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Abstract

Significant scientific and translational questions remain in auditory neuroscience
surrounding the neural correlates of perception. Relating perceptual and neural data
collected from humans can be useful; however, human-based neural data are typically
limited to evoked far-field responses, which lack anatomical and physiological specificity.
Laboratory-controlled preclinical animal models offer the advantage of comparing
single-unit and evoked responses from the same animals. This ability provides
opportunities to develop invaluable insight into proper interpretations of evoked
responses, which benefits both basic-science studies of neural mechanisms and
translational applications, e.g., diagnostic development. However, these comparisons
have been limited by a disconnect between the types of spectrotemporal analyses used
with single-unit spike trains and evoked responses, which results because these response
types are fundamentally different (point-process versus continuous-valued signals) even
though the responses themselves are related. Here, we describe a unifying framework to
study temporal coding of complex sounds that allows spike-train and evoked-response
data to be analyzed and compared using the same advanced signal-processing
techniques. The framework uses alternating-polarity peristimulus-time histograms
computed from single-unit spike trains to allow advanced spectral analyses of both slow
(envelope) and rapid (temporal fine structure) response components. Demonstrated
benefits include: (1) novel spectrally specific temporal-coding measures that are less
corrupted by analysis distortions due to hair-cell transduction, synaptic rectification,
and neural stochasticity compared to previous metrics, e.g., the correlogram peak-height,
(2) spectrally specific analyses of spike-train modulation coding (magnitude and phase),
which can be directly compared to modern perceptually based models of speech
intelligibility (e.g., that depend on modulation filter banks), and (3) superior spectral
resolution in analyzing the neural representation of nonstationary sounds, such as
speech and music. This unifying framework significantly expands the potential of
preclinical animal models to advance our understanding of the physiological correlates
of perceptual deficits in real-world listening following sensorineural hearing loss.

Author summary

Despite major technological and computational advances, we remain unable to match
human auditory perception using machines, or to restore normal-hearing communication
for those with sensorineural hearing loss. An overarching reason for these limitations is
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that the neural correlates of auditory perception, particularly for complex everyday
sounds, remain largely unknown. Although neural responses can be measured in
humans noninvasively and compared with perception, these evoked responses lack the
anatomical and physiological specificity required to reveal underlying neural
mechanisms. Single-unit spike-train responses can be measured from preclinical animal
models with well-specified pathology; however, the disparate response types
(point-process versus continuous-valued signals) have limited application of the same
advanced signal-processing analyses to single-unit and evoked responses required for
direct comparison. Here, we fill this gap with a unifying framework for analyzing both
spike-train and evoked neural responses using advanced spectral analyses of both the
slow and rapid response components that are known to be perceptually relevant for
speech and music, particularly in challenging listening environments. Numerous benefits
of this framework are demonstrated here, which support its potential to advance the
translation of spike-train data from animal models to improve clinical diagnostics and
technological development for real-world listening.

Introduction 1

Normal-hearing listeners demonstrate excellent acuity while communicating in complex 2

environments. In contrast, hearing-impaired listeners often struggle in noisy situations, 3

even with state-of-the-art intervention strategies (e.g., digital hearing aids). In addition 4

to improving our understanding of the auditory system, the clinical outcomes of these 5

strategies can be improved by studying how the neural representation of complex 6

sounds relates to perception in normal and impaired hearing. Numerous 7

electrophysiological studies have explored the neural representation of perceptually 8

relevant sounds in humans using evoked far-field recordings, such as frequency following 9

responses (FFRs) and electroencephalograms (Clinard et al., 2010; Kraus et al., 2017; 10

Tremblay et al., 2006). Note that we use electrophysiology and neurophysiology to refer 11

to evoked far-field responses and single-unit responses, respectively (see S1 Table for 12

glossary). While these evoked responses are attractive because of their clinical viability, 13

they lack anatomical and physiological specificity. Moreover, the underlying 14

sensorineural hearing loss pathophysiology is typically uncertain in humans. In contrast, 15

laboratory-controlled animal models of various pathologies can provide specific neural 16

correlates of perceptual deficits that humans experience, and thus hold great scientific 17

and translational (e.g., pharmacological) potential. In order to synergize the benefits of 18

both these approaches to advance basic-science and translational applications to 19

real-world listening, two major limitations need to be addressed. 20

First, there exists a significant gap in relating spike-train data recorded invasively 21

from animals and evoked noninvasive far-field recordings feasible in humans (and 22

animals) because the two signals are fundamentally different in form (i.e., binary-valued 23

point-process data versus continuous-valued signals). While the continuous nature of the 24

evoked-response amplitude allows for any of the advanced signal-processing techniques 25

developed for continuous-valued signals to be applied [e.g., multitaper approaches to 26

robust spectral estimation (Thomson, 1982)], spike-train analyses have been much more 27

limited (e.g., in their application to real-world signals, as reviewed in S1 Text). This is a 28

critical gap because most perceptual deficits and machine-hearing limits occur for speech 29

in noise rather than for speech in quiet (Moore, 2007; Scharenborg, 2007). For example, 30

classic neurophysiological studies have quantified the temporal coding of stationary and 31

periodic stimuli using metrics such as vector strength [VS (Goldberg and Brown, 1969; 32

Joris and Yin, 1992; Rees and Palmer, 1989)], whereas more recent correlogram analyses 33

have provided temporal-coding metrics for nonperiodic stimuli, such as noise (Joris 34

et al., 2006; Louage et al., 2004). However, as reviewed in S1 Text these metrics can be 35
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influenced by distortions from nonlinear cochlear processes (Heinz and Swaminathan, 36

2009; Young and Sachs, 1979), and often ignore response phase information that is likely 37

to be perceptually relevant for simple tasks (Colburn et al., 2003) as well as for speech 38

intelligibility (Paliwal and Alsteris, 2003; Relaño-Iborra et al., 2016). 39

A second important gap exists because current spectrotemporal tools to evaluate 40

temporal coding in the auditory system are largely directed at processing of stationary 41

signals by linear and time-invariant systems. However, the auditory system exhibits an 42

array of nonlinear (e.g., two-tone suppression, compressive gain, and rectification) and 43

time-varying (e.g., adaptation and efferent feedback) mechanisms (Heil and Peterson, 44

2015; Sayles and Heinz, 2017). These mechanisms interact with nonstationary stimulus 45

features (e.g., frequency transitions and time-varying intensity fluctuations, Figs 1A and 46

1B) to shape the neural coding and perception of these signals (Delgutte, 1997; 47

Hillenbrand and Nearey, 1999; Nearey and Assmann, 1986). In fact, the response of an 48

auditory-nerve (AN) fiber to even a simple stationary tone shows nonstationary 49

features, such as a sharp onset and adaptation (Fig 1C), illustrating the need for 50

nonstationary analyses of temporal coding. However, the extensive single-unit speech 51

coding studies using classic spike-train metrics have typically been limited to 52

synthesized and stationary speech tokens, which has deferred the study of the rich 53

kinematics present in natural speech (Delgutte, 1980; Sinex and Geisler, 1983; Young 54

and Sachs, 1979). Some windowing-based approaches have been used to study 55

time-varying stimuli and responses (Cariani and Delgutte, 1996a; Sayles and Winter, 56

2008), but the approaches used have imposed a limit on the temporal and spectral 57

resolution with which dynamics of the auditory system can be studied. 58

The present study focuses on developing spectrotemporal tools to characterize the 59

neural representation of kinematics naturally present in real-world signals, speech in 60

particular, that are appropriate for the nonlinear and time-varying auditory system. We 61

describe a unifying framework to study temporal coding in the auditory system, which 62

allows direct comparison of single-unit spike-train responses with evoked far-field 63

recordings. In particular, we demonstrate the unifying merit of using 64

alternating-polarity peristimulus time histograms (apPSTHs, Table 1), a collection of 65

PSTHs obtained from responses to both positive and negative polarities of the stimulus. 66

By using both polarities, neural coding of natural sounds can be studied using the 67

common temporal dichotomy between the slowly varying envelope (ENV) and rapidly 68

varying temporal fine structure (TFS) (Figs 1E and 1F), which has been especially 69

relevant for speech-perception studies (Shannon et al., 1995; Smith et al., 2002). We 70

derive explicit relations between apPSTHs and existing metrics for quantifying temporal 71

coding in auditory neurophysiology (reviewed in S1 Text), namely VS and correlograms, 72

to show that no information is lost by using apPSTHs. In fact, the use of apPSTHs is 73

computationally more efficient, provides more precise spectral estimators, and opens up 74

new avenues for perceptually relevant analyses that are otherwise not possible. Next, an 75

apPSTH -based ENV/TFS taxonomy is presented, including existing and new metrics. 76

This taxonomy allows for spectrally specific analyses that avoid analysis distortions due 77

to inner-hair-cell transduction and synaptic rectification processes, resulting in more 78

accurate characterizations of temporal coding than with previous metrics. Finally, these 79

methods are extended in novel ways to include the study of nonstationary signals at 80

superior spectrotemporal resolution compared to conventional windowing-based 81

approaches, like the spectrogram or wavelet analysis. 82
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A unified framework for quantifying temporal coding 83

based on alternating-polarity PSTHs (apPSTHs) 84

In this section, we first show that apPSTHs can be used to unify classic metrics, e.g., VS 85

and correlograms (reviewed in S1 Text), in a computationally efficient manner. Then, 86

we show that apPSTHs offer more precise spectral estimates compared to correlograms, 87

and allow for perceptually relevant analyses that are not possible with classic metrics. 88

Fig 1. Neural responses of AN fibers are invariably nonstationary, even when the stimulus is not. (A, B)
Spectrogram and waveform of a speech segment (s4 described in Materials and Methods). Formant trajectories (black lines in
panel A) and short-term intensity (red line in panel B, computed over 20-ms windows with 80% overlap) vary with time,
highlighting two nonstationary aspects of speech stimuli. (C) PSTH constructed using spike trains in response to a tone at
the AN-fiber’s characteristic frequency [CF, most-sensitive frequency; fiber had CF=730 Hz, and was high spontaneous rate
or SR (Liberman, 1978)]. Tone intensity = 40 dB SPL. Even though the stimulus is stationary, the response is nonstationary
(i.e., sharp onset followed by adaptation). (D) Period histogram, constructed from the data used in C, demonstrates the
phase-locking ability of neurons to individual stimulus cycles. (E) PSTH constructed using spike trains in response to a
sinusoidally amplitude-modulated (SAM) CF-tone (50-Hz modulation frequency, 0-dB modulation depth, 35 dB SPL) from an
AN fiber (CF = 1.4 kHz, medium SR). (F) Period histogram (for one modulation period) constructed from the data used in E.
The response to the SAM tone follows both the modulator (envelope, red, panels E and F) as well as the carrier (temporal
fine structure), the rapid fluctuations in the signal (blue, panel F). Bin width = 0.5 ms for histograms in C-F. Number of
stimulus repetitions for C and E were 300 and 16, respectively.

apPSTHs permit computationally efficient temporal analyses 89

Let us denote the PSTHs in response to the positive and negative polarities of a 90

stimulus as p(t) and n(t), respectively. Then, the sum PSTH, s(t), which represents the 91

polarity-tolerant component in the response, is estimated as 92

December 22, 2020 4/53

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.07.17.208330doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.208330
http://creativecommons.org/licenses/by/4.0/


s(t) =
p(t) + n(t)

2
. (1)

The difference PSTH, d(t), which represents the polarity-sensitive component in the 93

response, is estimated as 94

d(t) =
p(t)− n(t)

2
. (2)

The difference PSTH has been previously described as the compound PSTH(Goblick 95

and Pfeiffer, 1969). Here we use the terms sum and difference for s(t) and d(t), 96

respectively, for clarity. Compared to the spectra of the single-polarity PSTHs [i.e., of 97

p(t) or n(t)], the spectrum of the difference PSTH, D(f), is substantially less corrupted 98

by rectifier-distortion analysis artifacts [(Sinex and Geisler, 1983), also see S1 Fig panels 99

B and D]. This improvement occurs because even-order distortions, which strongly 100

contribute to these artifacts, are effectively canceled out by subtracting PSTHs for 101

opposite polarities. A second way spectral peaks absent in the stimulus can arise in the 102

p(t)-spectrum is because of propagating combination tones of cochlear origin [e.g., 103

distortion products, (Kemp, 1978)]. Unlike rectifier distortion, which is an artifact of 104

analysis, combination tones are present in the cochlea and can affect perception. As the 105

phase of these combination tones depends on stimulus polarity (Kemp, 1978), these 106

perceptually relevant combination tones are captured in the difference PSTH. These 107

distinct sources are discussed in more detail by Young and Sachs with respect to 108

analyses of stationary synthesized-vowel responses from AN fibers (Young and Sachs, 109

1979). 110

The Fourier magnitude spectrum of the difference PSTH has been referred to as the
synchronized rate. We show that the synchronized rate relates to V S by

V S(f) =
|D(f)|
N

, (3)

where f is frequency in Hz, and N is the total number of spikes (S2 Appendix). 111

In addition, we demonstrate that the autocorrelogram and the shuffled 112

autocorrelation (SAC) function of the PSTH are related (S3 Appendix), which leads to 113

important computational efficiencies. In particular the SAC for a set of M spike trains 114

X = {x1, x2, ..., xM} can be estimated as 115

SAC(X) = RX (PSTHX)−
M∑
i=1

RX (xi), (4)

where RX is the autocorrelation operator, and PSTHX is the PSTH constructed using 116

X. Similarly, the SCC for two sets of spike trains X = {x1, x2, ..., xL} and 117

Y = {y1, y2, ..., yM} can be estimated as 118

SCC(X,Y ) = RXY(PSTHX , PSTHY ), (5)

where PSTHX and PSTHY are PSTHs constructed using X and Y , respectively, and 119

RXY is the cross-correlation operator. Since SACs and SCCs can be computed using 120

apPSTHs, it follows that sumcor and difcor can also be computed using apPSTHs (S4 121

Appendix). As apPSTHs can be used to compute correlograms, apPSTHs offer the 122

same degree of smoothing as correlograms. 123

Importantly, the use of apPSTHs to compute correlograms is computationally more 124

efficient compared to the existing correlogram-estimation method, i.e., by tallying all 125
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interspike intervals. For a fixed stimulus duration and PSTH resolution, estimating the 126

autocorrelation function of the PSTH requires constant time complexity [O(1)]. Thus, 127

for N spikes, the SAC and SCC can be computed with O(N) complexity that is needed 128

for constructing the PSTH using Eqs 4 and 5. This is substantially better than the 129

O(N2) complexity needed to compute the correlograms by tallying shuffled all-order 130

interspike intervals. For example, consider a spike-train dataset that consists of 50 131

repetitions of a stimulus with 100 spikes per repetition. To compute the SAC using 132

(all-order) ISIs, each spike time (5000 unique spikes) has to be compared with spike 133

times from all other repetitions (4900 spike times). This tallying method requires 134

24.5× 106 (i.e., 5000× 4900) operations to compute the SAC, where one operation 135

consists of comparing two spike times and incrementing the corresponding SAC-bin by 136

1. In contrast, only 5000 operations are needed to construct the PSTH for 5000 137

(50× 100) total spikes. The PSTH can then be used to estimate the SAC with constant 138

time complexity. In addition to their computational efficiency, apPSTHs offer 139

additional benefits for relating single-unit responses to far-field responses, for spectral 140

estimation, and for speech-intelligibility modeling, as discussed below. 141
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Fig 2. apPSTHs can be directly compared to evoked potentials in response
to the same stimulus. (A) Time-domain waveforms for the difference FFR (blue)
and mean difference PSTH [d(t), red] in response to a Danish speech stimulus, s3

(black). Mean d(t) was computed by taking the grand average of d(t)s from 246 AN
fibers from 13 animals (CFs: 0.2 to 11 kHz). The difference FFR was estimated by
subtracting FFRs to alternating stimulus polarities. (B) Spectra for the signals in A for
a 100-ms segment (purple dashed lines in A). (C) Time-domain waveforms for the sum
FFR (blue) and mean sum PSTH [s(t), red] for the same stimulus. Both responses show
sharp onsets for plosive (/d/ and /g/) and fricative (/s/) consonants. (D) Spectra for
the responses in C for the same segment considered in B. The mean s(t) was estimated
as the grand average of s(t)s from 246 neurons. Sum FFR was estimated by halving the
sum of the FFRs to both polarities. Stimulus intensity = 65 dB SPL.
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apPSTHs unify single-unit and far-field analyses 142

The PSTH is particularly attractive because the PSTH from single neurons or a 143

population of neurons, by virtue of being a continuous signal, can be directly compared 144

to evoked potentials in response to the same stimulus (e.g., Fig 2). In this example, the 145

speech sentence s3 was used to record the frequency following response (FFR) from one 146

animal. The same stimulus was also used to record spike trains from AN fibers (N=246) 147

from 13 animals. The mean d(t) and mean s(t) were computed by pooling PSTHs 148

across all neurons. The difference and sum FFRs were estimated by subtracting and 149

averaging FFRs to alternating polarities, respectively. This approach of estimating 150

polarity-tolerant and polarity-sensitive FFR components is well established (Aiken and 151

Picton, 2008; Ananthakrishnan et al., 2016; Shinn-Cunningham et al., 2013). 152

Qualitatively, the periodicity information in the mean d(t) and the difference FFR were 153

similar (Fig 2A); this is expected because the difference FFR receives significant 154

contributions from the auditory nerve (King et al., 2016). To compare the spectra for 155

the two responses, a 100-ms segment was considered. The first formant (F1) and the 156

first few harmonics of the fundamental frequency (F0) were well captured in both 157

spectra. F2 was also well captured in the difference FFR, and to a lesser extent, in the 158

mean d(t). 159

The mean s(t) and the sum FFR also show comparable temporal features in these 160

nonstationary responses (Fig 2C). For example, both responses show sharp onsets for 161

plosive and fricative consonants. The segment considered in Fig 2B was used to 162

compare the spectra for the two sum responses. Both spectra show similar spectral 163

peaks near the first two harmonics of F0 (Fig 2D), which indicates that pitch-related 164

periodicity is well captured in both the sum FFR and mean s(t). However, there are 165

some discrepancies between the relative heights of the first two F0-harmonics. These 166

could arise because the average FFR primarily reflects activity of high-frequency 167

neurons from rostral generators (e.g., the inferior colliculus) (King et al., 2016), which 168

show stronger polarity-tolerant responses compared to the auditory nerve (Joris, 2003). 169

In contrast, the mean s(t) is based on responses of AN fibers, which show strong 170

polarity-sensitive responses to F0 due to tuning-curve tail responses at high sound levels 171

like that used here. These tail responses contribute to power at 2F0 as rectifier 172

distortion. Other potential sources that can contribute to any far-field evoked response 173

include receptor potentials (e.g., cochlear microphonic) and electrical interference. 174

Cochlear microphonic is substantially reduced in the sum responses, although it may 175

not be completely removed (Lichtenhan et al., 2013; Verschooten and Joris, 2014). 176

However, cochlear microphonic should contribute to the second harmonic of the 177

sum-FFR spectrum, and therefore does not explain the relative lack of salience for 2F0 178

in the sum-FFR spectrum. Electrical interference had insignificant effect on these FFR 179

data [Fig 2 in (Parida and Heinz, 2020)]. However, in general, these sources can 180

substantially contribute to evoked responses, such as the compound action potential, 181

and thus should be considered when comparing these evoked responses with invasive 182

spike-train data (Verschooten and Joris, 2014). In this regard, using the apPSTH -based 183

framework to analyze invasive spike-train recordings allows direct comparison of invasive 184

single-unit data with noninvasive continuous-valued evoked potentials and evaluation of 185

the neural origins of evoked responses. 186

Variance of apPSTH -based spectral estimates can be reduced 187

relative to correlogram-based spectral estimates 188

Temporal information in a signal can be studied not only in the time domain (e.g., 189

using correlograms) but also in the frequency domain (e.g., using the power spectral 190

density, PSD). The frequency-domain representation often provides a compact 191
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alternative compared to the time-domain counterpart. In the framework of spectral 192

estimation, the source (“true”) spectrum, which is unknown, is regarded as a parameter 193

of a random process that is to be estimated from the available data (i.e., from examples 194

of the random process). Spectral estimation is complicated by two factors: (1) finite 195

response length, and (2) stochasticity of the system. The former introduces bias to the 196

estimate, i.e., the PSD at a given frequency can differ from the true value. This bias 197

reflects the leakage due to power at nearby (narrowband bias) and far-away (broadband 198

bias) frequencies (due to the inherent temporal windowing from the finite-duration 199

response). Stochasticity of the system adds randomness to the sampled data, which 200

creates variance in the estimate. Desirable properties of PSD estimators are minimized 201

bias and variance. Bias can be reduced by multiplying the data (prior to spectral 202

estimation) with a taper that has a strong energy concentration near 0 Hz. Variance 203

can be reduced by using a greater number of tapers to estimate multiple (independent) 204

PSD estimates, which can be averaged to compute the final estimate. The multitaper 205

approach optimally reduces the bias and variance of the PSD estimate (Babadi and 206

Brown, 2014; Thomson, 1982). In this approach, for a given data length, a frequency 207

resolution is chosen, based on which a set of orthogonal tapers are computed. These 208

tapers include both even and odd tapers, which can be used to obtain the independent 209

PSD estimates to be averaged. In contrast, for the same frequency resolution, only even 210

tapers can be used with correlograms as they are even sequences (Oppenheim, 1999; 211

Rangayyan, 2015). Therefore, variance in the PSD estimate can be reduced by a factor 212

of up to 2 by using apPSTHs instead of correlograms. 213

For example, the benefit (in terms of spectral-estimation variance) of using the 214

multitaper spectrum of d(t), as opposed to the common approach of estimating the 215

discrete Fourier transform (DFT) of the difcor, can be quantified by comparing the two 216

spectra at a single frequency (Fig 3). Here, a 100-ms segment of the s3 speech stimulus 217

was used as the analysis window. The segment had an F0 of 98 Hz and F1 of 630 Hz 218

(Fig 3A). Fig 3B shows example spectra estimated using spike trains recorded from a 219

low-frequency AN fiber [CF = 900 Hz, SR = 81 spikes/s]. The multitaper spectrum was 220

estimated using the MATLAB function pmtm [two tapers corresponding to a 221

time-bandwidth product of 3, adaptive weights (Thomson, 1982)]. To compare variances 222

in the two estimated spectra, fractional power at the 6th harmonic was considered, as 223

this harmonic was closest to F1. This analysis was restricted to neurons (N=10) for 224

which data was available for at least 75 repetitions per polarity and that had a CF 225

between 0.3 and 2 kHz. For each neuron, 25 spike trains per polarity were chosen 226

randomly 12 times to estimate fractional power at the 6th harmonic. The same set of 227

spike trains were used to estimate distributions for both the difcor -spectrum and D(f). 228

The ratio of difcor -based fractional power variance to the apPSTH -based fractional 229

power variance at 6F0 was >1 for all 10 neurons considered (Fig 3D), demonstrating the 230

benefit of being able to compute a multitaper spectrum from d(t) compared to the 231

difcor -spectrum in reducing variance. Overall, these results indicate that less data are 232

required to achieve the same level of precision in a spectral metric based on the 233

multitaper spectrum of an apPSTH compared to the same metric derived from the DFT 234

of the correlogram. 235

Benefits of apPSTHs for speech-intelligibility modeling 236

Speech-intelligibility (SI) models aim to predict the effects of acoustic manipulations of 237

speech on perception. Thus, SI models allow for quantitative evaluation of the 238

perceptually relevant features in speech. More importantly, SI models can guide the 239

development of optimal hearing-aid strategies for hearing-impaired listeners. However, 240

state-of-the-art SI models are largely based on the acoustic signal, where there is no 241

physiological basis to capture the various effects of sensorineural hearing loss 242
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Fig 3. Lower spectral-estimation variance can be achieved using apPSTHs
(with multiple tapers) compared with difcor correlograms. (A) Spectrum for
the 100-ms segment in the speech sentence s3 (F0 ∼ 98 Hz, F1 ∼ 630 Hz) used for
analysis. (B) Example spectra for an AN fiber (CF=900 Hz, high SR) with spikes from
25 randomly chosen repetitions per polarity. The first two discrete-prolate spheroidal
sequences were used as tapers corresponding to a time-bandwidth product of 3 to
estimate D(f), the spectrum of d(t). No taper (i.e., rectangular window) was used to
estimate the difcor spectrum. The AN fiber responded to the 6th, 7th and 8th harmonic
of the fundamental frequency. (C) Error-bar plots for fractional power (PowerFrac) at
the frequency (green triangle) closest to the 6th harmonic. Error bars were computed
for 12 randomly and independently drawn sets of 25 repetitions per polarity. The same
spikes were used to compute the spectra for d(t) (blue) and difcor (red). (D) Diamonds
denote the ratio of variances for the difcor -based estimate to the d(t)-based estimate.
This ratio was greater than 1 (i.e., above the dashed gray line) for all units considered,
which demonstrates that the variance for the multitaper-d(t) spectrum was lower than
the difcor -spectrum variance. AN fibers with CFs between 0.3 and 2 kHz and with at
least 75 repetitions per polarity of the stimulus were considered. Bin width = 0.1 ms for
PSTHs. Sampling frequency = 10 kHz for FFRs. Stimulus intensity = 65 dB SPL.

(SNHL) (Cooke, 2006; Houtgast and Steeneken, 1973; Kryter, 1962; Relaño-Iborra et al., 243

2016; Taal et al., 2011). In contrast, neurophysiological SI models (i.e., SI models based 244

on neural data) are particularly important in this regard since spike-train data from 245

preclinical animal models of various forms of SNHL provide a direct way to evaluate the 246

effects of SNHL on speech-intelligibility modeling outcomes (Heinz, 2015; Rallapalli and 247

Heinz, 2016). 248

A major advantage of PSTH-based approaches over correlogram-based approaches is 249

that they can be used to extend a wider variety of acoustic SI models to include 250

neurophysiological data. In particular, correlograms can be used to extend 251

power-spectrum-based SI models (Cooke, 2006; Houtgast and Steeneken, 1973; 252

Jørgensen and Dau, 2011; Kryter, 1962; Taal et al., 2011) but not for the more recent SI 253

models that require phase information of the response (Relaño-Iborra et al., 2016; 254

Scheidiger et al., 2018). For example, the speech envelope-power-spectrum model 255
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Fig 4. Modulation-domain internal representations for speech coding can
be obtained from PSTH-based envelopes. PSTH response [p(t)] from one AN
fiber (CF=290 Hz, SR= 12 spikes/s) is shown. (A) Time-domain waveforms for the
stimulus (gray) and p(t) (blue). (B) Output of a modulation filter bank after the
processing of p(t). Modulation filters were zero-phase, fourth-order, and octave-wide
IIR filters. Center frequencies (Fm) for these filters ranged from 2 to 128 Hz (octave
spacing), similar to those used in recent psychophysically based SI models [e.g.,
(Relaño-Iborra et al., 2016)]. PSTH bin width = 0.5 ms. 15 stimulus repetitions.
Stimulus intensity = 60 dB SPL.

(sEPSM) has been evaluated using simulated spike trains since sEPSM only requires 256

power in the response envelope, which can be estimated from the sumcor 257

spectrum (Rallapalli and Heinz, 2016). However, sumcor cannot be used to evaluate 258

envelope-phase-based SI models since it discards phase information. Studies have shown 259

that the response phase can be important for speech intelligibility (Delgutte et al., 1998; 260

Paliwal and Alsteris, 2003). In contrast to the sumcor, the time-varying PSTH contains 261

both phase and magnitude information, and thus, can be used to evaluate both 262

power-spectrum- and phase-spectrum-based SI models. For example, because the PSTH 263

p(t) [or n(t)] is already rectified, it can be filtered through a modulation filter bank to 264

estimate “internal representations” in the modulation domain (Fig 4). These 265

spike-train-derived “internal representations” are analogous to those used in 266

phase-spectrum-based SI models (Relaño-Iborra et al., 2016; Scheidiger et al., 2018) and 267

can be further processed by existing SI back-ends to estimate SI values. This example 268

demonstrates a proof of concept of using spike-train data to evaluate a spectrally 269

specific envelope based SI model using apPSTHs. In general, SI models that include a 270

peripheral or modulation filter bank representation, which is the case for most 271

successful SI models [e.g., the speech transmission index (Steeneken and Houtgast, 272

1980), the spectrotemporal modulation index (Elhilali et al., 2003), speech envelope 273

power spectrum models (Jørgensen and Dau, 2011; Jørgensen et al., 2013)], can be 274

evaluated using spike-train data recorded from peripheral (e.g., auditory-nerve fibers) or 275

central (e.g., inferior colliculus) neurons, respectively, using apPSTHs. Therefore, these 276

analyses allow for the evaluation of a wider variety of acoustic-based SI models in the 277

neural domain (magnitude and phase), where translationally relevant data can be 278

obtained from preclinical animal models of various forms of SNHL. 279
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Quantifying ENV and TFS using apPSTHs for 280

stationary signals 281

In this section, we first describe existing and novel ENV and TFS components that can 282

be derived from apPSTHs. Next, we compare relative merits of the novel components 283

over existing ENV and TFS components using simulated data. Finally, we apply 284

apPSTHs to analyze spike-train data recorded to speech and speech-like stimuli. 285

Several ENV and TFS components can be derived from 286

apPSTHs with spectral specificity 287

The neural response envelope can be obtained from apPSTHs in two orthogonal ways: 288

(1) the low-frequency signal, s(t), and (2) the Hilbert envelope of the high-frequency 289

carrier-related energy in d(t). s(t) is thought to represent the polarity-tolerant response 290

component, which has been defined as the envelope response (Joris, 2003; Louage et al., 291

2004). For a stimulus with harmonic spectrum, s(t) captures the envelope related to the 292

beating between harmonics. In addition, onset and offset responses (e.g., in response to 293

high-frequency fricatives, Fig 2C) are also well captured in s(t). Although sumcor and 294

s(t) are related, dynamic features like onset and offset responses are captured in s(t), 295

but not in the sumcor since the sumcor discards phase information by essentially 296

averaging ENV coding across the whole stimulus duration. The use of sum envelope is 297

popular in far-field responses (Aiken and Picton, 2008; Ananthakrishnan et al., 2016; 298

Shinn-Cunningham et al., 2013) but not directly in auditory neurophysiology studies. A 299

major disadvantage of s(t) is that it is affected by rectifier distortions if a neuron phase 300

locks to low-frequency energy in the stimulus (e.g., Fig 5A; discussed further below). 301

A second way envelope information in the neural response can be quantified is by
computing the envelope of the difference PSTH, d(t). This envelope, e(t), can be
estimated as the magnitude of the analytic signal, a(t), of the difference PSTH

e(t) =
|a(t)|√

2
, (6)

where a(t) = d(t) + H{d(t)}, and H{·} is the Hilbert transform operator. The factor 302√
2 normalizes for the power difference after applying the Hilbert transform. d(t) is 303

substantially less affected by rectifier distortion (Sinex and Geisler, 1983), and thus, so 304

is e(t). The use of e(t) parallels the procedure followed by many computational models 305

that extract envelopes from the output of cochlear filterbanks (Dubbelboer and 306

Houtgast, 2008; Jørgensen and Dau, 2011; Sadjadi and Hansen, 2011). 307

The TFS component can also be estimated in two ways: (1) d(t), and (2) cosine of
the Hilbert phase of d(t). The difference PSTH has been traditionally called the TFS
response because it is the polarity-sensitive component. difcor and derived metrics
relate to d(t) as the difcor is related to the autocorrelation function of d(t) (S4
Appendix). However, d(t) does not represent the response to only the carrier (phase)
since it also contains envelope information in e(t). We propose a novel representation of
the TFS response component, φ(t), estimated as the cosine phase of the analytic signal

φ(t) =
√

2× rms[d(t)]× cos[∠a(t)], (7)

where normalization by
√

2× rms[d(t)] is used to match the power in φ(t) with the 308

power in d(t) since cos[∠a(t)] is a constant-rms (rms = 1/
√

2) signal. 309
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Relative merits of sum and Hilbert-envelope PSTHs in 310

representing spike-train envelope responses 311

The relative merits of the two envelope PSTHs, s(t) and e(t), were evaluated based on 312

simulated spike-train data generated using a computational model of AN 313

responses (Bruce et al., 2018). The model includes both cochlear-tuning and hair-cell 314

transduction nonlinearities in the auditory system. Modulation spectra for sinusoidal 315

amplitude-modulated (SAM) tones were estimated for s(t) and e(t) [denoted by S(f) 316

and E(f), respectively] for individual-fiber responses (Figs 5A-5C). d(t) was band-pass 317

filtered near CF (200-Hz bandwidth, 2nd order filter) before applying the Hilbert 318

transform to minimize the spectral energy in d(t) that was not stimulus related. The 319

two envelopes were evaluated based on their representations of the modulator and 320

rectifier distortion. Rectifier distortions are expected to occur at even multiples of the 321

carrier and nearby sidebands (i.e., 2nFc, 2nFc − Fm, and 2nFc + Fm for integers n, Fig 322

5A). It is desirable for an envelope metric to consistently represent envelope coding 323

across CFs and be less affected by rectifier-distortion artifacts. Modulation coding for 324

the simulated responses was quantified as the power in 10-Hz bands centered at the first 325

three harmonics of Fm (i.e., 15 to 25 Hz, 35 to 45 Hz, and 55 to 65 Hz) for both s(t) 326

and e(t) (Fig 5D). The need to include multiple harmonics of Fm arises because the 327

response during a stimulus cycle departs from sinusoidal shape due to the saturating 328

nonlinearity associated with inner-hair-cell transduction (S2 Fig). While Fm-related 329

power was nearly constant across CF for s(t), it was nearly constant for e(t) only up to 330

1.2 kHz, after which it rolled off. This roll-off for e(t) is not surprising since e(t) relies 331

on phase-locking near the carrier and the sidebands, as confirmed by the strong 332

correspondence between tonal phase-locking at the carrier frequency and Fm-related 333

power in e(t) (Fig 5D). 334

The analysis of rectifier distortion was limited to only the distortion components 335

near the second harmonic of the carrier (i.e., 2Fc, 2Fc − Fm, and 2Fc + Fm) since this 336

harmonic is substantially stronger than higher harmonics (e.g., Fig 5A). Rectifier 337

distortion was quantified as the sum of power in 10-Hz bands centered at the three 338

distortion frequency components. Because e(t) was estimated from spectrally specific 339

d(t), which was band-limited to 200 Hz near the carrier frequency, e(t) was virtually 340

free from rectifier distortion. In contrast, s(t) was substantially affected by rectifier 341

distortion for simulated fibers with CFs below ∼2 kHz (Fig 5E). Rectifier distortion in 342

S(f) dropped for fibers with CF above ∼0.8 kHz because phase locking at distortion 343

frequencies (i.e., twice the carrier frequencies) was attenuated by the roll-off in tonal 344

phase locking. For example, the simulated AN fiber in Fig 5B (CF = 1.7 kHz) 345

maintained comparable Fm-related power for both envelopes, but rectifier distortion for 346

s(t) was substantially diminished because the distortion frequency (3.4 kHz) is well 347

above the phase-locking roll-off. These results indicate that s(t) is substantially 348

corrupted by rectifier distortion (at twice the stimulus frequency) when the neuron 349

responds to stimulus energy that is below half the phase-locking cutoff. 350

Next, these spectral power metrics were compared with the correlogram-based 351

metric, sumcor peak-height (Figs 5F-5H). The sumcor peak-height metric is defined as 352

the maximum value of the normalized time-domain sumcor function (Louage et al., 353

2004). Prior to estimating the peak-height, the sumcor is sometimes adjusted by adding 354

an inverted triangular window to compensate for its triangular shape (Heinz and 355

Swaminathan, 2009). Here, sumcors were compensated by subtracting a triangular 356

window from it so that the baseline sumcor is a flat function with a value of 0 (instead 357

of 1) in the absence of ENV coding. In S5 Appendix, we show that the sumcor 358

peak-height is a broadband metric and it is related to the total power in s(t), including 359

rectifier distortions. When the sumcor is used to analyze responses of low-frequency AN 360

fibers to broadband noise stimuli, the sumcor -spectrum, and thus, the sumcor 361
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Fig 5. Envelope-coding metrics should be spectrally specific to avoid artifacts due to rectifier distortion
and neural stochasticity. Simulated responses for 24 AN fibers (log-spaced between 250 Hz and 8 kHz) were obtained
using a computational model (parameters listed in S2 Table) using SAM tones at CF (modulation frequency, Fm=20 Hz;
0-dB (100%) modulation depth) as stimuli. Stimulus intensity ∼ 65 dB SPL. S(f) (blue) and E(f) (red) for three example
model fibers with CFs = 1.0, 1.7, and 4 kHz (panels A-C) illustrate the relative merits of s(t) and e(t), and the potential for
rectifier distortion to corrupt envelope coding metrics. d(t) was band-limited to a 200-Hz band near Fc for each fiber prior to
estimating e(t) from the Hilbert transform of d(t). (A) For the 1-kHz fiber, S(f) and E(f) are nearly identical in the Fm
band. S(f) is substantially affected by rectifier distortion at 2×CF, which can be ignored using spectrally specific analyses.
(B) The two envelope spectra are largely similar near the Fm bands since phase-locking near the carrier (1.7 kHz) is still
strong (panel D). Rectifier distortion in S(f) is greatly reduced since phase-locking at twice the carrier frequency (3.4 kHz) is
weak. (C) Fm-related power in E(f) and rectifier distortion in S(f) are greatly reduced as the frequencies for the carrier and
twice the carrier are both above the phase-locking roll-off. (D) The strength of modulation coding was evaluated as the sum
of the power near the first three harmonics of Fm (gray boxes in panels A-C) for S(f) (blue squares) and E(f) (red circles).
V Spp was also quantified to CF-tones for each fiber (black dashed line, right Y axis). (E) Rectifier distortion (RD) analysis
was limited to the second harmonic of the carrier (brown boxes in panels A-C). RD was quantified as the sum of power in
10-Hz bands around twice the carrier frequency (2× CF ) and the adjacent sidebands (2× CF ± Fm). RD for E(f) is not
shown because E(f) was virtually free from RD. (F) Raw and adjusted sumcor peak-heights across CFs. sumcors were
adjusted by band-pass filtering them in the three Fm-related bands. Large differences between the two metrics at low
frequencies indicate that the raw sumcor peak-heights are corrupted by rectifier distortion at these frequencies. (G) Relation
between raw and adjusted sumcor peak-heights with Fm-related power (from panel D) in S(f). Good correspondence between
Fm-related power in S(f) and adjusted sumcor peak-height supports the use of spectrally specific envelope analyses. (H) The
difference between raw and adjusted sumcor peak-heights was largely accounted for by RD power. However, this difference
was always greater than zero, suggesting broadband metrics can also be biased because of noise related to neural stochasticity.
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peak-height, are corrupted by rectifier distortions (Heinz and Swaminathan, 2009). 362

Similar to S(f) for low-frequency SAM tones (Fig 5A), these distortions show up at 363

2×CF in the sumcor -spectrum, whereas the difcor -spectrum has energy only near 364

CF (Heinz and Swaminathan, 2009). Heinz and colleagues addressed these distortions 365

by low-pass filtering the sumcor below CF to remove the effects of rectifier distortion at 366

2×CF. Here, we generalize this issue by comparing the sumcor and spectrally specific 367

ENV metrics for narrowband SAM-tone stimuli to demonstrate the limitations of any 368

broadband ENV metric. sumcors were adjusted by band-limiting them to 10-Hz bands 369

near the first three harmonics of Fm. As expected, the difference between the raw and 370

adjusted sumcor peak-heights was large at low CFs (Fig 5F), where rectifier distortion 371

corrupts the broadband sumcor peak-height metric. At high CFs (above 1.5 kHz), the 372

difference between raw and adjusted sumcor peak-heights was small but nonzero. These 373

differences correspond to power in S(f) at frequencies other than the 374

modulation-related bands and reflect the artifacts of neural stochasticity due to finite 375

number of stimulus trials. As power is always nonnegative, including power at 376

frequencies unrelated to the target frequencies adds bias and variance to any broadband 377

metric. The adjusted sumcor peak-height, unlike the raw sumcor peak-height, showed 378

good agreement with spectrally specific Fm-related power in S(f) (Fig 5G). 379

Overall, these results support the use of spectrally specific analyses to quantify ENV 380

coding in order to minimize artifacts due to rectifier distortion as well as the effects of 381

neural stochasticity. Of the two candidate apPSTHs to quantify response envelope, e(t) 382

had the benefit of minimizing rectifier distortion. However, e(t)’s reliance on 383

carrier-related phase locking limits the use of e(t) as a unifying ENV metric across the 384

whole range of CFs. Instead, spectrally specific s(t) is more attractive because of its 385

robustness in representing the response envelope across CFs (Fig 5D). 386

Relative merits of difference and Hilbert-phase PSTHs in 387

representing spike-train TFS responses 388

In order to evaluate the relative merits of d(t) and φ(t) in representing the neural TFS 389

response, the same set of simulated AN spike-train responses were used as in Fig 5. 390

Although the stimulus has power at the carrier (Fc) and sidebands (Fc ± Fm; 6 dB 391

lower), only the carrier representation should be considered towards quantifying the 392

TFS response because the energy at the sidebands arises due to the modulation of the 393

carrier by the modulator (ENV). As the carrier has energy at a single frequency (Fc) for 394

a SAM tone, the desirable TFS response should have maximum energy concentrated at 395

the carrier frequency and not the sidebands. Therefore, the merits of d(t) and φ(t) were 396

evaluated based on how well they capture the carrier and suppress the sidebands (Fig 6). 397

As mentioned previously, d(t) was band-limited to a 200-Hz bandwidth near the 398

carrier frequency before estimating φ(t). D(f) at low CFs contained substantial energy 399

at both the carrier and the sidebands (Figs 6A and 6B). This indicates that d(t) 400

represents the complete neural coding of the SAM tone (both the envelope and the 401

carrier) and not just the carrier. Furthermore, D(f) has additional sidebands 402

(Fc ± 2Fm) around the carrier frequency. These sidebands arise as a result of the 403

saturating nonlinearity associated with inner-hair-cell transduction (S2 Fig), and thus, 404

should not be considered towards TFS response. In contrast, Φ(f), the spectrum of φ(t) 405

had most of its power concentrated at the carrier frequency, with substantially less 406

power in the sidebands (Figs 6A and 6B). These results were consistent across a wide 407

range of CFs and for both sidebands (Figs 6D and 6E). Overall, these results show that 408

φ(t) is a better PSTH compared to d(t) in quantifying the response TFS since φ(t) 409

emphasizes power at the carrier frequency and not at the sidebands. 410

In the following, we apply apPSTH -based analyses on spike-train data recorded from 411
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Fig 6. Compared to the d(t), the apPSTH φ(t) provides a better TFS
representation. (A-C) Spectra of d(t) and φ(t) for the same three simulated AN fiber
responses for which ENV spectra were shown in Fig 5. D(f) has substantial power at
CF (black triangle), as well as at lower (purple circle) and upper (purple square)
sidebands. Φ(f), the spectrum of φ(t), shows maximum power concentration at CF
(carrier frequency), with greatly reduced sidebands. (D) Ratio of power at CF (carrier,
black triangle in panels A-C) to power at lower sideband (LSB, Fc − Fm, purple circles
in panels A-C). (E) Ratio of power at CF (carrier) to power at upper sideband (USB,
Fc + Fm, purple squares in A-C). φ(t) highlights the carrier and not the sidebands, and
thus, compared to d(t), φ(t) is a better representation of the true TFS response.

chinchilla AN fibers in response to speech and speech-like stimuli. In these examples, we 412

particularly focus on certain ENV features, such as pitch coding for vowels and response 413

onset for consonants, and TFS features, such as formant coding for vowels. 414

Neural characterization of ENV and TFS using apPSTHs for a 415

natural speech segment 416

Most previous studies have used the period histogram to study speech coding in the 417

spectral domain (Delgutte and Kiang, 1984a; Young and Sachs, 1979). The period 418

histogram is limited to stationary periodic stimuli, which were employed in those 419

studies. In contrast, the use of apPSTHs facilitates the spectral analysis of neural 420

responses to natural speech stimuli, which need not be stationary. Fig 7 shows the 421

response spectra obtained using various apPSTHs [p(t), s(t), d(t), and φ(t)] for a 422

low-frequency AN fiber in response to a natural speech segment [see S3 Fig for similar 423

analyses for synthesized speech demonstrating the well-known “synchrony-capture” 424

phenomenon (Delgutte and Kiang, 1984a; Young and Sachs, 1979)]. In this example, 425

the response of a low-frequency AN fiber to a 100-ms vowel segment of the s3 natural 426

speech sentence was considered. The CF (1.1 kHz) of this neuron is close to the second 427

formant (F2) of this segment (Fig 7B). P (f) shows peaks corresponding to F2 (∼1.2 428

kHz) and F0 (∼130 Hz, Fig 7C). Similar to S3 Fig, both D(f) and Φ(f) show 429
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Fig 7. Spectral-domain application of various apPSTHs to spike trains
recorded in response to natural speech. Example of spectral analyses of spike
trains recorded from an AN fiber (CF= 1.1 kHz, SR=64 spikes/s) in response to a vowel
snippet of a speech stimulus (s3). (A) Time-domain representation of p(t), n(t), and the
stimulus (Stim). n(t) is flipped along the y-axis for display. Signals outside the analysis
window are shown in gray. PSTH bin width = 0.1 ms. Number of stimulus repetitions
per polarity = 50. Stimulus intensity = 65 dB SPL. (B) Stimulus spectrum (blue, left
yaxis). In panels B-E, the frequency-threshold tuning curve (TC θ, black) of the neuron
is plotted on the right y-axis. (C) P (f), which shows comparable energy at F0 (130 Hz)
and F2 (1.2 kHz). (D) D(f) and S(f). (E) Φ(f) and E(f). Both S(f) and E(f) show
peaks near F0. Similarly, both D(f) and Φ(f) show good F2 representations, although
D(f) is corrupted by the strong F0-related modulation in e(t) as d(t) = e(t)× φ(t). The
significant representation of F0 in this near-F2 AN fiber response to a natural vowel is
inconsistent with the synchrony-capture phenomenon for synthetic stationary vowels.

substantial energy near the formant closest to the neuron’s CF. In contrast to S3 Fig, 430

S(f) [and E(f)] shows substantial energy near the fundamental frequency (inconsistent 431

with synchrony capture). A detailed discussion of this discrepancy is beyond the scope 432

of the present report, except to say that this lack of synchrony capture for natural 433

vowels is a consistent finding that will be reported in a future study. The presence of 434

substantial energy near F0 in E(f) indicates that d(t) is corrupted by pitch-related 435

modulation in e(t). This is because, mathematically, D(f) is the convolution of the true 436

TFS spectrum [Φ(f)] and the Hilbert-envelope spectrum [E(f)]. Overall, these results 437

demonstrate the application of various apPSTHs to study the neural representation of 438

natural nonstationary speech stimuli in the spectral domain. 439

Onset envelope is well represented in the sum PSTH but not in 440

the Hilbert-envelope PSTH 441

In addition to analyzing spectral features, apPSTHs can also be used to analyze 442

temporal features in the neural response. An example temporal feature is the onset 443

envelope, which has been shown to be important for neural coding of 444
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Fig 8. p(t), n(t), and s(t) have robust representations of the onset response,
whereas e(t) and d(t) do not. Response of a high-frequency fiber (CF= 5.8 kHz,
SR= 70 spikes/s) to a fricative portion (/s/) of the speech stimulus, s3. Stimulus
intensity = 65 dB SPL. (A) Stimulus (black, labeled Stim), p(t) (blue) and n(t) (red,
flipped along the y-axis). PSTH bin width = 0.5 ms. Number of stimulus repetitions
per polarity = 50. (B) The sum envelope, s(t) (C) The difference PSTH, d(t), and (D)
the Hilbert-envelope PSTH, e(t). Since the onset envelope is a polarity-tolerant
response, all PSTHs capture the response onset except for d(t) and e(t).

consonants (Delgutte, 1980; Heil, 2003), in particular fricatives (Delgutte and Kiang, 445

1984b). A diminished onset envelope in the peripheral representation of consonants is 446

hypothesized to be a contributing factor for perceptual deficits experienced by 447

hearing-impaired listeners (Allen and Li, 2009), and thus is important to quantify. Fig 8 448

shows example onset responses for a high-frequency AN fiber (CF= 5.8 kHz, SR= 70 449

spikes/s) for a fricative (/s/) portion of the speech stimulus s3. The onset is well 450

captured in single-polarity PSTHs [p(t) and n(t), Fig 8A] and in the sum envelope [s(t), 451

Fig 8B]. Since the onset is a polarity-tolerant feature, it is greatly reduced by 452

subtracting the PSTHs to opposite polarities. As a result, response onset is poorly 453

captured in d(t) (Fig 8C) and its Hilbert envelope, e(t) (Fig 8D). 454

Overall, these examples show that apPSTHs can be used to study various spectral 455

and temporal features in neural responses for natural stimuli in the ENV/TFS 456

dichotomy. These apPSTHs are summarized in Table 1 (and illustrated in S1 Fig). 457

Quantifying ENV and TFS using apPSTHs for 458

nonstationary signals 459

In the discussion so far, we have argued for using spectrally specific metrics to analyze 460

neural responses to stationary stimuli. Another example where spectral specificity is 461

needed is in evaluating the neural coding of nonstationary speech features (e.g., formant 462

transitions). Speech is a nonstationary signal and conveys substantial information in its 463

dynamic spectral trajectories (e.g., Fig 1A). A number of studies have investigated the 464

robustness of the neural representation of dynamic spectral trajectories using frequency 465
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Table 1. apPSTH -taxonomy for ENV & TFS

PSTH
name

Notation:
(time,frequency)

Definition ENV and/or TFS
representation

Rectifier
distortion

Comments

Positive p(t), P (f) Positive polarity TFS & ENV Large

Negative n(t), N(f) Negative polarity TFS & ENV Large

Difference d(t), D(f) p(t)−n(t)
2 TFS & ENV Small Includes both the carrier and

sideband components (thus not a
clean representation of TFS)

Sum s(t), S(f) p(t)+n(t)
2 ENV Large Consistent representation of spec-

trally specific modulation strength,
but corrupted by rectifier distortion
at 2×CF

Analytic a(t), A(f) d(t) + H{d(t)} TFS & ENV Small H{·} is the Hilbert transform opera-
tor

Hilbert
envelope

e(t), E(f) |a(t)|/
√

2 ENV Small Polarity-sensitive ENV (subject to
TFS phase locking)

Hilbert
phase

φ(t),Φ(f)
√

2× rms[d(t)]
×cos[∠a(t)]

TFS Small Carrier TFS (subject to TFS phase
locking)

We define apPSTHs as the collection of PSTHs derived using both polarities of the stimulus. The pair of PSTHs, p(t) and
n(t), is a sufficient statistic for apPSTHs since all other PSTHs in the group can be derived from the two. Alternatively, the
pair, d(t) and s(t), is also a sufficient statistic for apPSTHs. Each PSTH (e.g., the positive polarity PSTH) can be expressed
in the time domain [p(t)] or in the frequency domain [P (f)]. A graphical illustration for these apPSTHs is in S1 Fig.

glides and frequency-modulated tones as the stimulus (Billings et al., 2019; Clinard and 466

Cotter, 2015; Krishnan and Parkinson, 2000; Skoe and Kraus, 2010). These studies have 467

usually employed a spectrogram analysis. While a spectrogram is effective for analyzing 468

responses to nonstationary signals with unknown parameters, it does not explicitly 469

incorporate information about the stimulus, which is often designed by the experimenter. 470

Since the spectrogram relies on a narrow moving temporal window, it offers poor 471

spectral resolution due to the time-frequency uncertainty principle. The same limitation 472

applies to wavelet transforms that rely on segmenting the signal into shorter windows, 473

even though window length varies across frequency. Instead of using these 474

windowing-based analyses, frequency demodulation and filtering can be used together to 475

estimate power along a spectrotemporal trajectory more accurately as described below. 476

While this demodulation-based method has been described previously for other 477

signals (Olhede and Walden, 2005), we apply this method to natural speech and extend 478

this approach to construct a new spectrally compact time-frequency representation 479

called the harmonicgram. These spectrally specific analyses will facilitate more sensitive 480

metrics to investigate the coding differences between nonstationary features in natural 481

speech and extensively studied stationary features in synthetic speech. 482

Frequency-demodulation-based spectrotemporal filtering 483

First, we describe the spectrotemporal filtering technique using an example stimulus 484

with dynamic spectral components (Fig 9). The 2-second long stimulus consists of three 485

spectrotemporal trajectories: (1) a stationary tone at 1.4 kHz, (2) a stationary tone at 2 486

kHz, and (3) a dynamic linear chirp that moves from 400 to 800 Hz over the stimulus 487

duration. We are interested in estimating the power of the nonstationary component, 488
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Fig 9. More accurate estimates of power along a spectrotemporal
trajectory can be obtained using frequency demodulation. (A) Spectrogram of
a synthesized example signal that mimics a single speech-formant transition. The 2-s
signal consists of two stationary tones (1.4 and 2 kHz) and a linear frequency sweep
(400 to 800 Hz). Red dashed lines outline the spectrotemporal trajectory along which
we want to compute the power. Both positive and negative frequencies are shown for
completeness. (B) Fourier-magnitude spectrum of the original signal. Energy related to
the target spectrotemporal trajectory is spread over a wide frequency range (400 to 800
Hz, red line). (C) Spectrogram of the frequency-demodulated signal, where the target
trajectory was used for demodulation (i.e., shifted down to 0 Hz). (D) Magnitude-DFT
of the frequency-demodulated signal. The desired trajectory is now centered at 0 Hz,
with its (spectral) energy spread limited only by the signal duration (i.e., equal to the
inverse of signal duration), and hence, is much narrower.

the linear chirp. In order to estimate the power of this chirp, conventional spectrograms 489

will employ one of the following two approaches. First, one can use a long window (e.g., 490

2 seconds) and compute power over the 400-Hz bandwidth from 400 to 800 Hz. In the 491

second approach, one can use moving windows that are shorter in duration (e.g., 50 ms) 492

and compute power with a resolution of 30 Hz (20-Hz imposed by inverse of the window 493

duration and 10-Hz imposed by change in chirp frequency over 50 ms). As an 494

alternative to these conventional approaches, one can demodulate the spectral 495

trajectory of the linear chirp so that the chirp is demodulated to near 0 Hz (Fig 9C and 496

9D, see Materials and Methods). Then, a low-pass filter with 0.5-Hz bandwidth (as 497

determined by the reciprocal of the 2-s stimulus duration) can be employed to estimate 498

the time-varying power along the chirp trajectory. This time-varying power is estimated 499

at the stimulus sampling rate, similar to the temporal sampling of the output of a 500

band-pass filter applied on stationary signals. While the same temporal sampling can be 501

achieved using the spectrogram by sliding the window by one sample and estimating the 502

chirp-related power for each window, it will be computationally much more expensive 503

compared to the frequency-demodulation-based approach. Furthermore, the spectral 504

resolution of 0.5 Hz is the same as that for a stationary signal, which demonstrates a 505

60-fold improvement compared to the 50-ms window-based spectrogram approach. 506
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The harmonicgram for synthesized nonstationary speech 507

As shown in Fig 9, combined use of frequency demodulation and low-pass filtering can 508

provide an alternative to the spectrogram for analyzing signals with time-varying 509

frequency components. Such an approach can also be used to study coding of dynamic 510

stimuli that have harmonic spectrum with time-varying F0, such as music and voiced 511

speech. At any given time, a stimulus with a harmonic spectrum has substantial energy 512

only at multiples of the fundamental frequency, F0, which itself can vary with time [i.e., 513

F0(t)]. We take advantage of this spectral sparsity to introduce a new compact 514

representation, the harmonicgram. Consider the k -th harmonic of F0(t); power along 515

this trajectory [kF0(t)] can be estimated using the frequency-demodulation-based 516

spectrotemporal filtering technique. One could estimate the time-varying power along 517

all integer multiples (k) of F0(t). This combined representation of the time-varying 518

power across all harmonics of F0 is the harmonicgram (see Materials and Methods). 519

This name derives from the fact that this representation uses harmonic number instead 520

of frequency (or spectrum) as in the conventional spectrogram. 521
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Fig 10. The harmonicgram can be used to visualize formant tracking in
synthesized nonstationary speech. Neural harmonicgrams for fibers with a CF
below 1 kHz (A, N=16) and for fibers with a CF between 1 and 2.5 kHz (B, N=29) in
response to the dynamic vowel, s2. Stimulus intensity = 65 dB SPL. The formant
frequencies mimic formant trajectories of a natural vowel (Hillenbrand and Nearey,
1999). A 20-Hz bandwidth was employed to low-pass filter the demodulated signal for
each harmonic. The harmonicgram for each AN-fiber pool was constructed by averaging
the Hilbert-phase PSTHs of all AN fibers within the pool. PSTH bin width = 50 µs.
Data are from one chinchilla. The black, purple and, red lines represent the fundamental
frequency (F0/F0), the first formant (F1/F0) and the second formant (F2/F0) contours,
respectively. The time-varying formant frequencies were normalized by the time-varying
F0 to convert the spectrotemporal representation into a harmonicgram.

Fig 10 shows harmonicgrams derived from apPSTHs in response to the 522

nonstationary synthesized vowel, s2. The first two formants are represented by their 523

harmonic numbers, F1(t)/F0(t) and F2(t)/F0(t), which are known a priori in this case. 524

Two harmonicgrams were constructed using responses from two AN fiber pools: (1) AN 525

fibers that had a low CF (CF < 1 kHz), and (2) AN fibers that had a medium CF (1 526

kHz < CF < 2.5 kHz). Previous neurophysiological studies have shown that AN fibers 527

with CF near and slightly above a formant strongly synchronize to that formant, 528

especially at moderate to high intensities (Delgutte and Kiang, 1984a; Young and Sachs, 529

1979). Therefore, the low-CF pool was expected to capture F1, which changed from 630 530
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Hz to 570 Hz. Similarly, the medium-CF pool was expected to capture F2, which 531

changed from 1200 Hz to 1500 Hz. The harmonicgram for each pool was constructed by 532

using the average Hilbert-phase PSTH, φ(t), of all AN fibers in the pool. The 533

harmonicgram is shown from 38 ms to 188 ms to optimize the dynamic range to visually 534

highlight the formant transitions by ignoring the onset response. The dominant 535

component in the neural response for F1 was expected at the harmonic number closest 536

to F1/F0. For this stimulus, F1/F0 started at a value of 6.3 (630/100) and reached 4.75 537

(570/120) at 188 ms crossing 5.5 at 88.5 ms (Fig 10A). This transition of F1/F0 was 538

faithfully represented in the harmonicgram where the dominant response switched from 539

the 6th to the 5th harmonic near 90 ms. Similarly, F2/F0 started at 12, consistent with 540

the dominant response at the 12th harmonic before 100 ms (Fig 10B). Towards the end 541

of the stimulus, F2/F0 reached 12.5, which is consistent with the near-equal power in 542

the 12th and the 13th harmonic in the harmonicgram. In contrast to findings from 543

previous studies, the harmonicgram for the medium-CF pool indicates that these fibers 544

respond to both the first and second formants (Delgutte and Kiang, 1984a; Miller et al., 545

1997). Such a complex response with components corresponding to multiple formants is 546

likely due to the steep slope of the vowel spectrum (S4 Fig). 547

The harmonicgram for natural speech 548

The harmonicgram analysis is not limited to synthesized vowels, but can also be applied 549

to natural speech (Fig 11). These harmonicgrams were constructed for the natural 550

speech stimulus, s3, using average φ(t) for the same low-CF and medium-CF AN fiber 551

pools used in Fig 10. Here, we consider a 500-ms segment of the stimulus, which 552

contains multiple phonemes. Qualitatively, similar to Fig 10, these harmonicgrams 553

capture formant contours across phonemes. The harmonicgram for the low-CF pool 554

emphasizes the F1 contour, whereas the harmonicgram for the medium-CF pool 555

primarily emphasizes the F2 contour, and to a lesser extent, the F1 contour. Compared 556

to the spectrogram, the harmonicgram representation is more compact and spectrally 557

specific. Furthermore, from a neural-coding perspective, quantifying how individual 558

harmonics of F0 are represented in the response is more appealing than the spectrogram 559

since response energy is concentrated only at these F0 harmonics. 560

The harmonicgram not only provides a compact representation for nonstationary 561

signals with harmonic spectra, it can also be used to quantify coding strength of 562

time-varying features, such as formants for speech (Figs 11E and 11F). In these 563

examples, the strength of formant coding at each time point, t, was quantified as the 564

sum of power in the three harmonics closest to the F0-normalized formant frequency at 565

that time [e.g., F1(t)/F0(t)]. As expected, power for the harmonics near the first 566

formant was substantially greater than for the second formant for the low-CF pool (Fig 567

11E). For the medium-CF pool, F2 representation was robust over the whole stimulus 568

duration, although F1 representation was largely comparable (Fig 11F). These examples 569

demonstrate novel analyses using the apPSTH -based harmonicgram to quantify 570

time-varying stimulus features in single-unit neural responses at high spectrotemporal 571

resolution, which is not possible with conventional windowing-based approaches. 572

The harmonicgram can also be used to analyze FFRs in 573

response to natural speech 574

As mentioned earlier, a major benefit of using apPSTHs to analyze spike trains is that 575

the same analyses can also be applied to evoked far-field potentials. In Fig 12, the 576

harmonicgram analysis was applied to the difference FFR recorded in response to the 577

same speech sentence (s3) that was used in Fig 11. In fact, these FFR data and 578

spike-train data used in Fig 11 were collected from the same chinchilla. The difference 579
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Fig 11. The harmonicgram can be used to quantify the coding of
time-varying stimulus features at superior spectrotemporal resolution
compared to the spectrogram. Harmonicgrams were constructed using φ(t) for the
same two AN-fiber pools described in Fig 10. PSTH bin width = 50 µs. A 9-Hz
bandwidth was employed to low-pass filter the demodulated signal for each harmonic.
The data were collected from one chinchilla in response to the speech stimulus, s3.
Stimulus intensity = 65 dB SPL. A 500-ms segment corresponding to the voiced phrase
“amle” was considered. (A, B) Spectrograms constructed from the average φ(t) for the
low-CF pool (A) and from the medium-CF pool (B). (C, D) Average harmonicgrams for
the same set of fibers as in A and B, respectively. Warm (cool) colors represent regions
of high (low) power. The first-formant contour (F1 in A and B, F1/F0 in C and D) is
highlighted in purple. The second-formant contour (F2 in A and B, F2/F0 in C and D)
is highlighted in red. Trajectories of the fundamental frequency (black in A and B, right
Y axis) and the formants were obtained using Praat (Boersma, 2001). (E, F)
Harmonicgram power near the first formant (purple) and the second formant (red) for
the low-CF pool (E) and the medium-CF pool (F). Harmonicgram power for each
formant at any given time (t) was computed by summing the power in the three closest
F0 harmonics adjacent to the normalized formant contour [e.g., F1(t)/F0(t)] at that
time. The noise floor (NF) for power was estimated as the sum of power for the 29th,
30th, and 31st harmonics of F0 because the frequencies corresponding to these
harmonics were well above the CFs of both fiber pools. These time-varying
harmonicgram power metrics are spectrally specific to F0 harmonics and are computed
with high temporal sampling rate (same as the original signal). This spectrotemporal
resolution is much better than the spectrotemporal resolution that can be obtained
using spectrograms.

FFR was computed as the difference between FFRs to opposite polarities of the 580

stimulus. The spectrogram and harmonicgram can also be constructed using the 581
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Hilbert-phase FFR to highlight the TFS component of the response (S5 Fig). Unlike 582

the apPSTHs for AN fibers, the FFR cannot be used to construct two sets of 583

harmonicgrams corresponding to different populations of neurons because the FFR lacks 584

tonotopic specificity. Nevertheless, this FFR-harmonicgram is strikingly similar to the 585

medium-CF pool harmonicgram in Fig 11D. The dynamic representations of the first 586

two formants are robust in both the representations. In fact, the FFR representations 587

seem more robust in formant tracking compared to PSTH-derived representations, 588

qualitatively, especially for the harmonicgram. A more uniform sample of neurons 589

contribute to evoked responses compared to the AN fiber sample corresponding to Fig 590

11, which could be a factor for the robustness of the FFR representations. Overall, 591

these results reinforce the idea that using apPSTHs to analyze spike trains offers the 592

same spectrally specific analyses that can be applied to evoked far-field potentials, e.g., 593

the FFR, thus allowing a unifying framework to study temporal coding for both 594

stationary and nonstationary signals in the auditory system. 595

Fig 12. The harmonicgram of the FFR to natural speech shows robust
dynamic tracking of formant trajectories, similar to the AN-fiber
harmonicgram. Comparison of the spectrogram (A) and the harmonicgram (B) for
the FFR recorded in response to the same stimulus, s3 that was used to analyze
apPSTHs in Fig 11. Stimulus intensity = 65 dB SPL. Lines and colormap are the same
as in Fig 11. These plots were constructed using the difference FFR, which reflects the
neural coding of both stimulus TFS and ENV. To highlight the coding of stimulus TFS,
Hilbert-phase [φ(t)] FFR can be used instead of the difference FFR (S5 Fig). The FFR
harmonicgram (A) is strikingly similar to the AN-fiber harmonicgrams in Figs 11C and
11D in that the representations of the first two formants are robust. The FFR data here
and spike-train data used in Fig 11 were obtained from the same animal.
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Discussion 596

Use of apPSTHs underlies a unifying framework to study 597

temporal coding in the auditory system 598

A better understanding of the neural correlates of perception requires the integration of 599

electrophysiological, psychophysical, and neurophysiological analyses in the same 600

framework. Although extensive literature exists in both electrophysiology and 601

neurophysiology on the neural correlates of perception, the analyses employed in these 602

studies have diverged. This disconnect is largely because the forms of the neural data 603

are different (i.e., continuous-valued waveforms versus point-process spike trains). The 604

present report provides a unifying framework for analyzing spike trains using apPSTHs, 605

which offers numerous benefits over previous neurophysiological analyses. Specifically, 606

the use of apPSTHs incorporates many of the previous ad-hoc approaches, such as VS 607

and correlograms (Eqs 3 to 5). In fact, correlograms and metrics derived from them can 608

be estimated using apPSTHs in a computationally efficient way. The apPSTHs 609

essentially convert the naturally rectified neurophysiological point-process data into a 610

continuous-valued signal, which allows advanced signal processing tools designed for 611

continuous-valued signals to be applied to spike-train data. For example, apPSTHs can 612

be used to derive spectrally specific TFS components [e.g., φ(t), Fig 6], multitaper 613

spectra (Fig 3), modulation-domain representations (Fig 4), and harmonicgrams (Figs 614

10 and 11). apPSTHs can also be directly compared to evoked far-field responses for 615

both stationary and nonstationary stimuli (e.g., Figs 11 and 12). 616

Temporal coding metrics should be spectrally specific 617

The various analyses explored here advocate for spectral specificity of temporal coding 618

metrics. The need for spectrally specific analyses arises for two reasons: (1) neural data 619

is finite and stochastic, and (2) spike-train data are rectified. Neural stochasticity 620

exacerbates spectral-estimate variance at all frequencies; therefore, time-domain 621

(equivalently broadband) metrics will be noisier compared to narrowband metrics. 622

Similarly, the rectified nature of spike-train data introduces harmonic distortions in the 623

response spectrum, which can corrupt broadband metrics (e.g., TFS distortion at two 624

times the carrier frequency corrupting estimates of ENV coding, Figs 5A and 5B). 625

These issues requiring spectral specificity are not unique to the apPSTH analyses 626

but also apply to classic metrics, e.g., correlograms. For example, the broadband 627

correlation index (CI) metric is appropriate to analyze responses of neurons with high 628

CFs, but the CI metric is corrupted by rectifier distortions for neurons with low 629

CFs (Heinz and Swaminathan, 2009; Joris et al., 2006). Studies have previously tried to 630

avoid these distortions in the sumcor by restricting the response bandwidth to below 631

the CF because, for a given filter, the envelope bandwidth cannot be greater than the 632

filter bandwidth (Heinz and Swaminathan, 2009; Kale and Heinz, 2010). 633

Here, we have extended and generalized the analysis of these issues using 634

narrowband stimuli. In particular, when a neuron responds to low-frequency stimulus 635

energy that is below half the phase-locking cutoff, responses that contain any 636

polarity-tolerant component [e.g., p(t), n(t), s(t), SAC, and sumcor ] will be corrupted 637

by rectifier distortion of the polarity-sensitive component (Fig 5E). Any broadband 638

metric of temporal coding should exclude these distortions at twice the carrier 639

frequency. Beyond avoiding rectifier distortion, limiting the bandwidth of a metric to 640

only the desired bands will lead to more precise analyses by minimizing the effects of 641

neural stochasticity (Fig 5H). For example, envelope coding metrics for SAM-tone 642

stimuli should consider the spectrum power only at Fm and its harmonics (Vasilkov and 643

Verhulst, 2019), rather than the simple approach of always low-pass filtering at 644
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CF (Heinz and Swaminathan, 2009). 645

Similar to envelope-based metrics, metrics that quantify TFS coding should also be 646

spectrally specific to the carrier frequency. Previous metrics of TFS coding, such as d(t) 647

and difcor, are not specific to the carrier frequency but rather include modulation 648

sidebands as well as additional sidebands due to transduction nonlinearities (Fig 6). In 649

contrast, φ(t) introduced here emphasizes the carrier and suppresses the sidebands (Fig 650

6). Thus, the spectrally specific φ(t) is a better TFS response, which relates to the 651

zero-crossing signal used in the signal processing literature (Logan, 1977; Voelcker, 1966; 652

Wiley, 1981). 653

Spectral-estimation benefits of using apPSTHs 654

Neurophysiological studies have usually favored the DFT to estimate the response 655

spectrum. For example, the DFT has been applied to the period histogram (Delgutte 656

and Kiang, 1984a; Young and Sachs, 1979), the single-polarity PSTH (Carney and 657

Geisler, 1986; Miller and Sachs, 1983), the difference PSTH (Sinex and Geisler, 1983), 658

and correlograms (Louage et al., 2004). Since spike-train data are stochastic and usually 659

sparse and finite, there is great scope for spectral estimates, including the DFT 660

spectrum, to suffer from bias and variance issues. The multitaper approach optimally 661

uses the available data to minimize the bias and variance of the spectral 662

estimate (Babadi and Brown, 2014; Percival and Walden, 1993; Thomson, 1982). The 663

multitaper approach can be used with both apPSTHs and correlograms, but using 664

apPSTHs offers additional variance improvement up to a factor of 2 (Fig 3). This 665

improvement is because twice as many tapers (both odd and even) can be used with an 666

apPSTH compared to a correlogram, which is an even sequence and limits analyses to 667

only using even tapers. Additional benefits may be achievable by combining the 668

Lomb-Scargle approach, which is well-suited for estimating the spectrum of unevenly 669

sampled data (e.g., spike trains), with apPSTHs in the multitaper 670

framework (Springford et al., 2020). 671

Benefits of spectrotemporal filtering 672

Analysis of neural responses to nonstationary signals has been traditionally carried out 673

using windowing-based approaches, such as the spectrogram. Shorter windows help with 674

tracking rapid temporal structures, but they offer poorer spectral resolution. On the 675

other hand, larger windows allow better spectral resolution at the cost of smearing rapid 676

dynamic features. As an alternative to windowing-based approaches, spectrotemporal 677

filtering can improve the spectral resolution of analyses by taking advantage of stimulus 678

parameters that are known a priori (Fig 9). This approach is particularly efficient to 679

analyze spectrally sparse signals (i.e., signals with instantaneous line spectra, such as 680

voiced speech). In particular, the spectral resolution is substantially improved compared 681

to the spectrogram. In addition, while the same temporal sampling can be obtained 682

using the spectrogram, it will be much more computationally expensive compared to the 683

spectrotemporal filtering approach, as discussed in the following example. 684

The benefits of spectrotemporal filtering extend to other spectrally sparse signals, 685

like harmonic complexes. A priori knowledge of the fundamental frequency can be used 686

to construct the harmonicgram, which takes advantage of power concentration at 687

harmonics of F0. This approach contrasts with the spectrogram, which computes power 688

at all frequencies uniformly. The harmonicgram can be used to analyze both kinematic 689

synthesized vowels (Fig 10) as well as natural speech (Fig 11). The harmonicgram is 690

particularly useful in quantifying dominant harmonics at high temporal sampling, and is 691

thus applicable to nonstationary signals. The harmonicgram can also be applied to 692

evoked far-field potentials (e.g., the FFR in Fig 12). While alternatives exist to analyze 693
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spike-train data in response to time-varying stimuli (Brown et al., 2002), the present 694

spectrotemporal technique is simpler and can be directly applied to both spike-train 695

data and far-field responses. Overall, these results support the idea that using apPSTHs 696

to analyze spike trains provides a unifying framework to study temporal coding in the 697

auditory system across modalities. Furthermore, this framework facilitates the study of 698

dynamic-stimulus coding by the nonlinear and time-varying auditory system. 699

apPSTHs allow animal models of sensorineural hearing loss to 700

be linked to psychophysical speech-intelligibility models 701

Speech-intelligibility models not only improve our understanding of perceptually 702

relevant speech features, they can also be used to optimize hearing-aid and 703

cochlear-implant strategies. However, existing SI models work well for normal-hearing 704

listeners but have not been widely extended for hearing-impaired listeners. This gap is 705

largely because of the fact that most SI models are based on signal-processing 706

algorithms in the acoustic domain, where individual differences in the physiological 707

effects of various forms of sensorineural hearing loss on speech coding are difficult to 708

evaluate. This gap can be addressed by extending acoustic SI models to the neural 709

spike-train domain. In particular, spike-train data obtained from preclinical animal 710

models of sensorineural hearing loss can be used to explore the neural correlates of 711

perceptual deficits faced by hearing-impaired listeners (Trevino et al., 2019). These 712

insights will be crucial for developing accurate SI models for hearing-impaired listeners. 713

apPSTHs offer a straightforward means to study various speech features in the 714

neural spike-train domain. As apPSTHs are in the same discrete-time continuous-valued 715

form as acoustic signals, acoustic SI models can be directly translated to the neural 716

domain. Many successful SI models are based on the representation of temporal 717

envelope (Jørgensen and Dau, 2011; Relaño-Iborra et al., 2016), although the role of 718

TFS remains a matter of controversy (Lorenzi et al., 2006). In fact, recent studies 719

suggest that the peripheral representation of TFS can shape central envelope 720

representations, and thereby alter speech perception outcomes (Ding et al., 2014; 721

Viswanathan et al., 2019). apPSTHs can be used to derive modulation-domain 722

representations so that envelope based SI models can be evaluated in the neural domain 723

(Fig 4). Similarly, the Hilbert-phase PSTH, φ(t), can be used to evaluate the neural 724

representation of TFS features. These TFS results will be particularly insightful for 725

cochlear-implant stimulation strategies that rely on the zero-crossing component of the 726

stimulus, which closely relates to φ(t)(Chen and Zhang, 2011; Grayden et al., 2004). 727

Translational benefits of animal models 728

A key motivation of this paper was to develop a framework so that insights and findings 729

from animal models can ultimately improve our understanding of how the human 730

auditory system processes real-life sounds, like speech. Experiments involving human 731

subjects are typically limited to far-field responses, such as compound action potentials, 732

frequency-following responses, and auditory brainstem responses. However, these evoked 733

responses include contributions from multiple sources such as the cochlear microphonic, 734

electrical interferences, and responses from several neural substrates (King et al., 2016; 735

Verschooten and Joris, 2014); these contributions are not clearly understood. The 736

apPSTH -based framework offers a straightforward way to study these contributions by 737

comparing anatomically specific spike-train responses with clinically viable noninvasive 738

responses. 739

This framework is also beneficial to develop and validate noninvasive metrics using 740

animal models and apply these metrics to humans. For example, we demonstrated the 741

applicability of the new spectrally compact harmonicgram approach on both spike-train 742
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data and FFR data recorded from chinchillas to evaluate speech coding. This 743

harmonicgram analysis can also be applied to FFR data recorded from humans to study 744

natural speech coding in both normal and impaired auditory systems. Similarly, the 745

representation of other important response features, such as the onset and adaptation, 746

can also be linked between invasive and noninvasive data using pre-clinical animal 747

models of different forms of SNHL. Overall, these insights will be informative for 748

estimating the anatomical and physiological states of humans using noninvasive 749

measures, and how these states relate to individual differences in speech perception that 750

currently challenge audiological rehabilitation. 751

Limitations 752

Biological feasibility 753

The analyses proposed here aim to rigorously quantify the dichotomous ENV/TFS 754

information in the neural response and bridge the definitions between the audio and 755

neural spike-train domains. Methods discussed here may not all be biologically feasible. 756

For example, the brain does not have access to both polarities of the stimulus. Thus, 757

the PSTHs that require two polarities to be estimated, e.g., s(t), d(t), and φ(t), may 758

not have an “internal representation” in the brain. This limitations also applies to 759

correlogram metrics based on sumcor and difcor, which require two polarities of the 760

stimulus. Thus, the use of the single-polarity PSTH [p(t)] to derive the central “internal 761

representations” is more appropriate from a biological feasibility perspective (e.g., Fig 762

4). However, these various ENV/TFS components allow a thorough characterization of 763

the processing of spectrotemporally complex signals by the nonlinear auditory system 764

and can guide the development of more accurate speech-intelligibility models and help 765

improve signal processing strategies for hearing-impaired listeners. 766

Alternating-polarity stimuli 767

Use of two polarities may not be sufficient to separate out all components underlying 768

neural responses when more than two components contribute to neural responses at a 769

given frequency. In particular, it may be intractable to separate out rectifier distortion 770

when the bandwidths of ENV and TFS responses overlap. For example, consider the 771

response of a broadly tuned AN fiber to a vowel, which has a fundamental frequency of 772

F0. The energy at 2F0 in S(f) may reflect one or more of the following sources: (1) 773

rectifier distortion to carrier energy at F0, (2) beating between (carrier) harmonics that 774

are separated by 2F0, and (3) effects of transduction nonlinearities on the beating 775

between (carrier) harmonics that are separated by F0. In these special cases, additional 776

stimulus phase variations can be used to separate out these components (Billings and 777

Zhang, 1994; Lucchetti et al., 2018). 778

The harmonicgram 779

A key drawback of applying the harmonicgram to natural speech is the requirement of 780

knowing the F0 trajectory. F0 estimation is a difficult problem, especially in degraded 781

speech. Thus, the harmonicgram could be inaccurate unless the F0 trajectory is known, 782

or at least the original stimulus is known so that F0 can be estimated. A second 783

confound is the unknown stimulus-to-response latency for different systems. Latencies 784

for different neurons vary with their CF, stimulus frequency, and stimulus intensity. 785

Thus, even if the acoustic spectrotemporal trajectory is known precisely, errors may 786

accumulate if latencies are not properly accounted for. This issue will likely be minor 787

for spectrotemporal trajectories with slow dynamics. For stimuli with faster dynamics, 788
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latency confounds can be easily minimized by estimating stimulus-to-response latency 789

by cross-correlation and using a larger cutoff frequency for low-pass filtering. 790

Materials and Methods 791

Experimental procedures 792

Spike trains were recorded from single AN fibers of anesthetized chinchillas using 793

standard procedures in our laboratory (Henry et al., 2019; Kale and Heinz, 2010). All 794

procedures followed NIH-issued guidelines and were approved by Purdue Animal Care 795

and Use Committee (Protocol No: 1111000123). Anesthesia was induced with xylazine 796

(2 to 3 mg/kg, subcutaneous) and ketamine (30 to 40 mg/kg, intraperitoneal), and 797

supplemented with sodium pentobarbital (∼7.5 mg/kg/hour, intraperitoneal). FFRs 798

were recorded using subdermal electrodes in a vertical montage (mastoid to vertex with 799

common ground near the nose) under the same ketamine/xylazine anesthesia induction 800

protocol described above using standard procedures in our laboratory (Zhong et al., 801

2014). Spike times were stored with 10-µs resolution. FFRs were stored with 48-kHz 802

sampling rate. Stimulus presentation and data acquisition were controlled by custom 803

MATLAB-based (The MathWorks, Natick, MA) software that interfaced with hardware 804

modules from Tucker-Davis Technologies (TDT, Alachua, FL) and National Instruments 805

(NI, Austin, TX). 806

Speech stimuli 807

The following four stimuli were used in these experiments. (s1) Stationary vowel, ∧ (as 808

in cup): F0 was 100 Hz. The first three formants were placed at F1 = 600, F2 = 1200, 809

and F3 = 2500 Hz. The vowel was 188 ms in duration. (s2) Nonstationary vowel, ∧: F0 810

increased linearly from 100 to 120 Hz over its 188-ms duration. The first two formants 811

moved as well (F1: 630→ 570 Hz; F2: 1200→ 1500 Hz; see S4 Fig). F3 was fixed at 812

2500 Hz. The formant frequencies for both s1 and s2 were chosen based on natural 813

formant contours of the vowel ∧ in American English (Hillenbrand et al., 1995; 814

Hillenbrand and Nearey, 1999). s1 and s2 were synthesized using a MATLAB 815

instantiation of the Klatt synthesizer (courtesy of Dr. Michael Kiefte, Dalhousie 816

University, Canada). (s3) A naturally uttered Danish sentence [list #1, sentence #3 in 817

the CLUE Danish speech intelligibility test, (Nielsen and Dau, 2009)]. (s4) A naturally 818

uttered English sentence [Sentence #2, List #1 in the Harvard Corpus, (Rothauser, 819

1969)]. All speech and speech-like stimuli were played at an overall intensity of 60 to 65 820

dB SPL. 821

Power along a spectro-temporal trajectory 822

Consider a known frequency trajectory, ftraj(t), along which we need to estimate power
in a signal, x(t). The phase trajectory, Φtraj(t), can be computed as

Φtraj(t) =

∫ t

0

ftraj(τ)dτ. (8)

For discrete-time signals, the phase trajectory can be estimated as

Φtraj [n] =
1

fs

n∑
m=1

ftraj [m]. (9)

The phase trajectory can be demodulated from x(t) by multiplying a complex 823

exponential with phase = −Φtraj(t) (Olhede and Walden, 2005) 824
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xdemod(t) = x(t) e−2πΦtraj(t). (10)

The power along ftraj(t) in x(t) can be estimated as the power in xdemod(t) within 825

the spectral-resolution bandwidth (W) near 0 Hz in the spectral estimate, Pxdemod
(f). 826

Ptraj = 2

∫ W/2

−W/2
Pxdemod

(f)df. (11)

The scaling factor 2 is required because the integral in Eq 11 only represents the 827

original positive-frequency band of the real signal, x(t); the equal amount of power 828

within the original negative-frequency band, which is shifted further away from 0 Hz by 829

Φtraj(t), should also be included (see Fig 9). 830

The harmonicgram 831

Consider a harmonic complex, x(t), with a time-varying (instantaneous) fundamental 832

frequency, F0(t). For a well-behaved and smooth F0(t), energy in x(t) will be 833

concentrated at multiples of the instantaneous fundamental frequency, i.e., kF0(t). 834

Thus, x(t) can be represented by the energy distributed across the harmonics of the 835

fundamental. The time-varying power along the k-th harmonic of F0(t) can be 836

estimated by first demodulating x(t) with the kF0(t) trajectory using Eq 10, and then 837

using an appropriate low-pass filter to limit energy near 0 Hz (say within ±W/2). We 838

define the harmonicgram as the matrix of time-varying power along all harmonics of the 839

fundamental frequency. Thus, the harmonicgram is 840

harmonicgram(k, t) = LPF [−W/2,W/2]{x(t) e−2πkF0(t)}. (12)
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Supporting information

S1 Text. Classic metrics for quantifying temporal coding in the
auditory system

Various approaches and metrics have been developed to quantify auditory temporal
coding in neurophysiological responses. In this section, we motivate the need for a
unified framework for auditory temporal coding by briefly reviewing these classic
metrics and discussing their benefits and limitations.

Period-histogram based metrics

The ability of AN fibers to follow the temporal structure of an acoustic stimulus has
been known for a long time (Galambos and Davis, 1943). Using tones as stimuli, Kiang
and colleagues showed that AN fibers prefer to discharge spikes around a particular
phase of the stimulus cycle (Kiang et al., 1965). Their analysis was qualitative and
involved the period histogram, which is constructed as the histogram of spike times
modulo the period of one stimulus cycle (e.g., Fig 1D). Rose and colleagues used the
period histogram to quantify the preference of neurons to fire during one half-cycle of a
periodic stimulus (Rose et al., 1967). They introduced a metric, called the coefficient of
synchronization, which is defined as the ratio of the spike count in the most effective
half-cycle to the spike count during the whole stimulus cycle. The coefficient of
synchronization ranges from 0.5 (for a flat period histogram) to 1.0 (for all spikes within
one half-cycle). The coefficient of synchronization does not truly quantify the strength
of phase locking to the stimulus cycle as it does not consider the spread of the period
histogram. For example, two period histograms, one where all spikes occur at the peak
of the stimulus cycle (strong phase locking), and the other where all spikes are
uniformly distributed across one stimulus half-cycle (weak phase locking), will yield the
same coefficient of synchronization of 1.0.

A more sensitive measure of phase locking derived from the period histogram is the
vector strength [VS (Goldberg and Brown, 1969; Greenwood and Durand, 1955)], which
is identical to the synchronization index metric described by Johnson (Johnson, 1980).
VS has been used extensively to quantify phase-locking strength in spike-train
recordings in response to periodic stimuli (Joris et al., 2004; Palmer and Russell, 1986),
including stationary speech (Young and Sachs, 1979). In this framework, each spike is
treated as a complex vector that has a magnitude of 1 and an angle that is defined by
the spike phase relative to the stimulus phase; VS is defined as the magnitude of the
average of all such vectors for spikes pooled across all stimulus repetitions (S1
Appendix). VS is a biased estimator of the “true” vector strength (Mardia, 1972) and
can reach spuriously high values at low spike counts (Yin et al., 2010). This problem is
avoided by using a modification of the vector strength, called the phase-projected vector
strength (V Spp) (Yin et al., 2010). Similar approaches have been used in
electrophysiological studies (Vinck et al., 2011). V Spp differs from V S in that
trial-to-trial phase consistency is also considered in computing V Spp (S1 Appendix).

Overall, the period histogram and metrics derived from it (V S and V Spp) work well
for applications involving stationary signals with periodic TFS (e.g., tones, Fig. 1D),
ENV (e.g., sinusoidally amplitude-modulated noise), or both (e.g., sinusoidally
amplitude-modulated tones, Fig. 1F). However, the period histogram ignores
nonstationary features in the response that arise from the auditory system. For
example, spikes in the first few stimulus cycles are often ignored while constructing the
period histogram to avoid the nonstationary onset response. Similarly, since spikes
corresponding to different stimulus cycles are wrapped onto a single cycle, effects of
adaptation are not captured in the period histogram. Moreover, its application to
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nonstationary or aperiodic stimuli (e.g., natural speech) is not straightforward.

Peristimulus-time-histogram (PSTH) based metrics

The single-polarity PSTH, p(t), is constructed as the histogram of spike times pooled
across all stimulus repetitions at a certain bin width (e.g., Fig 1C). As the PSTH shows
the rate variation along the course of the stimulus, it captures the onset as well as
adaption effects in the response (Kiang et al., 1965; Westerman and Smith, 1988). p(t)
has been applied to analyze spike trains recorded in response to periodic signals, both in
the temporal and spectral domains (Delgutte, 1980; Palmer et al., 1986; Young and
Sachs, 1979). A limitation of the p(t)-spectrum is that it is corrupted by harmonic
distortions due to the rectified nature of the PSTH response (Young and Sachs, 1979).
For example, the spectrum of a PSTH constructed using spike trains recorded from an
AN fiber in response to a tone (Fc) can show energy at Fc as well as 2Fc even though
the stimulus itself does not have energy at 2Fc. These issues related to rectifier
distortion can be minimized by using both polarities of the stimulus (S1 Fig). Similar to
the period histogram, the PSTH can also be used to derive phase-locking metrics, such
as V S and V Spp. These synchrony-based metrics have been recently overshadowed by
correlogram-based metrics, which are described next, since the synchrony-based metrics
are limited to periodic signals. In contrast, correlogram-based approaches offer more
general metrics to evaluate temporal coding of both periodic and aperiodic stimuli in
the ENV/TFS dichotomy.

Interspike-interval (ISI) based approaches (e.g., correlograms)

Interspike interval histogram analyses were developed to quantify the correlation
between two spike trains, either from the same neuron or from different
neurons (Hagiwara, 1954; Perkel et al., 1967a,b; Rodieck et al., 1962). Interspike
intervals between adjacent spikes (also called first-order intervals) within a stimulus trial
are used to construct per-trial estimates of the ISI histogram, which are then averaged
across trials to form the final first-order ISI histogram (Fig ST1-C). An alternative to
the first-order ISI histogram, called the all-order ISI histogram (or the autocorrelogram),
can be estimated in a similar way with the only difference being the inclusion of
intervals between all spikes within a trial (not only adjacent spikes) to construct the
histogram (Fig ST1-E) (Møller, 1970; Rodieck, 1967). The autocorrelogram has been
used to study the temporal representation of stationary as well as nonstationary
stimuli (Bourk, 1976; Cariani and Delgutte, 1996a,b; Sinex and Geisler, 1981). While
the autocorrelogram is attractive for its simplicity, it is confounded by refractory effects
(Figs ST1-E and ST1-F). In particular, since successive spikes within a single trial
cannot occur within the refractory period, the autocorrelogram shows an artifactual
absence of intervals for delays less than the 0.6-ms refractory period (Fig ST1-E). As a
result, the autocorrelogram spectrum is partly corrupted.

Joris and colleagues extended these ISI-based analyses to remove the confounds of
the refractory effects by including all-order interspike intervals across stimulus trials to
compute a shuffled correlogram (Louage et al., 2004). A shuffled correlogram computed
using spike trains in response to multiple repetitions of a single stimulus from a single
neuron is called the shuffled autocorrelogram (or the SAC, Fig ST1-G). Similarly, a
shuffled correlogram computed using spike trains from different neurons, or for different
stimuli, is called the shuffled cross-correlogram (or the SCC ). The use of across-trial
all-order ISIs provides substantially more smoothing than simple all-order ISIs because
many more intervals are included in the histogram (compare Fig ST1-E with Fig ST1-G,
and Fig ST1-F with Fig ST1-H).
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Fig ST1. The shuffled autocorrelogram is better than the first-order and all-order ISI histogram, both in
the time and frequency domains. Example correlograms (top) and associated spectra (bottom) constructed using spike
trains recorded from an AN fiber (CF = 1.4 kHz, medium SR) in response to a SAM-tone at Fc = CF (50-Hz modulation
frequency or Fm, 0-dB modulation depth, 700-ms duration, 27 repetitions, 50 dB SPL). (A) Autocorrelation function of the
half-wave rectified stimulus. (B) The discrete Fourier transform (DFT) of A. (C) The first-order (FO) ISI histogram. (D)
DFT of C. The first-order ISI histogram poorly captures the carrier (TFS) and fails to capture the modulator (ENV). (E)
The all-order (AO) ISI histogram. (F) DFT of E. The all-order ISI histogram captures both the carrier and modulator despite
being noisy. Both the first-order (C) and the all-order (E) ISI histograms show dips for intervals less than the refractory
period (∼0.6 ms), with the corresponding spectra corrupted by these refractory effects. (G) The shuffled autocorrelogram.
(H) DFT of G. The shuffled autocorrelogram is smoother compared to the other correlograms, which also leads to improved
SNR in the spectrum at both the carrier and modulator frequencies. All these ISI histograms are corrupted by rectifier
distortion at twice the carrier frequency (2Fc). Bin width = 50 µs for histograms in C, E, and G.

In addition, both polarities of the stimulus can be used to separate out ENV and
TFS components from the response. Stimuli with alternating polarities share the same
envelope, but their phases (TFS) differ by a half-cycle at all frequencies. By averaging
shuffled autocorrelograms for both stimulus polarities and shuffled cross-correlograms
for opposite stimulus polarities, the polarity-tolerant (ENV) correlogram (called the
sumcor) is obtained (Louage et al., 2004) (S4 Appendix). Similarly, the
polarity-sensitive (TFS) correlogram, the difcor, is estimated as the difference between
the average autocorrelogram for both stimulus polarities and the cross-correlogram for
opposite stimulus polarities (S4 Appendix). These functions have been preferred over
PSTH-based analyses for estimating correlation sequences and response
spectra (Cedolin and Delgutte, 2005; Joris et al., 2006; Rallapalli and Heinz, 2016).
Shuffled autocorrelograms have also been used to derive temporal metrics, such as the
correlogram peak-height and half-width, to quantify the strength and precision of
temporal coding in the response, respectively (Louage et al., 2004), including for
nonstationary stimuli (Paraouty et al., 2018; Sayles et al., 2015; Sayles and Winter,
2008). In addition, cross-correlograms have been used to develop metrics to quantify
ENV/TFS similarity between responses to different stimuli recorded from the same
neuron [e.g., speech stimuli (Heinz and Swaminathan, 2009; Rallapalli and Heinz, 2016;
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Swaminathan and Heinz, 2012)], or between responses from different neurons (Heinz
et al., 2010; Joris et al., 2006; Swaminathan and Heinz, 2011).

Although correlogram-based analyses provide a rich set of temporal metrics, they
suffer from three major limitations. First, correlograms discard phase information in the
response. Response phase can convey important information, especially for complex
stimuli, like speech (Delgutte et al., 1998; Greenberg and Arai, 2001; Paliwal and
Alsteris, 2003). Second, metrics derived from the shuffled autocorrelogram and the
sumcor are corrupted by rectifier distortions (e.g., Fig ST1-H). Third, spectral estimates
based on correlograms are appropriate for second-order stationary signals. To
accommodate for nonstationary signals, usually a sliding-window-based approach is
employed where in each temporal window the spectrum and/or correlogram is
computed (Sayles and Winter, 2008). This windowing-based approach faces the classic
problem of a time-frequency resolution trade-off. In addition, the smoothing benefit
provided by the correlogram comes at large computational cost as its computation
requires all-order spike-time differences across all trials. This computation cost scales
quadratically (N2) with the number of spikes (N) and can be cumbersome for large N .
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S1 Appendix. Vector strength metric definitions

Vector Strength. The vector strength (VS ) metric is used to quantify how well spikes
in a spike train are synchronized to a frequency, f (Goldberg and Brown, 1969; Johnson,
1980). Let us denote a spike train with N spikes as ζ such that ζ = {t1, t2, ..., tN} and
the {ti}s are individual spike times. To compute the vector strength, these spike times
are first transformed onto the unit circle such that ti maps to zi as

zi = e2πfti .

The mean of the set of complex vectors corresponding to all N spikes is

ρ(f) =
1

N

N∑
i=1

zi =
1

N

N∑
i=1

e2πfti . (13)

Then, VS at frequency f is defined as the magnitude of ρ(f).

V S(f) = |ρ(f)|

=

∣∣∣∣∣ 1

N

N∑
i=1

zi

∣∣∣∣∣
=

∣∣∣∣∣ 1

N

N∑
i=1

[cos(2πfti) +  sin(2πfti)]

∣∣∣∣∣
=


[

1

N

N∑
i=1

cos(2πfti)

]2

+

[
1

N

N∑
i=1

sin(2πfti)

]2


1
2

(14)

Phase-projected Vector Strength. The phase-projected vector strength (V Spp) is
identical to the VS for a single spike train (i.e., for a single stimulus repetition), but
these metrics differ when multiple (R) stimulus repetitions are used. V Spp is
advantageous relative to V S when there are relatively fewer spikes per repetition (Yin
et al., 2010). To estimate V Spp at frequency f , the magnitude (i.e., V S) and phase
[φr(f)] of the mean complex vector are first calculated for individual repetitions using
Eqs 13 and 14 (instead of pooling spike times across all R repetitions). The
per-repetition VS estimates, called V Sr(f), are weighted by the cosine of the phase
difference between φr(f) of the repetition and the mean phase based on all spikes from
all repetitions, φref (f), to estimate the phase-projected vector strength, V Srpp(f), for the
repetition.

V Srpp(f) = V Sr(f) cos
[
φr(f)− φref (f)

]
,

where φr(f) for repetition r with Nr spikes {tr1, tr2, ..., trNr
} is computed as

φr(f) = tan−1

∑Nr

i=1 sin(2πftri )∑Nr

i=1 cos(2πft
r
i )
,

and φref (f) is computed using all spikes across all R repetitions as

φref (f) = tan−1

∑R
r=1

∑Nr

i=1 sin(2πftri )∑R
r=1

∑Nr

i=1 cos(2πft
r
i )
.

V Spp(f) for R repetitions is computed as the mean V Srpp(f) across all repetitions,

V Spp(f) =
1

R

R∑
i=1

V Srpp(f).
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S2 Appendix. Relation between the vector strength metric and
the difference PSTH

Let us assume that we have R sets of spike trains {ζ
i
} : i ∈ [1, .., R] for a tone stimulus

with duration D and frequency f0. Let the corresponding PSTH be p(t), and the total
number of spikes be N .

In Eq 13,
∑N
i=1 e

2πfti can be written as (van Hemmen, 2013)

N∑
i=1

e2πfti =

∫ D

t=0

p(t)e2πftdt. (15)

Using Eq 15 in Eq 13, we get

ρ(f) =
1

N

∫ D

t=0

p(t)e2πftdt

=⇒ ρ(f0) =
1

N

∫ D

t=0

p(t)e2πf0tdt. (16)

If we assume response phase locking to positive and negative polarity of a sinusoid
(f0) differ by a phase of π [i.e., a time difference of T0/2(= 1/2f0) such that
p(t) ' n(t)e2πfT0/2], we can write

ρ(f) =
1

N

∫ D

t=0

p(t)e2πftdt

=
1

N

∫ D

t=0

n(t)e2πfT0/2e2πftdt. (17)

For f 6= f0, the integral in Eq 17 will be zero. For f = f0,

ρ(f0) =
1

N

∫ D

t=0

n(t)e2πf0
1
f0

1
2 e2πf0tdt

=
1

N

∫ D

t=0

n(t)eπe2πf0tdt

=⇒ ρ(f0) =
1

N

∫ D

t=0

−n(t)e2πf0tdt. (18)

Adding Eqs. 16 and 18, we get

2ρ(f0) =
1

N

∫ D

t=0

[p(t)− n(t)] e2πf0tdt

=
1

N

∫ D

t=0

2d(t)e2πf0tdt

=⇒ ρ(f0) =
1

N

∫ D

t=0

d(t)e2πf0tdt

=
D(−f0)

N
,

where D(f) =
∫D
t=0

d(t)e−2πftdt is the Fourier transform of d(t). Since d(t) is a real
signal, |D(f)| = |D(−f)|. Thus, the relation between VS and the difference PSTH
becomes,

V S(f) = |ρ(f)| = |D(f)|
N

. (19)
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S3 Appendix. Relation between shuffled correlograms and
apPSTHs

Consider X: a set of TX spike trains {ζ1, ζ2, ..., ζTX
} in response to a stimulus of

duration D. For each spike train ζi, we can construct a PSTH, xi, with PSTH bin
width ∆ so that the length of the single-trial PSTH xi is M = D/∆. The single-trial
PSTH is a binary-valued vector because each element in the vector is either 0 or 1. Let
us denote the PSTH for X by PSTHX such that PSTHX =

∑TX

i=1 xi. Consider Y:
another set of TY spike trains, with yi and PSTHY defined similarly to xi and
PSTHX , respectively. Let us assume that the stimulus duration and bin width for yi
are the same as that for xi. Let the average discharge rates (in spikes/s) for X and Y be
rX and rY , respectively. The shuffled cross-correlogram (SCC ) for two spike trains ζi
and ζj computed using tallying (Louage et al., 2004) is identical to the cross-correlation

function (denoted by RXY) between their respective PSTHs, (xi and xj). Thus, the raw

(not normalized) shuffled cross-correlogram (SCCraw) at τ delay can be computed as

SCCrawX,Y (τ) = RXY(x1, {y1, y2, ..., yTY
}) + ...+RXY(xTX

, {y1, y2, ..., yTY
})

= RXY(x1, [y1 + y2 + ...+ yTY
]) + ...+ (20)

RXY(xTX
, [y1 + y2 + ...+ yTY

])

=

TX∑
i=1

TY∑
j=1

RXY(xi, yj)

= RXY(PSTHX , PSTHY )

=⇒ SCCnormX,Y (τ) =
RXY(PSTHX , PSTHY )

TXTY rXrYD∆
, (21)

where SCCnorm is the normalized SCC (Heinz and Swaminathan, 2009; Louage et al.,
2004).

Similarly, the raw shuffled autocorrelogram (SACraw) at τ delay can be computed
as,

SACrawX (τ) = RXY(x1, {x2, x3, ..., xTX
}) +RXY(x2, {x1, x3, ..., xTX

}) + ...

+RXY(xTX
, {x1, x2, ...+ xTX−1})

= RXY(x1, [x2 + x3 + ...+ xTX
]) +RXY(x2, [x1 + x3 + ...+ xTX

])

+ ...+RXY(xTX
, [x1 + x2 + ...+ xTX−1])

=

TX∑
i=1

TX∑
j=1,j 6=i

RXY(xi, xj)

=

TX∑
i=1

TX∑
j=1

RXY(xi, xj)−
TX∑
i=1

RXY(xi, xi)

= RX (PSTHX)−
TX∑
i=1

RX (xi)

=⇒ SACnormX (τ) =
RX (PSTHX)−

∑TX

i=1RX (xi)

TX(TX − 1)r2
XD∆

, (22)

where RX denotes the autocorrelation function. Similar to autocorrelation functions,
the SACnorm has its maximum at zero delay.

In the numerator of Eq 22, the term
∑TX

i=1RX (xi) is negligible compared to

RX (PSTHX) for τ 6= 0. For τ = 0,
∑TX

i=1RX (xi) is equal to the total number of spikes
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(N) in X. Thus, Eq 22 can be further approximated by,

SACnormX (τ) ' RX (PSTHX)−Nδ(τ)

TX(TX − 1)r2
XD∆

(23)

=
RX (PSTHX)

TX(TX − 1)r2
XD∆

− δ(τ)

(TX − 1)rX∆

' RX (PSTHX)

T 2
Xr

2
XD∆

− δ(τ)

TXrX∆
(24)

where N = rXDTX , and δ is the Dirac delta function. The simplifying approximation
in Eq 24 is valid for typically used TX values in neurophysiological experiments, and
equates the normalization factors between SACs and SCCs when working with difcor
and sumcor (e.g., S4 Appendix). Eqs 21 to 24 indicate that correlograms can be
computed much more efficiently using apPSTHs instead of by tallying spike times
[O(N) instead of O(N2), see main text].
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S4 Appendix. Relation between difcor/sumcor and
difference/sum PSTHs

Consider X+: spike trains in response to the positive polarity of a stimulus, and X−:
spike trains in response to the negative polarity of the stimulus. Then, the difcor at τ
delay can be computed as

difcorX(τ) =
1

2

[
SACnormX+

+ SACnormX−

2
−
SCCnormX+,X− + SCCnormX−,X+

2

]
=

1

4

[
SACnormX+

+ SACnormX−
− SCCnormX+,X− − SCC

norm
X−,X+

]

For analytic simplicity, we use Eq 24 for SACnorm instead of Eq 22. Let us assume
that the number of repetitions and average rates for both polarities are the same. Thus,

difcorX(τ) =
1

4K
[RX (PSTHX+)−Nδ(τ) +RX (PSTHX−)−Nδ(τ)

−RXY(PSTHX+
, PSTHX−)−RXY(PSTHX− , PSTHX+

)],

where K = T 2
Xr

2
XD∆ is a constant. Now, PSTHX+

= p(t), PSTHX− = n(t), and the
difference PSTH d(t) = [p(t)− n(t)] /2. Then, the difcor for X at delay τ is

difcorX(τ) =
1

4K
{RX [p(t)] +RX [n(t)]−RXY [p(t), n(t)]−RXY [n(t), p(t)]}

− Nδ(τ)

2K

Now,

RX [p(t)] +RX [n(t)]−RXY [p(t), n(t)]−RXY [n(t), p(t)]

=

∫ D

t=0

p(t)p(t− τ)dt+

∫ D

t=0

n(t)n(t− τ)dt−
∫ D

t=0

p(t)n(t− τ)dt−
∫ D

t=0

n(t)p(t− τ)dt

=

∫ D

t=0

p(t) [p(t− τ)− n(t− τ)] dt−
∫ D

t=0

n(t) [p(t− τ)− n(t− τ)] dt

=

∫ D

t=0

2p(t)d(t− τ)dt−
∫ D

t=0

2n(t)d(t− τ)dt

=

∫ D

t=0

2 [p(t)− n(t)] d(t− τ)dt

=

∫ D

t=0

4d(t)d(t− τ)dt

= 4RX [d(t)]
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Thus,

difcorX(τ) =
1

4K
{RX [p(t)] +RX [n(t)]−RXY [p(t), n(t)]−RXY [n(t), p(t)]}

− Nδ(τ)

2K

=
1

4K
× 4RX [d(t)]− Nδ(τ)

2K

=
RX [d(t)]

K
− Nδ(τ)

2K

=
RX [d(t)]

T 2
Xr

2
XD∆

− rXDTXδ(τ)

2T 2
Xr

2
XD∆

=⇒ difcorX(τ) =
RX [d(t)]

T 2
Xr

2
XD∆

− δ(τ)

2TXrX∆
(25)

Similarly, it can be shown that

sumcorX(τ) =
1

2

[
SACnormX + SCCnormX+,X−

]
=

1

2

[
SACnormX+

+ SACnormX−

2
+
SCCnormX+,X− + SCCnormX−,X+

2

]
=

1

4K
× 4RX [s(t)]− Nδ(τ)

2K

=
RX [s(t)]

K
− Nδ(τ)

2K

=⇒ sumcorX(τ) =
RX [s(t)]

T 2
Xr

2
XD∆

− δ(τ)

2TXrX∆
(26)

where s(t) is the sum PSTH, i.e., s(t) = [p(t) + n(t)]/2.
Eqs 25 and 26 indicate that sumcor and difcor are related to the autocorrelation

function of the sum and difference PSTHs, respectively, and thus can be computed
much more efficiently [O(N) rather than O(N2)].
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S5 Appendix. Relation between shuffled-correlogram
peak-height and apPSTHs

Consider a difference PSTH, d(t), based on a set of spike trains X in response to a
stimulus of duration D. Let us denote the Fourier transform of d(t) by D(f). Then,
from Eq 25, the difcor peak-height, i.e., difcor value at zero delay (τ), can be computed
as

difcorX(τ = 0) =
RX {d(t)}
K

∣∣∣∣
τ=0

− Nδ(τ)

2K

∣∣∣∣
τ=0

=
1

K

∫ D

t=0

d2(t)dt− N

2K

=
1

K

∫ ∞
f=−∞

|D(f)|2 df − N

2K
, (by Parseval’s theorem) (27)

Following similar steps from Eq 26, it can also be shown that the sumcor
peak-height can be computed as

sumcorX(τ = 0) =
1

K

∫ ∞
f=−∞

|S(f)|2 df − N

2K
(28)

where S(f) is the Fourier transform of the sum PSTH, s(t).
Comparing Eq 19 with Eqs. 27 and 28, we see that vector strength is a

frequency-specific metric, whereas correlogram peak-heights are broadband measures,
which are thus susceptible to rectifier distortion (see Fig 5).
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S1 Table. Glossary of terms and definitions

S1 Table. Glossary of terms and definitions.

Term Definition

Electrophysiology Studies that record and analyze far-field (gross) potentials, e.g., electroencephalography

Neurophysiology Studies that record and analyze spike-train data from neurons, e.g., AN fiber spike trains

Stationarity

A signal is stationary when the signal parameters do not change over time. For example, a
stochastic signal like white Gaussian noise is stationary if the amplitude probability density
function is constant across time. Similarly, a deterministic pure tone can be considered an
example of a stationary sinusoidal process with a particular amplitude, frequency, and initial
phase.

Second-order stationarity
A stochastic signal is second-order stationary if its mean and autocorrelation function do
not change over time. Second-order stationarity is also referred to as wide-sense stationarity.

Linearity

A system is linear if it obeys the rules of superposition. For example, consider a system for
which inputs x1 and x2 evoke responses y1 and y2, respectively. Then, the system is linear
if the response to input ax1 + bx2 is ay1 + by2. An auditory corollary of linearity is that a
linear system (e.g., the ear canal) processes sound in the same way at soft and loud sound
levels, which means that for every dB increase in the input, the output is increased by the
same dB.

Time invariance
A system is time invariant if its parameters (e.g., gain at all frequencies) do not change over
time

Periodic signal A perfectly repeating signal, e.g., a tone, or a synthetic vowel with constant pitch

Aperiodic signal A signal that does not repeat, e.g., white Gaussian noise

Polarity-tolerant response Response component that does not depend on stimulus polarity, e.g., the onset response

Polarity-sensitive response
Response component that depends on stimulus polarity, e.g., phase-locked spike trains in
response to a low-frequency tone

Even sequence x[n] is even if x[n] = x[−n]

Odd sequence x[n] is odd if x[n] = −x[−n]

List of terms with definitions that are frequently used in the present report.
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S2 Table. Parameters for the AN model

S2 Table. AN model parameters.

Parameter Value

Sampling Frequency 100 kHz

Number of Repetitions (per polarity) 25

Spontaneous firing rate (SR) 70 spikes/s

Absolute refractory period 0.6 ms

Baseline mean relative refractory period 0.6 ms

OHC health value 1.0 (normal)

IHC health value 1.0 (normal)

Species 1 (cat)

Fractional Gaussian noise type 0 (fixed)

Implementation type of the power-law functions in the Synapse 0 (approximate)

Spike time resolution 10 µs

List of parameters used in the AN model to generate simulated spike-train data.
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S1 Fig. Graphical illustration of apPSTHs in Table 1
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S1 Fig. Graphical illustration of apPSTHs in Table 1. Graphical illustration
for several apPSTHs for a simple half-wave rectifying model. A SAM tone (carrier =
100 Hz, modulation frequency = 20 Hz, sampling frequency = 1 kHz, duration = 1 s)
was used as the stimulus, although for clarity only the first 100-ms are shown in time.
Note that rectifier distortions occur at even harmonics of the carrier for P (f), N(f),
and S(f), but not for D(f), E(f), or Φ(f).
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S2 Fig. Nonlinear inner-hair-cell transduction function
introduces additional sidebands in the spectrum for a SAM
tone.
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S2 Fig. Nonlinear inner-hair-cell transduction function introduces
additional sidebands in the spectrum for a SAM tone. (A) Waveform for a
SAM tone (Fc=1 kHz, Fm=100 Hz, 0-dB modulation depth). (B) D(f) and S(f) for
the SAM tone in A. (C) Waveform of the output after processing the SAM tone through
a sigmoid function. The sigmoid function was used as a simple proxy for the
inner-hair-cell transduction function. This output (vIHC) was further low-pass filtered
at 2 kHz to mimic the membrane properties of inner hair cells. (D) D(f) and S(f) for
the signal in C. In addition to having power at Fc and Fc ± Fm, D(f) for vIHC has
substantial energy at Fc ± 2Fm (plus reduced energy at higher multiple Fm-offsets from
Fc). Similarly, S(f) for vIHC has substantial energy at Fm as well as at the first few
harmonics of Fm. S(f) is also corrupted by rectifier distortion at 2Fc (and multiple
Fm-offsets from 2Fc) as expected.
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S3 Fig. Neural characterization of ENV and TFS using
apPSTHs for a synthesized stationary vowel
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S3 Fig. Spectral-domain application of various apPSTHs to spike trains
recorded in response to a stationary vowel. Example of spectral analyses of spike
trains recorded from an AN fiber (CF= 530 Hz, SR=90 spikes/s) in response to a
synthesized stationary vowel (s1 described in Materials and Methods, fundamental
frequency: F0 = 100 Hz, first formant: F1 = 600 Hz). (A) Time-domain representation
of p(t), n(t), and the stimulus (Stim). n(t) is flipped along the y-axis for display.
Signals outside the analysis window are shown in gray. PSTH bin width = 0.1 ms.
Number of stimulus repetitions per polarity = 30. Stimulus intensity = 65 dB SPL. (B)
Stimulus spectrum (blue, left yaxis). In panels B-E, the frequency-threshold tuning
curve (TC θ, black) of the neuron is plotted on the right y-axis. The neuron’s CF was
close to the first stimulus formant. (C) P (f), which shows a strong response to the 6th
harmonic (first formant) and the 12th harmonics (due to rectifier distortion). (D)
Spectra for difference [D(f), green] and sum [S(f), purple] PSTHs. D(f) shows a clear
peak at the 6th harmonic and little energy near the 12th harmonic. Similar to P (f),
S(f) shows substantial energy at twice the TFS (F1) frequency due to rectifier
distortion. (E) Spectra of Hilbert-based TFS PSTH [Φ(f), green]. P (f) and S(f) are
corrupted by rectifier distortion at 2F1 frequency. The response primarily reflects
TFS-based F1 coding (E) and little envelope coding (D), which is consistent with the
“synchrony-capture” phenomenon for stationary vowel coding (Delgutte and Kiang,
1984a; Young and Sachs, 1979). Note that E(f) is not shown because e(t) was
essentially flat across the vowel duration, and therefore had little energy other than at 0
Hz.

December 22, 2020 51/53

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.07.17.208330doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.208330
http://creativecommons.org/licenses/by/4.0/


S4 Fig. DFT-magnitude for the nonstationary vowel, s2.
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S4 Fig. DFT-magnitude for the nonstationary vowel, s2. The stimulus
duration was 188 ms. The movements of F0 (100 to 120 Hz), F1 (630 to 570 Hz), and
F2 (1200 to 1500 Hz) are indicated by arrows. F3 was fixed at 2500 Hz.
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S5 Fig. FFR harmonicgram constructed using the Hilbert-phase
FFR.

S5 Fig. FFR harmonicgram can be constructed using the Hilbert-phase
response. Same format as Fig 12. The spectrogram (A) and the harmonicgram (B)
were constructed using φ(t).
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