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Abstract

Significant scientific and translational questions remain in auditory neuroscience
surrounding the neural correlates of perception. Relating perceptual and neural data
collected from humans can be useful; however, human-based neural data are typically
limited to evoked far-field responses, which lack anatomical and physiological specificity.
Laboratory-controlled preclinical animal models offer the advantage of comparing
single-unit and evoked responses from the same animals. This ability provides
opportunities to develop invaluable insight into proper interpretations of evoked
responses, which benefits both basic-science studies of neural mechanisms and
translational applications, e.g., diagnostic development. However, these comparisons
have been limited by a disconnect between the types of spectrotemporal analyses used
with single-unit spike trains and evoked responses, which results because these response
types are fundamentally different (point-process versus continuous-valued signals) even
though the responses themselves are related. Here, we describe a unifying framework to
study temporal coding of complex sounds that allows spike-train and evoked-response
data to be analyzed and compared using the same advanced signal-processing
techniques. The framework uses alternating-polarity peristimulus-time histograms
computed from single-unit spike trains to allow advanced spectral analyses of both slow
(envelope) and rapid (temporal fine structure) response components. Demonstrated
benefits include: (1) novel spectrally specific temporal-coding measures that are less
corrupted by analysis distortions due to hair-cell transduction, synaptic rectification,
and neural stochasticity compared to previous metrics, e.g., the correlogram peak-height,
(2) spectrally specific analyses of spike-train modulation coding (magnitude and phase),
which can be directly compared to modern perceptually based models of speech
intelligibility (e.g., that depend on modulation filter banks), and (3) superior spectral
resolution in analyzing the neural representation of nonstationary sounds, such as
speech and music. This unifying framework significantly expands the potential of
preclinical animal models to advance our understanding of the physiological correlates
of perceptual deficits in real-world listening following sensorineural hearing loss.

Author summary

Despite major technological and computational advances, we remain unable to match
human auditory perception using machines, or to restore normal-hearing communication
for those with sensorineural hearing loss. An overarching reason for these limitations is
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that the neural correlates of auditory perception, particularly for complex everyday
sounds, remain largely unknown. Although neural responses can be measured in
humans noninvasively and compared with perception, these evoked responses lack the
anatomical and physiological specificity required to reveal underlying neural
mechanisms. Single-unit spike-train responses can be measured from preclinical animal
models with well-specified pathology; however, the disparate response types
(point-process versus continuous-valued signals) have limited application of the same
advanced signal-processing analyses to single-unit and evoked responses required for
direct comparison. Here, we fill this gap with a unifying framework for analyzing both
spike-train and evoked neural responses using advanced spectral analyses of both the
slow and rapid response components that are known to be perceptually relevant for
speech and music, particularly in challenging listening environments. Numerous benefits
of this framework are demonstrated here, which support its potential to advance the
translation of spike-train data from animal models to improve clinical diagnostics and
technological development for real-world listening.

Introduction

Normal-hearing listeners demonstrate excellent acuity while communicating in complex
environments. In contrast, hearing-impaired listeners often struggle in noisy situations,
even with state-of-the-art intervention strategies (e.g., digital hearing aids). In addition
to improving our understanding of the auditory system, the clinical outcomes of these
strategies can be improved by studying how the neural representation of complex
sounds relates to perception in normal and impaired hearing. Numerous
electrophysiological studies have explored the neural representation of perceptually
relevant sounds in humans using evoked far-field recordings, such as frequency following
responses (FFRs) and electroencephalograms (Clinard et al 2010; [Kraus et al., 2017}
Tremblay et al., [2006). Note that we use electrophysiology and neurophysiology to refer
to evoked far-field responses and single-unit responses, respectively (see for
glossary). While these evoked responses are attractive because of their clinical viability,
they lack anatomical and physiological specificity. Moreover, the underlying
sensorineural hearing loss pathophysiology is typically uncertain in humans. In contrast,
laboratory-controlled animal models of various pathologies can provide specific neural
correlates of perceptual deficits that humans experience, and thus hold great scientific
and translational (e.g., pharmacological) potential. In order to synergize the benefits of
both these approaches to advance basic-science and translational applications to
real-world listening, two major limitations need to be addressed.

First, there exists a significant gap in relating spike-train data recorded invasively
from animals and evoked noninvasive far-field recordings feasible in humans (and
animals) because the two signals are fundamentally different in form (i.e., binary-valued
point-process data versus continuous-valued signals). While the continuous nature of the
evoked-response amplitude allows for any of the advanced signal-processing techniques
developed for continuous-valued signals to be applied [e.g., multitaper approaches to
robust spectral estimation (Thomsonl [1982)], spike-train analyses have been much more
limited (e.g., in their application to real-world signals, as reviewed in S1 Text). This is a
critical gap because most perceptual deficits and machine-hearing limits occur for speech
in noise rather than for speech in quiet (Moore, 2007 [Scharenborg, [2007)). For example,
classic neurophysiological studies have quantified the temporal coding of stationary and
periodic stimuli using metrics such as vector strength [VS (Goldberg and Brownl, [1969}
Joris and Yin| [1992; Rees and Palmer]| [1989))], whereas more recent correlogram analyses
have provided temporal-coding metrics for nonperiodic stimuli, such as noise (Joris
et al 2006; Louage et al., [2004)). However, as reviewed in S1 Text these metrics can be
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influenced by distortions from nonlinear cochlear processes (Heinz and Swaminathan),
2009; 'Young and Sachs| [1979)), and often ignore response phase information that is likely
to be perceptually relevant for simple tasks (Colburn et al., 2003)) as well as for speech
intelligibility (Paliwal and Alsteris, |2003; |Relano-Iborra et al., [2016).

A second important gap exists because current spectrotemporal tools to evaluate
temporal coding in the auditory system are largely directed at processing of stationary
signals by linear and time-invariant systems. However, the auditory system exhibits an
array of nonlinear (e.g., two-tone suppression, compressive gain, and rectification) and
time-varying (e.g., adaptation and efferent feedback) mechanisms (Heil and Peterson),
2015; [Sayles and Heinzl [2017). These mechanisms interact with nonstationary stimulus
features (e.g., frequency transitions and time-varying intensity fluctuations, Figs and
11B) to shape the neural coding and perception of these signals (Delgutte, 1997}
Hillenbrand and Neareyl 1999; Nearey and Assmannl [1986). In fact, the response of an
auditory-nerve (AN) fiber to even a simple stationary tone shows nonstationary
features, such as a sharp onset and adaptation (Fig ), illustrating the need for
nonstationary analyses of temporal coding. However, the extensive single-unit speech
coding studies using classic spike-train metrics have typically been limited to
synthesized and stationary speech tokens, which has deferred the study of the rich
kinematics present in natural speech (Delguttel [1980; [Sinex and Geisler, |1983; [Young
and Sachs| |1979). Some windowing-based approaches have been used to study
time-varying stimuli and responses (Cariani and Delgutte, |1996a; |[Sayles and Winter),
2008)), but the approaches used have imposed a limit on the temporal and spectral
resolution with which dynamics of the auditory system can be studied.

The present study focuses on developing spectrotemporal tools to characterize the
neural representation of kinematics naturally present in real-world signals, speech in
particular, that are appropriate for the nonlinear and time-varying auditory system. We
describe a unifying framework to study temporal coding in the auditory system, which
allows direct comparison of single-unit spike-train responses with evoked far-field
recordings. In particular, we demonstrate the unifying merit of using
alternating-polarity peristimulus time histograms (apPSTHs, Table , a collection of
PSTHs obtained from responses to both positive and negative polarities of the stimulus.
By using both polarities, neural coding of natural sounds can be studied using the
common temporal dichotomy between the slowly varying envelope (ENV) and rapidly
varying temporal fine structure (TFS) (Figs[IE and [I[F), which has been especially
relevant for speech-perception studies (Shannon et al., [1995; [Smith et al.; |2002)). We
derive explicit relations between apPSTHs and existing metrics for quantifying temporal
coding in auditory neurophysiology (reviewed in S1 Text), namely VS and correlograms,
to show that no information is lost by using apPSTHs. In fact, the use of apPSTHs is
computationally more efficient, provides more precise spectral estimators, and opens up
new avenues for perceptually relevant analyses that are otherwise not possible. Next, an
apPSTH-based ENV/TFS taxonomy is presented, including existing and new metrics.
This taxonomy allows for spectrally specific analyses that avoid analysis distortions due
to inner-hair-cell transduction and synaptic rectification processes, resulting in more
accurate characterizations of temporal coding than with previous metrics. Finally, these
methods are extended in novel ways to include the study of nonstationary signals at
superior spectrotemporal resolution compared to conventional windowing-based
approaches, like the spectrogram or wavelet analysis.
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A unified framework for quantifying temporal coding

based on alternating-polarity PSTHs (apPSTHSs)

In this section, we first show that apPSTHs can be used to unify classic metrics, e.g., VS
and correlograms (reviewed in S1 Text), in a computationally efficient manner. Then,
we show that apPSTHs offer more precise spectral estimates compared to correlograms,
and allow for perceptually relevant analyses that are not possible with classic metrics.

500 1000

1500 2000

Time (ms)

55 ¢ C - E
20t
15t
—~ 10}
=
o]
3 O
9
= 0
o
% >0 20 40
D
08’,1000-
©
S 800 107
—~u
& 600t 5}
3
= _
GCJ 200 /\/ 5t
140 £ 0 . . . . .
0 0.5 1 15 0 10 20

Fig 1. Neural responses of AN fibers are invariably nonstationary, even when the stimulus is not. (A, B)
Spectrogram and waveform of a speech segment (s4 described in Materials and Methods). Formant trajectories (black lines in
panel A) and short-term intensity (red line in panel B, computed over 20-ms windows with 80% overlap) vary with time,
highlighting two nonstationary aspects of speech stimuli. (C) PSTH constructed using spike trains in response to a tone at
the AN-fiber’s characteristic frequency [CF, most-sensitive frequency; fiber had CF=730 Hz, and was high spontaneous rate
or SR ] Tone intensity = 40 dB SPL. Even though the stimulus is stationary, the response is nonstationary
(i.e., sharp onset followed by adaptation). (D) Period histogram, constructed from the data used in C, demonstrates the
phase-locking ability of neurons to individual stimulus cycles. (E) PSTH constructed using spike trains in response to a
sinusoidally amplitude-modulated (SAM) CF-tone (50-Hz modulation frequency, 0-dB modulation depth, 35 dB SPL) from an
AN fiber (CF = 1.4 kHz, medium SR). (F) Period histogram (for one modulation period) constructed from the data used in E.
The response to the SAM tone follows both the modulator (envelope, red, panels E and F) as well as the carrier (temporal
fine structure), the rapid fluctuations in the signal (blue, panel F). Bin width = 0.5 ms for histograms in C-F. Number of
stimulus repetitions for C and E were 300 and 16, respectively.

apPSTHs permit computationally efficient temporal analyses

Let us denote the PSTHs in response to the positive and negative polarities of a

stimulus as p(t) and n(t), respectively. Then, the sum PSTH, s(t), which represents the

polarity-tolerant component in the response, is estimated as
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s(t) = 2 (1)

The difference PSTH, d(t), which represents the polarity-sensitive component in the
response, is estimated as

d(t) = =—5——. (2)

The difference PSTH has been previously described as the compound PSTH(Goblick
and Pfeiffer, [1969). Here we use the terms sum and difference for s(t) and d(t),
respectively, for clarity. Compared to the spectra of the single-polarity PSTHs [i.e., of
p(t) or n(t)], the spectrum of the difference PSTH, D(f), is substantially less corrupted
by rectifier-distortion analysis artifacts [(Sinex and Geisler} [1983)), also see panels
B and D]. This improvement occurs because even-order distortions, which strongly
contribute to these artifacts, are effectively canceled out by subtracting PSTHs for
opposite polarities. A second way spectral peaks absent in the stimulus can arise in the
p(t)-spectrum is because of propagating combination tones of cochlear origin [e.g.,
distortion products, (Kemp) [1978))]. Unlike rectifier distortion, which is an artifact of
analysis, combination tones are present in the cochlea and can affect perception. As the
phase of these combination tones depends on stimulus polarity (Kemp, [1978), these
perceptually relevant combination tones are captured in the difference PSTH. These
distinct sources are discussed in more detail by Young and Sachs with respect to
analyses of stationary synthesized-vowel responses from AN fibers (Young and Sachs,
1979).

The Fourier magnitude spectrum of the difference PSTH has been referred to as the
synchronized rate. We show that the synchronized rate relates to V.S by

D)
VS(f) =—F«— (3)
where f is frequency in Hz, and N is the total number of spikes (S2 Appendix).

In addition, we demonstrate that the autocorrelogram and the shuffled
autocorrelation (SAC) function of the PSTH are related (S3 Appendix), which leads to
important computational efficiencies. In particular the SAC for a set of M spike trains
X ={x1,29,...,xp} can be estimated as

M
SAC(X) = Rx(PSTHx) - Y Ru(x:), (4)

where Ry is the autocorrelation operator, and PST Hx is the PSTH constructed using
X. Similarly, the SCC for two sets of spike trains X = {x1,22,...,21} and
Y = {y1,92, ..., ym} can be estimated as

SCC(X,Y) = Ray(PSTHx, PSTHy), (5)

where PSTHx and PSTHy are PSTHs constructed using X and Y, respectively, and
Rxy is the cross-correlation operator. Since SACs and SCCs can be computed using
apPSTHs, it follows that sumcor and difcor can also be computed using apPSTHs (S4
Appendix). As apPSTHs can be used to compute correlograms, apPSTHs offer the
same degree of smoothing as correlograms.

Importantly, the use of apPSTHs to compute correlograms is computationally more
efficient compared to the existing correlogram-estimation method, i.e., by tallying all
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interspike intervals. For a fixed stimulus duration and PSTH resolution, estimating the 12
autocorrelation function of the PSTH requires constant time complexity [O(1)]. Thus,
for N spikes, the SAC and SCC can be computed with O(N) complexity that is needed 12

for constructing the PSTH using Eqgs [d and [5} This is substantially better than the 129
O(N?) complexity needed to compute the correlograms by tallying shuffled all-order 130
interspike intervals. For example, consider a spike-train dataset that consists of 50 131
repetitions of a stimulus with 100 spikes per repetition. To compute the SAC using 132
(all-order) ISIs, each spike time (5000 unique spikes) has to be compared with spike 133
times from all other repetitions (4900 spike times). This tallying method requires 134
24.5 x 10% (i.e., 5000 x 4900) operations to compute the SAC, where one operation 135
consists of comparing two spike times and incrementing the corresponding SAC-bin by 13
1. In contrast, only 5000 operations are needed to construct the PSTH for 5000 137
(50 x 100) total spikes. The PSTH can then be used to estimate the SAC with constant 13
time complexity. In addition to their computational efficiency, apPSTHs offer 139
additional benefits for relating single-unit responses to far-field responses, for spectral 140
estimation, and for speech-intelligibility modeling, as discussed below. 141
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Fig 2. apPSTHs can be directly compared to evoked potentials in response
to the same stimulus. (A) Time-domain waveforms for the difference FFR (blue)
and mean difference PSTH [d(¢), red] in response to a Danish speech stimulus, s3
(black). Mean d(t) was computed by taking the grand average of d(t)s from 246 AN
fibers from 13 animals (CFs: 0.2 to 11 kHz). The difference FFR was estimated by
subtracting FFRs to alternating stimulus polarities. (B) Spectra for the signals in A for
a 100-ms segment (purple dashed lines in A). (C) Time-domain waveforms for the sum
FFR (blue) and mean sum PSTH [s(¢), red] for the same stimulus. Both responses show
sharp onsets for plosive (/d/ and /g/) and fricative (/s/) consonants. (D) Spectra for
the responses in C for the same segment considered in B. The mean s(t) was estimated
as the grand average of s(t)s from 246 neurons. Sum FFR was estimated by halving the
sum of the FFRs to both polarities. Stimulus intensity = 65 dB SPL.
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apPSTHs unify single-unit and far-field analyses

The PSTH is particularly attractive because the PSTH from single neurons or a
population of neurons, by virtue of being a continuous signal, can be directly compared
to evoked potentials in response to the same stimulus (e.g., Fig . In this example, the
speech sentence s3 was used to record the frequency following response (FFR) from one
animal. The same stimulus was also used to record spike trains from AN fibers (N=246)
from 13 animals. The mean d(t) and mean s(t) were computed by pooling PSTHs
across all neurons. The difference and sum FFRs were estimated by subtracting and
averaging FFRs to alternating polarities, respectively. This approach of estimating
polarity-tolerant and polarity-sensitive FFR components is well established (Aiken and
Picton), 2008; |Ananthakrishnan et al., [2016; [Shinn-Cunningham et al., 2013)).
Qualitatively, the periodicity information in the mean d(¢) and the difference FFR were
similar (Fig ); this is expected because the difference FFR receives significant
contributions from the auditory nerve (King et al., [2016)). To compare the spectra for
the two responses, a 100-ms segment was considered. The first formant (F7) and the
first few harmonics of the fundamental frequency (Fp) were well captured in both
spectra. F5 was also well captured in the difference FFR, and to a lesser extent, in the
mean d(t).

The mean s(t) and the sum FFR also show comparable temporal features in these
nonstationary responses (Fig ) For example, both responses show sharp onsets for
plosive and fricative consonants. The segment considered in Fig was used to
compare the spectra for the two sum responses. Both spectra show similar spectral
peaks near the first two harmonics of Fy (Fig ), which indicates that pitch-related
periodicity is well captured in both the sum FFR and mean s(t). However, there are
some discrepancies between the relative heights of the first two Fy-harmonics. These
could arise because the average FFR primarily reflects activity of high-frequency
neurons from rostral generators (e.g., the inferior colliculus) (King et all 2016), which

show stronger polarity-tolerant responses compared to the auditory nerve (Joris, [2003).

In contrast, the mean s(t) is based on responses of AN fibers, which show strong
polarity-sensitive responses to Fjy due to tuning-curve tail responses at high sound levels
like that used here. These tail responses contribute to power at 2F; as rectifier
distortion. Other potential sources that can contribute to any far-field evoked response
include receptor potentials (e.g., cochlear microphonic) and electrical interference.
Cochlear microphonic is substantially reduced in the sum responses, although it may
not be completely removed (Lichtenhan et al., 2013} [Verschooten and Joris| 2014).
However, cochlear microphonic should contribute to the second harmonic of the
sum-FFR spectrum, and therefore does not explain the relative lack of salience for 2Fj
in the sum-FFR spectrum. Electrical interference had insignificant effect on these FFR
data [Fig 2 in (Parida and Heinz, 2020)]. However, in general, these sources can
substantially contribute to evoked responses, such as the compound action potential,
and thus should be considered when comparing these evoked responses with invasive
spike-train data (Verschooten and Joris, [2014). In this regard, using the apPSTH-based
framework to analyze invasive spike-train recordings allows direct comparison of invasive
single-unit data with noninvasive continuous-valued evoked potentials and evaluation of
the neural origins of evoked responses.

Variance of apPSTH-based spectral estimates can be reduced
relative to correlogram-based spectral estimates

Temporal information in a signal can be studied not only in the time domain (e.g.,
using correlograms) but also in the frequency domain (e.g., using the power spectral
density, PSD). The frequency-domain representation often provides a compact
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alternative compared to the time-domain counterpart. In the framework of spectral
estimation, the source (“true”) spectrum, which is unknown, is regarded as a parameter
of a random process that is to be estimated from the available data (i.e., from examples
of the random process). Spectral estimation is complicated by two factors: (1) finite
response length, and (2) stochasticity of the system. The former introduces bias to the
estimate, i.e., the PSD at a given frequency can differ from the true value. This bias
reflects the leakage due to power at nearby (narrowband bias) and far-away (broadband
bias) frequencies (due to the inherent temporal windowing from the finite-duration
response). Stochasticity of the system adds randomness to the sampled data, which
creates variance in the estimate. Desirable properties of PSD estimators are minimized
bias and variance. Bias can be reduced by multiplying the data (prior to spectral
estimation) with a taper that has a strong energy concentration near 0 Hz. Variance
can be reduced by using a greater number of tapers to estimate multiple (independent)
PSD estimates, which can be averaged to compute the final estimate. The multitaper
approach optimally reduces the bias and variance of the PSD estimate (Babadi and
Brown, |2014; [Thomson/ [1982). In this approach, for a given data length, a frequency
resolution is chosen, based on which a set of orthogonal tapers are computed. These
tapers include both even and odd tapers, which can be used to obtain the independent
PSD estimates to be averaged. In contrast, for the same frequency resolution, only even
tapers can be used with correlograms as they are even sequences (Oppenheim) [1999;
Rangayyan, [2015). Therefore, variance in the PSD estimate can be reduced by a factor
of up to 2 by using apPSTHs instead of correlograms.

For example, the benefit (in terms of spectral-estimation variance) of using the
multitaper spectrum of d(t), as opposed to the common approach of estimating the
discrete Fourier transform (DFT) of the difcor, can be quantified by comparing the two
spectra at a single frequency (Fig|3)). Here, a 100-ms segment of the s3 speech stimulus
was used as the analysis window. The segment had an Fy of 98 Hz and F} of 630 Hz
(Fig ) Fig shows example spectra estimated using spike trains recorded from a
low-frequency AN fiber [CF = 900 Hz, SR = 81 spikes/s]. The multitaper spectrum was
estimated using the MATLAB function pmtm [two tapers corresponding to a
time-bandwidth product of 3, adaptive weights (Thomson, [1982)]. To compare variances
in the two estimated spectra, fractional power at the 6th harmonic was considered, as
this harmonic was closest to Fy. This analysis was restricted to neurons (N=10) for
which data was available for at least 75 repetitions per polarity and that had a CF
between 0.3 and 2 kHz. For each neuron, 25 spike trains per polarity were chosen
randomly 12 times to estimate fractional power at the 6th harmonic. The same set of
spike trains were used to estimate distributions for both the difcor-spectrum and D(f).
The ratio of difcor-based fractional power variance to the apPSTH-based fractional
power variance at 6Fy was >1 for all 10 neurons considered (Fig[3D), demonstrating the
benefit of being able to compute a multitaper spectrum from d(¢) compared to the
difcor-spectrum in reducing variance. Overall, these results indicate that less data are
required to achieve the same level of precision in a spectral metric based on the
multitaper spectrum of an apPSTH compared to the same metric derived from the DFT
of the correlogram.

Benefits of apPSTHs for speech-intelligibility modeling

Speech-intelligibility (SI) models aim to predict the effects of acoustic manipulations of
speech on perception. Thus, SI models allow for quantitative evaluation of the
perceptually relevant features in speech. More importantly, SI models can guide the
development of optimal hearing-aid strategies for hearing-impaired listeners. However,
state-of-the-art SI models are largely based on the acoustic signal, where there is no
physiological basis to capture the various effects of sensorineural hearing loss
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Fig 3. Lower spectral-estimation variance can be achieved using apPSTHs
(with multiple tapers) compared with difcor correlograms. (A) Spectrum for
the 100-ms segment in the speech sentence s (Fy ~ 98 Hz, Fy ~ 630 Hz) used for
analysis. (B) Example spectra for an AN fiber (CF=900 Hz, high SR) with spikes from
25 randomly chosen repetitions per polarity. The first two discrete-prolate spheroidal
sequences were used as tapers corresponding to a time-bandwidth product of 3 to
estimate D(f), the spectrum of d(t). No taper (i.e., rectangular window) was used to
estimate the difcor spectrum. The AN fiber responded to the 6th, 7th and 8th harmonic
of the fundamental frequency. (C) Error-bar plots for fractional power (Powerprqc) at
the frequency (green triangle) closest to the 6th harmonic. Error bars were computed
for 12 randomly and independently drawn sets of 25 repetitions per polarity. The same
spikes were used to compute the spectra for d(t) (blue) and difcor (red). (D) Diamonds
denote the ratio of variances for the difcor-based estimate to the d(t)-based estimate.
This ratio was greater than 1 (i.e., above the dashed gray line) for all units considered,
which demonstrates that the variance for the multitaper-d(t) spectrum was lower than
the difcor-spectrum variance. AN fibers with CFs between 0.3 and 2 kHz and with at
least 75 repetitions per polarity of the stimulus were considered. Bin width = 0.1 ms for
PSTHs. Sampling frequency = 10 kHz for FFRs. Stimulus intensity = 65 dB SPL.

(SNHL) (Cooke, |2006; [Houtgast and Steeneken| 1973; Kryter} [1962; Relano-Iborra et al.l
[2016; |Taal et al) 2011)). In contrast, neurophysiological SI models (i.e., ST models based
on neural data) are particularly important in this regard since spike-train data from
preclinical animal models of various forms of SNHL provide a direct way to evaluate the
effects of SNHL on speech-intelligibility modeling outcomes (Heinz, 2015 Rallapalli and|
2010).

A major advantage of PSTH-based approaches over correlogram-based approaches is
that they can be used to extend a wider variety of acoustic SI models to include
neurophysiological data. In particular, correlograms can be used to extend
power-spectrum-based SI models (Cooke, 2006; Houtgast and Steeneken), [1973;
[Jorgensen and Daul, 2011} [Kryter], [1962; [Taal et al., [2011)) but not for the more recent SI
models that require phase information of the response (Relano-Iborra et all [2016}
[Scheidiger et all [2018). For example, the speech envelope-power-spectrum model
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Fig 4. Modulation-domain internal representations for speech coding can
be obtained from PSTH-based envelopes. PSTH response [p(t)] from one AN
fiber (CF=290 Hz, SR= 12 spikes/s) is shown. (A) Time-domain waveforms for the
stimulus (gray) and p(t) (blue). (B) Output of a modulation filter bank after the
processing of p(t). Modulation filters were zero-phase, fourth-order, and octave-wide
IIR filters. Center frequencies (Fy,) for these filters ranged from 2 to 128 Hz (octave
spacing), similar to those used in recent psychophysically based SI models [e.g.,
(Relano-Iborra et al., 2016)]. PSTH bin width = 0.5 ms. 15 stimulus repetitions.
Stimulus intensity = 60 dB SPL.
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(sEPSM) has been evaluated using simulated spike trains since SEPSM only requires
power in the response envelope, which can be estimated from the sumcor

spectrum (Rallapalli and Heinz| [2016]). However, sumcor cannot be used to evaluate
envelope-phase-based SI models since it discards phase information. Studies have shown
that the response phase can be important for speech intelligibility (Delgutte et al. [1998}
[Paliwal and Alsteris, 2003). In contrast to the sumcor, the time-varying PSTH contains
both phase and magnitude information, and thus, can be used to evaluate both
power-spectrum- and phase-spectrum-based SI models. For example, because the PSTH
p(t) [or n(t)] is already rectified, it can be filtered through a modulation filter bank to
estimate “internal representations” in the modulation domain (Fig E[) These
spike-train-derived “internal representations” are analogous to those used in
phase-spectrum-based SI models (Relano-Iborra et all |2016; Scheidiger et al., 2018) and
can be further processed by existing SI back-ends to estimate SI values. This example
demonstrates a proof of concept of using spike-train data to evaluate a spectrally
specific envelope based SI model using apPSTHs. In general, SI models that include a
peripheral or modulation filter bank representation, which is the case for most
successful SI models [e.g., the speech transmission index (Steeneken and Houtgast,
[1980), the spectrotemporal modulation index (Elhilali et al., [2003), speech envelope
power spectrum models (Jorgensen and Daul 2011} [Jorgensen et al.| [2013)], can be
evaluated using spike-train data recorded from peripheral (e.g., auditory-nerve fibers) or
central (e.g., inferior colliculus) neurons, respectively, using apPSTHs. Therefore, these
analyses allow for the evaluation of a wider variety of acoustic-based SI models in the
neural domain (magnitude and phase), where translationally relevant data can be
obtained from preclinical animal models of various forms of SNHL.
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Quantifying ENV and TFS using apPSTHs for
stationary signals

In this section, we first describe existing and novel ENV and TFS components that can
be derived from apPSTHs. Next, we compare relative merits of the novel components
over existing ENV and TFS components using simulated data. Finally, we apply
apPSTHs to analyze spike-train data recorded to speech and speech-like stimuli.

Several ENV and TFS components can be derived from
apPSTHs with spectral specificity

The neural response envelope can be obtained from apPSTHs in two orthogonal ways:
(1) the low-frequency signal, s(t), and (2) the Hilbert envelope of the high-frequency
carrier-related energy in d(t). s(t) is thought to represent the polarity-tolerant response
component, which has been defined as the envelope response (Joris, |2003; [Louage et al.,
2004). For a stimulus with harmonic spectrum, s(t) captures the envelope related to the
beating between harmonics. In addition, onset and offset responses (e.g., in response to
high-frequency fricatives, Fig[2IC) are also well captured in s(t). Although sumcor and
s(t) are related, dynamic features like onset and offset responses are captured in s(t),
but not in the sumcor since the sumcor discards phase information by essentially
averaging ENV coding across the whole stimulus duration. The use of sum envelope is
popular in far-field responses (Aiken and Picton| 2008; |Ananthakrishnan et al., |2016;
Shinn-Cunningham et al. 2013) but not directly in auditory neurophysiology studies. A
major disadvantage of s(t) is that it is affected by rectifier distortions if a neuron phase
locks to low-frequency energy in the stimulus (e.g., Fig[5]A; discussed further below).
A second way envelope information in the neural response can be quantified is by
computing the envelope of the difference PSTH, d(t). This envelope, e(t), can be
estimated as the magnitude of the analytic signal, a(t), of the difference PSTH

_a(o)
\@ )

where a(t) = d(t) + yH{d(t)}, and H{-} is the Hilbert transform operator. The factor
v/2 normalizes for the power difference after applying the Hilbert transform. d(t) is
substantially less affected by rectifier distortion (Sinex and Geisler} [1983), and thus, so
is e(t). The use of e(t) parallels the procedure followed by many computational models
that extract envelopes from the output of cochlear filterbanks (Dubbelboer and
Houtgast|, 2008} |Jorgensen and Dau, [2011}; |Sadjadi and Hansen, [2011)).

The TFS component can also be estimated in two ways: (1) d(t), and (2) cosine of
the Hilbert phase of d(t). The difference PSTH has been traditionally called the TFS
response because it is the polarity-sensitive component. difcor and derived metrics
relate to d(t) as the difcor is related to the autocorrelation function of d(t) (S4
Appendix). However, d(t) does not represent the response to only the carrier (phase)
since it also contains envelope information in e(t). We propose a novel representation of
the TFS response component, ¢(t), estimated as the cosine phase of the analytic signal

e(t) (6)

B(t) = V2 x rms[d(t)] x cos[Za(t)], (7)

where normalization by v/2 x rms[d(t)] is used to match the power in ¢(¢) with the
power in d(t) since cos[Za(t)] is a constant-rms (rms = 1/+/2) signal.
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Relative merits of sum and Hilbert-envelope PSTHs in
representing spike-train envelope responses

The relative merits of the two envelope PSTHs, s(t) and e(t), were evaluated based on
simulated spike-train data generated using a computational model of AN

responses (Bruce et al.| [2018). The model includes both cochlear-tuning and hair-cell
transduction nonlinearities in the auditory system. Modulation spectra for sinusoidal
amplitude-modulated (SAM) tones were estimated for s(t) and e(t) [denoted by S(f)
and E(f), respectively] for individual-fiber responses (Figs [(A{5C). d(t) was band-pass
filtered near CF (200-Hz bandwidth, 2nd order filter) before applying the Hilbert
transform to minimize the spectral energy in d(t) that was not stimulus related. The
two envelopes were evaluated based on their representations of the modulator and
rectifier distortion. Rectifier distortions are expected to occur at even multiples of the
carrier and nearby sidebands (i.e., 2nF,, 2nF. — F,,, and 2nF, + F,, for integers n, Fig
A). Tt is desirable for an envelope metric to consistently represent envelope coding
across CFs and be less affected by rectifier-distortion artifacts. Modulation coding for
the simulated responses was quantified as the power in 10-Hz bands centered at the first
three harmonics of F,,, (i.e., 15 to 25 Hz, 35 to 45 Hz, and 55 to 65 Hz) for both s(¢)
and e(t) (Fig[fD). The need to include multiple harmonics of F,, arises because the
response during a stimulus cycle departs from sinusoidal shape due to the saturating
nonlinearity associated with inner-hair-cell transduction (S2 Fig). While F,-related
power was nearly constant across CF for s(t), it was nearly constant for e(t) only up to
1.2 kHz, after which it rolled off. This roll-off for e(t) is not surprising since e(t) relies
on phase-locking near the carrier and the sidebands, as confirmed by the strong
correspondence between tonal phase-locking at the carrier frequency and F,,-related
power in e(t) (Fig[fD).

The analysis of rectifier distortion was limited to only the distortion components
near the second harmonic of the carrier (i.e., 2F,, 2F, — F,,,, and 2F, + F},,) since this
harmonic is substantially stronger than higher harmonics (e.g., Fig ) Rectifier
distortion was quantified as the sum of power in 10-Hz bands centered at the three
distortion frequency components. Because e(t) was estimated from spectrally specific
d(t), which was band-limited to 200 Hz near the carrier frequency, e(t) was virtually
free from rectifier distortion. In contrast, s(t) was substantially affected by rectifier
distortion for simulated fibers with CFs below ~2 kHz (Fig[FE). Rectifier distortion in
S(f) dropped for fibers with CF above ~0.8 kHz because phase locking at distortion
frequencies (i.e., twice the carrier frequencies) was attenuated by the roll-off in tonal
phase locking. For example, the simulated AN fiber in Fig[5B (CF = 1.7 kHz)
maintained comparable F},-related power for both envelopes, but rectifier distortion for
s(t) was substantially diminished because the distortion frequency (3.4 kHz) is well
above the phase-locking roll-off. These results indicate that s(¢) is substantially
corrupted by rectifier distortion (at twice the stimulus frequency) when the neuron
responds to stimulus energy that is below half the phase-locking cutoff.

Next, these spectral power metrics were compared with the correlogram-based
metric, sumcor peak-height (Figs ) The sumcor peak-height metric is defined as
the maximum value of the normalized time-domain sumcor function (Louage et al.,
2004)). Prior to estimating the peak-height, the sumcor is sometimes adjusted by adding
an inverted triangular window to compensate for its triangular shape (Heinz and
Swaminathan), |2009). Here, sumcors were compensated by subtracting a triangular
window from it so that the baseline sumcor is a flat function with a value of 0 (instead
of 1) in the absence of ENV coding. In S5 Appendix, we show that the sumcor
peak-height is a broadband metric and it is related to the total power in s(¢), including
rectifier distortions. When the sumcor is used to analyze responses of low-frequency AN
fibers to broadband noise stimuli, the sumcor-spectrum, and thus, the sumcor

December 22, 2020

12/53]

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361


https://doi.org/10.1101/2020.07.17.208330
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.17.208330; this version posted December 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

C. CF=4.0 kHz
' HE ]

(tone at CF)

—~ O
2 6 0%
g 11 x ©
Q 2 O O
%2 15 i | | (@] 0 | | |
0.3 05 15 3 5 26 24 22 @ 1 2 3
CF (kHz) P ins(t) (dB) Pap %1073

Fig 5. Envelope-coding metrics should be spectrally specific to avoid artifacts due to rectifier distortion
and neural stochasticity. Simulated responses for 24 AN fibers (log-spaced between 250 Hz and 8 kHz) were obtained
using a computational model (parameters listed in using SAM tones at CF (modulation frequency, F,,=20 Hz;
0-dB (100%) modulation depth) as stimuli. Stimulus intensity ~ 65 dB SPL. S(f) (blue) and E(f) (red) for three example
model fibers with CFs = 1.0, 1.7, and 4 kHz (panels A-C) illustrate the relative merits of s(¢) and e(t), and the potential for
rectifier distortion to corrupt envelope coding metrics. d(t) was band-limited to a 200-Hz band near F for each fiber prior to
estimating e(t) from the Hilbert transform of d(t). (A) For the 1-kHz fiber, S(f) and E(f) are nearly identical in the F,
band. S(f) is substantially affected by rectifier distortion at 2x CF, which can be ignored using spectrally specific analyses.
(B) The two envelope spectra are largely similar near the F),, bands since phase-locking near the carrier (1.7 kHz) is still
strong (panel D). Rectifier distortion in S(f) is greatly reduced since phase-locking at twice the carrier frequency (3.4 kHz) is
weak. (C) Fy,-related power in E(f) and rectifier distortion in S(f) are greatly reduced as the frequencies for the carrier and
twice the carrier are both above the phase-locking roll-off. (D) The strength of modulation coding was evaluated as the sum
of the power near the first three harmonics of F),, (gray boxes in panels A-C) for S(f) (blue squares) and E(f) (red circles).
VSpp was also quantified to CF-tones for each fiber (black dashed line, right Y axis). (E) Rectifier distortion (RD) analysis
was limited to the second harmonic of the carrier (brown boxes in panels A-C). RD was quantified as the sum of power in
10-Hz bands around twice the carrier frequency (2 x C'F) and the adjacent sidebands (2 x CF + F,;,). RD for E(f) is not
shown because E(f) was virtually free from RD. (F) Raw and adjusted sumcor peak-heights across CFs. sumcors were
adjusted by band-pass filtering them in the three F,,-related bands. Large differences between the two metrics at low
frequencies indicate that the raw sumcor peak-heights are corrupted by rectifier distortion at these frequencies. (G) Relation
between raw and adjusted sumcor peak-heights with F,-related power (from panel D) in S(f). Good correspondence between
F,,-related power in S(f) and adjusted sumcor peak-height supports the use of spectrally specific envelope analyses. (H) The
difference between raw and adjusted sumcor peak-heights was largely accounted for by RD power. However, this difference
was always greater than zero, suggesting broadband metrics can also be biased because of noise related to neural stochasticity.
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peak-height, are corrupted by rectifier distortions (Heinz and Swaminathan| [2009)).
Similar to S(f) for low-frequency SAM tones (Fig[5/A), these distortions show up at
2xCF in the sumcor-spectrum, whereas the difcor-spectrum has energy only near

CF (Heinz and Swaminathan| 2009)). Heinz and colleagues addressed these distortions
by low-pass filtering the sumcor below CF to remove the effects of rectifier distortion at
2xCF. Here, we generalize this issue by comparing the sumcor and spectrally specific
ENV metrics for narrowband SAM-tone stimuli to demonstrate the limitations of any
broadband ENV metric. sumcors were adjusted by band-limiting them to 10-Hz bands
near the first three harmonics of Fj,. As expected, the difference between the raw and
adjusted sumcor peak-heights was large at low CF's (Fig ), where rectifier distortion
corrupts the broadband sumcor peak-height metric. At high CFs (above 1.5 kHz), the
difference between raw and adjusted sumcor peak-heights was small but nonzero. These
differences correspond to power in S(f) at frequencies other than the
modulation-related bands and reflect the artifacts of neural stochasticity due to finite
number of stimulus trials. As power is always nonnegative, including power at
frequencies unrelated to the target frequencies adds bias and variance to any broadband
metric. The adjusted sumcor peak-height, unlike the raw sumcor peak-height, showed
good agreement with spectrally specific Fj,,-related power in S(f) (Fig[fG).

Overall, these results support the use of spectrally specific analyses to quantify ENV
coding in order to minimize artifacts due to rectifier distortion as well as the effects of
neural stochasticity. Of the two candidate apPSTHs to quantify response envelope, e(t)
had the benefit of minimizing rectifier distortion. However, e(t)’s reliance on
carrier-related phase locking limits the use of e(t) as a unifying ENV metric across the
whole range of CFs. Instead, spectrally specific s(t) is more attractive because of its
robustness in representing the response envelope across CFs (Fig[5D).

Relative merits of difference and Hilbert-phase PSTHs in
representing spike-train TFS responses

In order to evaluate the relative merits of d(t) and ¢(¢) in representing the neural TFS
response, the same set of simulated AN spike-train responses were used as in Fig
Although the stimulus has power at the carrier (F;) and sidebands (F, £ F,,,; 6 dB
lower), only the carrier representation should be considered towards quantifying the
TF'S response because the energy at the sidebands arises due to the modulation of the
carrier by the modulator (ENV). As the carrier has energy at a single frequency (F.) for
a SAM tone, the desirable TFS response should have maximum energy concentrated at
the carrier frequency and not the sidebands. Therefore, the merits of d(t) and ¢(t) were

evaluated based on how well they capture the carrier and suppress the sidebands (Fig @

As mentioned previously, d(t) was band-limited to a 200-Hz bandwidth near the
carrier frequency before estimating ¢(t). D(f) at low CFs contained substantial energy
at both the carrier and the sidebands (Figs [fJA and [6B). This indicates that d(t)
represents the complete neural coding of the SAM tone (both the envelope and the
carrier) and not just the carrier. Furthermore, D(f) has additional sidebands
(F. £ 2F,,) around the carrier frequency. These sidebands arise as a result of the
saturating nonlinearity associated with inner-hair-cell transduction , and thus,
should not be considered towards TFS response. In contrast, ®(f), the spectrum of ¢(t)
had most of its power concentrated at the carrier frequency, with substantially less
power in the sidebands (Figs @A and ) These results were consistent across a wide
range of CFs and for both sidebands (Figs []D and [JE). Overall, these results show that
¢(t) is a better PSTH compared to d(t) in quantifying the response TFS since ¢(t)
emphasizes power at the carrier frequency and not at the sidebands.

In the following, we apply apPSTH-based analyses on spike-train data recorded from
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Fig 6. Compared to the d(t), the apPSTH ¢(t) provides a better TFS
representation. (A-C) Spectra of d(t) and ¢(¢) for the same three simulated AN fiber
responses for which ENV spectra were shown in Fig|bl D(f) has substantial power at
CF (black triangle), as well as at lower (purple circle) and upper (purple square)
sidebands. ®(f), the spectrum of ¢(t), shows maximum power concentration at C'F
(carrier frequency), with greatly reduced sidebands. (D) Ratio of power at CF (carrier,
black triangle in panels A-C) to power at lower sideband (LSB, F. — F,,, purple circles
in panels A-C). (E) Ratio of power at CF (carrier) to power at upper sideband (USB,
F. + F,,, purple squares in A-C). ¢(¢) highlights the carrier and not the sidebands, and
thus, compared to d(t), ¢(t) is a better representation of the true TFS response.

chinchilla AN fibers in response to speech and speech-like stimuli. In these examples, we
particularly focus on certain ENV features, such as pitch coding for vowels and response
onset for consonants, and TFS features, such as formant coding for vowels.

Neural characterization of ENV and TFS using apPSTHs for a
natural speech segment

Most previous studies have used the period histogram to study speech coding in the
spectral domain (Delgutte and Kiang), [1984a} [Young and Sachs, [1979)). The period
histogram is limited to stationary periodic stimuli, which were employed in those
studies. In contrast, the use of apPSTHs facilitates the spectral analysis of neural
responses to natural speech stimuli, which need not be stationary. Fig[7] shows the
response spectra obtained using various apPSTHs [p(t), s(t), d(t), and ¢(t)] for a
low-frequency AN fiber in response to a natural speech segment [see for similar
analyses for synthesized speech demonstrating the well-known “synchrony-capture”
phenomenon (Delgutte and Kiang| |1984a; [Young and Sachs, [1979)]. In this example,
the response of a low-frequency AN fiber to a 100-ms vowel segment of the s3 natural
speech sentence was considered. The CF (1.1 kHz) of this neuron is close to the second
formant (F3) of this segment (Fig[7B). P(f) shows peaks corresponding to Fy (~1.2
kHz) and Fyy (~130 Hz, Fig[7C). Similar to both D(f) and ®(f) show
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Fig 7. Spectral-domain application of various apPSTHs to spike trains
recorded in response to natural speech. Example of spectral analyses of spike
trains recorded from an AN fiber (CF= 1.1 kHz, SR=64 spikes/s) in response to a vowel
snippet of a speech stimulus (s3). (A) Time-domain representation of p(t), n(t), and the
stimulus (Stim). n(t) is flipped along the y-axis for display. Signals outside the analysis
window are shown in gray. PSTH bin width = 0.1 ms. Number of stimulus repetitions
per polarity = 50. Stimulus intensity = 65 dB SPL. (B) Stimulus spectrum (blue, left
yaxis). In panels B-E, the frequency-threshold tuning curve (TC 6, black) of the neuron
is plotted on the right y-axis. (C) P(f), which shows comparable energy at Fy (130 Hz)
and Fy (1.2 kHz). (D) D(f) and S(f). (E) ®(f) and E(f). Both S(f) and E(f) show
peaks near Fy. Similarly, both D(f) and ®(f) show good F» representations, although
D(f) is corrupted by the strong Fy-related modulation in e(t) as d(t) = e(t) x ¢(t). The
significant representation of Fjy in this near-F» AN fiber response to a natural vowel is
inconsistent with the synchrony-capture phenomenon for synthetic stationary vowels.

substantial energy near the formant closest to the neuron’s CF. In contrast to
S(f) [and E(f)] shows substantial energy near the fundamental frequency (inconsistent
with synchrony capture). A detailed discussion of this discrepancy is beyond the scope
of the present report, except to say that this lack of synchrony capture for natural
vowels is a consistent finding that will be reported in a future study. The presence of
substantial energy near Fy in F(f) indicates that d(t) is corrupted by pitch-related
modulation in e(t). This is because, mathematically, D(f) is the convolution of the true
TFS spectrum [®(f)] and the Hilbert-envelope spectrum [E(f)]. Overall, these results
demonstrate the application of various apPSTHs to study the neural representation of
natural nonstationary speech stimuli in the spectral domain.

Onset envelope is well represented in the sum PSTH but not in
the Hilbert-envelope PSTH

In addition to analyzing spectral features, apPSTHs can also be used to analyze
temporal features in the neural response. An example temporal feature is the onset
envelope, which has been shown to be important for neural coding of
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Fig 8. p(t), n(t), and s(t) have robust representations of the onset response,
whereas e(t) and d(t) do not. Response of a high-frequency fiber (CF= 5.8 kHz,
SR= 70 spikes/s) to a fricative portion (/s/) of the speech stimulus, s3. Stimulus
intensity = 65 dB SPL. (A) Stimulus (black, labeled Stim), p(t) (blue) and n(t) (red,
flipped along the y-axis). PSTH bin width = 0.5 ms. Number of stimulus repetitions
per polarity = 50. (B) The sum envelope, s(t) (C) The difference PSTH, d(t), and (D)
the Hilbert-envelope PSTH, e(¢). Since the onset envelope is a polarity-tolerant
response, all PSTHs capture the response onset except for d(t) and e(t).

consonants (Delgutte] 1980; Heil, |2003)), in particular fricatives (Delgutte and Kiangj,
. A diminished onset envelope in the peripheral representation of consonants is
hypothesized to be a contributing factor for perceptual deficits experienced by
hearing-impaired listeners (Allen and Li, |2009)), and thus is important to quantify. Fig
shows example onset responses for a high-frequency AN fiber (CF= 5.8 kHz, SR= 70
spikes/s) for a fricative (/s/) portion of the speech stimulus s3. The onset is well
captured in single-polarity PSTHs [p(¢) and n(t), Fig[§A] and in the sum envelope [s(t),
Fig ] Since the onset is a polarity-tolerant feature, it is greatly reduced by
subtracting the PSTHs to opposite polarities. As a result, response onset is poorly
captured in d(t) (Fig[8C) and its Hilbert envelope, e(t) (Fig[8D).

Overall, these examples show that apPSTHs can be used to study various spectral
and temporal features in neural responses for natural stimuli in the ENV/TFS
dichotomy. These apPSTHs are summarized in Table [1| (and illustrated in .

Quantifying ENV and TFS using apPSTHs for
nonstationary signals

In the discussion so far, we have argued for using spectrally specific metrics to analyze
neural responses to stationary stimuli. Another example where spectral specificity is

needed is in evaluating the neural coding of nonstationary speech features (e.g., formant
transitions). Speech is a nonstationary signal and conveys substantial information in its
dynamic spectral trajectories (e.g., Fig ) A number of studies have investigated the
robustness of the neural representation of dynamic spectral trajectories using frequency
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Table 1. apPSTH-taxonomy for ENV & TFS

PSTH Notation: Definition ENV and/or TFS | Rectifier | Comments

name (time,frequency) representation distortion

Positive p(t), P(f) Positive polarity | TFS & ENV Large

Negative | n(t), N(f) Negative polarity | TFS & ENV Large

Difference | d(t), D(f) p(t)_n(t) TFS & ENV Small Includes both the carrier and
sideband components (thus not a
clean representation of TFS)

Sum s(t), S(f) M ENV Large Consistent representation of spec-
trally specific modulation strength,
but corrupted by rectifier distortion
at 2xCF

Analytic | a(t), A(f) d(t) + jH{d(t)} | TFS & ENV Small H{-} is the Hilbert transform opera-
tor

Hilbert e(t), E(f) la(t)|/v/2 ENV Small Polarity-sensitive ENV (subject to

envelope TFS phase locking)

Hilbert o(t), D(f) V2 x rms[d(t)] TFS Small Carrier TFS (subject to TFS phase

phase xcos|Za(t)] locking)

We define apPSTHs as the collection of PSTHs derived using both polarities of the stimulus. The pair of PSTHs, p(t) and
n(t), is a sufficient statistic for apPSTHs since all other PSTHs in the group can be derived from the two. Alternatively, the
pair, d(t) and s(t), is also a sufficient statistic for apPSTHs. Each PSTH (e.g., the positive polarity PSTH) can be expressed
in the time domain [p(¢)] or in the frequency domain [P(f)]. A graphical illustration for these apPSTHs is in

olides and frequency-modulated tones as the stimulus (Billings et al. 2019; |Clinard and
Cotter} |2015; [Krishnan and Parkinson, [2000; [Skoe and Kraus| [2010)). These studies have
usually employed a spectrogram analysis. While a spectrogram is effective for analyzing
responses to nonstationary signals with unknown parameters, it does not explicitly

incorporate information about the stimulus, which is often designed by the experimenter.

Since the spectrogram relies on a narrow moving temporal window, it offers poor
spectral resolution due to the time-frequency uncertainty principle. The same limitation
applies to wavelet transforms that rely on segmenting the signal into shorter windows,
even though window length varies across frequency. Instead of using these
windowing-based analyses, frequency demodulation and filtering can be used together to

estimate power along a spectrotemporal trajectory more accurately as described below.

While this demodulation-based method has been described previously for other

signals (Olhede and Waldenl, 2005)), we apply this method to natural speech and extend
this approach to construct a new spectrally compact time-frequency representation
called the harmonicgram. These spectrally specific analyses will facilitate more sensitive
metrics to investigate the coding differences between nonstationary features in natural
speech and extensively studied stationary features in synthetic speech.

Frequency-demodulation-based spectrotemporal filtering

First, we describe the spectrotemporal filtering technique using an example stimulus
with dynamic spectral components (Fig @ The 2-second long stimulus consists of three
spectrotemporal trajectories: (1) a stationary tone at 1.4 kHz, (2) a stationary tone at 2
kHz, and (3) a dynamic linear chirp that moves from 400 to 800 Hz over the stimulus
duration. We are interested in estimating the power of the nonstationary component,
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Fig 9. More accurate estimates of power along a spectrotemporal
trajectory can be obtained using frequency demodulation. (A) Spectrogram of
a synthesized example signal that mimics a single speech-formant transition. The 2-s
signal consists of two stationary tones (1.4 and 2 kHz) and a linear frequency sweep
(400 to 800 Hz). Red dashed lines outline the spectrotemporal trajectory along which
we want to compute the power. Both positive and negative frequencies are shown for
completeness. (B) Fourier-magnitude spectrum of the original signal. Energy related to
the target spectrotemporal trajectory is spread over a wide frequency range (400 to 800
Hz, red line). (C) Spectrogram of the frequency-demodulated signal, where the target
trajectory was used for demodulation (i.e., shifted down to 0 Hz). (D) Magnitude-DFT
of the frequency-demodulated signal. The desired trajectory is now centered at 0 Hz,
with its (spectral) energy spread limited only by the signal duration (i.e., equal to the
inverse of signal duration), and hence, is much narrower.

the linear chirp. In order to estimate the power of this chirp, conventional spectrograms
will employ one of the following two approaches. First, one can use a long window (e.g.,
2 seconds) and compute power over the 400-Hz bandwidth from 400 to 800 Hz. In the
second approach, one can use moving windows that are shorter in duration (e.g., 50 ms)
and compute power with a resolution of 30 Hz (20-Hz imposed by inverse of the window
duration and 10-Hz imposed by change in chirp frequency over 50 ms). As an
alternative to these conventional approaches, one can demodulate the spectral
trajectory of the linear chirp so that the chirp is demodulated to near 0 Hz (Fig Ep and
EID, see Materials and Methods). Then, a low-pass filter with 0.5-Hz bandwidth (as
determined by the reciprocal of the 2-s stimulus duration) can be employed to estimate
the time-varying power along the chirp trajectory. This time-varying power is estimated
at the stimulus sampling rate, similar to the temporal sampling of the output of a
band-pass filter applied on stationary signals. While the same temporal sampling can be
achieved using the spectrogram by sliding the window by one sample and estimating the
chirp-related power for each window, it will be computationally much more expensive
compared to the frequency-demodulation-based approach. Furthermore, the spectral
resolution of 0.5 Hz is the same as that for a stationary signal, which demonstrates a
60-fold improvement compared to the 50-ms window-based spectrogram approach.
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The harmonicgram for synthesized nonstationary speech

As shown in Fig[0] combined use of frequency demodulation and low-pass filtering can
provide an alternative to the spectrogram for analyzing signals with time-varying
frequency components. Such an approach can also be used to study coding of dynamic
stimuli that have harmonic spectrum with time-varying Fj, such as music and voiced
speech. At any given time, a stimulus with a harmonic spectrum has substantial energy
only at multiples of the fundamental frequency, Fp, which itself can vary with time [i.e.,
Fy(t)]. We take advantage of this spectral sparsity to introduce a new compact
representation, the harmonicgram. Consider the k-th harmonic of Fy(t); power along
this trajectory [kFy(t)] can be estimated using the frequency-demodulation-based
spectrotemporal filtering technique. One could estimate the time-varying power along
all integer multiples (k) of Fy(t). This combined representation of the time-varying
power across all harmonics of Fy is the harmonicgram (see Materials and Methods).
This name derives from the fact that this representation uses harmonic number instead
of frequency (or spectrum) as in the conventional spectrogram.

A. Pooled low CFs B. Pooled medium CFs

Harmonic number

50 100 150 , 50 100 150
Time (ms)

Fig 10. The harmonicgram can be used to visualize formant tracking in
synthesized nonstationary speech. Neural harmonicgrams for fibers with a CF
below 1 kHz (A, N=16) and for fibers with a CF between 1 and 2.5 kHz (B, N=29) in
response to the dynamic vowel, so. Stimulus intensity = 65 dB SPL. The formant
frequencies mimic formant trajectories of a natural vowel (Hillenbrand and Nearey,
. A 20-Hz bandwidth was employed to low-pass filter the demodulated signal for
each harmonic. The harmonicgram for each AN-fiber pool was constructed by averaging
the Hilbert-phase PSTHs of all AN fibers within the pool. PSTH bin width = 50 us.
Data are from one chinchilla. The black, purple and, red lines represent the fundamental
frequency (Fo/Fp), the first formant (F7/Fy) and the second formant (Fy/Fj) contours,
respectively. The time-varying formant frequencies were normalized by the time-varying
Fy to convert the spectrotemporal representation into a harmonicgram.

Fig [10| shows harmonicgrams derived from apPSTHs in response to the
nonstationary synthesized vowel, so. The first two formants are represented by their
harmonic numbers, Fy(t)/Fy(t) and Fs(t)/Fy(t), which are known a priori in this case.
Two harmonicgrams were constructed using responses from two AN fiber pools: (1) AN
fibers that had a low CF (CF < 1 kHz), and (2) AN fibers that had a medium CF (1
kHz < CF < 2.5 kHz). Previous neurophysiological studies have shown that AN fibers
with CF near and slightly above a formant strongly synchronize to that formant,
especially at moderate to high intensities (Delgutte and Kiang}, [1984a; [Young and Sachs,
[1979). Therefore, the low-CF pool was expected to capture F, which changed from 630
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Hz to 570 Hz. Similarly, the medium-CF pool was expected to capture F5, which
changed from 1200 Hz to 1500 Hz. The harmonicgram for each pool was constructed by
using the average Hilbert-phase PSTH, ¢(¢), of all AN fibers in the pool. The
harmonicgram is shown from 38 ms to 188 ms to optimize the dynamic range to visually
highlight the formant transitions by ignoring the onset response. The dominant
component in the neural response for F; was expected at the harmonic number closest
to F1/Fy. For this stimulus, Fy/Fy started at a value of 6.3 (630/100) and reached 4.75
(570/120) at 188 ms crossing 5.5 at 88.5 ms (Fig[L0JA). This transition of F/Fy was
faithfully represented in the harmonicgram where the dominant response switched from
the 6th to the 5th harmonic near 90 ms. Similarly, F5/F, started at 12, consistent with
the dominant response at the 12th harmonic before 100 ms (Fig ) Towards the end
of the stimulus, Fy/F, reached 12.5, which is consistent with the near-equal power in
the 12th and the 13th harmonic in the harmonicgram. In contrast to findings from
previous studies, the harmonicgram for the medium-CF pool indicates that these fibers
respond to both the first and second formants (Delgutte and Kiang) [1984aj; [Miller et al.
1997). Such a complex response with components corresponding to multiple formants is
likely due to the steep slope of the vowel spectrum .

The harmonicgram for natural speech

The harmonicgram analysis is not limited to synthesized vowels, but can also be applied
to natural speech (Fig . These harmonicgrams were constructed for the natural
speech stimulus, s3, using average ¢(t) for the same low-CF and medium-CF AN fiber
pools used in Fig[I0] Here, we consider a 500-ms segment of the stimulus, which
contains multiple phonemes. Qualitatively, similar to Fig these harmonicgrams
capture formant contours across phonemes. The harmonicgram for the low-CF pool
emphasizes the F} contour, whereas the harmonicgram for the medium-CF pool
primarily emphasizes the F5 contour, and to a lesser extent, the F; contour. Compared
to the spectrogram, the harmonicgram representation is more compact and spectrally
specific. Furthermore, from a neural-coding perspective, quantifying how individual
harmonics of Fj are represented in the response is more appealing than the spectrogram
since response energy is concentrated only at these Fy harmonics.

The harmonicgram not only provides a compact representation for nonstationary
signals with harmonic spectra, it can also be used to quantify coding strength of
time-varying features, such as formants for speech (Figs and ) In these
examples, the strength of formant coding at each time point, ¢, was quantified as the
sum of power in the three harmonics closest to the Fy-normalized formant frequency at
that time [e.g., F1(t)/Fo(t)]. As expected, power for the harmonics near the first
formant was substantially greater than for the second formant for the low-CF pool (Fig
I11E). For the medium-CF pool, F; representation was robust over the whole stimulus
duration, although Fj representation was largely comparable (Fig ) These examples
demonstrate novel analyses using the apPSTH-based harmonicgram to quantify
time-varying stimulus features in single-unit neural responses at high spectrotemporal
resolution, which is not possible with conventional windowing-based approaches.

The harmonicgram can also be used to analyze FFRs in
response to natural speech

As mentioned earlier, a major benefit of using apPSTHs to analyze spike trains is that
the same analyses can also be applied to evoked far-field potentials. In Fig[I2] the
harmonicgram analysis was applied to the difference FFR recorded in response to the
same speech sentence (s3) that was used in Fig In fact, these FFR data and
spike-train data used in Fig[TI] were collected from the same chinchilla. The difference
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Fig 11. The harmonicgram can be used to quantify the coding of
time-varying stimulus features at superior spectrotemporal resolution
compared to the spectrogram. Harmonicgrams were constructed using ¢(t) for the
same two AN-fiber pools described in Fig[I0] PSTH bin width = 50 ps. A 9-Hz
bandwidth was employed to low-pass filter the demodulated signal for each harmonic.
The data were collected from one chinchilla in response to the speech stimulus, s3.
Stimulus intensity = 65 dB SPL. A 500-ms segment corresponding to the voiced phrase
“amle” was considered. (A, B) Spectrograms constructed from the average ¢(t) for the
low-CF pool (A) and from the medium-CF pool (B). (C, D) Average harmonicgrams for
the same set of fibers as in A and B, respectively. Warm (cool) colors represent regions
of high (low) power. The first-formant contour (F} in A and B, Fy/Fp in C and D) is
highlighted in purple. The second-formant contour (F3 in A and B, F5/F; in C and D)
is highlighted in red. Trajectories of the fundamental frequency (black in A and B, right
Y axis) and the formants were obtained using Praat 2001). (E, F)
Harmonicgram power near the first formant (purple) and the second formant (red) for
the low-CF pool (E) and the medium-CF pool (F). Harmonicgram power for each
formant at any given time (t) was computed by summing the power in the three closest
Fy harmonics adjacent to the normalized formant contour [e.g., Fy(t)/Fy(t)] at that
time. The noise floor (NF) for power was estimated as the sum of power for the 29th,
30th, and 31st harmonics of Fyy because the frequencies corresponding to these
harmonics were well above the CFs of both fiber pools. These time-varying
harmonicgram power metrics are spectrally specific to Fjy harmonics and are computed
with high temporal sampling rate (same as the original signal). This spectrotemporal
resolution is much better than the spectrotemporal resolution that can be obtained
using spectrograms.

FFR was computed as the difference between FFRs to opposite polarities of the
stimulus. The spectrogram and harmonicgram can also be constructed using the
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Hilbert-phase FFR to highlight the TFS component of the response (S5 Fig). Unlike

the apPSTHs for AN fibers, the FFR cannot be used to construct two sets of

harmonicgrams corresponding to different populations of neurons because the FFR lacks
tonotopic specificity. Nevertheless, this FFR-harmonicgram is strikingly similar to the

medium-CF pool harmonicgram in Fig [IID. The dynamic representations of the

first

two formants are robust in both the representations. In fact, the FFR representations
seem more robust in formant tracking compared to PSTH-derived representations,
qualitatively, especially for the harmonicgram. A more uniform sample of neurons
contribute to evoked responses compared to the AN fiber sample corresponding to Fig
which could be a factor for the robustness of the FFR representations. Overall,
these results reinforce the idea that using apPSTHs to analyze spike trains offers the

same spectrally specific analyses that can be applied to evoked far-field potentials, e.g.,

the FFR, thus allowing a unifying framework to study temporal coding for both
stationary and nonstationary signals in the auditory system.

A. FFR Spectrogram
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Fig 12. The harmonicgram of the FFR to natural speech shows robust

dynamic tracking of formant trajectories, similar to the AN-fiber

harmonicgram. Comparison of the spectrogram (A) and the harmonicgram (B) for

the FFR recorded in response to the same stimulus, s3 that was used to analyze

apPSTHs in Fig[T1] Stimulus intensity = 65 dB SPL. Lines and colormap are the same

as in Fig These plots were constructed using the difference FFR, which reflec

neural coding of both stimulus TFS and ENV. To highlight the coding of stimulus TFS,

ts the

Hilbert-phase [¢(t)] FFR can be used instead of the difference FFR (S5 Fig). The FFR
harmonicgram (A) is strikingly similar to the AN-fiber harmonicgrams in Figs and
[ID in that the representations of the first two formants are robust. The FFR data here

and spike-train data used in Fig|11| were obtained from the same animal.
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Discussion

Use of apPSTHs underlies a unifying framework to study
temporal coding in the auditory system

A better understanding of the neural correlates of perception requires the integration of
electrophysiological, psychophysical, and neurophysiological analyses in the same
framework. Although extensive literature exists in both electrophysiology and
neurophysiology on the neural correlates of perception, the analyses employed in these
studies have diverged. This disconnect is largely because the forms of the neural data
are different (i.e., continuous-valued waveforms versus point-process spike trains). The
present report provides a unifying framework for analyzing spike trains using apPSTHs,
which offers numerous benefits over previous neurophysiological analyses. Specifically,
the use of apPSTHSs incorporates many of the previous ad-hoc approaches, such as VS
and correlograms (Egs [3] to . In fact, correlograms and metrics derived from them can
be estimated using apPSTHs in a computationally efficient way. The apPSTHs
essentially convert the naturally rectified neurophysiological point-process data into a
continuous-valued signal, which allows advanced signal processing tools designed for
continuous-valued signals to be applied to spike-train data. For example, apPSTHs can
be used to derive spectrally specific TFS components [e.g., ¢(t), Fig @, multitaper
spectra (Fig[3]), modulation-domain representations (Fig , and harmonicgrams (Figs
and . apPSTHs can also be directly compared to evoked far-field responses for
both stationary and nonstationary stimuli (e.g., Figs [L1} and .

Temporal coding metrics should be spectrally specific

The various analyses explored here advocate for spectral specificity of temporal coding
metrics. The need for spectrally specific analyses arises for two reasons: (1) neural data
is finite and stochastic, and (2) spike-train data are rectified. Neural stochasticity
exacerbates spectral-estimate variance at all frequencies; therefore, time-domain
(equivalently broadband) metrics will be noisier compared to narrowband metrics.
Similarly, the rectified nature of spike-train data introduces harmonic distortions in the
response spectrum, which can corrupt broadband metrics (e.g., TFS distortion at two
times the carrier frequency corrupting estimates of ENV coding, Figs and )

These issues requiring spectral specificity are not unique to the apPSTH analyses
but also apply to classic metrics, e.g., correlograms. For example, the broadband
correlation index (CI) metric is appropriate to analyze responses of neurons with high
CFs, but the CI metric is corrupted by rectifier distortions for neurons with low
CFs (Heinz and Swaminathan) [2009; [Joris et al., |2006). Studies have previously tried to
avoid these distortions in the sumcor by restricting the response bandwidth to below
the CF because, for a given filter, the envelope bandwidth cannot be greater than the
filter bandwidth (Heinz and Swaminathan, [2009; |[Kale and Heinzl 2010]).

Here, we have extended and generalized the analysis of these issues using
narrowband stimuli. In particular, when a neuron responds to low-frequency stimulus
energy that is below half the phase-locking cutoff, responses that contain any
polarity-tolerant component [e.g., p(t), n(t), s(t), SAC, and sumcor] will be corrupted
by rectifier distortion of the polarity-sensitive component (Fig ) Any broadband
metric of temporal coding should exclude these distortions at twice the carrier
frequency. Beyond avoiding rectifier distortion, limiting the bandwidth of a metric to
only the desired bands will lead to more precise analyses by minimizing the effects of
neural stochasticity (Fig ) For example, envelope coding metrics for SAM-tone
stimuli should consider the spectrum power only at F,, and its harmonics (Vasilkov and
Verhulst, |2019)), rather than the simple approach of always low-pass filtering at
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CF (Heinz and Swaminathan 2009)).

Similar to envelope-based metrics, metrics that quantify TFS coding should also be
spectrally specific to the carrier frequency. Previous metrics of TFS coding, such as d(t)
and difcor, are not specific to the carrier frequency but rather include modulation
sidebands as well as additional sidebands due to transduction nonlinearities (Fig @ In
contrast, ¢(t) introduced here emphasizes the carrier and suppresses the sidebands (Fig
@. Thus, the spectrally specific ¢(t) is a better TFS response, which relates to the
zero-crossing signal used in the signal processing literature (Logan, [1977; [Voelcker| (1966}
Wiley|, [1981)).

Spectral-estimation benefits of using apPSTHs

Neurophysiological studies have usually favored the DFT to estimate the response
spectrum. For example, the DFT has been applied to the period histogram (Delgutte
and Kiang] |1984a; [Young and Sachs| [1979)), the single-polarity PSTH (Carney and
Geisler, |1986; Miller and Sachs|, [1983]), the difference PSTH (Sinex and Geisler}, [1983)),
and correlograms (Louage et al.l [2004). Since spike-train data are stochastic and usually
sparse and finite, there is great scope for spectral estimates, including the DFT
spectrum, to suffer from bias and variance issues. The multitaper approach optimally
uses the available data to minimize the bias and variance of the spectral

estimate (Babadi and Brown, |2014; |Percival and Walden, 1993} [Thomson, (1982). The
multitaper approach can be used with both apPSTHs and correlograms, but using
apPSTHs offers additional variance improvement up to a factor of 2 (Fig|3]). This
improvement is because twice as many tapers (both odd and even) can be used with an
apPSTH compared to a correlogram, which is an even sequence and limits analyses to
only using even tapers. Additional benefits may be achievable by combining the
Lomb-Scargle approach, which is well-suited for estimating the spectrum of unevenly
sampled data (e.g., spike trains), with apPSTHs in the multitaper

framework (Springford et al., 2020)).

Benefits of spectrotemporal filtering

Analysis of neural responses to nonstationary signals has been traditionally carried out
using windowing-based approaches, such as the spectrogram. Shorter windows help with
tracking rapid temporal structures, but they offer poorer spectral resolution. On the
other hand, larger windows allow better spectral resolution at the cost of smearing rapid
dynamic features. As an alternative to windowing-based approaches, spectrotemporal
filtering can improve the spectral resolution of analyses by taking advantage of stimulus
parameters that are known a priori (Fig E[) This approach is particularly efficient to
analyze spectrally sparse signals (i.e., signals with instantaneous line spectra, such as
voiced speech). In particular, the spectral resolution is substantially improved compared
to the spectrogram. In addition, while the same temporal sampling can be obtained
using the spectrogram, it will be much more computationally expensive compared to the
spectrotemporal filtering approach, as discussed in the following example.

The benefits of spectrotemporal filtering extend to other spectrally sparse signals,
like harmonic complexes. A priori knowledge of the fundamental frequency can be used
to construct the harmonicgram, which takes advantage of power concentration at
harmonics of Fy. This approach contrasts with the spectrogram, which computes power
at all frequencies uniformly. The harmonicgram can be used to analyze both kinematic
synthesized vowels (Fig as well as natural speech (Fig . The harmonicgram is
particularly useful in quantifying dominant harmonics at high temporal sampling, and is
thus applicable to nonstationary signals. The harmonicgram can also be applied to
evoked far-field potentials (e.g., the FFR in Fig . While alternatives exist to analyze
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spike-train data in response to time-varying stimuli (Brown et al., [2002), the present
spectrotemporal technique is simpler and can be directly applied to both spike-train
data and far-field responses. Overall, these results support the idea that using apPSTHs
to analyze spike trains provides a unifying framework to study temporal coding in the
auditory system across modalities. Furthermore, this framework facilitates the study of
dynamic-stimulus coding by the nonlinear and time-varying auditory system.

apPSTHs allow animal models of sensorineural hearing loss to
be linked to psychophysical speech-intelligibility models

Speech-intelligibility models not only improve our understanding of perceptually
relevant speech features, they can also be used to optimize hearing-aid and
cochlear-implant strategies. However, existing SI models work well for normal-hearing
listeners but have not been widely extended for hearing-impaired listeners. This gap is
largely because of the fact that most SI models are based on signal-processing
algorithms in the acoustic domain, where individual differences in the physiological
effects of various forms of sensorineural hearing loss on speech coding are difficult to
evaluate. This gap can be addressed by extending acoustic SI models to the neural
spike-train domain. In particular, spike-train data obtained from preclinical animal
models of sensorineural hearing loss can be used to explore the neural correlates of
perceptual deficits faced by hearing-impaired listeners (Trevino et al., [2019). These

insights will be crucial for developing accurate SI models for hearing-impaired listeners.

apPSTHs offer a straightforward means to study various speech features in the
neural spike-train domain. As apPSTHs are in the same discrete-time continuous-valued
form as acoustic signals, acoustic SI models can be directly translated to the neural
domain. Many successful SI models are based on the representation of temporal
envelope (Jgrgensen and Daul 2011} [Relano-Iborra et al.l 2016, although the role of
TFS remains a matter of controversy (Lorenzi et al., 2006)). In fact, recent studies
suggest that the peripheral representation of TFS can shape central envelope
representations, and thereby alter speech perception outcomes (Ding et al., [2014;
Viswanathan et al., [2019)). apPSTHs can be used to derive modulation-domain
representations so that envelope based SI models can be evaluated in the neural domain
(Fig[). Similarly, the Hilbert-phase PSTH, ¢(t), can be used to evaluate the neural
representation of TFS features. These TF'S results will be particularly insightful for
cochlear-implant stimulation strategies that rely on the zero-crossing component of the
stimulus, which closely relates to ¢(¢)(Chen and Zhang} [2011; |Grayden et al., |2004]).

Translational benefits of animal models

A key motivation of this paper was to develop a framework so that insights and findings
from animal models can ultimately improve our understanding of how the human
auditory system processes real-life sounds, like speech. Experiments involving human
subjects are typically limited to far-field responses, such as compound action potentials,
frequency-following responses, and auditory brainstem responses. However, these evoked
responses include contributions from multiple sources such as the cochlear microphonic,
electrical interferences, and responses from several neural substrates (King et al.l |2016;
Verschooten and Joris), 2014)); these contributions are not clearly understood. The
apPSTH-based framework offers a straightforward way to study these contributions by
comparing anatomically specific spike-train responses with clinically viable noninvasive
responses.

This framework is also beneficial to develop and validate noninvasive metrics using
animal models and apply these metrics to humans. For example, we demonstrated the
applicability of the new spectrally compact harmonicgram approach on both spike-train
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data and FFR data recorded from chinchillas to evaluate speech coding. This
harmonicgram analysis can also be applied to FFR data recorded from humans to study
natural speech coding in both normal and impaired auditory systems. Similarly, the
representation of other important response features, such as the onset and adaptation,
can also be linked between invasive and noninvasive data using pre-clinical animal
models of different forms of SNHL. Overall, these insights will be informative for
estimating the anatomical and physiological states of humans using noninvasive
measures, and how these states relate to individual differences in speech perception that
currently challenge audiological rehabilitation.

Limitations
Biological feasibility

The analyses proposed here aim to rigorously quantify the dichotomous ENV/TFS
information in the neural response and bridge the definitions between the audio and

neural spike-train domains. Methods discussed here may not all be biologically feasible.

For example, the brain does not have access to both polarities of the stimulus. Thus,
the PSTHs that require two polarities to be estimated, e.g., s(t), d(t), and ¢(t), may
not have an “internal representation” in the brain. This limitations also applies to
correlogram metrics based on sumcor and difcor, which require two polarities of the
stimulus. Thus, the use of the single-polarity PSTH [p(¢)] to derive the central “internal
representations” is more appropriate from a biological feasibility perspective (e.g., Fig
. However, these various ENV/TFS components allow a thorough characterization of
the processing of spectrotemporally complex signals by the nonlinear auditory system
and can guide the development of more accurate speech-intelligibility models and help
improve signal processing strategies for hearing-impaired listeners.

Alternating-polarity stimuli

Use of two polarities may not be sufficient to separate out all components underlying
neural responses when more than two components contribute to neural responses at a
given frequency. In particular, it may be intractable to separate out rectifier distortion
when the bandwidths of ENV and TFS responses overlap. For example, consider the
response of a broadly tuned AN fiber to a vowel, which has a fundamental frequency of
Fy. The energy at 2Fy in S(f) may reflect one or more of the following sources: (1)
rectifier distortion to carrier energy at Fp, (2) beating between (carrier) harmonics that
are separated by 2Fp, and (3) effects of transduction nonlinearities on the beating
between (carrier) harmonics that are separated by Fp. In these special cases, additional
stimulus phase variations can be used to separate out these components (Billings and
Zhang, (1994} Lucchetti et al.| 2018)).

The harmonicgram

A key drawback of applying the harmonicgram to natural speech is the requirement of
knowing the Fy trajectory. Fy estimation is a difficult problem, especially in degraded
speech. Thus, the harmonicgram could be inaccurate unless the Fy trajectory is known,
or at least the original stimulus is known so that Fy can be estimated. A second
confound is the unknown stimulus-to-response latency for different systems. Latencies
for different neurons vary with their CF, stimulus frequency, and stimulus intensity.
Thus, even if the acoustic spectrotemporal trajectory is known precisely, errors may
accumulate if latencies are not properly accounted for. This issue will likely be minor
for spectrotemporal trajectories with slow dynamics. For stimuli with faster dynamics,
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latency confounds can be easily minimized by estimating stimulus-to-response latency
by cross-correlation and using a larger cutoff frequency for low-pass filtering.

Materials and Methods

Experimental procedures

Spike trains were recorded from single AN fibers of anesthetized chinchillas using
standard procedures in our laboratory (Henry et al., 2019; Kale and Heinz, [2010). All
procedures followed NIH-issued guidelines and were approved by Purdue Animal Care
and Use Committee (Protocol No: 1111000123). Anesthesia was induced with xylazine
(2 to 3 mg/kg, subcutaneous) and ketamine (30 to 40 mg/kg, intraperitoneal), and
supplemented with sodium pentobarbital (~7.5 mg/kg/hour, intraperitoneal). FFRs
were recorded using subdermal electrodes in a vertical montage (mastoid to vertex with
common ground near the nose) under the same ketamine/xylazine anesthesia induction
protocol described above using standard procedures in our laboratory (Zhong et al.,
2014)). Spike times were stored with 10-us resolution. FFRs were stored with 48-kHz
sampling rate. Stimulus presentation and data acquisition were controlled by custom
MATLAB-based (The MathWorks, Natick, MA) software that interfaced with hardware
modules from Tucker-Davis Technologies (TDT, Alachua, FL) and National Instruments
(NI, Austin, TX).

Speech stimuli

The following four stimuli were used in these experiments. (s1) Stationary vowel, A (as
in cup): Fy was 100 Hz. The first three formants were placed at F; = 600, F5 = 1200,
and F3 = 2500 Hz. The vowel was 188 ms in duration. (s2) Nonstationary vowel, A: Fj
increased linearly from 100 to 120 Hz over its 188-ms duration. The first two formants
moved as well (Fy: 630 — 570 Hz; Fy: 1200 — 1500 Hz; see ‘ F3 was fixed at
2500 Hz. The formant frequencies for both s; and so were chosen based on natural
formant contours of the vowel A in American English (Hillenbrand et al., 1995}
Hillenbrand and Nearey|, (1999). s; and so were synthesized using a MATLAB
instantiation of the Klatt synthesizer (courtesy of Dr. Michael Kiefte, Dalhousie
University, Canada). (s3) A naturally uttered Danish sentence [list #1, sentence #3 in
the CLUE Danish speech intelligibility test, (Nielsen and Daul, 2009))]. (s4) A naturally
uttered English sentence [Sentence #2, List #1 in the Harvard Corpus, (Rothauser
1969)]. All speech and speech-like stimuli were played at an overall intensity of 60 to 65
dB SPL.

Power along a spectro-temporal trajectory

Consider a known frequency trajectory, firq;(t), along which we need to estimate power
in a signal, z(t). The phase trajectory, ®traj(t), can be computed as

t
Buraj ) = [ furas(r)ir ®)
0
For discrete-time signals, the phase trajectory can be estimated as
1 n
(I)traj [n] = ]T Z ftraj [m] (9)
S m=1

The phase trajectory can be demodulated from x(¢) by multiplying a complex
exponential with phase = —®;,4;(t) (Olhede and Walden, 2005)
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Taemod(t) = x(t) e 92 Prrai(t) (10)

The power along fiq;(t) in z(t) can be estimated as the power in Z4emoq(t) within
the spectral-resolution bandwidth (W) near 0 Hz in the spectral estimate, P, ., (f).

w2
Prraj =2 / Prvo (). ()
—W/2

The scaling factor 2 is required because the integral in Eq[l1] only represents the
original positive-frequency band of the real signal, x(¢); the equal amount of power
within the original negative-frequency band, which is shifted further away from 0 Hz by
®4rq;(t), should also be included (see Fig [9).

The harmonicgram

Consider a harmonic complex, x(t), with a time-varying (instantaneous) fundamental
frequency, Fy(t). For a well-behaved and smooth Fy(¢), energy in x(t) will be
concentrated at multiples of the instantaneous fundamental frequency, i.e., kFy(t).
Thus, z(t) can be represented by the energy distributed across the harmonics of the
fundamental. The time-varying power along the k-th harmonic of Fy(¢) can be
estimated by first demodulating x(t) with the kFy(t) trajectory using Eq[10} and then
using an appropriate low-pass filter to limit energy near 0 Hz (say within £W/2). We
define the harmonicgram as the matrix of time-varying power along all harmonics of the
fundamental frequency. Thus, the harmonicgram is

harmonicgram(k,t) = LPF|_w2,w/2{x(t) e I2mREO ()Y (12)
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Glossary of terms and definitions.

S2 Tablel Parameters for the AN model.

Graphical illustration of apPSTHs in Table

Nonlinear inner-hair-cell transduction function introduces additional
sidebands in the spectrum for a SAM tone.
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IS4 Figl DFT-magnitude for the nonstationary vowel, ss.

FFR harmonicgram can be constructed using the Hilbert-phase response.
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Supporting information

S1 Text. Classic metrics for quantifying temporal coding in the
auditory system

Various approaches and metrics have been developed to quantify auditory temporal
coding in neurophysiological responses. In this section, we motivate the need for a
unified framework for auditory temporal coding by briefly reviewing these classic
metrics and discussing their benefits and limitations.

Period-histogram based metrics

The ability of AN fibers to follow the temporal structure of an acoustic stimulus has
been known for a long time (Galambos and Davis| [1943)). Using tones as stimuli, Kiang
and colleagues showed that AN fibers prefer to discharge spikes around a particular
phase of the stimulus cycle (Kiang et all [1965]). Their analysis was qualitative and
involved the period histogram, which is constructed as the histogram of spike times
modulo the period of one stimulus cycle (e.g., Fig ) Rose and colleagues used the
period histogram to quantify the preference of neurons to fire during one half-cycle of a
periodic stimulus (Rose et all [1967)). They introduced a metric, called the coefficient of
synchronization, which is defined as the ratio of the spike count in the most effective
half-cycle to the spike count during the whole stimulus cycle. The coefficient of
synchronization ranges from 0.5 (for a flat period histogram) to 1.0 (for all spikes within
one half-cycle). The coefficient of synchronization does not truly quantify the strength
of phase locking to the stimulus cycle as it does not consider the spread of the period
histogram. For example, two period histograms, one where all spikes occur at the peak
of the stimulus cycle (strong phase locking), and the other where all spikes are
uniformly distributed across one stimulus half-cycle (weak phase locking), will yield the
same coefficient of synchronization of 1.0.

A more sensitive measure of phase locking derived from the period histogram is the
vector strength [VS (Goldberg and Brown)| 1969} |Greenwood and Durand), [1955)], which
is identical to the synchronization index metric described by Johnson (Johnson, (1980).
VS has been used extensively to quantify phase-locking strength in spike-train
recordings in response to periodic stimuli (Joris et al.| 2004; [Palmer and Russell, |1986)),
including stationary speech (Young and Sachs, [1979)). In this framework, each spike is
treated as a complex vector that has a magnitude of 1 and an angle that is defined by
the spike phase relative to the stimulus phase; VS is defined as the magnitude of the
average of all such vectors for spikes pooled across all stimulus repetitions (S1
Appendix). VS is a biased estimator of the “true” vector strength (Mardiaj, [1972)) and
can reach spuriously high values at low spike counts (Yin et al., |2010). This problem is
avoided by using a modification of the vector strength, called the phase-projected vector
strength (V'Sp,) (Yin et al.| [2010). Similar approaches have been used in
electrophysiological studies (Vinck et all) 2011)). V.S, differs from V'S in that
trial-to-trial phase consistency is also considered in computing V'S, (S1 Appendix).

Overall, the period histogram and metrics derived from it (V.S and V'S,,) work well
for applications involving stationary signals with periodic TFS (e.g., tones, Fig. )7
ENV (e.g., sinusoidally amplitude-modulated noise), or both (e.g., sinusoidally
amplitude-modulated tones, Fig. ) However, the period histogram ignores
nonstationary features in the response that arise from the auditory system. For
example, spikes in the first few stimulus cycles are often ignored while constructing the
period histogram to avoid the nonstationary onset response. Similarly, since spikes
corresponding to different stimulus cycles are wrapped onto a single cycle, effects of
adaptation are not captured in the period histogram. Moreover, its application to
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nonstationary or aperiodic stimuli (e.g., natural speech) is not straightforward.

Peristimulus-time-histogram (PSTH) based metrics

The single-polarity PSTH, p(t), is constructed as the histogram of spike times pooled
across all stimulus repetitions at a certain bin width (e.g., Fig ) As the PSTH shows
the rate variation along the course of the stimulus, it captures the onset as well as
adaption effects in the response (Kiang et al., [1965; Westerman and Smith| [1988). p(t)
has been applied to analyze spike trains recorded in response to periodic signals, both in
the temporal and spectral domains (Delguttel [1980; Palmer et al., [1986; [Young and
Sachs, [1979). A limitation of the p(?)-spectrum is that it is corrupted by harmonic
distortions due to the rectified nature of the PSTH response (Young and Sachs (1979).
For example, the spectrum of a PSTH constructed using spike trains recorded from an
AN fiber in response to a tone (F.) can show energy at F, as well as 2F, even though
the stimulus itself does not have energy at 2F,. These issues related to rectifier
distortion can be minimized by using both polarities of the stimulus . Similar to
the period histogram, the PSTH can also be used to derive phase-locking metrics, such
as V.S and V.S,,. These synchrony-based metrics have been recently overshadowed by
correlogram-based metrics, which are described next, since the synchrony-based metrics
are limited to periodic signals. In contrast, correlogram-based approaches offer more
general metrics to evaluate temporal coding of both periodic and aperiodic stimuli in
the ENV/TFS dichotomy.

Interspike-interval (ISI) based approaches (e.g., correlograms)

Interspike interval histogram analyses were developed to quantify the correlation
between two spike trains, either from the same neuron or from different

neurons (Hagiwaral, [1954; Perkel et al., [1967albj; Rodieck et al., |[1962). Interspike
intervals between adjacent spikes (also called first-order intervals) within a stimulus trial
are used to construct per-trial estimates of the ISI histogram, which are then averaged
across trials to form the final first-order ISI histogram (Fig[ST1}C). An alternative to
the first-order ISI histogram, called the all-order ISI histogram (or the autocorrelogram),
can be estimated in a similar way with the only difference being the inclusion of
intervals between all spikes within a trial (not only adjacent spikes) to construct the
histogram (Fig [STI}E) (Mgller| [1970; [Rodieck] [1967). The autocorrelogram has been
used to study the temporal representation of stationary as well as nonstationary
stimuli (Bourkl (1976} |Cariani and Delgutte, [1996ab; [Sinex and Geisler, [1981). While
the autocorrelogram is attractive for its simplicity, it is confounded by refractory effects
(Figs E and F) In particular, since successive spikes within a single trial
cannot occur within the refractory period, the autocorrelogram shows an artifactual
absence of intervals for delays less than the 0.6-ms refractory period (Fig E) Asa
result, the autocorrelogram spectrum is partly corrupted.

Joris and colleagues extended these ISI-based analyses to remove the confounds of
the refractory effects by including all-order interspike intervals across stimulus trials to
compute a shuffled correlogram (Louage et al. 2004). A shuffled correlogram computed
using spike trains in response to multiple repetitions of a single stimulus from a single
neuron is called the shuffled autocorrelogram (or the SAC, Fig[ST1}G). Similarly, a
shuffled correlogram computed using spike trains from different neurons, or for different
stimuli, is called the shuffled cross-correlogram (or the SCC'). The use of across-trial
all-order ISIs provides substantially more smoothing than simple all-order ISIs because
many more intervals are included in the histogram (compare Fig E with Fig G,

and Fig [STI}F with Fig [STIHH).
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Fig ST1. The shuffled autocorrelogram is better than the first-order and all-order ISI histogram, both in
the time and frequency domains. Example correlograms (top) and associated spectra (bottom) constructed using spike
trains recorded from an AN fiber (CF = 1.4 kHz, medium SR) in response to a SAM-tone at F,. = CF (50-Hz modulation
frequency or F,,,, 0-dB modulation depth, 700-ms duration, 27 repetitions, 50 dB SPL). (A) Autocorrelation function of the
half-wave rectified stimulus. (B) The discrete Fourier transform (DFT) of A. (C) The first-order (FO) ISI histogram. (D)
DFT of C. The first-order ISI histogram poorly captures the carrier (TFS) and fails to capture the modulator (ENV). (E)
The all-order (AO) IST histogram. (F) DFT of E. The all-order IST histogram captures both the carrier and modulator despite
being noisy. Both the first-order (C) and the all-order (E) IST histograms show dips for intervals less than the refractory
period (~0.6 ms), with the corresponding spectra corrupted by these refractory effects. (G) The shuffled autocorrelogram.
(H) DFT of G. The shuffled autocorrelogram is smoother compared to the other correlograms, which also leads to improved
SNR in the spectrum at both the carrier and modulator frequencies. All these ISI histograms are corrupted by rectifier
distortion at twice the carrier frequency (2F.). Bin width = 50 us for histograms in C, E, and G.

In addition, both polarities of the stimulus can be used to separate out ENV and
TFS components from the response. Stimuli with alternating polarities share the same
envelope, but their phases (TFS) differ by a half-cycle at all frequencies. By averaging
shuffled autocorrelograms for both stimulus polarities and shuffled cross-correlograms
for opposite stimulus polarities, the polarity-tolerant (ENV) correlogram (called the
sumcor) is obtained (Louage et al.| [2004) (S4 Appendix). Similarly, the
polarity-sensitive (TFS) correlogram, the difcor, is estimated as the difference between
the average autocorrelogram for both stimulus polarities and the cross-correlogram for
opposite stimulus polarities (S4 Appendix). These functions have been preferred over
PSTH-based analyses for estimating correlation sequences and response
spectra (Cedolin and Delgutte, [2005; [Joris et al., [2006; [Rallapalli and Heinz, [2016)).
Shuffled autocorrelograms have also been used to derive temporal metrics, such as the
correlogram peak-height and half-width, to quantify the strength and precision of
temporal coding in the response, respectively (Louage et al. 2004)), including for
nonstationary stimuli (Paraouty et al., 2018; [Sayles et al., 2015; [Sayles and Winter,
. In addition, cross-correlograms have been used to develop metrics to quantify
ENV/TFS similarity between responses to different stimuli recorded from the same
neuron [e.g., speech stimuli (Heinz and Swaminathan| [2009} [Rallapalli and Heinz, [2016;
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Swaminathan and Heinz, [2012)], or between responses from different neurons (Heinz
et al.l |2010; |Joris et al., |2006; [Swaminathan and Heinz, [2011)).

Although correlogram-based analyses provide a rich set of temporal metrics, they
suffer from three major limitations. First, correlograms discard phase information in the
response. Response phase can convey important information, especially for complex
stimuli, like speech (Delgutte et al.l [1998; |Greenberg and Arai, 2001} |Paliwal and
Alsteris|, 2003]). Second, metrics derived from the shuffled autocorrelogram and the
sumcor are corrupted by rectifier distortions (e.g., Fig H) Third, spectral estimates
based on correlograms are appropriate for second-order stationary signals. To
accommodate for nonstationary signals, usually a sliding-window-based approach is
employed where in each temporal window the spectrum and/or correlogram is
computed (Sayles and Winter, |2008)). This windowing-based approach faces the classic
problem of a time-frequency resolution trade-off. In addition, the smoothing benefit
provided by the correlogram comes at large computational cost as its computation
requires all-order spike-time differences across all trials. This computation cost scales
quadratically (N?) with the number of spikes (N) and can be cumbersome for large N.
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S1 Appendix. Vector strength metric definitions

Vector Strength. The vector strength (VS) metric is used to quantify how well spikes
in a spike train are synchronized to a frequency, f (Goldberg and Brown, |1969; |Johnson,
1980). Let us denote a spike train with N spikes as ¢ such that ¢ = {¢1,t,...,tn} and

the {t;}s are individual spike times. To compute the vector strength, these spike times
are first transformed onto the unit circle such that ¢; maps to z; as

2 = eIt

The mean of the set of complex vectors corresponding to all N spikes is

1 & 1 &
=y s=y e (13)
i=1 i=1
Then, VS at frequency f is defined as the magnitude of p(f).

VS(f) = lp(f)]

=i
S

@
Il
-

[cos(2m ft;) + g sin(27 ft;)]

2=
\MZ

Q
Il
_

= [ Zcos 27 ft;) Zsm 2w ft; ] (14)

Phase-projected Vector Strength. The phase-projected vector strength (VSpp) is
identical to the VS for a single spike train (i.e., for a single stimulus repetition), but
these metrics differ when multiple (R) stimulus repetitions are used. V.S, is
advantageous relative to V.S when there are relatively fewer spikes per repetition (Yin
et al., 2010). To estimate V.S, at frequency f, the magnitude (i.e., V.S) and phase
[#r(f)] of the mean complex vector are first calculated for individual repetitions using
Eqs [13] and [14] (instead of pooling spike times across all R repetitions). The
per-repetition VS estimates, called V.S™(f), are weighted by the cosine of the phase
difference between ¢"(f) of the repetition and the mean phase based on all spikes from
all repetitions, ¢"f(f), to estimate the phase-projected vector strength, V.S, (f), for the
repetition.

VS, (f) = VST(f) cos [¢"(f) = ¢"/ (f)],
where ¢"(f) for repetition r with N, spikes {t,5,...,t}y } is computed as
L 2N sin(2m ft)
>0z, cos(2 ft)]

and ¢/ (f) is computed using all spikes across all R repetitions as

—1 E'r 1 Z _y sin(2m ft7)
ZT 1 Z 1cos(27rft”)

V Spp(f) for R repetitions is computed as the mean V.S) (f) across all repetitions,

1 R

¢"(f) = tan

o™/ (f) = tan
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S2 Appendix. Relation between the vector strength metric and
the difference PSTH

Let us assume that we have R sets of spike trains {¢.} : i € [1,.., R] for a tone stimulus
with duration D and frequency fy. Let the correspondlng PSTH be p(t), and the total

number of spikes be N.
In Eq Zil e??™fti can be written as (van Hemmen) 2013)

N

D
D et = / p(t)e?? It dt. (15)
t=0

i=1

Using Eq [15] in Eq[I3] we get

1 [P om it
== et dt
p(f) N tzop( )el=m 1t
1 D
= p(fo) = i p(t)eﬂ”fotdt. (16)

If we assume response phase locking to positive and negative polarity of a sinusoid
(fo) differ by a phase of 7 [i.e., a time difference of Tp/2(= 1/2fy) such that
p(t) =~ n(t)e??™IT0/2] we can write

1P om ft
o) = L [ pyerrar
N Jizo
1 D
= N/ n(t)e??™fTo/2e02m It gy (17)

For f # fo, the integral in Eq[17] will be zero. For f = fy,

D
p(fo) = ]1[ "(Ueﬂ#h%éemﬂ)tdt
1 D
=N n(t)e’™ el ot dt
1 P
= po(fo) = N/ —n(t)e?? ot t. (18)
t=0
Adding Eqgs. [16] and we get
1 D
20(f0) = 5 | [p(t) = n()] e /"dt
1 27 fot
N 2d( )ej otdt
1 J27 fot
)= [ aterssoa
_D(-p)
N K

where D(f) = f:o d(t)e=72"ftdt is the Fourier transform of d(t). Since d(t) is a real
signal, |D(f)| = |D(—f)|. Thus, the relation between VS and the difference PSTH

becomes,
vs( = ot = 2L (19)
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S3 Appendix. Relation between shuffled correlograms and
apPSTHs

Consider X: a set of T'x spike trains {(1, (2, ..., {1y } in response to a stimulus of
duration D. For each spike train ¢;, we can construct a PSTH, z;, with PSTH bin
width A so that the length of the single-trial PSTH z; is M = D/A. The single-trial
PSTH is a binary-valued vector because each element in the vector is either 0 or 1. Let
us denote the PSTH for X by PSTHx such that PSTHx = 2331 ;. Consider Y:
another set of Ty spike trains, with y; and PST Hy defined similarly to x; and
PSTHy, respectively. Let us assume that the stimulus duration and bin width for y;
are the same as that for z;. Let the average discharge rates (in spikes/s) for X and Y be
rx and ry, respectively. The shuffled cross-correlogram (SCC') for two spike trains ¢;
and ¢; computed using tallying (Louage et al., 2004) is identical to the cross-correlation
function (denoted by Rxy) between their respective PSTHs, (z; and z;). Thus, the raw
(not normalized) shuffled cross-correlogram (SCC"™") at 7 delay can be computed as

SCC}T{?{(U(T> = RXy(ﬁa {£7 Y2, 7&}) +.+ ,R'Xy(%7 {&7 Y2, 7&})

=Ray(@i, [y1 +y2 + . +yry]) + ot (20)
Ray(@ry, [y1 +y2 + . +yry )
Tx Ty

=> > Ray(xsy))
i=1 j—1

=Rxy(PSTHx,PSTHy)
_ Ray(PSTHx,PSTHy)
B TxTy’l"XryDA ’
where SCC™"™™ is the normalized SCC (Heinz and Swaminathan, [2009; Louage et al.,
2004]).

Similarly, the raw shuffled autocorrelogram (SAC™*") at 7 delay can be computed
as,

= SCCxY™(7) (21)

SAC;EMU(T) = ’R,X);(ﬁ, {Q,B, 7l‘&}) + R_;yy(@, {ﬂ,&, ...,l‘TX}) + ...
+ Ray(zry {21, 22, + 215 1})
=Ruxy(z1, (w2 + 3+ ... + 21y]) + Ray(za, [v1 + 23 + ... + 21 ])

+ot+ RXy(l'TX, [ﬂ—f—@—i_ et xTX*l])

Tx Tx
= > Raylziay)
i=1j=1,j#i
Tx Tx Tx
=Y > Ray(wiz) =Y Ray(wi,z)
i=1j=1 i=1

= Rx(PSTHx) =Y Rux(z:)
Rax(PSTHx) = 3,2 Ra(z:)

A norm —
= SAGTT(T) Tx(Tx — )r% DA ’

(22)

where Ry denotes the autocorrelation function. Similar to autocorrelation functions,
the SAC™"™™ has its maximum at zero delay.
In the numerator of Eq the term ZZT:Xl Rx(x;) is negligible compared to

Rx(PSTHx) for 7 #0. For 7 =0, Zz;xl Rux(z;) is equal to the total number of spikes
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(N) in X. Thus, Eq [22| can be further approximated by,

. R (PSTHy) — Ni(r
SACET™ () ~ T; T o 1))r§(DA( ) (23)
Rx(PSTHy) §(7)
T Tx(Tx — )i DA~ (Tx — L)rxA
_ Rx(PSTHx) __8() (24)
T%r3 DA TxrxA

where N = rx DT, and ¢ is the Dirac delta function. The simplifying approximation
in Eq [24]is valid for typically used Tx values in neurophysiological experiments, and
equates the normalization factors between SACs and SCC's when working with difcor
and sumcor (e.g., S4 Appendix). Eqs [21] to [24] indicate that correlograms can be

computed much more efficiently using apPSTHs instead of by tallying spike times
[O(N) instead of O(N?), see main text].
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S4 Appendix. Relation between difcor/sumcor and
difference/sum PSTHs

Consider X : spike trains in response to the positive polarity of a stimulus, and X_:
spike trains in response to the negative polarity of the stimulus. Then, the difcor at 7
delay can be computed as

1

difcorg(r) = 3 [

SACgor™ + SACEe™  SCCRoE + Sccggmgg]
2 B 2

1 norm norm norm norm
-3 [SACX+ + SACET™ — SCCRTE — sccxﬂm]

For analytic simplicity, we use Eq [24] for SAC™"™™ instead of Eq[22] Let us assume
that the number of repetitions and average rates for both polarities are the same. Thus,

- i[RX(PSTHXJ — N&(7) + Rx(PSTHx_) — No(7)

— Ray(PSTHy,, PSTHy ) — Ray(PSTHx , PSTHy,)),

difeorx(r)

where K = T%r% DA is a constant. Now, PSTHy, = p(t), PSTHx_ = n(t), and the
difference PSTH d(t) = [p(t) — n(t)] /2. Then, the difcor for X at delay 7 is

difcorx(r) = i {Rx [p(t)] + Rx [n(t)] — Ry [p(t), n(t)] — Ry [n(t), p()]}
No(7)
2K

Now,
R [p(t)] + R [n(t)] = Ry [p(t), n(t)] = Ry [n(t), p(t)]

D D D D
- /t p(p(t — 7)dt + / ()t — 7)dt — / p(tn(t — 7)dt — / n(O)p(t — 7)dt

:DO t=0 b t=0 t=0
_ / P& [p(t — 7) — nlt — )] dt — / n(t) [p(t — 7) — n(t — 7)) dt
t=0 t=0
D
_ / ap(t)d(t — 7)dt — / n()d(t — 7)dt
t=0 t=0
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Thus,

difeorx(r) = i {Rx [p()] + R [n(t)] = Ry [p(t), n(t)] — Ry [n(t), p()]}

No(7)
-2k
= 15 % AR x[d(t)] — NQ(;](CT)

_ Rxld(t)]  Né(r)
= iC 2K
_ Rx[d(t)] B rx DTx0(7)
~ T3r3DA - 2733 DA
Rld o(t
= difcorx(r) = T;;%(g)i - 2Tx(7“))(A (25)

Similarly, it can be shown that

1 - noT
sumecorx (1) = 3 [SAC;?"”" + SCCxTx"

1 [SAC;gfm +SACET™ SCCETR. + SOCETE,
2 2 2

No(T)
2C

= 1K X 4Rx[8(t)] —

_ Rx[s(t)]  No(7)
K 2K

Rx[s(t)] 5(7)

TZr2DA  2TxrxA (26)

= sumcorg(T) =

where s(t) is the sum PSTH, i.e., s(t) = [p(t) + n(¢t)]/2.
Eqs [25] and [26] indicate that sumcor and difcor are related to the autocorrelation

function of the sum and difference PSTHs, respectively, and thus can be computed
much more efficiently [O(N) rather than O(N?)].
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S5 Appendix. Relation between shuffled-correlogram
peak-height and apPSTHs

Consider a difference PSTH, d(¢), based on a set of spike trains X in response to a
stimulus of duration D. Let us denote the Fourier transform of d(t) by D(f). Then,
from Eq the difcor peak-height, i.e., difcor value at zero delay (7), can be computed
as

N
difcorx(r =0) = RX{}?“” — 26](CT)
7=0 =0
1 [P N
== d*(t)dt — —
K Ji—o ®) 2K
1 oo

N
=< . \D(f) df — %K (by Parseval’s theorem) (27)

Following similar steps from Eq [26] it can also be shown that the sumcor
peak-height can be computed as

sumcorx (T =0) = %/77 |S(f)|2df - % (28)

where S(f) is the Fourier transform of the sum PSTH, s(t).

Comparing Eq[19| with Egs. [27] and we see that vector strength is a
frequency-specific metric, whereas correlogram peak-heights are broadband measures,

which are thus susceptible to rectifier distortion (see Fig .
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51 Tablel Glossary of terms and definitions

S1 Table. Glossary of terms and definitions.

Term Definition
Electrophysiology Studies that record and analyze far-field (gross) potentials, e.g., electroencephalography
Neurophysiology Studies that record and analyze spike-train data from neurons, e.g., AN fiber spike trains

A signal is stationary when the signal parameters do not change over time. For example, a
stochastic signal like white Gaussian noise is stationary if the amplitude probability density

Stationarity function is constant across time. Similarly, a deterministic pure tone can be considered an
example of a stationary sinusoidal process with a particular amplitude, frequency, and initial
phase.

A stochastic signal is second-order stationary if its mean and autocorrelation function do

Second-order stationarit . . N . . .
na-order TOHATLY ot change over time. Second-order stationarity is also referred to as wide-sense stationarity.

A system is linear if it obeys the rules of superposition. For example, consider a system for
which inputs z; and x5 evoke responses y; and ys, respectively. Then, the system is linear
if the response to input ax + bxs is ay; + bys. An auditory corollary of linearity is that a
linear system (e.g., the ear canal) processes sound in the same way at soft and loud sound
levels, which means that for every dB increase in the input, the output is increased by the
same dB.

Linearity

. . . A system is time invariant if its parameters (e.g., gain at all frequencies) do not change over
Time invariance

time
Periodic signal A perfectly repeating signal, e.g., a tone, or a synthetic vowel with constant pitch
Aperiodic signal A signal that does not repeat, e.g., white Gaussian noise

Polarity-tolerant response | Response component that does not depend on stimulus polarity, e.g., the onset response

Response component that depends on stimulus polarity, e.g., phase-locked spike trains in

Polarity-sensitive response
response to a low-frequency tone

Even sequence x[n] is even if z[n] = z[—n)]

0Odd sequence z[n] is odd if z[n] = —z[—n)]
List of terms with definitions that are frequently used in the present report.
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[S2 Tablel Parameters for the AN model

S2 Table. AN model parameters.

Parameter Value
Sampling Frequency 100 kHz
Number of Repetitions (per polarity) 25
Spontaneous firing rate (SR) 70 spikes/s
Absolute refractory period 0.6 ms
Baseline mean relative refractory period 0.6 ms

OHC health value

1.0 (normal)

IHC health value

1.0 (normal)

Species

1 (cat)

Fractional Gaussian noise type

0 (fixed)

Implementation type of the power-law functions in the Synapse

0 (approximate)

Spike time resolution

10 us

List of parameters used in the AN model to generate simulated spike-train data.
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Graphical illustration of apPSTHs in Table
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S1 Fig. Graphical illustration of apPSTHs in Table Graphical illustration
for several apPSTHs for a simple half-wave rectifying model. A SAM tone (carrier =
100 Hz, modulation frequency = 20 Hz, sampling frequency = 1 kHz, duration = 1 s)
was used as the stimulus, although for clarity only the first 100-ms are shown in time.
Note that rectifier distortions occur at even harmonics of the carrier for P(f), N(f),
and S(f), but not for D(f), E(f), or ®(f).
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Nonlinear inner-hair-cell transduction function
introduces additional sidebands in the spectrum for a SAM

tone.
A SAM c viHC
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S2 Fig. Nonlinear inner-hair-cell transduction function introduces
additional sidebands in the spectrum for a SAM tone. (A) Waveform for a
SAM tone (F.=1 kHz, F,,=100 Hz, 0-dB modulation depth). (B) D(f) and S(f) for
the SAM tone in A. (C) Waveform of the output after processing the SAM tone through
a sigmoid function. The sigmoid function was used as a simple proxy for the
inner-hair-cell transduction function. This output (vVIHC) was further low-pass filtered
at 2 kHz to mimic the membrane properties of inner hair cells. (D) D(f) and S(f) for
the signal in C. In addition to having power at F, and F, + F,,,, D(f) for vIHC has
substantial energy at F, 4+ 2F,, (plus reduced energy at higher multiple F,,-offsets from
F.). Similarly, S(f) for vIHC has substantial energy at F,, as well as at the first few
harmonics of F,,,. S(f) is also corrupted by rectifier distortion at 2F, (and multiple
F,,-offsets from 2F.) as expected.
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Neural characterization of ENV and TFS using
apPSTHs for a synthesized stationary vowel
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S3 Fig. Spectral-domain application of various apPSTHs to spike trains
recorded in response to a stationary vowel. Example of spectral analyses of spike
trains recorded from an AN fiber (CF= 530 Hz, SR=90 spikes/s) in response to a
synthesized stationary vowel (s; described in Materials and Methods, fundamental
frequency: Fy = 100 Hz, first formant: F; = 600 Hz). (A) Time-domain representation
of p(t), n(t), and the stimulus (Stim). n(t) is flipped along the y-axis for display.
Signals outside the analysis window are shown in gray. PSTH bin width = 0.1 ms.
Number of stimulus repetitions per polarity = 30. Stimulus intensity = 65 dB SPL. (B)
Stimulus spectrum (blue, left yaxis). In panels B-E, the frequency-threshold tuning
curve (TC 6, black) of the neuron is plotted on the right y-axis. The neuron’s CF was
close to the first stimulus formant. (C) P(f), which shows a strong response to the 6th
harmonic (first formant) and the 12th harmonics (due to rectifier distortion). (D)
Spectra for difference [D(f), green| and sum [S(f), purple] PSTHs. D(f) shows a clear
peak at the 6th harmonic and little energy near the 12th harmonic. Similar to P(f),
S(f) shows substantial energy at twice the TFS (F}) frequency due to rectifier
distortion. (E) Spectra of Hilbert-based TFS PSTH [®(f), green]. P(f) and S(f) are
corrupted by rectifier distortion at 2F} frequency. The response primarily reflects
TFS-based F coding (E) and little envelope coding (D), which is consistent with the
“synchrony-capture” phenomenon for stationary vowel coding (Delgutte and Kiang
[1984a; Young and Sachs, |1979)). Note that E(f) is not shown because e(t) was
essentially flat across the vowel duration, and therefore had little energy other than at 0
Hz.
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DFT-magnitude for the nonstationary vowel, s,.
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S4 Fig. DFT-magnitude for the nonstationary vowel, so. The stimulus
duration was 188 ms. The movements of Fy (100 to 120 Hz), Fy (630 to 570 Hz), and
F5 (1200 to 1500 Hz) are indicated by arrows. F3 was fixed at 2500 Hz.
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FFR harmonicgram constructed using the Hilbert-phase
FFR.

A. FFR Spectrogram
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S5 Fig. FFR harmonicgram can be constructed using the Hilbert-phase
response. Same format as Fig The spectrogram (A) and the harmonicgram (B)
were constructed using ¢(t).
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