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Abstract

The specific neural systems underlying the subjective feeling of fear remain
vigorously debated in affective neuroscience. Here, we combined functional MRI
with machine learning to identify and evaluate a sensitive and generalizable neural
signature predictive of the momentary self-reported subjective fear experience across
discovery (n=67), validation (n=20) and generalization (n=31) cohorts. We
systematically demonstrate that accurate fear prediction crucially requires distributed
brain systems, with important contributions from cortical (e.g., prefrontal,
midcingulate and insular cortices) and subcortical (e.g., thalamus, periaqueductal
gray, basal forebrain and amygdala) regions. We further demonstrate that the neural
representation of subjective fear is distinguishable from the representation of
conditioned threat and general negative affect. Overall, our findings suggest that
subjective fear, which exhibits distinct neural representation with some other aversive
states, is encoded in distributed systems rather than isolated ‘fear centers’. This
signature provides a neuromarker for monitoring fear-related neuropathology and

evaluating novel treatments targeting pathological fear.
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Fear is probably the most studied emotion during the last decades, yet despite
considerable advances in animal models and human neuroimaging research, vigorous
debates on how to define and investigate fear and its facets continue 4. When we talk
about fear in everyday life, we primarily refer to the subjective feeling of being afraid
8. However, in psychological and neuroscientific conceptualizations, fear also
describes defensive behaviors, such as freezing, and peripheral physiological changes
that accompany such behaviors >®,

The neural basis of ‘fear’, or threat behaviors, has been extensively mapped in
animal models using Pavlovian conditioning and predator exposure protocols >,
These models provide compelling evidence for a pivotal role of subcortical systems,
particularly the central extended amygdala, as well as the hypothalamus and
periaqueductal gray (PAG), in mediating threat detection and defensive responses "3,
However, the subjective emotional experience of fear remains ultimately inaccessible
in animal models, and recent conceptual frameworks argue that the evolutionarily
conserved defensive survival circuits that account for the behavioral and physiological
responses to threats might be distinct from those underlying the subjective experience
of fear 361416 The differentiation between the defensive response and the subjective
experience of fear has critical implications for translational research on pathological
fear ©, given that animal models primarily evaluate novel treatments by means of
effects on physiological and behavioral defensive threat reactivity 1/, whereas feelings
of exaggerated fear or anxiety represent the primary clinical outcome and reason for

patients to seek treatment 18,
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In humans, lesion and functional magnetic resonance imaging (fMRI) approaches
have been employed to determine the specific brain systems that underlie the
subjective feeling of fear. Early studies in a patient with focal amygdala lesions
demonstrated impairments in fear-related processes, including recognition and
experience of fear 12, which contributed to an amygdala-centric fear perspective.
However, subsequent studies reported variable fear-related functional consequences
in patients with focal amygdala lesions 1. For instance, some patients with focal and
complete amygdala lesions maintain intact fear recognition ?2and experience fear,
anxiety and panic in response to breathing CO,-enriched air 2%. fMRI studies in
healthy subjects suggest that it is time to move beyond an amygdala-centric fear
perspective and demonstrate that stimuli that evoke subjective feelings of fear elicit
activation not only in the amygdala but also PAG, hypothalamic and frontal regions
2421 However, the conventional fMRI approach applied in these studies has been
limited. In particular, it is designed to permit the inference of whether a single brain
region (e.g., a voxel) is activated conditionally on a stimulus, but does not allow
reverse inferences about ‘fear’ states given brain activity 2. Furthermore, mass
univariate approaches are inherently focused on individual regions or, in the case of
connectivity analyses, circumscribed networks yet do not model joint activity across
distributed brain regions working together to underpin fear experience 2°, and
stimulus-induced activation changes in single brain regions typically have only

modest effect sizes 032, These issues raise the question of whether isolated regions
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can provide adequate and comprehensive brain-level descriptions of complex mental
processes such the subjective feeling of fear.

To provide sufficient and process-specific brain-level descriptions of mental
processes with large effect sizes recent studies have combined fMRI with machine
learning-based multivariate pattern analysis (MVVPA). This approach can capture
information at much finer spatial scales 3 and provide considerably larger effect sizes
in brain-outcome associations 3! thus allowing the development of sensitive and
specific brain signatures of mental processes 32343, including acquired defensive
responses 3" and subjective emotional states 3#2°, Moreover, an initial MVPA study
has revealed promising findings suggesting that offline categorical fear ratings
collected before fMRI are associated with a neural signature that is independent of
online autonomic arousal indices acquired during fMRI %° (henceforward referred to
as animal fear schema signature (AFSS) AFSS in this study for convenience). The
MVPA approach additionally allows functional separation of mental processes based
on population coding 3!, despite overlapping univariate activation 3442 and thus
offers an opportunity to determine process-specific neural representations of (often)
concurrent fear-related processes, such as the experience of fear and defensive
responses.

Moreover, the perspective of an isolated fear center in the brain has additionally
been challenged by conceptual perspectives, including recent appraisal * and
constructionist 2 theories of emotion which suggest that emotional experiences result

from interactions between multiple systems including core affect, sensory, memory,
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motor, and cognitive systems 4, and by the two-system model suggesting that
interactions of subcortical defensive systems with prefrontal regions engaged in
consciousness are critical to establish a neural representation of the subjective fear
experience °.

Here, in the context of ongoing debates about the neural representations of fear,
we capitalize on recent advances in MVPA-based neural decoding techniques to
determine whether (1) it is possible to develop a sensitive and generalizable neural
representation of the subjective fear experience on the population level, (2) this neural
representation can predict momentary (trial-wise) fear experience on the individual
level, (3) the neural representation in isolated systems such as the amygdala or
‘cortical consciousness network’ is sufficient to capture the subjective experience of
fear, and (4) the neural representation of the momentary fear experience is distinct
from the representations of the conditioned defensive threat response and general
aversive states. More specifically, we employed a support vector regression (SVR)
algorithm in healthy participants (n = 67) to identify the brain signature that predicted
the intensity of trial-by-trial rated subjective experiences of fear elicited by fear-
evoking pictures ranging from low to high fear induction (Fig. 1A). The performance
of the established visually induced fear signature (VIFS) was evaluated in (a) an
independent validation cohort (n = 20), who underwent a similar but not identical fear
induction paradigm (Fig. 1B) as well as a generalization cohort (n = 31) from a
previous study that employed a different fear induction paradigm and MRI system °

and (b) a comparison with the AFSS (Fig. 1C). To extend the perspective from a
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population to an individual level we tested whether the VIFS can predict trial-wise
fear experience for each subject in discovery and validation cohorts separately. We
further systematically identified brain regions that were associated with (forward
model, i.e., expressing the observed data as functions of underlying variables) and
predictive of (backward model, i.e., expressing variables of interest as functions of the
data) subjective fear experience *° and examined to what extent single brain systems
or networks can capture subjective fear experience. Moreover, to determine the
functional specificity of the neural fear experience signature we compared the spatial
and functional similarities between the VIFS with the signature of conditioned
defensive threat response 3’ (mostly referred to as ‘conditioned fear response’ in the
literature, but see ref 2 for a discussion on the terminology) and general negative
emotional experience 2, respectively (Fig. 1C). Together this systematic evaluation
can advance ongoing debates on how the brain constructs subjective fear, whether the
neural mechanisms of the conscious experience of fear are distinct from defensive
responses elicited by conditioning 351416 or unspecific aversive emotional experience,
and ultimately promote valid estimates of effect size with high clinical significance
for the evaluation of novel treatments that specifically target subjective fear

experience.

Results

Visual stimuli elicited a robust range of subjective fear
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The experience of fear was induced by visual stimuli with varying levels of e.g.,
threatening or scary situations. Subjects were explicitly instructed to imagine that they
were encountering the situation displayed in the picture to increase the vividness of
the stimulus and were asked to report their current level of fear for each trial on a 5-
point Likert scale ranging from 1 (neutral/slightest fear) to 5 (very strong fear). To
initially test whether the visual stimuli elicited meaningful and varying levels of
subjective fear we plotted the number of each selected subjective fear level (across
subjects) for each run (Supplementary Fig. 1A) and for each stimulus category
(animal, human and scene; Supplementary Fig. 1B). We found that the stimuli
induced sufficient levels of fear experience in the discovery cohort (n = 67) which
was used to develop the neural signature of subjective fear (see below for details),
such that over14% trials of each stimulus type were rated as 5 (reflecting that they
induced strong fear) and self-reported fear levels were generally evenly distributed
across categories and runs. Moreover, 65 out of 67 subjects reported all 5 levels of

subjective fear whereas the remaining 2 subjects used ratings ‘1-4’.

A brain signature sensitive to predict visually induced subjective experience of
fear

We applied SVR to identify a whole-brain signature of fMRI activation that predicted
the intensity of self-reported fear ratings during observation of fear-evoking pictures
in the discovery cohort (Fig. 2A). To evaluate the performance of the visually induced

fear signature (VIFS), we applied the VIFS to data from test subjects in both
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discovery (10x<10-fold cross-validated, see Methods for details) and validation (n =
20) cohorts to calculate the VIFS pattern expressions for individual participants’
activation maps for each of 5 levels of reported fear. The developed VIFS accurately
predicted ratings of reported fear in both discovery and independent validation
cohorts. Specifically, for individual participants in the discovery cohort the average
within-subject correlation between predicted and actual fear ratings (5 or 4 pairs of
scalar values per subject) was r = 0.8940.01 (standard error (SE)), the mean explained
variance score (EVS) was 72.542.1%, the average root mean squared error (RMSE)
was 1.3840.08 and the overall (between- and within-subjects) prediction-outcome
(i.e., 333 pairs) correlation coefficient was 0.57 (averaged across 10 repetitions; EVS
= 17%; bootstrapped 95% confidence interval (CI) = [0.49, 0.63]) (Fig. 2B). Testing
the VIFS model developed on the discovery cohort, with no further model fitting, in
the validation cohort (Fig. 1B) revealed comparably high prediction-outcome
correlations (within-subject r = 0.8740.02; mean explained variance score =
68.345.6%; average RMSE = 1.4040.14; overall prediction-outcome r = 0.59, 95% ClI
=10.48, 0.69], EVS = 12%, permutation test one-tailed P < 0.001; Fig. 2C), indicating
a sensitive and robust subjective fear signature on the neural level (see also
generalization and benchmarking of the VIFS below). To further determine the
sensitivity of the VIFS to predict levels of subjective fear experience a two-alternative
forced-choice test was applied, comparing pairs of activation maps within each
subject and choosing the one with higher VIFS response as more fearful. The VIFS

response accurately classified high (average of rating 4 and 5) versus moderate (rating
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3) and moderate versus low (average of rating 1 and 2) fear in both cohorts with 88-
93% accuracy (Cohen’s d: 1.18-1.40), and high versus low with 100% accuracy in
both cohorts (Cohen’s d: 2.20-2.58) (Fig. 1B, C; see also Table 1 for a detailed
summary of classification performance). Moreover, the VIFS response could
distinguish each successive pair of fear rating levels (e.g., rating 4 versus 5) with >
80% accuracy, which were significantly better than chance level (50%; P < 0.001;
except ratings of ‘1’ versus ‘2’ in the validation cohort) (Fig. 2B, C).

Retraining the decoder excluding the occipital lobe revealed high prediction
accuracies, suggesting that although the fear-predictive signals might be partly
embedded in regions engaged in visual processing the contribution of visual cortical
patterns is small (Supplementary Results and Supplementary Fig. 2; see also the
prediction using visual network alone in the following ‘Alternative models to
determine the contribution of isolated fear predictive systems’ section, which
demonstrated a substantial lower performance as compared to the whole-brain
prediction). In addition, we applied the VIFS to time series data using dot product in
the discovery (10x<10-fold cross-validated) and validation datasets to determine the
specificity of the visually induced fear pattern with respect to confrontation with
imminent threat (rather than anticipation or cognitive evaluation). Visual inspection of
the VIFS reactivity at each time point following stimulus onset indicated that the
VIFS response began approximately 4s following picture onset and increased with
increasing levels of reported fear during approximately 6-12s (Fig. 2D, E). These

findings validate the adequacy of the hemodynamic response model and confirmed
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that the VIFS was specific to brain activity during threat exposure, as opposed to

threat anticipation (pre-stimulus) or cognitive evaluation (response reporting).

Generalization and benchmarking of VIFS performance

An important feature of population-level neural signatures is that their performance
can be evaluated in new datasets and paradigms, although prediction across cohorts,
paradigms and different MRI systems has been challenging. Taschereau-Dumouchel,
et al. 4% developed a neural decoder which predicted the general subjective fear of
different animal categories (assessed before fMRI) and the authors shared the dataset
used for training their model — which we term the ‘generalization dataset’ here —
allowing us to compare the performance of the VIFS with the AFSS on the discovery,
validation and generalization cohorts. We found that the VIFS predicted all three
datasets well (overall prediction-outcome correlations rs > 0.56) while the AFSS only
performed well on its training dataset (r = 0.64) but poorly on both discovery and
validation cohorts (rs < 0.27) (Fig. 2F, G; Table 1; see also Supplementary results for
details), indicating a robust generalization and high sensitivity of the VIFS to predict

fear experience across populations, fear induction paradigms and MRI systems.

Within-subject trial-wise prediction
The feeling of fear is a momentary, highly subjective and individually constructed
state 2# and thus a key question is to what extent the population-level model (i.e., the

VIFS), which is a statistical summary of a highly variable set of instances, can predict
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momentary (trial-wise) fear experience for each subject (on the individual level). To
this end we performed single trial analyses using the Least Squares All (LSA)
approach® to obtain a beta map for each stimulus for each subject in both discovery
(~80 beta maps per subject) and validation (~60 beta maps per subject) cohorts (see
Methods for details). The VIFS was next applied to these beta maps to calculate the
pattern expressions which were further correlated with the true ratings for each
subject separately. The statistical significance was evaluated by prediction-outcome
Pearson correlation for each subject separately. We found that the VIFS could
significantly predict trial-by-trial ratings for 61 out of 67 subjects in the discovery
cohort (cross-validated) and for 16 out of 20 subjects in the validation cohort. The
mean prediction-outcome correlations were 0.38240.01 and 0.4020.03 for the
discovery and validation cohorts, respectively. Our findings suggest that although fear
experience differs between individuals >* the VIFS could predict the level of

momentary fear experience on the individual level in a large population.

Subjective fear is associated with and predicted by distributed neural systems
We systematically determined individual brain regions that were associated with
subjective fear ratings and that provided consistent and reliable contributions to the
whole-brain fear decoding model using different analytic strategies. We first
examined the conventional univariate linear parametric effect of fear ratings, i.e.,
voxels that increased (yellow in Supplementary Fig. 3A) or decreased (blue in Fig.

Supplementary 3A) linearly with within-subject fear ratings across trials, by
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performing one-sample t-tests on the parametric modulation beta maps. Subjective
fear was associated with activation in a broad set of cortical and subcortical regions,
including increased activation in the amygdala and surrounding sublenticular
extended amygdala, anterior insula, anterior midcingulate cortex (aMCC), thalamus,
PAG and surrounding midbrain, ventrolateral prefrontal and lateral orbitofrontal
cortices, and fusiform/ventral occipital-temporal regions. Conversely, we found
negative correlations with fear ratings in the ventromedial prefrontal cortex (vmPFC),
medial orbitofrontal cortex (OFC), posterior insula/operculum, and dorsolateral
prefrontal cortex (dIPFC), posterior cingulate cortex (PCC), inferior parietal lobule
(IPL) and supplementary motor area (SMA) (g < 0.05, FDR corrected; Supplementary
Fig. 3A).

We then compared these univariate (single-voxel) findings to multivariate models
in several ways. First, we performed a one-sample t-test analysis (treating participant
as a random effect) on the weights from within-subject (ideographic) multivariate
predictive models (details see Methods). Like the univariate maps, within-subject
predictive models (backward models) included consistent weights in brain regions
spanning multiple large-scale cortical and subcortical systems, which exhibited a
large overlap with the fear regions as determined by the univariate approach
(Supplementary Fig. 3B; q < 0.05, FDR corrected).

Some brain features that make large contributions to the multivariate models
might capture and control for sources of noise in the data, rather than being directly

related to mental events *°. To provide a more transparent comparison between
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univariate and multivariate results, we thus calculated within-subject reconstructed
‘activation patterns’ (forward models; see Methods for details), which assess the
relationships between each voxel and the response (fitted values) in the multivariate
model. These are also referred to as ‘structure coefficients’ in the statistical literature
47_Supplementary Fig. 3C shows results of a group analysis of ‘activation patterns’
across individuals (q < 0.05, FDR corrected). As Haufe, et al. *° suggest, voxels that
exhibit significant predictive weights and structure coefficients are important regions
that are both directly correlated with the outcomes (i.e., fear ratings) and are
predictive after accounting for other brain regions in the multivariate model. As
shown in Supplementary Fig. 3C, the thresholded ‘model activation pattern’ was
remarkably similar to the univariate parametric effects of fear ratings (Supplementary
Fig. 3A). This suggests that the multivariate model is encoding activity across
distributed regions and confirms that subjective fear is associated with activity in a
large number of cortical and subcortical regions. Indeed, a formal assessment of
overlap (Supplementary Fig. 3D) showed that virtually all regions with consistent,
significant model weights in the multivariate models also encoded model information
(i.e., showed significant ‘model activation patterns’). The broad conclusion is that the
neural representation of human fear is not limited to a single or a set of focal regions
(e.g., the amygdala), but rather includes a broad set of regions spanning multiple
systems.

We next determined regions that reliably contributed to the fear prediction within

the VIFS itself by applying a bootstrap test to identify regions with significant,
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consistent model weights q < 0.05, FDR corrected; 3. In line with within-subject
models, a set of distributed brain regions exhibited significant model weights (Fig.
3A) and structure coefficients (Fig. 3B), including amygdala, MCC, insula, inferior
frontal cortex (IFG), PAG, occipital and sensorimotor areas (Fig. 3C).

Overall, regions that were most consistently associated with subjective fear across
the analyses included key regions engaged in conditioned threat (amygdala, aMCC
and PAG), and general avoidance motivation (anterior insula, posterior ventral
striatum) as determined across species while other regions such as the right posterior
lateral prefrontal cortex/inferior frontal junction and ventral occipito-temporal stream
have been associated with cognitive emotion construction in humans and dysregulated
emotional experience in mental disorders 2“8, Negative associations with fear were
most consistently identified in medial prefrontal and sensorimotor regions. In
conclusion, across both univariate and multivariate analyses, our results indicate that
fear experience is represented in distributed neural systems involved in defensive
responses, avoidance behavior, negative affect, emotional awareness as well as

pathological fear and anxiety.

Alternative models to determine the contribution of isolated fear predictive
systems: local searchlights, pre-defined regions and networks perform
considerably worse than VIFS

Given the continuous debate on the contribution of specific brain regions, such as

amygdala #132%4% and more recently the cortical consciousness network 2, to the
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subjective fear experience, we (1) located local brain regions that were predictive of
subjective fear experience using both searchlight- and parcellation-based analyses,
and (2) examined to what extent models trained on single brain region and network
could predict subjective fear ratings as compared with the whole-brain model (i.e., the
VIFS). As shown in Fig. 4A and 4B, subjective fear experience could be significantly
predicted by activations in widely distributed regions (averaged across 10><10-fold
cross-validation procedure). Given that the uncorrelated p values equivalent to g <
0.05 were liberal in this case we displayed brain regions that survived at P < 0.001
uncorrected (corresponding to q < 0.004 and 0.003, FDR corrected, respectively).
However, none of these local regions predicted subjective fear to the extent the VIFS
did (see also Supplementary Fig. 4A-D for predictions of models trained on discovery
cohort on validation and generalization cohort).

We next re-trained predictive SVR models (with the identical cross-validation
and prediction procedure as used for the VIFS) restricted to activations in (a) the
bilateral amygdala; (b) a pre-defined cortical network associated with consciousness ©
(see Methods for details); (c) a subcortical region group (including striatum, thalamus,
hippocampus and amygdala); and (d) each of 7 large-scale resting-state functional
networks °%°1, We found that the amygdala (prediction-outcome correlation r = 0.26,
0.25 and 0.32 for discovery (cross-validation), validation and generalization cohorts,
respectively) as well as the other brain networks (see Fig. 4C, D, Supplementary
Table 1 and Supplementary Fig. 4E, F see details) could, to some extent, predict

subjective fear ratings. However, although statistically significant (Ps < 0.001, one-
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tailed permutation t-tests) the effect sizes in terms of prediction-outcome correlations
(including searchlight- and parcellation-based predictions) were substantially smaller
than those obtained from the VIFS, which used features that span multiple systems.
This comparison is fair even though the number of features differ, as models were
always tested on hold-out participants, eliminating the problem of overfitting as more
predictors are used (a substantial problem in models trained and tested without cross-
validation). However, to assess the potential effect of the numbers of features in the
prediction analyses (i.e., whole-brain model uses much more features/voxels), as
shown in Fig. 4D, we randomly selected samples from a uniform distribution
spanning the entire brain (black), consciousness network (red), subcortical regions
(light purple) or a single resting-state network (averaged over 1,000 iterations) 3. The
asymptotic prediction when sampling from all brain systems as we did with the VIFS
(black line in Fig. 4D and Supplementary Fig. 4E, F) was substantially higher than the
asymptotic prediction within individual networks (colored lines in Fig. 4D and
Supplementary Fig. 4E, F; see also Supplementary Table 1 for details). This analysis
thus demonstrated that whole-brain models have much larger effect sizes than those
using features from a single network. Furthermore, model performance reached
asymptote when approximately 10,000 voxels were randomly sampled across the
whole-brain, as long as voxels were drawn from multiple systems, further
emphasizing that subjective fear experience is encoded in distributed neural patterns
that span multiple systems. Importantly, we found similar results when applying the

models trained on the discovery cohort to the validation and generalization cohorts,
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indicating that models trained on ~10,000 randomly sampled voxels were robust and
generalizable. Together the results from the systematic analyses provide the first
evidence that the subjective experience of fear is represented in distributed neural
systems which argues against fear experience being reducible to activations in any

single brain region or canonical network.

Subjective fear and conditioned defensive threat responses engage distinct neural
representations in humans

Translational fear models are strongly based on threat/fear conditioning paradigms
and conditioned threat is often used synonymous with fear in the literature
(‘conditioned fear’) 3. However, recent fear conceptualizations emphasize potential
mechanistic and neural distinctions between acquired defensive responses and the
subjective experience of fear 361416 Against this background we examined whether
the neural representation of subjective fear and conditioned threat responses were
dissociable by applying the VIFS to two datasets acquired during Pavlovian threat
conditioning in which an auditory cue *" or visual cue 2 (see Methods for details),
respectively, was paired with a shock (CS+) while a control cue was unpaired (CS-).
We specifically tested whether the VIFS generalized to discriminate CS+ versus CS-.
Second, Reddan, et al. 3" developed a threat-predictive signature (TPS) that accurately
classified CS+ versus CS- in new individuals based on brain activity patterns. We
applied the TPS to the fear paradigm data and assessed its performance in predicting

subjective fear ratings by correlating the overall (between- and within-subjects)
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signature responses with the true ratings. We propose that if subjective fear and
conditioned threat share similar neural mechanisms, the VIFS and TPS should
perform well in cross-prediction: i.e., VIFS responses could predict CS+ versus CS-,
and TPS responses should correlate with subjective fear ratings. Conversely, low
cross-prediction indicates independence of the neural representations for ‘fear’ and
‘conditioned threat’ constructs (for similar approaches see e.g., refs 3:36425%) Ag
shown in Fig. 5 the VIFS did not classify CS+ from CS- above chance during
auditory (accuracy = 5746.0%, Cohen’s d = 0.09, permutation test one-tailed P =
0.234, see also Fig. 5A) or visual threat conditioning (accuracy = 6246.4%, Cohen’s d
= 0.35, permutation test one-tailed P = 0.265). Given that the CS+ presentation
induces higher autonomic arousal (as e.g. measured by skin conductance responses >*
in the visual threat conditioning dataset, see Supplementary Methods for details),
these findings additionally suggest that the VIFS is not sensitive to general emotional
arousal per se. Whereas the TPS predicted visual CS+ versus CS- cues with high
accuracy (accuracy = 933.3%, Cohen’s d = 1.30, permutation test one-tailed P =
0.003) in the visual threat conditioning data, it did not predict fear ratings in our
discovery, validation, or generalization cohorts (discovery: r = 0.16, permutation test
one-tailed P = 0.085, Fig. 5B; validation: r = 0.18, permutation test one-tailed P =
0.111; generalization: r = 0.24, permutation test one-tailed P = 0.183).

In support of separable brain representations underlying subjective fear
experience and defensive responses towards acquired threat signals we additionally

found that the VIFS and TPS pattern weights were spatially uncorrelated on the
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whole-brain level (r = 0.02, permutation test one-tailed P = 0.125). Moreover, we
explored the joint distribution of normalized (z-scored) voxel weights of these two
patterns by plotting VIFS on the y-axis and the TPS on the x-axis (for a similar
approach see ref *°). As visualized in Fig. 5C, stronger weights across the whole-brain
(sum of squared distances to the origin [SSDO]) were actually observed in the
nonshared Octants (1, 3, 5, 7). Overall these results suggest distinct neural
representations for subjective fear experience and conditioned threat responses. These
findings provide the first evidence for separable whole-brain fMRI multivariate
patterns for subjective experience of fear and conditioned threat, indicating
functionally independent neural representations for subjective fear and conditioned
threat.

In addition to whole-brain models, we re-trained subjective fear and conditioned
threat patterns using data within integrative regions traditionally related to ‘fear’ but
independent of sensory modality. To this end the automated meta-analysis toolbox
Neurosynth % was used to a create a mask based on a meta-analysis of previous
studies that frequently use the word ‘fear’. The mask included regions (e.g.,
amygdala, vmPFC, aMCC, PAG and insula) showing consistent associations with
‘fear’ across 363 published studies (i.e., ‘reverse inference’; thresholded at g < 0.05,
FDR corrected). We found that the fear pattern trained on a priori ‘fear’ regions could
significantly predict subjective feelings of fear (prediction-outcome rs > 0.30, Ps <
0.002 for discovery, validation and generalization cohorts) and the threat pattern

could classify unreinforced CS+ versus CS- (accuracies > 62%, Ps < 0.008 for
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auditory and visual conditioning datasets) although the performances were
substantially worse as compared to whole-brain models. In support of the whole-brain
findings, the two patterns were spatially not correlated (r < 0.01) and the conditioned
threat pattern could not predict subjective fear (rs < 0.15, Ps > 0.13) and the
subjective fear pattern did not distinguish unreinforced CS+ vs CS- (accuracies <
53%, Ps > 0.69). Together, these findings further emphasize that subjective fear- and
conditioned threat-related representations within core ‘fear’ regions are coded by

separable neural representations in humans.

VIFS responses mediate subjective fear induced by negative emotion
‘Fear’ is a highly aversive subjective state and represents a construct within the
negative valence systems domain in the Research Domain Criteria (RDoC) matrix .
To separate fear from general negative affect we next investigated the spatial and
functional similarities between the VIFS and PINES (picture-induced negative
emotion signature) which was developed to track general negative emotion experience
32 We found that these two signatures exhibited a weak positive spatial correlation (r
= 0.08, permutation test one-tailed P < 0.001) and the VIFS was more sensitive to
predict subjective fear rather than general negative emotion while the PINES more
accurately predicted general negative emotion as compared to fear (Fig. 6A; Table 2;
see Supplementary results for more details).

Given that the experience of fear can be considered as a prototypical example of a

negative emotion and that the PINES could, to some extent, predict subjective fear
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(discovery cohort: r = 0.38; validation cohort: r = 0.37) we next applied multi-level
mediation analysis, which tested whether a covariance between two variables (X and
Y) can be explained by a third variable (M), to investigate the relation between
PINES response, VIFS response and subjective fear rating. We employed two models
to test (1) whether the VIFS response (mediator M), which measured subjective fear-
specific response, could explain the association between non-specific general negative
emotion response (i.e., the PINES response; X) and fear ratings (Y) (our main
hypothesis), and (2) as well as the alternative hypothesis of whether the general
negative emotion response (M), which might represent the overarching emotional
state of fear, mediates the association between fear signature (X) and fearful rating
(Y). We found that the first model (Fig. 6B) accounted better for our data than the
second one (Fig. 6C) in terms of effect size (model 1: Cohen’s d = 0.21; model 2:
Cohen’s d = 0.06) although only a partial mediation effect was found as well as the
observation that the first model worked in both discovery and validation cohorts
whereas the second model only worked in discovery cohort (see Supplementary
Results for more details). Our findings thus suggest that general negative emotion
might not fully directly elicit subjective feeling of fear, and the response of the
subjective fear neural signature could partially explain the association between

negative emotion response and subjective fear rating.

Specificity of the VIFS for the experience of fear

Given that emotional stimuli such as the pictures we used can induce a complex array


https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394973,; this version posted August 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

of negative emotional experiences (e.g. disgust, anger, nonspecific negative arousal) we
further explored whether the VIFS is most closely related to subjective fear. To this end
we acquired ratings of associated negative emotions (disgust, anger and sadness) and
emotional valence and arousal for the stimuli in an independent sample of participants
(n = 120). The ratings were acquired online and each participant rated all stimuli with
respect to one emotion (n = 20 subjects per emotion). Ratings were provided on a 5-
point rating scale ranging from “1” (not at all) to “5” (extremely) for all dimensions
except for valence which was rated from “1” (extremely positive) to “9” (extremely
negative) with “5” indicating neutral.

To determine whether and to which extent the VIFS reacts to other emotional
domains, we correlated the image-by-image series of normative ratings with the image-
by-image variation in VIFS responses, for each emotion category assessed. Specifically,
we used the single trial beta maps for each picture and averaged the cross-validated
VIFS responses for each picture. We next correlated the picture-specific group-average
VIFS responses with the picture-specific group-average ratings for each emotional
domain separately (for a similar approach see ref. °*). The VIFS response was more
strongly correlated with subjective fear (r79 = 0.77) than any other emotional rating
(disgust: r79 = 0.64; anger: r79 = 0.63; sadness: r79 = 0.60; arousal: r79 = 0.66; valence:
r79 = 0.65) suggesting that the VIFS indeed reacts most strongly to subjective fear and
to a lesser extent to other related negative emotions or general emotional features such
as arousal. Moreover, Direct comparisons of the correlations between VIFS and

emotion ratings supported this conclusion and revealed significantly stronger
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correlations with fear than other emotions. For each subject in the discovery cohort, we
correlated the cross-validated VIFS response for each picture with the picture-specific
group-average ratings for each emotional domain separately. We found that the VIFS
tracked subjective fear ratings significantly better that any of the other 5 emotions
collected in the online sample (e.g. fear versus the second best prediction, arousal;
paired t-test tes = 7.31, P < 0.001, Bonforroni corrected). Together with our previous
findings showing that (1) the VIFS could not distinguish CS+ (which induces higher
autonomic responses as reflected in elevated SCR responses) from CS- and (2) the
prediction accuracy of VIFS on high arousing nonspecific negative emotion was
substantially lower than the prediction accuracies of the subjective fear, theses
findings suggest that the VIFS shows reasonable specificity for subjective fear, but to
some extent also captures aspects of other negative emotions or arousal which are
inherently associated with fear.

To test whether the low-level visual properties of the stimuli contributed to the
prediction performance we determined several visual features of the stimuli and tested
whether these can be accurately predicted by the VIFS. In detail, we measured the edge
intensity (MATLAB’s Canny edge detector), the saliency

(http://www.saliencytoolbox.net/) as well as the visual clutters (feature congestion and

subband entropy ) for each picture. Next, we ran similar correlational analyses as we
introduced before. We found that the group-average VIFS responses were not
significantly correlated with any of the visual features (most significant r = -0.19, P =

0.09). Moreover, the VIFS tracked ratings of subjective fear from the online sample
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significantly stronger than it tracked any of the visual features (fear versus the next
closest feature, edge intensity; paired t-test tes =22.15, P <0.001, Bonferroni corrected).
Taken together, our findings suggest that the prediction performance was not driven by

the visual properties of the stimuli.

Discussion

In the current study we developed and validated a sensitive and generalizable brain
signature for the subjective experience of fear, which predicted momentary fear on a
population and individual level and thus could have a high potential for translational
applications aiming at yielding information about individual fear experience.
Furthermore, we challenge the notion that subjective fear is a product of a single brain
region or network and propose that subjective fear is encoded in brain regions that
span multiple neural systems. Across a series of analyses subjective fear was both
associated with and predicted by distributed brain systems and fear prediction by
isolated brain systems was substantial lower compared to the whole-brain approach.
Driven by recent debates on whether subjective fear and the defensive response
elicited by conditioned threat involve different brain circuits %416 we, moreover,
employed a fine-grained analysis technique (MVPA) to show distinct neural
representations underlying these two mental processes on the whole-brain level and in
traditional ‘fear’ modules such as the amygdala. Finally, neural representations of
subjective fear and general negative emotion exhibited shared yet separable

representations, with the VIFS response mediating the association between the
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general negative emotion response and subjective fear. Together our findings shed
light both on how subjective experience of fear is represented in the human brain and
how this neural representation is separable from conditioned defensive responses and
general negative emotion, respectively.

Machine learning techniques have been increasingly used to develop integrated
predictive models of activation across multiple brain systems to predict mental
processes with large effect sizes (or explained variance) %31, Applying support vector
regression, we developed and validated a sensitive and robust whole-brain signature
(VIFS) that accurately predicted the intensity of subjective fear experience across
different fear induction paradigms and MRI systems. The identification of this
intermediate neural signature of subjective fear is pivotal, as it may (1) provide
objective neurobiological measures that can supplement self-report which can be
biased by self-reflection or communicative intentions  and, (2) promote the
development and evaluation of process-specific interventions that target subjective
fear experience.

Our findings have theoretical implications for ongoing debates about the neural
circuits of fear, specifically the neural representation of subjective fear experience (for
an overview see ref 1). For instance, the subcortical fear system theory suggests that
feelings of fear arise from highly conserved amygdala-centered subcortical circuits
81013 \while high-order perspectives emphasize the contribution of the fronto-parietal
‘consciousness network’ to fear experience and propose that subcortical circuits are

not directly responsible for fear experience 361640, Although limitations of the
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structure-centric view are widely acknowledged #* and appraisal “* and constructionist
2 theories have suggested that fear experience results from interactions between
multiple processes and brain systems, a systematic empirical comparison of structure-
centric versus distributed representation models of subjective fear was previously
lacking.

The present findings challenge the structure-centric and network-centric models
of subjective fear by demonstrating that subjective fear is represented in distributed
brain regions, including but not limited to amygdala, prefrontal, subcortical and
sensory cortices. Whereas previous predictive models focused on identifying brain
regions that reliably contributed to the model for interpretation purpose 2% we
updated and extended the characterization of the predictive model. We divided voxels
into different classes based on the combination of predictive weights and
reconstructed ‘activation patterns’ *° and revealed that distributed brain regions,
which exhibited significant predictive weights and reconstructed ‘activations’,
contribute to both, predictions of and associations with the outcome. Second, we
demonstrated that isolated regions (e.g., amygdala) and networks (e.g., ‘consciousness
network”) predicted subjective fear to a substantially lower extent than the whole-
brain signature (VIFS). Finally, around 10,000 voxels that were randomly sampled
across the whole-brain could achieve high performance of predicting subjective fear,
which could also be generalized to new data collected with different paradigms.
Together our findings suggest that the fear circuits identified in previous studies may

only represent aspects of the subjective fear experience, as reflected by comparably
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low effect sizes, yet that the subjective feeling of fear requires engagement of
distributed brain systems. Our findings are consistent with recent MVPA studies
demonstrating that affective processes including general negative emotion 2,
vicarious * and self-experienced pain 3! are distributed across regions, and meta-
analytic evidence suggesting that emotional experience is constructed in a set of
highly interacting brain regions 4.

The RDoC matrix suggests several paradigms to study acute threat (or ‘fear’),
including fear conditioning and exposure to emotional evocative stimuli. Indeed,
subjective feelings of fear and conditioned threat exhibit a pattern of similar brain
activation particularly in subcortical and prefrontal cortices 24263752 However, recent
conceptualizations propose that due to the fact that the conditioned automatic
defensive response represents an innate, fixed action pattern which does not
necessarily require consciousness (as opposed to subjective fear which is a conscious
experience), the underlying neural mechanisms might be distinct 361416 Traditional
univariate activation analyses lack anatomical specificity and thus cannot determine
whether the neural representations of overlapping activations are similar or distinct
36,61 while the MVPA approach can extract information at finer spatial scales 2°* and
permits support for or rejection of claims about neural mechanisms that are shared
between mental processes 2. Our findings indicate separable neural representations of
subjective fear and the conditioned defensive response not only on the whole-brain
level but also in ‘core fear regions’. Our study supports and extends current

conceptualizations of neurobiologically orthogonal processes and implies that
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conditioned threat and subjective fear are distinct constructs within the negative
valence system.

In line with the RDoC matrix suggesting that fear is a construct of the negative
valence systems, the VIFS shared similar yet different characteristic functions with
the PINES which tracks general negative emotional responses including sadness,
anger, disgust and fear 32, The VIFS was more sensitive to predict subjective fear as
compared to other emotional domains including disgust, anger, sadness, arousal and
negative valence, together with the observation that VIFS failed to predicted
conditioned threat versus safety signals and VIFS responses mediated the association
between PINES responses and fear ratings, suggesting that the VIFS is a more robust
and specific brain marker for subjective feelings of fear.

The present study used IAPS-type static images as stimuli. Although ratings
revealed that these images could elicit a relative robust range of subjective fear
experience, the types of variations in stimuli that lead to distinct vs. similar neural
encoding are still not well understood. It is for instance conceivable that video stimuli
could activate the VIFS in proportion to the fear-inducing properties of the videos, or
it is possible that the brain encodes dynamic stimuli differently. These possibilities
could be tested in future studies. In addition, in the current study we used a SVR
model to develop the VIFS and to explore the neural basis of subjective fear, however,
the prediction accuracy and the contributing brain regions could be further explored
by means of other candidate techniques such as SOS-LASSO which imposes a prior

that the neural pattern should be sparse but also locally structured . Moreover, the
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amygdala is often considered to be a ‘fear center’ or ‘threat center’ in animal models
(for a critical discussion on the role of the amygdala in fear and threat (see also ref. ©).
Although a direct translation of threat-related neural representations in rodents to
human emotional experiences is limited, a number of human lesion studies in patients
with complete bilateral amygdala lesions underscores the complex role of the
amygdala in fear processing in humans. In line with the ‘fear center’ perspective, an
early human lesion study showed that a patient with focal bilateral amygdala lesions
never endorsed feeling more than minimal levels of fear 2°. However, other studies in
patients with bilateral focal and complete amygdala lesions demonstrated that the
amygdala was not critically required to experience panic triggered by a CO; challenge
64 subjective affective experience ¢ or the modulation of the acoustic startle reflex by
fear-inducing background stimuli , which together raise the question of whether the
amygdala is causally necessary and sufficient for the experience of subjective fear in
humans (for an in depth discussion see also ref. ©). Whereas our findings indicate that
the amygdala per se is not sufficient to represent subjective experience of fear in
humans, the question of a causal role of the amygdala in subjective fear in humans
cannot be ultimately addressed in the present study given the indirect nature of fMRI
measurements and lack of direct experimental manipulations of the brain. In addition
to a widely distributed pattern of activity, voxels in the amygdala were identified
across our analytic approaches, suggesting that the amygdala may represent a part of a
larger network for initiating or integrating a coordinated fear and threat response on

different levels (see e.g., ref. ¢7).
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Pre-registration has been increasingly advocated in the field of neuroimaging
prediction studies (see e.g., also recent recommendations by Poldrack, et al. %) and
might help to reduce analytic flexibility in neuroimaging analyses . The analytic
protocols for the present study have been established in our previous studies see e.g.,
323470 and only the single final model was tested on the validation and generalization
datasets, however, pre-registration in future studies could further facilitate analytic
rigor. Moreover, in the current study we showed that subjective fear and nonspecific
negative emotion shared common yet also distinct neural representations. Our
findings are based on cross-prediction models and training joint-models over the
emotional domains in datasets that have been acquired with matched paradigms and
on an identical MRI system may help to further determine common and separable
neural representations between fear experience and other emotional domains.
Moreover, although we identified distinct neural representations for subjective fear
and conditioned threat on the whole-brain level the corresponding decoders were
developed based on studies employing different paradigms and stimuli. The
independence of common neurofunctional representations of subjective fear and
conditioned threat thus needs to be further evaluated. Future studies could, e.g., align
the paradigms by using categorical stimuli across the paradigms (e.g., high fear vs.
neutral stimuli) to further explore whether subjective fear and conditioned threat share
common neural representations, particularly in local regions. However, the specificity
of the shared neural basis (if one is found) to threat- and fear-related processes of

interest would require further testing.
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In conclusion, we identified a whole-brain neural representation for the subjective
experience of fear. This visually induced fear signature was validated and generalized
across participants, paradigms and fMRI scanners. Our findings demonstrate the
neural basis of subjective fear is not represented by isolated brain regions or networks
but instead best captured by activations in distributed regions spanning multiple brain
systems. The specificity of the fear signature was further tested with conditioned
defensive responses and general negative emotion experience. Our work may provide
objective neurobiological measures that can supplement self-report fear and be used

as intermediate markers for treatment discovery that target pathological fear.

Materials and Methods

Participants in the discovery cohort. Seventy healthy, right-handed participants
were recruited from the University of Electronic Science and Technology of China in
this study. Exclusion criteria included color blindness; current or regular substance or
medication use; current or history of medical or psychiatric disorders; any
contraindications for MRI. Due to the excessive head motion (> 1 voxel) during fMRI
scanning data from 3 participants were excluded, leading to a final sample of n = 67
participants (34 females; mean £SD age = 21.5 £2.1 years). All participants provided
written informed consent, and the study was approved by the local ethics committee at
the University of Electronic Science and Technology of China and was in accordance

with the most recent revision of the Declaration of Helsinki.
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Stimuli and paradigm used in the discovery cohort. The fear rating task consisted
of 4 runs with each run encompassing 20 photographs (including humans, animals
and scenes) from the IAPS (International Affective Picture System), NAPS (Nencki
Affective Picture System) and internet. A total of 80 stimuli was employed, with each
presented once. Stimuli were presented using the E-Prime software (Version 2.0;
Psychology Software Tools, Sharpsburg, PA). Participants were instructed to pay
attention to the pictures when they came on the screen. Each trial consisted of a 6s
presentation of the picture followed by a 2s fixation-cross separating the stimuli from
the rating period. Participants then had 4s to report the fearful state they experienced
for the stimuli using a 5-point Likert scale where 1 indicated neutral/slightest fear and
5 indicated most strongly fear. Finally, there was a 6s rest period (fixation-cross)
before the presentation of the next picture (Fig. 1A). All of the subjects reported ‘1-4’

in their responses while 2 out of 67 subjects did not use rating ‘5°.

Discovery cohort MRI data acquisition and preprocessing. MRI data were
collected on a 3.0-T GE Discovery MR750 system (General Electric Medical System,
Milwaukee, W1, USA) (see Supplementary Methods for details). Functional MRI data
was preprocessed using Statistical Parametric Mapping (SPM12 v7487,

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The first 5 volumes of each run

were discarded to allow MRI T1 equilibration. Prior to preprocessing of functional
data, image intensity outliers resulting from gradient and motion-related artefacts

were identified using CanlabCore tools (https://github.com/canlab/CanlabCore) based
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on meeting any of the following criteria: (a) signal intensity > 3 standard deviations
from the global mean or (b) signal intensity and Mahalanobis distances > 10 mean
absolute deviations based on moving averages with a full width at half maximum
(FWHM) of 20 image kernels. Each time-point identified as outliers was included as a
separate nuisance covariate in the first-level model. Then, functional images were
corrected for differences in the acquisition timing of each slice and spatially realigned
to the first volume and unwarped to correct for nonlinear distortions related to head
motion or magnetic field inhomogeneity. The anatomical image was segmented into
grey matter, white matter, cerebrospinal fluid, bone, fat and air by registering tissue
types to tissue probability maps. Next, the skull-stripped and bias corrected structural
image was generated and the functional images were co-registered to this image. The
functional images were subsequently normalized the Montreal Neurological Institute
(MNI) space (interpolated to 2 <2 x2mm voxel size) by applying the forward
deformation parameters that were obtained from the segmentation procedure, and
spatially smoothed using an 8-mm full-width at half maximum (FWHM) Gaussian

kernel.

First-level fMRI analysis used in the discovery cohort. We conducted two separate
subject-level GLM (general linear model) analyses. The first GLM model was used to
obtain beta images for the prediction analysis. In this model we included five separate
boxcar regressors time-logged to the presentations of pictures in each rating (i.e., 1-5),

which allowed us to model brain activity in response to each fear level separately. To
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model any effects related to motor activity the model also included one boxcar
regressor indicating the rating period. The fixation cross epoch served as implicit
baseline. The second GLM model included two regressors of interest, with one
modeling the picture viewing period and the other modeling the fear rating period.
Additionally, the design matrix included fear ratings (1-5) reported for each picture as
a parametric modulator for the picture viewing period.

All task regressors were convolved with the canonical HRF function and a high-
pass filter of 128 seconds was applied to remove low frequency drifts. Time series
from multiple runs were concatenated using SPM’s spm_fmri_concatenate.m
function, which included an intercept for each run and corrected the high-pass filter
and temporal non-sphericity calculations. Regressors of non-interest (nuisance
variables) included (1) six head movement parameters and their squares, their
derivatives and squared derivatives (leading to 24 motion-related nuisance regressors

in total); and (2) indicator vectors for outlier time points (see above for details).

Participants in the validation cohort. Twenty-two healthy, right-handed participants
were recruited from the University of Electronic Science and Technology of China in

this study. Due to excessive head motion (> 1 voxel) during fMRI scanning data from

2 participants were excluded leading to a final sample of n = 20 participants (6

females; mean £SD age = 21.75 %2.61 years).
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Stimuli and paradigm used in the validation cohort. The fear rating task consisted
of 2 runs with each run encompassing 30 photographs (60 in total) from the 1APS,
NAPS and internet. Fifty-eight out of sixty stimuli were overlapped with the stimuli
used in the discovery cohort. Stimuli were presented using the E-Prime software.
Participants were instructed to pay attention to the pictures when they came on the
screen. Each trial consisted of a 6s presentation of the picture followed by a jittered
fixation-cross (1s, 2s or 3s). Participants then had 4s to report the emotional state they
experienced for the stimuli using a 5-point Likert scale where 1 indicated minimal
fear/neutral and 5 indicated very strong fear. Finally, there was a jittered fixation-
cross epoch (4s, 5s, or 6s) before the presentation of the next picture (Fig. 1B). All of

the subjects reported rating ‘1-5” in their responses.

Validation cohort MRI data acquisition, preprocessing and first-level fMRI
analysis. Imaging data acquisition, preprocessing and subject-level GLM analysis

were identical to the discovery cohort.

Generalization cohort. The details of the generalization cohort were reported in
previous studies (Taschereau-Dumouchel et al., 2018; 2019). Briefly, 31 participants
(15 females; mean £SD age = 23.29 +4.21 years) underwent a 1h fMRI session
where they were presented with 3600 images consisting of 30 animal categories and
10 object categories (90 different images per category). The stimuli were grouped in

blocks of 2, 3, 4 or 6 images of the same category with each stimulus presented for 1s
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(no interblock or interstimulus interval). Subjective fear ratings (0 = ‘no fear’ to 5 =
‘very high fear’) for each category were established before the fMRI procedure
without presenting any fearful stimuli. We used labels 1-6 instead of 0-5 in Fig. 2F, G
for display purposes (of note, this procedure changes only the intercept/bias but not
the pattern weights of the predictive model and has no effects on the prediction-
outcome correlation or the forced-choice classification). The least-square separate
single trial analysis approach was employed to iteratively fit a GLM to estimate the
brain response to the first image of each block and then the within-subject beta images
with the same fear ratings were averaged, which resulted in one beta map per rating

for each subject (for paradigm, MRI acquisition and analysis details see ref 4°).

Multivariate pattern analysis. We applied whole-brain (restricted to a grey matter
mask>®"1) multivariate machine learning pattern analysis to obtain a pattern of brain
activity that best predicted participants’ self-reported fear ratings. Of note, the
findings were comparable with a whole-brain mask with white matter and
cerebrospinal fluid included. We employed the support vector regression (SVR)
algorithm using a linear kernel (C = 1) implemented in the Spider toolbox
(http://people.kyb.tuebingen.mpg.de/spider) with individual beta maps (one per rating
for each subject) as features to predict participants’ fear ratings of the grouped
pictures they viewed while undergoing fMRI. Of note, we only used data from the
discovery cohort to develop the VIFS. To evaluate the performance of our algorithm,

we used a 10x10-fold cross-validation procedure on the discovery cohort during
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which all participants were randomly assigned to 10 subsamples of 6 or 7 participants
using MATLAB's cvpartition function. The optimal hyperplane was computed based
on the multivariate pattern of 60 or 61 participants (training set) and evaluated by the
excluded 7 or 6 participants (test set). This procedure was repeated 10 times with each
subsample being the testing set once. To avoid a potential bias of training-test splits,
the cross-validation procedures throughout the study were repeated 10 times by
producing different splits in each repetition and the resultant prediction performance
were averaged to produce a convergent estimation 372, Several metrics have been
proposed to evaluate the predictive power of multivariate predictive signatures (see
e.g., ref. ), however, the advantages and disadvantages of each metric are still a
matter of debate, and metrics vary subtly in their properties. To facilitate a robust
determination of the predictive accuracy of the neurofunctional signature we therefore
employed various metrics including correlation, RMSE, EVS and forced-choice
classification accuracy. Specifically, we used overall (between- and within-subjects;
333 pairs in total) and within-subject (5 or 4 pairs per subject) Pearson correlations
between the cross-validated predictions and the actual ratings to indicate the effect
sizes and the RMSE and explained variance score to illustrate overall prediction error.
The explained variance score was assessed using the following formula: explained
variance score = 1-(var[y-y]/var[y]), where y is the true rating, ¥ is the VIFS response
(plus intercept) and var indicates the variance (as implemented in software packages
such as scikit-learn). In addition, we assessed classification accuracy of the VIFS

using a forced-choice test, where signature responses were compared for two
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conditions tested within the same individual, and the higher was chosen as more
fearful. We also applied the fear-predictive pattern (trained on the whole discovery
cohort) to the validation and generalization cohorts to obtain a signature response for
each map (that is, the dot product of the VIFS weight map and the test image plus the
intercept) to assess the prediction performance of the VIFS using a permutation test
with 10,000 random shuffles. Given that the cross-validated permutation test is very
time consuming the inferences on model performance were only performed using

permutation testing on the validation and generalization cohorts.

Comparing the performance of VIFS with the AFSS. A previous study has
developed a whole-brain fear decoder “°. To compare the performance of VIFS with
the AFSS we applied both patterns to the discovery, validation and generalization
cohorts and assessed the overall prediction-outcome correlation as well as two-
alternative forced-choice classification accuracies between low, moderate and high

fear based on the pattern expressions.

Within-subject trial-wise prediction. Here we tested whether the VIFS could predict
individual trial-by-trial subjective fear. To this end we performed a single-trial
analysis, which was achieved by specifying a GLM design matrix with separate
regressors for each stimulus. Each task regressor was convolved with the canonical
hemodynamic response function. Nuisance regressors and high-pass filter were

identical to the above GLM analyses. One important consideration for single-trial
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analysis is that the beta estimates for a given trial could be strongly affected by
acquisition artifacts (e.g., sudden motion) that cooccur during a trial. For each subject
we therefore excluded trials with variance inflation factors (a measure of design-
induced uncertainty due to multicollinearity with nuisance regressors) > 3 from
subsequent analyses (overall ~6% trials were excluded). Next, we calculated the VIFS
pattern expressions of these single-trial beta maps (i.e., the dot-product of vectorized
activation images with the VIFS weights), which were finally correlated with the true
ratings for each participant separately. For subjects in the discovery cohort we used
the 1010-fold cross-validation procedure to obtain the VIFS response of each single-

trial beta map for each subject.

Determining brain regions associated with and predictive of subjective fear. To
identify neural circuits underlying subjective experience of fear we employed a series
of analyses. Firstly, we performed one-sample t-tests on the first-level univariate
parametric modulation beta maps to see which brain regions’ activation was
associated with fear ratings. Next, we used multivariate analyses to locate brain
regions that predictive of and associated with fear ratings separately as well as brain
regions showing an overlapping effect. Specifically, we evaluated the consistency of
each weight for every voxel in the brain across within-subject multivariate classifiers
(developed with single-trial data) using a one-sample t-test. The thresholded map (g <
0.05, FDR corrected) showed the consistent fear-predictive brain regions across

subjects. To this end we performed a prediction analysis (linear SVR with C = 1) for
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each subject in the discovery cohort separately using their single-trial data (10x<10-
fold cross-validated) and only included participants whose fear ratings could be
significantly predicted by their brain data (evaluated by prediction-outcome Pearson
correlation; n = 60). Of note, similar results were found when including the entire
sample.

Given that the predictive brain regions could be related to (in this case) fear
processing as well as suppressing the noise in the data *° we transformed the within-
subject patterns to ‘activation patterns’ using the following formula: A =
cov(X)*W*cov(S)?, where A is the reconstructed activation pattern, cov(X) is the
covariance matrix of training data, W is the pattern weight vector, and cov(S) is the
covariance matrix of the latent factors, which is defined as W™X. This reconstructed
activation is also similar to the ‘structure coefficients’ in the statistical literature.
Previous studies have argued that both betas and structure coefficients are necessary
to interpret the model 47. Essentially, the beta indicates the predictive slope and
direction of effect controlling for other variables in the model whereas the structure
coefficients indicates the direction of the relationship between the variable and the
model without controlling for other variables — i.e., in the current study, which voxels
are positively and which are negatively related to the predicted subjective fear. The
significant brain regions (one-sample t-test thresholded at g < 0.05, FDR corrected)
exhibited the consistent fear-associative effect. In parallel with with-subject models
we conducted bootstrap tests, where we took 10,000 samples with replacement from

the discovery cohort, repeated the prediction process with each bootstrap sample, and
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calculated Z scores and two-tailed uncorrected P-values with the mean and standard
deviation of the sampling distribution, on the population-level fear-predictive pattern
(i.e., the VIFS) as well as the transformed ‘activation pattern’ from the VIFS to
identify the reliable fear predictive and associative brain regions of the VIFS
(thresholded at g < 0.05, FDR corrected). To facilitate the determination and
interpretation of a subjective fear signature convergent univariate and multivariate
approaches were implemented. Spatial patterns (or regions) that were consistently
observed across backward and forward models were considered as reliably and
consistently associated and predictive of subjective fear.

Furthermore, we asked whether fear processing could be reducible to activations
in a single brain region (e.g., amygdala) or network (e.g., subcortical regions). To
examine this hypothesis, we employed whole-brain searchlight (three-voxel radius
spheres) " —and parcellation (274 cortical and subcortical regions) ™ — based
analyses to identify local regions predictive of fear and compared model
performances of local regions with the whole-brain model (i.e., the VIFS). In
addition, we compared prediction performances of amygdala (based on Anatomy
Toolbox version 2.2c; available online in the Cognitive and Affective Neuroscience
Laboratory Github repository at

https://github.com/canlab/Neuroimaging_Pattern_Masks) and large-scale networks to

the whole-brain approach. The networks of interest included 7 resting-state functional
networks °%°, a subcortical network (including the striatum, thalamus, hippocampus

and amygdala) and a ‘consciousness network’ proposed by LeDoux and Pine 8, which
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composed of anterior cingulate cortex, inferior frontal gyrus, middle frontal gyrus,
superior frontal gyrus, orbitofrontal gyrus, rectus, olfactory and insula from the AAL
atlas and the posterior parietal cortex from Shirer, et al. °. For these analyses we
trained and tested a model for each searchlight sphere, parcellation, brain region or

network separately using the discovery data (10><10-fold cross-validated).

Comparing the similarities of the VIFS and a threat-predictive signature. To
examine the functional and spatial similarities between the VIFS and the TPS threat-
predictive signature; 3 which predicts the defense responses elicited by threat
conditioning, we (1) applied VIFS to distinguish unreinforced CS+ versus CS- and
predicted subjective fear ratings using the TPS, and (2) examined the voxel-level
spatial similarity between these two signatures. Inference on model performance was
performed using permutation testing with 10,000 random shuffles. Given that the fear
and threat conditioning studies employed visual and auditory cues, respectively, we
next tested whether the dissociable effects based simply on differences in sensory
processing by applying both signatures to an independent visual threat conditioning
dataset °2. If the predictions were sensory-dependent the TPS would not distinguish
visual (unreinforced) CS+ versus CS- whereas the VIFS might predict visual CS+
from CS-. To this end we included two datasets that employed an auditory and visual
threat conditioning paradigm during which a previously neutral stimulus was paired
with an unpleasant shock (CS+) while another matched stimulus was not paired (see

Supplementary Methods for details).
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Multilevel two-path mediation analysis. In order to test the relationship between
VIFS response, fear rating and the PINES response we conducted two multilevel
mediation analyses using the Mediation Toolbox

(https://github.com/canlab/MediationToolbox). A mediation analysis tests whether the

observed covariance between an independent variable (X) and a dependent variable
(Y) could be explained by a third variable (M). Significant mediation effect is
obtained when inclusion of M in a path model of the effect of X on Y significantly
alters the slope of the X-Y relationship. That is, the difference between total (path c)
and direct (non-mediated, path ¢') effects of X on Y (i.e., ¢ - ¢’), which could be
performed by testing the significance of the product of the path coefficients of path a
xD, is statistically significant. The multilevel mediation analysis is designed to
explain both within- and between-subject variations in the same model by treating the
subject as a random effect 1. The first-level accounts for the mediation effects within
each individual participant and the second-level tests for consistency across
participants and allows for population inference. In the current study we tested
whether (1) VIFS response mediated the association between PINES response and
fear rating and (2) PINES response mediated the relationship between VIFS response
and fear rating. To this end the VIFS and PINES responses were calculated by dot-
product of the single-trial beta maps with the VIFS (through cross-validation

procedure for the discovery cohort) and PINES patterns respectively for each subject.
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We used bias corrected accelerated bootstrapping (10,000 replacements) for

significance testing.
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Data availability

The visually induced fear signature, the corresponding data used to develop this
signature and the thresholded statistical maps are available at
https://figshare.com/articles/dataset/Subjective_fear_dataset/13271102. Additional

data related to this paper may be requested from the authors.

Code availability
Data were analyzed using CANIab neuroimaging analysis tools available at
https://github.com/canlab/ and from https://github.com/zhou-feng/fMRI-

studies/tree/main/Fear_experience_signature.


https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394973,; this version posted August 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

References

1 Mobbs, D. et al Viewpoints: Approaches to defining and investigating fear. Nature
neuroscience 22, 1205-1216 (2019).

2 Barrett, L. F. The theory of constructed emotion: an active inference account of

interoception and categorization. Social cognitive and affective neuroscience 12, 1-23

(2017).

3 LeDoux, J. E. Coming to terms with fear. Proceedings of the National Academy of Sciences
111, 2871-2878 (2014).

4 Adolphs, R. The biology of fear. Current Biology 23, R79-R93 (2013).

5 Gross, J. J. & Feldman Barrett, L. Emotion generation and emotion regulation: One or two

depends on your point of view. Emotion review 3, 8-16 (2011).
6 LeDoux, J. E. & Pine, D. S. Using neuroscience to help understand fear and anxiety: a two -
system framework. American journal of psychiatry (2016).

7 Gross, C. T. & Canteras, N. S. The many paths to fear. Nature Reviews Neuroscience 13,
651-658 (2012).

8 Davis, M. The role of the amygdala in fear and anxiety. Annual review of neuroscience 15,
353-375 (1992).

9 Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284-292
(2015).

10 LeDoux, J. The emotional brain, fear, and the amygdala. Cellular and molecular
neurobiology 23, 727-738 (2003).

11 Shackman, A. J. & Fox, A. S. Contributions of the central extended amygdala to fear and
anxiety. Journal of Neuroscience 36, 8050-8063 (2016).

12 Takahashi, L. K. Olfactory systems and neural circuits that modulate predator odor fear.

Frontiers in behavioral neuroscience 8, 72 (2014).

13 Panksepp, J. Affective neuroscience: The foundations of human and animal emotions.
(Oxford university press, 2004).

14 Barrett, L. F. et a/. Of mice and men: Natural kinds of emotions in the mammalian brain?
A response to Panksepp and lzard. Perspectives on Psychological Science 2, 297-312
(2007).

15 Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B. & Prévost, C. The ecology of human fear:
survival optimization and the nervous system. Frontiers in neuroscience 9, 55 (2015).

16 LeDoux, J. E. & Brown, R. A higher-order theory of emotional consciousness. Proceedings
of the National Academy of Sciences 114, E2016-E2025 (2017).
17 Milad, M. R. & Quirk, G. J. Fear extinction as a model for translational neuroscience: ten

years of progress. Annual review of psychology 63, 129-151 (2012).

18 Shin, L. M. & Liberzon, I. The neurocircuitry of fear, stress, and anxiety disorders.
Neuropsychopharmacology . official publication of the American College of
Neuropsychopharmacology 35, 169-191 (2010).

19 Adolphs, R. et a/. A mechanism for impaired fear recognition after amygdala damage.
Nature 433, 68-72 (2005).

20 Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. The Human Amygdala and the


https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394973,; this version posted August 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Induction and Experience of  Fear. Current  Biology — 21, 34-38,
doi:https://doi.org/10.1016/j.cub.2010.11.042 (2011).

21 Hurlemann, R. et a/. Amygdala control of emotion-induced forgetting and remembering:
evidence from Urbach-Wiethe disease. Neuropsychologia 45, 877-884 (2007).
22 Becker, B. et al. Fear processing and social networking in the absence of a functional

amygdala. Biological psychiatry 72, 70-77 (2012).

23 Feinstein, J. S. et a/ Fear and panic in humans with bilateral amygdala damage. Nature
neuroscience 16, 270-272 (2013).

24 Alpers, G. W. et al. Attention and amygdala activity: an fMRI study with spider pictures in
spider phobia. Journal of Neural Transmission 116, 747-757 (2009).

25 Stark, R. et a. Hemodynamic brain correlates of disgust and fear ratings. Neuro/mage 37,
663-673 (2007).

26 Hudson, M. et a/. Dissociable neural systems for unconditioned acute and sustained fear.
Neurolmage, 116522 (2020).

27 Mobbs, D. et a/. When fear is near: threat imminence elicits prefrontal -periaqueductal
gray shifts in humans. Science 317, 1079-1083 (2007).

28 Poldrack, R. A. Can cognitive processes be inferred from neuroimaging data? 7rends in

cognitive sciences 10, 59-63 (2006).

29 Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain
models in translational neuroimaging. Nature neuroscience 20, 365 (2017).

30 Poldrack, R. A. et al Scanning the horizon: towards transparent and reproducible
neuroimaging research. Nature reviews neuroscience 18, 115 (2017).

31 Kragel, P. A., Koban, L., Barrett, L. F. & Wager, T. D. Representation, pattern information,
and brain signatures: from neurons to neuroimaging. Neuron 99, 257-273 (2018).

32 Chang, L. J,, Gianaros, P. J., Manuck, S. B., Krishnan, A. & Wager, T. D. A sensitive and
specific neural signature for picture-induced negative affect. PLoS biology 13, €1002180
(2015).

33 Kamitani, Y. & Tong, F. Decoding the visual and subjective contents of the human brain.
Nature neuroscience 8, 679 (2005).

34 Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. New England
Journal of Medicine 368, 1388-1397 (2013).

35 Krishnan, A. et a/. Somatic and vicarious pain are represented by dissociable multivariate
brain patterns. £life 5, e15166 (2016).
36 Zhou, F. et al. Empathic pain evoked by sensory and emotional-communicative cues share

common and process-specific neural representation. el/fe 9, 56929 (2020).

37 Reddan, M. C., Wager, T. D. & Schiller, D. Attenuating neural threat expression with
imagination. Meuron 100, 994-1005. e1004 (2018).

38 Kragel, P. A. & LaBar, K. S. Multivariate neural biomarkers of emotional states are
categorically distinct. Social cognitive and affective neuroscience 10, 1437-1448 (2015).

39 Saarimaki, H. et a/ Discrete neural signatures of basic emotions. Cerebral cortex 26, 2563-
2573 (2016).
40 Taschereau-Dumouchel, V., Kawato, M. & Lau, H. Multivoxel pattern analysis reveals

dissociations between subjective fear and its physiological correlates. Molecular Psychiatry,
1-13 (2019).


https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394973,; this version posted August 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

41 Peelen, M. V., Wiggett, A. J. & Downing, P. E. Patterns of fMRI activity dissociate
overlapping functional brain areas that respond to biological motion. Neuron 49, 815-
822 (2006).

42 Woo, C.-W. ef al. Separate neural representations for physical pain and social rejection.
Nature communications 5, 5380 (2014).

43 Clore, G. L. & Ortony, A. Appraisal theories: How cognition shapes affect into emotion.
(2008).

44 Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E. & Barrett, L. F. The brain basis of
emotion: a meta-analytic review. The Behavioral and brain sciences 35, 121 (2012).

45 Haufe, S. et a/. On the interpretation of weight vectors of linear models in multivariate
neuroimaging. Neuro/mage 87, 96-110 (2014).

46 Rissman, J., Gazzaley, A. & D'Esposito, M. Measuring functional connectivity during distinct
stages of a cognitive task. Neuro/mage 23, 752-763 (2004).
47 Courville, T. & Thompson, B. Use of structure coefficients in published multiple regression

articles: B is not enough. £ducational and Psychological Measurement 61, 229-248 (2001).

48 McTeague, L. M. et a/. Identification of common neural circuit disruptions in emotional
processing across psychiatric disorders. American Journal of Psychiatry 177, 411-421
(2020).

49 LeDoux, ). The emotional brain: The mysterious underpinnings of emotional life.  (Simon
and Schuster, 1998).

50 Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. The organization of
the human cerebellum estimated by intrinsic functional connectivity. Journal of
neurophysiology (2011).

51 Yeo, B. T. et a/. The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. Journal of neurophysiology (2011).

52 Zhou, F. et a/. Human extinction learning is accelerated by an angiotensin antagonist via
ventromedial prefrontal cortex and its connections with basolateral amygdala. Biological
psychiatry 86, 910-920 (2019).

53 Corradi-Dell'Acqua, C., Tusche, A., Vuilleumier, P. & Singer, T. Cross-modal
representations of first-hand and vicarious pain, disgust and fairness in insular and
cingulate cortex. Nature communications 7, 10904 (2016).

54 D'Hondt, F. et al. Early brain-body impact of emotional arousal. Frontiers in human
neuroscience 4, 33 (2010).

55 Koban, L., Jepma, M., Lépez-Sola, M. & Wager, T. D. Different brain networks mediate the
effects of social and conditioned expectations on pain. Nature communications 10, 1-13
(2019).

56 Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale
automated synthesis of human functional neuroimaging data. Nature methods 8, 665-
670 (2011).

57 Cuthbert, B. N. & Kozak, M. J. Constructing constructs for psychopathology: the NIMH
research domain criteria. (2013).

58 Ashar, Y. K., Andrews-Hanna, J. R., Dimidjian, S. & Wager, T. D. Empathic care and distress:
predictive brain markers and dissociable brain systems. Neuron 94, 1263-1273. 1264
(2017).


https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394973,; this version posted August 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

59 Rosenholtz, R, Li, Y. & Nakano, L. Measuring visual clutter. Journal of vision 7, 17.11-22,
doi:10.1167/7.2.17 (2007).

60 Barrett, L. F. Are emotions natural kinds? Perspectives on psychological science 1, 28-58
(2006).

61 Woo, C.-W., Roy, M., Buhle, J. T. & Wager, T. D. Distinct brain systems mediate the effects
of nociceptive input and self-regulation on pain. PLoS Bio/ 13, €1002036 (2015).

62 Peelen, M. V. & Downing, P. E. Using multi-voxel pattern analysis of fMRI data to interpret
overlapping functional activations. 7rend’s in cognitive sciences 11, 4-4 (2007).

63 Cox, C. R. & Rogers, T. T. Finding Distributed Needles in Neural Haystacks. 7he Journal of
Neuroscience 41, 1019-1032, doi:10.1523/jneurosci.0904-20.2020 (2021).

64 Feinstein, J. S. et a/ Fear and panic in humans with bilateral amygdala damage. Nature
neuroscience 16, 270-272, doi:10.1038/nn.3323 (2013).
65 Anderson, A. K. & Phelps, E. A. Is the human amygdala critical for the subjective experience

of emotion? Evidence of intact dispositional affect in patients with amygdala lesions.
Journal of cognitive neuroscience 14, 709-720, doi:10.1162/08989290260138618 (2002).

66 Becker, B. et al. Fear processing and social networking in the absence of a functional
amygdala. Biological psychiatry 72, 70-77, doi:10.1016/].biopsych.2011.11.024 (2012).
67 Fanselow, M. S. & Pennington, Z. T. The Danger of LeDoux and Pine's Two-System

Framework for Fear. The American journal of psychiatry 174, 1120-1121,
doi:10.1176/appi.ajp.2017.17070818 (2017).

68 Poldrack, R. A., Huckins, G. & Varoquaux, G. Establishment of Best Practices for Evidence
for Prediction: A Review. JAMA Psychiatry 77, 534-540,
doi:10.1001/jamapsychiatry.2019.3671 (2020).

69 Botvinik-Nezer, R. et al Variability in the analysis of a single neuroimaging dataset by
many teams. Nature 582, 84-88, doi:10.1038/s41586-020-2314-9 (2020).
70 Zhou, F. et al. Empathic pain evoked by sensory and emotional-communicative cues share

common and process-specific neural representations. £/ife 9, 56929 (2020).

71 Kohoutov, L. et a/. Toward a unified framework for interpreting machine-learning models
in neuroimaging. Nature protocols 15, 1399-1435 (2020).
72 Zhou, F. et a/. Shifted balance of dorsal versus ventral striatal communication with frontal

reward and regulatory regions in cannabis-dependent males. Human brain mapping 39,
5062-5073 (2018).

73 Kriegeskorte, N., Goebel, R. & Bandettini, P. Information-based functional brain mapping.
Proceedings of the National Academy of Sciences 103, 3863-3868 (2006).
74 Fan, L. et a/. The human brainnetome atlas: a new brain atlas based on connectional

architecture. Cerebral cortex 26, 3508-3526 (2016).

75 Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M. D. Decoding subject-
driven cognitive states with whole-brain connectivity patterns. Cerebral cortex 22, 158-
165 (2012).


https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394973,; this version posted August 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Acknowledgements

We thank Vincent Taschereau-Dumouchel and colleagues for sharing their data. This
work was supported by the National Key Research and Development Program of
China (Grant No. 2018YFA0701400) to B.B.; National Institute of Mental Health
(ROIMHO076136; ROIMH116026) to T.D.W; National Natural Science Foundation of
China (Grant No. 31530032) to K.M.K; China Postdoctoral Science Foundation

(Grant No. 2018M643432) to W.Z..

Author contributions
F.Z., T.D.W. and B.B. designed the experiment, analyzed the data and drafted the
manuscript. E.Z. W.Z., Q.Y., and Y.G. conducted the experiment. W.Z., S.Y. and

K.M.K provided feedback and revised the manuscript.

Competing interests

The authors declare no competing interests.


https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394973,; this version posted August 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

(A) Fear induction fMRI paradigm used in the discovery cohort (80 stimuli in total, distributed over 4 runs)

How fearful?

6s 2s

time

(B) Fear induction fMRI paradigm used in the validation cohort (60 stimuli in total, distributed over 2 runs)
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Fig. 1 Experimental paradigms and analysis stages. Discovery (panel A) and
validation (panel B) cohorts underwent two similar but not identical fear induction
and rating paradigms during fMRI acquisition. Of note, examples of the fear-evoking
photos are pictures (free for commercial use) only for display purposes and not
included in the original stimulus set. Panel C depicts the analytic stages and datasets
used in the present study. Specifically, a whole-brain multivariate pattern predictive

of the level of subjective experience of fear was trained on the discovery sample
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(n=67) using support vector regression and further evaluated in discovery (cross-
validated), validation (n=20) and generalization (n=31) cohorts. We next
systematically applied univariate and multivariate analyses to determine the spatial
scale and local contributions of specific regions to the momentary subjective fear
representation. Finally, we tested whether subjective fear was encoded with a neural
signature that was distinct from the representation of conditioned threat (CS+ versus
CS- cues) and general negative affect. SVR, support vector regression; VIFS, visually
induced fear signature developed in the current study; PINES, picture-induced
negative emotion signature developed by Luke Chang and colleagues; V.T. fear
decoder, a fear-predictive pattern developed by Vincent Taschereau-Dumouchel and
colleagues. See Methods and Results for the details of the datasets and brain

signatures used in this study.
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(A) Visually induced fear signature (VIFS; q<0.05, FDR corrected) (B) VIFS rating prediction on discovery cohort (€) VIFS rating prediction on validation cohort
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Fig. 2 Visually induced fear signature (VIFS). Panel A depicts the VIFS pattern
thresholded using a 10,000-sample bootstrap procedure at g < 0.05, FDR corrected.
Inserts show the spatial topography of the unthresholded patterns in the left ACC,
right PAG, bilateral AMG and bilateral insula. AMG denotes amygdala, THAL
thalamus, vmPFC ventromedial prefrontal cortex, dmPFC dorsal medial prefrontal
cortex, dACC dorsal anterior cingulate cortex, MCC middle cingulate cortex, ACC
anterior cingulate cortex, and PAG periaqueductal gray. Panels B and C depict the
predicted fear experience (subjective ratings) compared to the actual level of fear for
the cross-validated discovery cohort and the independent validation cohort,
respectively. Accuracies reflect forced-choice comparisons. Panels D and E depict an
average peristimulus plot of the VIFS response to the cross-validated discovery cohort
and the independent validation cohort. This reflects the average VIFS response at
every repetition time (TR; 2s) in the timeseries separated by the fear ratings. Of note,
the VIFS reacts with a latency of approximate 4 seconds after stimulus onset which

corresponds to the timing of the hemodynamic response function (HRF) following


https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394973,; this version posted August 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

stimulus onset. Panel F and G compare the fear prediction of AFSS with the VIFS on
discover, validation and generalization cohorts, respectively. *indicates P < 0.05, **P
< 0.01 and ***P < 0.001. Error bars and shaded regions indicate standard errors.

AFSS, animal fear schema signature.
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(A) VIFS (q < 0.05, FDR corrected)

(B) Reconstructed “activation pattern” from VIFS (q < 0.05, FDR corrected)

KRR

N2 D

Fig. 3 Subjective experience of fear is associated with and predicted by
distributed brain regions. Panel A shows the thresholded VIFS. Panel B depicts the
threshholded transformed ‘activation pattern’ from the VIFS. Panel C shows the
overlap between VIFS and transformed ‘activation pattern’. All images are
thresholded at g < 0.05, FDR corrected. Hot color indicates positive associations
(panels A) or weights (panels B) where as cold color indicates negative associations

(panels A) or weights (panels B). VIFS, visually induced fear signature.
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(A) Searchlight-based predictions (P < 0.001 uncorrected, equivalent to FDR q<.004)
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(B) Parcellation-based predictions (P < 0.001 uncorrected, equivalent to FDR ¢<.003)
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Fig. 4 Local brain region and network predictions. Panel A shows brain regions
that can significantly predict subjective fear ratings revealed by searchlight analysis.
Histograms: cross-validated predictions (correlations) from local searchlight analysis.
Red line indicates the prediction-outcome correlation from VIFS. Panel B depicts
brain regions which can significantly predict subjective fear revealed by parcellation-
based analysis. Histograms: cross-validated predictions (correlations) from

parcellations. Red line indicates the prediction-outcome correlation from VIFS. Panel
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C shows cross-validated predictions from amygdala-based prediction analysis. Error
bar indicates standard error; r indicates overall (between- and within-subjects)
prediction-outcome correlation. Panel D demonstrates that the information about
subjective experience of fear is distributed across multiple systems. Model
performance was evaluated as increasing numbers of voxels/features (x axis) were
used to predict subjective fear in different regions of interest including the entire brain
(black), consciousness network (red), subcortical regions (light purple) or large-scale
resting-state networks. The y axis denotes the cross-validated prediction-outcome
correlation. Colored dots indicate the correlation coefficients, solid lines indicate the
mean parametric fit and shaded regions indicate standard deviation. Model
performance is optimized when approximately 10,000 voxels are randomly sampled

across the whole-brain. VIFS, visually induced fear signature.
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(A) VIFS predicts CS+ versus CS- (B) TPS predicts fear rating
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Fig. 5 Comparing fear- and threat-predictive signatures. Panel A depicts that
visually induced fear signature (VIFS) does not distinguish unreinforced CS+ versus
CS-. Panel B shows the histograms of prediction of threat-predictive signature (TPS)
on fear data from nonparametric permutation test. Histograms show the distribution of
null-hypothesis prediction-outcome correlations, and the red line shows the actual
correlation coefficient. Panel C demonstrates the scatter plot displaying normalized
voxel weights for VIFS (y-axis) and TPS (x-axis). Bars on the right represent the sum
of squared distances from the origin (0,0) for each Octant. Different colors are

assigned to the eight Octants that reflect voxels of shared positive or shared negative


https://doi.org/10.1101/2020.11.23.394973
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394973,; this version posted August 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

weights (Octants 2 and 6, respectively), selectively positive weights for the VIFS
(Octant 1) or for TPS (Octant 3), selectively negative weights for the VIFS (Octant 5)
or TPS (Octant 7), and voxels with opposite weights for the two neural signatures

(Octants 4 and 8).
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(A) VIFS and PINES predict high versus low fear and high versus low general negative emotion separately
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(B) VIFS response (partially) mediates the association between PINES response and fear rating
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(C) PINES response unlikely mediates PINES response — fear rating association
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Fig. 6 Comparing VIFS and PINES responses. Panel A depicts that VIFS more
accurately (shown as forced-choice classification accuracy and Cohen’s d) predicts
high versus low subjective fear while PINES is more sensitive to distinguish high
versus low general negative emotion. Panel B shows the multilevel mediation analysis
results showing that VIFS response mediates the PINES response — fear rating
association in both discovery and validation cohorts. Panel C shows that the PINES
response does not mediate the VIFS response — fear rating association in the
discovery cohort. Although the mediation effect is significant in the validation cohort,

*kk

the effect size (Cohen’s d = 0.06) is very small. ““indicates P < 0.01, ™"P < 0.001, NS

P>0.5.
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Table 1 Comparing performance of VIFS with AFSS

classifications VIFS AFSS
Discovery high versus low 10010%’:’1 (2.58)  79+5.0%"" (0.77)
dataset high versus moderate 88i3.9%*** (1.18) 42i6.0%lji(-0.22)
moderate versus low  93£3.1%  (1.40)  84+4.5%  (1.02)
Validation high versus low  10040%™ (2.20)  9544.9%"" (1.88)
dataset high versus moderate  90+6.7%  (1.21)  55+11.1%" (0.19)
moderate versus low  90+£6.7%" (1.27)  65£10.7%" (0.78)
Generalization high versus low 8716.2%:: (1.10) 9015_5%:**:(1 56)
dataset high versus moderate 83i6.8%*** (0.97) 87i6.2%*** (0.79)
moderate versus low  83+£7.0%  (0.86)  93+4.7%  (1.52)

For each dataset we used VIFS and AFSSs to classify high, moderate and low
subjective fear using two alternative forced-choice tests. Performance was shown as

*kk

accuracy =SE (Cohen’s d).

denotes P < 0.001, and N° denotes non-significant

based binomial tests. VIFS, visually induced fear signature; AFSS, animal fear

schema signature.
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Table 2 Comparing prediction (correlation) of VIFS and PINES

Datasets VIFES (correlation, 95%CI) PINES (correlation, 95%CI)
Discovery 0.57[0.49, 0.63] * 0.38 [0.28 0.47]
Validation 0.59 [0.48, 0.69] 0.37[0.21, 0.51]

Generalization 0.56 [0.45, 0.64] 0.20 [0.02, 0.36]
PINES holdout 0.2910.17, 0.38] 0.72 [0.65, 0.77]

We applied the VIFS and PINES to subjective fear and general negative emotion
holdout datasets and calculated the correlation (bootstrapped 95% CI) between the
pattern expressions and the true ratings. * indicates cross-validated.
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