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Abstract

Protein biomarkers have been identified across many age-related morbidities. However,
characterising epigenetic influences could further inform disease predictions. Here, we
leverage epigenome-wide data to study links between the DNAm signatures of the circulating
proteome and incident diseases. Using data from four cohorts, we trained and tested epigenetic
scores (EpiScores) for 953 plasma proteins, identifying 109 scores that explained between 1%
and 58% of the variance in protein levels after adjusting for known protein quantitative trait
loci (pQTL) genetic effects. By projecting these EpiScores into an independent sample,
(Generation Scotland; n=9,537) and relating them to incident morbidities over a follow-up of
14 years, we uncovered 137 EpiScore — disease associations. These associations were largely
independent of immune cell proportions, common lifestyle and health factors and biological
aging. Notably, we found that our diabetes-associated EpiScores highlighted previous top
biomarker associations from proteome-wide assessments of diabetes. These EpiScores for

protein levels can therefore be a valuable resource for disease prediction and risk stratification.

Introduction

Chronic morbidities place longstanding burdens on our health as we age. Stratifying an
individual’s risk prior to symptom presentation is therefore critical (NHS England, 2016).
Though complex morbidities are partially driven by genetic factors (Fuchsberger et al., 2016;
Yao et al., 2018), epigenetic modifications have also been associated with disease (Lord &
Cruchaga, 2014). DNA methylation (DNAm) encodes information on the epigenetic landscape

of an individual and blood-based DNAm signatures have been found to predict all-cause
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mortality and disease onset, providing strong evidence to suggest that methylation is an
important measure of disease risk (Hillary, Stevenson, et al., 2020; Lu et al., 2019; Y. Zhang
et al.,, 2017). DNAm can regulate gene transcription (Lea et al., 2018), and epigenetic
differences can be reflected in the variability of the proteome (Hillary et al., 2019; Hillary,
Trejo-Banos, et al., 2020; Zaghlool et al., 2020). Low-grade inflammation, which is thought to
exacerbate many age-related morbidities, is particularly well-captured through DNAm studies
of plasma protein levels (Zaghlool et al., 2020). Connecting the epigenome, proteome and time

to disease onset may help to identify predictive biological signatures.

Epigenetic predictors have utilised DNAm from the blood to estimate a person’s ‘biological
age’ (Lu et al.,, 2019), measure their exposure to lifestyle and environmental exposures
(McCartney, Hillary, et al., 2018; McCartney, Stevenson, Hillary, et al., 2018; Peters et al.,
2021) and predict circulating levels of inflammatory proteins (A. Stevenson et al., 2020; A. J.
Stevenson et al., 2021). A leading epigenetic predictor of biological aging, the GrimAge
epigenetic clock incorporates methylation scores for seven proteins along with smoking and
chronological age, and is associated with numerous incident disease outcomes (Hillary,
Stevenson, et al., 2020; Lu et al., 2019). This suggests that there is predictive value in utilising
DNAm relevant to protein levels for disease predictions. A portfolio of protein EpiScores
across the circulating proteome may aid in the prediction of disease and may offer a
complementary signal to that of composite scores. Generation of an extensive range of
proteomic scores has not been attempted to date. The capability of specific protein scores to
predict a range of morbidities has also not been tested. However, DNAm scores for Interleukin-
6 and C-Reactive protein have been found to associate with a range of phenotypes

independently of measured protein levels, show more stable longitudinal trajectories than
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94  repeated protein measurements, and, in some cases, outperform blood-based proteomic

95 associations with brain morphology (Conole et al., 2020; A. J. Stevenson et al., 2021). This is

96 likely due to DNA methylation reflecting a more consistent profile of stress in the body than

97  protein measurements.

98

99  Here, we report a comprehensive association study of blood-based DNAm with proteomics and
100 disease (Figure 1). We trained epigenetic scores — referred to as EpiScores — for 953 plasma
101  proteins (with sample size ranging from 725 — 944 individuals) and validated them using two
102  independent cohorts with 778 and 162 participants. We regressed out known genetic pQTL
103  effects fromthe protein levels prior to generating the EpiScores to preclude the signatures being
104  driven by common SNP data that are invariant across the lifespan. Finally, we examined
105  whether the most robust predictors (n=109 EpiScores) associated with the incidence of 12
106  major morbidities (Table 1), over a follow up period of up to 14 years in the Generation
107  Scotland cohort (n = 9,537). We regressed out the effects of age on protein levels prior to
108  training and testing; age was also included as a covariate in the time-to-event disease prediction
109 models. We controlled for common risk factors for disease and assessed the capacity of
110  EpiScores to identify previously reported protein-disease associations.

111
112
113
114
115
116
117
118
119
120
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Basic model Fully-adjusted model
Morbidity N N Years to event N N Years to event
cases Controls (mean, sd) cases Controls (mean, sd)
Rheumatoid arthritis 65 9281 6.1(3.5) 54 7736 6.4 (3.3)
Alzheimer's dementia 69 3764 8.3(2.7) 52 3137 8.2(2.7)
Bowel cancer 77 9398 6.4 (3.2) 65 7817 6.5(3.2)
Depression 101 8306 3.9(3.3) 80 6976 3.7 (3.3)
Breast cancer 129 5355 6(3.4) 110 4401 5.9(3.4)
Lung cancer 201 9265 5.2 (3.1) 172 7705 5.1(3.1)
Inflammatory bowel disease 203 9083 5(3.5) 163 7567 4.9 (3.5)
Stroke 317 9023 6.5 (3.4) 248 7546 6.4 (3.5)
COPD 346 8939 6.2 (3.4) 273 7459 6.1(3.4)
Ischaemic heart disease 395 8646 5.8 (3.3) 309 7248 5.9 (3.3)
Diabetes 428 8756 5.7 (3.4) 322 7331 5.7 (3.4)
Pain 1494 5341 5.2 (3.5) 1221 4475 5.3(3.5)

121 Table 1. Incident morbidities in the Generation Scotland cohort. Counts are provided for the
122 number of cases and controls for each incident trait in the basic and fully-adjusted Cox models run
123 in the Generation Scotland cohort (n=9,537). Mean time-to-event is summarised in years for each
124  phenotype. Alzheimer’s dementia cases and controls were restricted to those older than 65 years.

125  Breast cancer cases and controls were restricted to females.
126
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EpiScores for 109 plasma proteins

(84 SomaScan + 25 0link)
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J’ Apply EpiScores to Generation Scotland (N=9,537)
Select robust scores alny o = .
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(r>0.1, P < 0.05) 137 EpiScore - morbidity associations

GS:STRADL n=778

Zevw | wA K@ Les
: Ll

Train EpiScores

160 Olink proteins 29 SOMAscan - diabetes associations
LBC1936 (N<875) H 21 highlighted previously
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Figure 1. EpiScores for plasma proteins as tools for disease prediction study design. DNA
methylation scores were trained on 953 circulating plasma protein levels in the KORA and LBC1936
cohorts. There were 109 EpiScores selected based on performance (» > 0.1, P < 0.05) in independent
test sets. The selected EpiScores were projected into Generation Scotland, a cohort that has extensive
data linkage to GP and hospital records. We tested whether levels of each EpiScore at baseline could
predict the onset of 12 leading causes of morbidity, over a follow-up period of up to 14 years. 137
EpiScore — disease associations were identified, for 11 morbidities. We then assessed whether
EpiScore associations reflected protein associations for diabetes, which is a trait that has been well-
characterised using SOMAscan protein measurements. Of the 29 SOMAscan-derived EpiScore —

diabetes associations, 21 reflected highlighted previously reported protein - diabetes associations.
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153  Results

154

155  Selecting the most robust EpiScores for protein levels

156

157  To generate epigenetic scores for a comprehensive set of plasma proteins, we ran elastic net
158  penalised regression models using protein measurements from the SOMAscan (aptamer-based)
159  and Olink (antibody-based) platforms. We used two cohorts: the German population-based
160  study KORA (n=944, mean age 59 years (SD 7.8), with 793 SOMAscan proteins) and the
161  Scottish Lothian Birth Cohort 1936 (LBC1936) study (between 725 and 875 individuals in the
162  training cohort, with a total of 160 Olink neurology and inflammatory panel proteins). The
163  mean age of the LBC1936 participants at sampling was 70 (SD 0.8) for inflammatory and 73
164  (SD 0.7) for neurology proteins. Full demographic information is available for all cohorts in

165  Supplementary file 1A.

166  Prior to running the elastic net models, we rank-based inverse normalised protein levels and
167  adjusted for age, sex, cohort-specific variables and, where present, cis and trans pQTL effects
168 identified from previous analyses (Hillary et al., 2019; Hillary, Trejo-Banos, et al., 2020; Suhre
169 et al, 2017) (Methods). Of a possible 793 proteins in KORA, 84 EpiScores had Pearson r >
170 0.1 and P < 0.05 when tested in an independent subset of Generation Scotland (The Stratifying
171 Resilience and Depression Longitudinally [STRADL] study, n=778) (Supplementary file 1B).
172 These EpiScores were selected for EpiScore-disease analyses. Of the 160 Olink proteins trained
173 in LBC1936, there were 21 with » > 0.1 and P < 0.05 in independent test sets (STRADL,
174  n=778, Lothian Birth Cohort 1921: LBC1921, n=162) (Supplementary file 1C). Independent

175  test set data were not available for four Olink proteins. However, they were included based on
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176  their performance (» > 0.1 and P < 0.05) in a holdout sample of 150 individuals who were left

177  out of the training set. We then retrained these four predictors on the full training sample.

178 A total of 109 EpiScores (84 SOMAscan-based and 25 Olink-based) were brought forward (»
179 > 0.1 and P < 0.05) to EpiScore-disease analyses (Figure 2 and Supplementary file 1D).
180  There were five EpiScores for proteins common to both Olink and SOM Ascan panels, which
181  had variable correlation strength (GZMA r=0.71, MMP.1 r=0.46, CXCL10 = 0.35, NTRK3
182 r=0.26,and CXCL11 = 0.09). Predictor weights, positional information and cis/trans status
183  for CpG sites contributing to these EpiScores are available in Supplementary file 1E. The
184 number of CpG features selected for EpiScores ranged from one (Lyzozyme) to 395
185  (Aminoacylase-1), with a mean of 96 Supplementary file 1F). The most frequently selected
186 CpG was the smoking-related site ¢g05575921 (mapping to the AHRR gene), which was
187  included in 25 EpiScores. Counts for each CpG site are summarised in Supplementary file
188  1G. This table includes the set of protein EpiScores that each CpG contributes to, along with
189  phenotypic annotations (traits) from the MRC-IEU EWAS catalog (MRC-IEU, 2021) for each

190  CpG site having genome-wide significance (P < 3.6 x10-®) (Saffari et al., 2017).

191
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Figure 2. Test performance for the

109 selected protein EpiScores. Test set correlation

coefficients for associations between protein EpiScores for (a) inflammatory Olink, (b) neurology

Olink and (¢) SOMAmer protein panel EpiScores and measured protein levels are plotted. Upper

and lower confidence intervals are shown for each correlation. The 109 protein EpiScores shown

achieved > 0.1 and P < 0.05 either one or both of the GS:STRADL (n=778) and LBC1921 (n=162)

test sets, wherever protein data was available for comparison. Data shown corresponds to the results

included in Supplementary files 1B-C.
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206  EpiScore-disease associations in Generation Scotland

207

208  The Generation Scotland dataset contains extensive electronic health data from GP and hospital
209 records available as well as DNA methylation data for 9,537 individuals. This makes it
210  uniquely positioned to test whether EpiScore signals can predict disease onset. We ran nested
211 mixed effects Cox proportional hazards models (Figure 3) to determine whether the levels of
212 each EpiScore at baseline associated with the incidence of 12 morbidities over a maximum of
213 14 years of follow up. The correlation structures for the 109 EpiScore measures used for Cox

214  modelling are presented in Supplementary file 2A.

215  The Cox proportional hazard assumption dictates that hazard ratios for EpiScore — disease
216  associations should remain constant over time. We correlated the Schoenfeld residuals from
217  the models with time to test this. Two associations in the basic model adjusting for age and sex
218  failed to satisfy the global assumption (across all covariates) and were excluded. There were
219 294 remaining EpiScore-disease associations with a False Discovery Rate (FDR)-adjusted P <
220  0.05 in the basic model. After further adjustment for common risk factor covariates (smoking,
221  social deprivation status, educational attainment, body mass index (BMI) and alcohol
222 consumption), 137 of the 294 EpiScore-disease associations from the basic model had P <0.05
223  in the fully-adjusted model (Supplementary files 1H-I). Eleven of the 137 fully-adjusted
224  associations failed the Cox proportional hazards assumption for the EpiScore variable (P <0.05
225  for the association between the Schoenfeld residuals and time; Supplementary file 1J). When
226 we restricted the time-to-event/censor period by each year of possible follow-up, there were
227  minimal differences in the EpiScore - disease hazard ratios between follow-up periods that did
228  not violate the assumption and those that did (Supplementary file 1K). The 137 associations

229  were therefore retained as the primary results.

11
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230  The 137 associations found in the fully-adjusted model comprised 78 unique EpiScores that
231 were related to the incidence of 11 of the 12 morbidities studied. Diabetes and chronic
232 obstructive pulmonary disease (COPD) had the greatest number of associations, with 33 and
233 41, respectively. Figure 4 presents the EpiScore-disease relationships for COPD and the
234  remaining nine morbidities: stroke, lung cancer, ischaemic heart disease, inflammatory bowel
235  disease, rheumatoid arthritis, depression, bowel cancer, pain and Alzheimer’s dementia. There
236 were 13 EpiScores that associated with the onset of three or more morbidities. Figure S
237  presents relationships for these 13 EpiScores in the fully-adjusted Cox model results. Of note
238 isthe EpiScore for Complement 5 (C5), which associated with five outcomes: stroke, diabetes,
239  ischaemic heart disease, rheumatoid arthritis and COPD. Of the 29 SOMAscan-derived
240  EpiScore associations with incident diabetes, 21 replicated previously reported protein
241  associations (Elhadad et al., 2020; Gudmundsdottir et al., 2020) with incident or prevalent

242 diabetes in one or more cohorts (Figure 6 and Supplementary file 1L).
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Basic model Fully-adjusted WBC-adjusted GrimAge-adjusted
+ common risk + WBC + GrimAge
Age + Sex . .
factors proportions acceleration
294 137 103 81
EpiScore-disease EpiScore-disease EpiScore-disease EpiScore-disease
associations associations associations associations
(FDR-adjusted (P <0.05) (P <0.05) (P <0.05)
P<0.05)

Figure 3. Nested Cox proportional hazards assessment of EpiScore-disease prediction. Mixed
effects Cox proportional hazards analyses in Generation Scotland (n = 9,537) tested the relationships
between each of the 109 selected EpiScores and the incidence of 12 leading causes of morbidity
(Supplementary files 1H-I). The basic model was adjusted for age and sex and yielded 294
associations between EpiScores and disease diagnoses, with FDR-adjusted P < 0.05. In the fully-
adjusted model, which included common risk factors as additional covariates (smoking, deprivation,
educational attainment, BMI and alcohol consumption) 137 of the basic model associations
remained significant with P < 0.05. In a sensitivity analysis, the addition of estimated White Blood
Cells (WBCs) to the fully-adjusted models led to the attenuation of 34 of the 137 associations. In a
further sensitivity analysis, 81 associations remained after adjustment for both immune cell

proportions and GrimAge acceleration.
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Figure 4. EpiScore associations with incident disease. EpiScore-disease associations for ten of
the eleven morbidities with associations where P < 0.05 in the fully-adjusted mixed effects Cox
proportional hazards models in Generation Scotland (n=9,537). Hazard ratios are presented with
confidence intervals for 104 of the 137 EpiScore — incident disease associations reported. Models
were adjusted for age, sex and common risk factors (smoking, BMI, alcohol consumption,
deprivation and educational attainment). IBD: inflammatory bowel disease. IHD: ischaemic heart
disease. COPD: chronic obstructive pulmonary disease. For EpiScore - diabetes associations, see

Figure 6. Data shown corresponds to the results included in Supplementary file 11.
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272

273 Figure 5. EpiScores that associated with the greatest number of morbidities. EpiScores with a
274  minimum of three relationships with incident morbidities in the fully-adjusted Cox models. The
275 network includes 13 EpiScores as dark blue (SOMAscan) and grey (Olink) nodes, with disease
276  outcomes in black. EpiScore-disease associations with hazard ratios < 1 are shown as blue
277  connections, whereas hazard ratios > 1 are shown in red. COPD: chronic obstructive pulmonary
278  disease. IHD: ischaemic heart disease. Data shown corresponds to the results included in

279  Supplementary file 11.
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Figure 6. Replication of known protein-diabetes associations with EpiScores. EpiScore —
incident diabetes associations in Generation Scotland (n=9,537). The 29 SOMAscan (top panel) and
four Olink (bottom panel) associations shown with P < 0.05 in fully-adjusted mixed effects Cox
proportional hazards models. Of the 29 SOMAscan-derived EpiScores, 21 associations were
consistent with protein — diabetes associations (pink) in one or more of the four comparison cohorts

that used SOMAscan protein levels. Eight associations were novel (blue). Data shown corresponds

to the results included in Supplementary files 1I and 1L .
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306 Immune cell and GrimAge sensitivity analyses

307

308 Correlations of the 109 EpiScores with covariates suggested interlinked relationships with both
309 immune cells and GrimAge acceleration (Supplementary file 2B). These covariates were
310 therefore added incrementally to the fully-adjusted Cox models (Figure 3). There were 103
311  associations that remained statistically significant (FDR P < 0.05 in the basic model and P <
312 0.05 in the fully-adjusted model) after adjustment for immune cell proportions, of which 81
313 remained significant when GrimAge acceleration scores were added to this model
314  (Supplementary file 1I). In a further sensitivity analysis, relationships between both estimated
315  White Blood Cell (WBC) proportions and GrimA ge acceleration scores with incident diseases
316  were assessed in the Cox model structure independently of EpiScores. Of the 60 possible
317 relationships between WBC measures and the morbidities assessed, four were statistically
318  significant (FDR-adjusted P < 0.05) in the basic model and remained significant with P < 0.05
319  in the fully-adjusted model (Supplementary file 1M). A higher proportion of Natural Killer
320 cells was linked to decreased risk of incident COPD, rheumatoid arthritis, diabetes and pain.
321  The GrimAge acceleration composite score was associated with COPD, IHD, Diabetes and
322 Pain in the fully-adjusted models (P < 0.05) (Supplementary file 1N). The magnitude of the

323  GrimAge effect sizes were comparable to the EpiScore findings.

324
325
326

327
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328  Discussion

329

330 Here, we report a comprehensive DNA methylation scoring study of 953 circulating proteins.
331 Wedefine 109 robust EpiScores for plasma protein levels that are independent of known pQTL
332 effects. By projecting these EpiScores into a large cohort with extant data linkage, we show
333  that 78 EpiScores associate with the incidence of 11 leading causes of morbidity (137 EpiScore
334  —disease associations in total). Finally, we show that EpiScore - disease associations highlight
335  previously measured protein - disease relationships. The bulk of EpiScore-disease associations
336 are independent of common lifestyle and health factors, differences in immune cell
337 composition and GrimAge acceleration. EpiScores therefore provide methylation-proteomic

338  signatures for disease prediction and risk stratification.

339

340 The consistency between our EpiScore — diabetes associations and previously identified protein
341  — diabetes relationships (Elhadad et al., 2020; Gudmundsdottir et al., 2020) suggests that
342  epigenetic scores may identify candidate disease-protein pathways. In addition to the
343  comprehensive lookup of SOMAscan proteins with diabetes, several of the markers we
344  identified for COPD and IHD also reflect previous associations with measured proteins (Ganz
345 et al, 2016; Serban et al., 2021). The two studies used for the diabetes comparison represent
346 the largest candidate protein characterisations of diabetes to date and the top markers identified
347  included aminoacylase-1 (ACY-1), sex hormone binding globulin (SHBG), growth hormone
348  receptor (GHR) and Insulin-like growth factor-binding protein 2 (IGFBP-2) (Elhadad et al.,
349  2020; Gudmundsdottir et al., 2020). Our EpiScores for these top markers are also associated

350 with diabetes, in addition to EpiScores for several other protein markers reported in these
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351 studies. A growing body of evidence suggests that type 2 diabetes is mediated by genetic and
352  epigenetic regulators (Kwak & Park, 2016) and proteins such as ACY-1 and GHR are thought
353  to influence a range of diabetes-associated metabolic mechanisms (Kim & Park, 2017; Pérez-
354  Pérezetal., 2012). In the case of diabetes, EpiScores may therefore be used as disease-relevant
355 risk biomarkers, many years prior to onset. Validation should be tested when sufficient data

356  become available for the remaining morbidities.

357

358  With modest test set performances (for example, SHBG » = 0.18 and ACY-1 r = 0.25), it is
359  perhaps surprising that such strong synergy is observed between EpiScores for proteins that
360 associated with diabetes and the trends seen with measured proteins. Nonetheless, DNA
361  methylation scores for CRP and IL6 have been shown to perform modestly in test sets ( ~ 0.2,
362  equivalent to ~ 4% explained variance in protein level), but augment and often outperform the
363  measured protein related to a range of phenotypes (A. Stevenson et al., 2020; A. J. Stevenson
364 et al, 2021). Upper bounds for DNAm prediction of complex traits, such as proteins, can be
365  estimated by variance components analyses (Hillary, Trejo-Banos, et al., 2020; Trejo Banos et

366  al., 2020; F. Zhanget al., 2019).

367

368 Compared to epigenetic clocks like GrimAge, EpiScores enable the granular study of
369 individual protein predictor signatures with disease outcomes. For example, levels of the acid
370  sphingomyelinase (ASM) EpiScore predicted onset of Alzheimer’s dementia, several years
371  prior to diagnosis. ASM (encoded by SMPDI) has been discussed as a therapeutic candidate
372 for Alzheimer’s disease (Cataldo et al., 2004; Kamil et al., 2016; Lee et al., 2014; Park et al.,

373 2020) and has been shown to disrupt autophagic protein degradation and associate with
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374  accumulation of amyloid-beta in murine models of Alzheimer’s pathology (Lee et al., 2014;
375  Park et al., 2020). The EpiScore for Complement Component 5 (C5) was associated with the
376  onset of five morbidities, the highest number for any EpiScore. Elevated levels of C5 peptides
377  have been associated with severe inflammatory, autoimmune and neurodegenerative states (Ma
378 et al,, 2019; Mantovani et al., 2014; Morgan & Harris, 2015) and a range of C5-targetting
379  therapeutic approaches are in development (Alawieh et al., 2018; Brandolini et al., 2019;
380 Hawksworth et al., 2017; Hernandez et al., 2017; Morgan & Harris, 2015; Ort et al., 2020).
381  EpiScores that occupy central hubs in the disease-prediction framework may therefore provide
382  evidence of early methylation signatures common to the onset of multiple diseases. Our large-
383  scale assessment of EpiScores provides a platform for future studies, as composite predictors
384 may be created using our EpiScore database. These should be tested in incident disease

385  predictions when sufficient case data are available.

386

387  This study has several limitations. First, like with protein — disease association studies, we
388  cannot infer causality from our EpiScore — disease models. However, both protein levels and
389  EpiScores may have utility in risk prediction — future studies where both modalities are
390 available should assess paired protein and CpG contributions to traits. This should entail the
391  direct measurement of proteins, as inference from EpiScores alone, while useful for disease
392  risk stratification, is not sufficient to determine mechanisms. Second, the epitope nature of the
393  protein measurement in the SOMAscan panel may incur probe cross-reactivity and non-
394  specific binding; there may also be differences in how certain proteins are measured across
395 panels (Pietzner et al., 2020; Sun et al., 2018). Comparisons of both protein measurement
396 technologies on the same samples would help to explore this in more detail. Third, there may

397 also be pQTLs with small effect sizes that were not regressed from the proteins prior to
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398  generating the EpiScores. Finally, associations present between EpiScore measures and disease
399 incidence may have been influenced by external factors such as prescription medications for

400  comorbid conditions and comorbid disease prevalence.

401

402  We have shown that EpiScores for circulating protein levels predict the incidence of multiple
403  diseases, up to 14 years prior to diagnosis. Our findings suggest that DNA methylation
404  phenotyping approaches and data linkage to electronic health records in large, population-
405  Dbased studies have the potential to (1) Capture inter-individual variability in protein levels; (2)
406  Augment risk prediction many years prior to morbidity onset; and (3) highlight candidate
407  protein — disease associations for further exploration. The EpiScore weights are publicly
408 available, enabling any cohort with [llumina DNAm data to generate them and to relate them
409  to various outcomes. Given the increasingly widespread assessment of DNAm in cohort studies
410  (McCartney et al., 2020; Min et al., 2020), EpiScores offer an affordable and consistent (i.e.
411  array-based) way to utilise these signatures. This information is likely to be important in risk

412  stratification and prevention of age-related morbidities.

413

414  Materials and Methods

415

416  The KORA sample population

417

418  The KORA F4 study includes 3,080 participants who reside in Southern Germany. Individuals

419  were between 32 and 81 years of age when recruited to the study from 2006 and 2008. In the
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420  current study, there were 944 individuals with methylation, proteomics and genetic data
421  available. The Infintum HumanMethylation450 BeadChip platform was used to generate
422  DNA methylation data for these individuals. The Affymetrix Axiom array was used to
423  generate genotyping data and the SOMAscan platform was used to generate proteomic

424  measurements in the sample.

425

426  DNA methylation in KORA

427

428  Methylation data were generated for 1,814 individuals(Petersen et al., 2014); 944 also had
429  protein and genotype measurements available. During preprocessing, 65 SNP probes were
430  excluded and background correction was performed in minfi (Aryee et al., 2014). Samples
431  with a detection rate of less than 95% were excluded. Next, the minfi R package was used to
432 perform normalization on the intensity methylation measures (Aryee et al., 2014), with a
433  method consistent with the Lumi:QN +BMIQ pipeline. After excluding non-cg sites and CpGs
434  on sex chromosomes or with fewer than 100 measures available, 470,837 CpGs were available

435  for analyses.

436

437  Proteomics in KORA

438

439  The SOMAscan platform (V3.2) (Gold et al., 2010) was used to quantify protein levels in
440  undepleted plasma for 1129 SOMAmer probes (Suhre et al., 2017). Of the 1,000 samples
441  provided for analysis, two samples were excluded due to errors in bio-bank sampling and one

442  based on quality control measures. Of the 997 samples available, there were 944 individuals
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443  with methylation and genotypic data. Of the 1,129 probes available, five failed the QC, leaving
444  a total of 1,124 probes for the subsequent analysis. Protein measurements were transformed
445 by rank-based inverse normalisation and regressed onto age, sex, known pQTLs and 20
446  genetic principal components of ancestry derived from the Affymetrix Axiom Array to control
447  for population structure. pQTLs for each protein were taken from a previous GWAS in the

448  sample (Suhre et al., 2017).

449

450 The LBC1936 and LBC1921 sample populations

451

452  The Lothian Birth Cohorts of 1921 (LBC1921; N = 550) and 1936 (LBC1936; N = 1091) are
453  longitudinal studies of aging in individuals who reside in Scotland (Deary et al., 2012; Taylor
454  etal., 2018). Participants completed an intelligence test at age 11 years and were recruited
455  for these cohorts at mean ages of 79 (LBC1921) and 70 (LBC1936). They have been

456  followed up triennially for a series of cognitive, clinical, physical and social data, along with
457  blood donations that have been used for genetic, epigenetic, and proteomic measurement.

458  DNAm, proteomic (Olink® platform) and genetic data for up to 875 individuals from Waves
459 1 and 2 of the LBC1936 (at mean ages 70 and 73 years) and 162 individuals at Wave 3 of the

460 LBCI1921 (at mean age 87 years).

461

462 DNAm in LBC1936 and LBC1921

463

464  DNA from whole blood was assessed using the Illumina 450 K methylation array. Details of

465  quality control have been described elsewhere (Shah et al., 2014; Q. Zhang et al., 2018). Raw
23
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466  intensity data were background-corrected and normalised using internal controls. Manual
467  inspection resulted in the removal of low quality samples that presented issues related to
468  bisulphite conversion, staining signal, inadequate hybridisation or nucleotide extension. Probes
469  with low detection rate <95% at P <0.01 and samples with low call rates (<450,000 probes
470  detected at P < 0.01) were removed. Samples were also removed if they had a poor match

471  between genotype and SNP control probes, or incorrect DNA methylation-predicted sex.

472

473  Proteomics in LBC1936 and LBC1921

474

475  Plasma samples were analysed using either the Olink® neurology 92-plex or the Olink®
476  inflammation 92-plex proximity extension assays (Olink® Bioscience, Uppsala Sweden). One
477  inflammatory panel protein (BDNF) failed quality control and was removed. A further 21
478  proteins were removed, as over 40% of samples fell below the lowest limit of detection. Two
479  neurology proteins, MAPT and HAGH, were excluded due to >40% of observations being
480  below the lower limit of detection. This resulted in 90 neurology (LBC1936 Wave 2) and 70
481  inflammatory (LBC1936 Wave 1) proteins in LBC1936 and 92 neurology proteins available in
482  LBCI1921. Protein levels were rank-based inverse normalised and regressed onto age, sex, four
483  genetic components of ancestry derived from multidimensional scaling of the [llumina 610-
484  Quadvl genotype array and Olink® array plate. In LBC1936, pQTLs were adjusted for,
485  through reference to GWAS in the samples (Hillary et al., 2019; Hillary, Trejo-Banos, et al.,

486  2020).

487
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488  Generation Scotland and STRADL sample populations

489

490  Generation Scotland: the Scottish Family Health Study (GS) is a large, family-structured,
491  population-based cohort study of >24,000 individuals from Scotland (mean age 48 years)
492  (Smith et al., 2006). Recruitment took place between 2006 and 2011 with a clinical visit where
493  detailed health, cognitive, and lifestyle information was collected along with biological
494  samples (blood, urine, saliva). In GS, there were 9,537 individuals with DN Am and phenotypic
495 information available. The Stratifying Resilience and Depression Longitudinally (STRADL)
496  cohort is a subset of 1,188 individuals from the GS cohort who undertook additional

497  assessments approximately five years after the study baseline (Navrady et al., 2018).

498

499  DNA methylation in Generation Scotland and STRADL

500

501 Inthe GS cohort, blood-based DNA methylation was generated in two sets using the Illumina
502 EPIC array. Set 1 comprised 5,190 related individuals whereas Set 2 comprised 4,583
503 individuals, unrelated to each other and to those in Set 1. During quality control, probes were
504 removed based on visual outlier inspection, bead count <3 in over 5% of samples and samples
505  with detection P value below adequate thresholds (McCartney, Stevenson, Walker, et al., 2018;
506  Seeboth et al., 2020). Samples were removed based on sex mismatches, low detection P values
507 for CpGs and saliva samples and genetic outliers (Amador et al., 2015). The quality-controlled
508 dataset comprised 9,537 individuals (nset1=5,087, nsep=4,450). The same steps were also

509 applied to process DNAm in STRADL.

510
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511 Proteomics in STRADL

512

513  Measurements for 4,235 proteins in 1,065 individuals from the STRADL cohort were recorded
514  using the SOMAscan® technology. 793 epitopes matched between the KORA and STRADL
515  cohorts and were included for training in KORA and testing in STRADL. There were 778
516 individuals with proteomics data and DNAm data in STRADL. Protein measurements were
517 transformed by rank-based inverse normalisation and regressed onto age, sex and 20 genetic
518  principal components (derived from multidimensional scaling of genotype data from the

519  Illumina 610-Quadv]1 array).

520

521  Electronic health data linkage in Generation Scotland

522

523  Over 98% of GS participants consented to allow access to electronic health records via data
524  linkage to GP records (Read 2 codes) and hospital records (ICD codes). Data are available
525  prospectively from the time of blood draw, yielding up to 14 years of linkage. We considered
526 incident data for 12 morbidities (Supplementary file 3A). Prevalent cases (ascertained via
527  retrospective ICD and Read 2 codes or self-report from a baseline questionnaire) were
528 excluded. For inflammatory bowel disease (IBD) prevalent cases were excluded based on data
529 linkage alone. Included and excluded terms can be found in Supplementary files 4A-L.
530  Alzheimer’s dementia was limited to cases/controls with age of event/censoring > 65 years.
531  Breast cancer was restricted to females only. Recurrent, major and moderate episodes of

532  depression were included in depression. Diabetes was comprised of type 2 diabetes and more
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533  general diabetes codes such as diabetic retinopathy and diabetes mellitus with renal

534  manifestation. Type 1 and juvenile diabetes cases were excluded.

535

536  Elastic net protein EpiScores

537

538  Penalised regression models were generated for 160 proteins in LBC1936 and 793 proteins in
539 KORA using Glmnet (Version 4.0-2) (J et al., 2010) in R (Version 4.0) (R, 2020). Protein levels
540 were the outcome and there were 428,489 CpG features per model in the LBC1936 training
541 and 397,630 in the KORA training. An elastic net penalty was specified (alpha=0.5) and cross
542  validation was applied. DNAm and protein measurements were scaled to have a mean of zero

543  and variance of one.

544  In the KORA analyses, 10-fold cross validation was applied and EpiScores were tested in
545 STRADL (n=778). Of 480 EpiScores that generated >1 CpG features, 84 had Pearson r > 0.1
546 and P <0.05 in STRADL. As test set comparisons were not available for every protein in the
547  LBC1936 analyses, a holdout sample was defined, with two folds set aside as test data and 10-
548  fold cross validation carried out on the remaining data (Nin=576, nes—=130 for neurology and
549  nNgain=725, nest=150 for inflammatory proteins). We retained 36 EpiScores with Pearson r > 0.1
550 and P < 0.05. New predictors for these 36 proteins were then generated using 12-fold cross
551  validation and tested externally in STRADL (n=778) and LBC1921 (n=162, for the neurology
552 panel). 21 EpiScores had r > 0.1 and P < 0.05 in at least one of the external test sets. Four

553  EpiScores did not have external comparisons and were included based on holdout performance.

27


https://doi.org/10.1101/2020.12.01.404681
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.404681; this version posted July 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

554  The 109 selected EPiScores were then applied to Generation Scotland (n=9,537). DNAm at
555  each CpG site was scaled to have a mean of zero and variance of one, with scaling performed

556  separately for GS Sets.

557

558  Associations with health linkage phenotypes in Generation Scotland

559

560 Mixed effects Cox proportional hazards regression models adjusting for age, sex, and
561  methylation set were used to assess the relationship between 109 EpiScores and 12 morbidities
562 in Generation Scotland. Models were run using coxme (Therneau, 2020b) (Version 2.2-16)
563  with a kinship matrix accounting for relatedness in Set 1. Cases included those diagnosed after
564  baseline who had died, in addition to those who received a diagnosis and remained alive.
565  Controls were censored if disease free at time of death, or at the end of the follow-up period.
566  EpiScore levels were rank-base inverse normalised. Fully-adjusted models included: the
567  following additional covariates measured at baseline: alcohol consumption (units consumed in
568 the previous week); deprivation (assessed by the Scottish Index of Multiple Deprivation
569  (GovScot, 2016)); body mass index (kg/m?); educational attainment (an 11-category ordinal
570 variable) and a DNAm-based score for smoking status (Bollepalli et al., 2019). A false
571  discovery rate multiple testing correction P < 0.05 was applied to the 1306 EpiScore-disease
572  associations (109 EpiScores by 12 incident disease traits, with 2 associations excluded for
573  failing the global proportional hazards assumption). Proportional hazards assumptions were
574  checked through Schoenfeld residuals (global test and a test for the protein-EpiScore variable)
575  using the coxph and cox.zph functions from the survival package (Therneau, 2020a) (Version
576  3.2-7). For each association failing to meet the assumption (Schoenfeld residuals P < 0.05), a

577  sensitivity analysis was run across yearly follow-up intervals.
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578  Fully-adjusted Cox proportional hazards models were run with Houseman-estimated White
579  Blood Cell (WBC) proportions as covariates (Houseman et al., 2012). A further sensitivity
580 analyses added GrimAge acceleration (Lu et al., 2019) as an additional covariate. Basic and
581 fully-adjusted Cox models were also run with estimated Monocyte, Bceell, CD4T, CD8T and

582  Natural Killer cell proportions as predictors.

583  Correlation structures for EpiScores, DNAm-based white cell proportions and phenotypic
584 information were assessed using Pearson correlations and pheatmap (Kolde, 2019) (Version
585 1.0.12) and ggcorrplot packages (Version 0.1.3) (Kassambara, 2019). The psych package
586  (Version 2.0.9) (Revelle, 2020) was used to perform principal components analysis on
587  EpiScores. A network visualisation was produced using the ggraph package (Version 2.0.5)

588  (Pedersen, 2021). Figures 1 and 2 were created with BioRender.com.

589

590 Consistency of disease associations between EpiScores and measured proteins

591

592  Comparisons were conducted between EpiScore — diabetes associations and diabetes
593  associations with measured proteins using two previous large-scale proteomic studies (Elhadad
594  etal, 2020; Gudmundsdottir et al., 2020). In both studies, two cohorts were included (Study 1:
595 KORA n= 993, HUNT n= 940 (Elhadad et al., 2020), Study 2: AGES-Reykjavik n=5,438 and
596  QMDiab n=356 (Gudmundsdottir et al., 2020)). Study 1 included the KORA dataset, which we
597  use in this study to generate SOM Ascan EpiScores. We characterised which SOMAscan-based
598  EpiScore — diabetes associations from our fully-adjusted results reflected those observed with

599  measured protein levels. We included basic (nominal P < 0.05) and fully adjusted results (with
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600 either FDR or Bonferroni-corrected P < 0.05), wherever available, across the four cohorts

601  (Supplementary file 1L).
602
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