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Abstract
Anxiety-related illnesses are highly prevalent in human society. Being able to identify
neurobiological markers signaling high trait anxiety could aid the assessment of
individuals with high risk for mental illness. Here, we applied connectome-based
predictive modeling (CPM) to whole-brain resting-state functional connectivity (rsFC)
datato predict the degree of anxiety in 76 healthy participants. Using a computational
“lesion” method in CPM, we then examined the weights of the identified main brain
areas as well astheir connectivity. Results showed that the CPM could predict individual
anxiety from whole-brain rsFC, especially from limbic areas-whole brain and prefrontal
cortex-whole brain. The prediction power of the model significantly decreased from
(smulated) lesions of limbic areas, lesions of the connectivity within the l[imbic system,
and lesions of the connectivity between limbic regions and the prefrontal cortex.
Although the same model also predicted depression, anxiety-specific networks could be
identified independently, centered at the prefrontal cortex. These findings highlight the
important role of the limbic system and the prefrontal cortex in the prediction of anxiety.
Our work provides evidence for the usefulness of connectome-based modeling of rsFC in
predicting individual personality differences and indicates its potential for identifying

personality structures at risk of developing psychopathology.
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I ntroduction
Anxiety, a personality dimension in healthy individuals, isauniversal negative emotion
that entails avoidance behaviors such as worrying, irritability, difficulty to relax and a
tendency to interpret ambiguous situations as threatening (Spielberger, 1983; Grachev
and Apkarian, 2000; Eysenck et al., 2007). Although anxiety has valuable adaptive
ben€fits, individuals enduring high trait anxiety may be at risk to develop mental
disorders (Pezawas et a., 2005; Sandi and Richter-Levin, 2009; Cremers et al., 2010). It
has been estimated that an alarming 28.8% of the general population suffer from an
anxiety-related disorder at some point in their lifetime (Kessler et al., 2005). Identifying
neurobiological markers signaling high trait anxiety could aid the assessment of high-risk
individuals, especially those with difficulty expressing their feelings to others

(Eisenberger et al., 2005; Drysdale et al., 2017).

Anxiety isacomplex emotion that is associated with mutual inhibition between
subcortical and cortical areas of the brain (Tovote et al., 2015; Xu et al., 2019).
Particularly, the limbic system and the prefrontal cortex are highly engaged in the balance
of these mutually inhibitory relationships (Hofmann et al., 2012). The limbic system has
long been considered crucial for emotion processing (Fuchs and Fliigge, 2003), and the
prefrontal cortex plays an important role in top-down regulation of limbic activity
(Mochcovitch et al., 2014). Regarding anxiety disorders, an emotion dysregulation model

has been proposed that is characterized by an imbalance of prefrontal regulation over
3
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limbic activity (Behar et al., 2009; Manber Ball et al., 2013; Mochcovitch et al., 2014).
Specifically, it has been suggested that patients with anxiety disorders experience chronic
hyper-arousal in the limbic circuitry (Kim et al., 2011). This fatigues the top-down
regulation system in the prefrontal cortex, resulting in ineffective control particularly of
negative emotions (Manber Ball et al., 2013). With regard to trait anxiety as a personality
dimension in non-clinical samples, it has been demonstrated that anxiety-prone
individuals require greater engagement of prefrontal regions to down-regulate negative
emotions (Campbell-Sills et al., 2011). In spite of this, no effort has been made as yet to
predict anxiety at theindividual level for healthy people. Individualized prediction of
anxiety would advance our understanding of the underlying neural mechanism and

facilitate early identification of proneness to clinical anxiety.

Recently, a novel approach has been tested to account for inter-individual variability in
brain functional networks. Connectome-based predictive modeling (CPM). CPM isa
novel data-driven approach for developing predictive models of brain—behavior
relationships that can detect individual variability more accurately (“functional
connectome fingerprinting”; Finn et al., 2015) by extracting and summarizing the most
relevant features from resting-state functional connectivity (rsFC) using full
cross-validation (Shen et al., 2017). Despite testing a specific hypothesis, CPM provides
more holistic measures with whole-brain analyzes. This approach has successfully been

used to predict individual personality traits and aspects of functional cognition, such as
4
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fluid intelligence (Finn et al., 2015), sustained attention (Rosenberg et al., 2015), and
creative ability (Beaty et al., 2018). Moreover, a computational lesion method based on
CPM can reveal brain regionsthat are important in individualized prediction (Feng et al.,
2018). The computational lesion method allows for the computational manipulation of
brain regionsto be “lesioned”, and thus represents a non-invasive method simulating the

effect of lesions in particular brain regions on aspects of neuropsychological functioning.

The aim of current study was to predict individual levels of anxiety in healthy
participants by applying CPM and the computational lesion approach to whole-brain
resting-state fMRI data. We hypothesized that CPM would successfully predict anxiety at
theindividual level. Based on the emotion dysregulation model (Behar et a., 2009) and
the computational lesion method in CPM (Feng et al., 2018), we hypothesized that both
the limbic system and the prefrontal cortex would significantly contribute to the

identification of individual levels of anxiety.
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Materialsand Methods
Participants
Eighty-eight healthy undergraduate students took part in MRI scanning. All the
participants had no history of neurological and psychiatric disorders or head injury. After
excluding excessive head motion [10 participants, exceeding 2.5 mm maximum
trandation, 2.5° rotation or 0.2mm mean frame-wise displacement (FD; Yan et al., 2013;
Power et al., 2014)] and outliersin Back Anxiety Inventory scores (BAI: 2 participants,
out of mean £ 2.5 std), the final sample consisted of 76 participants (38 females; age =
21.34 + 1.76). The study was approved by the local Ethics Committee at Beijing Normal

University and written informed consent was obtained from all participants.

Anxiety assessment

To assess anxiety, we used the Chinese version of the BAI (Aaron T. Beck et al., 1988).
Thisinventory consists of 21 items, each answer being scored on afour-point Likert scale
of 1 (not at all) to 4 (severely). Participants also completed the Chinese version of the

Zung self-rating depression scale (SDS; Zung, 1965).

I mage acquisition
MRI data were acquired with a Siemens Trio 3T scanner powered with Total Imaging
Matrix technique at the Imaging Center for Brain Research at Beijing Normal University.

Both the fMRI and high-resolution 3D structural brain data were obtained using a
6
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12-channel phased-array head coil with implementing a parallel imaging scheme that
generalized auto-calibrating partially parallel acquisitions (Griswold et al., 2002). The
fMRI data were acquired with a gradient-echo echo-planer imaging sequence with the
following parameters: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, 33
transversal dlices, slice thickness 3.5 mm with gap 0.7 mm, flip angle = 90°, field of view
(FOV) = 224 mm x 224 mm, data matrix = 64 x 64, 240 volumes scanned in 8 min, and
gpatial coverage (3.5 + 0.7) mm/dlicex33 slices~ 139 mm. Additionally, the 3D structural
brain images (1mm? isotropic) were acquired for each participant using a T1-weighted
3D magnetization-prepared rapid gradient echo sequence with the following parameters:
TR/ TE =1900 ms/ 3.44 ms, flip angle = 9°, data matrix = 256 x 256, FOV = 256 mm x
256 mm, BW =190 Hz / pixel, 176 image slices along the sagittal orientation, obtained in
about 6 min. During resting-state scanning, all participants were instructed just to keep

still, close their eyes, remain awake and think of nothing in particular.

Preprocessing

Functional MRI data were preprocessed with DPABI (http://rfmri.org/dpabi; (Yan et al.,
2016), a software package based on SPM 12 (version no.7219;
https://mww.fil.ion.ucl.ac.uk/spm/software/spm12/). It comprised the following steps:. 1)
discarding thefirst 10 volumes to decrease the signal’s instability; 2) correcting slice
timing; 3) realignment; 4) co-registering the T1-weighted image to the corresponding

mean functional image; 5) segmenting into grey matter, white matter and cerebrospinal
7
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fluid by DARTEL; 6) regressing common nuisance out by Compcor (Behzadi et al.,
2007), including the white matter signal, the cerebrospinal fluid signal, 24 movement
regressors, and global signal. The 24 movement regressors included autoregressive
models of motion incorporating six head motion parameters, six head motion parameters
one time point before, and the 12 corresponding squared items (Friston et al., 1996; Yan
et al., 2013). Note that we administrated global signal regressors to eliminate noise,
including head motion and respiratory as well as cardiorespiratory artifacts (Power et al.,
2015; Ciric et a., 2017, 2018; Murphy and Fox, 2017). 7) detrending; 8) normalizing to
the standard Montreal Neurological Institute space (MNI template, resampling voxel size
3x3x3 mm?°); 9) smoothing with a Gaussian kernel of 4 mm full width at half maximum

(FWHM); 10) filtering (0.01-0.1Hz).

Functional Network Construction

After preprocessing, we constructed the static whole-brain rsFC matrices. Specifically,

we employed a 268-node functional atlas that was derived from a group-wise spectral
clustering algorithm. This group-wise optimization approach ensures functional
homogeneity within each subunit, and time-course consistency of the network nodes at
the group level, resulting in improved reliability and sensitivity of the network analyses
(Shen et al., 2010, 2013). In light of previous literatures using this atlas (Shen et al., 2013;
Feng et al., 2018), nodes were further divided into ten lobes, including prefrontal lobe (46

nodes), motor lobe (21 nodes), insulalobe (7 nodes), parietal lobe (27 nodes), temporal
8


https://doi.org/10.1101/2020.01.30.926980
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.926980; this version posted February 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

lobe (39 nodes), occipital lobe (25 nodes), limbic lobe (36 nodes), cerebellum lobe (41
nodes), subcortical lobe (17 nodes) and brainstem lobe (9 nodes; Fig. 2d). After Fisher’s
Z transformation, the resulting 268 x268 symmetric matrices represented edges from the

rsFC profile.

Connectome-based predictive modeling (CPM)

Based on the whole-brain rsFC, we used CPM to predict the degree of anxiety
individually. In light of ten simple rules for applying predictive modeling to rsFC data
(sample size < 200; Scheinost et al., 2019) and to be consistent with past work employing
CPM (Finn et a., 2015; Rosenberg et al., 2015; Beaty et al., 2018), we performed
leave-one-out cross-validation (LOOCV). That is, in each iterative analysis, the
predictive model was built based on n - 1 participants (training set) and then the score of
the remaining participant (test set) was predicted. In this study, we ran it 76 times. Steps
were asfollows (Fig. 1). 1) Data preparation, preparing rsFC matrices and BAI scores of
all participants. 2) Edge selection, performing Pearson correlations between each edgein
rsFC matrices and BAI scores in the training set and selecting only the most significantly
correlated edges as predictive networks. The threshold was set at p < 0.01 (Dosenbach et
al., 2010; Rosenberg et al., 2015; Takagi et al., 2018). 3) Network construction, a positive
network (i.e., positive correlation within selected edges) and a negative network (i.e.,
negative correlation within selected edges). 4) Network strengths, summing the edges of

the positive network and the negative network separately for each participant. 5) Model
9
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building, fitting the linear model between BAI scores and network strengths across the
training set for both the positive network and the negative network to build the positive
model and the negative model, respectively. 6) Individual prediction, applying models to
predict the BAI score according to the network strengths in the test set (the excluded
participant). Notably, normalization of each edge across the training set was performed

and parameters from the training set were applied to the test set.
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Fig.1. The schematic flow of connectome-based predictive modeling.

Note: rsFCs, resting-state functional connectivity; BAI, Beck Anxiety Inventory.

M odel assessments

After LOOCV, the model validity was evaluated by Pearson correlation coefficient (r)
10


https://doi.org/10.1101/2020.01.30.926980
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.926980; this version posted February 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

between real BAI scores and predicted BAI scores for the positive and negative model,
respectively. To check whether these effects were expected by chance, we further ran
permutation test for 1000 times. Specifically, permutation tests randomly shuffled the
label between real BAI scores and rsFC matrices each time and then calculated a
correlation coefficient from CPM. The calculating 1000 correlation coefficients
composed null distributions. We then calculated the percentile of model validity value

among these null distributions.

Computational lesion prediction

Because the obtained networks were dlightly different in each iteration, we extracted the
common edges (i.e., overlaps of all the negative networks) to construct common
networks and then categorized them into 10 macroscale lobes. After that, lesion
prediction analyses were performed to examine the weights of the limbic lobe and the
prefrontal lobe as well as their connectivity. For example, after excluding edgesin the
limbic lobe (36 nodes), the remaining 232 x 232 rsFC matrices were used to predict
individual anxiety (Feng et al., 2018). Finally, we contrasted whole-brain prediction with

lesion prediction in terms of predictive power by Steiger’s Z (Steiger, 1980).

Control analyses
To avoid potential confounding effects of head movements, gender and age, control

analyses were conducted. We repeated our analyses by implementing scrubbing with the
11
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criterion of an FD above 0.2 mm (Jenkinson et al., 2002; Yan et al., 2013). Additionally,
partial Pearson correlation analyses were conducted with mean FD of head motion
(Jenkinson et al., 2002), gender and age as co-variables in edge selection and final

correlation, separately.

Distinct brain networ ks between anxiety and depression

Given that anxiety was highly correlated with depression (Stavrakaki and Vargo, 1986;
Clark and Watson, 1991), we explored distinct brain networks for anxiety versus
depression in this module (Fig. 5). After excluding two participants (out of mean =+
2.5std) in BAI scores, 46 high anxious participants were selected from the criteria of the
top 55% in BAI scores, and 44 high depressive participants were selected from the top 55%
in SDS scores (overlap: 35 participants). Eleven anxiety-specific participants (BAI:
25~32, mean £ std=26.20 *=2.15; SDS: 20~31, mean = std=28.00 £ 3.23) and
nine depression-specific participants (BAI: 21~24, mean £ std =23.11 *£1.05; SDS:
32~38, mean £ std=34.00 = 1.87) wereidentified for further explorative contrast
analyses after excluding 35 anxiety participants comorbid with depression.

We employed a CPM-like model to explore distinct brain networks between anxiety and
depression (Takagi et al., 2018; Fig. 5). In an LOOCV manner, we conducted two-sample
t-tests between the anxiety-specific and the depression-specific rsFC matrices across the
training set for each edge. Based on the significance threshold p < 0.01 (Dosenbach et al .,

2010; Rosenberg et al., 2015; Takagi et al., 2018), anxiety-specific edges were selected to
12
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construct the anxiety-specific network across the training set for those anxiety-specific
edges significantly higher than depression-specific edges. Likewise, depression-specific
edges were selected to congtruct the depression-specific network across the training set
for those depression-specific edges significantly higher than anxiety-specific edges. Next,
the “anxiety score” of the remaining participant (test set) was defined summing rsFCsin
the anxiety-specific network; the “depression score” was calculated correspondingly.
Then, we validated the difference between anxiety-specific and depression-specific
networks by performing a two-sample t-test between “anxiety scores’” and “depression
scores’. Lastly, we extracted common edges (i.e., overlaps of all anxiety-specific
networks and overlaps of all depression-specific networks) to construct common

networks and divided them into 10 macroscale lobes.

13
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Fig. 5. The schematic flow for exploring distinct brain networks between anxiety and

depression. Note: rsFCs, resting-state functional connectivity.
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Results

Nor mality test

BAI scores were not normally distributed according to the Kolmogorov-Smirnov Test of
Normality (BAI: Z = 1.695, p= 0.006, range: 21~44, mean £ std =27.78 = 6.21; SDS.
Z =0.788, p = 0.564, range: 20~57, mean * std=34.34 * 7.89). Therefore, we
performed reciprocal transformation (100 / scores, Box and Cox, 1964) to normalize BAI

scores (BAI: Z = 1.312, p=0.064; 3.75 £ 0.70).

CPM assessments of anxiety

LOOCYV revealed that the negative model, but not the positive model, had significant
prediction power to anxiety scores [positive model, r (7a = -0.01, p = 0.939, Fig. 2g;
negative model, r (7a = 0.33, p = 0.004, Fig. 2b]. Permutation tests (1000 times) revealed
that this result was expected above chance (p = 0.036, Fig. 2c). Thus, subsequent
analyses focused on the negative model. Please note that the negative model indicated
positive correlations between rsFC and levels of anxiety because of reciprocal

transformation.
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Fig. 2. Correlations between real BAl score and predicted BAI scoresin (a) positive
model and (b) negative model. (c) Permutation distribution of correlations in the negative
mode. (d) Whole brain parcellation with 10 lobes. (€) Common edges contributing to
anxiety prediction. (f) (g) Division of anxiety network into 10 lobes and the contribution
of each lobe to anxiety prediction. Note: BAI, Beck Anxiety Inventory; PFC, prefrontal;
Mot, motor; Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, limbic; Cer,

cerebellum; Sub, subcortical; Bsm, brainstem. R: right; L, left. **p<0.01.

The number of edges, common edges and networks across LOOCV are shown in Table 1
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and Fig. 2e. Importantly, prediction through the common networks resulted in a stronger
correlation than the whole-brain network prediction (r 72y = 0.85, p = 0; Steiger'sZ =
8.09, p <0.001). It suggested that the common edges have a stronger prediction power
despite the small number of common edges. The number of edgesin each lobe from
common networksis shown in Fig. 2f & g. Furthermore, the top 10 highly connected
brain nodes were located in the ventral anterior cingulate cortex (VACC), ventral-lateral
prefrontal cortex (VIPFC), posterior cingulate cortex (PCC), medial superior parietal

gyrus (mSPG), inferior temporal gyrus (ITG) and middle temporal gyrus (MTG; Fig. 3).

Tablel. The number of edges or networks across LOOCV in CPM of anxiety,

anxiety-specific networks and depression-specific networks

CPM of anxiety anxiety-specific depression-specific

networks networks

edges [min, max] [130, 169] [108, 197] [93, 179]
common edges 58 54 40
networks 76 20 20

Note: CPM, connectome-based predictive modeling.
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Fig. 3. Connectivity patterns of the top 10 most highly connected brain nodes. The MNI
coordinates are shown under the name of each brain node.

Note: VACC, ventral anterior cingulate cortex; vIPFC, ventral-lateral prefrontal cortex;
mMSPG, media superior parietal gyrus; ITG, inferior temporal gyrus, PCC, posterior

cingulate cortex; MTG, middle temporal gyrus; R, right; L, left.

Computational lesion prediction

In addition to the limbic lobe and the prefrontal 1obe, we also conducted lesion prediction
analyses for the temporal lobe, because the number of common edges in the temporal
lobe was almost as high as for the limbic lobe and the prefrontal lobe (Fig. 2g). These
results showed that the anxiety prediction power of the model decreased dramatically for
lesionsto the limbic or temporal lobes, for lesioned connectivity within the limbic lobe,
and for lesioned connectivity between the limbic and the prefrontal |obe (see Table 2 and

Fig. 4).

18


https://doi.org/10.1101/2020.01.30.926980
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.926980; this version posted February 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

@) (b)

Lesion Lobe Predictions Lesion Connectivity Predictions
047 04- .
N 4™ .
33" ga 0347 033
03 o3 029 g2g 0.
] ]
g g
o o
S o02- §o2-
B k]
-] -]
2 2
Qo o
0.1-
0.0-
Tem Whole brain Llrn—le le—PFC le—Tem PFC-PFC PFC-Tem Tem-Tem Whole brain

Fig. 4. Lesion predictions. (a) Lesion lobe predictions. (b) Lesion connectivity

predictions. Note: Lim, limbic; PFC, prefrontal; Tem, temporal. *p<0.05, **p<0.01.

Table2. Lesion predictions

Predictive power Difference from the whole-brain model
Lesion
r p Steiger’'sZ

Lim 0.16 0.165 -2.38"
PFC 0.24 0.037 -1.44
Tem 0.17 0.141 224
Lim-Lim 0.29 0.012 -3.06"
Lim-PFC 0.28 0.014 -2.03
Lim-Tem 0.29 0.012 -1.21
PFC-PFC 0.33 0.004 0
PFC-Tem 0.32 0.005 -0.36
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Tem-Tem 0.34 0.002 1.87

Note: Lim, limbic; PFC, prefrontal; Tem, temporal; * p<0.05; **p<0.01.

Control analyses

After controlling for nuisance variables in edge selection and final correlation, and for
scrubbing in preprocessing, the predictive models remained significant (Table 3). The
common networks drawing from anxiety could also predict individual depression through

CPM [r (74 = 0.64, p < 0.001, Fig. 6b].

Table3. Control analyses with adding head motion, age and gender as covariatesin edge

selection and final correlation, as well as scrubbing of head motion.

Control at edge selection Control at final correlation

Head motion r =0.31, p=0.006 r =0.33, p = 0.004
Age r=0.24, p=0.035 r =0.30, p =0.008
Gender r=0.22, p =0.051 r=0.32, p=0.005
Scrubbing r=0.28, p=0.015

Distinct brain networ ks between anxiety and depression
Given the strong correlation between (reciprocally transformed) BAI scores and SDS

scores [r (7a) = -0.73, p < 0.001, Fig.6a], we explored distinct brain networks between
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anxiety and depression. The two-sample t-test revealed a significant difference between
“anxiety scores’ and “depression scores’ [t (s = -4.15, p <0.001, Cohen'sd = -1.857, Fig.
6¢], validating significant differences between the anxiety-specific and the
depression-specific networks. The number of edges, common edges and networks across
LOOCYV for anxiety-specific and depression-specific networks are shown in Table 1, Fig.
6d and Fig. 6e. For the purpose of visualization, common networks in each |obe greater

than or equal to ten were presented (Fig. 6f).

@) ©®) (c)
60- 100 - Prediction from Cnmmog Edges of Anxiety Model Assessment
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Fig. 6. (a) Distribution of anxiety scores and depression scores for each participant. (b)
Predicting depression by common edges obtained from anxiety. (¢) Anxiety scores
obtained from anxiety-specific networks, and depression scores obtained from
depression-specific networks for two sample t-test analysis to validate these networks.

For the purpose of visualization, anxiety scores and depression scores were normalized.
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(d) anxiety-specific network. (€) depression-specific network. (f) Division of
anxiety-specific network and depression-specific network into 10 lobes. Note: PFC,
prefrontal; Mot, motor; Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim,

limbic; Cer, cerebellum; Sub, subcortical; Bsm, brainstem. R: right; L: left. ***p<0.001.
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Discussion
In this study, we employed CPM, a data-driven, full cross-validation approach, to predict
levels of anxiety in healthy participants from whole-brain rsFC. We demonstrated that
anxiety could be predicted by individual functional connectivity patterns, especialy those
from the limbic system and prefrontal cortex. More specifically, “lesion prediction”
revealed that connectivity within the l[imbic system as well as connectivity between the
limbic system and prefrontal cortex most significantly predicted individual anxiety levels.
The nodes that highly contributed to the predictive model included ventral anterior
cingulate cortex (VACC), ventral-lateral prefrontal cortex (vIPFC), posterior cingulate
cortex (PCC), medial superior parietal gyrus (mSPG), inferior temporal gyrus (ITG) and
middle temporal gyrus (MTG). We also explored anxiety-specific networks and

depression-specific networks.

Using a computational lesion method, our CPM -based approach suggested that the
anxiety-predictive power of the model significantly decreased with a) lesion of the limbic
system, b) lesion of the connectivity within the limbic system, and c) lesion of the
connectivity between the limbic system and prefrontal cortex (Fig. 4). These results,
except increased prefrontal-limbic connectivity, conform to the emotion dysregulation
model (Behar et al., 2009). It is common that anxiety is associated with emotional
hyper-arousal, which was accompanied by hyper-connectivity within the limbic system

(Kim et a., 2011). However, interpretations of the observed prefrontal-limbic
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hyper-connectivity are less straightforward. In anxiety-related disorders, attenuated
prefrontal responses (Manber Ball et al., 2013) to over-responsiveness of the limbic
system (Etkin et al., 2004; Qin et al., 2014, Bishop, 2007) have been observed. A
nonclinical study found that anxiety-prone individuals were as successful as controls to
reduce negative their emotions, but required greater engagement of lateral and medial
PFC for successful down-regulation of negative emotions (Campbell-Sills et al., 2011).
The increased prefrontal-limbic connectivity at rest in the current study might thus reflect
more effort to regulate emotionsin daily life in participants with higher degrees of

anxiety.

Among the prefrontal-limbic circuit, vACC, vIPFC and PCC were key nodes that
contributed to the anxiety-predictive modd. vVACC plays a key role in the modulation of
physiological arousal (Maresh et al., 2013) and the control of negative affect (LeDoux,
2003; Passamonti et al., 2008; Petrovic et al., 2005). vIPFC has been implicated in
effortful down-regulation of negative emotion (Campbell-Sills et a., 2011). The PCCis
involved in mediating interactions of emotional and memory-related processes (e.g.,
Maddock et al., 2003). Taken together, these key nodes in the current study might reflect
the neural underpinning of anxious individuals within the normal range experiencing a
successful emotion regulation. However, we did not find the amygdala in the top ten
connected brain nodes. It has long been acknowledged that the amygdala exerts a

significant role in emotion regulation (Whalen et al., 2002; Somerville et al., 2004;
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Sylvester et al., 2012; Grupe and Nitschke, 2013; Tovote et al., 2015; Xu et al., 2019).
Despite this, previous hypothesis-driven studies may over-represent the amygdala.
Specificaly, the significant diagnogtic effect of amygdalain ROI studies disappeared
when whole-brain studies were also considered in a meta-analysis for mental disorders
(including anxiety disorders, Sprooten et al., 2017). Another reason for failure to find the
amygdala might be that it was difficult to infer the specific involvement of amygdalain
the 268-node functional atlas, because the averaged size of the amygdala (1.24 cm®) is
smaller than the averaged size of the other nodes (4.8 cm®; Brabec et al., 2010; Hsu et al.,
2018). Future studies could attempt to account for such differences in the average size of

relevant brain regions.

Surprisingly, anxiety-prediction power also significantly decreased with lesion of the
temporal gyrus. Within the temporal gyrus, medial (MTG) and inferior temporal gyrus
(ITG) were highly connected brain nodes in anxiety-predictive networks. MTG plays a
crucial role in social perception to uncertain threats (Haxby et al., 2002; Geng et al., 2018;
Feng et al., 2019). ITG is associated with the ventral visual pathway (Baddeley et al.,
1997). Its volume is associated with anxiety disorders, functionally reflecting the
processing of external social cues (Liao et a., 2011). Therefore, the current results might
reflect the information flow of social perception to uncertain threatsfrom ITGto MTG in

anxiety.
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It isimportant to note that anxiety and depression were highly correlated in this study (a
common finding) and that the anxiety-predictive model also predicted depression.
Anxiety in this study may therefore be considered as referring to an anxious-depressed
trait. Such close connection is not surprising given the high correlation of anxiety and
depressionin real life (Stavrakaki and Vargo, 1986; Clark and Watson, 1991). It has been
demonstrated that anxiety-prone individuals require more engagement of prefrontal
cortex to accomplish down-regulation of negative emotion (Campbell-Sills et al., 2011),
which has also been found in depressed individuals (Johnstone et al., 2007). The
neuropsychological mechanisms during emotion regulation may thus be similar in
anxiety and depression, especially regarding the prefrontal-limbic connectivity

(Campbéll-Sills et al., 2011).

We also preliminarily dissociated anxiety and depression at the network level.
Anxiety-specific networks were mainly centered in the prefrontal cortex, connecting with
the insula, subcortical lobes and cerebellum, whereas depression-specific networks were
mainly observed within the cerebellum and between the limbic system and brainstem (Fig.
6f). However, the sample size of the high anxiety-specific and high depression-specific
participants was too small in the current study; these results should thus be interpreted
with caution. It has been documented that differentiation of anxiety and depression is
difficult because of their high inter-correlation (Stavrakaki and Vargo, 1986; Clark and

Watson, 1991). Accordingly, categorical definitions of anxiety and depression are
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difficult to capture the distinctions of brain abnormalities (Oathes et al., 2015; Pannekoek
et a., 2015). Nonetheless, the current study applied a novel brain model to understand the
neurobiological distinction of anxiety and depression. Future studies with large sample

sizes of each specific group are needed.

The present work represents advances in neuroscience to advocate the applications of
rsFC in a cross-validation manner (Shen et al., 2017). An individualized predictive model
of anxiety was estimated from whole-brain rsFC profiles. The advantages of this
approach are fourfold. First, resting-state data is easy to collect relative to task-dependent
experiments (Rosazza and Minati, 2011). Despite being task-free, rsFC can track
individual cognitive performance (Scheinost et al., 2019), even higher-order functions
such astrust ( Lu et a., 2019). Importantly, rsFC is stable (even across three years;
Horien et al., 2019) and unique (functional connectome ‘fingerprinting’; Finn et al.,
2015). Second, compared to standard group comparisons between high-anxious and
low-anxious individuals, the present model is more sensitive for the assessment of
aspects of neuropsychological functioning in theindividual brain (Gabrieli et al., 2015;
Dubois and Adolphs, 2016). Although studies with correlation or regression models also
used the term “prediction”, such in-sample prediction rather than out-of-sample
prediction, incurs over-fitting (Gabrieli et al., 2015; Dubois and Adolphs, 2016). Third,
instead of region-of-interest (ROI) or seed-based rsFC studies, we were able to obtain an

objective picture of whole-brain rsFC networks in individual participants, eliminating the
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risk of over-representation of certain ROIs (Sprooten et al., 2017). In this way, our
findings were still meaningful, conforming to emotion regulation network regarding
‘emotion dysregulation model’ (Behar et al., 2009; Manber Ball et al., 2013;
Mochcovitch et al., 2014). Finally, the approach of implementing computational (*virtual’)
lesions may have advantages above noninvasi ve neurostimulation methods, for instance,
tDCS and TMS, which can cause some discomfort to participants. And although the
causal explanatory power of neurostimulation techniques is stronger, they have
significant drawbacks, the most important one being that they can only target superficial
cortical regions as the depth of stimulation is very limited. A combination of the strenghts
of both methods can also be indicative. Indeed, the computational lesion approach might
provide potential neurostimulation targets (i.e., network-guided TMS; Fox et al., 2012)

for future studies to reduce the tension of anxiety.

Several limitations of the present study are worth mentioning. First, we used a
group-level atlasin the individualized prediction of anxiety, which might overlook subtle
brain-behavior associations if they are highly variable. It has been documented that
individualized prediction with the group-level atlas has a weaker predictive power than
that with the individualized template (Wang et al., 2018). Second, for the purpose of early
identification in subclinical population, we only recruited healthy participants. Given the
asymmetric mechanisms between patients and healthy participants (Liao et al., 2010),

however, whether this result could extend to clinical diagnosisin anxiety disorders
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remains unknown. Future studies could test our model in patients with anxiety disorders.

To conclude, we established a brain connectivity-based model that was able to predict
anxiety in novel individuals. In light of emotion dysregulation models, we demonstrated
that regions of emotion regulation networks, such as vVACC, vIPFC and PCC, were of
importance for individual anxiety-prediction in healthy people. We also provide
preliminary evidence for distinct networks in the classification of anxiety and depression.
The current work may have important implications for the early identification of

individuals enduring high trait anxiety in non-clinical populations.
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