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Abstract 

The specific neural systems underlying the subjective feeling of fear remain 

vigorously debated in affective neuroscience. Here, we combined functional MRI 

with machine learning to identify and evaluate a sensitive and generalizable neural 

signature predictive of the momentary self-reported subjective fear experience across 

discovery (n=67), validation (n=20) and generalization (n=31) cohorts. We 

systematically demonstrate that accurate fear prediction crucially requires distributed 

brain systems, with important contributions from cortical (e.g., prefrontal, 

midcingulate and insular cortices) and subcortical (e.g., thalamus, periaqueductal 

gray, basal forebrain and amygdala) regions. We further demonstrate that the neural 

representation of subjective fear is distinguishable from the representation of 

conditioned threat and general negative affect. Overall, our findings suggest that 

subjective fear, which exhibits distinct neural representation with some other aversive 

states, is encoded in distributed systems rather than isolated ‘fear centers’. This 

signature provides a neuromarker for monitoring fear-related neuropathology and 

evaluating novel treatments targeting pathological fear. 
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Fear is probably the most studied emotion during the last decades, yet despite 

considerable advances in animal models and human neuroimaging research, vigorous 

debates on how to define and investigate fear and its facets continue 1-4. When we talk 

about fear in everyday life, we primarily refer to the subjective feeling of being afraid 

3. However, in psychological and neuroscientific conceptualizations, fear also 

describes defensive behaviors, such as freezing, and peripheral physiological changes 

that accompany such behaviors 5,6.  

The neural basis of ‘fear’, or threat behaviors, has been extensively mapped in 

animal models using Pavlovian conditioning and predator exposure protocols 3,7. 

These models provide compelling evidence for a pivotal role of subcortical systems, 

particularly the central extended amygdala, as well as the hypothalamus and 

periaqueductal gray (PAG), in mediating threat detection and defensive responses 7-13. 

However, the subjective emotional experience of fear remains ultimately inaccessible 

in animal models, and recent conceptual frameworks argue that the evolutionarily 

conserved defensive survival circuits that account for the behavioral and physiological 

responses to threats might be distinct from those underlying the subjective experience 

of fear 3,6,14-16. The differentiation between the defensive response and the subjective 

experience of fear has critical implications for translational research on pathological 

fear 6, given that animal models primarily evaluate novel treatments by means of 

effects on physiological and behavioral defensive threat reactivity 17, whereas feelings 

of exaggerated fear or anxiety represent the primary clinical outcome and reason for 

patients to seek treatment 18. 
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In humans, lesion and functional magnetic resonance imaging (fMRI) approaches 

have been employed to determine the specific brain systems that underlie the 

subjective feeling of fear. Early studies in a patient with focal amygdala lesions 

demonstrated impairments in fear-related processes, including recognition and 

experience of fear 19,20, which contributed to an amygdala-centric fear perspective. 

However, subsequent studies reported variable fear-related functional consequences 

in patients with focal amygdala lesions 21. For instance, some patients with focal and 

complete amygdala lesions maintain intact fear recognition 22and experience fear, 

anxiety and panic in response to breathing CO2-enriched air 23. fMRI studies in 

healthy subjects suggest that it is time to move beyond an amygdala-centric fear 

perspective and demonstrate that stimuli that evoke subjective feelings of fear elicit 

activation not only in the amygdala but also PAG, hypothalamic and frontal regions 

24-27. However, the conventional fMRI approach applied in these studies has been 

limited. In particular, it is designed to permit the inference of whether a single brain 

region (e.g., a voxel) is activated conditionally on a stimulus, but does not allow 

reverse inferences about ‘fear’ states given brain activity 28. Furthermore, mass 

univariate approaches are inherently focused on individual regions or, in the case of 

connectivity analyses, circumscribed networks yet do not model joint activity across 

distributed brain regions working together to underpin fear experience 29, and 

stimulus-induced activation changes in single brain regions typically have only 

modest effect sizes 30-32. These issues raise the question of whether isolated regions 
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can provide adequate and comprehensive brain-level descriptions of complex mental 

processes such the subjective feeling of fear.  

To provide sufficient and process-specific brain-level descriptions of mental 

processes with large effect sizes recent studies have combined fMRI with machine 

learning-based multivariate pattern analysis (MVPA). This approach can capture 

information at much finer spatial scales 33 and provide considerably larger effect sizes 

in brain-outcome associations 31 thus allowing the development of sensitive and 

specific brain signatures of mental processes 32,34-36, including acquired defensive 

responses 37 and subjective emotional states 38,39. Moreover, an initial MVPA study 

has revealed promising findings suggesting that offline categorical fear ratings 

collected before fMRI are associated with a neural signature that is independent of 

online autonomic arousal indices acquired during fMRI 40 (henceforward referred to 

as animal fear schema signature (AFSS) AFSS in this study for convenience). The 

MVPA approach additionally allows functional separation of mental processes based 

on population coding 31, despite overlapping univariate activation 35,41,42 and thus 

offers an opportunity to determine process-specific neural representations of (often) 

concurrent fear-related processes, such as the experience of fear and defensive 

responses.  

 Moreover, the perspective of an isolated fear center in the brain has additionally 

been challenged by conceptual perspectives, including recent appraisal 43 and 

constructionist 2 theories of emotion which suggest that emotional experiences result 

from interactions between multiple systems including core affect, sensory, memory, 
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motor, and cognitive systems 44, and by the two-system model suggesting that 

interactions of subcortical defensive systems with prefrontal regions engaged in 

consciousness are critical to establish a neural representation of the subjective fear 

experience 6.  

Here, in the context of ongoing debates about the neural representations of fear, 

we capitalize on recent advances in MVPA-based neural decoding techniques to 

determine whether (1) it is possible to develop a sensitive and generalizable neural 

representation of the subjective fear experience on the population level, (2) this neural 

representation can predict momentary (trial-wise) fear experience on the individual 

level, (3) the neural representation in isolated systems such as the amygdala or 

‘cortical consciousness network’ is sufficient to capture the subjective experience of 

fear, and (4) the neural representation of the momentary fear experience is distinct 

from the representations of the conditioned defensive threat response and general 

aversive states. More specifically, we employed a support vector regression (SVR) 

algorithm in healthy participants (n = 67) to identify the brain signature that predicted 

the intensity of trial-by-trial rated subjective experiences of fear elicited by fear-

evoking pictures ranging from low to high fear induction (Fig. 1A). The performance 

of the established visually induced fear signature (VIFS) was evaluated in (a) an 

independent validation cohort (n = 20), who underwent a similar but not identical fear 

induction paradigm (Fig. 1B) as well as a generalization cohort (n = 31) from a 

previous study that employed a different fear induction paradigm and MRI system 40 

and (b) a comparison with the AFSS (Fig. 1C). To extend the perspective from a 
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population to an individual level we tested whether the VIFS can predict trial-wise 

fear experience for each subject in discovery and validation cohorts separately. We 

further systematically identified brain regions that were associated with (forward 

model, i.e., expressing the observed data as functions of underlying variables) and 

predictive of (backward model, i.e., expressing variables of interest as functions of the 

data) subjective fear experience 45 and examined to what extent single brain systems 

or networks can capture subjective fear experience. Moreover, to determine the 

functional specificity of the neural fear experience signature we compared the spatial 

and functional similarities between the VIFS with the signature of conditioned 

defensive threat response 37 (mostly referred to as ‘conditioned fear response’ in the 

literature, but see ref 3 for a discussion on the terminology) and general negative 

emotional experience 32, respectively (Fig. 1C). Together this systematic evaluation 

can advance ongoing debates on how the brain constructs subjective fear, whether the 

neural mechanisms of the conscious experience of fear are distinct from defensive 

responses elicited by conditioning 3,6,14-16 or unspecific aversive emotional experience, 

and ultimately promote valid estimates of effect size with high clinical significance 

for the evaluation of novel treatments that specifically target subjective fear 

experience. 

 

Results  

Visual stimuli elicited a robust range of subjective fear  
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The experience of fear was induced by visual stimuli with varying levels of e.g., 

threatening or scary situations. Subjects were explicitly instructed to imagine that they 

were encountering the situation displayed in the picture to increase the vividness of 

the stimulus and were asked to report their current level of fear for each trial on a 5-

point Likert scale ranging from 1 (neutral/slightest fear) to 5 (very strong fear). To 

initially test whether the visual stimuli elicited meaningful and varying levels of 

subjective fear we plotted the number of each selected subjective fear level (across 

subjects) for each run (Supplementary Fig. 1A) and for each stimulus category 

(animal, human and scene; Supplementary Fig. 1B). We found that the stimuli 

induced sufficient levels of fear experience in the discovery cohort (n = 67) which 

was used to develop the neural signature of subjective fear (see below for details), 

such that over14% trials of each stimulus type were rated as 5 (reflecting that they 

induced strong fear) and self-reported fear levels were generally evenly distributed 

across categories and runs. Moreover, 65 out of 67 subjects reported all 5 levels of 

subjective fear whereas the remaining 2 subjects used ratings ‘1-4’.  

 

A brain signature sensitive to predict visually induced subjective experience of 

fear 

We applied SVR to identify a whole-brain signature of fMRI activation that predicted 

the intensity of self-reported fear ratings during observation of fear-evoking pictures 

in the discovery cohort (Fig. 2A). To evaluate the performance of the visually induced 

fear signature (VIFS), we applied the VIFS to data from test subjects in both 
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discovery (10×10-fold cross-validated, see Methods for details) and validation (n = 

20) cohorts to calculate the VIFS pattern expressions for individual participants’ 

activation maps for each of 5 levels of reported fear. The developed VIFS accurately 

predicted ratings of reported fear in both discovery and independent validation 

cohorts. Specifically, for individual participants in the discovery cohort the average 

within-subject correlation between predicted and actual fear ratings (5 or 4 pairs of 

scalar values per subject) was r = 0.89±0.01 (standard error (SE)), the mean explained 

variance score (EVS) was 72.5±2.1%, the average root mean squared error (RMSE) 

was 1.38±0.08 and the overall (between- and within-subjects) prediction-outcome 

(i.e., 333 pairs) correlation coefficient was 0.57 (averaged across 10 repetitions; EVS 

= 17%; bootstrapped 95% confidence interval (CI) = [0.49, 0.63]) (Fig. 2B). Testing 

the VIFS model developed on the discovery cohort, with no further model fitting, in 

the validation cohort (Fig. 1B) revealed comparably high prediction-outcome 

correlations (within-subject r = 0.87±0.02; mean explained variance score = 

68.3±5.6%; average RMSE = 1.40±0.14; overall prediction-outcome r = 0.59, 95% CI 

= [0.48, 0.69], EVS = 12%, permutation test one-tailed P < 0.001; Fig. 2C), indicating 

a sensitive and robust subjective fear signature on the neural level (see also 

generalization and benchmarking of the VIFS below). To further determine the 

sensitivity of the VIFS to predict levels of subjective fear experience a two-alternative 

forced-choice test was applied, comparing pairs of activation maps within each 

subject and choosing the one with higher VIFS response as more fearful. The VIFS 

response accurately classified high (average of rating 4 and 5) versus moderate (rating 
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3) and moderate versus low (average of rating 1 and 2) fear in both cohorts with 88-

93% accuracy (Cohen’s d: 1.18-1.40), and high versus low with 100% accuracy in 

both cohorts (Cohen’s d: 2.20-2.58) (Fig. 1B, C; see also Table 1 for a detailed 

summary of classification performance). Moreover, the VIFS response could 

distinguish each successive pair of fear rating levels (e.g., rating 4 versus 5) with ≥ 

80% accuracy, which were significantly better than chance level (50%; P < 0.001; 

except ratings of ‘1’ versus ‘2’ in the validation cohort) (Fig. 2B, C).  

Retraining the decoder excluding the occipital lobe revealed high prediction 

accuracies, suggesting that although the fear-predictive signals might be partly 

embedded in regions engaged in visual processing the contribution of visual cortical 

patterns is small (Supplementary Results and Supplementary Fig. 2; see also the 

prediction using visual network alone in the following ‘Alternative models to 

determine the contribution of isolated fear predictive systems’ section, which 

demonstrated a substantial lower performance as compared to the whole-brain 

prediction). In addition, we applied the VIFS to time series data using dot product in 

the discovery (10×10-fold cross-validated) and validation datasets to determine the 

specificity of the visually induced fear pattern with respect to confrontation with 

imminent threat (rather than anticipation or cognitive evaluation). Visual inspection of 

the VIFS reactivity at each time point following stimulus onset indicated that the 

VIFS response began approximately 4s following picture onset and increased with 

increasing levels of reported fear during approximately 6-12s (Fig. 2D, E). These 

findings validate the adequacy of the hemodynamic response model and confirmed 
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that the VIFS was specific to brain activity during threat exposure, as opposed to 

threat anticipation (pre-stimulus) or cognitive evaluation (response reporting).  

 

Generalization and benchmarking of VIFS performance  

An important feature of population-level neural signatures is that their performance 

can be evaluated in new datasets and paradigms, although prediction across cohorts, 

paradigms and different MRI systems has been challenging. Taschereau-Dumouchel, 

et al. 40 developed a neural decoder which predicted the general subjective fear of 

different animal categories (assessed before fMRI) and the authors shared the dataset 

used for training their model – which we term the ‘generalization dataset’ here – 

allowing us to compare the performance of the VIFS with the AFSS on the discovery, 

validation and generalization cohorts. We found that the VIFS predicted all three 

datasets well (overall prediction-outcome correlations rs > 0.56) while the AFSS only 

performed well on its training dataset (r = 0.64) but poorly on both discovery and 

validation cohorts (rs < 0.27) (Fig. 2F, G; Table 1; see also Supplementary results for 

details), indicating a robust generalization and high sensitivity of the VIFS to predict 

fear experience across populations, fear induction paradigms and MRI systems.  

 

Within-subject trial-wise prediction 

The feeling of fear is a momentary, highly subjective and individually constructed 

state 2,4 and thus a key question is to what extent the population-level model (i.e., the 

VIFS), which is a statistical summary of a highly variable set of instances, can predict 
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momentary (trial-wise) fear experience for each subject (on the individual level). To 

this end we performed single trial analyses using the Least Squares All (LSA) 

approach
46 to obtain a beta map for each stimulus for each subject in both discovery 

(~80 beta maps per subject) and validation (~60 beta maps per subject) cohorts (see 

Methods for details). The VIFS was next applied to these beta maps to calculate the 

pattern expressions which were further correlated with the true ratings for each 

subject separately. The statistical significance was evaluated by prediction-outcome 

Pearson correlation for each subject separately. We found that the VIFS could 

significantly predict trial-by-trial ratings for 61 out of 67 subjects in the discovery 

cohort (cross-validated) and for 16 out of 20 subjects in the validation cohort. The 

mean prediction-outcome correlations were 0.38±0.01 and 0.40±0.03 for the 

discovery and validation cohorts, respectively. Our findings suggest that although fear 

experience differs between individuals 2,4 the VIFS could predict the level of 

momentary fear experience on the individual level in a large population.  

 

Subjective fear is associated with and predicted by distributed neural systems  

We systematically determined individual brain regions that were associated with 

subjective fear ratings and that provided consistent and reliable contributions to the 

whole-brain fear decoding model using different analytic strategies. We first 

examined the conventional univariate linear parametric effect of fear ratings, i.e., 

voxels that increased (yellow in Supplementary Fig. 3A) or decreased (blue in Fig. 

Supplementary 3A) linearly with within-subject fear ratings across trials, by 
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performing one-sample t-tests on the parametric modulation beta maps. Subjective 

fear was associated with activation in a broad set of cortical and subcortical regions, 

including increased activation in the amygdala and surrounding sublenticular 

extended amygdala, anterior insula, anterior midcingulate cortex (aMCC), thalamus, 

PAG and surrounding midbrain, ventrolateral prefrontal and lateral orbitofrontal 

cortices, and fusiform/ventral occipital-temporal regions. Conversely, we found 

negative correlations with fear ratings in the ventromedial prefrontal cortex (vmPFC), 

medial orbitofrontal cortex (OFC), posterior insula/operculum, and dorsolateral 

prefrontal cortex (dlPFC), posterior cingulate cortex (PCC), inferior parietal lobule 

(IPL) and supplementary motor area (SMA) (q < 0.05, FDR corrected; Supplementary 

Fig. 3A). 

We then compared these univariate (single-voxel) findings to multivariate models 

in several ways. First, we performed a one-sample t-test analysis (treating participant 

as a random effect) on the weights from within-subject (ideographic) multivariate 

predictive models (details see Methods). Like the univariate maps, within-subject 

predictive models (backward models) included consistent weights in brain regions 

spanning multiple large-scale cortical and subcortical systems, which exhibited a 

large overlap with the fear regions as determined by the univariate approach 

(Supplementary Fig. 3B; q < 0.05, FDR corrected).  

Some brain features that make large contributions to the multivariate models 

might capture and control for sources of noise in the data, rather than being directly 

related to mental events 45. To provide a more transparent comparison between 
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univariate and multivariate results, we thus calculated within-subject reconstructed 

‘activation patterns’ (forward models; see Methods for details), which assess the 

relationships between each voxel and the response (fitted values) in the multivariate 

model. These are also referred to as ‘structure coefficients’ in the statistical literature 

47. Supplementary Fig. 3C shows results of a group analysis of ‘activation patterns’ 

across individuals (q < 0.05, FDR corrected). As Haufe, et al. 45 suggest, voxels that 

exhibit significant predictive weights and structure coefficients are important regions 

that are both directly correlated with the outcomes (i.e., fear ratings) and are 

predictive after accounting for other brain regions in the multivariate model. As 

shown in Supplementary Fig. 3C, the thresholded ‘model activation pattern’ was 

remarkably similar to the univariate parametric effects of fear ratings (Supplementary 

Fig. 3A). This suggests that the multivariate model is encoding activity across 

distributed regions and confirms that subjective fear is associated with activity in a 

large number of cortical and subcortical regions. Indeed, a formal assessment of 

overlap (Supplementary Fig. 3D) showed that virtually all regions with consistent, 

significant model weights in the multivariate models also encoded model information 

(i.e., showed significant ‘model activation patterns’). The broad conclusion is that the 

neural representation of human fear is not limited to a single or a set of focal regions 

(e.g., the amygdala), but rather includes a broad set of regions spanning multiple 

systems.  

 We next determined regions that reliably contributed to the fear prediction within 

the VIFS itself by applying a bootstrap test to identify regions with significant, 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2020.11.23.394973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/


consistent model weights q < 0.05, FDR corrected; 34. In line with within-subject 

models, a set of distributed brain regions exhibited significant model weights (Fig. 

3A) and structure coefficients (Fig. 3B), including amygdala, MCC, insula, inferior 

frontal cortex (IFG), PAG, occipital and sensorimotor areas (Fig. 3C).  

Overall, regions that were most consistently associated with subjective fear across 

the analyses included key regions engaged in conditioned threat (amygdala, aMCC 

and PAG), and general avoidance motivation (anterior insula, posterior ventral 

striatum) as determined across species while other regions such as the right posterior 

lateral prefrontal cortex/inferior frontal junction and ventral occipito-temporal stream 

have been associated with cognitive emotion construction in humans and dysregulated 

emotional experience in mental disorders 32,48. Negative associations with fear were 

most consistently identified in medial prefrontal and sensorimotor regions. In 

conclusion, across both univariate and multivariate analyses, our results indicate that 

fear experience is represented in distributed neural systems involved in defensive 

responses, avoidance behavior, negative affect, emotional awareness as well as 

pathological fear and anxiety. 

 

Alternative models to determine the contribution of isolated fear predictive 

systems: local searchlights, pre-defined regions and networks perform 

considerably worse than VIFS  

Given the continuous debate on the contribution of specific brain regions, such as 

amygdala 8,13,20,49 and more recently the cortical consciousness network 3,6, to the 
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subjective fear experience, we (1) located local brain regions that were predictive of 

subjective fear experience using both searchlight- and parcellation-based analyses, 

and (2) examined to what extent models trained on single brain region and network 

could predict subjective fear ratings as compared with the whole-brain model (i.e., the 

VIFS). As shown in Fig. 4A and 4B, subjective fear experience could be significantly 

predicted by activations in widely distributed regions (averaged across 10×10-fold 

cross-validation procedure). Given that the uncorrelated p values equivalent to q < 

0.05 were liberal in this case we displayed brain regions that survived at P < 0.001 

uncorrected (corresponding to q < 0.004 and 0.003, FDR corrected, respectively). 

However, none of these local regions predicted subjective fear to the extent the VIFS 

did (see also Supplementary Fig. 4A-D for predictions of models trained on discovery 

cohort on validation and generalization cohort).  

 We next re-trained predictive SVR models (with the identical cross-validation 

and prediction procedure as used for the VIFS) restricted to activations in (a) the 

bilateral amygdala; (b) a pre-defined cortical network associated with consciousness 6 

(see Methods for details); (c) a subcortical region group (including striatum, thalamus, 

hippocampus and amygdala); and (d) each of 7 large-scale resting-state functional 

networks 50,51. We found that the amygdala (prediction-outcome correlation r = 0.26, 

0.25 and 0.32 for discovery (cross-validation), validation and generalization cohorts, 

respectively) as well as the other brain networks (see Fig. 4C, D, Supplementary 

Table 1 and Supplementary Fig. 4E, F see details) could, to some extent, predict 

subjective fear ratings. However, although statistically significant (Ps < 0.001, one-
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tailed permutation t-tests) the effect sizes in terms of prediction-outcome correlations 

(including searchlight- and parcellation-based predictions) were substantially smaller 

than those obtained from the VIFS, which used features that span multiple systems.  

This comparison is fair even though the number of features differ, as models were 

always tested on hold-out participants, eliminating the problem of overfitting as more 

predictors are used (a substantial problem in models trained and tested without cross-

validation). However, to assess the potential effect of the numbers of features in the 

prediction analyses (i.e., whole-brain model uses much more features/voxels), as 

shown in Fig. 4D, we randomly selected samples from a uniform distribution 

spanning the entire brain (black), consciousness network (red), subcortical regions 

(light purple) or a single resting-state network (averaged over 1,000 iterations) 31. The 

asymptotic prediction when sampling from all brain systems as we did with the VIFS 

(black line in Fig. 4D and Supplementary Fig. 4E, F) was substantially higher than the 

asymptotic prediction within individual networks (colored lines in Fig. 4D and 

Supplementary Fig. 4E, F; see also Supplementary Table 1 for details). This analysis 

thus demonstrated that whole-brain models have much larger effect sizes than those 

using features from a single network. Furthermore, model performance reached 

asymptote when approximately 10,000 voxels were randomly sampled across the 

whole-brain, as long as voxels were drawn from multiple systems, further 

emphasizing that subjective fear experience is encoded in distributed neural patterns 

that span multiple systems. Importantly, we found similar results when applying the 

models trained on the discovery cohort to the validation and generalization cohorts, 
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indicating that models trained on ~10,000 randomly sampled voxels were robust and 

generalizable. Together the results from the systematic analyses provide the first 

evidence that the subjective experience of fear is represented in distributed neural 

systems which argues against fear experience being reducible to activations in any 

single brain region or canonical network.  

 

Subjective fear and conditioned defensive threat responses engage distinct neural 

representations in humans 

Translational fear models are strongly based on threat/fear conditioning paradigms 

and conditioned threat is often used synonymous with fear in the literature 

(‘conditioned fear’) 3. However, recent fear conceptualizations emphasize potential 

mechanistic and neural distinctions between acquired defensive responses and the 

subjective experience of fear 3,6,14-16. Against this background we examined whether 

the neural representation of subjective fear and conditioned threat responses were 

dissociable by applying the VIFS to two datasets acquired during Pavlovian threat 

conditioning in which an auditory cue 37 or visual cue 52 (see Methods for details), 

respectively, was paired with a shock (CS+) while a control cue was unpaired (CS-). 

We specifically tested whether the VIFS generalized to discriminate CS+ versus CS-. 

Second, Reddan, et al. 37 developed a threat-predictive signature (TPS) that accurately 

classified CS+ versus CS- in new individuals based on brain activity patterns. We 

applied the TPS to the fear paradigm data and assessed its performance in predicting 

subjective fear ratings by correlating the overall (between- and within-subjects) 
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signature responses with the true ratings. We propose that if subjective fear and 

conditioned threat share similar neural mechanisms, the VIFS and TPS should 

perform well in cross-prediction: i.e., VIFS responses could predict CS+ versus CS-, 

and TPS responses should correlate with subjective fear ratings. Conversely, low 

cross-prediction indicates independence of the neural representations for ‘fear’ and 

‘conditioned threat’ constructs (for similar approaches see e.g., refs 35,36,42,53). As 

shown in Fig. 5 the VIFS did not classify CS+ from CS- above chance during 

auditory (accuracy = 57±6.0%, Cohen’s d = 0.09, permutation test one-tailed P = 

0.234, see also Fig. 5A) or visual threat conditioning (accuracy = 62±6.4%, Cohen’s d 

= 0.35, permutation test one-tailed P = 0.265). Given that the CS+ presentation 

induces higher autonomic arousal (as e.g. measured by skin conductance responses 54 

in the visual threat conditioning dataset, see Supplementary Methods for details), 

these findings additionally suggest that the VIFS is not sensitive to general emotional 

arousal per se. Whereas the TPS predicted visual CS+ versus CS- cues with high 

accuracy (accuracy = 93±3.3%, Cohen’s d = 1.30, permutation test one-tailed P = 

0.003) in the visual threat conditioning data, it did not predict fear ratings in our 

discovery, validation, or generalization cohorts (discovery: r = 0.16, permutation test 

one-tailed P = 0.085, Fig. 5B; validation: r = 0.18, permutation test one-tailed P = 

0.111; generalization: r = 0.24, permutation test one-tailed P = 0.183).  

In support of separable brain representations underlying subjective fear 

experience and defensive responses towards acquired threat signals we additionally 

found that the VIFS and TPS pattern weights were spatially uncorrelated on the 
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whole-brain level (r = 0.02, permutation test one-tailed P = 0.125). Moreover, we 

explored the joint distribution of normalized (z-scored) voxel weights of these two 

patterns by plotting VIFS on the y-axis and the TPS on the x-axis (for a similar 

approach see ref 55). As visualized in Fig. 5C, stronger weights across the whole-brain 

(sum of squared distances to the origin [SSDO]) were actually observed in the 

nonshared Octants (1, 3, 5, 7). Overall these results suggest distinct neural 

representations for subjective fear experience and conditioned threat responses. These 

findings provide the first evidence for separable whole-brain fMRI multivariate 

patterns for subjective experience of fear and conditioned threat, indicating 

functionally independent neural representations for subjective fear and conditioned 

threat.  

In addition to whole-brain models, we re-trained subjective fear and conditioned 

threat patterns using data within integrative regions traditionally related to ‘fear’ but 

independent of sensory modality. To this end the automated meta-analysis toolbox 

Neurosynth 56 was used to a create a mask based on a meta-analysis of previous 

studies that frequently use the word ‘fear’. The mask included regions (e.g., 

amygdala, vmPFC, aMCC, PAG and insula) showing consistent associations with 

‘fear’ across 363 published studies (i.e., ‘reverse inference’; thresholded at q < 0.05, 

FDR corrected). We found that the fear pattern trained on a priori ‘fear’ regions could 

significantly predict subjective feelings of fear (prediction-outcome rs > 0.30, Ps < 

0.002 for discovery, validation and generalization cohorts) and the threat pattern 

could classify unreinforced CS+ versus CS- (accuracies > 62%, Ps < 0.008 for 
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auditory and visual conditioning datasets) although the performances were 

substantially worse as compared to whole-brain models. In support of the whole-brain 

findings, the two patterns were spatially not correlated (r < 0.01) and the conditioned 

threat pattern could not predict subjective fear (rs < 0.15, Ps > 0.13) and the 

subjective fear pattern did not distinguish unreinforced CS+ vs CS- (accuracies < 

53%, Ps > 0.69). Together, these findings further emphasize that subjective fear- and 

conditioned threat-related representations within core ‘fear’ regions are coded by 

separable neural representations in humans. 

 

VIFS responses mediate subjective fear induced by negative emotion  

‘Fear’ is a highly aversive subjective state and represents a construct within the 

negative valence systems domain in the Research Domain Criteria (RDoC) matrix 57. 

To separate fear from general negative affect we next investigated the spatial and 

functional similarities between the VIFS and PINES (picture-induced negative 

emotion signature) which was developed to track general negative emotion experience 

32. We found that these two signatures exhibited a weak positive spatial correlation (r 

= 0.08, permutation test one-tailed P < 0.001) and the VIFS was more sensitive to 

predict subjective fear rather than general negative emotion while the PINES more 

accurately predicted general negative emotion as compared to fear (Fig. 6A; Table 2; 

see Supplementary results for more details).  

Given that the experience of fear can be considered as a prototypical example of a 

negative emotion and that the PINES could, to some extent, predict subjective fear 
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(discovery cohort: r = 0.38; validation cohort: r = 0.37) we next applied multi-level 

mediation analysis, which tested whether a covariance between two variables (X and 

Y) can be explained by a third variable (M), to investigate the relation between 

PINES response, VIFS response and subjective fear rating. We employed two models 

to test (1) whether the VIFS response (mediator M), which measured subjective fear-

specific response, could explain the association between non-specific general negative 

emotion response (i.e., the PINES response; X) and fear ratings (Y) (our main 

hypothesis), and (2) as well as the alternative hypothesis of whether the general 

negative emotion response (M), which might represent the overarching emotional 

state of fear, mediates the association between fear signature (X) and fearful rating 

(Y). We found that the first model (Fig. 6B) accounted better for our data than the 

second one (Fig. 6C) in terms of effect size (model 1: Cohen’s d = 0.21; model 2: 

Cohen’s d = 0.06) although only a partial mediation effect was found as well as the 

observation that the first model worked in both discovery and validation cohorts 

whereas the second model only worked in discovery cohort (see Supplementary 

Results for more details). Our findings thus suggest that general negative emotion 

might not fully directly elicit subjective feeling of fear, and the response of the 

subjective fear neural signature could partially explain the association between 

negative emotion response and subjective fear rating. 

 

Specificity of the VIFS for the experience of fear  

Given that emotional stimuli such as the pictures we used can induce a complex array 
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of negative emotional experiences (e.g. disgust, anger, nonspecific negative arousal) we 

further explored whether the VIFS is most closely related to subjective fear. To this end 

we acquired ratings of associated negative emotions (disgust, anger and sadness) and 

emotional valence and arousal for the stimuli in an independent sample of participants 

(n = 120). The ratings were acquired online and each participant rated all stimuli with 

respect to one emotion (n = 20 subjects per emotion). Ratings were provided on a 5-

point rating scale ranging from “1” (not at all) to “5” (extremely) for all dimensions 

except for valence which was rated from “1” (extremely positive) to “9” (extremely 

negative) with “5” indicating neutral.  

To determine whether and to which extent the VIFS reacts to other emotional 

domains, we correlated the image-by-image series of normative ratings with the image-

by-image variation in VIFS responses, for each emotion category assessed. Specifically, 

we used the single trial beta maps for each picture and averaged the cross-validated 

VIFS responses for each picture. We next correlated the picture-specific group-average 

VIFS responses with the picture-specific group-average ratings for each emotional 

domain separately (for a similar approach see ref. 58). The VIFS response was more 

strongly correlated with subjective fear (r79 = 0.77) than any other emotional rating 

(disgust: r79 = 0.64; anger: r79 = 0.63; sadness: r79 = 0.60; arousal: r79 = 0.66; valence: 

r79 = 0.65) suggesting that the VIFS indeed reacts most strongly to subjective fear and 

to a lesser extent to other related negative emotions or general emotional features such 

as arousal. Moreover, Direct comparisons of the correlations between VIFS and 

emotion ratings supported this conclusion and revealed significantly stronger 
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correlations with fear than other emotions. For each subject in the discovery cohort, we 

correlated the cross-validated VIFS response for each picture with the picture-specific 

group-average ratings for each emotional domain separately. We found that the VIFS 

tracked subjective fear ratings significantly better that any of the other 5 emotions 

collected in the online sample (e.g. fear versus the second best prediction, arousal; 

paired t-test t66 = 7.31, P < 0.001, Bonforroni corrected). Together with our previous 

findings showing that (1) the VIFS could not distinguish CS+ (which induces higher 

autonomic responses as reflected in elevated SCR responses) from CS- and (2) the 

prediction accuracy of VIFS on high arousing nonspecific negative emotion was 

substantially lower than the prediction accuracies of the subjective  fear, theses 

findings suggest that the VIFS shows reasonable specificity for subjective fear, but to 

some extent also captures aspects of other negative emotions or arousal which are 

inherently associated with fear. 

To test whether the low-level visual properties of the stimuli contributed to the 

prediction performance we determined several visual features of the stimuli and tested 

whether these can be accurately predicted by the VIFS. In detail, we measured the edge 

intensity (MATLAB’s Canny edge detector), the saliency 

(http://www.saliencytoolbox.net/) as well as the visual clutters (feature congestion and 

subband entropy 59) for each picture. Next, we ran similar correlational analyses as we 

introduced before. We found that the group-average VIFS responses were not 

significantly correlated with any of the visual features (most significant r = -0.19, P = 

0.09). Moreover, the VIFS tracked ratings of subjective fear from the online sample 
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significantly stronger than it tracked any of the visual features (fear versus the next 

closest feature, edge intensity; paired t-test t66 = 22.15, P < 0.001, Bonferroni corrected). 

Taken together, our findings suggest that the prediction performance was not driven by 

the visual properties of the stimuli. 

 

Discussion  

In the current study we developed and validated a sensitive and generalizable brain 

signature for the subjective experience of fear, which predicted momentary fear on a 

population and individual level and thus could have a high potential for translational 

applications aiming at yielding information about individual fear experience. 

Furthermore, we challenge the notion that subjective fear is a product of a single brain 

region or network and propose that subjective fear is encoded in brain regions that 

span multiple neural systems. Across a series of analyses subjective fear was both 

associated with and predicted by distributed brain systems and fear prediction by 

isolated brain systems was substantial lower compared to the whole-brain approach. 

Driven by recent debates on whether subjective fear and the defensive response 

elicited by conditioned threat involve different brain circuits 3,6,14-16 we, moreover, 

employed a fine-grained analysis technique (MVPA) to show distinct neural 

representations underlying these two mental processes on the whole-brain level and in 

traditional ‘fear’ modules such as the amygdala. Finally, neural representations of 

subjective fear and general negative emotion exhibited shared yet separable 

representations, with the VIFS response mediating the association between the 
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general negative emotion response and subjective fear. Together our findings shed 

light both on how subjective experience of fear is represented in the human brain and 

how this neural representation is separable from conditioned defensive responses and 

general negative emotion, respectively.  

Machine learning techniques have been increasingly used to develop integrated 

predictive models of activation across multiple brain systems to predict mental 

processes with large effect sizes (or explained variance) 29,31. Applying support vector 

regression, we developed and validated a sensitive and robust whole-brain signature 

(VIFS) that accurately predicted the intensity of subjective fear experience across 

different fear induction paradigms and MRI systems. The identification of this 

intermediate neural signature of subjective fear is pivotal, as it may (1) provide 

objective neurobiological measures that can supplement self-report which can be 

biased by self-reflection or communicative intentions 60 and, (2) promote the 

development and evaluation of process-specific interventions that target subjective 

fear experience.  

Our findings have theoretical implications for ongoing debates about the neural 

circuits of fear, specifically the neural representation of subjective fear experience (for 

an overview see ref 1). For instance, the subcortical fear system theory suggests that 

feelings of fear arise from highly conserved amygdala-centered subcortical circuits 

8,10,13, while high-order perspectives emphasize the contribution of the fronto-parietal 

‘consciousness network’ to fear experience and propose that subcortical circuits are 

not directly responsible for fear experience 3,6,16,40. Although limitations of the 
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structure-centric view are widely acknowledged 44 and appraisal 43 and constructionist 

2 theories have suggested that fear experience results from interactions between 

multiple processes and brain systems, a systematic empirical comparison of structure-

centric versus distributed representation models of subjective fear was previously 

lacking.    

The present findings challenge the structure-centric and network-centric models 

of subjective fear by demonstrating that subjective fear is represented in distributed 

brain regions, including but not limited to amygdala, prefrontal, subcortical and 

sensory cortices. Whereas previous predictive models focused on identifying brain 

regions that reliably contributed to the model for interpretation purpose 32,34 we 

updated and extended the characterization of the predictive model. We divided voxels 

into different classes based on the combination of predictive weights and 

reconstructed ‘activation patterns’ 45 and revealed that distributed brain regions, 

which exhibited significant predictive weights and reconstructed ‘activations’, 

contribute to both, predictions of and associations with the outcome. Second, we 

demonstrated that isolated regions (e.g., amygdala) and networks (e.g., ‘consciousness 

network’) predicted subjective fear to a substantially lower extent than the whole-

brain signature (VIFS). Finally, around 10,000 voxels that were randomly sampled 

across the whole-brain could achieve high performance of predicting subjective fear, 

which could also be generalized to new data collected with different paradigms. 

Together our findings suggest that the fear circuits identified in previous studies may 

only represent aspects of the subjective fear experience, as reflected by comparably 
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low effect sizes, yet that the subjective feeling of fear requires engagement of 

distributed brain systems. Our findings are consistent with recent MVPA studies 

demonstrating that affective processes including general negative emotion 32, 

vicarious 35 and self-experienced pain 31 are distributed across regions, and meta-

analytic evidence suggesting that emotional experience is constructed in a set of 

highly interacting brain regions 44.  

The RDoC matrix suggests several paradigms to study acute threat (or ‘fear’), 

including fear conditioning and exposure to emotional evocative stimuli. Indeed, 

subjective feelings of fear and conditioned threat exhibit a pattern of similar brain 

activation particularly in subcortical and prefrontal cortices 24-26,37,52. However, recent 

conceptualizations propose that due to the fact that the conditioned automatic 

defensive response represents an innate, fixed action pattern which does not 

necessarily require consciousness (as opposed to subjective fear which is a conscious 

experience), the underlying neural mechanisms might be distinct 3,6,14-16. Traditional 

univariate activation analyses lack anatomical specificity and thus cannot determine 

whether the neural representations of overlapping activations are similar or distinct 

36,61, while the MVPA approach can extract information at finer spatial scales 29,33 and 

permits support for or rejection of claims about neural mechanisms that are shared 

between mental processes 62. Our findings indicate separable neural representations of 

subjective fear and the conditioned defensive response not only on the whole-brain 

level but also in ‘core fear regions’. Our study supports and extends current 

conceptualizations of neurobiologically orthogonal processes and implies that 
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conditioned threat and subjective fear are distinct constructs within the negative 

valence system. 

In line with the RDoC matrix suggesting that fear is a construct of the negative 

valence systems, the VIFS shared similar yet different characteristic functions with 

the PINES which tracks general negative emotional responses including sadness, 

anger, disgust and fear 32. The VIFS was more sensitive to predict subjective fear as 

compared to other emotional domains including disgust, anger, sadness, arousal and 

negative valence, together with the observation that VIFS failed to predicted 

conditioned threat versus safety signals and VIFS responses mediated the association 

between PINES responses and fear ratings, suggesting that the VIFS is a more robust 

and specific brain marker for subjective feelings of fear.  

The present study used IAPS-type static images as stimuli. Although ratings 

revealed that these images could elicit a relative robust range of subjective fear 

experience, the types of variations in stimuli that lead to distinct vs. similar neural 

encoding are still not well understood. It is for instance conceivable that video stimuli 

could activate the VIFS in proportion to the fear-inducing properties of the videos, or 

it is possible that the brain encodes dynamic stimuli differently. These possibilities 

could be tested in future studies. In addition, in the current study we used a SVR 

model to develop the VIFS and to explore the neural basis of subjective fear, however, 

the prediction accuracy and the contributing brain regions could be further explored 

by means of other candidate techniques such as SOS-LASSO which imposes a prior 

that the neural pattern should be sparse but also locally structured 63. Moreover, the 
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amygdala is often considered to be a ‘fear center’ or ‘threat center’ in animal models 

(for a critical discussion on the role of the amygdala in fear and threat (see also ref. 6). 

Although a direct translation of threat-related neural representations in rodents to 

human emotional experiences is limited, a number of human lesion studies in patients 

with complete bilateral amygdala lesions underscores the complex role of the 

amygdala in fear processing in humans. In line with the ‘fear center’ perspective, an 

early human lesion study showed that a patient with focal bilateral amygdala lesions 

never endorsed feeling more than minimal levels of fear 20. However, other studies in 

patients with bilateral focal and complete amygdala lesions demonstrated that the 

amygdala was not critically required to experience panic triggered by a CO2 challenge 

64, subjective affective experience 65 or the modulation of the acoustic startle reflex by 

fear-inducing background stimuli 66, which together raise the question of whether the 

amygdala is causally necessary and sufficient for the experience of subjective fear in 

humans (for an in depth discussion see also ref. 6). Whereas our findings indicate that 

the amygdala per se is not sufficient to represent subjective experience of fear in 

humans, the question of a causal role of the amygdala in subjective fear in humans 

cannot be ultimately addressed in the present study given the indirect nature of fMRI 

measurements and lack of direct experimental manipulations of the brain. In addition 

to a widely distributed pattern of activity, voxels in the amygdala were identified 

across our analytic approaches, suggesting that the amygdala may represent a part of a 

larger network for initiating or integrating a coordinated fear and threat response on 

different levels (see e.g., ref. 67). 
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Pre-registration has been increasingly advocated in the field of neuroimaging 

prediction studies (see e.g., also recent recommendations by Poldrack, et al. 68) and 

might help to reduce analytic flexibility in neuroimaging analyses 69. The analytic 

protocols for the present study have been established in our previous studies see e.g., 

32,34,70 and only the single final model was tested on the validation and generalization 

datasets, however, pre-registration in future studies could further facilitate analytic 

rigor. Moreover, in the current study we showed that subjective fear and nonspecific 

negative emotion shared common yet also distinct neural representations. Our 

findings are based on cross-prediction models and training joint-models over the 

emotional domains in datasets that have been acquired with matched paradigms and 

on an identical MRI system may help to further determine common and separable 

neural representations between fear experience and other emotional domains. 

Moreover, although we identified distinct neural representations for subjective fear 

and conditioned threat on the whole-brain level the corresponding decoders were 

developed based on studies employing different paradigms and stimuli. The 

independence of common neurofunctional representations of subjective fear and 

conditioned threat thus needs to be further evaluated. Future studies could, e.g., align 

the paradigms by using categorical stimuli across the paradigms (e.g., high fear vs. 

neutral stimuli) to further explore whether subjective fear and conditioned threat share 

common neural representations, particularly in local regions. However, the specificity 

of the shared neural basis (if one is found) to threat- and fear-related processes of 

interest would require further testing. 
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In conclusion, we identified a whole-brain neural representation for the subjective 

experience of fear. This visually induced fear signature was validated and generalized 

across participants, paradigms and fMRI scanners. Our findings demonstrate the 

neural basis of subjective fear is not represented by isolated brain regions or networks 

but instead best captured by activations in distributed regions spanning multiple brain 

systems. The specificity of the fear signature was further tested with conditioned 

defensive responses and general negative emotion experience. Our work may provide 

objective neurobiological measures that can supplement self-report fear and be used 

as intermediate markers for treatment discovery that target pathological fear. 

 

Materials and Methods 

Participants in the discovery cohort. Seventy healthy, right-handed participants 

were recruited from the University of Electronic Science and Technology of China in 

this study. Exclusion criteria included color blindness; current or regular substance or 

medication use; current or history of medical or psychiatric disorders; any 

contraindications for MRI. Due to the excessive head motion (> 1 voxel) during fMRI 

scanning data from 3 participants were excluded, leading to a final sample of n = 67 

participants (34 females; mean ± SD age = 21.5 ± 2.1 years). All participants provided 

written informed consent, and the study was approved by the local ethics committee at 

the University of Electronic Science and Technology of China and was in accordance 

with the most recent revision of the Declaration of Helsinki. 
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Stimuli and paradigm used in the discovery cohort. The fear rating task consisted 

of 4 runs with each run encompassing 20 photographs (including humans, animals 

and scenes) from the IAPS (International Affective Picture System), NAPS (Nencki 

Affective Picture System) and internet. A total of 80 stimuli was employed, with each 

presented once. Stimuli were presented using the E-Prime software (Version 2.0; 

Psychology Software Tools, Sharpsburg, PA). Participants were instructed to pay 

attention to the pictures when they came on the screen. Each trial consisted of a 6s 

presentation of the picture followed by a 2s fixation-cross separating the stimuli from 

the rating period. Participants then had 4s to report the fearful state they experienced 

for the stimuli using a 5-point Likert scale where 1 indicated neutral/slightest fear and 

5 indicated most strongly fear. Finally, there was a 6s rest period (fixation-cross) 

before the presentation of the next picture (Fig. 1A). All of the subjects reported ‘1-4’ 

in their responses while 2 out of 67 subjects did not use rating ‘5’.  

 

Discovery cohort MRI data acquisition and preprocessing. MRI data were 

collected on a 3.0-T GE Discovery MR750 system (General Electric Medical System, 

Milwaukee, WI, USA) (see Supplementary Methods for details). Functional MRI data 

was preprocessed using Statistical Parametric Mapping (SPM12 v7487, 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The first 5 volumes of each run 

were discarded to allow MRI T1 equilibration. Prior to preprocessing of functional 

data, image intensity outliers resulting from gradient and motion-related artefacts 

were identified using CanlabCore tools (https://github.com/canlab/CanlabCore) based 
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on meeting any of the following criteria: (a) signal intensity > 3 standard deviations 

from the global mean or (b) signal intensity and Mahalanobis distances > 10 mean 

absolute deviations based on moving averages with a full width at half maximum 

(FWHM) of 20 image kernels. Each time-point identified as outliers was included as a 

separate nuisance covariate in the first-level model. Then, functional images were 

corrected for differences in the acquisition timing of each slice and spatially realigned 

to the first volume and unwarped to correct for nonlinear distortions related to head 

motion or magnetic field inhomogeneity. The anatomical image was segmented into 

grey matter, white matter, cerebrospinal fluid, bone, fat and air by registering tissue 

types to tissue probability maps. Next, the skull-stripped and bias corrected structural 

image was generated and the functional images were co-registered to this image. The 

functional images were subsequently normalized the Montreal Neurological Institute 

(MNI) space (interpolated to 2 × 2 × 2mm voxel size) by applying the forward 

deformation parameters that were obtained from the segmentation procedure, and 

spatially smoothed using an 8-mm full-width at half maximum (FWHM) Gaussian 

kernel. 

 

First-level fMRI analysis used in the discovery cohort. We conducted two separate 

subject-level GLM (general linear model) analyses. The first GLM model was used to 

obtain beta images for the prediction analysis. In this model we included five separate 

boxcar regressors time-logged to the presentations of pictures in each rating (i.e., 1-5), 

which allowed us to model brain activity in response to each fear level separately. To 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2020.11.23.394973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/


model any effects related to motor activity the model also included one boxcar 

regressor indicating the rating period. The fixation cross epoch served as implicit 

baseline. The second GLM model included two regressors of interest, with one 

modeling the picture viewing period and the other modeling the fear rating period. 

Additionally, the design matrix included fear ratings (1-5) reported for each picture as 

a parametric modulator for the picture viewing period.  

All task regressors were convolved with the canonical HRF function and a high-

pass filter of 128 seconds was applied to remove low frequency drifts. Time series 

from multiple runs were concatenated using SPM’s spm_fmri_concatenate.m 

function, which included an intercept for each run and corrected the high-pass filter 

and temporal non-sphericity calculations. Regressors of non-interest (nuisance 

variables) included (1) six head movement parameters and their squares, their 

derivatives and squared derivatives (leading to 24 motion-related nuisance regressors 

in total); and (2) indicator vectors for outlier time points (see above for details). 

 

Participants in the validation cohort. Twenty-two healthy, right-handed participants 

were recruited from the University of Electronic Science and Technology of China in 

this study. Due to excessive head motion (> 1 voxel) during fMRI scanning data from 

2 participants were excluded leading to a final sample of n = 20 participants (6 

females; mean ± SD age = 21.75 ± 2.61 years).  
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Stimuli and paradigm used in the validation cohort. The fear rating task consisted 

of 2 runs with each run encompassing 30 photographs (60 in total) from the IAPS, 

NAPS and internet. Fifty-eight out of sixty stimuli were overlapped with the stimuli 

used in the discovery cohort. Stimuli were presented using the E-Prime software. 

Participants were instructed to pay attention to the pictures when they came on the 

screen. Each trial consisted of a 6s presentation of the picture followed by a jittered 

fixation-cross (1s, 2s or 3s). Participants then had 4s to report the emotional state they 

experienced for the stimuli using a 5-point Likert scale where 1 indicated minimal 

fear/neutral and 5 indicated very strong fear. Finally, there was a jittered fixation-

cross epoch (4s, 5s, or 6s) before the presentation of the next picture (Fig. 1B). All of 

the subjects reported rating ‘1-5’ in their responses. 

 

Validation cohort MRI data acquisition, preprocessing and first-level fMRI 

analysis. Imaging data acquisition, preprocessing and subject-level GLM analysis 

were identical to the discovery cohort. 

 

Generalization cohort. The details of the generalization cohort were reported in 

previous studies (Taschereau-Dumouchel et al., 2018; 2019). Briefly, 31 participants 

(15 females; mean ± SD age = 23.29 ± 4.21 years) underwent a 1h fMRI session 

where they were presented with 3600 images consisting of 30 animal categories and 

10 object categories (90 different images per category). The stimuli were grouped in 

blocks of 2, 3, 4 or 6 images of the same category with each stimulus presented for 1s 
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(no interblock or interstimulus interval). Subjective fear ratings (0 = ‘no fear’ to 5 = 

‘very high fear’) for each category were established before the fMRI procedure 

without presenting any fearful stimuli. We used labels 1-6 instead of 0-5 in Fig. 2F, G 

for display purposes (of note, this procedure changes only the intercept/bias but not 

the pattern weights of the predictive model and has no effects on the prediction-

outcome correlation or the forced-choice classification). The least-square separate 

single trial analysis approach was employed to iteratively fit a GLM to estimate the 

brain response to the first image of each block and then the within-subject beta images 

with the same fear ratings were averaged, which resulted in one beta map per rating 

for each subject (for paradigm, MRI acquisition and analysis details see ref 40).  

 

Multivariate pattern analysis. We applied whole-brain (restricted to a grey matter 

mask36,71) multivariate machine learning pattern analysis to obtain a pattern of brain 

activity that best predicted participants’ self-reported fear ratings. Of note, the 

findings were comparable with a whole-brain mask with white matter and 

cerebrospinal fluid included. We employed the support vector regression (SVR) 

algorithm using a linear kernel (C = 1) implemented in the Spider toolbox 

(http://people.kyb.tuebingen.mpg.de/spider) with individual beta maps (one per rating 

for each subject) as features to predict participants’ fear ratings of the grouped 

pictures they viewed while undergoing fMRI. Of note, we only used data from the 

discovery cohort to develop the VIFS. To evaluate the performance of our algorithm, 

we used a 10×10-fold cross-validation procedure on the discovery cohort during 
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which all participants were randomly assigned to 10 subsamples of 6 or 7 participants 

using MATLAB's cvpartition function. The optimal hyperplane was computed based 

on the multivariate pattern of 60 or 61 participants (training set) and evaluated by the 

excluded 7 or 6 participants (test set). This procedure was repeated 10 times with each 

subsample being the testing set once. To avoid a potential bias of training-test splits, 

the cross-validation procedures throughout the study were repeated 10 times by 

producing different splits in each repetition and the resultant prediction performance 

were averaged to produce a convergent estimation 36,72. Several metrics have been 

proposed to evaluate the predictive power of multivariate predictive signatures (see 

e.g., ref. 68), however, the advantages and disadvantages of each metric are still a 

matter of debate, and metrics vary subtly in their properties. To facilitate a robust 

determination of the predictive accuracy of the neurofunctional signature we therefore 

employed various metrics including correlation, RMSE, EVS and forced-choice 

classification accuracy. Specifically, we used overall (between- and within-subjects; 

333 pairs in total) and within-subject (5 or 4 pairs per subject) Pearson correlations 

between the cross-validated predictions and the actual ratings to indicate the effect 

sizes and the RMSE and explained variance score to illustrate overall prediction error. 

The explained variance score was assessed using the following formula: explained 

variance score = 1-(var[y-ŷ]/var[y]), where y is the true rating, ŷ is the VIFS response 

(plus intercept) and var indicates the variance (as implemented in software packages 

such as scikit-learn). In addition, we assessed classification accuracy of the VIFS 

using a forced-choice test, where signature responses were compared for two 
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conditions tested within the same individual, and the higher was chosen as more 

fearful. We also applied the fear-predictive pattern (trained on the whole discovery 

cohort) to the validation and generalization cohorts to obtain a signature response for 

each map (that is, the dot product of the VIFS weight map and the test image plus the 

intercept) to assess the prediction performance of the VIFS using a permutation test 

with 10,000 random shuffles. Given that the cross-validated permutation test is very 

time consuming the inferences on model performance were only performed using 

permutation testing on the validation and generalization cohorts. 

 

Comparing the performance of VIFS with the AFSS. A previous study has 

developed a whole-brain fear decoder 40. To compare the performance of VIFS with 

the AFSS we applied both patterns to the discovery, validation and generalization 

cohorts and assessed the overall prediction-outcome correlation as well as two-

alternative forced-choice classification accuracies between low, moderate and high 

fear based on the pattern expressions.  

 

Within-subject trial-wise prediction. Here we tested whether the VIFS could predict 

individual trial-by-trial subjective fear. To this end we performed a single-trial 

analysis, which was achieved by specifying a GLM design matrix with separate 

regressors for each stimulus. Each task regressor was convolved with the canonical 

hemodynamic response function. Nuisance regressors and high-pass filter were 

identical to the above GLM analyses. One important consideration for single-trial 
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analysis is that the beta estimates for a given trial could be strongly affected by 

acquisition artifacts (e.g., sudden motion) that cooccur during a trial. For each subject 

we therefore excluded trials with variance inflation factors (a measure of design-

induced uncertainty due to multicollinearity with nuisance regressors) > 3 from 

subsequent analyses (overall ~6% trials were excluded). Next, we calculated the VIFS 

pattern expressions of these single-trial beta maps (i.e., the dot-product of vectorized 

activation images with the VIFS weights), which were finally correlated with the true 

ratings for each participant separately. For subjects in the discovery cohort we used 

the 10×10-fold cross-validation procedure to obtain the VIFS response of each single-

trial beta map for each subject. 

 

Determining brain regions associated with and predictive of subjective fear. To 

identify neural circuits underlying subjective experience of fear we employed a series 

of analyses. Firstly, we performed one-sample t-tests on the first-level univariate 

parametric modulation beta maps to see which brain regions’ activation was 

associated with fear ratings. Next, we used multivariate analyses to locate brain 

regions that predictive of and associated with fear ratings separately as well as brain 

regions showing an overlapping effect. Specifically, we evaluated the consistency of 

each weight for every voxel in the brain across within-subject multivariate classifiers 

(developed with single-trial data) using a one-sample t-test. The thresholded map (q < 

0.05, FDR corrected) showed the consistent fear-predictive brain regions across 

subjects. To this end we performed a prediction analysis (linear SVR with C = 1) for 
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each subject in the discovery cohort separately using their single-trial data (10×10-

fold cross-validated) and only included participants whose fear ratings could be 

significantly predicted by their brain data (evaluated by prediction-outcome Pearson 

correlation; n = 60). Of note, similar results were found when including the entire 

sample.  

Given that the predictive brain regions could be related to (in this case) fear 

processing as well as suppressing the noise in the data 45 we transformed the within-

subject patterns to ‘activation patterns’ using the following formula: A = 

cov(X)*W*cov(S)-1, where A is the reconstructed activation pattern, cov(X) is the 

covariance matrix of training data, W is the pattern weight vector, and cov(S) is the 

covariance matrix of the latent factors, which is defined as WT*X. This reconstructed 

activation is also similar to the ‘structure coefficients’ in the statistical literature.  

Previous studies have argued that both betas and structure coefficients are necessary 

to interpret the model 47. Essentially, the beta indicates the predictive slope and 

direction of effect controlling for other variables in the model whereas the structure 

coefficients indicates the direction of the relationship between the variable and the 

model without controlling for other variables – i.e., in the current study, which voxels 

are positively and which are negatively related to the predicted subjective fear. The 

significant brain regions (one-sample t-test thresholded at q < 0.05, FDR corrected) 

exhibited the consistent fear-associative effect. In parallel with with-subject models 

we conducted bootstrap tests, where we took 10,000 samples with replacement from 

the discovery cohort, repeated the prediction process with each bootstrap sample, and 
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calculated Z scores and two-tailed uncorrected P-values with the mean and standard 

deviation of the sampling distribution, on the population-level fear-predictive pattern 

(i.e., the VIFS) as well as the transformed ‘activation pattern’ from the VIFS to 

identify the reliable fear predictive and associative brain regions of the VIFS 

(thresholded at q < 0.05, FDR corrected). To facilitate the determination and 

interpretation of a subjective fear signature convergent univariate and multivariate 

approaches were implemented. Spatial patterns (or regions) that were consistently 

observed across backward and forward models were considered as reliably and 

consistently associated and predictive of subjective fear. 

 Furthermore, we asked whether fear processing could be reducible to activations 

in a single brain region (e.g., amygdala) or network (e.g., subcortical regions). To 

examine this hypothesis, we employed whole-brain searchlight (three-voxel radius 

spheres) 73 – and parcellation (274 cortical and subcortical regions) 74 – based 

analyses to identify local regions predictive of fear and compared model 

performances of local regions with the whole-brain model (i.e., the VIFS). In 

addition, we compared prediction performances of amygdala (based on Anatomy 

Toolbox version 2.2c; available online in the Cognitive and Affective Neuroscience 

Laboratory Github repository at 

https://github.com/canlab/Neuroimaging_Pattern_Masks) and large-scale networks to 

the whole-brain approach. The networks of interest included 7 resting-state functional 

networks 50,51, a subcortical network (including the striatum, thalamus, hippocampus 

and amygdala) and a ‘consciousness network’ proposed by LeDoux and Pine 6, which 
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composed of anterior cingulate cortex, inferior frontal gyrus, middle frontal gyrus, 

superior frontal gyrus, orbitofrontal gyrus, rectus, olfactory and insula from the AAL 

atlas and the posterior parietal cortex from Shirer, et al. 75. For these analyses we 

trained and tested a model for each searchlight sphere, parcellation, brain region or 

network separately using the discovery data (10×10-fold cross-validated). 

 

Comparing the similarities of the VIFS and a threat-predictive signature. To 

examine the functional and spatial similarities between the VIFS and the TPS threat-

predictive signature; 37 which predicts the defense responses elicited by threat 

conditioning, we (1) applied VIFS to distinguish unreinforced CS+ versus CS- and 

predicted subjective fear ratings using the TPS, and (2) examined the voxel-level 

spatial similarity between these two signatures. Inference on model performance was 

performed using permutation testing with 10,000 random shuffles. Given that the fear 

and threat conditioning studies employed visual and auditory cues, respectively, we 

next tested whether the dissociable effects based simply on differences in sensory 

processing by applying both signatures to an independent visual threat conditioning 

dataset 52. If the predictions were sensory-dependent the TPS would not distinguish 

visual (unreinforced) CS+ versus CS- whereas the VIFS might predict visual CS+ 

from CS-. To this end we included two datasets that employed an auditory and visual 

threat conditioning paradigm during which a previously neutral stimulus was paired 

with an unpleasant shock (CS+) while another matched stimulus was not paired (see 

Supplementary Methods for details). 
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Multilevel two-path mediation analysis. In order to test the relationship between 

VIFS response, fear rating and the PINES response we conducted two multilevel 

mediation analyses using the Mediation Toolbox 

(https://github.com/canlab/MediationToolbox). A mediation analysis tests whether the 

observed covariance between an independent variable (X) and a dependent variable 

(Y) could be explained by a third variable (M). Significant mediation effect is 

obtained when inclusion of M in a path model of the effect of X on Y significantly 

alters the slope of the X–Y relationship. That is, the difference between total (path c) 

and direct (non-mediated, path c′) effects of X on Y (i.e., c - c′), which could be 

performed by testing the significance of the product of the path coefficients of path a 

× b, is statistically significant. The multilevel mediation analysis is designed to 

explain both within- and between-subject variations in the same model by treating the 

subject as a random effect 61. The first-level accounts for the mediation effects within 

each individual participant and the second-level tests for consistency across 

participants and allows for population inference. In the current study we tested 

whether (1) VIFS response mediated the association between PINES response and 

fear rating and (2) PINES response mediated the relationship between VIFS response 

and fear rating. To this end the VIFS and PINES responses were calculated by dot-

product of the single-trial beta maps with the VIFS (through cross-validation 

procedure for the discovery cohort) and PINES patterns respectively for each subject. 
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We used bias corrected accelerated bootstrapping (10,000 replacements) for 

significance testing.  
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Data availability 

The visually induced fear signature, the corresponding data used to develop this 

signature and the thresholded statistical maps are available at 

https://figshare.com/articles/dataset/Subjective_fear_dataset/13271102. Additional 

data related to this paper may be requested from the authors. 

 

Code availability 

Data were analyzed using CANlab neuroimaging analysis tools available at 

https://github.com/canlab/ and from https://github.com/zhou-feng/fMRI-

studies/tree/main/Fear_experience_signature.  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2020.11.23.394973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/


References 

 

1 Mobbs, D. et al. Viewpoints: Approaches to defining and investigating fear. Nature 

neuroscience 22, 1205-1216 (2019). 

2 Barrett, L. F. The theory of constructed emotion: an active inference account of 

interoception and categorization. Social cognitive and affective neuroscience 12, 1-23 

(2017). 

3 LeDoux, J. E. Coming to terms with fear. Proceedings of the National Academy of Sciences 

111, 2871-2878 (2014). 

4 Adolphs, R. The biology of fear. Current Biology 23, R79-R93 (2013). 

5 Gross, J. J. & Feldman Barrett, L. Emotion generation and emotion regulation: One or two 

depends on your point of view. Emotion review 3, 8-16 (2011). 

6 LeDoux, J. E. & Pine, D. S. Using neuroscience to help understand fear and anxiety: a two-

system framework. American journal of psychiatry (2016). 

7 Gross, C. T. & Canteras, N. S. The many paths to fear. Nature Reviews Neuroscience 13, 

651-658 (2012). 

8 Davis, M. The role of the amygdala in fear and anxiety. Annual review of neuroscience 15, 

353-375 (1992). 

9 Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284-292 

(2015). 

10 LeDoux, J. The emotional brain, fear, and the amygdala. Cellular and molecular 

neurobiology 23, 727-738 (2003). 

11 Shackman, A. J. & Fox, A. S. Contributions of the central extended amygdala to fear and 

anxiety. Journal of Neuroscience 36, 8050-8063 (2016). 

12 Takahashi, L. K. Olfactory systems and neural circuits that modulate predator odor fear. 

Frontiers in behavioral neuroscience 8, 72 (2014). 

13 Panksepp, J. Affective neuroscience: The foundations of human and animal emotions.  

(Oxford university press, 2004). 

14 Barrett, L. F. et al. Of mice and men: Natural kinds of emotions in the mammalian brain? 

A response to Panksepp and Izard. Perspectives on Psychological Science 2, 297-312 

(2007). 

15 Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B. & Prévost, C. The ecology of human fear: 

survival optimization and the nervous system. Frontiers in neuroscience 9, 55 (2015). 

16 LeDoux, J. E. & Brown, R. A higher-order theory of emotional consciousness. Proceedings 

of the National Academy of Sciences 114, E2016-E2025 (2017). 

17 Milad, M. R. & Quirk, G. J. Fear extinction as a model for translational neuroscience: ten 

years of progress. Annual review of psychology 63, 129-151 (2012). 

18 Shin, L. M. & Liberzon, I. The neurocircuitry of fear, stress, and anxiety disorders. 

Neuropsychopharmacology : official publication of the American College of 

Neuropsychopharmacology 35, 169-191 (2010). 

19 Adolphs, R. et al. A mechanism for impaired fear recognition after amygdala damage. 

Nature 433, 68-72 (2005). 

20 Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. The Human Amygdala and the 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2020.11.23.394973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/


Induction and Experience of Fear. Current Biology 21, 34-38, 

doi:https://doi.org/10.1016/j.cub.2010.11.042 (2011). 

21 Hurlemann, R. et al. Amygdala control of emotion-induced forgetting and remembering: 

evidence from Urbach-Wiethe disease. Neuropsychologia 45, 877-884 (2007). 

22 Becker, B. et al. Fear processing and social networking in the absence of a functional 

amygdala. Biological psychiatry 72, 70-77 (2012). 

23 Feinstein, J. S. et al. Fear and panic in humans with bilateral amygdala damage. Nature 

neuroscience 16, 270-272 (2013). 

24 Alpers, G. W. et al. Attention and amygdala activity: an fMRI study with spider pictures in 

spider phobia. Journal of Neural Transmission 116, 747-757 (2009). 

25 Stark, R. et al. Hemodynamic brain correlates of disgust and fear ratings. NeuroImage 37, 

663-673 (2007). 

26 Hudson, M. et al. Dissociable neural systems for unconditioned acute and sustained fear. 

NeuroImage, 116522 (2020). 

27 Mobbs, D. et al. When fear is near: threat imminence elicits prefrontal-periaqueductal 

gray shifts in humans. Science 317, 1079-1083 (2007). 

28 Poldrack, R. A. Can cognitive processes be inferred from neuroimaging data? Trends in 

cognitive sciences 10, 59-63 (2006). 

29 Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain 

models in translational neuroimaging. Nature neuroscience 20, 365 (2017). 

30 Poldrack, R. A. et al. Scanning the horizon: towards transparent and reproducible 

neuroimaging research. Nature reviews neuroscience 18, 115 (2017). 

31 Kragel, P. A., Koban, L., Barrett, L. F. & Wager, T. D. Representation, pattern information, 

and brain signatures: from neurons to neuroimaging. Neuron 99, 257-273 (2018). 

32 Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A. & Wager, T. D. A sensitive and 

specific neural signature for picture-induced negative affect. PLoS biology 13, e1002180 

(2015). 

33 Kamitani, Y. & Tong, F. Decoding the visual and subjective contents of the human brain. 

Nature neuroscience 8, 679 (2005). 

34 Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. New England 

Journal of Medicine 368, 1388-1397 (2013). 

35 Krishnan, A. et al. Somatic and vicarious pain are represented by dissociable multivariate 

brain patterns. Elife 5, e15166 (2016). 

36 Zhou, F. et al. Empathic pain evoked by sensory and emotional-communicative cues share 

common and process-specific neural representation. eLife 9, e56929 (2020). 

37 Reddan, M. C., Wager, T. D. & Schiller, D. Attenuating neural threat expression with 

imagination. Neuron 100, 994-1005. e1004 (2018). 

38 Kragel, P. A. & LaBar, K. S. Multivariate neural biomarkers of emotional states are 

categorically distinct. Social cognitive and affective neuroscience 10, 1437-1448 (2015). 

39 Saarimäki, H. et al. Discrete neural signatures of basic emotions. Cerebral cortex 26, 2563-

2573 (2016). 

40 Taschereau-Dumouchel, V., Kawato, M. & Lau, H. Multivoxel pattern analysis reveals 

dissociations between subjective fear and its physiological correlates. Molecular Psychiatry, 

1-13 (2019). 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2020.11.23.394973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/


41 Peelen, M. V., Wiggett, A. J. & Downing, P. E. Patterns of fMRI activity dissociate 

overlapping functional brain areas that respond to biological motion. Neuron 49, 815-

822 (2006). 

42 Woo, C.-W. et al. Separate neural representations for physical pain and social rejection. 

Nature communications 5, 5380 (2014). 

43 Clore, G. L. & Ortony, A. Appraisal theories: How cognition shapes affect into emotion.  

(2008). 

44 Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E. & Barrett, L. F. The brain basis of 

emotion: a meta-analytic review. The Behavioral and brain sciences 35, 121 (2012). 

45 Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate 

neuroimaging. NeuroImage 87, 96-110 (2014). 

46 Rissman, J., Gazzaley, A. & D'Esposito, M. Measuring functional connectivity during distinct 

stages of a cognitive task. NeuroImage 23, 752-763 (2004). 

47 Courville, T. & Thompson, B. Use of structure coefficients in published multiple regression 

articles: β is not enough. Educational and Psychological Measurement 61, 229-248 (2001). 

48 McTeague, L. M. et al. Identification of common neural circuit disruptions in emotional 

processing across psychiatric disorders. American Journal of Psychiatry 177, 411-421 

(2020). 

49 LeDoux, J. The emotional brain: The mysterious underpinnings of emotional life.  (Simon 

and Schuster, 1998). 

50 Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. The organization of 

the human cerebellum estimated by intrinsic functional connectivity. Journal of 

neurophysiology (2011). 

51 Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic 

functional connectivity. Journal of neurophysiology (2011). 

52 Zhou, F. et al. Human extinction learning is accelerated by an angiotensin antagonist via 

ventromedial prefrontal cortex and its connections with basolateral amygdala. Biological 

psychiatry 86, 910-920 (2019). 

53 Corradi-Dell’Acqua, C., Tusche, A., Vuilleumier, P. & Singer, T. Cross-modal 

representations of first-hand and vicarious pain, disgust and fairness in insular and 

cingulate cortex. Nature communications 7, 10904 (2016). 

54 D'Hondt, F. et al. Early brain-body impact of emotional arousal. Frontiers in human 

neuroscience 4, 33 (2010). 

55 Koban, L., Jepma, M., López-Solà, M. & Wager, T. D. Different brain networks mediate the 

effects of social and conditioned expectations on pain. Nature communications 10, 1-13 

(2019). 

56 Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale 

automated synthesis of human functional neuroimaging data. Nature methods 8, 665-

670 (2011). 

57 Cuthbert, B. N. & Kozak, M. J. Constructing constructs for psychopathology: the NIMH 

research domain criteria.  (2013). 

58 Ashar, Y. K., Andrews-Hanna, J. R., Dimidjian, S. & Wager, T. D. Empathic care and distress: 

predictive brain markers and dissociable brain systems. Neuron 94, 1263-1273. e1264 

(2017). 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2020.11.23.394973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/


59 Rosenholtz, R., Li, Y. & Nakano, L. Measuring visual clutter. Journal of vision 7, 17.11-22, 

doi:10.1167/7.2.17 (2007). 

60 Barrett, L. F. Are emotions natural kinds? Perspectives on psychological science 1, 28-58 

(2006). 

61 Woo, C.-W., Roy, M., Buhle, J. T. & Wager, T. D. Distinct brain systems mediate the effects 

of nociceptive input and self-regulation on pain. PLoS Biol 13, e1002036 (2015). 

62 Peelen, M. V. & Downing, P. E. Using multi-voxel pattern analysis of fMRI data to interpret 

overlapping functional activations. Trends in cognitive sciences 11, 4-4 (2007). 

63 Cox, C. R. & Rogers, T. T. Finding Distributed Needles in Neural Haystacks. The Journal of 

Neuroscience 41, 1019-1032, doi:10.1523/jneurosci.0904-20.2020 (2021). 

64 Feinstein, J. S. et al. Fear and panic in humans with bilateral amygdala damage. Nature 

neuroscience 16, 270-272, doi:10.1038/nn.3323 (2013). 

65 Anderson, A. K. & Phelps, E. A. Is the human amygdala critical for the subjective experience 

of emotion? Evidence of intact dispositional affect in patients with amygdala lesions. 

Journal of cognitive neuroscience 14, 709-720, doi:10.1162/08989290260138618 (2002). 

66 Becker, B. et al. Fear processing and social networking in the absence of a functional 

amygdala. Biological psychiatry 72, 70-77, doi:10.1016/j.biopsych.2011.11.024 (2012). 

67 Fanselow, M. S. & Pennington, Z. T. The Danger of LeDoux and Pine's Two-System 

Framework for Fear. The American journal of psychiatry 174, 1120-1121, 

doi:10.1176/appi.ajp.2017.17070818 (2017). 

68 Poldrack, R. A., Huckins, G. & Varoquaux, G. Establishment of Best Practices for Evidence 

for Prediction: A Review. JAMA Psychiatry 77, 534-540, 

doi:10.1001/jamapsychiatry.2019.3671 (2020). 

69 Botvinik-Nezer, R. et al. Variability in the analysis of a single neuroimaging dataset by 

many teams. Nature 582, 84-88, doi:10.1038/s41586-020-2314-9 (2020). 

70 Zhou, F. et al. Empathic pain evoked by sensory and emotional-communicative cues share 

common and process-specific neural representations. Elife 9, e56929 (2020). 

71 Kohoutová, L. et al. Toward a unified framework for interpreting machine-learning models 

in neuroimaging. Nature protocols 15, 1399-1435 (2020). 

72 Zhou, F. et al. Shifted balance of dorsal versus ventral striatal communication with frontal 

reward and regulatory regions in cannabis‐dependent males. Human brain mapping 39, 

5062-5073 (2018). 

73 Kriegeskorte, N., Goebel, R. & Bandettini, P. Information-based functional brain mapping. 

Proceedings of the National Academy of Sciences 103, 3863-3868 (2006). 

74 Fan, L. et al. The human brainnetome atlas: a new brain atlas based on connectional 

architecture. Cerebral cortex 26, 3508-3526 (2016). 

75 Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M. D. Decoding subject-

driven cognitive states with whole-brain connectivity patterns. Cerebral cortex 22, 158-

165 (2012). 

 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2020.11.23.394973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/


Acknowledgements 

We thank Vincent Taschereau-Dumouchel and colleagues for sharing their data. This 

work was supported by the National Key Research and Development Program of 

China (Grant No. 2018YFA0701400) to B.B.; National Institute of Mental Health 

(R01MH076136; R01MH116026) to T.D.W; National Natural Science Foundation of 

China (Grant No. 31530032) to K.M.K; China Postdoctoral Science Foundation 

(Grant No. 2018M643432) to W.Z.. 

 

Author contributions 

F.Z., T.D.W. and B.B. designed the experiment, analyzed the data and drafted the 

manuscript. F.Z. W.Z., Q.Y., and Y.G. conducted the experiment. W.Z., S.Y. and 

K.M.K provided feedback and revised the manuscript. 

 

Competing interests  

The authors declare no competing interests. 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2020.11.23.394973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/


 

Fig. 1 Experimental paradigms and analysis stages. Discovery (panel A) and 

validation (panel B) cohorts underwent two similar but not identical fear induction 

and rating paradigms during fMRI acquisition. Of note, examples of the fear-evoking 

photos are pictures (free for commercial use) only for display purposes and not 

included in the original stimulus set. Panel C depicts the analytic stages and datasets 

used in the present study. Specifically, a whole-brain multivariate pattern predictive 

of the level of subjective experience of fear was trained on the discovery sample 
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(n=67) using support vector regression and further evaluated in discovery (cross-

validated), validation (n=20) and generalization (n=31) cohorts. We next 

systematically applied univariate and multivariate analyses to determine the spatial 

scale and local contributions of specific regions to the momentary subjective fear 

representation. Finally, we tested whether subjective fear was encoded with a neural 

signature that was distinct from the representation of conditioned threat (CS+ versus 

CS- cues) and general negative affect. SVR, support vector regression; VIFS, visually 

induced fear signature developed in the current study; PINES, picture-induced 

negative emotion signature developed by Luke Chang and colleagues; V.T. fear 

decoder, a fear-predictive pattern developed by Vincent Taschereau-Dumouchel and 

colleagues. See Methods and Results for the details of the datasets and brain 

signatures used in this study. 
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Fig. 2 Visually induced fear signature (VIFS). Panel A depicts the VIFS pattern 

thresholded using a 10,000-sample bootstrap procedure at q < 0.05, FDR corrected. 

Inserts show the spatial topography of the unthresholded patterns in the left ACC, 

right PAG, bilateral AMG and bilateral insula. AMG denotes amygdala, THAL 

thalamus, vmPFC ventromedial prefrontal cortex, dmPFC dorsal medial prefrontal 

cortex, dACC dorsal anterior cingulate cortex, MCC middle cingulate cortex, ACC 

anterior cingulate cortex, and PAG periaqueductal gray. Panels B and C depict the 

predicted fear experience (subjective ratings) compared to the actual level of fear for 

the cross-validated discovery cohort and the independent validation cohort, 

respectively. Accuracies reflect forced-choice comparisons. Panels D and E depict an 

average peristimulus plot of the VIFS response to the cross-validated discovery cohort 

and the independent validation cohort. This reflects the average VIFS response at 

every repetition time (TR; 2s) in the timeseries separated by the fear ratings. Of note, 

the VIFS reacts with a latency of approximate 4 seconds after stimulus onset which 

corresponds to the timing of the hemodynamic response function (HRF) following 
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stimulus onset. Panel F and G compare the fear prediction of AFSS with the VIFS on 

discover, validation and generalization cohorts, respectively. *indicates P < 0.05, **P 

< 0.01 and ***P < 0.001. Error bars and shaded regions indicate standard errors. 

AFSS, animal fear schema signature. 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2020.11.23.394973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/


 

Fig. 3 Subjective experience of fear is associated with and predicted by 

distributed brain regions. Panel A shows the thresholded VIFS. Panel B depicts the 

threshholded transformed ‘activation pattern’ from the VIFS. Panel C shows the 

overlap between VIFS and transformed ‘activation pattern’. All images are 

thresholded at q < 0.05, FDR corrected. Hot color indicates positive associations 

(panels A) or weights (panels B) where as cold color indicates negative associations 

(panels A) or weights (panels B). VIFS, visually induced fear signature. 
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Fig. 4 Local brain region and network predictions. Panel A shows brain regions 

that can significantly predict subjective fear ratings revealed by searchlight analysis. 

Histograms: cross-validated predictions (correlations) from local searchlight analysis. 

Red line indicates the prediction-outcome correlation from VIFS. Panel B depicts 

brain regions which can significantly predict subjective fear revealed by parcellation-

based analysis. Histograms: cross-validated predictions (correlations) from 

parcellations. Red line indicates the prediction-outcome correlation from VIFS. Panel 
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C shows cross-validated predictions from amygdala-based prediction analysis. Error 

bar indicates standard error; r indicates overall (between- and within-subjects) 

prediction-outcome correlation. Panel D demonstrates that the information about 

subjective experience of fear is distributed across multiple systems. Model 

performance was evaluated as increasing numbers of voxels/features (x axis) were 

used to predict subjective fear in different regions of interest including the entire brain 

(black), consciousness network (red), subcortical regions (light purple) or large-scale 

resting-state networks. The y axis denotes the cross-validated prediction-outcome 

correlation. Colored dots indicate the correlation coefficients, solid lines indicate the 

mean parametric fit and shaded regions indicate standard deviation. Model 

performance is optimized when approximately 10,000 voxels are randomly sampled 

across the whole-brain. VIFS, visually induced fear signature.  
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Fig. 5 Comparing fear- and threat-predictive signatures. Panel A depicts that 

visually induced fear signature (VIFS) does not distinguish unreinforced CS+ versus 

CS-. Panel B shows the histograms of prediction of threat-predictive signature (TPS) 

on fear data from nonparametric permutation test. Histograms show the distribution of 

null-hypothesis prediction-outcome correlations, and the red line shows the actual 

correlation coefficient. Panel C demonstrates the scatter plot displaying normalized 

voxel weights for VIFS (y-axis) and TPS (x-axis). Bars on the right represent the sum 

of squared distances from the origin (0,0) for each Octant. Different colors are 

assigned to the eight Octants that reflect voxels of shared positive or shared negative 
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weights (Octants 2 and 6, respectively), selectively positive weights for the VIFS 

(Octant 1) or for TPS (Octant 3), selectively negative weights for the VIFS (Octant 5) 

or TPS (Octant 7), and voxels with opposite weights for the two neural signatures 

(Octants 4 and 8).  
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Fig. 6 Comparing VIFS and PINES responses. Panel A depicts that VIFS more 

accurately (shown as forced-choice classification accuracy and Cohen’s d) predicts 

high versus low subjective fear while PINES is more sensitive to distinguish high 

versus low general negative emotion. Panel B shows the multilevel mediation analysis 

results showing that VIFS response mediates the PINES response – fear rating 

association in both discovery and validation cohorts. Panel C shows that the PINES 

response does not mediate the VIFS response – fear rating association in the 

discovery cohort. Although the mediation effect is significant in the validation cohort, 

the effect size (Cohen’s d = 0.06) is very small. **indicates P < 0.01, ***P < 0.001, NS 

P > 0.5. 
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Table 1 Comparing performance of VIFS with AFSS 

classifications VIFS  AFSS 

Discovery 

dataset 

high versus low 100±0%*** (2.58) 79±5.0%*** (0.77) 

high versus moderate 88±3.9%*** (1.18) 42±6.0%NS (-0.22) 

moderate versus low 93±3.1%*** (1.40) 84±4.5%*** (1.02) 

Validation 

dataset 

high versus low 100±0%*** (2.20) 95±4.9%*** (1.88) 

high versus moderate 90±6.7%*** (1.21) 55±11.1%NS (0.19) 

moderate versus low 90±6.7%*** (1.27) 65±10.7%NS (0.78) 

Generalization 

dataset 

high versus low 87±6.2%*** (1.10) 90±5.5%***(1.56) 

high versus moderate 83±6.8%*** (0.97) 87±6.2%*** (0.79) 

moderate versus low 83±7.0%*** (0.86) 93±4.7%*** (1.52) 

For each dataset we used VIFS and AFSSs to classify high, moderate and low 

subjective fear using two alternative forced-choice tests. Performance was shown as 

accuracy ± SE (Cohen’s d). ***denotes P < 0.001, and NS denotes non-significant 

based binomial tests. VIFS, visually induced fear signature; AFSS, animal fear 

schema signature. 
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Table 2 Comparing prediction (correlation) of VIFS and PINES 

Datasets VIFS (correlation, 95%CI) PINES (correlation, 95%CI) 

Discovery 0.57 [0.49, 0.63] #  0.38 [0.28 0.47] 

Validation 0.59 [0.48, 0.69] 0.37 [0.21, 0.51] 

Generalization 0.56 [0.45, 0.64] 0.20 [0.02, 0.36] 

PINES holdout 0.29 [0.17, 0.38] 0.72 [0.65, 0.77] 

We applied the VIFS and PINES to subjective fear and general negative emotion 

holdout datasets and calculated the correlation (bootstrapped 95% CI) between the 

pattern expressions and the true ratings. # indicates cross-validated. 
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