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Abstract

Many key findings in neuroimaging studies involve similarities between brain maps, but statis-
tical methods used to measure these findings have varied. Current state-of-the-art methods involve
comparing observed group-level brain maps (after averaging intensities at each image location across
multiple subjects) against spatial null models of these group-level maps. However, these methods
typically make strong and potentially unrealistic statistical assumptions, such as covariance sta-
tionarity. To address these issues, in this paper we propose using subject-level data and a classical
permutation testing framework to test and assess similarities between brain maps. Our method
is comparable to traditional permutation tests in that it involves randomly permuting subjects
to generate a null distribution of intermodal correspondence statistics, which we compare to an
observed statistic to estimate a p-value. We apply and compare our method in simulated and real
neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method
performs well for detecting relationships between modalities known to be strongly related (cortical
thickness and sulcal depth), and it is conservative when an association would not be expected (cor-
tical thickness and activation on the n-back working memory task). Notably, our method is the
most flexible and reliable for localizing intermodal relationships within subregions of the brain and

allows for generalizable statistical inference.

1 Introduction

Neuroimaging studies often seek to understand similarities across modalities. However, methods
underlying these studies’ findings continue to vary. Naive approaches to the so-called “correspondence
problem” have included simply visualizing two maps next to each other and observing whether the
two maps look similar. Another approach involves the use of parametric p-values; for example, fitting
a linear regression or estimating the correlation across locations of the cortex and using a parametric
null distribution (e.g., Student’s ¢-distribution), ignoring inherent spatial autocorrelation. A third
approach has been to use a partial correlation coefficient controlling for anatomical distance (Honey
et al. 2009; Horn et al. 2014).

Methods that ignore spatial autocorrelation have been shown to inflate type I error rates (Markello
and Misic 2021); thus, recent methodological advancements that do account for spatial correlation have
been widely adopted by the neuroimaging community. A spatial permutation framework was first in-
troduced by Alexander-Bloch et al. (2013), using spatially-constrained randomization to generate null
models for testing intermodal developmental synchrony (Alexander-Bloch et al. 2013). Vandekar et
al. (2015) then used spherical rotations to obtain null models of spatial alignment in testing corre-

spondence between various cortical measurements in the human brain. The spin test was formally


https://doi.org/10.1101/2020.09.10.285049
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.10.285049; this version posted May 25, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

introduced by Alexander-Bloch et al. (2018), who used random spherical rotations of group-level or
population-averaged surfaces to generate null models of spatial alignment. A surface-based permu-
tation null model was also developed independently in the context of validating functional magnetic
resonance imaging parcellations (Gordon et al. 2016; Gordon et al. 2017a; Gordon et al. 2017b).

Since the advent of the spin test, numerous neuroimaging experiments have adopted it to corrob-
orate claims about intermodal similarities (Lefévre et al. 2018; Paquola et al. 2019; Schmitt et al.
2019; Shafiei et al. 2020; Cui et al. 2020; Stoecklein et al. 2020) and have extended its implementation
to regionally parcellated maps (Vasa et al. 2018; Vazquez-Rodriguez et al. 2019; Baum et al. 2020;
Cornblath et al. 2020). The spin test was certainly an improvement compared with prior approaches;
however, deriving frequentist properties of inference across datasets using this method depends on
strong and often unrealistic statistical assumptions, such as stationarity of the covariance structure.
Other critiques of the spin test include its limited use in the context of cortical surface maps without a
straightforward extension to volumetric data, its lack of flexibility for incorporating subject-level data
by accommodating only two (group-level) maps, and that it cannot be used to test correspondence
in small regions of the brain. Another limitation of the formal support for the spin test presented
in Alexander-Bloch et al. (2018) is its ad hoc treatment of the medial wall, which is an artifact of
generating a topologically spherical surface that does not represent neuroanatomical features (Dale
et al. 1999).

More recently, Burt et al. (2020) proposed Brain Surrogate Maps with Autocorrelated Spatial
Heterogeneity (BrainSMASH), using generative modeling to obtain null models seeking to preserve
the spatial autocorrelation structure of the observed data. Burt et al.’s approach greatly improves on
several aspects of the spin test in its flexibility to incorporate volumetric data, its inclusion of the medial
wall, and its ability to test correspondence in small regions of the brain. Still, BrainSMASH has some
limitations. When applied to subregions of the brain, one can only account for spatial autocorrelation
among locations within each subregion. For instance, when testing intermodal correspondence between
two maps of the left hemisphere, spatial autocorrelation among locations within that hemisphere are
modeled, but correlation with locations in the right hemisphere are not. Furthermore, BrainSMASH
models spatial, but not functional, relationships between locations throughout the brain.

The spin test, BrainSMASH, and other related methods recently described by Markello and Misic
(2021) involve testing null hypotheses of intermodal correspondence conditional on observed group-
level data (Burt et al. 2020; Alexander-Bloch et al. 2018; Vazquez-Rodriguez et al. 2019; Baum et al.
2020; Cornblath et al. 2020; V&sa et al. 2018; Burt et al. 2018; Wael et al. 2020). As illustrated

in Figure 1, averaging images across subjects precludes evaluation of inter-individual heterogeneities.
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Importantly, these previous methods may not be well-suited to account for dataset-to-dataset variabil-
ity without strong assumptions about stationarity of the covariance structure. Burt et al. (2020) use
a variogram-matching model that assumes stationarity and normality—assumptions that have been
subject to criticism in the context of neuroimaging studies (Ye et al. 2015; Eklund et al. 2016). While
these methods are currently the most sophisticated in the field, their underlying assumptions may give
rise to inferential missteps, with high false positive rates and substantial variability in results (Markello
and Misic 2021). Thus, careful consideration of the plausibility of these assumptions is warranted, and
the appeal of a method without strong assumptions motivates our current work.

In this paper, we propose the simple permutation-based intermodal correspondence (SPICE) test,
a novel procedure that is intuitive, easy to implement, and does not depend on strong statistical
assumptions. This test considers a setting with subjects ¢ = 1,...,n for whom we observe two
imaging modalities each: X;(v) and Y;(v) at locations (e.g., pixels, voxels, or vertices) indexed by
v = [1,...,V]. Our null hypothesis states that the distribution of within-subject intermodal simi-
larity between X;(v) and Yj(v) (i.e., two modalities belonging to the same subject) is no different
than the distribution of between-subject intermodal correspondence—for example, between X;(v) and
Y;(v) (i # j). In prior studies, the Pearson correlation has been widely used to measure intermodal
correspondence (Alexander-Bloch et al. 2018; Burt et al. 2020). While in this paper we adopt this
commonly used statistic, in the Discussion we propose alternative measures that we hope to explore
in future work.

The intuition behind the SPICE test is that, if there is a genuine anatomical correspondence
between two modalities, this correspondence should be greater in brain maps derived from the same
individual than from different individuals. To test the SPICE null hypothesis, we leverage subject-level
data and do not require altering the spatial structure or alignment of the observed data, in contrast
to BrainSMASH and the spin test. Since we will compare our proposed method to BrainSMASH
and the spin test, it is important to highlight that their underlying null hypotheses are fundamentally
different, though they may be used to answer related— but nevertheless different—questions about
intermodal correspondence. Figure 1 outlines these three null hypotheses alongside the different types

of data required for each test. We will reference the three null hypotheses throughout the paper as

HO(spice)7 HO(b—smash)a and HO(spi'rL)'
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2 Methods

2.1 The SPICE test

Formally, we express the SPICE test’s null hypothesis as:

Ho(spice) : V(Xi(v), Yi(v) L (Xi(v), Yj(v)) i #J, (1)

where 1)() represents a measure of intermodal similarity between X and Y across all locations indexed
by v, either for the same subject or for different subjects (when i # j). Adopting the Pearson
correlation to measure intermodal correspondence (which has been widely used in previous work), the
test of equality of means (1) is a test of whether within-subject intermodal correlation is higher than
the between-subject intermodal correlation.

To test this null hypothesis, we first obtain the following empirical estimate of the mean of the left
hand side of (1):

Ao = ERp(Xi(v), Yi(v)] = = D §(Xi(v), Yi(v)), (2)
1=1

S|

where, for the ith subject, the Pearson correlation across all V' locations in the image is:
1% 1% 1%
(L xwnm) - (5 x0) ($Sv0)

\/ TN (X@-(v) — ¥ i Xz-(v)) 2 \/ Ly <Yé(v) o mv)>2.

After estimating the mean within-subject intermodal correspondence (Ap), we generate a null distri-
bution for Ag by randomly shuffling the Y maps across subjects. Then, for the kth permuted sets of
map pairs (k = 1,..., K permutations), we re-calculate (2) as A, providing draws from an empirical
null distribution of Ag. These random permutations are illustrated in Figure 2.

A p-value is estimated by counting the number of permutations for which the magnitude of A
exceeds that of Ag:

spice K +1 )

where we add 1 to the denominator to account for the identity permutation (Phipson and Smyth

2010). We reject the null hypothesis for pspice < @, the nominal type I error rate. Under the null
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hypothesis, pspice is a random variable distributed as Uniform(0,1), and we would reject Ho(spice) in
only approximately 5% of cases. Under the alternative hypothesis, we expect A to rarely be greater

in magnitude than Ag and would reject Ho(pice)-

2.2 Simulations and application in the Philadelphia Neurodevelopmental Cohort

We assess the performance of our proposed method using neuroimaging data from the Philadelphia
Neurodevelopmental Cohort (PNC). The PNC is a research initiative at the University of Pennsylvania
consisting of 9498 subjects between the ages of 8 and 21 who received care at the Children’s Hospital
of Philadelphia and consented (or received parental consent) to participate. A subset of 1601 subjects
were included in multimodal neuroimaging studies and were scanned in the same scanner at the
Hospital of the University of Pennsylvania, per protocols described briefly below and in Appendix Al.

For the current study, we first consider correspondence between cortical thickness and sulcal
depth—a pair of imaging measurements for which we expect to reject the null hypothesis due to well-
established interdependence in structure throughout multiple brain regions shown in research from
the last two decades (Vandekar et al. 2016; Vandekar et al. 2015; Sowell et al. 2004; Shaw et al. 2008),
as well as in much earlier studies of neuroanatomy from nearly a century ago (Von Economo 1929).
Second, we consider cortical thickness and n-back, a measure of working memory function (described
below), to demonstrate how our method performs in a situation where intermodal correspondence
would typically not be expected.

In this study, we include a subset of n = 789 subjects with all three image types (cortical thickness,
sulcal depth, and n-back) meeting quality control criteria. This subset also excluded individuals with
existing health conditions, who were taking psychoactive medications, had a history of psychiatric

hospitalization, or other abnormalities that could impact brain structure or function.

2.2.1 Acquisition and processing of multimodal imaging data

Relevant protocols for the acquisition and pre-processing of both structural and functional mag-
netic resonance imaging (MRI) data are described in Appendix Al. In brief, all subjects underwent
MRI scans in the same Siemens TIM Trio 3 tesla scanner with a 32-channel head coil and the same
imaging sequences and parameters (Satterthwaite et al. 2014; Satterthwaite et al. 2016). Cortical
reconstruction of T1-weighted structural images was implemented using FreeSurfer (version 5.3). We
also consider the fractal n-back task sequence acquired during functional MRI (fMRI) acquisition

sequences, which involved presenting each subject with a series of stimuli (geometric pictures on a


https://doi.org/10.1101/2020.09.10.285049
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.10.285049; this version posted May 25, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

screen) with instructions to press a button if the current stimulus matches the nth previous one. In
our present analysis we consider maps that represent the percentage change in activation between the
2-back and 0-back sequences, which has been previously shown to isolate executive network function
(Ragland et al. 2002; Satterthwaite et al. 2013). All measurements were resampled to the fsaverageb

atlas, consisting of V' = 10,242 vertices in each hemisphere for every subject.

2.2.2 Simulations

To evaluate the performance of the SPICE test under the null and alternative hypotheses, we
conduct several simulation studies. Using average cortical thickness, sulcal depth, and n-back maps
from the PNC, we simulate subject-level multimodal imaging data by adding and multiplying random
noise and signal to mean maps, as shown in Figure 3. While we generate three hypothetical imaging
modalities per simulated subject, to test the null hypothesis of intermodal correspondence we consider
only two such modalities at a time (hence Figure 3 illustrates the simulation set-up when mean cortical
thickness and mean sulcal depth maps are used). The null or alternative hypothesis is true depending

on o2, the variance of the simulated signal (a; term in Figure 3), and the null hypothesis is more

2

2, the variance of the simulated noise (elements of E;;(v) or

difficult to reject for larger values of o
Eis(v) in Figure 3).

For the ith subject, we simulate X;(v) and Y;(v), which have a one-to-one correspondence at all
locations in the fsaverage5 atlas space, indexed by v = [1, ..., 10, 242]. We define X;(v) = a; x My (v) +
Eiy(v) and Y;(v) = a; x Ma(v) + Ej2)(v), where M;(v) is the mean cortical thickness map, Ma(v)
is either the mean sulcal depth map (in which Cor(M;(v), Mz2(v)) = —0.15) or the mean n-back map
(Cor(M;(v), Ma(v)) = —0.04). We consider two sets of simulations, where M;j(v) is mean cortical
thickness in both cases, and Ms(v) is mean sulcal depth in one setting and mean n-back in the other.
The purpose of these two separate settings is to consider the degree to which population-level modality
similarity (e.g., correlation between Mj(v) and My(v)) impacts the power of our test.

Since X;(v) and Y;(v) share a; (distributed N(1,02)), the SPICE test’s null hypothesis (1) is true
when the variance of a;, 02 = 0 because in this case, the covariation between X;(v) and Y;(v) is no
stronger than it is between X;(v) and Y;(v) (i # j). The V-dimensional surfaces Ej1)(v) and Ej9)(v)
consist of elements that are independent and identically distributed as N (0, o2).

We consider sample sizes of n = 25, 50, and 100, ¢2 ranging from 0 to 3.0, and o2 of 0.5, 1.5, 3.0,
or 6.0. While the signal-to-noise ratio varies with the magnitude of intensities at different locations
in My(v) and Ma(v) (i.e., higher magnitudes of intensities at each location would multiplicatively

increase the variance of the signal at those locations), the relative size of 02 and o? translates to
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varying degrees of statistical power when we conduct tests of intermodal correspondence between

simulated surfaces. For instance, higher variance of the signal (¢2) and lower variance of the noise

2

2) would produce more signal than noise, adding to the similarity between X;(v) and Y;(v) (from

(o
the same subject). In contrast, lower o2 relative to o2 would mute the dissimilarity between X;(v)
and Yj(v) (i # j) (more noise than signal) and induce lower statistical power.

When o2 = 0, we repeat 5000 simulations of each combination of n, o2, and M;(v) and M(v) to
estimate type I error as the proportion of simulations for which pspice < 0.05. In addition, from 5000
simulations of each combination of parameters where 02 > 0, we estimate power by the proportion

of simulations for which pspice < 0.05. R code for implementing the SPICE test and reproducing our

simulations may be found at https://github.com/smweinst/spice_test.

2.2.3 Comparing the SPICE test with previous methods

In assessing intermodal correspondence in the PNC, we compare the performance of our method to
that of the spin test and BrainSMASH. Since both the spin test and BrainSMASH require group-level
surfaces and their underlying null hypotheses differ, our goal here is to assess whether the general
conclusions of their respective null hypotheses (Figure 1) agree with one another. Given the devel-
opmental focus of the dataset and prior research suggesting that intermodal coupling may change
throughout development (Vandekar et al. 2016), we apply each method in imaging data within seven
age subgroups (group-averaged for the spin test and BrainSMASH, and subject-level for the SPICE
test). We also apply each method to test for intermodal correspondence in the full group of n=789
subjects. We account for multiple comparisons by using a Bonferroni-adjusted p-value threshold for
statistical significance (0.05/16 = 0.003) to correct for the seven age groups and one group including
all subjects, times two hemispheres tested within each group.

The spin test is implemented using publicly available MATLAB code (https://github.com/
spin-test). We generate 1000 null models of spatial alignment through random rotations of cortical
thickness maps within each hemisphere, after removing vertices identified to be part of the medial
wall. The same “spun” maps are used to test Ho(gpice) Of cortical thickness versus sulcal depth as well
as cortical thickness versus n-back.

BrainSMASH is implemented in Python (https://github.com/murraylab/brainsmash) on par-
cellated left and right hemispheres. Parcellated surfaces, according to the 1000 cortical network
parcellation described by Schaefer et al. (2018), are used instead of vertex-level data due to computa-
tional challenges of computing the required pairwise distance matrix for vertex-level data. As noted by

Markello and Misic (2021), using such parcellations does not appear to compromise null model perfor-
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mance. For each hemisphere, a 501 x 501 geodesic distance matrix (which includes one parcel for the
medial wall that does not need to be removed for BrainSMASH, unlike the spin test) is constructed
using the SurfDist package in Python (Margulies et al. 2016). For BrainSMASH, we generate 1000
surrogate maps whose variograms are intended to be as close as possible to the empirical variogram of
the observed cortical thickness maps. Variogram estimation includes pairwise distances in the bottom
25th percentile of possible pairwise distances, in accordance with Viladomat et al. (2014) and Burt
et al. (2020). Since both tests of interest involve cortical thickness, for computational efficiency, we
use the same 1000 surrogate cortical thickness maps tests against both sulcal depth and n-back in

each age group.

2.2.4 Testing correspondence within functional networks

Next, we test Ho(spice) and Ho(psmasn) and consider the same pairs of modalities as before in
the left hemisphere, within canonical large-scale functional networks defined by Yeo et al. (2011) in
their reported 7-network solution. Each network consists of a subset of the 1000 cortical parcellations
described by Schaefer et al. (2018). For BrainSMASH, we increase the truncation threshold for pairwise
distances included in variogram calculation to the 70th percentile, thus allowing variation between
locations located farther apart to be incorporated in variogram calculation, following Burt et al.
(2020)’s methodology for assessment of spatial autocorrelation in subregions of the brain. To adjust
for multiple comparisons across the seven age groups, we use a Bonferroni-adjusted p-value threshold
for statistical significance (0.05/7 = 0.007). Because the main interest is in studying developmental
changes throughout development in each network, we adjust for comparisons across age groups, but

not across the Yeo networks nor the two tests.

3 Results

3.1 Type I error and power of the SPICE method

Simulation results are shown in Figure 4. Under both the null and alternative hypotheses, our
proposed method performs well and as expected. The type I error (when o2 = 0) is close to 5% for all
sample sizes, for all values of the vertex-level variance parameter, o2, and for both settings involving
Mz (v) as either mean sulcal depth or mean n-back. Under the alternative hypothesis (when o2 > 0),
a higher signal-to-noise ratio (lower 2, higher ¢2) correspond to higher power, and power decreases

2

incrementally as the signal-to-noise ratio decreases (higher o2, lower ¢2). As expected, larger sample
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size and higher magnitude of population-level image similarity (Corr(M;(v), Ma(v))) also improve

statistical power.

3.2 Results and comparison of methods in the Philadelphia Neurodevelopmental

Cohort

We first consider tests of intermodal correspondence for seven age groups in the left and right
hemispheres. Unadjusted p-values are provided in Table 1. The SPICE test, BrainSMASH, and spin
test all produce results that are consistent with what one would expect biologically: all three meth-
ods produce small p-value when testing sulcal depth versus cortical thickness (Table 1(a)), although
BrainSMASH’s results in the right hemisphere for the youngest three age groups do not reach statis-
tical significance based on our Bonferroni-adjusted p-value threshold of 0.003. None of the methods
indicate significant correspondence between the n-back and cortical thickness maps (Table 1(b)). For
BrainSMASH, we also verify that the surrogate maps’ variogram surrogate cortical thickness maps
appear valid (Figure Al).

It is clear that intermodal coupling may occur with both anatomical and developmental specificity
(Vandekar et al. 2016). For example, a positive result could be driven disproportionately by specific
neuroanatomical sub-systems or specific age groups, suggesting the need for post-hoc regional or
network analysis tests at higher anatomical or developmental resolutions. An important attribute
of the SPICE test is its applicability for post-hoc testing in this sense. We therefore consider age-
stratified tests of intermodal correspondence within functional networks from Yeo et al. (2011) with
the SPICE test and BrainSMASH (plotted in blue and red, respectively, in Figure 5). As expected,
the p-values for SPICE and BrainSMASH tests of correspondence for n-back versus cortical thickness
(solid lines) appear uniformly distributed between 0 and 1, which we anticipate under their respective
null hypotheses. However, we observe some discrepancies in their results for testing sulcal depth versus
cortical thickness (dotted lines) within functional networks, despite the agreement of the two methods
in tests conducted within full cortical hemispheres discussed before.

Specifically, the SPICE test provides evidence against its null hypothesis (Ho(spice)) of coupling
between cortical thickness and sulcal depth in the somatomotor, dorsal attention, ventral attention,
limbic, frontoparietal control, and default networks, with pspice < 0.007, the Bonferroni-adjusted
threshold used for this analysis. BrainSMASH similarly provides evidence against its null hypothesis
(Ho(b-smash)) for coupling between sulcal depth and cortical thickness in the somatomotor (except ages

8-9 and 10-11), dorsal attention, ventral attention, and default networks, but not in the limbic and
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frontoparietal control networks.

The poor fit of the network-specific surrogate variograms, plotted in Figure A3, may give some
insight for understanding these discrepancies. Specifically, we observe differences between the empirical
and surrogate map variograms in all age groups for the dorsal attention, ventral attention, limbic,
frontoparietal control, and default networks, suggesting that the surrogate cortical thickness maps
in these networks failed to preserve the spatial autocorrelation structure of the target (i.e., original
cortical thickness) map, undermining the results from tests in those networks, and suggesting that
this method may not be reliable in the context of smaller brain regions.

It is also notable that neither the SPICE test nor BrainSMASH reject their respective null hypothe-
ses for testing correspondence between sulcal depth and cortical thickness within the visual network,
but that the non-significant p-values for the visual network are not uniformly distributed. This re-
sult is not surprising, given previous work from Vandekar et al. (2016), who found that in primary
visual regions, we observe a complex relationship between these two modalities. These authors noted
that the nonlinear nature of the association between sulcal depth and cortical thickness within the
primary visual cortex violates the linearity assumption of their methodology for assessing intermodal
coupling. It is plausible that this nonlinearity also explains SPICE’s and BrainSMASH’s failure to
reject Ho(spice) and Ho(p-smash), respectively, within the visual network, as both methods currently use
a linear measurement of similarity (Pearson correlation).

Lastly, although we did not hypothesize an association between the n-back task and cortical
thickness, given the age-related regional heterogeneity in both cortical thickness growth curves (Tamnes
et al. 2017) and also patterns of activation in the n-back task (Andre et al. 2016), differences in
coupling across age groups and neuroanatomical systems are not entirely unexpected. Speculatively,
the maturation of multi-modal association areas may be related to their differential activation in

working memory tasks, which will be an interesting area for future work.

4 Discussion

In this paper, we introduce an intuitive and easy-to-implement method that leverages subject-level
data to test and make inference about intermodal correspondence. Our method is complementary
to those proposed by Alexander-Bloch et al. (2018), Burt et al. (2020), and other related methods
described by Markello and Misic (2021), as the null hypotheses of these methods fundamentally differ
(Figure 1) but may all provide meaningful insights about intermodal correspondence. While the

spin test and BrainSMASH give a picture of population-level spatial alignment between two maps, our
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method considers subject-level intermodal correspondence, depending only on the plausible assumption
that subjects are independent of one another. By approaching the correspondence problem from a
new angle—emphasizing inference on subject-level associations as opposed to more general patterns
of spatial alignment in group-averaged data—the SPICE test addresses five limitations of the earlier
approaches.

Alexander-Bloch et al.’s spin test (i) can only be applied to surfaces with spherical representations
(i.e., not volumetric data), (ii) does not specifically address the presence of the medial wall, which must
be accounted for in practical implementations of the test, for example by disregarding cortical areas
that overlap with the medial wall in spun maps when estimating the null distribution, and (iii) cannot
be applied in small regions of the brain. While Burt et al.’s BrainSMASH can technically be applied in
subregions of the brain, our findings suggest its generative null models may not be suitable when the
small regions are irregularly shaped or disconnected, such as the widely used functional networks de-
scribed by Yeo et al. (2011). One possible extension of BrainSMASH could incorporate nonparametric
variogram estimation, as proposed by Ye et al. (2015), to account for both spatial proximity and func-
tional connectivity in variogram estimation. Both the spin test and BrainSMASH are further limited
in that they (iv) are only able to incorporate group-level data, precluding assessments of inter-subject
heterogeneity (visualized in Figure 1). Finally, by conditioning on observed group-level maps, both of
the previous methods would require (v) assuming covariance stationarity in order to take into account
dataset-to-dataset variability or be used for generalizable statistical inference—that is, inference that
formally considers the variability that results when sampling new data from the population. Without
a treatment of this source of variability that does not rely on unrealistic assumptions, neither the spin
test nor BrainSMASH may fully address concerns about the external validity of findings. The ability
to directly address such concerns is a significant theoretical advantage offered by the SPICE test.

The SPICE test accounts for spatial autocorrelation to the extent that it is a feature of the
underlying data-generating process. Spatially relevant information has already been encoded in the
observed data, which renders moot any need for assumptions about stationarity. By conditioning on
observed group-level data and altering its spatial structure in generating a reference null distribution,
both the spin test and BrainSMASH necessitate explicitly modeling spatial autocorrelation or assuming
covariance stationarity to make generalizable inference. In this sense, the SPICE test has the benefit
of being readily usable for post-hoc analyses; if investigators decide to test correspondence between
brain maps within subregions not considered in their primary analyses, the SPICE test would not
require revisiting questionable assumptions about the spatial structure of the data when transitioning

between testing more broadly or narrowly defined brain regions.
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In addition to the SPICE test’s advantage of having minimal statistical assumptions, it is also clear
that a method which allows for inter-individual variability would be advantageous in the neuroimaging
field. Inter-individual variability in coupling between imaging-derived phenotypes has been shown to
be sensitive to age, sex, and disease-related changes (Vandekar et al. 2016). However, we know of
no systematic exploration of coupling across possible phenotype pairs, possibly due to the lack of a
clear statistical framework for such a study. An example use case for the SPICE test is to prioritize
phenotypic pairs for further analysis in large multimodal imaging studies, where coupling may be
related to outcomes of interest such as psychopathology and individual differences (Karcher and Barch
2021). Given that inter-individual variability from both genetic and environmental sources is known
to influence imaging phenotypes across modalities (Tooley et al. 2021; Fjell et al. 2015), higher within-
subject coupling is consistent with “true” biological basis of intermodal coupling that also manifests
marked inter-individual variability.

The SPICE test does not replace BrainSMASH, the spin test, or other methods that specifically
wish to compare group-level surfaces, as SPICE is only applicable in settings where subject-level data
are available. For example, the spin test and BrainSMASH may be used to test similarities between
different atlases (e.g., Yeo versus Desikan), and the SPICE test would not be applicable in such studies.

In future work, we hope to consider more comprehensive testing strategies, including the use of
different correspondence metrics, since the choice of statistic should be appropriate for the modalities
under consideration. For example, while the Pearson correlation has known limitations when used
in sparse data such as connectivity matrices, a geodesic distance measure between two connectivity
matrices may be more suitable (Venkatesh et al. 2020). In addition, since the null hypothesis for the
SPICE test is framed in terms of equality in distributions of a correspondence measure (1), one may
consider additional test statistics (for example, the Kolmogrov-Smirnov statistic) so that the test can
explicitly consider the full distribution function, rather than focusing on the mean. Implementing
the SPICE test using a Pearson correlation (or other average measurement) tests only one aspect of
the distribution—testing a sufficient but not necessary condition for equivalence in distributions. A
rank-based measure of similarity (e.g., the Spearman correlation coefficient) would be another option
more sensitive to nonlinear associations.

Finally, since our method involves permuting subject-level maps in generating a null distribution,
in future work we plan to consider implications of subject exchangeability on inference using our
method. Various approaches to preserve exchangeability (e.g., defining blocks within which subjects

may be considered “exchangeable”) may be adapted from methods described by Winkler et al. (2014).
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5 Conclusions

The SPICE, BrainSMASH, and spin methods may all support similar findings despite their different
null hypotheses. However, the SPICE test is the most flexible when it comes to analyzing subregions
of the brain, particularly when assumptions regarding the structure of spatial autocorrelation can pose
obstacles to generating surrogate maps intended to preserve those complex structures and it is the
only method that is able to consider subject-level data. Depending on the question of interest and the
available data, using a combination of these three methods may be beneficial in future neuroimaging

experiments to obtain a more complete picture of intermodal correspondence.
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Figure 1: Example left hemisphere sulcal depth, cortical thickness, and n-back maps used for (A) the spin test and BrainSMASH and
(B) the SPICE test. Brain map visualizations were generated using the R package fsbrain (Schéfer 2020b). (C) Null hypotheses for
previous methods and our proposed method for testing intermodal correspondence. Of the three methods, the SPICE test is the only one
to incorporate subject-level data.

A. Group-level maps ' B. Subject-level maps
Intensity values at each location are averaged across n = 789 subjects. 1 Applicable methods: SPICE test
Applicable methods: BrainSMASH, spin test

Sulcal depth Cortical thickness N-back
Sulcal depth Cortical thickness N-back
[ — — | [ — |
-2 AU 2 0 mm 5 -0.5% 0.5

C. Null hypotheses

BrainSMASH (Burt et al., 2020)
The observed correspondence between two group-level
maps, X(v) and Y{v), is driven by spatial autocorrelation,
not by topographic features unique to the observed data.
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SPICE test

The distribution of within-subject intermodal correspondence
(i.e., between X{(v) and Y((v)) is no different than between-
subject intermodal correspondence(i.e., between X{(v) and
Y{(v) i+ j). Stated differently, we do not gain any additional
information about X{v) from Y{v) than we do from Y{(v) (i )).

Spin test (Alexander-Bloch et al., 2018)
The observed correspondence between two group-level
maps, X(v) and Y{v), provides no information about the
alignment between X(v) and Y(v).
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Figure 2: Illustration of simple permutation-based intermodal correspondence (SPICE) testing procedure. A null distribution for A, the
average within-subject correspondence statistic, is calculated by randomly permuting the Y maps K = 999 times and re-estimating Ay in
each permuted version of the data. A p-value is estimated as in (4).

Observed map pairs

(2) Shuffle the Y modality maps across subjects
and re-estimate y in permuted data.

Subject 1 ¥ Gx (X, (v), Yy(v)
2z k=1 k=2 k =999
T &5 £
Subject 2 VALE F(X(v), Yo(v) @y Y
- R o y
o L |4
Subject 3 B W(X3(v), Y3(v))
Subject n W(X,(v), ¥, (V)

A 1 ¢
Ay = Ely(X(v), Y(V))] = o E w(Xi(v), Y(V)
i=1

(1) Calculate the mean correspondence statistic

for the observed map pairs.

A= Elp(X,v), (W)

...repeat (2) many times to obtain distribution of

Ay under H,,.

T I A <1 AD

pspice - K+1
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Figure 3: Illustration of bi-modal image simulation. Subject-level images are derived from average cortical thickness (M;j(v)) and sulcal
depth (Ms(v)) data from the Philadelphia Neurodevelopmental Cohort. For illustrative purposes, the example below shows M (v) as mean
sulcal depth, but we also consider a simulation setting using mean n-back as the second population-level map.

Subject-level images for i = 1,...,n subjects are simulated as X;(v) = a; x M (v)+ E;1)(v) and Y;(v) = a; x Ma(v) + E;(2)(v), where a; and the elements
of F;1)(v) and Ej2)(v) are normally distributed, with mean and variance parameters specified in Section 2.2.2. The null hypothesis is true when the
variance of a;, o2 is equal to 0. Otherwise, we expect to reject Hy, with test power varying according to other parameter values.

Ho: p(Xi(v), Yi(V)) =(Xi(v), Yi(v)) (i#])
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Figure 4: Power and type I error of the simple permutation-based intermodal correspondence (SPICE) test based on 5000 simulations.
Each point is the rate of rejecting Hy (based on pgpice < 0.05) from 5000 simulations of of the data (as shown in Figure 3) with unique
combinations of parameters: sample size (n = 25,50, or 100), subject-level variance (o2, ranging from 0.0 to 3.0 in increments of 0.15), and
vertex-level variance (02, either 0.5, 1.5, 3.0, or 6.0). Both simulation settings involve using M;(v) as mean cortical thickness from a subset

of 789 participants in the Philadelphia Neurodevelopmental Cohort. Ms(v) is mean sulcal depth in setting 1 and mean n-back in setting 2.

(a) Simulation setting 1: using mean cortical thickness and sulcal depth as population-level maps M (v) and My(v) (Corr(M;(v), Ma(v)) = —0.14).
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(b) Simulation setting 2: using mean cortical thickness and n-back as population-level maps M (v) and Ma(v) (Corr(Mi(v), M2(v)) = —0.04).
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Figure 5: Unadjusted p-values from tests of intermodal correspondence within seven functional networks described by Yeo et al. 2011 in the
left hemisphere for different age groups. We consider p < 0.007 to provide evidence against the null hypotheses (defined in Figure 1), after

using a Bonferroni correction for comparisons across seven age groups.
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Table 1: Unadjusted p-values from tests of intermodal correspondence in the left and right hemispheres
using the SPICE, BrainSMASH, and spin methods. Null hypotheses for each method are summarized
in Figure 1. Additionally, Figure A2 shows the null distributions and observed test statistics used to
estimate each p-value below.

(a) Sulcal depth vs. cortical thickness

Age 8-9 10-11 12-13 14-15 16-17 18-19 20-21 | All subjects
n=69 n=95 n=129 n=157 n=170 n =147 n =22 n = 789
SPICE
Left 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Right 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
BrainSMASH
Left 0.007 0.001 < 0.001 < 0.001 <0.001 <0.001 <0.001 < 0.001
Right 0.034 0.004 0.005 0.002 < 0.001 0.001 0.001 0.002
Spin
Left < 0.001 < 0.001 < 0.001 <0.001 <0.001 <0.001 <0.001 < 0.001
Right < 0.001 < 0.001 <0.001 <0.001 <0.001 <0.001 <o0.001 < 0.001
(b) N-back vs. cortical thickness
Age 8-9 10-11 12-13 14-15 16-17 18-19 20-21 | All subjects
n=69 n=95 n=129 n=157 n=170 n =147 n =22 n = 789
SPICE
Left 0.899 0.842 0.281 0.958 0.796 0.345 0.829 0.838
Right 0.222 0.879 0.784 0.513 0.752 0.254 0.468 0.470
BrainSMASH
Left 0.726 0.974 0.907 0.932 0.798 0.771 0.948 0.914
Right 0.344 0.464 0.795 0.786 0.936 0.878 0.868 0.831
Spin
Left 0.987 0.851 0.760 0.894 0.575 0.572 0.835 0.730
Right 0.609 0.711 0.994 0.964 0.742 0.655 0.922 0.947
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Appendix

A1l Imaging protocols

A1l.1 Acquisition and pre-processing of structural imaging data

All subjects underwent magnetic resonance imaging (MRI) in the same Siemens TIM Trio 3 tesla
scanner with a 32-channel head coil and the same imaging sequences and parameters, described in
detail by Satterthwaite et al. (2014) and Satterthwaite et al. (2016). For structural imaging, the
protocol included a magnetization-prepared, rapid-acquisition gradient echo (MPRAGE) T1-weighted
structural image with a voxel resolution of 0.9 x 0.9 x 1 mm. To ensure adequate quality of im-
ages included in our analysis, quality assurance was independently rated by three experienced image
analysts, as described by Rosen et al. (2017).

Cortical reconstruction of T1-weighted structural images was implemented using FreeSurfer (ver-
sion 5.3), which included template registration, intensity normalization, and inflation of cortical sur-
faces to a template. Cortical measurements were resampled to the fsaverage5 atlas, consisting of
exactly V' = 10,242 vertices in each hemisphere for every subject. We quantified cortical thickness
as the minimum distance between pial and white matter surfaces (Dale et al. 1999) and sulcal depth
as the height of gyri (with positive and negative values indicating outward and inward movement,

respectively) (Fischl et al. 1999).

A1.2 Acquisition and pre-processing of n-back task sequence

Protocols for functional MRI (fMRI) included task-based BOLD scans using a single-shot, inter-
leaved multi-slice, gradient-echo, echo planar imaging sequence, with a voxel resolution of 3 x 3 x 3
mm voxels and 46 slices. Preprocessing was implemented using the eXtensible Connectivity Pipeline
(XCP) Engine (Ciric et al. 2018). In the current study, we consider the fractal n-back task sequence,
which involves presenting subjects with a series of stimuli (geometric pictures on a screen) with in-
structions to press a button if the current stimulus matches the nth previous one. For example, in
a 1-back sequence, participants would be instructed to recognize whether a current stimulus matches
the one that appeared last; a 2-back sequence would involve recognizing whether the current stimulus
matches the one that appeared two stimuli ago. A 0-back sequence is also considered, in which sub-
jects are instructed to simply press a button each time a stimulus appears (regardless of whether it
matches a previous stimulus). In our present analysis we consider maps that represent the percentage

change in activation between the 2-back and 0-back sequences, which has been previously shown to
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isolate executive network function (Ragland et al. 2002).

We used the FEAT software tool in the FSL library to fit first-level general linear models on the
n-back time series data (Jenkinson et al. 2012). Three first level models for each subject considered
contrasts to assess change in working memory load between 1-back and 0-back, 2-back and 1-back, and
2-back and 0-back. Activation maps representing the percent change between the 2-back and 0-back
sequences were projected into the fsaverageb template with exactly 10,242 vertices per hemisphere per

subject.

A1.3 Use of cortical and network parcellations from Yeo et al. (2011) and Schaefer

et al. (2018)

Images converted to the fsaverageb template consisted of exactly 10,242 vertices per hemisphere.
We then identified the vertices belonging to each of the 1000 parcellations suggested by Schaefer et al.
(2018) as well as each of the seven networks proposed by Yeo et al. (2011), available for download from
GitHub (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/

Schaefer2018_LocalGlobal/Parcellations/FreeSurfer5.3/fsaverage5/label).
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A2 Supplemental figures

Figure Al: Empirical and surrogate (no. surrogates = 1000) variograms of parcellated cortical thickness measurements. These variograms
are constructed to assess the reliability of the Brain Surrogate Maps with Autocorrelated Spatial Heterogeneity (BrainSMASH) method in
testing for intermodal correspondence between cortical thickness and sulcal depth and cortical thickness and n-back in the left and right
hemispheres (parcellations from Schaefer et al. (2018)). The horizontal axis of each figure indicates the spatial separation distance (d), and
the vertical axis describes the variation between the cortical thickness measurements observed in parcels separated by distance d.
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Figure A2: Null test statistic distributions corresponding to results shown in Table 1 for the SPICE
test, BrainSMASH, and spin test. The observed test statistic, Ay, is plotted or written in blue. (A is
not plotted when it falls outside the range of the null test statistics.) Note: the observed test statistics
for BrainSMASH and the spin test are not identical, even though both these methods use group-level
surfaces, since the spin test removes the medial wall before calculating intermodal correspondence.

(a) Cortical thickness vs. sulcal depth (corresponds to Table 1(a)).
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(b) Cortical thickness vs. n-back (corresponds to Table 1(b)).
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Figure A3: Empirical and surrogate (no. surrogates = 1000) variograms of parcellated cortical thick-
ness measurements within seven functional networks, according to Yeo et al. (2011). These variograms
are constructed to assess the reliability of BrainSMASH in testing for intermodal correspondence be-
tween cortical thickness and sulcal depth and cortical thickness and n-back within age-stratified groups.
The horizontal axis of each plot indicates the spatial separation distance (d); the vertical axis describes

the variation between cortical thickness measurements observed in parcels separated by the distance
d.
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