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Abstract 

Anxiety-related illnesses are highly prevalent in human society. Being able to identify 

neurobiological markers signaling high trait anxiety could aid the assessment of 

individuals with high risk for mental illness. Here, we applied connectome-based 

predictive modeling (CPM) to whole-brain resting-state functional connectivity (rsFC) 

data to predict the degree of anxiety in 76 healthy participants. Using a computational 

“lesion” method in CPM, we then examined the weights of the identified main brain 

areas as well as their connectivity. Results showed that the CPM could predict individual 

anxiety from whole-brain rsFC, especially from limbic areas-whole brain and prefrontal 

cortex-whole brain. The prediction power of the model significantly decreased from 

(simulated) lesions of limbic areas, lesions of the connectivity within the limbic system, 

and lesions of the connectivity between limbic regions and the prefrontal cortex. 

Although the same model also predicted depression, anxiety-specific networks could be 

identified independently, centered at the prefrontal cortex. These findings highlight the 

important role of the limbic system and the prefrontal cortex in the prediction of anxiety. 

Our work provides evidence for the usefulness of connectome-based modeling of rsFC in 

predicting individual personality differences and indicates its potential for identifying 

personality structures at risk of developing psychopathology.  
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Introduction 

Anxiety, a personality dimension in healthy individuals, is a universal negative emotion 

that entails avoidance behaviors such as worrying, irritability, difficulty to relax and a 

tendency to interpret ambiguous situations as threatening (Spielberger, 1983; Grachev 

and Apkarian, 2000; Eysenck et al., 2007). Although anxiety has valuable adaptive 

benefits, individuals enduring high trait anxiety may be at risk to develop mental 

disorders (Pezawas et al., 2005; Sandi and Richter-Levin, 2009; Cremers et al., 2010). It 

has been estimated that an alarming 28.8% of the general population suffer from an 

anxiety-related disorder at some point in their lifetime (Kessler et al., 2005). Identifying 

neurobiological markers signaling high trait anxiety could aid the assessment of high-risk 

individuals, especially those with difficulty expressing their feelings to others 

(Eisenberger et al., 2005; Drysdale et al., 2017).  

 

Anxiety is a complex emotion that is associated with mutual inhibition between 

subcortical and cortical areas of the brain (Tovote et al., 2015; Xu et al., 2019). 

Particularly, the limbic system and the prefrontal cortex are highly engaged in the balance 

of these mutually inhibitory relationships (Hofmann et al., 2012). The limbic system has 

long been considered crucial for emotion processing (Fuchs and Flügge, 2003), and the 

prefrontal cortex plays an important role in top-down regulation of limbic activity 

(Mochcovitch et al., 2014). Regarding anxiety disorders, an emotion dysregulation model 

has been proposed that is characterized by an imbalance of prefrontal regulation over 
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limbic activity (Behar et al., 2009; Manber Ball et al., 2013; Mochcovitch et al., 2014). 

Specifically, it has been suggested that patients with anxiety disorders experience chronic 

hyper-arousal in the limbic circuitry (Kim et al., 2011). This fatigues the top-down 

regulation system in the prefrontal cortex, resulting in ineffective control particularly of 

negative emotions (Manber Ball et al., 2013). With regard to trait anxiety as a personality 

dimension in non-clinical samples, it has been demonstrated that anxiety-prone 

individuals require greater engagement of prefrontal regions to down-regulate negative 

emotions (Campbell-Sills et al., 2011). In spite of this, no effort has been made as yet to 

predict anxiety at the individual level for healthy people. Individualized prediction of 

anxiety would advance our understanding of the underlying neural mechanism and 

facilitate early identification of proneness to clinical anxiety. 

 

Recently, a novel approach has been tested to account for inter-individual variability in 

brain functional networks: Connectome-based predictive modeling (CPM). CPM is a 

novel data-driven approach for developing predictive models of brain–behavior 

relationships that can detect individual variability more accurately (“functional 

connectome fingerprinting”; Finn et al., 2015) by extracting and summarizing the most 

relevant features from resting-state functional connectivity (rsFC) using full 

cross-validation (Shen et al., 2017). Despite testing a specific hypothesis, CPM provides 

more holistic measures with whole-brain analyzes. This approach has successfully been 

used to predict individual personality traits and aspects of functional cognition, such as 
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fluid intelligence (Finn et al., 2015), sustained attention (Rosenberg et al., 2015), and 

creative ability (Beaty et al., 2018). Moreover, a computational lesion method based on 

CPM can reveal brain regions that are important in individualized prediction (Feng et al., 

2018). The computational lesion method allows for the computational manipulation of 

brain regions to be “lesioned”, and thus represents a non-invasive method simulating the 

effect of lesions in particular brain regions on aspects of neuropsychological functioning. 

 

The aim of current study was to predict individual levels of anxiety in healthy 

participants by applying CPM and the computational lesion approach to whole-brain 

resting-state fMRI data. We hypothesized that CPM would successfully predict anxiety at 

the individual level. Based on the emotion dysregulation model (Behar et al., 2009) and 

the computational lesion method in CPM (Feng et al., 2018), we hypothesized that both 

the limbic system and the prefrontal cortex would significantly contribute to the 

identification of individual levels of anxiety. 
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Materials and Methods 

Participants 

Eighty-eight healthy undergraduate students took part in MRI scanning. All the 

participants had no history of neurological and psychiatric disorders or head injury. After 

excluding excessive head motion [10 participants, exceeding 2.5 mm maximum 

translation, 2.5° rotation or 0.2mm mean frame-wise displacement (FD; Yan et al., 2013; 

Power et al., 2014)] and outliers in Back Anxiety Inventory scores (BAI: 2 participants, 

out of mean ± 2.5 std), the final sample consisted of 76 participants (38 females; age = 

21.34 ± 1.76). The study was approved by the local Ethics Committee at Beijing Normal 

University and written informed consent was obtained from all participants. 

 

Anxiety assessment 

To assess anxiety, we used the Chinese version of the BAI (Aaron T. Beck et al., 1988). 

This inventory consists of 21 items, each answer being scored on a four-point Likert scale 

of 1 (not at all) to 4 (severely). Participants also completed the Chinese version of the 

Zung self-rating depression scale (SDS; Zung, 1965).  

 

Image acquisition 

MRI data were acquired with a Siemens Trio 3T scanner powered with Total Imaging 

Matrix technique at the Imaging Center for Brain Research at Beijing Normal University. 

Both the fMRI and high-resolution 3D structural brain data were obtained using a 
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12-channel phased-array head coil with implementing a parallel imaging scheme that 

generalized auto-calibrating partially parallel acquisitions (Griswold et al., 2002). The 

fMRI data were acquired with a gradient-echo echo-planer imaging sequence with the 

following parameters: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, 33 

transversal slices, slice thickness 3.5 mm with gap 0.7 mm, flip angle = 90°, field of view 

(FOV) = 224 mm × 224 mm, data matrix = 64 × 64, 240 volumes scanned in 8 min, and 

spatial coverage (3.5 + 0.7) mm/slice×33 slices ≈ 139 mm. Additionally, the 3D structural 

brain images (1mm3 isotropic) were acquired for each participant using a T1-weighted 

3D magnetization-prepared rapid gradient echo sequence with the following parameters: 

TR / TE = 1900 ms / 3.44 ms, flip angle = 9°, data matrix = 256 × 256, FOV = 256 mm × 

256 mm, BW = 190 Hz / pixel, 176 image slices along the sagittal orientation, obtained in 

about 6 min. During resting-state scanning, all participants were instructed just to keep 

still, close their eyes, remain awake and think of nothing in particular. 

 

Preprocessing 

Functional MRI data were preprocessed with DPABI (http://rfmri.org/dpabi; (Yan et al., 

2016), a software package based on SPM12 (version no.7219; 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). It comprised the following steps: 1) 

discarding the first 10 volumes to decrease the signal’s instability; 2) correcting slice 

timing; 3) realignment; 4) co-registering the T1-weighted image to the corresponding 

mean functional image; 5) segmenting into grey matter, white matter and cerebrospinal 
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fluid by DARTEL; 6) regressing common nuisance out by Compcor (Behzadi et al., 

2007), including the white matter signal, the cerebrospinal fluid signal, 24 movement 

regressors, and global signal. The 24 movement regressors included autoregressive 

models of motion incorporating six head motion parameters, six head motion parameters 

one time point before, and the 12 corresponding squared items (Friston et al., 1996; Yan 

et al., 2013). Note that we administrated global signal regressors to eliminate noise, 

including head motion and respiratory as well as cardiorespiratory artifacts (Power et al., 

2015; Ciric et al., 2017, 2018; Murphy and Fox, 2017). 7) detrending; 8) normalizing to 

the standard Montreal Neurological Institute space (MNI template, resampling voxel size 

3×3×3 mm3); 9) smoothing with a Gaussian kernel of 4 mm full width at half maximum 

(FWHM); 10) filtering (0.01-0.1Hz).  

 

Functional Network Construction 

After preprocessing, we constructed the static whole-brain rsFC matrices. Specifically, 

we employed a 268-node functional atlas that was derived from a group-wise spectral 

clustering algorithm. This group-wise optimization approach ensures functional 

homogeneity within each subunit, and time-course consistency of the network nodes at 

the group level, resulting in improved reliability and sensitivity of the network analyses 

(Shen et al., 2010, 2013). In light of previous literatures using this atlas (Shen et al., 2013; 

Feng et al., 2018), nodes were further divided into ten lobes, including prefrontal lobe (46 

nodes), motor lobe (21 nodes), insula lobe (7 nodes), parietal lobe (27 nodes), temporal 
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lobe (39 nodes), occipital lobe (25 nodes), limbic lobe (36 nodes), cerebellum lobe (41 

nodes), subcortical lobe (17 nodes) and brainstem lobe (9 nodes; Fig. 2d). After Fisher’s 

Z transformation, the resulting 268 ×268 symmetric matrices represented edges from the 

rsFC profile. 

 

Connectome-based predictive modeling (CPM) 

Based on the whole-brain rsFC, we used CPM to predict the degree of anxiety 

individually. In light of ten simple rules for applying predictive modeling to rsFC data 

(sample size < 200; Scheinost et al., 2019) and to be consistent with past work employing 

CPM (Finn et al., 2015; Rosenberg et al., 2015; Beaty et al., 2018), we performed 

leave-one-out cross-validation (LOOCV). That is, in each iterative analysis, the 

predictive model was built based on n - 1 participants (training set) and then the score of 

the remaining participant (test set) was predicted. In this study, we ran it 76 times. Steps 

were as follows (Fig. 1). 1) Data preparation, preparing rsFC matrices and BAI scores of 

all participants. 2) Edge selection, performing Pearson correlations between each edge in 

rsFC matrices and BAI scores in the training set and selecting only the most significantly 

correlated edges as predictive networks. The threshold was set at p < 0.01 (Dosenbach et 

al., 2010; Rosenberg et al., 2015; Takagi et al., 2018). 3) Network construction, a positive 

network (i.e., positive correlation within selected edges) and a negative network (i.e., 

negative correlation within selected edges). 4) Network strengths, summing the edges of 

the positive network and the negative network separately for each participant. 5) Model 
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building, fitting the linear model between BAI scores and network strengths across the 

training set for both the positive network and the negative network to build the positive 

model and the negative model, respectively. 6) Individual prediction, applying models to 

predict the BAI score according to the network strengths in the test set (the excluded 

participant). Notably, normalization of each edge across the training set was performed 

and parameters from the training set were applied to the test set. 

  

 

Fig.1. The schematic flow of connectome-based predictive modeling.  

Note: rsFCs, resting-state functional connectivity; BAI, Beck Anxiety Inventory. 

 

Model assessments 

After LOOCV, the model validity was evaluated by Pearson correlation coefficient (r) 
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between real BAI scores and predicted BAI scores for the positive and negative model, 

respectively. To check whether these effects were expected by chance, we further ran 

permutation test for 1000 times. Specifically, permutation tests randomly shuffled the 

label between real BAI scores and rsFC matrices each time and then calculated a 

correlation coefficient from CPM. The calculating 1000 correlation coefficients 

composed null distributions. We then calculated the percentile of model validity value 

among these null distributions. 

 

Computational lesion prediction 

Because the obtained networks were slightly different in each iteration, we extracted the 

common edges (i.e., overlaps of all the negative networks) to construct common 

networks and then categorized them into 10 macroscale lobes. After that, lesion 

prediction analyses were performed to examine the weights of the limbic lobe and the 

prefrontal lobe as well as their connectivity. For example, after excluding edges in the 

limbic lobe (36 nodes), the remaining 232 × 232 rsFC matrices were used to predict 

individual anxiety (Feng et al., 2018). Finally, we contrasted whole-brain prediction with 

lesion prediction in terms of predictive power by Steiger’s Z (Steiger, 1980). 

 

Control analyses 

To avoid potential confounding effects of head movements, gender and age, control 

analyses were conducted. We repeated our analyses by implementing scrubbing with the 
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criterion of an FD above 0.2 mm (Jenkinson et al., 2002; Yan et al., 2013). Additionally, 

partial Pearson correlation analyses were conducted with mean FD of head motion 

(Jenkinson et al., 2002), gender and age as co-variables in edge selection and final 

correlation, separately. 

 

Distinct brain networks between anxiety and depression 

Given that anxiety was highly correlated with depression (Stavrakaki and Vargo, 1986; 

Clark and Watson, 1991), we explored distinct brain networks for anxiety versus 

depression in this module (Fig. 5). After excluding two participants (out of mean ± 

2.5std) in BAI scores, 46 high anxious participants were selected from the criteria of the 

top 55% in BAI scores, and 44 high depressive participants were selected from the top 55% 

in SDS scores (overlap: 35 participants). Eleven anxiety-specific participants (BAI: 

25~32, mean ± std = 26.20 ±2.15; SDS: 20~31, mean ± std = 28.00 ± 3.23) and 

nine depression-specific participants (BAI: 21~24, mean ± std = 23.11 ±1.05; SDS: 

32~38, mean ± std = 34.00 ± 1.87) were identified for further explorative contrast 

analyses after excluding 35 anxiety participants comorbid with depression.  

We employed a CPM-like model to explore distinct brain networks between anxiety and 

depression (Takagi et al., 2018; Fig. 5). In an LOOCV manner, we conducted two-sample 

t-tests between the anxiety-specific and the depression-specific rsFC matrices across the 

training set for each edge. Based on the significance threshold p < 0.01 (Dosenbach et al., 

2010; Rosenberg et al., 2015; Takagi et al., 2018), anxiety-specific edges were selected to 
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construct the anxiety-specific network across the training set for those anxiety-specific 

edges significantly higher than depression-specific edges. Likewise, depression-specific 

edges were selected to construct the depression-specific network across the training set 

for those depression-specific edges significantly higher than anxiety-specific edges. Next, 

the “anxiety score” of the remaining participant (test set) was defined summing rsFCs in 

the anxiety-specific network; the “depression score” was calculated correspondingly. 

Then, we validated the difference between anxiety-specific and depression-specific 

networks by performing a two-sample t-test between “anxiety scores” and “depression 

scores”. Lastly, we extracted common edges (i.e., overlaps of all anxiety-specific 

networks and overlaps of all depression-specific networks) to construct common 

networks and divided them into 10 macroscale lobes. 
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Fig . 5. The schematic flow for exploring distinct brain networks between anxiety and 

depression. Note: rsFCs, resting-state functional connectivity.
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Results 

Normality test  

BAI scores were not normally distributed according to the Kolmogorov-Smirnov Test of 

Normality (BAI: Z = 1.695, p= 0.006, range: 21~44, mean ± std = 27.78 ± 6.21; SDS: 

Z = 0.788, p = 0.564, range: 20~57, mean ± std = 34.34 ± 7.89). Therefore, we 

performed reciprocal transformation (100 / scores; Box and Cox, 1964) to normalize BAI 

scores (BAI: Z = 1.312, p = 0.064; 3.75 ± 0.70).  

 

CPM assessments of anxiety 

LOOCV revealed that the negative model, but not the positive model, had significant 

prediction power to anxiety scores [positive model, r (74) = -0.01, p = 0.939, Fig. 2a; 

negative model, r (74) = 0.33, p = 0.004, Fig. 2b]. Permutation tests (1000 times) revealed 

that this result was expected above chance (p = 0.036, Fig. 2c). Thus, subsequent 

analyses focused on the negative model. Please note that the negative model indicated 

positive correlations between rsFC and levels of anxiety because of reciprocal 

transformation.  
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Fig. 2.  Correlations between real BAI score and predicted BAI scores in (a) positive 

model and (b) negative model. (c) Permutation distribution of correlations in the negative 

model. (d) Whole brain parcellation with 10 lobes. (e) Common edges contributing to 

anxiety prediction. (f) (g) Division of anxiety network into 10 lobes and the contribution 

of each lobe to anxiety prediction. Note: BAI, Beck Anxiety Inventory; PFC, prefrontal; 

Mot, motor; Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, limbic; Cer, 

cerebellum; Sub, subcortical; Bsm, brainstem. R: right; L, left. **p<0.01. 

 

 

The number of edges, common edges and networks across LOOCV are shown in Table 1 
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and Fig. 2e. Importantly, prediction through the common networks resulted in a stronger 

correlation than the whole-brain network prediction (r (74) = 0.85, p = 0; Steiger’s Z = 

8.09, p < 0.001). It suggested that the common edges have a stronger prediction power 

despite the small number of common edges. The number of edges in each lobe from 

common networks is shown in Fig. 2f & g. Furthermore, the top 10 highly connected 

brain nodes were located in the ventral anterior cingulate cortex (vACC), ventral-lateral 

prefrontal cortex (vlPFC), posterior cingulate cortex (PCC), medial superior parietal 

gyrus (mSPG), inferior temporal gyrus (ITG) and middle temporal gyrus (MTG; Fig. 3). 

 

Table1. The number of edges or networks across LOOCV in CPM of anxiety, 

anxiety-specific networks and depression-specific networks 

 CPM of anxiety anxiety-specific 

networks 

depression-specific 

networks 

edges [min, max] [130, 169] [108, 197] [93, 179] 

common edges 58 54 40 

networks 76 20 20 

Note: CPM, connectome-based predictive modeling. 
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Fig. 3. Connectivity patterns of the top 10 most highly connected brain nodes. The MNI 

coordinates are shown under the name of each brain node.  

Note: vACC, ventral anterior cingulate cortex; vlPFC, ventral-lateral prefrontal cortex; 

mSPG, medial superior parietal gyrus; ITG, inferior temporal gyrus; PCC, posterior 

cingulate cortex; MTG, middle temporal gyrus; R, right; L, left. 

 

Computational lesion prediction 

In addition to the limbic lobe and the prefrontal lobe, we also conducted lesion prediction 

analyses for the temporal lobe, because the number of common edges in the temporal 

lobe was almost as high as for the limbic lobe and the prefrontal lobe (Fig. 2g). These 

results showed that the anxiety prediction power of the model decreased dramatically for 

lesions to the limbic or temporal lobes, for lesioned connectivity within the limbic lobe, 

and for lesioned connectivity between the limbic and the prefrontal lobe (see Table 2 and 

Fig. 4). 
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Fig. 4. Lesion predictions. (a) Lesion lobe predictions. (b) Lesion connectivity 

predictions. Note: Lim, limbic; PFC, prefrontal; Tem, temporal. *p<0.05, **p<0.01. 

 

Table2. Lesion predictions 

Lesion 
Predictive power Difference from the whole-brain model 

r p Steiger’s Z 

Lim 0.16 0.165 -2.38* 

PFC 0.24 0.037 -1.44 

Tem 0.17 0.141 -2.24* 

Lim-Lim 0.29 0.012 -3.06** 

Lim-PFC 0.28 0.014 -2.03* 

Lim-Tem 0.29 0.012 -1.21 

PFC-PFC 0.33 0.004 0 

PFC-Tem 0.32 0.005 -0.36 
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Tem-Tem 0.34 0.002 1.87 

Note: Lim, limbic; PFC, prefrontal; Tem, temporal; *p<0.05; **p<0.01. 

 

Control analyses 

After controlling for nuisance variables in edge selection and final correlation, and for 

scrubbing in preprocessing, the predictive models remained significant (Table 3). The 

common networks drawing from anxiety could also predict individual depression through 

CPM [r (74) = 0.64, p < 0.001, Fig. 6b]. 

 

Table3. Control analyses with adding head motion, age and gender as covariates in edge 

selection and final correlation, as well as scrubbing of head motion.  

 Control at edge selection Control at final correlation 

Head motion r = 0.31, p = 0.006 r = 0.33, p = 0.004 

Age r = 0.24, p = 0.035 r = 0.30, p =0.008 

Gender r = 0.22, p =0.051 r = 0.32, p = 0.005 

Scrubbing r = 0.28, p = 0.015 

 

Distinct brain networks between anxiety and depression 

Given the strong correlation between (reciprocally transformed) BAI scores and SDS 

scores [r (74) = -0.73, p < 0.001, Fig.6a], we explored distinct brain networks between 
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anxiety and depression. The two-sample t-test revealed a significant difference between 

“anxiety scores” and “depression scores” [t (38) = -4.15, p <0.001, Cohen’s d = -1.857, Fig. 

6c], validating significant differences between the anxiety-specific and the 

depression-specific networks. The number of edges, common edges and networks across 

LOOCV for anxiety-specific and depression-specific networks are shown in Table 1, Fig. 

6d and Fig. 6e. For the purpose of visualization, common networks in each lobe greater 

than or equal to ten were presented (Fig. 6f). 

 

 

Fig. 6. (a) Distribution of anxiety scores and depression scores for each participant. (b) 

Predicting depression by common edges obtained from anxiety. (c) Anxiety scores 

obtained from anxiety-specific networks, and depression scores obtained from 

depression-specific networks for two sample t-test analysis to validate these networks. 

For the purpose of visualization, anxiety scores and depression scores were normalized. 
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(d) anxiety-specific network. (e) depression-specific network. (f) Division of 

anxiety-specific network and depression-specific network into 10 lobes. Note: PFC, 

prefrontal; Mot, motor; Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, 

limbic; Cer, cerebellum; Sub, subcortical; Bsm, brainstem. R: right; L: left. ***p<0.001. 
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Discussion 

In this study, we employed CPM, a data-driven, full cross-validation approach, to predict 

levels of anxiety in healthy participants from whole-brain rsFC. We demonstrated that 

anxiety could be predicted by individual functional connectivity patterns, especially those 

from the limbic system and prefrontal cortex. More specifically, “lesion prediction” 

revealed that connectivity within the limbic system as well as connectivity between the 

limbic system and prefrontal cortex most significantly predicted individual anxiety levels. 

The nodes that highly contributed to the predictive model included ventral anterior 

cingulate cortex (vACC), ventral-lateral prefrontal cortex (vlPFC), posterior cingulate 

cortex (PCC), medial superior parietal gyrus (mSPG), inferior temporal gyrus (ITG) and 

middle temporal gyrus (MTG). We also explored anxiety-specific networks and 

depression-specific networks. 

 

Using a computational lesion method, our CPM-based approach suggested that the 

anxiety-predictive power of the model significantly decreased with a) lesion of the limbic 

system, b) lesion of the connectivity within the limbic system, and c) lesion of the 

connectivity between the limbic system and prefrontal cortex (Fig. 4). These results, 

except increased prefrontal-limbic connectivity, conform to the emotion dysregulation 

model (Behar et al., 2009). It is common that anxiety is associated with emotional 

hyper-arousal, which was accompanied by hyper-connectivity within the limbic system 

(Kim et al., 2011). However, interpretations of the observed prefrontal-limbic 
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hyper-connectivity are less straightforward. In anxiety-related disorders, attenuated 

prefrontal responses (Manber Ball et al., 2013) to over-responsiveness of the limbic 

system (Etkin et al., 2004; Qin et al., 2014; Bishop, 2007) have been observed. A 

nonclinical study found that anxiety-prone individuals were as successful as controls to 

reduce negative their emotions, but required greater engagement of lateral and medial 

PFC for successful down-regulation of negative emotions (Campbell-Sills et al., 2011). 

The increased prefrontal-limbic connectivity at rest in the current study might thus reflect 

more effort to regulate emotions in daily life in participants with higher degrees of 

anxiety.  

 

Among the prefrontal-limbic circuit, vACC, vlPFC and PCC were key nodes that 

contributed to the anxiety-predictive model. vACC plays a key role in the modulation of 

physiological arousal (Maresh et al., 2013) and the control of negative affect (LeDoux, 

2003; Passamonti et al., 2008; Petrovic et al., 2005). vlPFC has been implicated in 

effortful down-regulation of negative emotion (Campbell-Sills et al., 2011). The PCC is 

involved in mediating interactions of emotional and memory-related processes (e.g., 

Maddock et al., 2003). Taken together, these key nodes in the current study might reflect 

the neural underpinning of anxious individuals within the normal range experiencing a 

successful emotion regulation. However, we did not find the amygdala in the top ten 

connected brain nodes. It has long been acknowledged that the amygdala exerts a 

significant role in emotion regulation (Whalen et al., 2002; Somerville et al., 2004; 
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Sylvester et al., 2012; Grupe and Nitschke, 2013; Tovote et al., 2015; Xu et al., 2019). 

Despite this, previous hypothesis-driven studies may over-represent the amygdala. 

Specifically, the significant diagnostic effect of amygdala in ROI studies disappeared 

when whole-brain studies were also considered in a meta-analysis for mental disorders 

(including anxiety disorders; Sprooten et al., 2017). Another reason for failure to find the 

amygdala might be that it was difficult to infer the specific involvement of amygdala in 

the 268-node functional atlas, because the averaged size of the amygdala (1.24 cm3) is 

smaller than the averaged size of the other nodes (4.8 cm3; Brabec et al., 2010; Hsu et al., 

2018). Future studies could attempt to account for such differences in the average size of 

relevant brain regions. 

 

Surprisingly, anxiety-prediction power also significantly decreased with lesion of the 

temporal gyrus. Within the temporal gyrus, medial (MTG) and inferior temporal gyrus 

(ITG) were highly connected brain nodes in anxiety-predictive networks. MTG plays a 

crucial role in social perception to uncertain threats (Haxby et al., 2002; Geng et al., 2018; 

Feng et al., 2019). ITG is associated with the ventral visual pathway (Baddeley et al., 

1997). Its volume is associated with anxiety disorders, functionally reflecting the 

processing of external social cues (Liao et al., 2011). Therefore, the current results might 

reflect the information flow of social perception to uncertain threats from ITG to MTG in 

anxiety. 
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It is important to note that anxiety and depression were highly correlated in this study (a 

common finding) and that the anxiety-predictive model also predicted depression. 

Anxiety in this study may therefore be considered as referring to an anxious-depressed 

trait. Such close connection is not surprising given the high correlation of anxiety and 

depression in real life (Stavrakaki and Vargo, 1986; Clark and Watson, 1991). It has been 

demonstrated that anxiety-prone individuals require more engagement of prefrontal 

cortex to accomplish down-regulation of negative emotion (Campbell-Sills et al., 2011), 

which has also been found in depressed individuals (Johnstone et al., 2007). The 

neuropsychological mechanisms during emotion regulation may thus be similar in 

anxiety and depression, especially regarding the prefrontal-limbic connectivity 

(Campbell-Sills et al., 2011).  

 

We also preliminarily dissociated anxiety and depression at the network level. 

Anxiety-specific networks were mainly centered in the prefrontal cortex, connecting with 

the insula, subcortical lobes and cerebellum, whereas depression-specific networks were 

mainly observed within the cerebellum and between the limbic system and brainstem (Fig. 

6f). However, the sample size of the high anxiety-specific and high depression-specific 

participants was too small in the current study; these results should thus be interpreted 

with caution. It has been documented that differentiation of anxiety and depression is 

difficult because of their high inter-correlation (Stavrakaki and Vargo, 1986; Clark and 

Watson, 1991). Accordingly, categorical definitions of anxiety and depression are 
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difficult to capture the distinctions of brain abnormalities (Oathes et al., 2015; Pannekoek 

et al., 2015). Nonetheless, the current study applied a novel brain model to understand the 

neurobiological distinction of anxiety and depression. Future studies with large sample 

sizes of each specific group are needed. 

 

The present work represents advances in neuroscience to advocate the applications of 

rsFC in a cross-validation manner (Shen et al., 2017). An individualized predictive model 

of anxiety was estimated from whole-brain rsFC profiles. The advantages of this 

approach are fourfold. First, resting-state data is easy to collect relative to task-dependent 

experiments (Rosazza and Minati, 2011). Despite being task-free, rsFC can track 

individual cognitive performance (Scheinost et al., 2019), even higher-order functions 

such as trust ( Lu et al., 2019). Importantly, rsFC is stable (even across three years; 

Horien et al., 2019) and unique (functional connectome ‘fingerprinting’; Finn et al., 

2015). Second, compared to standard group comparisons between high-anxious and 

low-anxious individuals, the present model is more sensitive for the assessment of 

aspects of neuropsychological functioning in the individual brain (Gabrieli et al., 2015; 

Dubois and Adolphs, 2016). Although studies with correlation or regression models also 

used the term “prediction”, such in-sample prediction rather than out-of-sample 

prediction, incurs over-fitting (Gabrieli et al., 2015; Dubois and Adolphs, 2016). Third, 

instead of region-of-interest (ROI) or seed-based rsFC studies, we were able to obtain an 

objective picture of whole-brain rsFC networks in individual participants, eliminating the 
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risk of over-representation of certain ROIs (Sprooten et al., 2017). In this way, our 

findings were still meaningful, conforming to emotion regulation network regarding 

‘emotion dysregulation model’ (Behar et al., 2009; Manber Ball et al., 2013; 

Mochcovitch et al., 2014). Finally, the approach of implementing computational (‘virtual’) 

lesions may have advantages above noninvasive neurostimulation methods, for instance, 

tDCS and TMS, which can cause some discomfort to participants. And although the 

causal explanatory power of neurostimulation techniques is stronger, they have 

significant drawbacks, the most important one being that they can only target superficial 

cortical regions as the depth of stimulation is very limited. A combination of the strenghts 

of both methods can also be indicative. Indeed, the computational lesion approach might 

provide potential neurostimulation targets (i.e., network-guided TMS; Fox et al., 2012) 

for future studies to reduce the tension of anxiety.  

 

Several limitations of the present study are worth mentioning. First, we used a 

group-level atlas in the individualized prediction of anxiety, which might overlook subtle 

brain-behavior associations if they are highly variable. It has been documented that 

individualized prediction with the group-level atlas has a weaker predictive power than 

that with the individualized template (Wang et al., 2018). Second, for the purpose of early 

identification in subclinical population, we only recruited healthy participants. Given the 

asymmetric mechanisms between patients and healthy participants (Liao et al., 2010), 

however, whether this result could extend to clinical diagnosis in anxiety disorders 
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remains unknown. Future studies could test our model in patients with anxiety disorders.  

 

To conclude, we established a brain connectivity-based model that was able to predict 

anxiety in novel individuals. In light of emotion dysregulation models, we demonstrated 

that regions of emotion regulation networks, such as vACC, vlPFC and PCC, were of 

importance for individual anxiety-prediction in healthy people. We also provide 

preliminary evidence for distinct networks in the classification of anxiety and depression. 

The current work may have important implications for the early identification of 

individuals enduring high trait anxiety in non-clinical populations. 
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