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Abstract 47 

Protein biomarkers have been identified across many age-related morbidities. However, 48 

characterising epigenetic influences could further inform disease predictions. Here, we 49 

leverage epigenome-wide data to study links between the DNAm signatures of the circulating 50 

proteome and incident diseases. Using data from four cohorts, we trained and tested epigenetic 51 

scores (EpiScores) for 953 plasma proteins, identifying 109 scores that explained between 1% 52 

and 58% of the variance in protein levels after adjusting for known protein quantitative trait 53 

loci (pQTL) genetic effects. By projecting these EpiScores into an independent sample, 54 

(Generation Scotland; n=9,537) and relating them to incident morbidities over a follow-up of 55 

14 years, we uncovered 137 EpiScore – disease associations. These associations were largely 56 

independent of immune cell proportions, common lifestyle and health factors and biological 57 

aging. Notably, we found that our diabetes-associated EpiScores highlighted previous top 58 

biomarker associations from proteome-wide assessments of diabetes. These EpiScores for 59 

protein levels can therefore be a valuable resource for disease prediction and risk stratification. 60 

 61 

Introduction 62 

 63 

Chronic morbidities place longstanding burdens on our health as we age. Stratifying an 64 

individual’s risk prior to symptom presentation is therefore critical (NHS England, 2016).  65 

Though complex morbidities are partially driven by genetic factors (Fuchsberger et al., 2016; 66 

Yao et al., 2018), epigenetic modifications have also been associated with disease (Lord & 67 

Cruchaga, 2014). DNA methylation (DNAm) encodes information on the epigenetic landscape 68 

of an individual and blood-based DNAm signatures have been found to predict all-cause 69 
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mortality and disease onset, providing strong evidence to suggest that methylation is an 70 

important measure of disease risk (Hillary, Stevenson, et al., 2020; Lu et al., 2019; Y. Zhang 71 

et al., 2017). DNAm can regulate gene transcription (Lea et al., 2018), and epigenetic 72 

differences can be reflected in the variability of the proteome (Hillary et al., 2019; Hillary, 73 

Trejo-Banos, et al., 2020; Zaghlool et al., 2020). Low-grade inflammation, which is thought to 74 

exacerbate many age-related morbidities, is particularly well-captured through DNAm studies 75 

of plasma protein levels (Zaghlool et al., 2020). Connecting the epigenome, proteome and time 76 

to disease onset may help to identify predictive biological signatures. 77 

 78 

Epigenetic predictors have utilised DNAm from the blood to estimate a person’s ‘biological 79 

age’ (Lu et al., 2019), measure their exposure to lifestyle and environmental exposures 80 

(McCartney, Hillary, et al., 2018; McCartney, Stevenson, Hillary, et al., 2018; Peters et al., 81 

2021) and predict circulating levels of inflammatory proteins (A. Stevenson et al., 2020; A. J. 82 

Stevenson et al., 2021). A leading epigenetic predictor of biological aging, the GrimAge 83 

epigenetic clock incorporates methylation scores for seven proteins along with smoking and 84 

chronological age, and is associated with numerous incident disease outcomes (Hillary, 85 

Stevenson, et al., 2020; Lu et al., 2019). This suggests that there is predictive value in utilising 86 

DNAm relevant to protein levels for disease predictions. A portfolio of protein EpiScores 87 

across the circulating proteome may aid in the prediction of disease and may offer a 88 

complementary signal to that of composite scores. Generation of an extensive range of 89 

proteomic scores has not been attempted to date. The capability of specific protein scores to 90 

predict a range of morbidities has also not been tested. However, DNAm scores for Interleukin-91 

6 and C-Reactive protein have been found to associate with a range of phenotypes 92 

independently of measured protein levels, show more stable longitudinal trajectories than 93 
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repeated protein measurements, and, in some cases, outperform blood-based proteomic 94 

associations with brain morphology (Conole et al., 2020; A. J. Stevenson et al., 2021). This is 95 

likely due to DNA methylation reflecting a more consistent profile of stress in the body than 96 

protein measurements. 97 

 98 

Here, we report a comprehensive association study of blood-based DNAm with proteomics and 99 

disease (Figure 1). We trained epigenetic scores – referred to as EpiScores – for 953 plasma 100 

proteins (with sample size ranging from 725 – 944 individuals) and validated them using two 101 

independent cohorts with 778 and 162 participants. We regressed out known genetic pQTL 102 

effects from the protein levels prior to generating the EpiScores to preclude the signatures being 103 

driven by common SNP data that are invariant across the lifespan. Finally, we examined 104 

whether the most robust predictors (n=109 EpiScores) associated with the incidence of 12 105 

major morbidities (Table 1), over a follow up period of up to 14 years in the Generation 106 

Scotland cohort (n = 9,537). We regressed out the effects of age on protein levels prior to 107 

training and testing; age was also included as a covariate in the time-to-event disease prediction 108 

models. We controlled for common risk factors for disease and assessed the capacity of 109 

EpiScores to identify previously reported protein-disease associations. 110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 

 118 

 119 

 120 
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Table 1. Incident morbidities in the Generation Scotland cohort. Counts are provided for the 121 

number of cases and controls for each incident trait in the basic and fully-adjusted Cox models run 122 

in the Generation Scotland cohort (n=9,537). Mean time-to-event is summarised in years for each 123 

phenotype. Alzheimer’s dementia cases and controls were restricted to those older than 65 years. 124 

Breast cancer cases and controls were restricted to females. 125 

 126 

 127 

 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

  Basic model Fully-adjusted model 

Morbidity 
N 

cases 
N 

Controls 
Years to event 

(mean, sd) 
N 

cases 
N 

Controls 
Years to event 

(mean, sd) 

Rheumatoid arthritis 65 9281 6.1 (3.5) 54 7736 6.4 (3.3) 

Alzheimer's dementia 69 3764 8.3 (2.7) 52 3137 8.2 (2.7) 

Bowel cancer 77 9398 6.4 (3.2) 65 7817 6.5 (3.2) 

Depression 101 8306 3.9 (3.3) 80 6976 3.7 (3.3) 

Breast cancer 129 5355 6 (3.4) 110 4401 5.9 (3.4) 

Lung cancer 201 9265 5.2 (3.1) 172 7705 5.1 (3.1) 

Inflammatory bowel disease 203 9083 5 (3.5) 163 7567 4.9 (3.5) 

Stroke 317 9023 6.5 (3.4) 248 7546 6.4 (3.5) 

COPD 346 8939 6.2 (3.4) 273 7459 6.1 (3.4) 

Ischaemic heart disease 395 8646 5.8 (3.3) 309 7248 5.9 (3.3) 

Diabetes 428 8756 5.7 (3.4) 322 7331 5.7 (3.4) 

Pain 1494 5341 5.2 (3.5) 1221 4475 5.3 (3.5) 
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139 

Figure 1. EpiScores for plasma proteins as tools for disease prediction study design. DNA 140 

methylation scores were trained on 953 circulating plasma protein levels in the KORA and LBC1936 141 

cohorts. There were 109 EpiScores selected based on performance (r > 0.1, P < 0.05) in independent 142 

test sets. The selected EpiScores were projected into Generation Scotland, a cohort that has extensive 143 

data linkage to GP and hospital records. We tested whether levels of each EpiScore at baseline could 144 

predict the onset of 12 leading causes of morbidity, over a follow-up period of up to 14 years. 137 145 

EpiScore – disease associations were identified, for 11 morbidities. We then assessed whether 146 

EpiScore associations reflected protein associations for diabetes, which is a trait that has been well-147 

characterised using SOMAscan protein measurements. Of the 29 SOMAscan-derived EpiScore – 148 

diabetes associations, 21 reflected highlighted previously reported protein - diabetes associations. 149 

 150 

 151 

 152 
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Results 153 

 154 

Selecting the most robust EpiScores for protein levels 155 

 156 

To generate epigenetic scores for a comprehensive set of plasma proteins, we ran elastic net 157 

penalised regression models using protein measurements from the SOMAscan (aptamer-based) 158 

and Olink (antibody-based) platforms. We used two cohorts: the German population-based 159 

study KORA (n=944, mean age 59 years (SD 7.8), with 793 SOMAscan proteins) and the 160 

Scottish Lothian Birth Cohort 1936 (LBC1936) study (between 725 and 875 individuals in the 161 

training cohort, with a total of 160 Olink neurology and inflammatory panel proteins). The 162 

mean age of the LBC1936 participants at sampling was 70 (SD 0.8) for inflammatory and 73 163 

(SD 0.7) for neurology proteins. Full demographic information is available for all cohorts in 164 

Supplementary file 1A. 165 

Prior to running the elastic net models, we rank-based inverse normalised protein levels and 166 

adjusted for age, sex, cohort-specific variables and, where present, cis and trans pQTL effects 167 

identified from previous analyses (Hillary et al., 2019; Hillary, Trejo-Banos, et al., 2020; Suhre 168 

et al., 2017) (Methods). Of a possible 793 proteins in KORA, 84 EpiScores had Pearson r > 169 

0.1 and P < 0.05 when tested in an independent subset of Generation Scotland (The Stratifying 170 

Resilience and Depression Longitudinally [STRADL] study, n=778) (Supplementary file 1B). 171 

These EpiScores were selected for EpiScore-disease analyses. Of the 160 Olink proteins trained 172 

in LBC1936, there were 21 with r  > 0.1 and P < 0.05 in independent test sets (STRADL, 173 

n=778, Lothian Birth Cohort 1921: LBC1921, n=162) (Supplementary file 1C). Independent 174 

test set data were not available for four Olink proteins. However, they were included based on 175 
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their performance (r > 0.1 and P < 0.05) in a holdout sample of 150 individuals who were left 176 

out of the training set. We then retrained these four predictors on the full training sample.  177 

A total of 109 EpiScores (84 SOMAscan-based and 25 Olink-based) were brought forward (r 178 

> 0.1 and P < 0.05) to EpiScore-disease analyses (Figure 2 and Supplementary file 1D). 179 

There were five EpiScores for proteins common to both Olink and SOMAscan panels, which 180 

had variable correlation strength (GZMA r = 0.71, MMP.1 r = 0.46, CXCL10 r = 0.35, NTRK3 181 

r = 0.26, and CXCL11 r = 0.09). Predictor weights, positional information and cis/trans status 182 

for CpG sites contributing to these EpiScores are available in Supplementary file 1E. The 183 

number of CpG features selected for EpiScores ranged from one (Lyzozyme) to 395 184 

(Aminoacylase-1), with a mean of 96 Supplementary file 1F). The most frequently selected 185 

CpG was the smoking-related site cg05575921 (mapping to the AHRR gene), which was 186 

included in 25 EpiScores. Counts for each CpG site are summarised in Supplementary file 187 

1G. This table includes the set of protein EpiScores that each CpG contributes to, along with 188 

phenotypic annotations (traits) from the MRC-IEU EWAS catalog (MRC-IEU, 2021) for each 189 

CpG site having genome-wide significance (P < 3.6 x10-8) (Saffari et al., 2017). 190 

 191 

 192 

 193 

 194 

 195 

 196 
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198 

Figure 2. Test performance for the 109 selected protein EpiScores. Test set correlation 199 

coefficients for associations between protein EpiScores for (a) inflammatory Olink, (b) neurology 200 

Olink and (c) SOMAmer protein panel EpiScores and measured protein levels are plotted.  Upper 201 

and lower confidence intervals are shown for each correlation. The 109 protein EpiScores shown 202 

achieved r > 0.1 and P < 0.05 either one or both of the GS:STRADL (n=778) and LBC1921 (n=162) 203 

test sets, wherever protein data was available for comparison. Data shown corresponds to the results 204 

included in Supplementary files 1B-C. 205 
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EpiScore-disease associations in Generation Scotland 206 

 207 

The Generation Scotland dataset contains extensive electronic health data from GP and hospital 208 

records available as well as DNA methylation data for 9,537 individuals. This makes it 209 

uniquely positioned to test whether EpiScore signals can predict disease onset. We ran nested 210 

mixed effects Cox proportional hazards models (Figure 3) to determine whether the levels of 211 

each EpiScore at baseline associated with the incidence of 12 morbidities over a maximum of 212 

14 years of follow up. The correlation structures for the 109 EpiScore measures used for Cox 213 

modelling are presented in Supplementary file 2A.  214 

The Cox proportional hazard assumption dictates that hazard ratios for EpiScore – disease 215 

associations should remain constant over time. We correlated the Schoenfeld residuals from 216 

the models with time to test this. Two associations in the basic model adjusting for age and sex 217 

failed to satisfy the global assumption (across all covariates) and were excluded. There were 218 

294 remaining EpiScore-disease associations with a False Discovery Rate (FDR)-adjusted P < 219 

0.05 in the basic model. After further adjustment for common risk factor covariates (smoking, 220 

social deprivation status, educational attainment, body mass index (BMI) and alcohol 221 

consumption), 137 of the 294 EpiScore-disease associations from the basic model had P < 0.05 222 

in the fully-adjusted model (Supplementary files 1H-I). Eleven of the 137 fully-adjusted 223 

associations failed the Cox proportional hazards assumption for the EpiScore variable (P < 0.05 224 

for the association between the Schoenfeld residuals and time; Supplementary file 1J). When 225 

we restricted the time-to-event/censor period by each year of possible follow-up, there were 226 

minimal differences in the EpiScore - disease hazard ratios between follow-up periods that did 227 

not violate the assumption and those that did (Supplementary file 1K). The 137 associations 228 

were therefore retained as the primary results. 229 
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The 137 associations found in the fully-adjusted model comprised 78 unique EpiScores that 230 

were related to the incidence of 11 of the 12 morbidities studied. Diabetes and chronic 231 

obstructive pulmonary disease (COPD) had the greatest number of associations, with 33 and 232 

41, respectively. Figure 4 presents the EpiScore-disease relationships for COPD and the 233 

remaining nine morbidities: stroke, lung cancer, ischaemic heart disease, inflammatory bowel 234 

disease, rheumatoid arthritis, depression, bowel cancer, pain and Alzheimer’s dementia. There 235 

were 13 EpiScores that associated with the onset of three or more morbidities. Figure 5 236 

presents relationships for these 13 EpiScores in the fully-adjusted Cox model results. Of note 237 

is the EpiScore for Complement 5 (C5), which associated with five outcomes: stroke, diabetes, 238 

ischaemic heart disease, rheumatoid arthritis and COPD. Of the 29 SOMAscan-derived 239 

EpiScore associations with incident diabetes, 21 replicated previously reported protein 240 

associations (Elhadad et al., 2020; Gudmundsdottir et al., 2020) with incident or prevalent 241 

diabetes in one or more cohorts (Figure 6 and Supplementary file 1L).  242 

 243 

 244 

 245 

 246 

 247 

 248 
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Figure 3. Nested Cox proportional hazards assessment of EpiScore-disease prediction. Mixed 249 

effects Cox proportional hazards analyses in Generation Scotland (n = 9,537) tested the relationships 250 

between each of the 109 selected EpiScores and the incidence of 12 leading causes of morbidity 251 

(Supplementary files 1H-I). The basic model was adjusted for age and sex and yielded 294 252 

associations between EpiScores and disease diagnoses, with FDR-adjusted P < 0.05. In the fully-253 

adjusted model, which included common risk factors as additional covariates (smoking, deprivation,  254 

educational attainment, BMI and alcohol consumption) 137 of the basic model associations 255 

remained significant with P < 0.05. In a sensitivity analysis, the addition of estimated White Blood 256 

Cells (WBCs) to the fully-adjusted models led to the attenuation of 34 of the 137 associations. In a 257 

further sensitivity analysis, 81 associations remained after adjustment for both immune cell 258 

proportions and GrimAge acceleration.  259 

 260 

 261 

 262 
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Figure 4. EpiScore associations with incident disease. EpiScore-disease associations for ten of 263 

the eleven morbidities with associations where P < 0.05 in the fully-adjusted mixed effects Cox 264 

proportional hazards models in Generation Scotland (n=9,537). Hazard ratios are presented with 265 

confidence intervals for 104 of the 137 EpiScore – incident disease associations reported. Models 266 

were adjusted for age, sex and common risk factors (smoking, BMI, alcohol consumption, 267 

deprivation and educational attainment). IBD: inflammatory bowel disease. IHD: ischaemic heart 268 

disease. COPD: chronic obstructive pulmonary disease. For EpiScore - diabetes associations, see 269 

Figure 6. Data shown corresponds to the results included in Supplementary file 1I. 270 

 271 
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 272 

Figure 5. EpiScores that associated with the greatest number of morbidities. EpiScores with a 273 

minimum of three relationships with incident morbidities in the fully-adjusted Cox models. The 274 

network includes 13 EpiScores as dark blue (SOMAscan) and grey (Olink) nodes,  with disease 275 

outcomes in black. EpiScore-disease associations with hazard ratios < 1 are shown as blue 276 

connections, whereas hazard ratios > 1 are shown in red. COPD: chronic obstructive pulmonary 277 

disease. IHD: ischaemic heart disease. Data shown corresponds to the results included in 278 

Supplementary file 1I. 279 

 280 

 281 

 282 
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 291 

292 

Figure 6. Replication of known protein-diabetes associations with EpiScores. EpiScore – 293 

incident diabetes associations in Generation Scotland (n=9,537). The 29 SOMAscan (top panel) and 294 

four Olink (bottom panel) associations shown with P < 0.05 in fully-adjusted mixed effects Cox 295 

proportional hazards models. Of the 29 SOMAscan-derived EpiScores, 21 associations were 296 

consistent with protein – diabetes associations (pink) in one or more of the four comparison cohorts 297 

that used SOMAscan protein levels. Eight associations were novel (blue). Data shown corresponds 298 

to the results included in Supplementary files 1I and 1L . 299 

 300 

 301 

 302 

 303 

 304 
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Immune cell and GrimAge sensitivity analyses 306 

 307 

Correlations of the 109 EpiScores with covariates suggested interlinked relationships with both 308 

immune cells and GrimAge acceleration (Supplementary file 2B). These covariates were 309 

therefore added incrementally to the fully-adjusted Cox models (Figure 3). There were 103 310 

associations that remained statistically significant (FDR P < 0.05 in the basic model and P < 311 

0.05 in the fully-adjusted model) after adjustment for immune cell proportions, of which 81 312 

remained significant when GrimAge acceleration scores were added to this model 313 

(Supplementary file 1I). In a further sensitivity analysis, relationships between both estimated 314 

White Blood Cell (WBC) proportions and GrimAge acceleration scores with incident diseases 315 

were assessed in the Cox model structure independently of EpiScores. Of the 60 possible 316 

relationships between WBC measures and the morbidities assessed, four were statistically 317 

significant (FDR-adjusted P < 0.05) in the basic model and remained significant with P < 0.05 318 

in the fully-adjusted model (Supplementary file 1M). A higher proportion of Natural Killer 319 

cells was linked to decreased risk of incident COPD, rheumatoid arthritis, diabetes and pain. 320 

The GrimAge acceleration composite score was associated with COPD, IHD, Diabetes and 321 

Pain in the fully-adjusted models (P < 0.05) (Supplementary file 1N). The magnitude of the 322 

GrimAge effect sizes were comparable to the EpiScore findings. 323 

 324 

 325 

 326 
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Discussion 328 

 329 

Here, we report a comprehensive DNA methylation scoring study of 953 circulating proteins. 330 

We define 109 robust EpiScores for plasma protein levels that are independent of known pQTL 331 

effects. By projecting these EpiScores into a large cohort with extant data linkage, we show 332 

that 78 EpiScores associate with the incidence of 11 leading causes of morbidity (137 EpiScore 333 

– disease associations in total). Finally, we show that EpiScore - disease associations highlight 334 

previously measured protein - disease relationships. The bulk of EpiScore-disease associations 335 

are independent of common lifestyle and health factors, differences in immune cell 336 

composition and GrimAge acceleration. EpiScores therefore provide methylation-proteomic 337 

signatures for disease prediction and risk stratification. 338 

 339 

The consistency between our EpiScore – diabetes associations and previously identified protein 340 

– diabetes relationships (Elhadad et al., 2020; Gudmundsdottir et al., 2020) suggests that 341 

epigenetic scores may identify candidate disease-protein pathways. In addition to the 342 

comprehensive lookup of SOMAscan proteins with diabetes, several of the markers we 343 

identified for COPD and IHD also reflect previous associations with measured proteins (Ganz 344 

et al., 2016; Serban et al., 2021). The two studies used for the diabetes comparison represent 345 

the largest candidate protein characterisations of diabetes to date and the top markers identified 346 

included aminoacylase-1 (ACY-1), sex hormone binding globulin (SHBG), growth hormone 347 

receptor (GHR) and Insulin-like growth factor-binding protein 2 (IGFBP-2) (Elhadad et al., 348 

2020; Gudmundsdottir et al., 2020). Our EpiScores for these top markers are also associated 349 

with diabetes, in addition to EpiScores for several other protein markers reported in these 350 
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studies. A growing body of evidence suggests that type 2 diabetes is mediated by genetic and 351 

epigenetic regulators (Kwak & Park, 2016) and proteins such as ACY-1 and GHR are thought 352 

to influence a range of diabetes-associated metabolic mechanisms (Kim & Park, 2017; Pérez-353 

Pérez et al., 2012). In the case of diabetes, EpiScores may therefore be used as disease-relevant 354 

risk biomarkers, many years prior to onset. Validation should be tested when sufficient data 355 

become available for the remaining morbidities. 356 

 357 

With modest test set performances (for example, SHBG r = 0.18 and ACY-1 r = 0.25), it is 358 

perhaps surprising that such strong synergy is observed between EpiScores for proteins that 359 

associated with diabetes and the trends seen with measured proteins. Nonetheless, DNA 360 

methylation scores for CRP and IL6 have been shown to perform modestly in test sets (r ~ 0.2, 361 

equivalent to ~ 4% explained variance in protein level), but augment and often outperform the 362 

measured protein related to a range of phenotypes (A. Stevenson et al., 2020; A. J. Stevenson 363 

et al., 2021). Upper bounds for DNAm prediction of complex traits, such as proteins, can be 364 

estimated by variance components analyses (Hillary, Trejo-Banos, et al., 2020; Trejo Banos et 365 

al., 2020; F. Zhang et al., 2019). 366 

 367 

Compared to epigenetic clocks like GrimAge, EpiScores enable the granular study of 368 

individual protein predictor signatures with disease outcomes. For example, levels of the acid 369 

sphingomyelinase (ASM) EpiScore predicted onset of Alzheimer’s dementia, several years 370 

prior to diagnosis. ASM (encoded by SMPD1) has been discussed as a therapeutic candidate 371 

for Alzheimer’s disease (Cataldo et al., 2004; Kamil et al., 2016; Lee et al., 2014; Park et al., 372 

2020) and has been shown to disrupt autophagic protein degradation and associate with 373 
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accumulation of amyloid-beta in murine models of Alzheimer’s pathology (Lee et al., 2014; 374 

Park et al., 2020). The EpiScore for Complement Component 5 (C5) was associated with the 375 

onset of five morbidities, the highest number for any EpiScore. Elevated levels of C5 peptides 376 

have been associated with severe inflammatory, autoimmune and neurodegenerative states (Ma 377 

et al., 2019; Mantovani et al., 2014; Morgan & Harris, 2015) and a range of C5-targetting 378 

therapeutic approaches are in development (Alawieh et al., 2018; Brandolini et al., 2019; 379 

Hawksworth et al., 2017; Hernandez et al., 2017; Morgan & Harris, 2015; Ort et al., 2020). 380 

EpiScores that occupy central hubs in the disease-prediction framework may therefore provide 381 

evidence of early methylation signatures common to the onset of multiple diseases. Our large-382 

scale assessment of EpiScores provides a platform for future studies, as composite predictors 383 

may be created using our EpiScore database. These should be tested in incident disease 384 

predictions when sufficient case data are available. 385 

 386 

This study has several limitations. First, like with protein – disease association studies, we 387 

cannot infer causality from our EpiScore – disease models. However, both protein levels and 388 

EpiScores may have utility in risk prediction – future studies where both modalities are 389 

available should assess paired protein and CpG contributions to traits. This should entail the 390 

direct measurement of proteins, as inference from EpiScores alone, while useful for disease 391 

risk stratification, is not sufficient to determine mechanisms. Second, the epitope nature of the 392 

protein measurement in the SOMAscan panel may incur probe cross-reactivity and non-393 

specific binding; there may also be differences in how certain proteins are measured across 394 

panels (Pietzner et al., 2020; Sun et al., 2018). Comparisons of both protein measurement 395 

technologies on the same samples would help to explore this in more detail. Third, there may 396 

also be pQTLs with small effect sizes that were not regressed from the proteins prior to 397 
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generating the EpiScores. Finally, associations present between EpiScore measures and disease 398 

incidence may have been influenced by external factors such as prescription medications for 399 

comorbid conditions and comorbid disease prevalence. 400 

 401 

We have shown that EpiScores for circulating protein levels predict the incidence of multiple 402 

diseases, up to 14 years prior to diagnosis. Our findings suggest that DNA methylation 403 

phenotyping approaches and data linkage to electronic health records in large, population-404 

based studies have the potential to (1) Capture inter-individual variability in protein levels; (2) 405 

Augment risk prediction many years prior to morbidity onset; and (3) highlight candidate 406 

protein – disease associations for further exploration. The EpiScore weights are publicly 407 

available, enabling any cohort with Illumina DNAm data to generate them and to relate them 408 

to various outcomes. Given the increasingly widespread assessment of DNAm in cohort studies 409 

(McCartney et al., 2020; Min et al., 2020), EpiScores offer an affordable and consistent (i.e. 410 

array-based) way to utilise these signatures. This information is likely to be important in risk 411 

stratification and prevention of age-related morbidities. 412 

 413 

Materials and Methods 414 

 415 

The KORA sample population 416 

  417 

The KORA F4 study includes 3,080 participants who reside in Southern Germany. Individuals 418 

were between 32 and 81 years of age when recruited to the study from 2006 and 2008. In the 419 
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current study, there were 944 individuals with methylation, proteomics and genetic data 420 

available. The Infinium HumanMethylation450 BeadChip platform was used to generate 421 

DNA methylation data for these individuals. The Affymetrix Axiom array was used to 422 

generate genotyping data and the SOMAscan platform was used to generate proteomic 423 

measurements in the sample. 424 

 425 

DNA methylation in KORA 426 

 427 

Methylation data were generated for 1,814 individuals(Petersen et al., 2014); 944  also had 428 

protein and genotype measurements available. During preprocessing, 65 SNP probes were 429 

excluded and background correction was performed in minfi (Aryee et al., 2014). Samples 430 

with a detection rate of less than 95% were excluded. Next, the minfi R package was used to 431 

perform normalization on the intensity methylation measures (Aryee et al., 2014), with a 432 

method consistent with the Lumi:QN +BMIQ pipeline. After excluding non-cg sites and CpGs 433 

on sex chromosomes or with fewer than 100 measures available, 470,837 CpGs were available 434 

for analyses. 435 

 436 

Proteomics in KORA 437 

 438 

The SOMAscan platform (V3.2) (Gold et al., 2010) was used to quantify protein levels in 439 

undepleted plasma for 1129 SOMAmer probes (Suhre et al., 2017). Of the 1,000 samples 440 

provided for analysis, two samples were excluded due to errors in bio-bank sampling and one 441 

based on quality control measures. Of the 997 samples available, there were 944 individuals 442 
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with methylation and genotypic data. Of the 1,129 probes available, five failed the QC, leaving 443 

a total of 1,124 probes for the subsequent analysis. Protein measurements were transformed 444 

by rank-based inverse normalisation and regressed onto age, sex, known pQTLs and 20 445 

genetic principal components of ancestry derived from the Affymetrix Axiom Array to control 446 

for population structure. pQTLs for each protein were taken from a previous GWAS in the 447 

sample (Suhre et al., 2017).  448 

 449 

The LBC1936 and LBC1921 sample populations 450 

 451 

The Lothian Birth Cohorts of 1921 (LBC1921; N = 550) and 1936 (LBC1936; N = 1091) are 452 

longitudinal studies of aging in individuals who reside in Scotland (Deary et al., 2012; Taylor 453 

et al., 2018).  Participants completed an intelligence test at age 11 years and were recruited 454 

for these cohorts at mean ages of 79 (LBC1921) and 70 (LBC1936). They have been 455 

followed up triennially for a series of cognitive, clinical, physical and social data, along with 456 

blood donations that have been used for genetic, epigenetic, and proteomic measurement. 457 

DNAm, proteomic (Olink® platform) and genetic data for up to 875 individuals from Waves 458 

1 and 2 of the LBC1936 (at mean ages 70 and 73 years) and 162 individuals at Wave 3 of the 459 

LBC1921 (at mean age 87 years). 460 

 461 

DNAm in LBC1936 and LBC1921 462 

 463 

DNA from whole blood was assessed using the Illumina 450 K methylation array. Details of 464 

quality control have been described elsewhere (Shah et al., 2014; Q. Zhang et al., 2018). Raw 465 
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intensity data were background-corrected and normalised using internal controls. Manual 466 

inspection resulted in the removal of low quality samples that presented issues related to 467 

bisulphite conversion, staining signal, inadequate hybridisation or nucleotide extension. Probes 468 

with low detection rate <95% at P < 0.01 and samples with low call rates (<450,000 probes 469 

detected at P < 0.01) were removed. Samples were also removed if they had a poor match 470 

between genotype and SNP control probes, or incorrect DNA methylation-predicted sex. 471 

 472 

Proteomics in LBC1936 and LBC1921 473 

 474 

Plasma samples were analysed using either the Olink® neurology 92-plex or the Olink® 475 

inflammation 92-plex proximity extension assays (Olink® Bioscience, Uppsala Sweden). One 476 

inflammatory panel protein (BDNF) failed quality control and was removed. A further 21 477 

proteins were removed, as over 40% of samples fell below the lowest limit of detection. Two 478 

neurology proteins, MAPT and HAGH, were excluded due to >40% of observations being 479 

below the lower limit of detection. This resulted in 90 neurology (LBC1936 Wave 2) and 70 480 

inflammatory (LBC1936 Wave 1) proteins in LBC1936 and 92 neurology proteins available in 481 

LBC1921. Protein levels were rank-based inverse normalised and regressed onto age, sex, four 482 

genetic components of ancestry derived from multidimensional scaling of the Illumina 610-483 

Quadv1 genotype array and Olink® array plate. In LBC1936, pQTLs were adjusted for, 484 

through reference to GWAS in the samples (Hillary et al., 2019; Hillary, Trejo-Banos, et al., 485 

2020).  486 

 487 
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Generation Scotland and STRADL sample populations 488 

 489 

Generation Scotland: the Scottish Family Health Study (GS) is a large, family-structured, 490 

population-based cohort study of >24,000 individuals from Scotland (mean age 48 years) 491 

(Smith et al., 2006). Recruitment took place between 2006 and 2011 with a clinical visit where 492 

detailed health, cognitive, and lifestyle information was collected along with biological 493 

samples (blood, urine, saliva). In GS, there were 9,537 individuals with DNAm and phenotypic 494 

information available. The Stratifying Resilience and Depression Longitudinally (STRADL) 495 

cohort is a subset of 1,188 individuals from the GS cohort who undertook additional 496 

assessments approximately five years after the study baseline (Navrady et al., 2018).  497 

 498 

DNA methylation in Generation Scotland and STRADL 499 

 500 

In the GS cohort, blood-based DNA methylation was generated in two sets using the Illumina 501 

EPIC array. Set 1 comprised 5,190 related individuals whereas Set 2 comprised 4,583 502 

individuals, unrelated to each other and to those in Set 1. During quality control, probes were 503 

removed based on visual outlier inspection, bead count <3 in over 5% of samples and samples 504 

with detection P value below adequate thresholds (McCartney, Stevenson, Walker, et al., 2018; 505 

Seeboth et al., 2020). Samples were removed based on sex mismatches, low detection P values 506 

for CpGs and saliva samples and genetic outliers (Amador et al., 2015). The quality-controlled 507 

dataset comprised 9,537 individuals (nSet1=5,087, nSet2=4,450). The same steps were also 508 

applied to process DNAm in STRADL. 509 

 510 
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Proteomics in STRADL  511 

 512 

Measurements for 4,235 proteins in 1,065 individuals from the STRADL cohort were recorded 513 

using the SOMAscan® technology. 793 epitopes matched between the KORA and STRADL 514 

cohorts and were included for training in KORA and testing in STRADL. There were 778 515 

individuals with proteomics data and DNAm data in STRADL. Protein measurements were 516 

transformed by rank-based inverse normalisation and regressed onto age, sex and 20 genetic 517 

principal components (derived from multidimensional scaling of genotype data from the 518 

Illumina 610-Quadv1 array). 519 

 520 

Electronic health data linkage in Generation Scotland  521 

 522 

Over 98% of GS participants consented to allow access to electronic health records via data 523 

linkage to GP records (Read 2 codes) and hospital records (ICD codes). Data are available 524 

prospectively from the time of blood draw, yielding up to 14 years of linkage. We considered 525 

incident data for 12 morbidities (Supplementary file 3A). Prevalent cases (ascertained via 526 

retrospective ICD and Read 2 codes or self-report from a baseline questionnaire) were 527 

excluded. For inflammatory bowel disease (IBD) prevalent cases were excluded based on data 528 

linkage alone. Included and excluded terms can be found in Supplementary files 4A-L. 529 

Alzheimer’s dementia was limited to cases/controls with age of event/censoring ≥ 65 years. 530 

Breast cancer was restricted to females only. Recurrent, major and moderate episodes of 531 

depression were included in depression. Diabetes was comprised of type 2 diabetes and more 532 
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general diabetes codes such as diabetic retinopathy and diabetes mellitus with renal 533 

manifestation. Type 1 and juvenile diabetes cases were excluded.  534 

 535 

Elastic net protein EpiScores 536 

 537 

Penalised regression models were generated for 160 proteins in LBC1936 and 793 proteins in 538 

KORA using Glmnet (Version 4.0-2) (J et al., 2010) in R (Version 4.0) (R, 2020). Protein levels 539 

were the outcome and there were 428,489 CpG features per model in the LBC1936 training 540 

and 397,630 in the KORA training. An elastic net penalty was specified (alpha=0.5) and cross 541 

validation was applied. DNAm and protein measurements were scaled to have a mean of zero 542 

and variance of one.  543 

In the KORA analyses, 10-fold cross validation was applied and EpiScores were tested in 544 

STRADL (n=778). Of 480 EpiScores that generated ≥1 CpG features, 84 had Pearson r > 0.1 545 

and P < 0.05 in STRADL. As test set comparisons were not available for every protein in the 546 

LBC1936 analyses, a holdout sample was defined, with two folds set aside as test data and 10-547 

fold cross validation carried out on the remaining data (ntrain=576, ntest=130 for neurology and 548 

ntrain=725, ntest=150 for inflammatory proteins). We retained 36 EpiScores with Pearson r > 0.1 549 

and P < 0.05. New predictors for these 36 proteins were then generated using 12-fold cross 550 

validation and tested externally in STRADL (n=778) and LBC1921 (n=162, for the neurology 551 

panel). 21 EpiScores had r > 0.1 and P < 0.05 in at least one of the external test sets. Four 552 

EpiScores did not have external comparisons and were included based on holdout performance.  553 
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The 109 selected EPiScores were then applied to Generation Scotland (n=9,537). DNAm at 554 

each CpG site was scaled to have a mean of zero and variance of one, with scaling performed 555 

separately for GS Sets. 556 

 557 

Associations with health linkage phenotypes in Generation Scotland 558 

 559 

Mixed effects Cox proportional hazards regression models adjusting for age, sex, and 560 

methylation set were used to assess the relationship between 109 EpiScores and 12 morbidities 561 

in Generation Scotland.  Models were run using coxme (Therneau, 2020b) (Version 2.2-16) 562 

with a kinship matrix accounting for relatedness in Set 1. Cases included those diagnosed after 563 

baseline who had died, in addition to those who received a diagnosis and remained alive. 564 

Controls were censored if disease free at time of death, or at the end of the follow-up period. 565 

EpiScore levels were rank-base inverse normalised. Fully-adjusted models included:  the 566 

following additional covariates measured at baseline: alcohol consumption (units consumed in 567 

the previous week); deprivation (assessed by the Scottish Index of Multiple Deprivation 568 

(GovScot, 2016)); body mass index (kg/m2); educational attainment (an 11-category ordinal 569 

variable) and a DNAm-based score for smoking status (Bollepalli et al., 2019). A false 570 

discovery rate multiple testing correction P < 0.05 was applied to the 1306 EpiScore-disease 571 

associations (109 EpiScores by 12 incident disease traits, with 2 associations excluded for 572 

failing the global proportional hazards assumption). Proportional hazards assumptions were 573 

checked through Schoenfeld residuals (global test and a test for the protein-EpiScore variable) 574 

using the coxph and cox.zph functions from the survival package (Therneau, 2020a) (Version 575 

3.2-7). For each association failing to meet the assumption (Schoenfeld residuals P < 0.05), a 576 

sensitivity analysis was run across yearly follow-up intervals. 577 
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Fully-adjusted Cox proportional hazards models were run with Houseman-estimated White 578 

Blood Cell (WBC) proportions as covariates (Houseman et al., 2012). A further sensitivity 579 

analyses added GrimAge acceleration (Lu et al., 2019) as an additional covariate. Basic and 580 

fully-adjusted Cox models were also run with estimated Monocyte, Bcell, CD4T, CD8T and 581 

Natural Killer cell proportions as predictors. 582 

Correlation structures for EpiScores, DNAm-based white cell proportions and phenotypic 583 

information were assessed using Pearson correlations and pheatmap (Kolde, 2019) (Version 584 

1.0.12) and ggcorrplot packages (Version 0.1.3) (Kassambara, 2019). The psych package 585 

(Version 2.0.9) (Revelle, 2020) was used to perform principal components analysis on 586 

EpiScores. A network visualisation was produced using the ggraph package (Version 2.0.5) 587 

(Pedersen, 2021). Figures 1 and 2 were created with BioRender.com. 588 

 589 

Consistency of disease associations between EpiScores and measured proteins 590 

 591 

Comparisons were conducted between EpiScore – diabetes associations and diabetes 592 

associations with measured proteins using two previous large-scale proteomic studies (Elhadad 593 

et al., 2020; Gudmundsdottir et al., 2020). In both studies, two cohorts were included (Study 1: 594 

KORA n= 993, HUNT n= 940 (Elhadad et al., 2020), Study 2: AGES-Reykjavik n=5,438 and 595 

QMDiab n=356 (Gudmundsdottir et al., 2020)). Study 1 included the KORA dataset, which we 596 

use in this study to generate SOMAscan EpiScores. We characterised which SOMAscan-based 597 

EpiScore – diabetes associations from our fully-adjusted results reflected those observed with 598 

measured protein levels. We included basic (nominal P < 0.05) and fully adjusted results (with 599 
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either FDR or Bonferroni-corrected P < 0.05), wherever available, across the four cohorts 600 

(Supplementary file 1L). 601 

 602 
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