex sounds.
1006 *The Journal of the Acoustical Society of America* 118:887–906.

1007 de Cheveigné A, Di Liberto GM, Arzounian D, Wong DD, Hjortkjær J, Fuglsang S, Parra LC
1008 (2019) Multiway canonical correlation analysis of brain data. *NeuroImage* 186:728–740.

1009 de Cheveigné A, Parra LC (2014) Joint decorrelation, a versatile tool for multichannel data
1010 analysis. *Neuroimage* 98:487–505.

1011 de Heer WA, Huth AG, Griffiths TL, Gallant JL, Theunissen FE (2017) The hierarchical cortical
1012 organization of human speech processing. *Journal of Neuroscience*:3267–16.

1013 Demené C, Deffieux T, Pernot M, Osmanski B-F, Biran V, Gennisson J-L, Sieu L-A, Bergel A,
1014 Franqui S, Correas J-M (2015) Spatiotemporal clutter filtering of ultrafast ultrasound data
1015 highly increases Doppler and fUltrasound sensitivity. *IEEE transactions on medical*
1016 *imaging* 34:2271–2285.

1017 Di Liberto GM, Wong D, Melnik GA, de Cheveigné A (2019) Low-frequency cortical responses
1018 to natural speech reflect probabilistic phonotactics. *Neuroimage* 196:237–247.

1019 DiCarlo JJ, Cox DD (2007) Untangling invariant object recognition. *Trends in cognitive sciences*
1020 11:333–341.

1021 Ding N, Patel AD, Chen L, Butler H, Luo C, Poeppel D (2017) Temporal modulations in speech
1022 and music. *Neuroscience & Biobehavioral Reviews*.

1023 Eliades SJ, Miller CT (2017) Marmoset vocal communication: behavior and neurobiology.
1024 *Developmental neurobiology* 77:286–299.

1025 Erb J, Armendariz M, De Martino F, Goebel R, Vanduffel W, Formisano E (2019) Homology and
1026 specificity of natural sound-encoding in human and monkey auditory cortex. *Cerebral
1027 Cortex* 29:3636–3650.

1028 Gesnik M, Blaize K, Deffieux T, Gennisson J-L, Sahel J-A, Fink M, Picaud S, Tanter M (2017)
1029 3D functional ultrasound imaging of the cerebral visual system in rodents. *NeuroImage*
1030 149:267–274.

1031 Hickok G, Poeppel D (2007) The cortical organization of speech processing. *Nature reviews
1032 neuroscience* 8:393–402.

1033 Joris PX, Bergevin C, Kalluri R, Mc Laughlin M, Michelet P, van der Heijden M, Shera CA (2011)
1034 Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in
1035 humans. *Proceedings of the National Academy of Sciences* 108:17516–17520.

1036 Kell AJ, Yamins DL, Shook EN, Norman-Haignere SV, McDermott JH (2018) A task-optimized
1037 neural network replicates human auditory behavior, predicts brain responses, and reveals
1038 a cortical processing hierarchy. *Neuron*.

1039 Köppel C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. *Journal of
1040 Comparative Physiology A* 171:695–704.

1041 Leonard MK, Bouchard KE, Tang C, Chang EF (2015) Dynamic encoding of speech sequence
1042 probability in human temporal cortex. *Journal of Neuroscience* 35:7203–7214.

1043 Macé E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M (2011) Functional ultrasound
1044 imaging of the brain. *Nature methods* 8:662.

1045 McDermott JH, Simoncelli EP (2011) Sound texture perception via statistics of the auditory
1046 periphery: evidence from sound synthesis. *Neuron* 71:926–940.

1047 Mesgarani N, Cheung C, Johnson K, Chang EF (2014) Phonetic feature encoding in human
1048 superior temporal gyrus. *Science* 343:1006–1010.

1049 Mesgarani N, David SV, Fritz JB, Shamma SA (2008) Phoneme representation and
1050 classification in primary auditory cortex. *The Journal of the Acoustical Society of America*
1051 123:899–909.

1052 Milham MP, Ai L, Koo B, Xu T, Amiez C, Balezeau F, Baxter MG, Blezer EL, Brochier T, Chen A
1053 (2018) An open resource for non-human primate imaging. *Neuron* 100:61–74.

1054 Mizrahi A, Shalev A, Nelken I (2014) Single neuron and population coding of natural sounds in
1055 auditory cortex. *Current opinion in neurobiology* 24:103–110.

1056 Moore JM, Woolley SM (2019) Emergent tuning for learned vocalizations in auditory cortex.
1057 *Nature neuroscience* 22:1469–1476.

1058 Nelken I, Bizley JK, Nodal FR, Ahmed B, King AJ, Schnupp JW (2008) Responses of auditory
1059 cortex to complex stimuli: functional organization revealed using intrinsic optical signals.
1060 *Journal of neurophysiology* 99:1928–1941.

1061 Norman-Haignere SV, Kanwisher N, McDermott JH, Conway BR (2019) Divergence in the
1062 functional organization of human and macaque auditory cortex revealed by fMRI
1063 responses to harmonic tones. *Nature Neuroscience* 22:1057.

1064 Norman-Haignere SV, Kanwisher NG, McDermott JH (2015) Distinct cortical pathways for music
1065 and speech revealed by hypothesis-free voxel decomposition. *Neuron* 88:1281–1296.

1066 Norman-Haignere SV, McDermott JH (2018) Neural responses to natural and model-matched
1067 stimuli reveal distinct computations in primary and nonprimary auditory cortex. *PLoS*
1068 *biology* 16:e2005127.

1069 Overath T, McDermott JH, Zarate JM, Poeppel D (2015) The cortical analysis of speech-specific
1070 temporal structure revealed by responses to sound quilts. *Nature neuroscience* 18:903–
1071 911.

1072 Patel AD (2012) Language, music, and the brain: a resource-sharing framework. *Language and*
1073 *music as cognitive systems*:204–223.

1074 Petkov CI, Kayser C, Steudel T, Whittingstall K, Augath M, Logothetis NK (2008) A voice region
1075 in the monkey brain. *Nature neuroscience* 11:367–374.

1076 Polley DB, Steinberg EE, Merzenich MM (2006) Perceptual Learning Directs Auditory Cortical
1077 Map Reorganization through Top-Down Influences. *J Neurosci* 26:4970–4982.

1078 Schnupp JW, Hall TM, Kokelaar RF, Ahmed B (2006) Plasticity of temporal pattern codes for
1079 vocalization stimuli in primary auditory cortex. *Journal of Neuroscience* 26:4785–4795.

1080 Singh NC, Theunissen FE (2003) Modulation spectra of natural sounds and ethological theories
1081 of auditory processing. *The Journal of the Acoustical Society of America* 114:3394–3411.

1082 Srihasam K, Vincent JL, Livingstone MS (2014) Novel domain formation reveals proto-
1083 architecture in inferotemporal cortex. *Nature neuroscience* 17:1776.

1084 Steinschneider M, Nourski KV, Fishman YI (2013) Representation of speech in human auditory
1085 cortex: is it special? *Hearing research* 305:57–73.

1086 Theunissen FE, Elie JE (2014) Neural processing of natural sounds. *Nature Reviews*
1087 *Neuroscience* 15:355–366.

1088 Walker KM, Gonzalez R, Kang JZ, McDermott JH, King AJ (2019) Across-species differences in
1089 pitch perception are consistent with differences in cochlear filtering. *eLife* 8:e41626.

1090 Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and
1091 speech. *Trends in Cognitive Sciences* 6:37–46.

1092

Experiment I

1. Woman speaking	21. Walking on leaves
2. Man speaking	22. Scratching
3. Spanish	23. Walking in heels
4. French	24. Writing on paper
5. Italian	25. Heart beat
6. German	26. Cicadas
7. Hindi	27. Crickets
8. Russian	28. Baby Crying
9. Big band music	29. Breathing
10. Bluegrass	30. Clock ticking
11. Cello	31. Siren
12. Orchestra	32. Keyboard Typing
13. Piano	33. Chimes
14. Saxophone	34. Chopping food
15. Violin	35. Crumpling paper
16. Latin music	36. Keys jingling
17. Country song	37. Ferret fight call
18. R&B song	38. Ferret pup call
19. Biting & chewing	39. Ferret fear vocalization
20. Finger tapping	40. Ferret play call

Category labels

English speech	Speech
Non-english speech	Music
Instrumental music	
Vocal music	
Human nonvocal	
Animal nonvocal	
Non-speech vocal	Other sounds
Mechanical	
Environmental	
Ferret vocalizations	Ferret vocalizations

Experiment II

1. Spanish	23. Salsa
2. French	24. Musical
3. Italian	25. Pop
4. German	26. Progressive rock
5. Hindi	27. Reggae
6. Russian	28. Epic music
7. English 1	29. R&B song
...	30. Techno
14. English 7	31. Ferret fight call 1
15. Rock and Roll (50's)	...
16. Rock and Roll (60's)	35. Ferret fight call 5
17. Classical organ	36. Single pup call 1
18. Classical symphony	...
19. Disco	51. Single pup call 17
20. African drumming	52. Multiple pup call 1
21. Funk	...
22. Jazz	60. Multiple pup call 8

Category labels

Speech	Speech
Music	Music
Ferret fight calls	
Single pup calls	
Multiple pup calls	Ferret vocalizations

1093

1094

Table S1: List of sounds used in both experiments.

1095

1096

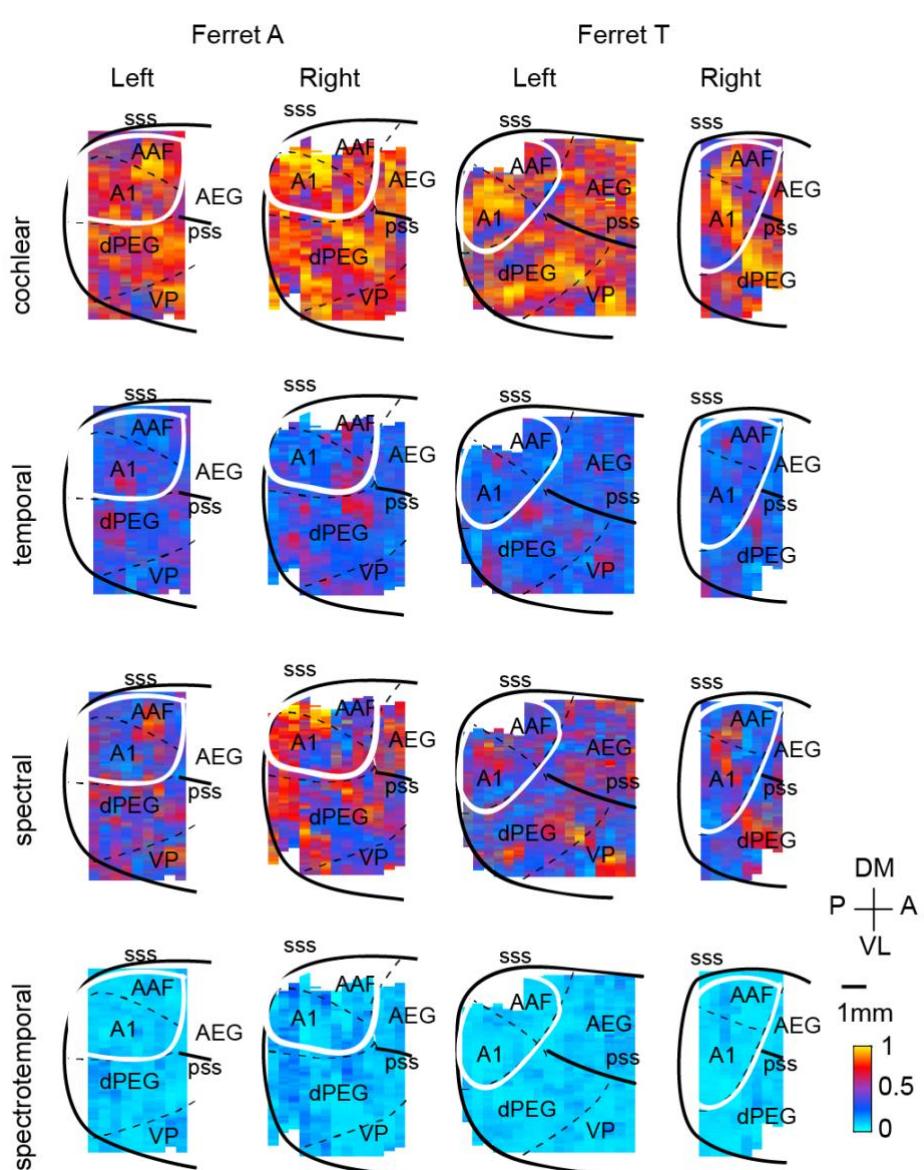
Names of sounds used in Experiments I and II, grouped by category at both fine and coarse scales.

1097

Supplementary information

1098

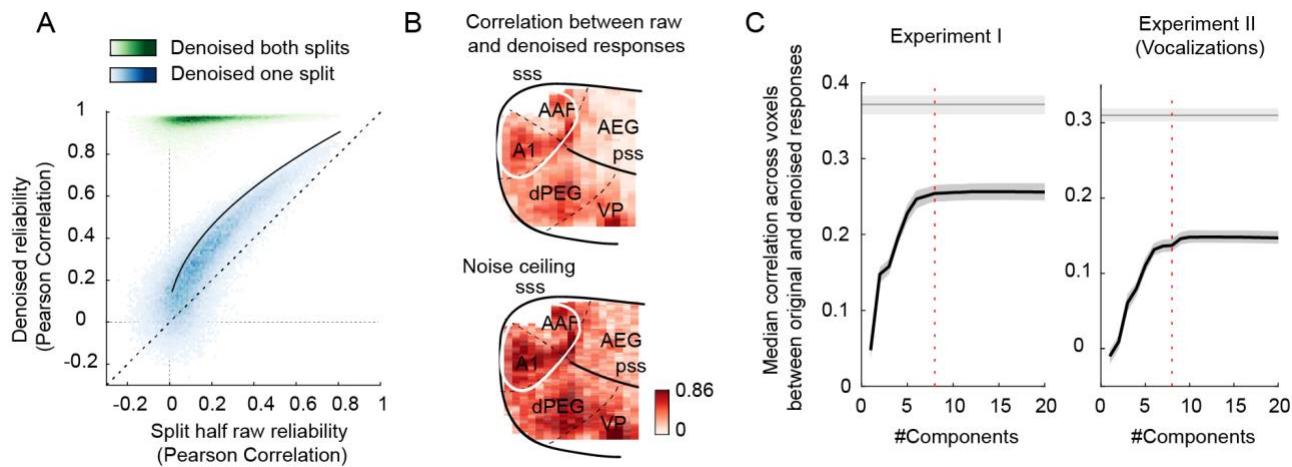
1099



1100

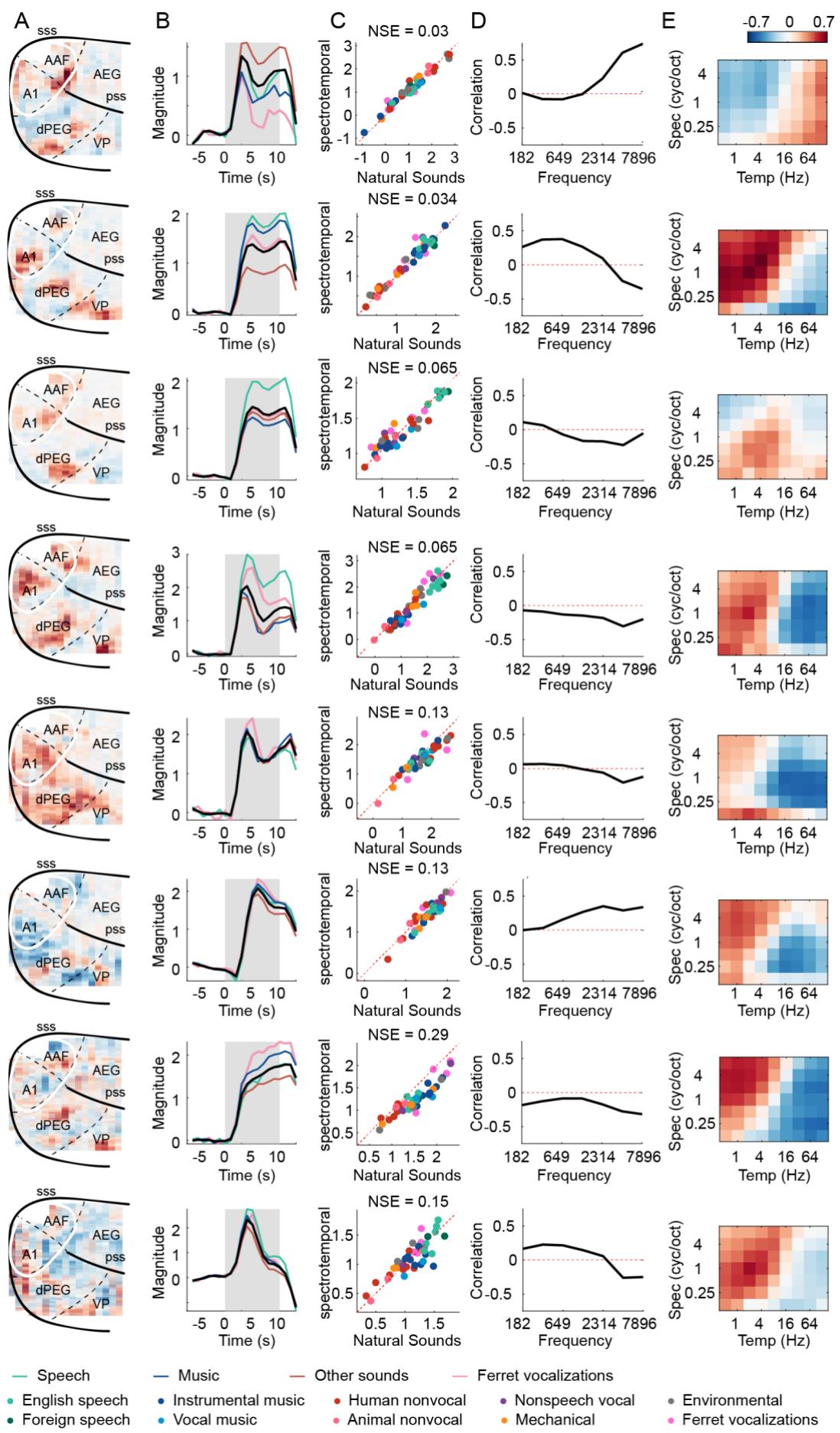
1101

Figure S1. Dissimilarity maps for all hemispheres and animals. Same format as Figure 2E.

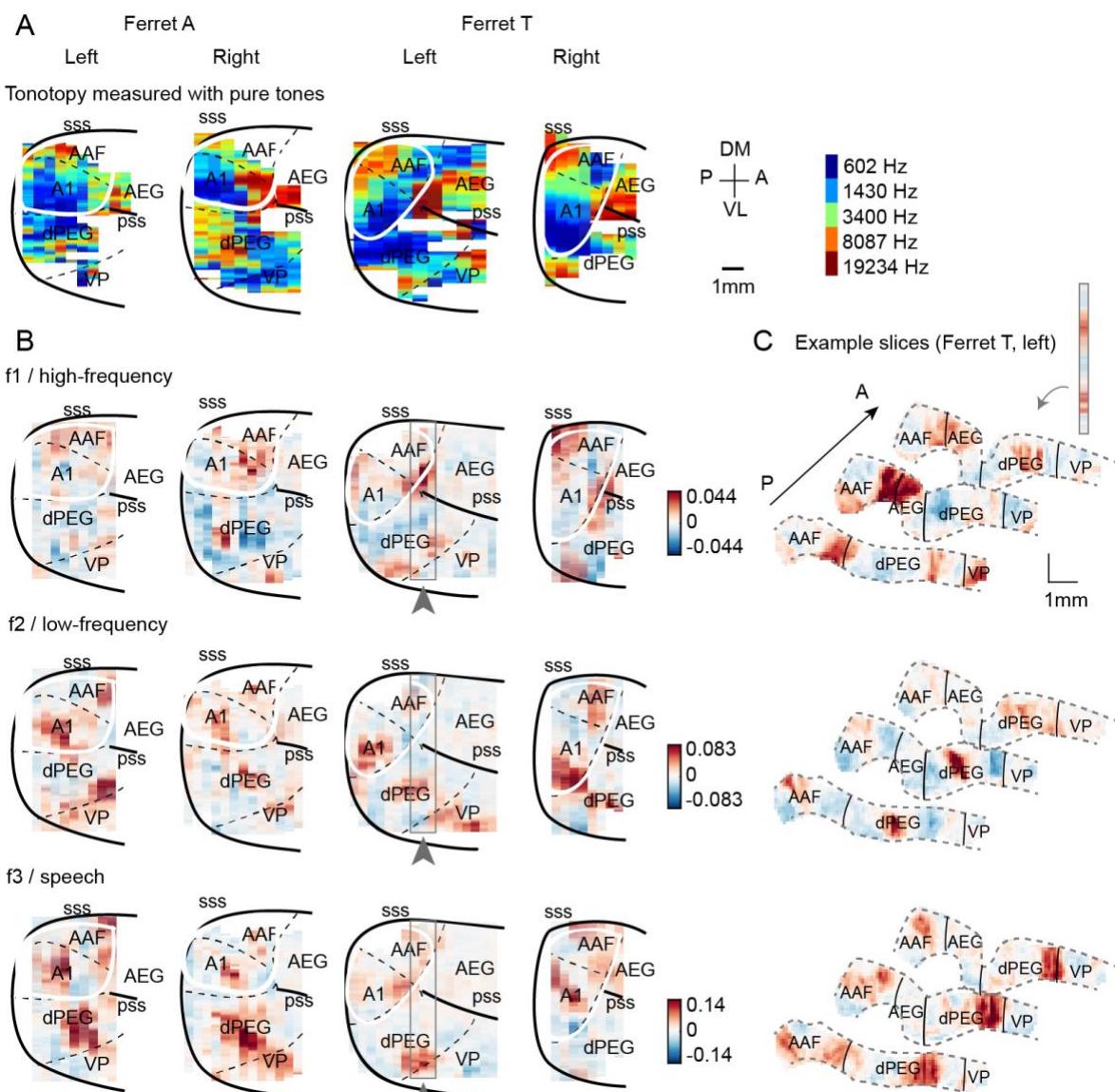


1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

Figure S2. The effect of enhancing reliable signal using a procedure similar to “DSS” (see Denoising Part II in Methods) (de Cheveigné and Parra, 2014). **A**, Voxel responses were denoised by projecting their timecourse onto components that were reliably present across repetitions, slices and animals. This figure plots the test-retest correlation across independent splits of data before (x-axis) and after (y-axis) denoising (data from Experiment I). Each dot corresponds to a single voxel. We denoised either one split of data (blue dots) or both splits of data (green dots). Denoising one split provides a fairer test of whether the denoising procedure enhances SNR. Denoising both splits shows the overall effect on response reliability. The theoretical upper-bound for denoising one split of data is shown by the black line. The denoising procedure substantially increased data reliability, with the one-split correlations hugging the upper-bound. This plot shows results from an 8-component model. **B**, This figure plots split-half correlations for denoised data (one split) as a map (upper panel), along with a map showing the upper bound (right). Denoised correlations were close to their upper bound throughout auditory cortex. **C**, This figure plots the median denoised correlation across voxels (one split) as a function of the number of components used in the denoising procedure. Gray line plots the upper bound. Shaded areas correspond to 95% confidence interval, computed via bootstrapping across the sound set. Results are shown for both Experiments I (left) and II (right). Predictions were near their maximum using ~8 components in both experiments (the 8-component mark is shown by the vertical dashed line).

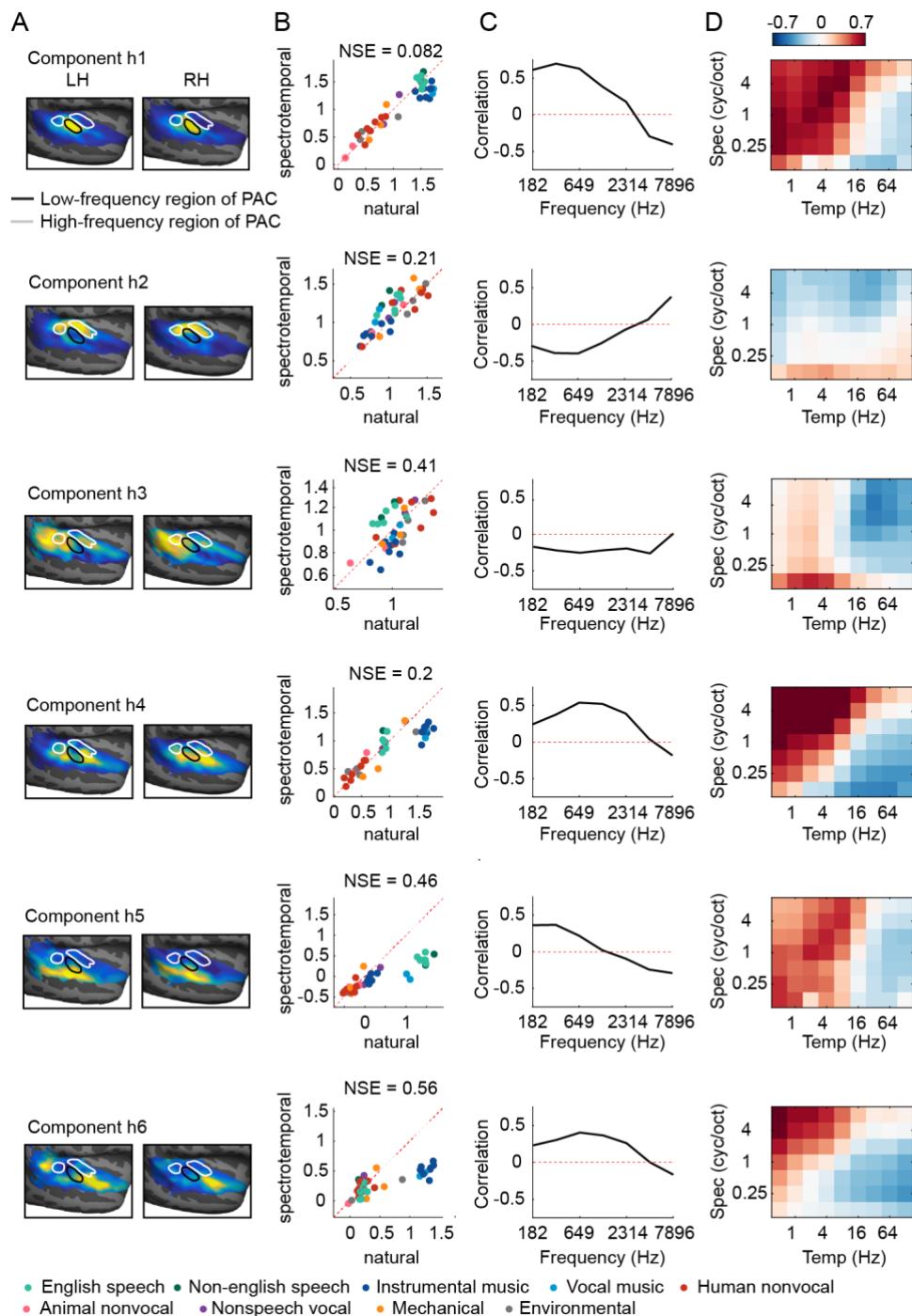


1122 **Figure S3. Results from all 8 ferret components.** Same format as **Figure 3**, except for panel
1123 **B**, which plots the temporal response of the components. Black line shows the average across all
1124 natural sounds. Colored lines correspond to major categories (see **Table S1**): speech (green),
1125 music (blue), vocalizations (pink) and other sounds (brown). Note that the temporal shape varies
1126 across components, but is very similar across sounds/categories within a component, which is
1127 why we summarized component responses by their time-averaged response to each sound.



1128
1129
1130
1131
1132
1133
1134
1135

Figure S4. Component weight maps from all hemispheres and ferrets. **A**, For reference with the weight maps in panel B, tonotopic maps measured using pure tones are shown for all hemispheres. **B**, Voxel weight maps from the three components shown in **Figure 3** for all hemispheres of all ferrets tested. **C**, Voxel weights for three example coronal slices from Ferret T, left hemisphere. Grey outlines in panel B indicate their location in the “surface” view. Each slice corresponds to one vertical strip from the maps in panel B. The same slices are shown for all three components.



● English speech ● Non-english speech ● Instrumental music ● Vocal music ● Human nonvocal
● Animal nonvocal ● Nonspeech vocal ● Mechanical ● Environmental

1136

1137

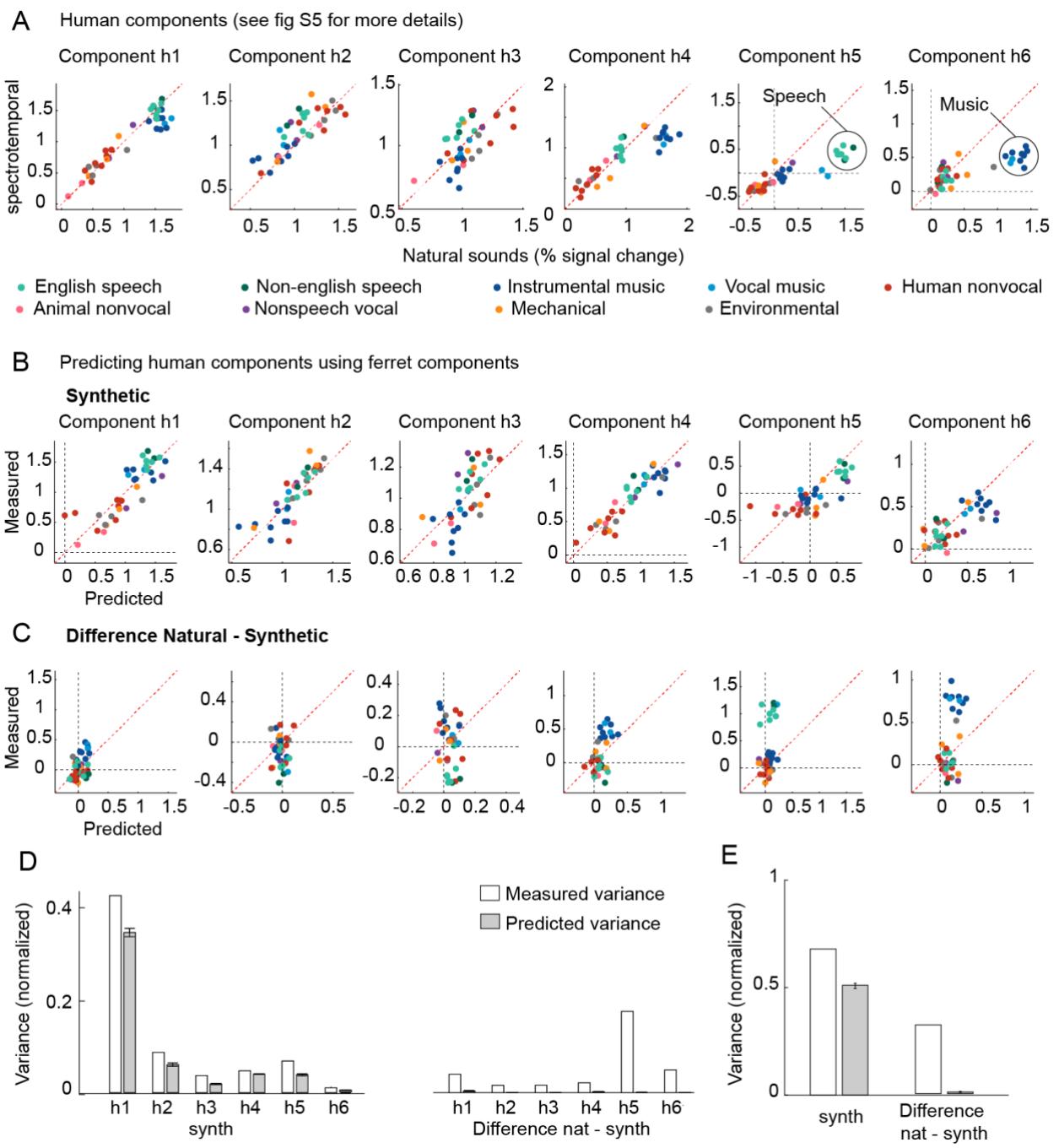
1138

1139

1140

Figure S5. Human components. This figure shows the anatomy and response properties of the six human components inferred in prior work (Norman-Haignere et al., 2015; Norman-Haignere and McDermott, 2018). Same format as **Figure 3**, which plots ferret components. Weight maps (panel A) plot group-averaged maps across subjects.

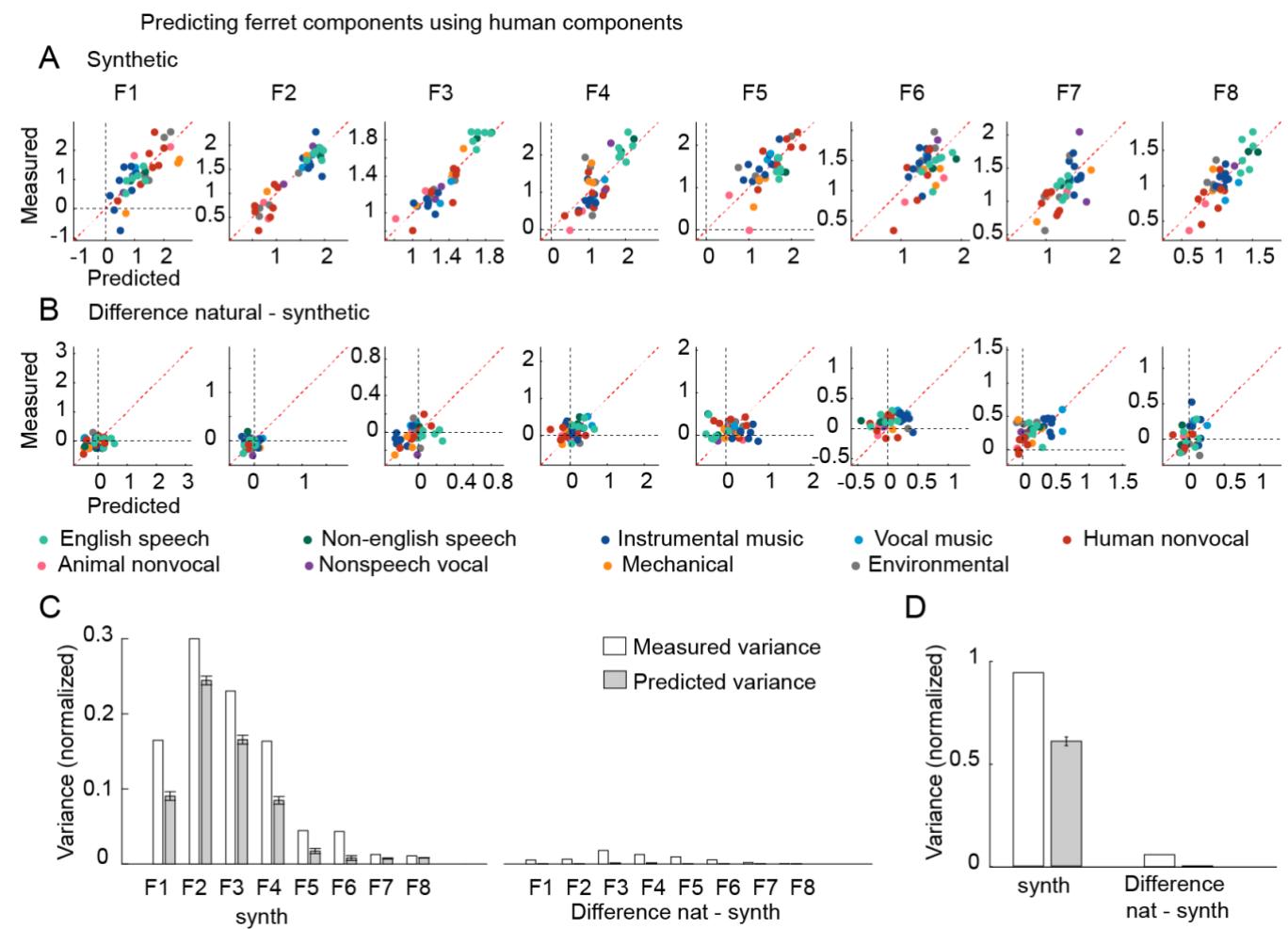
1141



1142

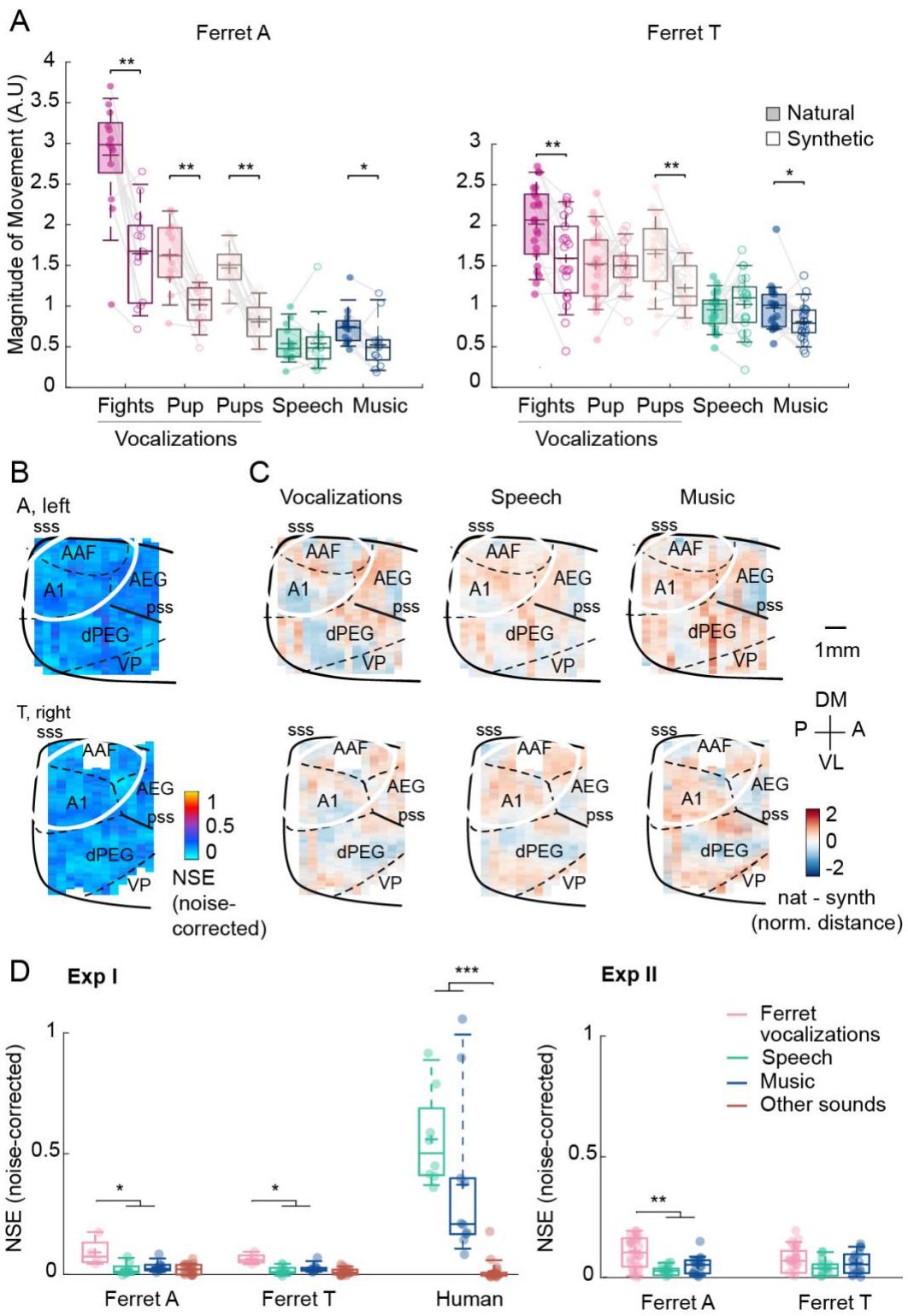
1143 **Figure S6. Predicting human component responses from ferrets.** This figure plots the results
 1144 of trying to predict the six human components inferred from our prior work (Norman-Haignere et
 1145 al., 2015; Norman-Haignere and McDermott, 2018) from the eight ferret components inferred here
 1146 (see **Fig S7** for the reverse). **A**, For reference, the response of the six human components to
 1147 natural and spectrotemporally matched synthetic sounds is re-plotted here. Components h1-h4
 1148 produced similar responses to natural and synthetic sounds, and had weights that clustered in
 1149 and around primary auditory cortex (**Fig S5**). Components h5 and h6 responded selectively to
 1150 natural speech and natural music, respectively, and had weights that clustered in non-primary
 1151 regions. **B**, This panel plots the measured response of each human component to
 1152 spectrotemporally matched synthetic sounds, along with the predicted response from ferrets. **C**,
 1153 This panel plots the difference between responses to natural and spectrotemporally-matched
 1154 synthetic sounds along with the predicted difference from the ferret components. **D**, Plots the total
 1155 response variance (white bars) of each human component to synthetic sounds (left) and to the
 1156 difference between natural and synthetic sounds (right) along with the fraction of that total

1157 response variance predictable from ferrets (gray bars) (all variance measures are noise-
1158 corrected). Error bars show the 95% confidence interval, computed via bootstrapping across the
1159 sound set. **E**, Same as D, but averaged across components.
1160
1161



1162
1163
1164
1165

Figure S7. Results of predicting ferret components from human components. Same format as **Fig S6B-E**.



1166

1167

1168

1169

1170

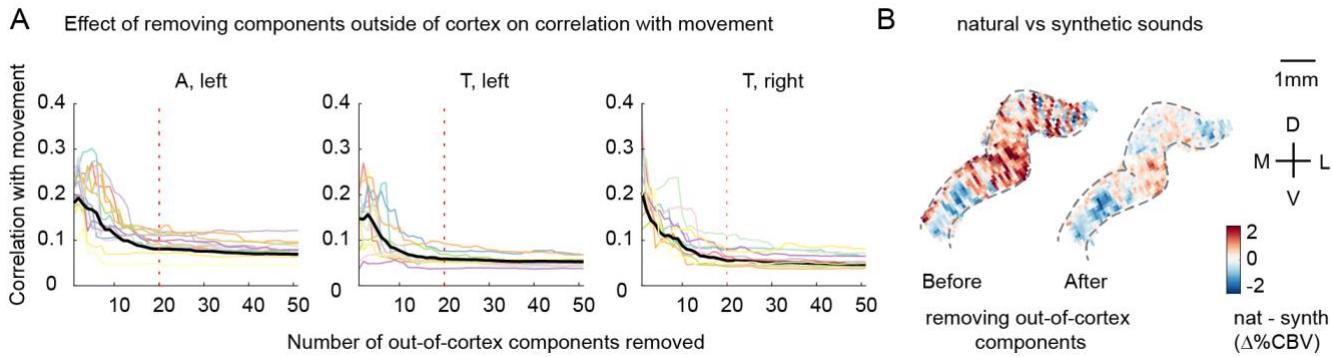
1171

1172

1173

1174

Figure S8. Results of Experiment II from other hemispheres. A-C, Same format as **Fig 4C-E**, except that in panel A the vocalizations are split into sub-categories: fight calls, single pup calls, multiple pup calls. Movement amplitude is shown for each animal separately. **D**, This panel shows the distribution of NSE values for all pairs of natural and synthetic sounds (median across all voxels), grouped by category. The numerator in the NSE calculation is simply the squared error for that sound pair, and the denominator is computed in the normal way using responses to all sounds (equation 1). Dots show individual sound pairs and box-plots show the median, central 50% and central 92% (whiskers) of the distribution.



1175

1176 **Figure S9. The effect of removing outside-of-cortex components on motion correlations.**
1177 Voxel responses were denoised by removing components from outside of cortex, which are likely
1178 to reflect artifacts like motion (see Denoising Part I in Methods). **A**, Effect of removing components
1179 from outside of cortex on correlations with movement. We measured the correlation of each
1180 voxel's response with movement, measured from a video recording of the animal's face (absolute
1181 deviation between adjacent frames). Each line shows the average absolute correlation across
1182 voxels for a single recording session / slice. Correlation values are plotted as a function of the
1183 number of removed components. Motion correlations were substantially reduced by removing the
1184 top 20 components (vertical dotted line). **B**, The average difference between responses to natural
1185 vs synthetic sounds for an example slice before and after removing the top 20 out-of-cortex
1186 components. Motion induces a stereotyped "striping" pattern due to its effect on blood vessels,
1187 which is evident in the map computed from raw data, likely because ferrets moved substantially
1188 more during natural vs. synthetic sounds (particular for ferret vocalizations; **Figure 4C**). The
1189 striping pattern is largely removed by the denoising procedure.

1190 Appendix: Recentered CCA

1191
1192 **Derivation.** The goal of the denoising procedure described in Part I was to remove artifactual
1193 components that were present both inside and outside of cortex, since such components are both
1194 likely to be artifactual and likely to distort the responses-of-interest. The key complication was that
1195 motion-induced artifacts are likely to be correlated with true sound-driven neural activity because
1196 the animals reliably moved more during the presentation of some sounds. To deal with this issue,
1197 we used the fact that motion will vary from trial-to-trial for repeated presentations of the same
1198 sound, while sound-driven responses by definition will not. Here, we give a more formal derivation
1199 of our procedure. We refer to our method as “recentered CCA” (rCCA) for reasons that will
1200 become clear below.

1201
1202 We represent the data for each voxel as an unrolled vector (\mathbf{d}_v) that contains its response
1203 timecourse across all sounds and repetitions. We assume these voxel responses are
1204 contaminated by a set of K artifactual component timecourses $\{\mathbf{a}_k\}$. We thus model each voxel
1205 as a weighted sum of these artifactual components plus a sound-driven response timecourse (\mathbf{s}_v):
1206

$$1207 \quad (8) \quad \mathbf{d}_v = \sum_k^K \mathbf{a}_k w_{k,v} + \mathbf{s}_v$$

1208
1209 Actual voxel responses are also corrupted by voxel-specific noise, which would add an additional
1210 error term to the above equation. In practice, the error term has no effect on our derivation so we
1211 omit it for simplicity (we verified our analysis was robust to voxel-specific noise using simulations,
1212 which are described below).

1213
1214 To denoise our data, we need to estimate the artifactual timecourses $\{\mathbf{a}_k\}$ and their weights ($w_{k,v}$)
1215 so that we can subtract them out. If the artifactual components $\{\mathbf{a}_k\}$ were uncorrelated with the
1216 sound-driven responses (\mathbf{s}_v) we could estimate them by performing CCA on voxel responses from
1217 inside and outside of cortex, since only the artifacts would be correlated. However, we expect
1218 sound-driven responses to be correlated with motion artifacts, and the components inferred by
1219 CCA will thus reflect a mixture of sound-driven and artifactual activity.

1220
1221 To overcome this problem, we first subtract-out the average response of each voxel across
1222 repeated presentations of the same sound ($\dot{\mathbf{d}}_v$). This “recentering” operation removes sound-
1223 driven activity, which by definition is the same across repeated presentations of the same sound:
1224

$$1225 \quad (9) \quad \dot{\mathbf{d}}_v = \sum_k^N \dot{\mathbf{a}}_k w_{k,v}$$

1226
1227 where the dot above a variable indicates its response after recentering (not its time derivative).
1228 Because sound-driven responses have been eliminated, applying CCA to the recentered voxel
1229 responses should yield an estimate of the recentered artifacts ($\dot{\mathbf{a}}_k$) and their weights ($w_{k,v}$) (note
1230 that CCA actually yields a set of components that span a similar subspace as the artifactual
1231 components, which is equivalent from the perspective of denoising). To simplify notation in the
1232 equations below, we assume this estimate is exact (i.e. CCA exactly returns $\dot{\mathbf{a}}_k$ and $w_{k,v}$).
1233

1234 Since the weights ($w_{k,j}$) are the same for original (\mathbf{d}_v) and recentered ($\dot{\mathbf{d}}_v$) data, we are halfway
1235 done. All that is left is to estimate the original artifact components before recentering (\mathbf{a}_k), which
1236 can be done using the original data before recentering (\mathbf{d}_v). o see this, first note that canonical

1237 components are by construction a linear projection of the data used to compute them, and thus,
 1238 we can write:

1239 (10)
$$\dot{\mathbf{a}}_k = \sum_v^V \dot{\mathbf{d}}_v \beta_{k,v}$$

1240
 1241 We can use the reconstruction weights ($\beta_{k,v}$) in the above equation to get an estimate of the
 1242 original artifactual components by applying them to the original data before recentering:
 1243

1244 (11)
$$\mathbf{a}_k \approx \sum_v^V \mathbf{d}_v \beta_{k,v}$$

1245
 1246 To see this, we expand the above equation:
 1247

1248 (12)
$$\sum_v^V \mathbf{d}_v \beta_{k,j} = \sum_v^V \left(\sum_{k'}^N \mathbf{a}_{k'} w_{k',v} + \mathbf{s}_v \right) \beta_{k,v}$$

1249 (13)
$$= \sum_{k'}^N \mathbf{a}_{k'} \sum_v^V w_{k',v} \beta_{k,v} + \sum_v^V \mathbf{s}_v \beta_{k,v}$$

1250
 1251 The first term in the above equation exactly equals \mathbf{a}_k because $w_{k',v}$ and $\beta_{k,v}$ are by construction
 1252 pseudoinverses of each other (i.e. $\sum_v^V w_{k',v} \beta_{k,v}$ is 1 when $k' = k$ and 0 otherwise). The second
 1253 term can be made small by estimating and applying reconstruction weights using only data from
 1254 outside of cortex, where sound-driven responses are weak.

1255
 1256 We thus have a procedure for estimating both the original artifactual responses (\mathbf{a}_k) and their
 1257 weights ($w_{k,j}$), and can denoise our data by simply subtracting them out:
 1258

1259 (14)
$$\mathbf{d}_v - \sum_k^K \mathbf{a}_k w_{k,v}$$

1260
 1261 **Procedure.** We now give the specific steps used to implement the above procedure using matrix
 1262 notation. The inputs to the analysis were two matrices (D_{in} , D_{out}), each of which contained voxel
 1263 responses from inside and outside of cortex. Each column of each matrix contained the response
 1264 timecourse of a single voxel, concatenated across all sounds and repetitions (i.e. \mathbf{d}_v in the above
 1265 derivation). We also computed recentered data matrices (\dot{D}_{in} , \dot{D}_{out}) by subtracting out trial-
 1266 averaged activity (i.e. $\dot{\mathbf{d}}_v$).
 1267

1268 CCA can be performed by whitening each input matrix individually, concatenating the whitened
 1269 data matrices, and then computing the principal components of the concatenated matrices (de
 1270 Cheveigné et al., 2019). Our procedure is an elaborated version of this basic design:
 1271

1272 1. The recentered data matrices were reduced in dimensionality and whitened. We implemented
 1273 this step using the singular value decomposition (SVD), which factors the data matrix as the
 1274 product of two orthonormal matrices (U and V), scaled by a diagonal matrix of singular values (S):
 1275

1276 (15)
$$\dot{D}_{in} = \dot{U}_{in} \dot{S}_{in} \dot{V}_{in}$$

1277 (16)
$$\dot{D}_{out} = \dot{U}_{out} \dot{S}_{out} \dot{V}_{out}$$

1278

1279 The reduced and whitened data was given by selecting the top 250 components and removing
1280 the diagonal S matrix:

1281

1282 (17) $\dot{D}_{in-white} = \dot{U}_{in}[:, 1:250] \dot{V}_{in}[1:250, :]$

1283 (18) $\dot{D}_{out-white} = \dot{U}_{out}[:, 1:250] \dot{V}_{out}[1:250, :]$

1284

1285 2. We concatenated the whitened data matrices from inside and outside of cortex across the voxel
1286 dimension:

1287

1288 (19) $\dot{D}_{cat} = [\dot{D}_{in-white}, \dot{D}_{out-white}]$

1289

1290 3. We computed the top N principal components from the concatenated matrix using the SVD:

1291

1292 (20) $\dot{D}_{cat} = \dot{U}_{CC} \dot{S}_{CC} \dot{V}_{CC}$

1293

1294 \dot{U}_{CC} contains the timecourses of the canonical components (CCs), ordered by variance, which
1295 provide an estimate of the artifactual components after recentering (i.e. \mathbf{a}_k). The corresponding
1296 weights (i.e. $w_{k,v}$) for voxels inside of cortex were computed by projecting the recentered data
1297 onto \dot{U}_{CC} :

1298

1299 (21) $W_{in} = \dot{U}_{CC}^+ \dot{D}_{in}$

1300

1301 where + indicates the matrix pseudo-inverse.

1302

1303 4. The original artifactual components before recentering (i.e. \mathbf{a}_k) were estimated by learning a
1304 set of reconstruction weights (B) using recentered data from outside of cortex, and then applying
1305 these weights to the original data before recentering:

1306

1307 (22) $B = \dot{D}_{out}^+ \dot{U}_{CC}$

1308 (23) $U_{CC} = D_{out} B$

1309

1310 U_{CC} is an estimate of the artifactual components before recentering (i.e. \mathbf{a}_k).

1311

1312 5. Finally, we subtracted out the contribution of the artifactual components to each voxel inside of
1313 cortex, estimated by simply multiplying the component responses and weights:

1314

1315 (24) $D_{denoised} = D_{in} - U_{CC} W_{in}$

1316

1317

1318 **Simulation.** We created a simple simulation to test our method. We simulated 1000 voxel
1319 responses, both inside and outside of cortex, using equation 8. For voxels outside of cortex, we
1320 set the sound-driven responses to 0. We also added voxel-specific noise to make the denoising
1321 task more realistic/difficult (sampled from a Gaussian). Results were very similar across a variety
1322 of noise levels.

1323

1324 To induce correlations between the artifactual (\mathbf{a}_k) and sound-driven responses (s_v), we forced
1325 them to share a subspace. Specifically, we computed the sound-driven responses as a weighted
1326 sum of a set of 10 component timecourses (results did not depend on this parameter), thus forcing
1327 the responses to be low-dimensional, as we found to be the case:

1328

1329 (25)
$$s_v = \sum_{j=1}^{10} \mathbf{u}_j m_{j,v}$$

1330

1331 The artifactual timecourses were then computed as a weighted sum of these same 10
1332 components timecourses plus a timecourse that was unique to each artifactual component:
1333

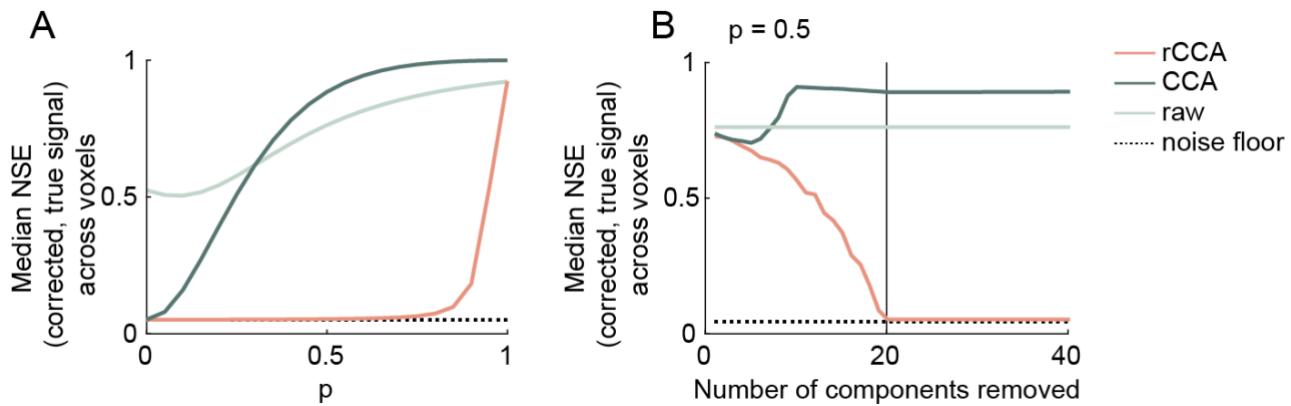
1334 (26)
$$a_k = p \sum_{j=1}^{10} \mathbf{u}_j n_{j,k} + (1 - p) \mathbf{b}_k$$

1335

1336 where p controls the strength of the dependence between the sound-driven and artifactual
1337 components with a value of 1 indicating complete dependence and 0 indicating no dependence.
1338 All of responses and weights (\mathbf{u}_j , \mathbf{b}_k , $m_{j,v}$, $n_{j,k}$) were sampled from a unit-variance Gaussian.
1339 Sound-driven responses were constrained to be the same across repetitions by sampling the
1340 latent timecourses \mathbf{u}_j once per sound, and then simply repeating the sampled values across
1341 repetitions. In contrast, a unique \mathbf{b}_k was sampled for every repetition of every sound to account
1342 for the fact that the artifacts like motion will vary from trial-to-trial. We sampled 20 artifactual
1343 timecourses using equation 26.

1344

1345 We applied both standard CCA and our modified rCCA method to the simulated data. We
1346 measured the median NSE between the true and estimated sound-driven responses (s_v),
1347 computed using the two methods as a function of the strength of the dependence (p) between
1348 sound-driven and artifactual timecourses (**Fig A1A**). For comparison, we also plot the NSE for
1349 raw voxels (i.e. before any denoising) as well as the minimum possible NSE (noise floor) given
1350 the voxel-specific noise (which cannot possibly be removed using CCA or rCCA). When the
1351 dependence is low, both CCA and rCCA yield similarly good results, as expected. As the
1352 dependence increases, CCA performs substantially worse, while rCCA continues to perform well
1353 up until the point when the dependence becomes so strong that sound-driven and artifactual
1354 timecourses are nearly indistinguishable. Results were not highly sensitive to the number of
1355 components removed as long as the number of removed components was equal to or greater
1356 than the number of artifactual components (**Figure A1B**).



1357
1358
1359
1360
1361
1362
1363
1364
1365

Figure A1: Simulation results. **A.** Median NSE across simulated voxels between the true and estimated sound-driven responses (s_v), computed using raw/undenoised data (light green line), standard CCA (dark green line), and recentered CCA (red line). Results are shown as a function of the strength of the dependence (p) between sound-driven and artifactual timecourses. The minimum possible NSE (noise floor) given the level of voxel-specific noise is also shown. **B.** Same as panel A, but showing results as a function of the number of components removed for a fixed value of p (set to 0.5).