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Abstract

Expression of one out of >1000 olfactory receptor (OR) genes is stochastic but, yet, spatially organized in
stereotypic anatomical segments, or “zones”, along the dorsoventral axis of the mouse olfactory epithelium. We
discovered that zonal OR expression is specified by OR chromatin structure and genome architecture during
olfactory neuron differentiation. Specifically, across every zone dorsally expressed ORs have higher levels of
heterochromatic marks and long-range contacts than ORs expressed ventrally. However, OR heterochromatin
levels and frequency of genomic contacts between ORs gradually increase towards ventral zones.
Consequently, ORs from dorsal indexes accumulate high H3K9me3/H3K79me3 enrichment and become
silenced in ventral zones, while ORs from ventral indexes lack activating long-range genomic interactions and,
thus, cannot be chosen in dorsal segments. This process is regulated by NFIA, B, and X gradients along the
dorsoventral axis, triple deletion of which causes homeotic transformations on zonal OR expression,
heterochromatin formation, and genomic compartmentalization.
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Introduction

Pattern formation governs fundamental developmental processes in plants and animals, vertebrates and
invertebrates. From the classic theoretical predictions on the chemical basis of morphogenesis(Turing, 1953), to
the seminal demonstration of the genetic control of segmentation in drosophila(Nusslein-Volhard and
Wieschaus, 1980); and from the elucidation of motor neuron pool identity in mammals (Dasen et al., 2005), to
the explanation of photoreceptor patterning in invertebrate ommatidia(Johnston et al., 2011), the molecular and
genetic underpinnings of developmental patterning are -at various extents- understood. However, the
mechanisms that regulate developmental patterning in the mammalian olfactory system are completely
unknown. In this sensory system, spatial patterns are apparent in the periphery, the main olfactory epithelium
(MOE) and the olfactory bulb (OB)(Sullivan et al., 1995; Sullivan et al., 1994), but not in higher order brain
processing centers(Stettler and Axel, 2009). In the MOE expression of >1000 class |l olfactory receptor (OR)
genes(Buck and Axel, 1991) from 18 different chromosomes(Sullivan et al., 1996; Zhang and Firestein, 2009) is
organized in continuous “zones”, that are faithfully represented by zonally-restricted neuronal projections to
corresponding areas of the OB(Ressler et al., 1994). Although there is evidence that the zonal organization of
sensory inputs has behavioral and perceptual significance(Kobayakawa et al., 2007), without knowing how zonal
organization is established we cannot evaluate the significance of zonal OR expression in olfactory perception.

Zones are stereotypic and evolutionarily conserved subdivisions of the MOE along the dorsoventral axis
that express preferentially 50-200 OR genes from the whole OR repertoire. Originally, RNA ISH experiments
revealed that the MOE is divided in 4 broad zones (Ressler et al., 1993; Vassar et al., 1993), with highly
overlapping borders(Miyamichi et al., 2005). scRNA-seq experiments in micro-dissected MOE pieces assigned
zonal coordinates to the majority of the ORs and redefined the anatomical subdivisions of the MOE into 5
continuous zones (Tan and Xie, 2018), with zone 1 being the most dorsal and zone 5 the most ventral. The
septal organ, a distinct anatomical structure of the MOE expressing predominantly a single OR could be viewed
as a distinct MOE zone(Tian and Ma, 2004), and so could the cul-de-sac MOE segments that express MS4A
chemoreceptors(Greer et al., 2016). In fact, comprehensive 3D imaging of OR expression by multiplex RNA ISH,
raised the prospect of 9 or more OR zones in the MOE(Zapiec and Mombaerts, 2020). Beyond these anatomical
distinctions that are established along the dorsoventral axes of the MOE, additional olfactory sensory neuron
(OSN) subdivisions exist that do not entail spatial segregation of molecularly distinct cell types. For example,
OSNs expressing class | ORs (fish-like ORs)(Bozza et al., 2009), or trace amine associated receptors
(TAARs)(Johnson et al., 2012), are committed to each of these chemoreceptor subfamilies but are intermingled
with class || OR-expressing OSNs in their respective zones. Thus, the emerging picture suggests a hierarchical
process that starts with broad zonal specification and commitment to a chemoreceptor family, followed by a
singular stochastic choice of one of the zonally enabled receptor alleles. Although we made strides in the
understanding of how this singular stochastic choice is accomplished, the molecular mechanisms that restricts
it within a zonal repertoire are unknown.

The process of singular OR gene choice starts in OSN progenitors, where the already H3K9me2-positive
OR genes, become marked with H3K9me3/H4K20me3, two hallmarks of constitutive heterochromatin (Magklara
et al., 2011). Heterochromatin assembly is followed by the formation of OR-exclusive interchromosomal
compartments (Armelin-Correa et al., 2014; Clowney et al., 2012; Tan et al., 2019) that further silence OR
transcription by insulating OR genes from activating transcription factors(Clowney et al., 2012). OR
compartments, which assemble due to downregulation of Lamin b receptor (Lbr) in OSN progenitors, also
contribute to singular OR choice, by promoting assembly of an adjacent multi-chromosomal enhancer hub that
associates with one of the previously silenced ORs, activating its transcription (Clowney et al., 2012;
Markenscoff-Papadimitriou et al., 2014). This multi-enhancer hub consists of intergenic OR enhancers, the
Greek Islands, which are bound by Lhx2, Ebf and Ldb1(Markenscoff-Papadimitriou et al., 2014; Monahan et al.,
2019; Monahan et al., 2017). This tripartite protein complex promotes the highly specific interchromosomal
contacts between Greek Islands, creating a strong transactivating complex responsible for the de-silencing and
robust transcriptional activation of one of the compartmentalized OR alleles. Translation of the chosen OR in the
ER induces the unfolded protein response pathway(Dalton et al., 2013) and generates a feedback
signal(Lewcock and Reed, 2004; Serizawa et al., 2003; Shykind et al., 2004) that hinders the ability of the Greek
Island hub to de-silence additional OR alleles, stabilizing singular OR gene choice for the life of the OSN(Lyons
et al., 2013).
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The aforementioned complexity in OR gene regulation likely compensates for the fact that traditional
mechanisms of combinatorial gene regulation cannot determine which OR is activated in each OSN. Numerous
lines of evidence support the notion that OR gene choice is a stochastic process. First, “allelic exclusion”,
expression from only the maternal or paternal allele in each OSN, suggests that cis and trans regulatory
information cannot sufficiently define which OR will be expressed in each cell(Chess et al., 1994). In this note,
transgenic ORs, from minigenes(Vassalli et al., 2002) to YAC transgenes(Ebrahimi et al., 2000; Serizawa et al.,
2000), are not co-expressed with the endogenous OR alleles from which they were derived, arguing against a
deterministic mode of OR regulation. Second, OR gene switching, a low frequency switch from the original
chosen OR allele to a different OR identity, further supports the OR multipotency of each OSN (Shykind et al.,
2004). Third, scRNA-seq studies revealed that there is a transient differentiation stage where OSN progenitors
co-transcribe seemingly random combinations of 10-15 OR genes(Hanchate et al., 2015; Saraiva et al., 2015;
Tan et al., 2015). These results taken together suggests that an unknown mechanism integrates the position of
the OSN with the identity of each OR to restrict this stochastic choice within a spatially determined OR gene
combination.

To obtain insight at the remarkable problem of spatially determined randomness, we performed a
comparative analysis of the transcriptome, chromatin modification landscape, and nuclear architecture of various
cell populations from different MOE zones. Our data reveal that early OSN progenitors from every zone co-
express predominantly zone 1 ORs. However, as we transition from zone 1 to zone 5 (i.e. from dorsal to ventral
zones), developmental progression results in silencing of zone 1 ORs and activation of ORs expressed ventrally,
culminating in the singular expression of ORs with the correct zonal identity. These spatiotemporal transcriptional
transitions are regulated by two mechanistically linked processes: marking of an increasing number of OR genes
with H3K9me3 and H3K79me3, and gradual recruitment of an increasing number of OR genes to OR
compartments, which enables interactions with the Greek Island hub. Thus, within a zone, ORs with more dorsal
identities have the highest levels of H3K9me3/H3K79me3 and most frequent long-range genomic contacts.
However, because both heterochromatin formation and OR compartmentalization progressively increase
towards ventral zones, in each zone there are three types of ORs: ORs expressed in previous (i.e. more dorsal)
zones that have high levels of H3K9me3/H3K79me3 that keep them silent; ORs expressed in subsequent (i.e.
more ventral) zones that lack both H3K9me3/H3K79me3 and activating long-range genomic interactions; and
ORs with the correct zonal identity that have intermediate enrichment of H3K9me3/H3K79me3 and Hi-C contact
frequencies. Thus, only ORs from the correct zonal index combine reversible levels of heterochromatin with the
ability to interact with other ORs and with the Greek Island hub. This process is controlled by three paralogous
transcription factors, NFI A, B, and X whose gradient expression in OSN progenitors increases towards zone 5,
expanding both the number of ORs marked by H3K9me3/H3K79me3 and the zonal constitution of OR
compartments. Triple NFI deletion in OSN progenitors transforms the heterochromatic landscape and the nuclear
compartmentalization of zone 4/5 OSNs to patterns reminiscent of zone 2/3 OSNSs, while it induces ectopic
expression of zone 2/3 ORs in place of zone 4/5 ORs. In contrast triple NFI deletion in mature OSNs has no
effect on zonal OR transcription. Thus, NFI genes act as homeotic regulators of OR gene choice that specify the
zone of expression for each OR via chromatin-mediated silencing and genomic compartmentalization.

Results
OR transcription undergoes a zonal transformation during OSN differentiation

Before the onset of singular OR expression, mitotically active OSN progenitors co-express multiple OR
genes at levels that are high enough for detection by scRNA-seq(Hanchate et al., 2015; Saraiva et al., 2015;
Tan et al., 2015). To identify the developmental stage when zonal restrictions are established, we asked if the
co-transcribed ORs follow zonal patterns of expression in defined populations of OSN progenitors. We used
FACS to isolate specific OSN progenitor populations from Mash1CreER; tdTomato; Ngn1-GFP triple transgenic
mice (Figure 1A). Mash1CreER is expressed in pluripotent stem cells of the MOE(GBCs)(Rodriguez-Gil et al.,
2015), whereas Ngn1-GFP is predominantly expressed in immediate neuronal precursors (INPs)(Fletcher et al.,
2017) and immature OSNs (iOSNs)(Magklara et al., 2011). This genetic strategy also allows isolation of newly
differentiated mature OSNs (mOSNSs), which recently turned off Ngn1-GFP transcription but still have detectable
levels of GFP protein (Figure 1A). We injected P4 mice with tamoxifen, inducing permanent tdTomato
expression, and then collected cells 48 hours later (Figure 1A). From each dissection we isolated four major
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cellular populations: tdTomato*/GFP-, tdTomato*/GFP*, tdTomato/GFP**"9" tdTomato/GFP*¥™ (Figure 1A),
which represent GBCs, INPs, iOSNs, and mOSNs respectively. First, we dissected the developing MOE into
dorsal and ventral pieces, containing predominantly zones 1-2 and 3-5, respectively. scRNA-seq of these FAC-
sorted populations confirmed that our genetic strategy enriches for the 4 major differentiation stages, with INP
cells further divided into 3 subpopulations, INP1-3 (Supplemental Figure S1A). Moreover, tSNE plots verified in,
an unbiased fashion, the developmental relationships of the 4 FAC-sorted cell populations (Figure 1B). OR
mRNAs are first detected in INP3 cells (Figure 1C), which express multiple ORs, consistent with previously
reported OR co-expression. Surprisingly, if we plot the zonal identity of the most highly expressed OR in each
cell, we find that INP3 cells from both zonal dissections predominantly express zone 1 and 2 ORs. It is not until
the OSN stage that cells from more ventral zones switch to expressing zone 3-5 ORs (Figure 1C).

To further characterize this intriguing zonal transition, we determined the zonal identity of every OR
MRNA detected in each cell, using an expression threshold of 3 unique molecular identifiers (UMI) per OR.
Consistent with previous reports, mMOSNs predominantly express a single OR with a zonal identity that is in
accordance with the zonal origin of the cell, i.e. zone 1-2 ORs in dorsal dissections and zone 3-5 ORs in ventral
dissections (Figure 1D). We find that iOSNs also express a single OR with the correct zonal identity (Figure 1E).
However, in INP3 cells, where polygenic OR expression is common, there is a striking departure from zonal
restrictions in the ventral zones. While INP3 cells from dorsal zones co-express almost exclusively zone 1-2
ORs, INP3 cells from ventral zones co-express ORs from every zone, with zone 1-2 ORs being the most common
(Figure1F, Supplemental Figure S1B). Specifically, we detect zone 1-2 ORs in 43 INP3 cells from ventral zones,
and 3-5 ORs in 29 of them, with only 5 INP3 cells expressing exclusively zone 3-5 ORs. This deviation from
zonal restrictions cannot be attributed to dissection errors, since both iOSNs and mOSNs from the same
dissections express ORs from the correct zonal indexes. Moreover, this result cannot be explained by lateral
migration of INP cells between zones, since OSN progenitors appear spatially restricted within their zone, in
which they migrate vertically towards more differentiated apical layers(Chen et al., 2004; Coleman et al., 2019).

To obtain higher zonal resolution and to independently confirm the observations afforded by scRNA-seq,
we trisected MOEs and performed bulk RNA-seq in INPs and mOSNs from zones 1, 2/3 and 4/5. This approach
confirms that zone 1 ORs are expressed by INPs regardless of their zonal location, whereas ORs with zone 3-5
identities are only abundant in ventrally located OSNs and not in their INP progenitors (Supplemental Figure
S1C). Intriguingly, even when focusing on ORs from the same zonal index, ORs most frequently expressed in
INPs are less frequently chosen in OSNs, suggesting that early, low level OR transcription in mitotically active
cells is not promoting OR gene choice in post-mitotic OSNs (Supplemental Figure S1D). In summary, although
zonal differences are apparent at the early stages of OSN differentiation, commitment to a zonal identity does
not take place at the same developmental stage across every zone; INP3 cells are already committed to their
zonal identity dorsally but appear zonally multipotent in ventral zones. Therefore, determining what mechanism
shuts off zone 1 ORs and activates zone 4/5 ORs in ventral OSNs, would provide mechanistic insight to zonal
specification.

Graded heterochromatin deposition silences dorsal OR indexes in ventral zones

We previously showed that OSN differentiation coincides with heterochromatin-mediated OR
silencing(Magklara et al., 2011). If OR heterochromatinization is the reason for which zone 1 OR transcription
stops ventral OSNs, then zone 1 OR genes should have stronger enrichment of heterochromatic marks than the
other ORs in the whole MOE. Similarly, zone 2 ORs, which are turned off in iOSNs of zones 3-5, should have
higher levels of heterochromatin than zone 3-5 ORs, and so forth. Indeed, visual inspection of H3K9me3
distribution in MOSNSs isolated from the whole MOE reveals that in “mixed” OR clusters that contain OR genes
with various zonal identities zone 1 ORs have higher levels of H3K9me3 than zone 5 ORs (Figure 2A). Aggregate
analysis of all the ORs grouped by zonal identity, corroborates the gradual reduction of H3K9me3 from zone 1
to zone 5 ORs (Figure 2B). The only exception from this pattern are the dorsally expressed class | ORs. OSNs
expressing the class | ORs are intermixed with zone 1 OSNSs, but are a distinct subpopulation that relies on
divergent gene regulatory mechanisms to control OR expression (Enomoto et al., 2019; Hirota et al., 2007).

Searching for additional histone marks with zonal correlations, we identified an even stronger zonal
influence in the distribution of H3K79me3, the enrichment levels of which decline sharply across more ventral
OR identities (Figure 2A, C). H3K79me3 is an intriguing core histone modification that may play opposing roles
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in gene regulation(Farooq et al., 2016). It was originally described as a heterochromatic mark enriched on
mammalian pericentric and subtelomeric repeats, with an active role in establishment of heterochromatin and
transcriptional silencing (Jones et al., 2008). However, H3K79me3 may also play a role transcriptional
activation(Steger et al., 2008), as it is enriched in developmentally regulated and cell type specific
enhancers(Bonn et al., 2012; Godfrey et al., 2019). Consistent with this, we previously showed that Greek Islands
are surrounded by high levels of H3K79me3, in such a specific fashion that it was used as a criterion for the
distinction of OR enhancers from other OSN enhancers(Markenscoff-Papadimitriou et al., 2014). Interestingly,
the levels of H3K79me3 and H3K9me3 at the sequences flanking OR enhancers are similar between OSNs from
different zones but follow the general trend of gradual increase towards more ventral zones (Supplemental Figure
S2A).

A second prediction from our scRNA-seq data is that deposition of heterochromatic marks should be
synchronous with the transcriptional commitment to a zonal identity, i.e. should be occurring precisely at the INP
to iIOSN transition. To define the timing of heterochromatin formation, we performed ChIP-seq for
H3K9me3/H3K79me3 on FAC-sorted GBCs, INPs, iOSNs, and mOSNs from the whole MOE. This analysis
revealed that H3K9 and H3K79 trimethylation is first detected at low levels in INPs, specifically on zone 1 ORs.
Since we don’t have genetic markers to sort specific INP subpopulations, we postulate that the appearance of
this weak signal could coincide with the onset of OR coexpression in INP3 cells. Consistent with these marks
being deposited at more differentiated stages, the levels of both H3K9me3 and H3K79me3 become stronger in
iOSNs, the cell stage at which zone 1 ORs are transcriptionally replaced by ORs with the correct zonal identity
(Figure 2D, Supplemental Figure S2B). Moreover, as in mOSNs, we detect intermediate enrichment of
H3K9me3/H3K79me3 on zone 2 and 3 ORs and lowest levels of heterochromatic marks on zone 4/5 ORs.

The distribution of heterochromatic marks across the OR sub-genome suggests that ORs from dorsal
zonal indexes may become increasingly silenced as we move to more ventral zones. To test this, we performed
ChIP-seq in mOSNs isolated from micro-dissected MOE zones 1, 2/3 and 4/5. This experiment revealed the
following recurrent pattern: In each zonal dissection ORs from more dorsal indexes have the highest levels of
H3K9me3/H4K79me3; ORs from the correct zonal index have intermediate levels; and ORs from more ventral
zonal indexes have the lowest levels of these two modifications (Figure 2E, Supplemental Figure S2C). In
accordance to this trend, within tissue dissections spanning two zones we consistently observe higher levels of
H3K9me3/H3K79me3 on OR genes from more dorsal indexes: zone 2 ORs have higher signal than zone 3 ORs
in the zone2/3 dissection, and zone 4 ORs have higher signal than zone 5 ORs in the zone 4/5 dissection.
However, these differences fade in more ventral zones, as zone 1-3 OR indexes have equally high levels of
heterochromatin in zones 4/5. In fact, if we perform the same analysis in OSNs obtained exclusively from zone
5 mOSNSs, which we achieved by FAC-sorting OSNs expressing the zone 5 OR OIfr1507, we find that ORs from
all 5 indexes have similar levels of H3K79me3 (Figure 2E), except of the transcriptionally active OIfr1507
(Supplemental Figure S2D). Interestingly, H3K79me3 ChIP-seq in iOSNs from zones 4/5 shows that enrichment
of H3K79me3 on zone 4/5 ORs is lower than on zone 1-3 ORs (Supplemental Figure S2E). Thus, although zone
4/5 ORs eventually obtain high levels of H3K79me3 within their expression zone, these enrichment levels are
reached after the completion of OR choice and only at the ORs that were not chosen for transcription. In contrast,
ORs from zone 1-3 already have high H3K79me3 enrichment levels from the iOSN stage in the ventral-most
zones and are likely excluded from the process of OR gene choice. This pattern explains why ventral OSNs do
not express ORs with dorsal indexes, but it raises the reverse question: What prevents dorsal OSNs from
choosing ventral ORs that have low levels of repressive chromatin marks?

Graded genomic compartmentalization precludes expression of ventral ORs in dorsal zones

OR gene activation requires formation of OR compartments, assembly of a multi-enhancer hub next to
the OR compartment, and association of this hub with one of the proximal OR alleles. To test if zonal positioning
influences this process, we performed in situ Hi-C in FAC-sorted OSNs from zones 1, and 4/5, as well as OSNs
expressing OR OIfr17, representing zone 2 OSNs. This analysis revealed that long-range cis and trans genomic
interactions between ORs are strongly linked to the zonal index of each OR and the zonal identity of the OSN,
mimicking the deposition of heterochromatin. For example, inspection of the genomic interactions between 3 OR
clusters in chromosomes 2, shows that a cluster that contains mostly zone 4/5 ORs makes contacts with the
other two clusters only in ventral OSNs. In contrast, the other 2 OR clusters, which are either enriched for zone
1-3 ORs, or contain ORs from every zonal index, make strong genomic contacts with each other in all three
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zonal OSN populations (Figure 3A). To expand this analysis to every OR, we measured the frequency of
interchromosomal OR-OR interactions across zone 1, 2-3, and 4-5 OR indexes in the 3 zonal OSN populations,
reaching a similar conclusion: In each zonal OSN identity ORs from more dorsal indexes have the highest levels
of trans Hi-C contact; ORs from the correct zonal index have intermediate levels; and ORs from more ventral
zonal indexes have the lowest levels of genomic contacts (Figure 3B). Intriguingly, we observe a consistent Hi-
C contact frequency for the set of OR genes competent to be chosen across different anatomical zones (Figure
3B). We detect a similar pattern in iOSNs, with differences in genomic contacts between different OR identities
being sharper than in mOSNs, especially in trans (Supplemental Figure S3A, B). At this developmental stage
there is a strong correlation between the levels of H3K79me3 and the frequency of Hi-C contacts (Supplemental
Figure S3C), suggesting that the two processes may be mechanistically linked, as recently proposed for
heterochromatin and genomic compartmentalization(Falk et al., 2019; Mirny et al., 2019).

We then asked if there are zonal differences between the long-range contacts made by Greek Islands.
Consistent with the small variations in flanking H3K79me3/H3K9me3, trans Hi-C contacts between Greek Islands
are comparable between zones 1 and 4/5 mOSNs, with a small increase towards zone 4/5 (Figure 3C). This is
consistent with results from FAC-sorted OSNs expressing OIfr16 (zone1 OR), OIfr17 (zone2 OR), and OIfr1507
(zone5 OR), showing similar patterns of active OR-Greek Island interactions between the 3 zones(Monahan et
al., 2019). One exception is detected on enhancers residing in OR clusters that contain predominantly zone 4-
5 ORs. As these OR clusters make very infrequent contacts with other OR clusters in zone 1 (Figure 3A),
enhancers located in these clusters also have reduced contacts with distant Greek Islands, consistent with the
notion that OR compartmentalization promotes enhancer compartmentalization (Supplemental Figure S3D, E).

To obtain insight to the zonal differences in OR compartmentalization at single cell resolution, we
performed Dip-C, a high coverage version of single cell Hi-C, in 96 mature OSNs, 48 each from zones 1 and 4/5.
To retain allelic information, we crossed OmpiresGFP mice (mixture of BI6/123 strains) to Castaneous (Cas)
mice and used Cas-specific SNPs to distinguish Cas from non-Cas alleles. After filtering for high quality cells,
we excluded 4 cells and generated contact maps with a median of over 400,000 contacts per cell. We used the
haplotype resolved data to compute distances of all genomic loci at 20kb resolution and generated 3D models
for all cells, as previously described(Tan et al., 2019). In these models, we were able to detect formation of
interchromosomal compartments in mMOSNs from both zones (Figure 4A, B). Analyzing distances between pairs
of OR loci in the 3D model we determined the size and complexity of OR compartments in each cell. Consistent
with predictions from our bulk Hi-C, ventral 4/5 OR compartments are larger and contain more ORs from more
chromosomes in zone 4/5 OSNs than zone 1 OSNs (Figure 4C, D, Supplemental Figure S4A-D). Despite the
fact that there are zone-specific features of OR compartmentalization, within a zonal mMOSN population every
cell has a distinct pattern of long range cis and trans OR contacts (Supplemental Figure S4A, B). As previously
shown, Greek Islands have stronger interchromosomal contacts than OR genes, that are less influenced by
zonal identity than OR-OR interactions (Supplemental Figure S4E, F). Thus, in a given zone4/5 OSN, on average
around 27% of enhancers were engaged in interchromosomal contacts within 2.5 particle radii compared to 22%
in zone1. But the size of the largest hub (ranging from 4-8 enhancers), presumably the site of OR transcription,
was comparable in the zone1 and zone4/5 cells (Supplemental Figure S4G). In general, Greek Islands make
strong contacts with ORs from every zone, however in zone 4/5 mOSNSs they have a significant preference for
zone 4-5 ORs compared to zone 1-3 ORs. We do not detect a significant association of Greek Islands with zone
1 ORs in zone 1 mMOSNs, most likely because ~50% of these cells express class | ORs, which are not regulated
by the multi-enhancer hub.

Graded expression of NFI paralogues implicates them in zonal OR gene regulation

The graded increase in the deposition of H3K9me3/H3K79me3 and OR compartmentalization from dorsal
to ventral zones has important regulatory implications. Instead of deploying distinct, zone-specific transcription
factor combinations, developing OSNs could establish zonal restrictions with shared factors expressed in a
graded fashion. The transcriptional regulators with an established role in OR gene choice are expressed at
similar levels in cells isolated from different zones, with the only exception being a somewhat lower expression
of Ldb1 in zone 1 (Supplemental Figure 5A). Thus, we searched for additional transcription factors that may
specifically contribute to the zonal restrictions on OR gene choice. Taking into account the developmental onset
by which zonal differences appear, we searched for transcription factors that have strong expression in both
INPs and OSNs that is graded across the dorsoventral axis of the MOE. We identified numerous transcription
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factors that are expressed in a zonal fashion at various stages of OSN differentiation, some of which were
previously described (Duggan et al., 2008; Mclintyre et al., 2008; Parrilla et al., 2016; Tietjen et al., 2005), and
some, like the zone 1 enriched NhIh2, Hey1 and Nr2f2, being associated with zonal expression for the first
time(Figure 5A-D and Table 1). Importantly, from all the transcription factors with 3fold expression difference
between zones 1 and 4/5, the NFI paralogues NFIA, B, and X are the only ones that retain strong, zone-
influenced expression from the early INP to the mOSN stage (Figure 5A-D). These three members of the nuclear
factor | (NFI) family of transcription factors control a plethora of developmental and cell specification
processes(Gronostajski, 2000; Zenker et al., 2019), and were previously implicated OSN
differentiation(Baumeister et al., 1999; Behrens et al., 2000). NFls are expressed at higher levels in zone 4/5
cells, from INP to mOSN, with NFIA and NFIB being expressed higher in INPs and iOSNs, and NFIX being
upregulated in mOSNs (Figure 5E, Supplemental Figure 5B).

Although the continuous zone 4/5 enrichment of NFI genes prioritizes their functional interrogation over
other zonally expressed transcription factors, we sought additional evidence for a functional role in the
specification of ventral zones. First, we performed omni-ATAC(Corces et al., 2017) on iOSNs from zones 1 and
4/5. This experiment revealed the existence of >8,000 zone1-, and >5,000 zone 4/5-specific peaks. Lhx2 and
Ebf motifs are abundant in both peak groups (Figure 5C), consistent with the key regulatory function of these
two transcription factor types in OSN identity. Moreover, zone1-specific peaks have enrichment for bHLH motifs
in agreement with the increased expression of numerous bHLH transcription factors in zone 1 iOSNs (Figure 5A,
C). Interestingly, the most significantly enriched zone-specific motif overall is NFI, which is identified in the zone
4/5 peaks, further supporting a functional role of zonal NFI expression (Figure 5C). If we focus our omni-ATAC
analysis on OR promoters, which have weak ATAC signal that for most promoters does not reach peak-calling
threshold, we detect stronger signal on zone 1 promoters in both zone 1 and 4/5 iOSNSs. Interestingly, as is the
case for H3K9me3/H3K79me3 distribution and OR compartmentalization, ATAC signal is increased on most OR
promoters in zone 4/5 iOSNs, and even becomes apparent on zone 4/5 promoters, although these remain the
weakest group. Although there is no enrichment of bHLH motifs on zone 1 OR promoters compared to zone 4/5
promoters, NFI motifs are twice as frequent on zone 4/5 promoters (Supplemental Figure S5C). It should be
noted zone 5 promoters have low quality Ebf motifs, suggesting the possibility that NFI binding compensates for
weaker Ebf binding on these sequences (Supplemental Figure S5D).

To further investigate the genome wide binding of Nfi proteins we performed CUT&RUN(Meers et al.,
2019a; Meers et al., 2019b) with an antibody against Nfia protein. We obtained ~2,000 peaks genome wide, with
NFI motifs significantly enriched in these peaks, but we did not detect Nfi binding on zone 4/5 OR promoters
(data not shown). This, however, is not surprising, since due to cellular heterogeneity none of the transcription
factors known to regulate OR expression can be detected on OR promoters (Monahan et al., 2017). However,
we detect Nfia signal on Greek Islands despite the lack of full NFI motifs on these enhancers (Supplemental
Figure S5E). Consistent with binding of additional factors, like Nfi proteins, to the core of Lhx2/Ebf/Ldb1, Greek
Islands in zone 4/5 iOSNs have increased ATAC-seq signal, especially residing in OR clusters containing
predominantly zone 4/5 ORs (Supplemental Figure S5F-G). These observations, taken together, suggest that
Nfi proteins may contribute to the aforementioned zonal differences of heterochromatin assembly, OR
compartmentalization, and Greek Island hub formation, and they may bias association of the Greek Island hub
with zone 4/5 ORs in ventral zones of the MOE. Thus, we sought a functional characterization of the role of
NFIA, B, and X in zone 4/5 specification.

NFI A, B, and X gradients regulate zonal OR expression

To interrogate the potential role of NFI A, B and X in zonal OR expression, we adopted a loss-of-function
approach. To overcome possible redundancy between the NFI paralogues, we deleted all three genes
simultaneously. To assure complete removal of Nfi activity before the INP-to-iOSN transition we used the
Krt5CreER driver, which is expressed in HBCs, the quiescent stem cells of the MOE. We crossed Krt5CreER;
tdTomato mice to NFIA,B,X fl/fl mice(Clark et al., 2019), and induced recombination with tamoxifen. To force the
quiescent HBCs to differentiate into OSNs, we ablated the MOE with methimazole and allowed 40 days for a
complete restoration by the marked progeny of the NFI KO or control HBCs (Supplemental Figure S6A), as
previously described(Monahan et al., 2019). We first performed IF in MOE sections of control and triple NFI KO
mice using antibodies for ORs OIfr1507 (zone 5 OR) and OIfr17 (zone 2 OR). This analysis revealed an almost
complete depletion of Olfr1507-expressing OSNs (Figure 6A), and reciprocal ectopic expression of Olfr17 in
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zone 5 OSNs (Figure 6B). To analyze expression of all OR genes, we FAC-sorted tdTomato® control and KO
OSNs from the whole MOE and performed RNA-seq. Consistent with the immunofluorescence imaging results,
we detect a strong reduction of all zone 4/5 OR mRNAs and a concomitant increase of zone 2/3 mRNAs in the
triple KO OSNs (Figure 6C). To explore how stable zonal OR specification is after it is established, we deleted
the 3 NFIs with OMPiresCre, a driver that induces recombination in mature OSNs (Supplemental Figure S6A).
Intriguingly, triple NFI deletion in mMOSNs has no effects on zonal OR expression, with most zone 2/3 and 4/5
OR mRNAs being as abundant as in control mOSNs (Figure 6C). In contrast to ORs, numerous non-OR zone
4/5 markers are downregulated in both the “early” and “late” NFI deletion (Supplemental Figure S6B). Thus,
unlike other zonally expressed genes, OR patterning persists for weeks, suggesting that heterochromatinization
and genomic compartmentalization constitute forms of long-term nuclear memory in post-mitotic mOSNSs.

The aforementioned observations suggest that zone 2/3 ORs substitute zone 4/5 ORs in the ventral-most
zones of the “early” triple NFI KO. To directly test this prediction, we performed RNA-seq analysis in OSNs
isolated from micro-dissected zones 4/5. This experiment confirms the strong transcriptional downregulation of
most zone 4/5 ORs, and the ectopic expression of many zone 2/3 ORs in the ventral-most zones (Figure 6D).
This striking “dorsalization” of zone 4/5 OSNs satisfies the original criteria of homeosis (Bateson, 1894), since
the overall mOSN identity is not altered by the triple NFI deletion. Only 13 out of ~200 OSN-specific genes are
significantly different between control and KO OSNs, and 117/207 non OR zone 4/5 enriched genes are still
expressed in the ventral-most zones, acting as independent fiducial markers for our zonal dissection
(Supplemental Figure S6C).

Having established a robust phenotype from the early triple NFI KO, we explored the redundancy
between the three Nfi proteins. We analyzed separately double (NFIA, B) and single (NFIX) “early” KO OSNs.
In double (NFIA, B) KO mice, zone 4/5 OSNs express predominantly zone 3/4 ORs, revealing a partial dorsal
shift compared to the triple NFI KO mOSNs, which express ectopically zone 2/3 ORs (Figure 6D, Supplemental
Figure S6D). A more detailed investigation revealed that while zone3 ORs are ectopically expressed in both the
double and triple KO a different set of zone3 ORs are miss-expressed in each case (Supplemental Figure S6E).
Thus, even within a defined zonal index, there are likely additional sub-divisions across the dorsoventral axis,
influencing the relative sensitivity to the total number of deleted NFI paralogues. In this vein, zone 5 ORs with
the ventral-most OR index, disappear in both the double and triple NFI KO, whereas the dorsal-most zone 1 ORs
are not affected by either KO. Finally, NFIX deletion alone does not have significant consequences in the zonal
expression of ORs (Figure 6D, Supplemental Figure S6D). The most likely explanation for the lack of a detectable
phenotype in the NFIX KO is the fact that the other two NFI paralogues, which are more highly expressed during
the critical INP-to-iOSN transition, suffice for proper zonal specification; however, as the differences between
the double and triple KO indicate, NFIX has a critical contribution to this process. Notably, for each KO, the
severity of the zonal transformation in OR expression correlates with the overall change in expression of non OR
zone4/5 enriched genes (Supplemental Figure S6C).

NFI A, B, and X govern heterochromatin deposition and OR compartmentalization

If the stable establishment of zonal OR patterning is mediated by heterochromatin assembly and genomic
compartmentalization, then “early” triple NFI deletion should influence one or both of these processes.
Deploying the genetic strategy described previously for “early” NFI deletion (Supplemental Figure S6A), we
isolated control and triple NFI KO Tomato® OSNs from the ventral-most zones and performed ChIP-seq and in
situ Hi-C. ChlP-seq revealed a remarkable transformation in the pattern of H3K79me3/H3K9me3 across zonal
OR identities with strong reduction of both histone modifications in zone 3-5 ORs, and little change in zone 1-2
ORs, as a whole, (Figure 7A, B), mimicking the pattern observed in zones 2/3 (Supplemental Figure S7A).
Furthermore, if we group zone 2 and 3 ORs in accordance to the significance of their upregulation in zones 4/5
(Figure 7C), we make an intriguing observation in regards of H3K79me3 enrichment: zone 2 ORs that are most
significantly upregulated have the lowest levels of H3K79me3 between zone 2 ORs, whereas for zone 3 ORs
the trend is the opposite (Figure 7D). Furthermore, if we focus our analysis to the sub-indexes of zone 3 ORs
that are ectopically expressed only in the double or only in the triple NFI KO, we observe that the former has
less H3K79me3 than the latter in the triple NFI KO (Supplemental Figure S7B). These results further support the
emerging concept that there is a non-linear correlation between levels of heterochromatin and transcriptional
outcomes, with intermediate enrichment levels coinciding with OR gene choice.
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If levels of H3K79me3/H3K9me3 enrichment influence OR compartmentalization (or vice versa), then we
would expect strong changes in long-range genomic interactions upon NFI deletion. Indeed, in situ Hi-C in
control and triple Nfi KO Tomato®™ OSNs from zone 4/5 revealed a strong reduction in the long-range genomic
contacts made by zone 4/5 ORs. This reduction applies to both long range cis contacts between OR gene
clusters (Figure 7E), as well as genome-wide frans interactions (Figure 7F). In fact, direct comparison of the
patterns of zonal interchromosomal interactions between OSNs from the three dissected zones suggests that
triple Nfi KO OSNs from zone 4/5 adopt a nuclear architecture that is most similar with the nuclear architecture
of zone 2/3 OSNs (Supplemental Figure S7C). In support of this, if we plot interchromosomal OR interactions
across a large mixed cluster on chromosome 2, we find that the distribution of trans OR contacts between ORs
from different zones is quite different between zones 2/3 and 4/5; yet in the triple Nfi KO, we find that this
distribution is transformed in 4/5 OSNs to an almost identical pattern with zone 2/3 OSNs (Supplemental Figure
S7D). Finally, we asked if triple NFI deletion affects the frequency of trans contacts between Greek Islands.
Overall, trans contacts between Greek Islands are not reduced in triple KO (Supplemental Figure S7E),
consistent with the fact that we did not observe strong zonal differences for these genomic contacts. However,
Greek Islands that reside on OR clusters that contain mostly zone 4/5 ORs have reduced trans contacts with
other OR enhancers, consistent with the effects of NFI deletion on the genomic interactions of zone 4/5 ORs.
Nfia CUT&RUN analysis in triple NFI KO and control cells shows reduction of the NFI signal on Greek Islands
(Supplemental Figure S7F). The lack of consensus NFI motifs from these enhancers, however, and our inability
to detect NFI binding on Greek Islands by crosslinked ChlPs (data not shown), suggests that the CUT&RUN
signal may reflect indirect recruitment of these factors via protein-protein interactions with Lhx2/Ebf/Ldb1.
Regardless of the mechanism of potential NFI binding on OR promoter and enhancers, our data show that NFI
proteins establish chromatin modification and nuclear organization landscapes that repress zone 2/3 ORs and
enable zone 4/5 ORs in ventral OSNs.
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Discussion

We uncovered the mechanism by which a random process becomes skewed, transforming the relative
position of a cell across the dorsoventral axis of the MOE into biased OR gene choices. The solution to the
perplexing segmentation of the MOE into overlapping zones is remarkably simple: a gradual increase of
heterochromatin deposition and genomic compartmentalization from dorsal to ventral zones, alters, in a
sequential fashion, the OR indexes that can be activated in each OSN. ORs that are activatable in one zone, will
be silenced in more ventral ones, while ORs that lack heterochromatin but cannot interact with the Greek Island
hub in this zone, acquire this privilege in more ventral segments. This serial progression is conceptually
reminiscent of the fascinating phenomenon of spatial collinearity in Hox gene regulation(Lewis, 1978;
Noordermeer and Duboule, 2013; Noordermeer et al., 2011), albeit with two important distinctions: First, in Hox
gene regulation, continuous binding of PcG proteins on Hox clusters is required to maintain long-term gene
silencing(Beuchle et al., 2001; Coleman and Struhl, 2017), whereas weeks, or even months, after NFls are
deleted in mOSNs, zonal OR expression patterns are faithfully preserved. Although without a doubt the post-
mitotic nature of mMOSNs contributes to this stability, it is quite striking that both nuclear architecture and
heterochromatinization are preserved in the absence of the sequence-specific factors that initiated their
assembly. Second, the order of Hox gene activation is determined by their linear order on the chromosome,
while here this order is defined by the sequential OR recruitment in 3-dimensional genomic compartments.
Consequently, whereas Hox transcription is highly stereotypic within segments, the activation of an OR allele
with zonal-appropriate credentials is not. As our Dip-C analysis revealed, OR compartments have highly variable
constitution, with the 3D maps of OR contacts being different even between OSNs from the same zone. This
immediately suggests that OR compartments and Greek Island hubs assemble in an “opportunistic” fashion,
influenced by both the relative affinities between OR loci and their proximity in the nuclear space. While the
former is determined by the position of the OSN, the latter is random and dependent on the relative position of
each chromosome during the exit of the last mitosis. With OR gene clusters being located in 18 different
chromosomes, it is not surprising that the constitution of OR compartments and Greek Island hubs differs from
cell to cell. Thus, although a mechanism evolved to establish some semblance of order in OR gene regulation,
the concept of transcriptional activation via interchromosomal associations renders chance a key operating
principle.

A quantitative model for opposing heterochromatin functions

The focus of our experiments was to determine the mechanism that biases OR gene expression to a
specific zone. We showed that the concentration of Nfi proteins in OSN progenitors determine the repertoire of
ORs that can be expressed in mOSNSs via regulation of heterochromatin assembly and nuclear architecture. A
possible explanation of the homeotic transformations occurring upon NFI deletion is that different levels of
H3K9me3/H3K79me3 enrichment have different consequences in chromatin compaction, genomic
compartmentalization, and transcriptional activation. We propose that high levels of H3K9me3/H3K79me3
induce both chromatin compaction and formation of OR compartments; intermediate levels of
H3K9me3/H3K79me3 suffice for OR compartmentalization but not for chromatin compaction, while low levels of
these modifications do not promote either (Figure 8). Consequently, in each OSN ORs from earlier zonal indexes
are not expressed because they are actively silenced by constitutive heterochromatin and ORs from subsequent
zones are not expressed because they cannot associate with other ORs and the Greek Island hub (Figure 8).
Presumabily, the repressive histone modification H3K9me2, which decorates ORs even in other tissues(Magklara
et al., 2011), is sufficient to keep the ventral ORs transcriptionally silent in the absence of interactions with the
multi-enhancer hub. Thus, only ORs from the correct zonal index combine a partially accessible chromatin state
with the ability to associate with the Greek Island hub, restricting OR gene choice to a specific OR repertoire.

The aforementioned model assumes that H3K9me3/H3K79me3 have independent functions in the
regulation of chromatin compaction and 3D organization. The former likely depends on high density deposition
of tri-methyl marks across numerous successive nucleosomes(Canzio et al., 2011; Canzio et al., 2013). This
would allow Hp1 proteins and other components of heterochromatin to polymerize on the chromatin fiber,
insulating regulatory sequences from transcriptional activators. The latter, which may be organized by homotypic
chromatin contacts(Gibson et al., 2019; Narlikar, 2020) and the phase separation properties of
heterochromatin(Mirny et al., 2019), could be accomplished at intermediate levels of enrichment that do not


https://doi.org/10.1101/2020.08.30.274035
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.30.274035; this version posted September 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

induce chromatin compaction. Consistent with this, recent reports provide functional evidence for a role of
H3K79me3/me2 in the establishment of long-range enhancer-promoter interactions(Godfrey et al., 2020) and
role of H3K9me3 in establishment of genomic compartments in vivo (Falk et al., 2019). Importantly, the
differences in H3K9me3/H3K79me3 enrichment and frequency of Hi-C contacts are strongest in iOSNs during
the process of OR gene choice. This suggests that there is a transient “bivalent” chromatin modification state
during which converging ORs with intermediate levels of heterochromatin can either become fully
heterochromatic and transcriptionally silent or associated with Greek Islands and transcriptionally chosen.

In addition to the putative role of histone modifications in the establishment of repressive or activating
genomic interactions, the repertoire of transcription factors bound on OR promoters and enhancers could also
influence genomic compartmentalization. Increased abundance of NFI motifs on zone 4/5 OR promoters and
detection of NFI proteins on Greek Islands by CUTt&RUN are consistent with an NFI-dependent re-direction of
the Greek Island hubs towards zone 4/5 ORs though homotypic interactions. Such homotypic interactions by
DNA-bound transcription factors were recently shown to promote assembly of specific interchromosomal
compartments in yeast(Kim et al., 2019; Kim and Shendure, 2019). That said, we have not demonstrated binding
of NFI proteins on zone 4/5 OR promoters and we cannot unequivocally exclude that NFI occupancy of Greek
Islands is a reflection of their highly accessible state, since these sequences do not contain bona fide NFI motifs.
Thus, indirect mechanisms by which NFI expression influences nuclear architecture and OR gene choice cannot
be excluded, especially in light of the numerous other zonal transcription factors identified by our experiments.
That said, the three NFI paralogues are essential for transforming cellular locations along the dorsoventral MOE
axis into zonal OR expression patterns.

Finally, an alternative model for our genomic and genetic observations is that the role of Nfi proteins is to
strictly to repress expression of zone 2/3 ORs in zone 4/5 OSNs. In this vein, both marking by
H3K9me3/H3K79me3 and recruitment to OR compartments are exclusively repressive, eliminating the
competitive advantage that more dorsal OR promoters may have over the promoters of zone 4/5 ORs.
Consequently, in a wild type ventral OSN the Greek Island hub is forced to associate with a zone 4/5 OR because
the other ORs are inaccessible. In contrast, in the triple NFI KO silencing is alleviated from a fraction of zone 2/3
ORs, which prevail over the zone 4/5 ORs. Thus, sequential silencing of the strongest available OR promoters
along the dorsoventral axis is an equally appealing mechanism for MOE segmentation. However, the observation
that ectopically expressed zone 3 ORs have higher levels of H3K79me3 in the triple NFI KO than the zone 3
ORs that are not ectopically expressed, supports the notion that an “optimal” level of heterochromatic marks and
genomic interactions determines the privileged ORs that can be chosen in each OSN. This would also explain
the counterintuitive observation that deletion of H3K9 methyltransferases G9a/Glp abrogates the expression of
>99% of OR genes(Lyons et al., 2014).

Transcription (factor) mediated silencing as a means of establishing zonal restrictions

An intriguing observation from our experiments is that the first detection of H3K9me3/H3K79me3 on OR
genes coincides with the onset of high levels of OR transcription at the INP to iOSN transition. Moreover, at the
onset of heterochromatin assembly, OR genes have a stronger signal downstream of the OR TSS that declines
after the transcription end site (TES), whereas OR enhancers have symmetrical flanking signal, consistent with
a bidirectional transcription pattern of distant enhancers (Mikhaylichenko et al., 2018; Wang et al., 2011). These
observations are consistent with a mechanism of transcription-mediated heterochromatin assembly on OR genes
and their enhancers, with the former being biased towards the gene body and the latter being bi-directional.
Biochemical experiments reporting purification of mammalian elongating RNA polymerase |l complexes
containing Dot1l, the H3K79 lysine methyltransferase (Kim et al., 2012) are also supportive of this hypothesis.
Similarly, transcription-dependent deposition of H3K9me2/3 has been observed in Sacharomyces pompe and
Arabidopsis thaliana(Allshire and Madhani, 2018), providing precedent to the counterintuitive concept of
transcription mediated silencing. Alternatively, it is possible that transcription factor binding on OR promoters
and enhancers determines directly the levels of H3K9me3/H3K79me3 at the surrounding sequences, explaining
why Greek Islands, which are strongly bound by Lhx2, Ebf and likely Nfi, have the highest flanking levels of
heterochromatin. In this vein, zone 1 OR promoters, which have the strongest ATAC signal in each zone, also
have the strongest levels of H3K9me3/H3K79me3 in each zone.
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If relative promoter strength determines directly, or through a transcription-mediated deposition, the levels
of heterochromatic marks on each OR, then why do these levels increase for every OR ventrally? Considering
that Ebf and Lhx2 expression levels are homogeneous across zones, additional factors have to be deployed to
strengthen OR promoter activity in more ventral zones. Thus, we propose that zone 1 promoters are strong
enough to induce low transcription and intermediate levels of H3K79me3/H3K9me3 in zone 1 INP3 cells. In
subsequent zones, binding of auxiliary factors on zone 1 promoters would further increase their strength,
resulting in increased deposition of heterochromatic marks, and resulting in their silencing. Similar principles
may apply for all the other OR indexes, with zone 5 promoters being the weakest of all, and thus requiring the
highest levels of NFI activity to overcome the lack of strong Ebf motifs. A direct prediction of this hypothesis is
that reducing the strength of a zone 1 OR promoter would shift the expression of this OR to more ventral zones.
In fact, this is exactly what was reported for the targeted mutation of a pair of Ebf and Lhx2 binding sites in the
promoter of Olfr151, which results in shifting the expression of this zone 1 OR to zones 2/3(Rothman et al.,
2005).

Importantly, there are additional genetic observations supporting a model of increasing OR promoter
strength along the dorsoventral axis. Zone 5 ORs OIfr1507-1509 cannot be expressed as transgenes without
the H enhancer(Serizawa et al., 2005), while zone 1 and 2 ORs can be expressed as minigenes with minimal
promoter sequences(Vassalli et al., 2002) (and Ben Shykind personal communication). Furthermore, deletion of
the H enhancer from the endogenous cluster impairs only the expression of zone 5 and not of zone 1 ORs(Fuss
et al., 2007; Nishizumi et al., 2007), supporting the notion that OR promoter strength decreases in ventral OR
indexes. Finally, the increased frequency of Greek Island interactions and the somewhat higher complexity of
Greek Island hubs in zone 4/5 compared to zone 1, could represent a compensatory mechanism for the
weakening of ventral OR promoters. Thus, although OR gene choice may be fully dependent on interactions with
the Greek Island hub, ORs from dorsal zones, due to sufficient promoter strength, may be less dependent on cis
enhancers for the early transcriptional process that facilitates the recruitment to the hub.

Zonal OR expression preserves a wide receptive field

The final question we wish to address regards the potential benefit of this unusual regulatory mechanism
and the merit of generating zonal boundaries in the olfactory epithelium. It is well established that the zonal
topography of OR expression in the MOE s reflected in targeting of OSN axons to the olfactory bulb. Because
this topography disintegrates in higher olfactory processing centers(Stettler and Axel, 2009), we propose that
the major advantages of zonal OR expression relate to the process of OSN axon guidance, the singular nature
of OR expression in mature OSNSs, and the distributed representation of every OR identity. Containment of OSNs
expressing the same OR at defined anatomical segments of the MOE, facilitates the fasciculation of their axons
and reduces the number of different extracellular identities required for the formation of OR-specific glomeruli.
In other words, there is no need for 1400 extracellular barcodes for the generation of unique glomeruli, but only
40-200 would be sufficient for the segregation of the axons emerging from a specific zone. Furthermore, limiting
the process of OR gene choice to 40-200 ORs instead of 1400 different ORs, reduces the probability of choosing
two different ORs at the same time. Finally, this process provides a safeguard against the evolution of
transcriptionally dominant OR alleles. If an OR promoter was to become too strong, it would be chosen first,
suppressing the choice of other ORs. However, with this elegant regulatory mechanism in place, stronger
promoters induce early transcription in INPs and accumulation of high levels of heterochromatin outside of zone
1, leading to their “ostracization” in zones 2-5. Of course, this system does not have an unlimited capacity to
block transcriptional domination, since artificially powerful promoters can express OR transgenes in high OSN
frequencies(D'Hulst et al., 2016; Fleischmann et al., 2008; Nguyen et al., 2007). On the other hand, weaker
promoters can still be represented at considerable frequencies, since there are zones dedicated to promoters of
various strengths, with zone 5 likely preserving frequent expression of the 40 weakest OR promoters.
Importantly, as eluted by lack of consequences in zonal OR transcription by the “late” NFI deletion, differences
in promoter strength may become irrelevant in mOSNs, where accumulation of numerous Ebf/Lhx2/Ldb1 bound
enhancers assembles a transcriptional complex that supports high transcriptional levels for every chosen OR.
Thus, by combining developmental restrictions to the OR identities that can be chosen in each OSN, with a
random selection from this spatially determined OR repertoire, the olfactory organ expresses thousands of OR
alleles at meaningful frequencies, assuring sensitive detection of the highest number of volatile chemicals.
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Figure Legends

Figure 1: Single cell RNA-seq analysis reveals that developing olfactory progenitors undergo a timed
transition in their repertoire of OR expression.

(A) Schematic of the main olfactory epithelium (MOE) and the genetic and experimental strategy for isolating
four cell populations at different stages of olfactory sensory neuron development (GBCs, INPs, iOSNs and
mOSNSs) from the same tissue. A representative FACS plot is shown. GBC, globose basal cell; INP, immediate
neuronal precursor; iIOSN, immature olfactory sensory neurons; mOSN, mature olfactory sensory neuron.

(B) tSNE clustering of FAC-sorted cell populations with Seurat based on the most variable genes showing the
separation of single cells into 6 populations. The 6 populations were assigned cell identities using expression of
known MOE markers (See also Figure S1). Clustering shows the relationship between the FAC-sorted
populations (left) and cell lineage (right).

(C) tSNE clustering from B, separated by zonal origin colored according to most highly expressed OR. Left: cells
isolated from zone1-2 dissected MOE; Right: cells isolated from zone3-5 MOE.

(D) OR expression in single cells from zone 1-2 MOE (D,E,F) and zone 3-5 MOE (G,H,l). Y axis shows OR
expression in normalized UMI counts for different ORs (separated by black lines) within individual cells (shown
on the x axis). ORs are colored according to their zonal index (as annotated in(Tan and Xie, 2018)

Figure 2: Heterochromatin deposition silences OR genes from lower zones.

(A) Signal tracks of H3K9me3 and H3K79me3 native ChlIP-seq from the whole MOE over two representative OR
clusters. Below the signal track OR genes are colored according to their zonal index: zone1 ORs in red, zone2
ORs in yellow, zone 5 ORs in blue and ORs with unknown zone in gray. Both histone marks also flank the H
Greek Island enhancer (purple triangle).

(B) H3K9me3 native ChIP-seq in the whole MOE. Box plots of read density over OR gene bodies separated by
their zonal index depict a pattern of deposition that is high on zone 1 OR genes, progressively decreases with
higher zonal OR indexes, and is absent on class | ORs.

(C) The same analysis as in B but for H3K79me3 native ChIP shows an even stronger zonal pattern of deposition.
(D) H3K79me3 native ChIP seq in GBC, INP, iOSN and mOSN populations (isolated by FAC-sorting cells as
described in Figure 1A) shows onset of H3K79me3 deposition in INP cells. Each row of the heatmaps shows
coverage over an OR gene body (separated into categories by their zonal index). (See also Supplementary
Figure S2B for H3K9me3 heatmap).

(E) H3K79me3 native ChIP-seq in mOSNs from dissected zones and a pure population of Olfr1507 (zone 5 OR)
expressing mOSNs. Colored MOE schematics above each heatmap depicts the zone of dissection. (See also
Supplementary Figure S2C for H3K9me3 heatmap).

Figure 3: Zonal OR compartmentalization permits OR genes from more ventral zones to be recruited into
the OR compartment.
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(A) In situ Hi-C contact matrices of a 90Mb region of chromosome 2 from zone1, zone2 and zone 4/5 mOSN
show long range cis interactions between 3 large OR gene clusters. The cluster on the right (blue) is enriched
for zone 4/5 OR genes, does not contain any zone1 OR genes, and only makes strong long-range interactions
with the other clusters in zone 4-5 mOSNs. Zone1 and zone4/5 mOSNs were isolated from zonally dissected
olfactory epithelium and zone2 mOSNs were isolated from OIfr17 (a zone2 OR) reporter mice, published
in(Monahan et al., 2019).
(B) Heatmaps of average interchromosomal Hi-C contacts between OR genes annotated by their zonal index at
50Kb resolution (excluding bins that contain ORs genes expressed in multiple zones and Greek Island
enhancers) shows increased contacts in cells from more ventral zones (zone1 mOSNs < zone2 mOSNs <
zone4/5 mOSNs). OR genes have a similar frequency of contacts in the mOSN population where they are
expressed (zone1 ORs in zone1 mOSNSs, zone2-3 ORs in zone 2 MOSNs and zone4-5 ORs in zone4/5 mMOSNSs),
marked with an asterisk.
(C) Quantification of Greek Island enhancer interchromosomal interactions show Greek Islands make a similar
fraction of their total H-C contacts with other Greek Islands in zone1 and zone4/5 mOSNs.
(D) Analysis of contacts made by individual Greek Islands show that 6 out of 59 Greek Islands have differential
frequency of interchromosomal interactions between the zone1 and zone5 mOSNs: 5 form significantly more
interactions in zone 4/5 cells and one in zone1 cells (Wilcoxon rank sum test: p-value < 0.05). Greek Islands
residing in OR clusters with zone 4-5 ORs and no zone1 ORs (blue) appear relatively less engaged in zone1
mOSNSs. All Hi-C analysis was performed at 50kb resolution and shows merged data from two biological
replicates that yielded similar results when analyzed separately.

Figure 4: Diploid chromatin conformation capture (Dip-C) reveals differences in OR compartments in
single zonal mMOSNs.

(A, B) 3D genome structures in single cells generated from Diploid chromatin conformation capture (Dip-C) in
96 mOSNs--48 cells from each zone1 and zone4/5. Cells were isolated from OMP-ires-GFP mice crossed to
Castaneous.

(A) Representative 3D structures of OR compartments in a zone1 and a zone4/5 mOSN colored by the
chromosome, shows increased complexity of OR compartments in the zone 4/5 mOSN. Serial sections at 15
particle radii (approximately ~900nm) show several OR aggregates in each cell.

(B) The same 3D structures in (A) colored by zonal OR annotation of each particle (analogous to 20kb of
chromatin) shows OR genes of all zonal indexes intermingling.

(C, D) Single cell heatmaps of pairwise distances between OR genes generated from 3D nuclear structure in a
zone1 mOSN (C) and zone4/5 mOSN (D) show an intermingling of OR genes from different chromosomes.
Heatmaps sorted by chromosome order (right) or via hierarchical clustering (left) show increased
interchromosomal contacts in the zone4/5 mOSN. The heatmap displaying contacts at any distance (top) and
contacts within 10 particle radii (approximately ~600nm) shows larger aggregates in the zone 4-5 mOSN.
Heatmaps of contacts within 10 particle radii are shown for all cells in Supplementary Figure S4. Only OR genes
for which the zonal annotation is known (and that do not reside within 20kb of an OR of another zonal index or
within 50kb of a Greek Island) were used to generate the heatmaps.

(E) Analysis of contact densities of interchromosomal contacts of all ORs (black), zone1 ORs (red), zone 2/3
ORs (green) and zone4/5 ORs (blue) with other ORs confirms that zone4/5 mOSNSs (blue cell) have an increased
density of interchromosomal contacts between OR genes of all zonal indexes, relative to zone1 mOSNs (red
cell).

(F) A similar comparison of Greek Island contact densities with all ORs (black), zone1 ORs (red), zone2/30Rs
(green) and zone4/5 ORs (blue) shows that in zone4/5 cells Greek Islands form stronger interchromosomal
interactions with zone4-5 OR genes relative to zone1 and zone2-3 OR genes (Wilcoxon rank sum test: p-values
=1.078x10-6 and 0.002, respectively).

Figure 5: NFI family transcription factors have a graded expression in cells from different zones.

(A, B, C, D) Heatmaps showing the expression levels of differentially expressed transcription factors between
zone1, zone 2/3 and zone 4/5 cells at different stages of development: GBC, INP, iOSN and mOSN. The shown
transcription factors are significantly differentially expressed between zone5 and zone1 cells with an adjusted p-
value of <0.05, at least a three-fold change in expression, and an expression of at least 15 TPM. A broader list
of transcription zonal factors is included in Table1. The heatmaps is sorted based on expression in zone 4/5 cells
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and a color bar above each heatmap shows the log2 fold change in zone 4/5 cells relative to zone 1 cells (blue
values represent genes higher in zone 4/5).
(E) Expression levels are shown for each of the members of the NFI family: NFIA, NFIB, and NFIX (NFIC, which
is not expressed in the MOE, is excluded). Plots of expression at the four developmental stages in zone 1 cells
(red), zone 2/3 cells (green) and zone 4/5 cells (blue) show higher levels of transcription of all three factors in
zone 4/5 and show different patterns of expression during the course of development (NFIA and NFIB decrease
in MOSNs, while NFIX increases).
(F) Pie chart showing the overlap of Omni-ATAC peaks in zone1 and zone 4/5 iONS and the top de novo motifs
identified with HOMER in differentially accessible peaks (p-value < 0.05). The NFI motif is the most highly
enriched motif in zone4/5 iOSN unique peaks.

Figure 6: Triple knockout of NFI ABX in progenitors transforms zone4/5 olfactory epithelium into zone2/3.
(A) OIfr1507 (a zone5 OR) immunofluorescence staining in MOE sections (magenta) of adult Nfi ABX triple
knockout mice and age matched wt mice. Nuclei are stained with Dapi (blue). Images were taken in the same
location, indicated on the schematic of a coronal section of the MOE.

(B) Olfr17 (a zone2 OR) immunofluorescence staining in MOE sections (green) of adult NFI ABX triple knockout
mice and age matched wt mice shows normal Olfr17 expression continues in NFI ABX knockout mice in zone 2,
while also spreads into more ventral zones and is detected in zone 5. Images were taken in the same spot in the
MOE, indicated in the schematic. Nuclei are stained with Dapi (blue).

(C) Comparison of OR gene expression in NFI ABX triple knockout and wt cells from the whole MOE. NFls are
deleted either in progenitors (top) using a KRT5-CreER driver or in mOSNs (bottom) using an OMP-ires-Cre
driver (as described in Supplementary Figure S6A).

(D) OR expression in NFI ABX triple knockout, NFI AB double knockout, NFIX knockout and wt mOSNs from
zone4/5 dissected MOE. Knockout was induced in progenitors (according to the “early” knockout strategy
described Supplementary Figure S6A). Plots show a different pattern of transcription of OR genes in the different
genotypes. Quantification of differentially expressed ORs in each genotype is shown in Supplementary Figure
S6D.

Figure 7: Nfi A, B and X regulate chromatin state and OR compartment formation

(A, B) Native ChIP-seq for H3K79me3 (A) and H3K9me3 (B) in Nfi ABX knockout zone 4/5 cells. Heatmaps of
ChlIP signal over OR gene bodies show a dramatic decrease of both histone marks on zone 3-5 ORs in NfiABX
knockout compared to wt.

(C) Identification of zone 2 and 3 OR genes that are ectopically expressed in RNA-seq of zone 4/5 Nfi ABX
knockout olfactory epithelium. All zone 2 and zone 3 ORs were classified based on their enrichment in zone4/5
olfactory epithelium as either not significant (NS), significant (S) with an adjusted p-value<0.05, or significant &
most enriched (SE) with an adjusted p-value<0.01 and a fold increase > 18. (D) Boxplots of H3K79me3 ChIP
coverage over zone2-3 OR genes in Nfi ABX triple KO zone4/5 classified by their change in gene expression
(top). H3K79me3 ChIP-seq data for the same genes in WT tissue (bottom). In triple KO cells there is less
H3K79m3 on zone 2 SE OR genes compared to NS and S (Wilcoxon rank sum test p-values = 4.823e-07 and
0.001 respectively), and more on zone 3 SE OR genes compared to NS and S (Wilcoxon rank sum test p-values
=1.649e-05 and 0.005 respectively) suggesting an intermediate level of H3K79me3 is consistent with high
transcription.

(E) In situ Hi-C contact matrices of a 90Mb region of chromosome 2 from wt and NFI ABX triple knockout zone
4/5 cells show long-range cis interactions between 3 large OR gene clusters. The cluster on the right (blue)--
enriched for zone 4-5 OR genes--shows almost no long-range contacts with the other two clusters in Nfi ABX
knockout Hi-C.

(F) Heatmaps of average interchromosomal Hi-C contacts between OR genes annotated by their zonal index
show that in Nfi ABX zone 4/5 mOSNs (bottom) zone 4/5 ORs make proportionately fewer interchromosomal
contacts compared to zone 1 and zone 2/3 ORs. In contrast, wt zone 4/5 mOSNs have a more homogenous
pattern of interchromosomal contacts between ORs.

(G) Comparison of interchromosomal interactions made by individual Greek Islands shows that 3 Greek Islands
made significantly fewer contacts in zone 4/5 Nfi ABX knockout mOSNs compared to wt (Wilcoxon rank sum
test: p-value < 0.5) and one Greek Island (located in an OR cluster with one zone 3 OR) showed more contacts.
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Figure 8 (shall become graphical abstract): NFl-dependent increase of heterochromatin and genomic
compartmentalization across the dorsoventral axis determines which OR indexes can be chosen in each
zone
(A) In zone 3, during the INP to OSN transition there is higher transcription of zone 1-2 OR indexes than zone 3
OR indexes, resulting in high levels of H3K9me3/H3K79me3 in zone 1-2 ORs, intermediate levels in zone 3 ORs
and low levels in zone 4-5 ORs. Consequently zone 1-2 ORs are transcriptionally silenced, while zone 3 ORs
have access to the Greek Island hub, and thus can be chosen for singular expression. Zone 4-5 ORs are devoid
of both H3K9me3/H3K79me3 and long-range contacts with other ORs and Greek Islands and thus cannot be
chosen. Ubiquitous H3K9me2 is likely to keep these ORs completely silent in the absence of activating genomic
interactions.
(B) Similar with A, but in zone 5, where NFI levels are highest, everything has shifted ventrally. Thus, ORs 1-4
all have high levels of H3K9me3/H3K79me3 and only zone 5 ORs have intermediate levels compatible with
interactions with the Greek Island hub and singular activation in mOSNSs.
(C) Triple deletion of NFI paralogues reverts heterochromatin distribution and genomic compartmentalization to
the landscape of zone 3, resulting in ectopic zone 3 OR expression. Similarly, zone 4 NFI KO OSNs may revert
to zone 2 landscapes, resulting in ectopic zone 2 OR expression.

STAR Methods
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice were treated in compliance with the rules and regulations of IACUC under protocol number AC-AAAT2450
and AC-AABG6553. Mice were sacrificed using CO: following cervical dislocation. A complete list of mouse
genotypes used for every experiment is in the Table2. Mash1-CreER (also known as Ascl1°ERT2)(Kim et al.,
2011); Ngn1-GFP(Magklara et al., 2011) and Cre inducible tdTomato reporter (also known as B6N.129S6-
Gt(ROSA)26Sorm!(CAG-tdTomato”,-EGFP)Ees/ )\ (\adisen et al., 2010) mice were used to isolate four cell types in the
olfactory lineage (GBC: tdTomato+ GFP-, INP: tdTomato+ GFP+, iOSN: tdTomato- GFP+ (bright), and mOSN:
tdTomato+ GFP dim) by sorting cells 48 hours after tamoxifen injection. GFP bright and dim cells from Ngn1-
GFP pups (P6) were also used to isolate a mix of INP/iOSN cells and mOSN cells respectively. Omp-ires-
GFP(Shykind et al., 2004) mice were used to isolate mature OSNs from adult (> 8-week-old) mice. In order to
obtain zonal iIOSNs and mOSNSs, OIfr1507-ires-Cre(Shykind et al., 2004) and tdTomato alleles were crossed in
with either Ngn1-GFP or Omp-ires-GFP alleles to aid in zonal dissection (by labeling Ollfr1507+ expressing cells
in zoneb).

Early knockout of Nfi A, B, and X (NfiABX) in horizontal basal cells (HBSs: the stem cell of the olfactory
epithelium) was achieved by crossing NfiA fl/fl NfiB fl/fl and NfiX fl/fl triple conditional alleles, described in (Clark
et al., 2019), with KRT5-CreER(Rock et al., 2009) and tdTomato. Adult mice (> 8-week-old) had deletion of
NfiABX in horizontal basal cells induced with 3 intraperitoneal injections with tamoxifen (24 hours apart). Ten
days after the first injection, the olfactory epithelium was ablated with one intraperitoneal injection of
methimazole, inducing proliferation of the HBCs and regeneration of a Nfi ABX knockout olfactory epithelium.
The olfactory epithelium was allowed to regenerate for 40 days before collecting the MOE and FAC-sorting the
tdTomato+(dim) cell population, which contains a mixture of mostly mOSNs and some INP and iOSN cells, as
described in detail in (Monahan et al., 2019). For some experiments Omp-ires-GFP was crossed in to ensure all
cells collected were mOSNs. Late knockout of Nfi ABX in mOSNs was achieved by crossing NfiA, B, and X triple
conditional alleles with tdTomato and Omp-ires-Cre, and FAC-sorting tdTomato+ cells from adult mice. Complete
list of all the mouse genotypes can be found in Table 2.

METHOD DETAILS

Zonal Annotation:

OR genes were assigned a zonal annotation (referring to their native zone of expression) based on (Tan and
Xie, 2018). We generated bins from the continuous data by rounding to the nearest integer. There are a total of
1011 ORs with known zonal annotation. Of these, 115 are Classl ORs, of which nearly all are expressed in
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zone1, and 896 are Classll ORs, of which 261 are expressed in zone1, 283 in zone2, 164 in zone3, 144 in zone4
and 44 in zoneb5.

Zonal dissection of the olfactory epithelium:

We used the fluorescent signal in Olfr545-delete-YFP(Bozza et al., 2009) (zone 1 OR), Olfr17-ires-GFP (Shykind
et al., 2004)(zone 2 OR), and OIfr1507-ires-GFP(Shykind et al., 2004) (zone 5 OR) mice to practice dissections
of zones 1, 2/3, and 4/5, respectively. Upon obtaining an accurate understanding of the zonal boundaries in the
MOE we performed zonal dissections without the use of these fiduciary markers. Accuracy of dissections was
confirmed by RNA-seq. For some experiments Olfr1507-ires-Cre and tdTomato reporter was crossed in to assist
with accurate zone5 dissection (see Table 2.)

Fluorescence-activated cell sorting

Cells were prepared for FAC-sorting as previously described in(Monahan et al., 2019) by dissociating olfactory
epithelium tissue with papain for 40 minutes at 37°C according to the Worthington Papain Dissociation System.
Cells were washed 2x with cold PBS before passing through a 40-um strainer. Live (DAPI-negative) fluorescent
cells were collected for RNA-seq, native ChlP-seq, omni-ATAC-seq and CUT&RUN. Alternatively, for Hi-C cells
were fixed for 10 minutes in 1% formaldehyde in PBS at room temperature, quenched with glycine, and washed
with cold PBS before sorting fluorescent cells. Alternatively, for Dip-C, cells were fixed in 2% formaldehyde in
PBS at room temperature for 10 minutes, inactivated with 1% BSA, and washed with cold 1% BSA in PBS before
sorting fluorescent cells. All cells were sorted on a BD Aria .

Single cell RNA-seq in olfactory lineage cell types

Mash1-CreER; tdTomato; Ngn1-GFP pups (ages P2-P4) were injected with tamoxifen and olfactory epithelium
was collected after 48 hours. The tissue was dissected into ventral (zone 3-5) and dorsal OE (zone1-2) sections,
from which GBC (tdTomato+, GFP-), INP (tdTomato+, GFP+), iOSN (tdTomato-, GFP+ bright) and mOSN
(tdTomato-, GFP dim) cells were sorted into 384 well plates (split between the cell types). Each well of the 384
well plate had unique cell and molecular barcodes. Library preparation and sequencing was performed in
collaboration with the New York Genome Center (NYGC) using a TSO approach for library preparation and
sequenced on HiSeq2500. Reads were aligned to the mm10 genome according to the Drop-seq(Macosko et
al., 2015) pipeline (http://mccarrolllab.org/dropseq/), which uses STAR for alignment, and discarding multi
mapped reads with Samtools -q 255. Aligned single cells had a median of 133,686 unique transcripts (UMIs)
and 2,331 genes per cell (detected with a threshold of at least 3UMI). Experiment was performed in biological
replicate, resulting in 764 cells, from which we discarded cells with less than 1000 genes and 20,000 UMIs,
resulting in 669 cells. We further filtered for cells that contained less than 5% mitochondrial reads, resulting in
591 cells used for analysis. We used Seurat v3 to normalize counts and cluster single cells, resulting in 5
populations. Clusters were assigned a cell-type based on expression of known olfactory lineage markers. We
used the default setting of genes expressed in at least 3 cells for clustering but changed it to 1 when looking at
OR expression (since expression of any OR out of > 1000 genes is a rare event). For all OR expression analysis
we used a threshold of 3UMI for an OR to be considered expressed.

Bulk RNAseq in olfactory lineage cell types

GBC, INP, iOSN and mOSN were isolated from Mash1-CreER; tdTomato; Ngn1-GFP pups as described above
with the tissue being dissected into a ventral (mostly zone 4-5), dorsal OE (mostly zone1) and a central section
(that is enriched for zone2-3). The experiment was performed in biological replicate. RNA was extracted from
FAC-sorted cells using Trizol and libraries were prepared with Nugen NuQuant RNA-seq library system and
sequenced 50PE on HiSeq2500 or 75PE NextSeq (and trimmed to 50bp before aligning). Cutadapt was used to
remove adapter sequences and reads were aligned to the mm10 genome with STAR. Samtools was used to
select high mapping quality reads (-q 30). Normalization, calculation of FPKM (which we converted to TMP), and
differential expression analysis was performed in R with DEseq2. For all RNA-seq data p-values refer to adjusted
p-value (padj) calculated in DEseq2.

To find zone5 enriched transcription factors at each developmental stage we determined significantly
differentially expressed transcription factors (from the Gene Ontology database annotation “DNA binding
transcription factor activity”) between zone4/5 and zone1 cells with a padj less than 0.05 and at least a twofold
change in expression (see Table 1.) To get the most likely candidates driving zonal identity we further filtered
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the list for TFs with at least a 3-fold difference between zone 1 and zone 4/5 cells, and an expression level of at
least 15 TPM).

Zonal vs non-zonal mMOSN markers from olfactory lineage RNA-seq data:

To find zone4/5 enriched mOSN markers, we looked at non-OR genes differentially expressed between zone4/5
and zone1 or zone2-3 mOSNs (tomato-, GFP dim cells) with padj less than 0.05, and at least a twofold change
in expression, of which there were 208; and performed the inverse analysis to generate a list of z1 or z2 enriched
mOSN markers, of which there were 141 genes. To find non-zonal mMOSN markers, we made a list of significantly
upregulated genes (with a padj less than 0.05, and a fold change greater two) in mOSNs (tomato-, GFP dim
cells) across all zones compared to iOSNs (tomato-, GFP+ bright cells) across all zones. We further filtered out
genes that were significantly differentially expressed between zone5 and z1 or 2 mOSNs and took the top 200
most significant genes.

RNA-seq in Nfi knockout zone5 mOSNs

To look at gene expression changes resulting from Nfi deletion in olfactory progenitors we used Nfi triple
knockout (NFI A,B,X fl/fl, tdTomato, OMP-gfp, Krt5-CreER), AB only double knockout (NFI A,B fl/fl, tdTomato,
OMP-gfp, Krt5-CreER), X only knockout (NFI X fl/fl, tdTomato, OMP-gfp, Krt5-CreER) or wt (tdTomato, OMP-
gfp, Krt5-CreER) mice and followed the induction protocol for early knockout, described above. After rebuilding
the MOE from knockout progenitors, we dissected zone4/5 and FAC-sorted GFP+ mOSNs. RNA was extracted
from sorted cells using Trizol and RNA-seq libraries were prepared with Nugen Nuquant RNA-seq library prep
kit and sequenced 75PE on Nextseq 550. Reads were aligned exactly as described for zonal olfactory lineage
data and similarly DEseq2 was used to determine differentially expressed genes between the different knockout
and wt cells. To determine if zone4/5 mOSN, zone1/2 mOSN and non-zonal mOSN markers change in Nfi
knockout zone5 we looked at expression differences we analyzed the expression differences of the genes our
markers lists.

Native chromatin immunoprecipitation from FAC-sorted cells:

Native chip was performed as described in detail (Monahan et al., 2017). Unless otherwise indicated all steps
were carried out at 4°C. Briefly, FAC-sorted cells were pelleted at 600 rcf for 10 minutes in a swinging bucket
centrifuge at 4°C and resuspended in cold Buffer | (0.3M Sucrose, 60 mM KCI, 15 mM NacCl, 5 mM MgCl,, 0.1
mM EGTA, 15 mM Tris-HCI pH 7.5, 0.1 mM PMSF, 0.5 mM DTT, 1x protease inhibitors). Cells were lysed by
adding equal volume cold Bufferll (Buffer | with 0.4% NP40) and incubating for 10 minutes on ice. Nuclei were
pelleted 10 min at 1000 rcf and resuspended in 250ul cold MNase buffer (0.32M Sucrose, 4 mM MgClz, 1 mM
CaClz, 50 mM Tris-HCI pH 7.5, 0.1 mM PMSF, 1x protease inhibitors). Micrococcal Nuclease digestion was
carried out by adding 0.1U Micrococcal Nuclease (Sigma) per 100ul buffer and incubating for 1 min 40 sec in a
37°C water bath, then stopping the digestion by adding EDTA to a final concentration of 20mM. The first soluble
chromatin fraction (S1) was collected by pelleting nuclei 10 min at 10,000 rcf at 4°C and taking the supernatant
to store at 4°C overnight. Undigested, pelleted material was resuspended in 250ul cold Dialysis Buffer (1 mM
Tris-HCI pH 7.5, 0.2 mM EDTA, 0.1 mM PMSF, 1x protease inhibitors) and rotating overnight at 4°C. The second
soluble chromatin fraction (S2) was collected by pelleting insoluble material 10 min at 10,000 rcf at 4°C and
taking the supernatant. S1 and S2 chromatin fractions were combined and used for immunoprecipitation with
5% material being retained for input. Equal cell numbers were used for control and knockout IPs, or between
different cell types or zones. To perform immunoprecipitation (IP), chromatin was diluted to 1ml in Wash Buffer1
(50mM Tris-HCI pH 7.5, 10 mM EDTA, 125 mM NacCl, 0.1% Tween-20, 5 mM 1x protease inhibitors) and rotated
overnight at 4°C with 1ug antibody. Dynabeads (10ul Protein A and 10ul Protein G per IP) were blocked overnight
with 2 mg/ml yeast tRNA and 2 mg/mL BSA in Wash Buffer 1. Blocked beads were washed once with Wash
Buffer 1, then added to antibody bound chromatin and rotated 2-3 hours at 4°C. Chromatin bound beads were
washed 4x with Wash Buffer1, 3x with Wash Buffer 2 (50mM Tris-HCI pH 7.5, 10 mM EDTA, 175 mM NacCl,
0.1% NP40, 1x protease inhibitors), and 1x in TE pH 7.5. IP’d DNA was eluted by resuspending beads in 100
uL Native ChIP Elution Buffer (10 mM Tris-HCI pH7.5, 1 mM EDTA, 1% SDS, 0.1 M NaHCO3) in a thermomixer
set to 37°C and 900 rpm for 15 minutes, repeating the elution 2x and combining the eluates. IPs and inputs
(diluted to 200ul in elution buffer) were cleaned up with Zymo ChIP DNA columns (Zymo Research, D5205).
Libraries were prepared with NUGEN Ovation V2 DNA-Seq Library Preparation Kit, and sequenced 50PE on
HiSeq2500 and or 75PE on NextSeq 550.

Native ChIP-seq analysis:
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Sequenced reads were pre-processed by trimming adapters with Cutadapt, then aligned to the mm10 genome
using Bowtie2, with default setting except for maximum insert size set to 1000 (-X 1000), allowing larger
fragments to be mapped. Duplicate reads were removed with Picard, and high mapping quality reads were
selected with Samtools (-q 30). After confirming replicates looked similar, they were merged with HOMER and
used to generate signal tracks at 1bp resolution normalized to a library size of 10,000,000 reads. Signal density
over OR genes was calculated with HOMER annotatePeaks.pl then normalized to the length of each OR gene.
Native ChIP heatmaps were generated with deeptools with OR gene bodies re-scaled to 6kb and showing 2kb
flanking on each side.

Omni ATAC-seq:

Omni ATAC was performed on 50,000 iOSNs from zone1 or zone4/5 (isolated from Mash1-CreER, tdTomato,
Ngn1-GFP mice as described in detail above). The protocol was carried out as described in(Corces et al., 2017)
Briefly, FAC-sorted cells were pelleted at 500 rcf at 4°C for 5 min and lysed by resuspended in 50ul cold ATAC-
Resuspension Buffer (RSB) (20 mM Tris-HCI pH 7.6, 10 mM MgCI2, 20% Dimethyl Formamide) containing 0.1%
NP40, 0.1% Tween-20, and 0.01% Digitonin, pipetting gently 3x, and incubating 3 min on ice, then washing out
with 1ml ATAC-RSB containing 0.1% Tween-20 but with no NP40. Nuclei were pelleted at 500 rcf for 10 min at
4°C, and the supernatant was aspirated, making sure to remove every trace from the nuclei pellet. Transposition
of chromatin was carried out by resuspending nuclei in 50ul cold transposition mixture (25 ul 2x TD buffer, 2.5
ul Tn5 transposase (100nM final), 16.5 ul PBS, 0.5 ul 1% digitonin, 0.5 ul 10% Tween-20, 5ul water) and
incubating in a thermomixer set to at 37°C and 1000 rpm mixing for 30 minutes. Transposed fragments were
cleaned up with Zymo DNA Clean and Concentrator-5 Kit and eluted in 21 ul elution buffer. Library was prepared
by amplifying DNA initially for 5 cycles using 2x NEBNext MasterMix (and adding adaptors with a unique barcode
to each sample), then running a qPCR to determine additional cycles. After final amplification libraries are
cleaned up with Zymo DNA Clean and Concentrator-5 Kit. Experiment was performed in biological replicate.
Omni-ATAC-seq libraries were sequenced 75PE on Nextseq 550 and reads were pre-processed and aligned to
the mm10 genome as described for native ChlP-seq.

Omni ATAC-seq analysis:

Omni ATAC-seq peaks were called with HOMER using -factor -size 150 -fragLength 150 parameters. Differential
peaks were determined with Diffbind after recentering peaks and resizing to to 300bp (summits = 150). There
were 14,169 peaks differentially expressed between zone1 and zone 4/5 iOSNs (with an FDR less than
0.05). We used HOMER to identify ne-novo motifs in these differentially accessible peaks.

CUT&RUN

CUT&RUN was performed as described in(Skene et al., 2018). After FAC-sorting, cells were pelleted and
washed 2x with Wash Buffer, before binding to activated Concanavalin A beads by incubating 10 minutes at
room temperature with rotation. 100,000-250,000 cells were used per antibody. Supernatant was removed and
beads were resuspended in 200ul Antibody buffer with NIFA or control (rabbit-anti-rat) antibodies at 1:200
dilution and incubated overnight at 4°C with gentle rotation. Beads were washed once with Digitonin Buffer, and
Protein A-MNase fusion protein was added at 700ng/ml in digitonin buffer and incubated for 1 hour at 4°C with
gentle rotation. Beads were washed 3x in Digitonin buffer and then resuspended in 150ul digitonin buffer and
set to cool in a heat block set in an ice bath for ~ 5 minutes. MNase cleavage was activated with the addition of
CaCl2 (2mM final concentration) and placing the tube back in the ice bath to incubate for 5 minutes. Digestion
was stopped with the addition of STOP buffer and incubated for 30 minutes at 37°C to release the fragments.
Libraries were prepared with NUGEN Ovation V2 DNA-Seq Library Preparation Kit, and sequenced 75PE on
NextSeq 550. Reads were pre-processed and aligned to the mm10 genome as described for native ChlP-seq

In situ Hi-C:

In situ Hi-C and library preparation was performed as exactly as described(Monahan et al., 2019). Briefly, FAC-
sorted cells (inputs ranged from 150,000 to 500,000 cells) were pelleted at 500 rcf for 10 minutes and lysed in
Lysis buffer (50 mM Tris pH 7.5 0.5% NP40, 0.25% sodium deoxychloate 0.1% SDS, 150 mM NaCl and 1x
protease inhibitors) by rotating for 20 min at 4°C. Nuclei were pelleted at 2500 rcf, permabilized in 0.05% SDS
for 20 min at 62 °C, then quenched in 1.1% Triton-X100 for 10 min at 37 °C. Nuclei were then digested with
Dpnll (6U/ul) in 1% Dpnll buffer overnight at 37 °C. In the morning, nuclei were pelleted at 2,500g for 5 min and
buffers and fresh Dpnll enzyme were replenished to their original concentration and nuclei were digested for 2
additional hours. Restriction enzyme was inactivated by incubating 20 minutes at 62 °C. Digested ends were
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filled in for 1.5 hours at 37 °C using biotinylated dGTP. Ligation was performed for 4h at room temperature with
rotation. Nuclei were pelleted and sonicated in 10 mM Tris pH 7.5, 1 mM EDTA, 0.25% SDS on a Covaris S220
(16 minutes, 2% duty cycle, 105 intensity, Power 1.8-1.85 W, 200 cycles per burst, max temperature 6°C). DNA
was reverse crosslinked with RNAseA and Proteinase K overnight at 65 °C then purified with 2x Ampure beads
following the standard protocol and eluted in water. Biotinylated fragments were enriched with Dynabeads
MyOne Strepavidin T1 beads and on bead library preparation was carried out with NUGEN Ovation V2 DNA-
Seq Library Preparation Kit, with some modifications: instead of heat inactivation following end repair beads
were washed 2x for 2 min at 55 °C with Tween Washing Buffer (TWB)(0.05% Tween, 1 M NaCl in TE pH 7.5)
and 2x with 10 mM Tris pH 7.5 to remove excess detergent. After ligation of adapters beads were washed 5x
with TWB and 2x with 10 mM Tris pH 7.5. Libraries were amplified for 10 cycles and cleaned up with 0.8V
Ampure beads. Each experiment was performed with two biological replicates and prepared Hi-C libraries were
sequenced 75PE on NextSeq 500.

In situ Hi-C analysis:

Reads were aligned to the mm10 genome using the distiller pipeline (https://github.com/mirnylab/distiller-nf),
uniquely mapped reads (mapq > 30) were retained and duplicate reads discarded. Contacts were then binned
into matrices using cooler. (Abdennur and Mirny, 2020). Analysis was performed on data pooled from two
biological replicates, after confirming that the results of analysis of individual replicates were similar. Hi-C contact
maps of OR clusters on chromosome 2 were generated with raw counts of Hi-C contacts normalized to
counts/billion at 100kb resolution. The maximum value on the color scale was set to 150 contacts per 100kb bin.
Analysis of zonal OR gene cluster contacts was performed normalized counts binned at 50kb resolution. All
analyses were repeated using balanced counts generated by cooler (-mad-max 7), with similar results except
balanced matrices discarded almost 10% of OR cluster bins due to relatively poor sequencing coverage.

Dip-C:

To isolate mature olfactory sensory neurons, Castaneous (Cas) mice were crossed to OMP-ires-GPF mice. MOE
was collected from adult heterozygous mice resulting from this cross. The tissue was dissected into zone 1 and
zoned4/5, fixed for 10 minutes in 2% formaldehyde and FAC-sorted to isolate GFP+ mOSNs. Dip-C was
performed as described(Tan et al., 2019) on 96 mature OSNs: 48 each from zones 1 and zones 4/5. Briefly, cells
were lysed in Hi-C Lysis Buffer (10mM Tris pH8, 10mM NaCl, 0.2% NP40, 1x protease inhibitors) on ice for 15
minutes, nuclei were pelleted at 2500 rcf for 5 min at 4°C, then resuspended in 0.5% SDS and permeabilized 10
minutes at 62 °C then quenched in 1.1% Triton X-100 15min at 37 °C. Nuclei were digested in 1x Dpnll buffer
and 6U/ul Dpnll enzyme and digested overnight at 37°C. Nuclei were then washed once in Ligation Buffer, and
resuspended in Ligation buffer with 10U T4 DNA Ligase (Life Tech), and incubated for 4 hours at 160C shaking
at 600rpm. After ligation nuclei were pelleted and resuspended in cold PBS with DAPI to a final concentration of
300nM and GFP+ cells were FAC-sorted into a 96 well plate with 2ul lysis buffer (20mM Tris pH 8, 20mM NacCl,
0.15% Triton X-100, 25mM DTT, 1mM EDTA, 500nM Carrier ssDNA, and 15ug/mL Qiagen Protease) and lysed
for 1 hour at 50°C and inactivated 15 minutes at 70°C. DNA was transposed by adding 8ul transposition buffer
(12.5 mM TAPS pH 8.5, 6.25mM MgCl2, 10% PEG 8000) with ~0.0125 uLTn5 (Vanzyme) and incubated at 55°C
for 10 min, then stopped with transposome removal buffer (300nM NaCl, 45 mM EDTA, 0.01% Triton X-100 with
100ug/mL Qiagen Protease) and incubated at 50°C for 40 minutes and 70°C for 20 minutes. Libraries were
amplified 14 cycles with i5 and i7 Nextera primers, with unique barcodes for each cell. Libraries from all cells
were pooled and cleaned up with Zymo DNA Clean and Concentrate Kit. Libraries were sequenced 150PE on
NextSeq 550.

Dip-C analysis:

Sequenced Dip-C reads were processed according to the Dip-C pipeline (https://github.com/tanlongzhi/dip-c).
Reads were aligned to mm10 with BWA mem, and hickit was used to determine the haplotype of each contact
based on SNPs between Cas and OMP-ires-GFP mice and make a model of the 3D genome. Since OMP-ires-
GFP mice were a mixture of BI6/129 strains, we only included SNPs that were unique to Cas mice to distinguish
homologs. After alignment, cells were filtered using several quality control metrics described in Tan et al. 2019:
We excluded cells that had less than 20,000 reads, cells that had a low contact-to-read ratio, and cells that had
a high variability in 3D structure across computational replicates. Only 4 of 96 cells failed these metrics. Overall,
the median number of contacts across cells was over 400,000. Computational analysis OR genes and Greek
Island enhancers, including computing average contact densities and analysis of the 3D models, was performed
using the Dip-C pipeline. Average contact densities between OR genes and/or Greek Islands were calculated
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with ‘dip-c ard’. Pairwise distances between OR genes and/or Greek Islands from the 3D models were extracted
with ‘dip-c pd’. Heatmaps of pairwise distance were either ordered by genomic position or reordered using
hierarchical clustering. To determine the size of OR gene aggregates and Greek Island hubs, the number of OR
genes or Greek Islands within a specified radius of was calculated with ‘network_around.py’. 3D models were
visualized with PyMol and used to generate sequential slices of the nucleus.

Antibodies:

OIfr17 antibody were raised in rabbits against epitope RRIIHRTLGPQKL located at the C-terminus of the OR
protein. Olfr1507 antibody was described in (Barnea et al., 2004). NFIA antibody from Active Motif (39397) was
used for IF and CUT&RUN. Rabbit-anti-rat antibody from abcam (ab97096brewerb) was used as a control in
CUT&RUN. The following antibodies were used for native ChIP: H3K79me3 (abcam ab2621) and H3K9me3
(ab8898).

Supplemental Figure and Table Legends

Supplementary Figure S1 (related to Figure 1): OR genes highly expressed in progenitors are less
frequently chosen in mature OSNs.

(A) Heatmap shows the expression of known olfactory lineage markers in single cells ordered into columns by
their t-SNE cluster identity. Expression is represented in terms of log2 fold change relative to their average
expression.

(B) Bulk RNA-seq of cell populations isolated using the same experimental strategy outlined in Figure 1A
dissected into zone 1 (left) zone 2/3 (middle), and zone 4/5 (right).

(C) Aggregate OR expression per zonal cell population from single cell RNA-seq (normalized for the number of
cells per zonal population) shows onset of OR expression in INP3 cells and zonal OR preference in different
populations.

(D) OR expression in INP and mOSN cells shows an anticorrelation between ORs preferentially expressed at
the in INP vs mOSN stage.

Supplementary Figure S2 (related to Figure 2): Progressive accumulation of heterochromatin on OR
genes occurs in developing OSNs.

(A) H3K9me3 and H3K79me3 native ChlP-seq signal over 63 OR enhancers (Greek Islands) in mOSNs from
three zonal dissections: zone1 top, zone2/3 middle, and zone 4/5 bottom. Heatmaps centered on Greek Islands
show high levels of H3K79me3 and H3K9me3 in mOSNs from all zones.

(B) Heatmaps of H3K9me3 native ChIP-seq signal over OR genes in GBC, INP, iOSN and mOSN populations
shows a similar onset of deposition to that of H3K79me3.

(C) Heatmaps of H3K9me3 native ChIP-seq in mOSNs from dissected zones and a pure population of Olfr1507
(zone 5 OR) expressing mOSNSs.

(D) Comparison of H3K79me3 native ChlP-seq over OR genes n zone 4/5 iOSNs and mOSNs. H3K79me3
signal is depositred progressively on zone 4/5 ORs as the cells mature.

(E) H3K79me3 native ChlIP signal track over the OR gene cluster containing Olfr1507 in zone1 mOSNs (top
row), zone 4/5 mOSNs (middle row), and OIfr1507-expressing zone5 mOSNs (bottom row). Results show
absence of H3K79me3 over the active gene in Olfr1507 expressing mOSNs and near equal signal over all other
OR genes regardless of their zone. Purple triangle marks the H Greek Island enhancer.

Supplementary Figure S3 (related to Figure 3): Hi-C in iOSNs shows nuclear structure during OR choice:
isolation of ORs from lower zones and increased enhancer interaction

(A) In situ Hi-C contact matrices of a 90Mb region of chromosome 2 in zone1 and zone4/5 iOSNs show long
range interactions between three large OR gene clusters. The OR cluster on the right (blue) enriched for zone
4/5 ORs, does not contain any zone1 ORs, and only makes strong interactions with other clusters in zone4 /5
iOSNs.

(B) Heatmaps of average interchromosomal HiC contacts between OR genes annotated by their zonal index
show increased contacts in zone 4/5 iOSNs compared to zone1 iOSNs.

(C) Interchromosomal interactions between OR gene loci are correlated with the amount of H3K79me3
deposition. Heatmap of normalized interchromosomal Hi-C contacts between OR cluster bins. Each bin is
annotated according to the zonal index of their resident OR genes: zone1 ORs, red; zone2-3 ORs, green; zone4-
5 ORs, blue (shown in the zonal color bar) and ordered by H3K79me3 ChlIP signal (gray color bar on top). OR
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cluster regions that have higher levels of H3K79me3 and are enriched for zone1 ORs have increased trans Hi-
C contacts.
(D) Quantification of interchromosomal interactions between Greek Island enhancers shows they form more
frequent interactions in zone4/5 compared to zone1 iOSNs (Wilcoxon rank sum test p-value = 8.12x10-8).
(E) Comparison of interchromosomal interactions made by individual Greek Islands shows 47 out of 59 form
significantly more contacts in zone 4-5 (Wilcoxon rank sum test: p-value < 0.5). Greek Islands residing in OR
clusters with zone 4-5 ORs and no zone1 ORs (blue) are 5 of the top 6 most differentially interacting Greek
Islands. All analysis was performed at 50kb resolution and shows merged data from two biological replicates
that yielded similar results when analyzed separately.

Supplementary Figure S4 (related to Figure 4): OR compartments are highly variable between single cells
but show a consistent difference between cells of different zones.

(A, B) Hierarchically clustered heatmaps of distances between zonal ORs (described in Figure 4) computed from
3D genome structures show OR genes within 10 particle radii (~600nm) in each zone1 mOSN (A) and zone4/5
mOSN (B).

(C,D) Analysis of all OR genes within 2.5, 5 and 10 particle radii (analogous to ~150, 300 and 600nm) of one
another shows that OR genes in zone 4-5 mOSNs are in proximity to a greater number of OR genes on different
chromosomes (C) and form more complex compartments (a higher number of chromosomes within a given
distance) (D). Asterisk denotes Wilcoxon rank sum test p-value <0.001).

(E) On average a larger fraction of Greek Islands within zone 4-5 mOSNs is found near (within 2.5 particle radii)
of Greek Islands from other chromosomes (mean of 27% in zone 4-5 cells, and 22% of zone 1 cells, Wilcoxon
rank sum test p-value 0.003).

(F) The size of the largest hub (defined as the maximum site of interchromosomal interactions between Greek
Islands) --which ranges from 4-8 interchromosomal Greek Islands--is similar in zone 1 and zone 4-5 mOSNSs.

Supplementary Figure S5 (related to Figure 5): Increased expression of NFI factors in higher zones may
compensate for their relatively weaker OR promoters.

(A) Expression levels of core OSN lineage transcription factors EBF1-4, Lhx2 and Ldb1 at different stages of
OSN development in zone1 cells (red), zone 2/3 cells (green) and zone 4/5 cells (blue). Out of these only Ldb1
is differentially upregulated in zone 4/5 in INP and iOSN cells (asterisk) with an adjusted p-value =0.007 and
2.08x10-7, respectively.

(B) NFIA immunofluorescence staining in zones 1 and 5 MOE. Strong nuclear staining is only observed in zone
5 neuronal cells, which are outlined on the top and bottom with dashed lines. Staining is also observed in non-
neuronal sustentacular cells (located above the dashed line) in both zones.

(C) Heatmaps of omni-ATAC peaks in zone 1 and zone 4/5 iOSNs show increased coverage over OR promoters
in zone 4/5 iOSNs. Heatmaps are centered on the TSS with 2kb flanking on either side and the plots above show
the average signal per zonal category (colored by zonal annotation). The motifs shown were identified with
HOMER to be differentially enriched on 259 zone 1 OR promoters relative to 187 zone 4/5 promoters and vice
versa. Promoters are defined as 500bp upstream and downstream of the TSS.

(D) Density plot of the best EBF motif found in each OR promoter separated by zone.

(E) Heatmap of omni-ATAC signal on each of the 63 Greek Island enhancers in iOSNs, centered on the Greek
Islands and showing a 1kb flanking region on either side (left). A plot of omni-ATAC signal on each Greek Island
in zone 1 iOSNs vs zone 4/5 iOSNs (right). Greek Islands are colored based on the types of OR genes in their
resident OR clusters (blue: clusters have 4/5 ORs; red: clusters have zone 1 ORs and no zone 5 ORs; black: all
others). Significantly differentially accessible Greek Islands (p-value<0.05 determined with Diffbind) are shaped
as stars.

(F) Heatmap of NFIA CUT&RUN signal on Greek Islands shows enrichment of signal relative to a control
antibody.

Supplementary Figure S6 (related to Figure 6): OE in Nfi ABX knockout zone5 undergoes a homeotic
transition in their OR repertoire while maintaining their cellular identity.

(A) Schematic showing the experimental and genetic strategy for deleting Nfi genes in progenitors (“early”
deletion, left) and mOSNs (“late” deletion, right).

(B) MA plot showing the effect of Nfi ABX “early” (left) and “late” (right) triple knockout on zone4/5 OSN marker
expression (significantly differentially expressed genes are in red). Pie chart with quantification of significantly
downregulated genes is shown.
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(C) Volcano plot showing expression of non-zonal mMOSN markers, zone 1/2 mOSN markers and zone 4/5 mOSN
markers in mMOSNs isolated from NFI ABX triple, NFI AB double and NFIX zone4/5 MOE relative to wt. Only
13/200 non-zonal mature markers are significantly downregulated in NFI ABX triple knockout, compared to
90/207 zone 5 markers significantly downregulated and 29/138 zone1 markers that were significantly
upregulated. Expression of zone 4/5 mOSN markers varied between the NFI knockout genotypes. Blue:
significantly differentially expressed genes (p-value < 0.5), red: significantly differentially expressed genes with
a > 2-fold change.
(D) Differential expression analysis of all ORs in the different NFI knockout genotypes. Percentages of
significantly upregulated (red) and downregulated (blue) ORs are shown.
(E) Plot with expression of zone3 ORs in Nfi ABX triple and Nfi AB double knockout zone 4/5 shows a different
set of zone3 ORs ectopically expressed in each genotype.

Supplementary Figure S7 (related to Figure 7): Nfi ABX knockout zone 4/5 cells closely resemble zone
2/3 cells in chromatin state, compartment formation and OR expression

(A) Heatmap with side by side comparison of H3K79me3 ChlP-seq signal over OR genes in mOSNs from zone
1, zone 2/3, zone 4/5 and Nfi ABX knockout zone 4/5 shows zone 4/5 knockout mOSNs have a chromatin state
most similar to that of zone 2/3 mOSNSs.

(B) Identification of zone 3 OR genes that are differentially ectopically expressed in RNA-seq of zone 4/5 Nfi
ABX triple knockout vs Nfi AB double knockout olfactory epithelium (left). Zone 3 OR genes that significantly
more enriched in Nfi ABX triple knockout have a higher level of H3K79me3 in zone 4/5 NFI ABX knockout
mOSNSs.

(C) Side by side heatmaps of average interchromosomal Hi-C contacts between OR genes of different zonal
indexes show the nuclear OR interactome in zone 4/5 Nfi ABX knockout cells is most similar to that of zone 2
mOSN.

(D) Density plot of trans Hi-C contacts made by zone1 (red), zone 2-3 (green) and zone 4-5 (blue) ORs with a
large OR cluster on chromosome 2 shows a different pattern of interchromosomal interactions in each cell type.
OR genes residing in the cluster are shown at the bottom (colored by their zonal index). Zone 4/5 mOSNs have
a more level pattern of contacts, while both zone 2/3 mOSNs and zone 4/5 Nfi ABX knockout cells show
preferential interactions with regions that are enriched for zone 1 ORs. Purple triangle marks the Paros enhancer.
(E) In aggregate, there is no significant difference in intrachromosomal interaction between Greek Islands in
zone 4/5 wt and NFI ABX triple knockout cells.

(F) Nfia CUT&RUN signal over Greek Island enhancers in developing mOSNs isolated from the whole MOE of
NFI ABX knockout and wt mice.

Table 1 (related to Figure 5): Complete list of transcription factors differentially expressed between zones 1
and zones 4/5 at various stages of OSN differentiation. In the main Figure 5 we only included TFs with a 3 fold
difference between the two zones but here we have a less stringent list including TFs with 2 fold differential
expression.

Table 2 (related to STAR methods): Complete list of mouse genotypes analyzed in this manuscript.
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GenelD zonel_TPM zone2_TPM zone5_TPM log2FoldChai padj cell_type
Foxgl 80.24 297.48 410.12 2.35 0.00948007 GBC
Msx1 56.29 166.76 328.25 2.56 0.03121975 GBC
Nfib 71.80 251.86 299.85 2.07 0.00174117 GBC
Nfix 38.23 108.65 214.31 2.50 1.59E-05 GBC
Nfia 21.89 41.80 148.05 2.80 1.66E-09 GBC
Meis1 24.18 78.19 131.04 2.45 7.91E-07 GBC
Bclllb 28.29 164.30 81.43 1.55 3.69E-06 GBC
Foxo6 25.24 99.74 56.51 1.20 0.02359723 GBC
Meis3 17.10 36.54 52.18 1.68 1.12E-06 GBC
Isl1 5.82 13.94 38.54 2.71 0.01119622 GBC
Etv4d 11.40 10.71 30.78 1.49 6.33E-04 GBC
Bhlhe40 5.81 11.45 19.45 1.77 0.02591955 GBC
Tfap2c 1.39 10.79 12.83 3.18 0.00597711 GBC
Camk1d 5.38 5.85 12.31 1.24 0.00841582 GBC
Etvl 2.81 3.13 10.74 1.98 0.00330003 GBC
Kcnip3 3.72 7.46 9.72 1.43 2.89E-07 GBC
Tnfaip3 291 4.85 7.74 1.47 0.02574715 GBC
Smad9 0.77 3.43 7.53 3.29 8.29E-08 GBC
Dmbx1 0.67 1.25 7.33 3.47 0.0059241 GBC
Nr2f1l 0.09 1.74 5.75 5.90 1.52E-05 GBC
Foxnl 0.30 5.13 4.52 3.86 1.33E-04 GBC
Pgr 0.66 1.70 3.73 2.46 0.03284667 GBC
Sp6 0.46 0.79 1.53 1.69 0.01076764 GBC
Irak3 0.27 0.24 1.45 2.44  0.038297 GBC
Lyll 0.00 0.76 0.93 5.79 0.03403761 GBC
Mitf 0.26 1.53 0.91 1.80 0.02138906 GBC
Csrnp3 0.24 0.73 0.87 1.90 0.00351894 GBC
Eda2r 0.05 1.68 0.80 3.86 0.03675813 GBC
Hmgn3 273.99 559.37 547.84 1.01 0.00422285 INP
Nfia 21.58 61.84 265.15 3.58 3.52E-24 INP
Nfib 58.33 162.12 255.07 2.10 1.30E-05 INP
Foxgl 46.11 107.23 238.58 2.30 3.46E-04 INP
Nfix 40.55 105.32 185.01 2.16 1.70E-06 INP
Meis1 29.84 83.36 156.11 2.36 5.96E-10 INP
Rarg 65.84 107.30 148.75 1.19 0.0018389 INP
Meis3 32.04 70.61 92.48 1.53 5.54E-09 INP
Anxa4 40.69 60.12 82.30 1.03 0.03068661 INP
Id3 8.69 24.04 55.62 2.64 0.00254786 INP
Msx1 4.62 8.12 37.10 2.93 2.47E-04 INP
Six3 4.83 8.22 24.35 2.25 0.00549691 INP
Fankl 9.60 21.60 21.02 1.12 0.00200439 INP

Isl1 4.36 4.45 18.88 2.07 0.01300826 INP
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Nfatc2 5.72 6.34 14.84 1.35 1.84E-07 INP

Zfp641 2.28 7.83 13.69 2.58 0.00128156 INP

Mafb 1.36 1.45 11.96 3.11 2.17E-07 INP

Ndp 2.74 5.95 11.40 2.04 1.78E-09 INP

Csrnpl 2.98 3.05 9.25 1.62 0.00770192 INP

Rwdd3 1.86 6.56 5.60 1.57 0.00853563 INP

Etv4 1.44 0.70 3.97 1.53 5.73E-04 INP

Thrb 1.13 1.59 3.69 1.67 0.01000206 INP

Arid3c 0.42 0.52 3.56 3.01 0.01629115 INP

Sp6 1.07 3.95 2.73 1.32 9.74E-04 INP

Nr2fl 0.02 1.09 2.17 6.35 9.12E-05 INP

Snai2 0.14 0.22 1.24 3.33 0.01750981 INP

Nfib 30.01 103.21 243.49 2.97 5.86E-11 iOSN
Nfix 37.53 103.35 201.74 2.38 7.49E-08 iOSN
Nfia 8.48 27.52 185.38 4.39 2.00E-36 iOSN
Mixip 80.03 98.50 166.17 1.04 3.29E-07 iOSN
Etv4 28.85 45.28 91.62 1.62 1.27E-07 iOSN
Meisl 13.36 28.85 83.10 2.60 1.06E-11 iOSN
Nr4a3 16.01 27.28 68.77 2.08 0.0089984 iOSN
Nrda2 16.54 14.85 60.98 1.85 0.01145275 iOSN
Tled 18.62 13.43 50.16 1.40 6.31E-06 iOSN
Meis3 11.15 24.70 32.88 1.52 5.58E-08 iOSN
Tcf15 1.85 8.58 15.47 3.02 0.0128219 iOSN
Foxgl 2.47 4.03 15.06 2.52 7.68E-05 iOSN
Arid3c 0.43 2.15 12.63 4.75 6.51E-06 iOSN
Rorc 0.64 2.28 12.19 4.12 1.08E-07 iOSN
Nr3c2 2.23 3.63 9.59 2.07 4.05E-04 iOSN
Neurod4 0.51 0.70 8.30 3.98 0.001374 iOSN
Meis2 1.19 1.16 7.19 2.54 3.86E-07 iOSN
Atoh8 0.69 2.95 5.34 2.84 0.0084534 iOSN
Zfp819 1.47 1.79 4.45 1.54 0.00606111 iOSN
Zfp641 0.67 2.21 4.40 2.68 0.00108407 iOSN
Sfrp5 0.35 0.79 3.87 3.38 0.00536294 iOSN
Mndal 0.00 0.17 3.34 7.48 0.00902274 iOSN
Six3 0.75 0.63 3.18 2.05 0.02083481 iOSN
Arhgef5 0.48 0.42 2.81 2.45 0.00670993 iOSN
Ziml 0.12 0.50 2.68 4.46 0.00120695 iOSN
Mafb 0.70 0.97 2.59 1.85 0.01275977 iOSN
Ahrr 0.39 1.29 2.35 2.54 0.0267137 iOSN
Bdnf 0.25 0.71 2.31 3.18 7.47E-04 iOSN
Msx1 0.38 0.25 231 2.34 0.02656035 iOSN
Ifi203 0.01 0.13 2.08 7.23 2.20E-05 iOSN

Pgr 0.32 0.33 1.54 2.23 0.00866476 iOSN
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Prkcb 0.21 0.55 1.54 2.86 5.12E-04 iOSN
IsI2 0.07 1.69 141 4.35 0.00762995 iOSN
Smad9 0.08 0.23 1.14 3.56 2.95E-06 iOSN
Card14 0.01 0.73 0.98 5.82 0.04025943 iOSN
Adgrfl 0.13 0.61 0.79 2.48 0.03111389 iOSN
Zfp820 0.02 0.44 0.69 4.37 0.01656244 iOSN
Esrrg 0.16 0.47 0.66 2.00 0.00987796 iOSN
Insm2 0.00 0.15 0.43 5.28 0.01001617 iOSN
Tfap2c 0.01 0.13 0.42 4.09 0.03820938 iOSN
Nfix 102.56 194.47 305.45 1.51 0.00241763 mOSN
Nfib 24.31 68.39 122.59 2.27 1.54E-06 mOSN
Nfia 5.58 8.05 48.10 3.02 9.37E-17 mOSN
Meis3 15.80 26.00 40.14 1.29 3.86E-06 mOSN
Cebpa 14.59 36.21 39.52 1.38 6.07E-07 mOSN
Kcnip3 6.54 9.52 24.18 1.82 4.87E-21 mOSN
Emx1 0.75 2.14 23.80 4.88 1.32E-05 mOSN
Meisl 5.18 9.31 16.88 1.62 1.44E-04 mOSN
Pax6 4.40 3.74 12.78 1.51 0.03067414 mOSN
Smad9 1.68 2.75 9.82 2.47 1.64E-07 mOSN
Foxgl 1.92 4.63 8.99 2.13 0.00192404 mOSN
Fzdl 2.34 2.36 7.66 1.68 0.01204385 mOSN
Trp73 1.04 1.75 6.45 2.60 7.45E-08 mOSN
Prkcb 0.13 0.23 0.98 2.90 0.00100767 mOSN
Rorb 0.08 0.11 0.94 3.54 0.00806087 mOSN

DIx4 0.00 0.00 0.55 5.00 0.02319678 mOSN
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Experiment

Single Cell RNAseq

Olfactory lineage (zonal)

RNAseq

Olfactory lineage (zonal)
early NFI ABX KO whole MOE
early WT whole MOE

late NFI ABX KO whole MOE
late WT whole MOE

early NFI ABX KO zone5
early NFI AB KO zone5

early NFI X KO zone5

early control zone5

native ChiP-seq
Olfactory lineage

mOSNSs (zonal)

Olfr1507 mOSNs

iOSNs (zonal)

early NFI ABX KO (zoneb)
early NFI WT (zoneb)

omni ATAC-seq
iOSNs (zonal)

CUT&RUN

iOSNs

early NFI ABX KO (zoneb)
early NFI WT (zoneb)

Hi-C

mOSNSs (zonal)

OlIfr17 mOSNs

iOSNs (zonal)

early NFI ABX KO (zoneb5)
early NFIWT (zoneb5)

Dip-C
mOSNSs (zonal)
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Genotype

Mash1-CreER */+; Ngn1-GFP */+; tdTomato f/+

Mash1-CreER */+; Ngn1-GFP */+; tdTomato f/+

NFIA f/f; NFIB f/f ; NFIX f/f; tdTomato f/f; KRT5-CreER */+

tdTomato f/f; KRT5-CreER */+

NFIA f/f; NFIB f/f ; NFIX f/f; tdTomato f/+; OMP-Cre */+

tdTomato f/+; OMP-Cre */+

NFIA f/f; NFIB f/f ; NFIX f/; tdTomato f/f; KRT5-CreER */+; OMP-gfp+
NFIA f/f; NFIB f/f ; tdTomato f/f; KRT5-CreER */+; OMP-gfp+

NFIX f/; tdTomato f/f; KRT5-CreER */+; OMP-gfp+

tdTomato f/f; KRT5-CreER */+; OMP-gfp+

Mash1-CreER */+; Ngn1-GFP */+; tdTomato f/+
OMP-ires-GFP*/+; Olfr1507-ires-Cre*/+; tdTomato f/+
Olfr1507-ires-GFP*/*

Ngn1-GFP*/+; Olfr1507-ires-Cre*/+; tdTomato f/+

NFIA f/f; NFIB f/f ; NFIX f/f; tdTomato f/f; KRT5-CreER */+
tdTomato f/f; KRT5-CreER */+

Mash1-CreER */+; Ngn1-GFP */+; tdTomato f/+

Ngn1-GFP */+
NFIA f/f; NFIB f/f ; NFIX f/f; tdTomato f/f; KRT5-CreER */+
tdTomato f/f; KRT5-CreER */+

OMP-ires-GFP*/+; Olfr1507-ires-Cre*/+; tdTomato f/+
Olfr17-ires-GFP*/* (published data)

Ngn1-GFP*/+; Olfr1507-ires-Cre*/+; tdTomato f/+

NFIA f/f; NFIB f/f ; NFIX f/f; tdTomato f/f; KRT5-CreER */+
tdTomato f/f; KRT5-CreER */+

OMP-ires-GFP*/+ (het between Castaneous and 129/BI6 background)


https://doi.org/10.1101/2020.08.30.274035
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.30.274035; this version posted September 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Age

P4-P6

P6

>8 weeks
>8 weeks
>8 weeks
>8 weeks
>8 weeks
>8 weeks
>8 weeks
>8 weeks

P4-P6

>8 weeks
>8 weeks
P6

>8 weeks
>8 weeks

P4-P6

P4-P10
>8 weeks
>8 weeks

>8 weeks
P4-P6

>8 weeks
>8 weeks

>8 weeks
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Cell type isolated

GBC:tdTom+, INP: tdTom+ GFP+, iOSN: GFP+(bright) tdTom-, mOSN: GFP dim tdTom-

GBC:tdTom+, INP: tdTom+ GFP+, iOSN: GFP+(bright) tdTom-, mOSN: GFP dim tdTom-
tdTom+/dim

tdTom+/dim

tdTom+

tdTom+

GFP+, tdTom+/dim

GFP+, tdTom+/dim

GFP+, tdTom+/dim

GFP+, tdTom+/dim

GBC:tdTom+, INP: tdTom+ GFP+, iOSN: GFP+(bright) tdTom-, mOSN: GFP dim tdTom-
GFP+

GFP+

GFP+

tdTom+/dim

tdTom+/dim

GFP+ (bright), tdTom-

GFP+ (bright), tdTom-
tdTom+/dim
tdTom+/dim

GFP+
GFP+
GFP+
tdTom+/dim
tdTom+/dim

GFP+
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