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ABSTRACT  Escherichia coli and Klebsiella spp. are important human pathogens that
cause a wide spectrum of clinical disease. In healthcare settings, sinks and other
wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli
and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst
patients. Without focusing exclusively on resistance markers or a clinical outbreak, we
demonstrate that many hospital sink drains are abundantly and persistently colonised
with diverse populations of E. coli, Klebsiella pneumoniae and Klebsiella oxytoca, including
both antimicrobial-resistant and susceptible strains. Using whole genome sequencing
(WGS) of 439 isolates, we show that environmental bacterial populations are largely
structured by ward and sink, with only a handful of lineages, such as E. coli ST635,
being widely distributed, suggesting different prevailing ecologies which may vary as
a result of different inputs and selection pressures. WGS of 46 contemporaneous
patient isolates identified one (2%; 95% CI 0.05-11%) E. coli urine infection-associated
isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute
to up to 10% of infections caused by these organisms in patients on the ward over
the same timeframe. Using metagenomics from 20 sink-timepoints, we show that
sinks also harbour many clinically relevant antimicrobial resistance genes including
blactx.m, blaspy and mcr, and may act as niches for the exchange and amplification
of these genes. Our study reinforces the potential role of sinks in contributing to
Enterobacterales infection and antimicrobial resistance in hospital patients, something
that could be amenable to intervention.

IMPORTANCE  Escherichia coli and Klebsiella spp. cause a wide range of bacterial
infections, including bloodstream, urine and lung infections. Previous studies have
shown that sink drains in hospitals may be part of transmission chains in outbreaks
of antimicrobial-resistant E. coli and Klebsiella spp., leading to colonisation and clinical
disease in patients. We show that even in non-outbreak settings, contamination of sink
drains by these bacteria is common across hospital wards, and that many antimicrobial
resistance genes can be found and potentially exchanged in these sink drain sites.
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Our findings demonstrate that the colonisation of handwashing sink drains by these
bacteria in hospitals is likely contributing to some infections in patients, and that
additional work is needed to further quantify this risk, and to consider appropriate
mitigating interventions.

KEYWORDS: enterobacterales, antimicrobial resistance, wastewater, resistome

INTRODUCTION

Infections caused by Enterobacterales, including Escherichia coli and Klebsiella spp.,
are major causes of global morbidity, and particular antimicrobial-resistant strains
(namely extended-spectrum beta-lactamase and carbapenemase producers) have been
listed as critical priority pathogens for mitigation by the WHO. In the UK, year-on-year
increases have been observed in the number of E. coli and Klebsiella spp. bloodstream
infections (1), for reasons which remain unclear. As well as causing invasive disease,
these organisms are capable of colonising a wide range of animal and environmental
niches, and are frequently carried in the human gastrointestinal tract (2). As such, they
are also commonly found in human wastewater, and in wastewater-associated sites
such as sewers and water treatment infrastructure (3).

A significant proportion of Enterobacterales infections are healthcare-associated,
prompting the UK government to introduce a target in 2016 to halve the number of
healthcare-associated Gram-negative bloodstream infections by 2021 (4). Wastewater
sites in hospitals have been highlighted as reservoirs of drug-resistant Enterobacterales,
with several studies reporting that ongoing transmission and outbreaks of human dis-
ease are associated with the contamination of, for example, sinks, by these organisms
(5, 6). More recently, several studies have shown reductions in colonisation and/or
invasive infection with Enterobacterales and other Gram-negative bacilli following the
introduction of strategies to remove sinks and mitigate possible contamination from
wastewater sources in patient rooms (7, 8). Most of these studies however focus on
the sampling and control of antimicrobial-resistant strains, often representing a more
immediate clinical problem in an outbreak setting, rather than on the possibility that
these sites may represent part of the wider endemic transmission network of both
susceptible and resistant strains causing infection in patients.

Whole genome sequencing of bacterial isolates is increasingly used as the most
robust, high-resolution approach to characterising relatedness between strains, and
hence determining likely transmission (9). However, the diversity of complex, polymicro-
bial environmental reservoirs is incompletely captured by sequencing small numbers
of isolates, and this breadth of diversity can be more fully captured by using a metage-
nomic approach, which characterises the genetic complement of a whole sample (10).
Combining both approaches has been shown to improve our understanding of species
and antimicrobial resistance (AMR) gene diversity within environmental, wastewater
and river samples (11, 12) and of transmission in a sink-associated outbreak of Sphin-
gomonas koreensis (also a Gram-negative bacillus) in the NIH Clinical Centre in the US
(13).

In order to investigate the prevalence of contamination of healthcare sinks by
strains of E. coli and Klebsiella spp., including those resistant to third-generation
cephalosporins and carbapenems, we sampled all sink sites using p-trap (U-bend)
aspirates across several wards and timepoints in a single UK hospital in 2017. We
used a combination of whole genome sequencing of cultured isolates from all sink
samples and metagenomic sequencing of a subset of sink samples to facilitate a high-
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resolution assessment of the genetic diversity present in these niches. To determine
whether sinks were a reservoir of Enterobacterales strains causing infection in patients
over similar timeframes, we simultaneously retrieved relevant isolates from culture-
positive specimens taken from patients admitted to the same ward locations, and used
genomics to identify the degree of genetic relatedness.

RESULTS

Diverse, often antimicrobial-resistant Enterobacterales strains are frequent—and

often persistent—colonisers of hospital sink drains. 439 Enterobacterales isolates
comprising E. coli (n=180), K. oxytoca (n=166) and K. pneumoniae (n=93) were cultured
and successfully sequenced at one or more timepoints from 12/20 (60%), 9/23 (43%)
and 16/23 (70%) sinks sampled four times over 12 weeks (March-May 2017) in general
medicine (GM), adult critical care (ACC) and acute admissions (AA) wards respectively
(97/264 [37%] sink-timepoints culture-positive overall; Figure 1). A further 30 isolates
of E. coli (n=13), K. oxytoca (n=13) and K. pneumoniae (n=4) were cultured from 11/59
(19%) sinks in a haematology ward, sampled at a single timepoint only during this
period (Figure S1). See Table S1 for surveyed sink descriptions. Species distributions
(by culture) were relatively even across the general medicine ward, while the adult
critical care unit was enriched for E. coli, and the acute admissions ward was depleted
in K. pneumoniae (Table S2).

Analysis of whole genome sequences from cultured Enterobacterales revealed
widespread and sustained colonisation of sinks by multiple sequence types (STs) of
these species (Figure 1, Figure S1) In total, 8 known and 4 novel E. coli STs were repre-
sented, of which STs 635 (n=109, 61%), 401 (n=25, 14%) and 472 (n=18, 10%) accounted
for 84% of sequenced isolates (152/180). Klebsiella spp. STs were more varied: 15
known and 6 novel K. oxytoca STs were represented, of which the most frequent was
ST177 (33/166, 20%), while there were 18 known and 1 novel K. pneumoniae STs, the
most frequent being ST872 (24/93, 26%).

Across all locations and sink-timepoints, sequenced isolates comprised 20, 50 and
26 distinct strains (defined as differing by <100 recombination-adjusted core SNPs;
see Materials and Methods) of E. coli, K. oxytoca and K. pneumoniae respectively (Figure
1, Table 1). Positive sinks cultured up to three of these distinct strains per species
at any timepoint (Figure 1, Figure S1), reflecting significant diversity within species
in sink niches. Of the 37 longitudinally sampled culture-positive sinks from which
sequences were obtained, 31 (84%) grew isolates belonging to the same strain across
multiple timepoints, highlighting persistent background colonisation illustrated for
E. coli and Klebsiella spp. in respective figures 1 and S5. Isolates resistant to third-
generation cephalosporins were cultured at 16 sink-timepoints across 12 distinct sinks,
with resistant and susceptible cultures of the same genetic strain co-occurring in 11/16
(69%) sink-timepoints, suggestive of gain and/or loss of genes conferring cephalosporin
resistance in this setting. No carbapenem-resistant isolates were cultured.

Enterobacterales can be highly abundant in sink drains, representing domi-
nant populations in some wards. Deep metagenomic lllumina sequencing was per-
formed for 20 sink-timepoints on p-trap aspirates from seven sinks on the three wards
at two timepoints, and all four timepoints for a single sink unit in the adult critical
care ward (median 3.6m reads/sample; IQR: 3.3m-7.2m). The three most abundant
bacterial genera were Klebsiella, Escherichia and Citrobacter, all common healthcare-
associated pathogens (Figure 2). Sink drains in the general medicine ward were the
most abundantly colonised by Enterobacterales (Figure 2), to which more than 50%
of reads were assigned, and were markedly less diverse than those in adult critical
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FIG 1 Cluster distribution and persistence. Left: strain-distinct cultured isolates of E.
coli, K. oxytoca and K. pneumoniae from sink drain aspirates sampled over twelve weeks
across three hospital wards. Different colours indicate distinct strains (defined by 100
SNP clusters), and cefpodoxime-resistant and/or selected ESBL-positive isolates are in-
dicated by filled markers. Right: persistence of sink and contemporaneous patient E.
coli strains throughout the sampling period.
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A) E.coli K oxytoca K. pneumoniae Total
Lineages with 1 isolate
Patient 28 1 3 32
Sink 3 37 12 52
Lineages with >1 isolate
Single timepoint nge smk. > 6 3 14
Different sinks; same ward 0 1 0 1
Same sink 7 1 7 15
Multiple timepoints Different sinks; same ward 1 4 4 9
Different wards 3 1 0 4
Patient and sink (single timepoint) 1% 0 0 1
Patients Same patient 1 0 1 2
Different patients 4 0 0 4
Total 53 51 30 134

*lineage has 3 isolates; all taken from the same ward; 2 from the same sink at the same timepoint and 1 from a patient 2 months later.

B) E.coli K. oxytoca K. pneumoniae  Total

Sink lineages with >1 isolate (excludes haematology ward)

Single timepoint same sink > 4 3 12
Different sinks; same ward 0 0 0 0
Same sink 8 1 7 16

Multiple timepoints Different sinks; same ward 1 4 4 9
Different wards 2 1 0 3

Total 16 10 14 40

TABLE 1 Spatiotemporal distribution of 100 core SNP lineages of cultured E. coli
(n=53), K. oxytoca (n=51) and K. pneumoniae n=30) A) overall and B) occurring in >1
isolate in sinks on wards that were repeatedly sampled.
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FIG2 Taxonomic composition of sink microbiota from metagenomic sequencing. Top:
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pairwise distances between samples. Centre: spike-normalised relative abundance of
species classifications at or below the order Enterobacterales among sink-timepoints.
Bottom: spike-normalised relative abundance of Kraken classifications at or below the
superkingdom Bacteria.

care and acute admissions wards, which had a dominance of Klebsiella spp., mirroring
the culture results. 90% of species-level classifications in the sink-timepoints from the
general medicine ward came from a median of just 21 bacterial species, compared with
medians of 310 and 450 species in the adult critical care and acute admissions wards
respectively. Microbial composition varied markedly between sampling timepoints for
individual sinks, but sinks within wards exhibited more similar taxonomic profiles than
those between wards (Figure 2), suggesting distinct ward-based wastewater ecologies.
Total metagenomic sequence content was hierarchically structured by ward and by
sink (Figure S2). Staff room sink A25 exhibited distinctive taxonomic and k-mer profiles
from patient room sinks in the general medicine ward (Figure 2, Figure S2).

Sinks with high metagenomic abundance of the three Enterobacterales species
reliably yielded corresponding cultures. The area beneath the receiver operating char-
acteristic (ROC) curve for culture-based detection of these species was 0.93 (Figure S3).
When the relative metagenomic abundance of a species was above 0.1%, 1% and 10%,
one or more cultures of the same organism were obtained in 58% (18/31), 76% (16/21)
and 89% (8/9) of sinks respectively. Conversely, culture detection therefore failed in
42% (13/31), 24% (5/21) and 11% (1/9) of cases where an Enterobacterales species
was present at or above respective thresholds of 0.1%, 1% and 10% metagenomic
abundance. A single sink-timepoint (first sample from A8; general medicine) failed
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to culture any Enterobacterales, but yielded 4%, 5% and 16% relative metagenomic
abundances for the three study species. Thus metagenomic sequencing suggests that
persistence may be even more widespread than indicated by culture alone.

Most environmental Enterobacterales appear to cluster within specific sinks
and wards, except for E. coli ST635, which is widely distributed. The 96 strains
found in sinks exhibited structure at the ward and sink level. Four strains were found
in multiple wards (predominantly E. coli ST 635, but also STs 472, 401 and K. oxytoca
ST 146). 92 (96%) strains were only ever found in a single ward, and of the 44 strains
cultured twice or more, only 14 (32%) were cultured from different sinks (Table 1A).
Further, of the 40 strains cultured twice or more on wards which were repeatedly
sampled (i.e. excluding the haematology ward which was only sampled once), 12
(30%) were only seen at the same sink-timepoint, 16 (40%) were seen in the same
sink at different timepoints, and 12 (30%) in different sinks at different timepoints
(1B). This structure was reflected in the recombination-adjusted core genome species
phylogenies (Figure 3). The main exception to ward and sink-based clustering was E.
coli ST635, which comprised more than half of isolates sequenced from sinks, and was
found in 13/20 (65%) E. coli-positive sinks.

However, there was sink-level clustering even within E. coli ST635, more clearly
shown in neighbour-joining trees constructed from pairwise read-based MASH dis-
tances, representing both core and accessory genomic content (see E. coli ST635 zoom
in Figure 3; colours indicate distinct sinks). Although pairwise correlations between core
and accessory genomic distances were high (Table S3), incorporating accessory content
yielded additional resolution beyond core SNP distances (Figure S4). Permutational
analysis of variance (PERMANOVA) using pairwise core SNP and read-based MASH
distances supported significant grouping of isolates from all three species by ward and
by sink (P<0.001), most conclusively for K. pneumoniae (Table S4).

Patient E. coli isolates were more diverse than those found in sinks, and
included isolates from known ‘high-risk’ clinical lineages. From March to May 2017,
1384 relevant clinical samples from 719 patients were submitted to the microbiology
laboratory for processing (AA n=779, ACC n=365, GM n=240), of which 397/1384 (29%)
were positive for microorganisms, and 107 were culture-positive for one of the study
organisms (E. coli [n=96], K. oxytoca [n=2], K. pneumoniae [n=9]). 46/107 (43%) of these
isolates were retrieved for sequencing, including 19/22 isolates from bloodstream
infections, 3/6 from respiratory samples, 21/73 from urine samples, and 0/10 other
samples.

Among 39 sequenced E. coli patient isolates, 21 STs were represented, including
known high-risk lineages (23/39 (59%) isolates) not seen in sinks: namely ST73 (n=8),
ST131 (n=7), ST69 (n=3), ST12 (n=2), ST127 (n=2), and ST95 (n=1). The single sequenced
K. oxytoca isolate was ST36, and the six K. pneumoniae isolates came from four STs,
including two high-risk lineages, ST25 and ST29. Across the three species, there were
34, 1 and 4 distinct lineages, respectively (Table 1).

Genetic similarity of sequenced patient and environmental isolates. As well
as being diverse, the 39 clinical E. coli isolates were phylogenetically distinct from most
sink isolates, which largely came from just four sequence types (ST635, ST401, ST472
and ST399). The exception was an E. coli isolated from urine taken on the general
medicine ward, which was 17 and 19 core SNPs from two isolates from sink A25 in the
same ward, sampled 58 days prior to the clinical sample (Figure 1; right; cluster 4). A
read-based MASH distance of 7 x 107 between this pair of isolates indicated very high
total genomic (chromosome-+accessory) similarity. A records search for admissions
of this patient prior to commencing sink sampling revealed four inpatient admissions
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FIG3 Maximum likelihood phylogenies of E. coli, K. oxytoca and K. pneumoniae cultured
from sink drain aspirates sampled over twelve weeks across three wards, with two
zooms corresponding to an E. coli ST635 neighbour-joining MASH subtree whose tips
are coloured by sink, and genetic overlap between a sink culture and a urine culture
from a patient with ward contact during the study. Tip colours indicate strains, with
rings inside-to-out denoting: patient/sink, sink designation, sequence type, and ESBL
genotype.


https://doi.org/10.1101/2020.02.19.952366
http://creativecommons.org/licenses/by-nd/4.0/

21

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.19.952366; this version posted February 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Multi-omic surveillance of Escherichia coli and Klebsiella spp. in hospital sink drains and patients

(of 0 (day case), 1, 2 and 5 nights’ duration), of which 3 included time on the acute
admissions ward. There were no prior admissions onto the general medicine ward (in
which their positive urine specimen was taken), although their eleven-night spell on the
general medicine ward commenced with a seven-hour episode in acute admissions.
The positive clinical specimen was taken ten days after the patient’s admission onto the
general medicine ward, indicating a large duration of exposure to a ward environment
shown to be harbouring a very similar strain of E. coli to the patient’s urine culture.
The next most closely related E. coli clinical isolate was 3,688 core SNPs from its
nearest sink neighbour (read-based MASH distance 0.009), reflecting the otherwise
large evolutionary distances separating the cultured clinical and environmental E. coli
(Figure 3).

Unlike E. coli, the small numbers of Klebsiella spp. patient isolates were not phylo-
genetically segregated from environmental isolates, but the closest patient and sink
isolates differed by 2,558 core SNPs, indicating a lack of observed overlap over these
timeframes.

Antimicrobial resistance genes are prevalent and spatially structured in sinks.
The presence of 571 clustered CARD antimicrobial resistance genes in cultured iso-
lates was supported by >75% exactly matching read coverage reported by ResPipe
(Figure 4). Among these were known transmissible genes of clinical concern includ-
ing beta lactamases (e.g. blatgm, blactx.m, blaspy), aminoglycoside resistance genes
(aac(3), aac(6) families) and quinolone resistance genes (gnr family). Some of these,
including cmlA and gacH, were widely seen in sink metagenomes but less frequently
in cultured isolates, consistent with a background resistance reservoir that may pose
a risk in different populations to those cultured (of either same or different species).
Spatial structure was evident among both cultured isolates and metagenomes, al-
though resistance repertoires of isolates frequently clustered across ward boundaries,
in keeping with findings of our prior core genome analysis. Resistance genes detected
in cultured sink isolates were also abundant within sink metagenomes at one or more
timepoints. Sink drain metagenomes yielded 673 CARD genes exceeding 75% coverage,
and after clustering large gene families represented by many similar sequences (see
methods for detailed description), only five genes abundant in one or more cultured
isolates were not detected in at least one metagenome. Notably, these five genes
(gadW, len-26, tet(B), mgrA and sat-2) were all seen in isolates from sinks not subject to
metagenomic sequencing, showing that resistance genes cultured from sink drains
were highly contained in corresponding metagenomes.

Third generation cephalosporin-resistant phenotypes in Enterobacterales sink iso-
lates could be explained by the presence of major extended-spectrum beta-lactamase
(ESBL) genes blaSHV-27, blactx-m-14 and blacrx.m-1s, detected by ARIBA/CARD in 4, 8 and
87 isolates respectively. blacrx.m-15 was identified in two distinct strains of E. coli ST635
and ST399, restricted to three bay sinks (A8, A9, A10) in three adjacent rooms of the
general medicine ward. blactx.m-15-positive K. oxytoca ST50 and ST177 were identified in
10 sinks (C2-3, C5-6, C7, C9-12, C16) on the acute admissions ward. blasyy.27, blactx.m-14
and blactx-m-15 were observed in K. pneumoniae from sinks A13, A14 (general medicine)
and C14 (acute admissions) respectively; one K. pneumoniae patient isolate was also
blacrx-m-15-positive. These findings suggest sink-associated isolates, such as E. coli, may
represent reservoirs of clinically relevant resistance genes.

Surprisingly, the colistin resistance gene mcr-4 was detected in the metagenomes—yet
not cultured genomes—of three sinks in adjacent bays of the general medicine ward
(A8-10). Assembly of the sink A10 metagenome generated a 5.4kbp plasmid sequence
containing an mcr-4 gene with 98.8% overall identity at 94% query coverage to an
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FIG 4 Antimicrobial resistance gene content of cultured isolates and sink drain
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8.7kbp pMCR-4.2 plasmid previously reported in pigs from Italy, Spain and Belgium (14).
This mcr variant has been previously reported in European Acinetobacter, Enterobacter,
Salmonella, and Escherichia spp. but not to our knowledge in the United Kingdom.
Screening all metagenomes for assembled mcr-4 produced alignments in two sinks
on the ward (A8, A9) across a total of six sink-timepoints, with coverage and abun-
dance suggesting low and declining prevalence of this gene over time (Table S5). An
mcr-positive E. coli (reported as mcr-4.3) was cultured from sink C5 (acute admissions;
second timepoint) according to both ARIBA/CARD and ResPipe/CARD. Metagenomic
sequencing was performed for the first and the fourth but not the second timepoint
aspirate for this particular sink. Another mcr gene, mcr-9 was more widespread, and
detected with complete coverage in 77 cultured isolates across 11 distinct sinks, pre-
dominantly but not exclusively in E. coli (73/77 occurrences).

Metagenomic screening suggests that clinical isolates may be more widely
present in the environmental reservoir than observed from culture-based com-
parisons. Sink metagenomes were individually screened for k-mer containment of )
strain-representative sink isolate genome assemblies, ji) strain-representative patient
isolate genome assemblies and jij) core genomes of selected control organisms, in-
cluding five clinical core genomes each from pathogenic strains of E. coli and Klebsiella
spp. from Bush et al. (15), together with NCBI canonical species references for several
pathogens expected to be absent from sink drain microbiota (Figure 5; left). This
demonstrated similar sink, ward, and temporal structure to that of culture, particu-
larly underlying similarities in the microbiota of nearby sinks, as well as flux between
sampling timepoints. Strain-representative sink culture assemblies from the same sink
and timepoint as the screened sink metagenome were the best contained, sharing the
most k-mer hashes. Assembled isolates originating from the same sink but at a differ-
ent timepoint to the screened metagenome shared significantly fewer k-mer hashes
(P=0.013) than same sink/same timepoint comparisons. The containment of strain-
representative assemblies from different sinks in the same ward as the metagenome
was significantly lower still (P<0.0001), and so in turn were the remaining comparisons
of cultures grown from different sinks in different wards to the screened metagenome
(P<0.0001).

Among control genomes, k-mer hashes shared between sink metagenomes and
the core genomes of Neisseria gonorrhoeae, Staphylococcus aureus, Clostridioides difficile,
Enterococcus faecalis and Vibrio vulnificusdid not exceed 3%. Reference genomes of E.
coli, K. pneumoniae and Pseudomonas aeruginosa were abundant and highly contained
by many metagenomes, but none exceeded 90% shared k-mer hashes (Figure 5; right).

In contrast, screening for strain-representative patient assemblies in sink metagenomes

revealed significantly greater similarity (P<0.0001) between patient and environmen-
tal Enterobacterales strains collected from the same ward than from different wards
(Figure 5; centre), supporting genetic overlap between clinical isolates from patients
and uncultured isolates in sink niches in a given ward setting. Indeed, the only strain-
representative patient isolate with greater than 90% sink metagenome k-mer contain-
ment was the E. coli urine culture described in the aforementioned case of sink-patient
overlap, of which 99.5% and 93.0% of k-mers were contained within the respective
A25T1 and A25T4 sink metagenomes (Figure 5; centre; red markers).

DISCUSSION

In this study, we have demonstrated that hospital sink drains are widely—and in many
cases abundantly—contaminated with key Enterobacterales species causing healthcare-
associated infections, and are potential reservoirs of multiple resistance genes en-
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FIG 5 Metagenomic containment of sink (left) and patient (centre) cultured strain-
representative genome assemblies, and control genomes (right). Shared k-mer hashes
and median k-mer multiplicity values are as reported by MASH Screen. SSST=same sink
and same timepoint; SSDT=same sink at different timepoints (shared hashes Mann-
Whitney U P=0.013 vs. SSST); DSSW=different sinks of the same ward (P<0.0001 vs. SSDT);
DSDWs=sinks on a different ward (P<0.0001 vs. DSSW). SW=strain-representative assem-
blies of clinical isolates in the same ward; DW=strain-representative assemblies of clin-
ical isolates from a different ward (P<0.0001 vs. SW). Control genomes comprised E. coli,
K. pneumoniae P. aeruginosa, N. gonorrhoeae, S. aureus, C. difficile, E. faecalis, and V. vul-
nificus, shown abbreviated with binomial initials. A case of within-ward sink-patient
overlap is highlighted with red markers, corresponding to high strain containment in
the metagenomes of sink A25 timepoints 1 and 4.
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coding resistance to important clinical antimicrobials. Populations of antimicrobial-
resistant and susceptible E. coli and Klebsiella spp. may be persistent colonisers of
sinks, and different wards may have markedly different sink ecosystems, perhaps
reflecting different and potentially modifiable infrastructures, selection pressures, and
contributing sources. Ward and sink-level genetic structure was most evident within
the accessory genome, and observed repertoires of transmissible resistance genes
often transcended species boundaries, instead clustering more tightly by sink unit.
Characterising these highly diverse reservoirs is difficult, and we have shown that com-
bination approaches utilising metagenomics and sequencing of cultured isolates are
complementary in understanding the diversity of species, strains, and the resistance
genes present within these niches. For example, metagenomics highlighted several
cases of abundant mcr-4 in sink drain aspirates from which cultured Enterobacterales
isolates did not carry the gene.

Colonisation patterns of sink niches differed markedly between the two genera
investigated. E. coli strains have evolved to colonize and adapt to multiple niches,
including some which have adopted pathogenic lifestyles, and appear to have different
distributions in humans, domesticated and wild animals, and the environment. There
is however no absolute correlation between phylogenetic lineage and any given niche,
and overlaps are observed. Interestingly, in our study, more than half of the E. coli sink
isolates cultured were ST635, which has been recently described as a highly adapted,
resistance- and virulence gene-enriched wastewater-associated strain thought to be
globally distributed, but is also found in humans, animals and other environments
(16). Of note, it has been observed in association with several clinically relevant trans-
missible resistance genes, including ESBLs, carbapenemases, and rRNA methylases,
and was one of only two E. coli STs in our study that harboured an ESBL (blactx-m-15)-
We observed presence/absence of blacrx.m.15 across closely related ST635 isolates,
suggesting that this gene may be frequently lost/gained in sinks. Also notable in the
context of ST635 was the ability of read-based k-mer composition to resolve fine-
grained structure between the populations of different sinks, beyond that observed
in the core-only SNP phylogeny. Other common E. coli sink lineages were ST399 and
ST472, which to date have predominantly been seen in humans/animals, rather than
the environment.

The phylogenetic distribution of sink isolates of K. pneumoniae appeared to mirror
that seen in a global collection of isolates, providing little evidence that a particular
lineage was predominating in, or particularly adapted to, the wastewater environment.
Studies of the population structure of unselected K. oxytoca are limited, but again we
observed a diverse population amongst sink isolates, with a deep branch separating
two distinct groups as previously described. Interestingly, two K. oxytoca strains associ-
ated with blacrx.m-15 were widely distributed amongst sinks in the acute admissions
ward; outbreaks of ESBL- and carbapenem-associated K. oxytoca in association with
contaminated handwashing sinks have been described in other settings (17).

Genomic overlap with sink isolates was identified in 1/46 (2%; 95% CI: 0.05-11%)
of all sequenced isolates causing clinical infections over the same timeframe, with a
temporal association consistent with acquisition from a sink source (i.e. sink isolate
observed first), and following ten days of patient exposure to a ward environment
wherein the overlapping strain was previously cultured. We may have significantly
underestimated the degree of overlap between these two compartments for several
reasons. Firstly, we have shown the diversity in sink niches is substantial, and with a
culture-based approach agnostic to any selective marker, even sequencing 444 isolates
from 48 sinks will have limited ability to capture the underlying diversity for complete
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comparison of sink-patient pairs at the isolate-level. Supporting this, screening the
metagenomes of a subset of 20 sinks using patient isolates suggests that overlap
between these reservoirs may be more common than observed at the isolate-level.
Second, clinical isolates represent the tip of the iceberg of any transmission chain,
with the majority of transmission events likely occurring between gastrointestinal tract
(asymptomatic carriage) and the wastewater environment. Nonetheless, in the context
of understanding how sinks may be contributing to infection caused by Klebsiella spp.
and E. coli, focusing on clinical isolates seems appropriate. Third, the interval between
sampling dates for our observed patient-sink isolate-pair was 58 days, suggesting that
the timeframe between acquisition from the environment and infection may be long,
and may not be adequately captured with a study timeframe spanning three months.

In addition, a major study limitation is the fact that only 46/107 patient isolates
could be successfully retrieved (due to the high turnover of samples in our high-volume
service laboratory), and Klebsiella spp. cultures were especially limited. The risks of
transmission and possibly sink-associated infection could be more clearly defined by
more extensive sampling over a greater timeframe, and thorough investigation into
the exchange of resistance-associated mobile genetic elements, but would require
a considerable increment in resource. Characterising microbial diversity present on
sink strainers would also be of benefit, as the risks of droplet-mediated dispersal from
sink drains have been shown to be most significant when the sink drain is located
immediately below the tap, and if the organisms migrate from the sink trap onto the
strainer (18, 19). However, given the different sink structures across wards, the p-trap
was the only site which could be consistently sampled (since ACC had horizontally
draining sinks without strainers). Characterising factors that might be associated with
greater predominance of Enterobacterales and drug-resistant Enterobacterales, such
as sink usage, ward-level antimicrobial usage, and patient populations, would also be
of interest.

In conclusion, without conditioning on the presence of resistance markers, we
have demonstrated that colonisation of ward sink drains with diverse and abundant
populations of Enterobacterales, including drug-resistant strains, is common and
persistent. The evidence linking contaminated, unmitigated wastewater reservoirs
(including sink drains) in healthcare settings with outbreaks of colonisation/disease
with drug-resistant Gram-negative bacilli in patients seems clear (5, 20), but no study
to our knowledge has focused on the potential risk posed by Enterobacterales in sinks
in general. Screening of sinks is not carried out in the absence of observed outbreaks,
making it difficult to quantify wider patient-associated risk from the studies available.
We demonstrate that contaminated sinks may be contributing to a proportion of
healthcare-associated infections caused by Enterobacterales, and further work to
investigate how to reduce the risk posed by this hospital environmental reservoir is
warranted.

MATERIALS AND METHODS

Ward-based sink sampling. We sampled three units (acute admissions [AA], adult
critical care [ACC], adult general medicine [female only] [GM]) within a single hospital
(John Radcliffe Hospital, Oxford, UK) four times on rotation every three weeks over
three months, March-May 2017. Units were chosen to capture different patient pop-
ulations, admission turnaround times and wastewater plumbing infrastructure. The
haematology ward (on a separate hospital site) was also sampled on a single day (12th
May 2017) subsequent to a small cluster of patient cases of blapxa-4g carbapenemase-
associated Enterobacterales bloodstream infections [described previously (21). Ward
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and sink/wastewater layouts were obtained from estates, and each sink/drain site was
assigned a unique site identifier (Table S1).

On each day of sampling, autoclaved tubing cut to 10 inches was used to aspi-
rate from sink p-traps via a sterile 50ml syringe. Up to 50mls of fluid was aspirated
where possible. 100uL of 10-fold dilutions (102, 10-3, 104 of each sink p-trap aspirate
were plated onto CHROMagar Orientation media (Becton Dickinson, Franklin Lakes, NJ,
USA), with no disc, cefpodoxime (10pg), ertapenem (10pg) (Thermo Scientific Oxoid,
Basingstoke, UK) applied in a triangular fashion to each plate. Cultures were incu-
bated at 37°C for ~18hrs. Growth of Enterobacterales (presence/absence) and density
(sparse/dense/confluent) in all zones was recorded (i.e. no antibiotic, in the presence of
cefpodoxime, and in the presence of ertapenem). Up to four distinct colonies of each
of presumptive E. coli and Klebsiella spp. were sub-cultured on CHROMagar Orientation
to confirm purity and species identification. Species identification of sub-cultured
colonies was confirmed by MALDI-ToF (MALDI Biotyper, Bruker, Billerica, MA, USA).
Stocks of sub-cultured isolates were stored at -80°C in 400yl of nutrient broth + 10%
glycerol prior to DNA extraction for sequencing. Aspirates from sink p-traps were then
centrifuged at 4000 rpm for 10 minutes at 4°C, and supernatants removed; pellets
were stored at -80°C.

Patient isolate sampling. For AA, ACC, GM wards, a pseudo-anonymised, prospec-
tive feed was set-up to try and enable real-time capture of isolates from all samples
culture-positive for E. coli, K. pneumoniae and K. oxytoca from patients that had been
admitted to any of these wards during the study time period and were processed
routinely through the clinical microbiology laboratory in the John Radcliffe Hospital in
accordance with local standard operating procedures for clinical sample types, and
compliant with national standards for microbiology investigations (22). These typi-
cally involve selective culture steps and species identification using MALDI-ToF (MALDI
BioTyper, Bruker, Billerica, MA, USA).

Pseudo-anonymised extracts of all patient culture results and admission/discharge
data covering the study period were obtained after the study was finished through
the Infections in Oxfordshire Database (which has generic Research Ethics Committee,
Health Research Authority and Confidentiality Advisory Group approvals [14/SC/1069,
ECC5-017(A)/2009]) to enable an evaluation of i) baseline sampling denominators,
ii) the extent of relevant clinical isolate capture, and iii) the temporal and spatial
overlap of any genetically related sequenced isolates from patients and sequenced
isolates/metagenomes from sinks.

Isolate sequencing and p-trap aspirate metagenomics. All isolates confirmed
as E. coli, K. pneumoniae and K. oxytoca from patients and p-trap aspirates were ex-
tracted for sequencing using the QuickGene DNA extraction kit (Autogen, MA, USA) as
per the manufacturer’s instruction, plus an additional mechanical lysis step prior to
chemical lysis (FastPrep, MP Biomedicals, CA, USA; 6m/s for two 40 second cycles).

For metagenomics, DNA was extracted from a subset of stored pellets (n=20)
using the MoBio PowerSoil DNA isolation kit (Qiagen, Hilden, Germany) as per the
manufacturer’s instructions, and including a mechanical lysis step of two 40 second
cycles at 6m/s in lysing matrix E and final elution in buffer CDT-1 (Autogen, MA, USA).
45ng of Thermus thermophilus DNA (reference strain HB27, ATCC BAA-163 [DSMZ,
Germany]) was added to each sample in the PowerBead tube at the start of the
experiment, prior to the addition of solution C1 as an internal control and normalisation
marker (12). Sink aspirates were selected for metagenomics sequencing to enable
evaluation of i) microbiome differences within and between wards, ii) longitudinal
change in microbiota composition, and iii) whether culture-negative sinks harboured
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the bacterial species being studies i.e. indicating limited sensitivity of culture-based
approaches.

Short read sequencing (single isolate and metagenomics) was performed on the
[llumina HiSeq 4000, pooling 192 isolate extracts and 6 metagenomes per lane, and
generating 150bp paired-end reads.

Computational methods. Cultured isolate informatics. Of the isolates sent for
sequencing, 439/446 (98%) sink and 46/46 (100%) patient isolates were successfully
sequenced and classified with Kraken/MiniKraken (23) as Enterobacterales, and used
for subsequent analysis. Isolate consensus sequences were constructed by read
mapping and consensus inference with respective E. coli, K. oxytoca and K. pneumoniae
reference genomes AE014075.1, NC_018106.1 and CP000647.1 using Snippy 4.4.0 (24).
Isolate genomes were assembled using Shovill 1.0.4 (25). Recombination-adjusted
phylogenetic reconstruction was performed using runListCompare 0.3.8 (26) wrapping
IQ-TREE 1.6.11 (27) and ClonalFrameML 1.12 (28). Final core genome alignments
included 218/219 E. coli isolates, 165/167 K. oxytoca isolates and 98/99 K. pneumoniae
isolates, all of which satisfied the runListCompare filtering criteria of perACGT_cutoff
>70%, varsite_keep >0.8 and seq_keep>0.7. 100 SNP core genome clusters were
defined by single linkage clustering of runListCompare pairwise distance matrices.
Trees were midpoint rooted prior to visualisation. See supplementary data repository
for runListCompare configuration. Read-based MASH trees were constructed using
MASH 2.2.2 (29) and RapidN]J 2.3.2 (30) using 21mers, a sketch size of 10,000 and a
minimum abundance threshold of 10 k-mers. Assembly-based core and accessory
genome partitioning was performed using PopPUNK 1.1.7 (31). Resistance genotyping
and phenotype prediction in cultured isolates was performed using ResPipe and ARIBA
2.14.4 (32) with the CARD 3.0.3 database (33). Tree comparisons (tanglegrams) were
generated using the R package Dendextend 1.5.0 (34).

Metagenome informatics. Metagenomic sequences were analysed for taxonomic
and antimicrobial resistance gene presence using ResPipe (12) and Kraken2 (35) with
CARD database version 3.0.3. Large resistance gene families were clustered to facilitate
visualisation of resistance profiles (Figure 4) (methodology documented in supplemen-
tary data repository). A metagenomic assembly of the mcr-4 gene was generated with
MEGAHIT 1.2.9 (36), to which reads were aligned with Minimap2 2.17-r941 (37) and
consensus inferred using Kindel (38). Metagenomic summary statistics were generated
using Pavian (39). Data analysis was performed with the SciPy ecosystem (40) and
JupyterLab (41). Matplotlib (42), Bokeh and Microreact (43) were used for visualisation.

Data availability. Raw sequencing data are available under NCBI SRA accessions
PRJNA604910 and PRJNA604975 (cultured isolates), and ENA project PRJEB36775
(metagenomes). A supplementary data repository containing metadata, phyloge-
nies, Jupyter notebooks, Microreact projects and Pavian reports is archived at https://
figshare.com/articles/Enterobacterales_colonisation_of_hospital_sink_drains/11860893
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SUPPLEMENTARY MATERIAL

Table S1. Surveyed sink descriptions and E. coli/Klebsiella spp. culture results across
timepoints.

Table S2. Cultured Enterobacterales species by ward.

Table S3. Pairwise Mantel correlation of different within-species distance matrices.
These include recombination-adjusted core SNP phylogeny (reads-core-snp), read-
based MASH distance (reads-mash) and PopPUNK estimates of core and accessory ge-
nomic distance from de novo assemblies (assemblies-core-mash, assemblies-accessory-
mash).

Table S4. Permutational analysis of variance. Permutation tests for association of
genetic structure with ward (n=3) and sink (n=18) for three species of sink drain Enter-
obacterales. Corresponding test results are shown for differential dispersion between
groups (PERMDISP). Bold type indicates significant (p<0.05) group association under
PERMANOVA in the absence of significant differential dispersion (PERMDISP).

Table S5. mcr-4 coverage. Sequencing coverage and mean depth of the 1,626bp
metagenome-assembled mcr-4 gene from sink A10, to which metagenomic short reads
mapped from three sinks (including A10) across six sink-timepoints within the general
medicine ward.

Figure S1. Cultured strains observed on the Haematology ward. Different colours
indicate distinct 100 core SNP strains, and cefpodoxime-resistant and/or ESBL gene-
positive isolates are indicated by filled markers.

Figure S2. Spatial structure of sink metagenome k-mer composition. Left and centre:
visualisation of 31Tmer pairwise MASH distances of total metagenome content using
hierarchical clustering (left) and multidimensional scaling (centre). Right: comparison
of within sink, within ward and between ward pairwise MASH distances.

Figure S3. Receiver operating characteristic (ROC) for detection of Enterobacterales by
culture with varying metagenomic abundance.

Figure S4. Tanglegrams comparing recombination-corrected core phylogenies and
read-based whole genome MASH + neighbour joining phylogenies for a) E. coli, b) K.
oxytoca and c) K. pneumoniae. Topologically consistent subtrees are rendered with solid
branches.

Figure S5. Klebsiella spp. lineage persistence in cultured sink drain aspirates and
contemporaneous clinical isolates from patients with ward contact during the sampling
period.
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