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ARTICLE INFORMATION ABSTRACT

Last Updated: Background: Regional changes to cortical thickness in individuals with neurodegenerative and cerebro-

25 August 2020 vascular diseases can be estimated using specialised neuroimaging software. However, the presence of
g cerebral small vessel disease, focal atrophy, and cortico-subcortical stroke lesions, pose significant chal-

Correspondence lenges that increase the likelihood of misclassification errors and segmentation failures.

Joel Ramirez, PhD Purpose: The main goal of this study was to examine a correction procedure developed for enhancing

LC Campbell Coenitive Neurolo FreeSurfer’s cortical thickness estimation tool, particularly when applied to the most challenging MRI
P g ) Y obtained from participants with chronic stroke and cerebrovascular disease, with varying degrees of neuro-
Sunnybrook Research Institute vascular lesions and brain atrophy.

joel.ramirezl @sunnybrook.ca Methods: In 155 cerebrovascular disease patients enrolled in the Ontario Neurodegenerative Disease Re-

search Initiative (ONDRI), FreeSurfer outputs were compared between a fully automated, unmodified
Key Words procedure and a corrected procedure that accounted for potential sources of error due to atrophy and neu-
. . . . . rovascular lesions. Quality control (QC) measures were obtained from both procedures. Association be-
cortical thickness; quality control; tween cortical thickness and global cognitive status as assessed by the Montreal Cognitive Assessment

cerebrovascular disease; (MoCA) score was also investigated from both procedures.

FreeSurfer; ONDRI; MRI - . . .
Results: Corrected procedures increased ‘Acceptable’ QC ratings from 18% to 76% for the cortical ribbon

and from 38% to 92% for tissue segmentation. Corrected procedures reduced ‘Fail’ ratings from 11% to
0% for the cortical ribbon and 62% to 8% for tissue segmentation. FreeSurfer-based segmentation of T1-
weighted white matter hypointensities were significantly greater in the corrected procedure (5.8mL vs.
15.9mL, p<0.001). The unmodified procedure yielded no significant associations with global cognitive
status, whereas the corrected procedure yielded positive associations between MoCA total score and clus-
ters of cortical thickness in the left superior parietal (p=0.018) and left insula (p=0.04) regions. Further
analyses with the corrected cortical thickness results and MoCA subscores showed a positive association
between left superior parietal cortical thickness and Attention (p<0.001).

Conclusions: These findings suggest that correction procedures that account for brain atrophy and neuro-
vascular lesions can significantly improve FreeSurfer’s segmentation results, reduce failure rates, and
potentially increase sensitivity to examine brain-behaviour relationships. Future work will examine rela-
tionships between cortical thickness, cerebral small vessel disease, and neurodegenerative disease in the
ONDRI study.

INTRODUCTION for FS to achieve accurate and reliable brain extraction and
white matter (WM) segmentation (26-31). Although FS pro-
vides manual intervention steps to troubleshoot its output (eg.
via control points, WM lesion edits, and pial edits), they are
labour-intensive. Further, they may introduce user-bias, espe-
cially in MRI from individuals with significant brain atrophy,
cortical stroke lesions, and cerebral small vessel disease. Previ-
ous studies examining FS manual correction approaches found
that while manual editing may result in differences in morpho-
metrical estimation between the methods in some brain regions
(32-37), sensitivity results are inconsistent at individual or
clinical group levels (32-34).

Cortical thickness quantification obtained from magnetic reso-
nance imaging (MRI) can been used to examine regional varia-
tions of the cerebral cortex that have been associated with nor-
mal ageing and dementia due to neurodegeneration (1-4). Cor-
tical thinning in specific topographical regions of the brain has
been used to accurately determine patterns of neurodegenera-
tion in mild cognitive impairment (MCI) (5), Alzheimer’s dis-
ease (AD), frontotemporal dementia (FTD) (6-13), Parkin-
son’s disecase (PD) (14-17), amyotrophic lateral sclerosis
(ALS) (18-21), and vascular cognitive impairment (22-24).

FreeSurfer (FS) is a neuroimaging software package that in-
cludes a widely used surface-based analysis technique that is
able to automatically estimate cortical thickness from T1-
weighted MRI (25). However, degraded image quality and
subtle changes introduced by pathology makes it challenging

Estimation of cortical thickness in patients with cerebrovascu-
lar disease (CVD) can be the most challenging due to cortico-
subcortical chronic stroke lesions, significant volumes of white
matter hyperintensities (WMH), lacunar infarcts, MRI-visible
perivascular spaces (PVS), cortical microinfarcts, and the pres-
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ence of focal brain atrophy. Given that the performance of FS’s
tissue classification is highly dependent on a uniform intensity
of voxels in a particular brain region and the integrity of the
neighbouring voxels, vascular lesions and focal brain atrophy
often result in erroneous tissue segmentations, particularly in
regions with high surface area and curvature (38). These chal-
lenges reduce the accuracy of tissue segmentation, which in
turn reduces the accuracy of cortical thickness estimation.
Since many age-related neurodegenerative diseases have focal
and diffuse brain atrophy that is further exacerbated by comor-
bid cerebrovascular pathology (39), additional procedures to
account for these potentially challenging variations in image
contrast are needed.

In this paper, we examined results from a FS correction proce-
dure that was applied to MRI obtained from a heterogeneous
CVD cohort with varying degrees cerebral small vessel disease,
chronic cortico-subcortical stroke lesions, and brain atrophy.

MATERIALS AND METHODS
Study Participants

Participants (N=155) recruited to the CVD cohort of the Ontar-
io Neurodegenerative Disease Research Initiative (ONDRI)
(40) (http://ondri.ca) were selected for methodological valida-
tion of the FS correction procedure for cortical thickness esti-
mation. The ONDRI study is a multi-modal, multi-site observa-
tional research study investigating individuals with neuro-
degenerative diseases. Study participants were recruited at vari-
ous health centres across Ontario, Canada: London Health Sci-
ence Centre and Parkwood Institute in London; Hamilton Gen-
eral Hospital and McMaster Medical Centre in Hamilton; The
Ottawa Civic Hospital in Ottawa; Thunder Bay Regional
Health Sciences Centre in Thunder Bay; St. Michael’s Hospi-
tal, Sunnybrook Health Sciences Centre, Baycrest Health Sci-
ences, Centre for Addiction and Mental Health, and Toronto
Western Hospital (University Health Network) in Toronto.

Detailed inclusion and exclusion criteria for the ONDRI CVD
participants are previously reported (40,41). Briefly, partici-
pants who had experienced a mild to moderate ischemic stroke
event, documented with MRI or CT, over 3 months prior to
enrollment, a Modified Rankin Scale (MRS) score (42) rangin
g from 0 to 3, and a Montreal Cognitive Assessment (MoCA)
score (43) ranging 18-30 were included. Participants were ex-
cluded if they had severe cognitive impairment, aphasia, a non-
vascular cause of symptoms, inability to write or had severe
functional disability preventing them to perform assessments, a
history of dementia prior to the stroke event, had severe claus-
trophobia or other contra-indications to MRI procedures. Ethics
approval was obtained from all participating institutions and
performed in accordance with the Declaration of Helsinki. All
participants provided informed consent, and subsequently un-
derwent clinical evaluation, MRI, and other assessments as part
of the full ONDRI protocol (40).

MRI Acquisition & Pre-processing

MRI protocols were harmonised with the Canadian Dementia
Imaging Protocol (CDIP) (44), and were in compliance with
the National Institute of Neurological Disorders and Stroke—
Canadian Stroke Network Vascular Cognitive Impairment Har-
monization Standards (45). Detailed MRI protocols are report-
ed elsewhere (46,47). In brief, the structural MRI used in the
current study include: a high-resolution 3D T1-weighted (T1),
an interleaved proton density (PD) and T2-weighted (T2), and a
T2 fluid-attenuated inversion recovery (FLAIR) images.

ONDRI’s structural image processing pipeline (47) will be con-
sidered as the pre-processing step for the Corrected FS proce-

Table 1. Study participant demographics and neuroimaging volumet-
rics (n=155). All data are presented as mean (SD) unless otherwise
indicated.

Demographics

Age (years) 69.35 (7.36)
Sex, n (%) female 48 (31)
Education, years 14.69 (2.88)
Modified Rankin Scale 1.01 (0.83)
Montreal Cognitive Assessment 25.29 (2.99)

. . . 3
Neuroimaging Volumetrics, mm

White matter hyperintensities
Lacunes

10167.5 (12837.2)
385.1 (766.7)
80.0 (139.7)
6785.0 (17317.8)

Enlarged perivascular spaces
Cortico-subcortical Stroke Lesions

dure. Briefly, ONDRI’s neuroimaging platform used previously
published and validated methods, where outputs were further
subjected to comprehensive quality control measures from ON-
DRI’s neuroinformatic platform using a novel outlier detection
algorithm for the identification of anomalous data (48,49). This
comprehensive multi-feature segmentation pipeline was applied
to co-registered T1, PD, T2, and FLAIR images to generate
skull stripped and tissue segmentation masks for each individu-
al, which included manual tracing of cortico-subcortical stroke
lesions that were identified and verified on T1 and FLAIR im-
ages by an expert research neuroradiologist. The final output of
the pipeline produced a skull-stripped brain mask with seg-
mented voxels comprising of 4 different ‘normal tissue’ classes
and 5 different ‘lesion tissue’ classes: normal appearing white
matter (NAWM), normal appearing gray matter (NAGM), sul-
cal and ventricular cerebrospinal fluid (sCSF/vCSF),
periventricular and deep white matter hyperintensities (pWMH/
dWMH), lacunes, MRI-visible perivascular spaces (PVS), and
cortico-subcortical stroke lesions. The skull stripped and lesion
-labelled masks were introduced at different processing stages
of the Corrected FS procedure described below.

FreeSurfer (FS) Processing Overview

All scans were processed using the stable version of FS (Linux
FSv6.0). Two methods were applied to the same participant’s
MRI: a) Unmodified FS and b) Corrected FS. After applying
the two methods, visual inspection was performed by two expe-
rienced neuroimaging analysts (M.H. = raterl; K.W. = rater2).
The images were either rated a “pass” or “fail” based on the
overall cortical ribbon and tissue segmentation as described in
the Quality Control Assessment Procedures in the following
section.

Unmodified FS: The unmodified procedure involved the stand-
ard reconstruction steps in the FS pipeline with the default set-
tings on all participants without any manual interventions.
Briefly, the standard reconstruction steps included skull strip-
ping, WM segmentation, intensity normalisation, surface recon-
struction, subcortical segmentation, cortical parcellation and
thickness (25).

Corrected FS: The corrected procedure involved dividing the
reconstruction steps into the following three stages in order to
incorporate the skull stripped brain and lesion masks from the
ONDRI processing pipeline into FS’s pipeline.

Stage 1 (autoreconl) - This involved replacing the “skull
stripped mask” (brainmask.mgz) generated by FS’s standard
skull stripping method with an improved skull stripped mask
from the ONDRI skull stripping method.

Stage 2 (autorecon2) - The second intervention (autorecon2)
involved the integration of lesion masks from ONDRI into the
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initial  version of brain tissue segmentation file
(aseg.presurf.mgz) generated by FS’s standard segmentation of
the brain which includes subcortical structures, WM, GM, CSF,
and white matter hypointensities. The lesions were given an
index value of “77” corresponding to the lesion value in the FS
pipeline.

Stage 3 - Lastly, the modified aseg.presurf.mgz and brain mask
were used as inputs in the last stage of FS pipeline stage 3
(autorecon2-noaseg -autorecon3) for automatic cortical parcel-
lation and statistics.

Quality Control Assessment Procedures

The accuracy of the cortical ribbon and tissue segmentation
from the Unmodified and Corrected FS procedures was evalu-
ated using Freeview, a visualisation tool that is packaged with
FS. Using the T1 image as the reference, the cortical ribbon
accuracy was assessed visually and given a rating for: 1) Over-
estimation — areas of non-brain matter, such as the dura mater
or skull, were erroneously classified as cortex (Supplemental
Figure S1); 2) Underestimation — areas of the brain are missing
or have been erroneously removed from the brain mask
(Supplemental Figure S2); 3) Acceptable/Good — no signifi-
cant areas of over/underestimation; 4) Fail — significant areas of
overestimation and/or underestimation, including the complete
absence of a cortical ribbon (Supplemental Figure S3). Using
the T1 GM-WM intensity differences as a reference, the quality
of the tissue segmentation (aseg.mgz) was given a PASS/FAIL
rating based on the accuracy of WM-GM boundary (FS white
matter intensity ~110) (Supplemental Figure S4). Two expert
neuroimaging analysts performed the visual ratings and
achieved high inter-rater reliability results (cortical ribbon: k =
0.9, 95% C.I.: 0.7, 1.00, p < 0.001; tissue segmentation: k =
0.7,95% C.1.: 0.5, 0.9, p <0.001).

Statistical Analysis

Statistical analyses were conducted using Statistical Package
for Social Sciences (SPSS v.24) and FS’s packaged analytic
software when described. Paired sample t-tests were conducted
to determine if the mean lesion volume was significantly differ-
ent between the unmodified and corrected procedures. This was
achieved using the “White matter Hypointensities” identified
by FS, which was adjusted for head size using estimated total
intracranial volume (eTIV) and log transformed.

A whole brain vertex-wise surface-based cortical thickness
analysis was performed on both methods using the built-in gen-
eral linear model (GLM). Thickness was calculated by the soft-
ware as the distance between the GM and WM boundaries (also
known as the pial surface boundaries) at every vertex in each
hemisphere. Each participant’s cortex was anatomically parcel-
lated with every sulcus and gyrus labelled, and resampled to
FS’s default average surface map (fsaverage). A 10-mm full-
width half-maximum (FWHM) Gaussian spatial smoothing
kernel was applied to the surface to improve the signal-to-noise
ratio. Age, stroke, and lacunar volumes were included as nui-
sance regressors. Stroke and lacunar volumes were head size
corrected using total intracranial volume.

MoCA total score was included as a regressor of interest to
determine the association between cortical thickness and global
cognitive status in participants with CVD. Associations be-
tween cortical thickness and cognition were further explored
using MoCA sub-scores (Visuospatial / Executive, Naming,
Memory, Attention, Language, Abstraction, Delayed Recall,
and Orientation). Monte Carlo simulations with 5000 iterations
were used to correct for multiple comparisons. This method
implemented a cluster-wise threshold of 2 and cluster-wise

Table 2. Quality control results for FreeSurfer Unmodified and
Corrected procedures.

Description Unmodified Corrected
Cortical Ribbon

Over-estimation 26% 0%
Under-estimation 45% 24%
Acceptable 18% 76%
Fail 11% 0%
Tissue

Segmentation

Pass 38% 92%
Fail 62% 8%

probability (p(cwp)) of p < 0.05 (two-sided). Bonferroni correc-
tion was applied across the two hemispheres.

RESULTS

Study participant demographics and clinical characteristics are
summarized in Table 1. Quality control (QC) results are sum-
marized in Table 2.

For the cortical ribbon QC, compared to the Unmodified FS
procedure, the Corrected ‘Acceptable’ ratings increased from
18% to 76%. For tissue segmentation QC, compared to the Un-
modified FS procedure, the Corrected procedure’s ‘Acceptable’
ratings increased from 38% to 92%. For the cortical ribbon QC,
the ‘Fail’ ratings were reduced from 11% (Unmodified) to 0%
(Corrected). While for the tissue segmentation QC, the ‘Fail’
ratings were reduced from 62% to 8% for Unmodified and Cor-
rected procedures respectively (e.g. Figure 1).

When comparing Unmodified and Corrected procedures, results
from a paired sample t-test revealed a significant increase
(~63%) in eTIV-adjusted 10% white matter hypointensity vol-
umes, (5824.5 = 6378.4 mm” to 15877.1 + 17964.2 mm’, p <
0.001).

Cortical thickness analyses based on Unmodified FS revealed
no significant associations with MoCA total score after ac-
counting for age, stroke, and lacunar volumes. However, the
same analyses based on the Corrected FS revealed significant
clusters in the left superior parietal and left insula regions were
positively associated with MoCA total score (pewp= 0.018; p
@wp)= 0.040, respectively) (Table 3, Figure 2). Further anal-
yses with the Corrected data and MoCA sub-scores using the
significant clusters showed a positive association between left
superior parietal thickness and the Attention sub-score.

DISCUSSION

Regional cortical thickness measures obtained from partici-
pants’ MRI using FS is a useful imaging biomarker of cortical
atrophy, within and between the various disease cohorts repre-
sented in ONDRI. The increase in accuracy and reduction in
failure rates due to our correction procedures described here has
the opportunity to advance the study of structural biomarkers in
neurodegeneration, by minimising data loss and increasing sta-
tistical power. This correction procedure enabled the investiga-
tion of participants with significant atrophy and cerebrovascular
lesion burden, which can present significant challenges to corti-
cal thickness estimation, cortical and subcortical volumetrics,
and other downstream processes (e.g. connectivity analyses of
functional and diffusion MRI). Moreover, the correction proce-
dures may improve the sensitivity of estimated features that
may have otherwise been undetectable.
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Figure 1. Comparison of outputs generated from the unmodified (A-B)
vs the corrected (C-D) FreeSurfer procedures. A) Skull-stripped coronal
image from the unmodified procedure. B) Segmentation result from
the unmodified procedure overlaid on the skull-stripped T1. C) Skull-
stripped coronal image from the corrected procedure. D) Segmentation
result from the unmodified procedure overlaid on the skull-stripped T1.

Segmentation: Red = gray matter; Green/White = right/left white
matter; Pink = lesion. Blue arrows point to areas of the brain that are
missing or have been erroneously removed from the segmentation.

In the unmodified procedure, a failure rate of more than 60%
was reported for tissue segmentation. This is in line with the
concept that most segmentation difficulties reported in individ-
uals with CVD result from inaccurate identification of tissue
boundaries, which is highly dependent on the homogenous in-
tensity of voxels in a particular brain region, especially in those
with high surface area and curvature (50). Accurate and reliable
skull stripping is important for cortical thickness estimation,
since false positive classification of non-brain tissue (e.g. skull,
dura and pial maters) could result in poor estimation of the GM
-WM border, which in turn can result in erroneous patterns of
cortical thickness. Skull stripping segmentation accuracy is
particularly relevant in ageing and neurodegenerative popula-
tions, where brain atrophy is accompanied by increased CSF
volumes and a decreased separation between GM and WM in-
tensities (10,14,15,18,22,51).

While small acute strokes may have minimal effects on tissue
segmentation, large chronic cortico-subcortical stroke lesions
introduce alterations to brain morphometry resulting in failed
segmentation in most brain segmentation algorithms (50,52—
54). Although this issue is particularly relevant in individuals
with CVD, cerebral small vessel disease and brain atrophy that
are commonly observed in patients with Alzheimer’s and other
related dementias present similar challenges when estimating
cortical thickness.

Incorporating more accurate brain extraction and lesion masks
from ONDRI reduced the overall failure rate to less than 8%
when the corrected procedure was applied. This improvement
could be attributed to the use of multi-modal imaging sequenc-
es in the ONDRI structural neuroimaging pipeline (47). This
method produces consistent and accurate brain extraction and
lesion segmentation. Although imaging markers of small vessel
disease, such as WMH, appear hyperintense (bright) on PD/T2
and FLAIR MRI, these lesions appear hypointense or isointense

to GM on T1, thus overlapping in intensity with normal appear-
ing GM (55). If present in confluent patches, it can result in
significant inflation of GM voxel misclassification when using
only T1-based segmentation approaches (56). Considering the
significant WMH burden and atrophy in our sample, it was
helpful that the FS pipeline allowed for these types of interven-
tions. In line with this, we found a significant increase in white
matter hypointensities burden (~63%) after incorporating ON-
DRI’s lesion segmentation to the FS pipeline.

Several studies have underscored the importance of optimal
lesion segmentation in various clinical population (57-61), par-
ticularly in populations at risk of developing small vessel dis-
ease (59,62-64). A recent systematic review by Frey et al.,
(2019) provided a comprehensive overview of the importance
of WMH segmentation in large-scale MRI studies. They pro-
posed a clear need for developing a guideline to cover the de-
scription of WMH segmentation approach, as a way of optimis-
ing the multitude of segmentation techniques available. This is
crucial, especially in medium to large sample size studies with
clinical populations that donate their time to research. Further-
more, the flexibility of the FS pipeline to allow for such modifi-
cation supports the individualised imaging methods used in the
ONDRI study. This increases the study’s statistical power

Table 3. Cortical thickness analyses showing significant clusters with
Montreal Cognitive Assessment

Surface area of Talairach (MNI305)

Anatomical Region Max 2 N LowCWP - HiICWP P (awp)
cluster (mm?) coordinates (x,y,z)

Total MoCA score

Left Superior Parietal ~ 3.991 535.98 -25.3,-43.0,54.2 0.015-0.021 0.018

Left Insula 5.101 461.69 -39.5,-17.6,-10.1 0.035-10.029 0.040

MoCA Attention

Left Superior Parietal  4.109 771.83 -27.9,-65.1,27.0 0.0000 - 0.0004 0.0002

Abbreviations: LowCWP = Lower clusterwise p-value, 90% confidence

interval; HICWP = Upper clusterwise p-value, 90% confidence; P(cwp) =
clusterwise p-value; MoCA = Montreal Cognitive Assessment

whilst including participants with challenging pathologies that
otherwise might have failed when processed using the default
settings, and in turn, reduces sampling bias related to the imag-
ing method requirements (27).

Only data that underwent the FS correction demonstrated a re-
lationship with cognition, whereby greater corrected cortical
thickness in the left superior parietal cortex and in the insula
was associated with higher MoCA total scores. Further analysis
with MoCA sub-scores revealed that corrected cortical thick-
ness in the left superior parietal cortex was associated in partic-
ular with higher Attention sub-scores. Several studies have re-
ported a significant association between cortical thickness and
cognitive function in participants with SVD and other diseases
associated with vascular risk factors (66—70). Across these
studies the effect of cortical thickness varies, with some report-
ing relationships with executive function, processing speed,
memory (66,71), whilst others reporting relationships with
memory and attention (67,70). A study by Hilal et al. (2015)
demonstrated that WMH and microbleeds were associated with
thinning in the temporal and insular regions and associated
multi-domain cognitive dysfunction. The insula is an important
structure with extensive connections to cortical and subcortical
regions, and is involved in various processes, such as empathy,
emotion, body sensation, and other aspects of social cognition
(73,74). Thus, insular atrophy as a result of stroke could lead to
significant cognitive dysfunction and socioemotional deficits in
participants with cerebral small vessel disease and other comor-
bid neurodegenerative diseases (75—77). Further, the observed
association between superior parietal thickness and the Atten-
tion sub-score is consistent with recent work showing that
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Figure 2. Cortical thickness regions showing significant
associations with cognition. Red = left superior parietal; Yellow =
left insula. Both regions were associated with general cognition
and the left superior parietal was associated with attention.

smoking-related superior parietal thinning was associated with
decreased global cognition, as well as decreased visuospatial
and attentional functioning (78). This is in line with the con-
cept that better vascular health is associated with increased
superior parietal thickness in neurodegenerative diseases (79—
81), suggesting a compensatory response to early brain patho-
logical changes (82). Future analyses using our method will
investigate the associations between vascular risk factors and
cortical thickness in predicting cognitive decline in neuro-
degenerative diseases with comorbid cerebral small vessel dis-
ease.

The ability to decrease the failure rate was the key strength of
this work. Although our correction procedures were derived
from ONDRI’s imaging pipeline, similar correction procedures
that can account for vascular lesions and brain atrophy could
be applied in other studies using FS (or any number of cortical
thickness estimation tools) to study challenging clinical popu-
lations (57,83-85). Hence, the decision to validate and apply
this method to individuals with CVD presenting with a range
of various combined pathologies including focal and global
atrophy, large and small cortico-subcortical chronic stroke le-
sions, diffuse and focal WMH, lacunar infarcts, cortical mi-
croinfarcts, and enlarged PVS (55,86). This combination of
brain pathologies brings a unique set of potential challenges for
cortical thickness estimation.

The findings reported here should also be considered in light of
several limitations. The cross-sectional analysis of this project
limits our ability to examine the robustness of our method lon-
gitudinally. As ONDRI is a longitudinal study, future work
will implement our method at several follow-up time points,
within and between all disease cohorts, providing a unique
opportunity to investigate relationships between cortical thick-
ness and other neurodegenerative biomarkers for predicting
disease progression. Another benefit to the FS correction is its
potential to facilitate better understanding of brain-behaviour
relationships by increasing the sensitivity and accuracy of the
cortical estimation tool. As demonstrated, only corrected corti-
cal estimations correlated with a measure of global cognitive
status. Future work will examine cross-sectional and longitudi-
nal relationships between cortical thickness, vascular risk fac-
tors, neurodegeneration, and associations with comprehensive
neuropsychological testing (87).

CONCLUSIONS

Given these results, our findings strongly suggest that individu-
alised accounting of brain atrophy and neurovascular lesions in
cortical thickness estimation tools such as FS, can significantly
improve the segmentation results, reduce failure rates to mini-
mise biased samples, and potentially increase sensitivity to
examine brain-behaviour relationships. Most importantly, these
correction efforts invested to reduce data loss and inaccuracies,
acknowledge the significant time and effort our patients have
donated to participate in the ONDRI research study.

Acknowledgements: We would like to thank the ONDRI par-
ticipants for the time, consent, and participation in our study.
Thank you to the L.C. Campbell Foundation, and the analysts
and software developers in the LC Campbell Cognitive Neurol-
ogy research team who have contributed to the ONDRI imag-
ing analysis, including Edward Ntiri, Parisa Mojiri, Rita
Meena, and Pugaliya Puveendrakumaran.

This paper is available in preprint version online:
https://doi.org/10.1101/2020.08.04.236760

Funding: This research was conducted with the support of the
Ontario Brain Institute, an independent non-profit corporation,
funded partially by the Ontario government. The opinions,
results, and conclusions are those of the authors and no en-
dorsement by the Ontario Brain Institute is intended or should
be inferred. Matching funds were provided by participant hos-
pital and research foundations, including the Baycrest Founda-
tion, Bruyere Research Institute, Centre for Addiction and
Mental Health Foundation, London Health Sciences Founda-
tion, McMaster University Faculty of Health Sciences, Ottawa
Brain and Mind Research Institute, Queen’s University Faculty
of Health Sciences, the Thunder Bay Regional Health Sciences
Centre, the University of Ottawa Faculty of Medicine, and the
Windsor/Essex County ALS Association. The Temerty Family
Foundation provided the major infrastructure matching funds.

Author Contributions:

MO: Conceptualisation, Data Curation, Formal Analysis, In-
vestigation, Methodology, Project Administration, Software,
Validation, Visualisation, and Writing (draft, review, and edit-
ing)

JR: Conceptualisation, Data Curation, Formal Analysis, Inves-
tigation, Methodology, Software, Validation, Visualisation,
Writing (draft, review, and editing), and Supervision

PRR: Data Curation, Formal Analysis, and Writing (review
and editing)

MFH: Data Curation, Validation, Visualisation, and Writing
(review and editing)

KW: Data Curation, Validation, Visualisation, and Writing
(review and editing)

CIMS: Data Curation, Project Administration, and Writing
(review and editing)

MG: Writing (review and editing)

DK: Data Curation, Project Administration, Writing (review
and editing)

MCT: Writing (review and editing), Supervision, Funding Ac-
quisition

DB: Data Curation, Software, Writing (review and editing)
GS: Resources, Writing (review and editing)

AH: Resources, Funding Acquisition

JLD: Resources, Data Curation, Writing (review and editing)
DD: Resources, Data Curation, Funding Acquisition

SCS: Data Curation, Resources, Funding Acquisition

SS: Data Curation, Supervision

RB: Data Curation, Resources, Supervision, Funding Acquisi-
tion


https://doi.org/10.1101/2020.08.04.236760
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.236760; this version posted August 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

RHS: Data Curation, Writing (review and editing), Resources,
Supervision, Funding Acquisition

SEB: Conceptualisation, Methodology, Supervision, Writing
(review and editing), Resources, Funding Acquisition

ONDRI Investigators: Michael Strong, Peter Kleinstiver, Na-
taliec Rashkovan, Susan Bronskil, Michael Borrie, Elizabeth
Finger, Corinne Fischer, Andrew Frank, Morris Freedman,
Sanjeev Kumar, Stephen Pasternak, Bruce Pollock, Tarek Rajji,
Dallas Seitz, David Tang-Wai, Brenda Varriano, Agessandro
Abrahao, Marvin Chum, Christen Shoesmith, John Turnbull,
Lorne Zinman, Julia Fraser, Bill Mcllroy, Ben Cornish, Karen
Van Ooteghem, Frederico Faria, Manuel Montero-Odasso, Ya-
nina Sarquis-Adamson, Alanna Black, Barry Greenberg, Wen-
dy Hatch, Chris Hudson, Elena Leontieva, Ed Margolin, Efrem
Mandelcorn, Faryan Tayyari, Sherif Defrawy, Don Brien, Ying
Chen, Brian Coe, Doug Munoz, Alisia Bonnick, Leanne Ca-
saubon, Dar Dowlatshahi, Ayman Hassan, Jennifer Mandzia,
Demetrios Sahlas, Gustavo Saposnik, David Breen, David
Grimes, Mandar Jog, Anthony Lang, Connie Marras, Mario
Masellis, Tom Steeves, Dennis Bulman, Allison Ann Dilliott,
Mahdi Ghani, Rob Hegele, John Robinson, Ekaterina Rogaeva,
Sali Farhan, Hassan Haddad, Nuwan Nanayakkara, Courtney
Berezuk, Sabrina Adamo, Mojdeh Zamyadi, Stephen Arnott,
Brian Tan, Malcolm Binns, Wendy Lou, Kelly Sunderland,
Athena Theyers, Abiramy Uthirakumaran, Guangyong (GY)
Zou, Sujeevini Sujanthan, Mojdeh Zamyadi, David Munoz,
Roger A. Dixon, John Woulfe, Brian Levine, Paula McLaugh-
lin, JB Orange, Alicia Peltsch, Angela Roberts, Angela Troyer.

REFERENCES

1. Fischl B, Dale AM. Measuring the thickness of the human cerebral
cortex from magnetic resonance images. Proc Natl Acad Sci U S A (2000)
97:11050-11055.

2. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E,
Morris JC, Dale AM, Fischl B. Thinning of the cerebral cortex in aging. Cereb
Cortex (2004) 14:721-730.

3. Lerch JP, Evans AC. Cortical thickness analysis examined through
power analysis and a population simulation. Neuroimage (2005) 24:163—-173.
4. Raamana PR, Weiner MW, Wang L, Beg MF. Thickness network

features for prognostic applications in dementia. Neurobiol Aging (2015)
36:S91-S102. doi:10.1016/j.neurobiolaging.2014.05.040

5. Raamana PR, Wen W, Kochan NA, Brodaty H, Sachdev PS, Wang L,
Beg MF. The Sub-Classification of Amnestic Mild Cognitive Impairment Us-
ing MRI-Based Cortical Thickness Measures. Front Neurol (2014) 5:
doi:10.3389/fneur.2014.00076

6. Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin
K, Miller BL, Weiner MW. Different regional patterns of cortical thinning in
Alzheimer’s disease and frontotemporal dementia. Brain (2007) 130:1159—
1166.

7. Hartikainen P, Rdsdnen J, Julkunen V, Niskanen E, Hallikainen M,
Kivipelto M, Vanninen R, Remes AM, Soininen H. Cortical Thickness in Fron-
totemporal Dementia, Mild Cognitive Impairment, and Alzheimer’s Disease. J
Alzheimer’s Dis (2012) 30:857-874. doi:10.3233/JAD-2012-112060

8. Richards BA, Chertkow H, Singh V, Robillard A, Massoud F, Evans
AC, Kabani NJ. Patterns of cortical thinning in Alzheimer’s disease and fronto-
temporal dementia. Neurobiol Aging (2009) 30:1626-36. doi:10.1016/
j-neurobiolaging.2007.12.019

9. Paternicoé D, Manes M, Premi E, Cosseddu M, Gazzina S, Alberici A,
Archetti S, Bonomi E, Cotelli MS, Cotelli M, et al. Frontotemporal dementia
and language networks: cortical thickness reduction is driven by dyslexia sus-
ceptibility genes. Sci Rep (2016) 6:30848. doi:10.1038/srep30848

10. Vuksanovi¢ V, Staff RT, Ahearn T, Murray AD, Wischik CM. Corti-
cal Thickness and Surface Area Networks in Healthy Aging, Alzheimer’s Dis-
ease and Behavioral Variant Fronto-Temporal Dementia. Int J Neural Syst
(2019) 29:1850055. doi:10.1142/S0129065718500557

11. Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel
H, Evans AC. Automated cortical thickness measurements from MRI can accu-
rately separate Alzheimer’s patients from normal elderly controls. Neurobiol
Aging (2008) 29:23-30.

12. Bakkour A, Morris JC, Dickerson BC. The cortical signature of pro-
dromal AD: regional thinning predicts mild AD dementia. Neurology (2009)
72:1048-1055.

13. Cho Y, Seong JK, Jeong Y, Shin SY. Individual subject classification
for Alzheimer’s disease based on incremental learning using a spatial frequen-
cy representation of cortical thickness data. Neuroimage (2012) 59:2217-2230.

14. Wilson H, Niccolini F, Pellicano C, Politis M. Cortical thinning across
Parkinson’s disease stages and clinical correlates. J Neurol Sci (2019) 398:31—
38. doi:10.1016/j.jns.2019.01.020

15. Yau Y, Zeighami Y, Baker TE, Larcher K, Vainik U, Dadar M, Fonov
VS, Hagmann P, Griffa A, Misi¢ B, et al. Network connectivity determines
cortical thinning in early Parkinson’s disease progression. Nat Commun (2018)
9:12. doi:10.1038/s41467-017-02416-0

16. Gao Y, Nie K, Mei M, Guo M, Huang Z, Wang L, Zhao J, Huang B,
Zhang Y, Wang L. Changes in Cortical Thickness in Patients With Early Park-
inson’s Disease at Different Hoehn and Yahr Stages. Front Hum Neurosci
(2018) 12: doi:10.3389/fnhum.2018.00469

17. Uribe C, Segura B, Baggio HC, Abos A, Marti MJ, Valldeoriola F,
Compta Y, Bargallo N, Junque C. Patterns of cortical thinning in nondemented
Parkinson’s disease patients. Mov Disord (2016) 31:699-708. doi:10.1002/
mds.26590

18. Walhout R, Westeneng H-J, Verstraete E, Hendrikse J, Veldink JH,
van den Heuvel MP, van den Berg LH. Cortical thickness in ALS: towards a
marker for upper motor neuron involvement. J Neurol Neurosurg Psychiatry
(2015) 86:288-294. doi:10.1136/jnnp-2013-306839

19. Schuster C, Kasper E, Machts J, Bittner D, Kaufmann J, Benecke R,
Teipel S, Vielhaber S, Prudlo J. Longitudinal course of cortical thickness de-
cline in amyotrophic lateral sclerosis. J Neurol (2014) 261:1871-1880.
doi:10.1007/s00415-014-7426-4

20. Verstraete E, Veldink JH, Hendrikse J, Schelhaas HJ, van den Heuvel
MP, van den Berg LH. Structural MRI reveals cortical thinning in amyotrophic
lateral sclerosis. J Neurol Neurosurg Psychiatry (2012) 83:383-388.
doi:10.1136/jnnp-2011-300909

21. Mezzapesa DM, D’Errico E, Tortelli R, Distaso E, Cortese R, Tursi
M, Federico F, Zoccolella S, Logroscino G, Dicuonzo F, et al. Cortical Thin-
ning and Clinical Heterogeneity in Amyotrophic Lateral Sclerosis. PLoS One
(2013) 8:e80748. doi:10.1371/journal.pone.0080748

22. Seo SW, Ahn J, Yoon U, Im K, Lee J-M, Tae Kim S, Ahn H-J, Chin J,
Jeong Y, Na DL. Cortical Thinning in Vascular Mild Cognitive Impairment
and Vascular Dementia of Subcortical Type. J Neuroimaging (2010) 20:37-45.
doi:10.1111/5.1552-6569.2008.00293 .x

23. Kim HJ, Ye BS, Yoon CW, Noh Y, Kim GH, Cho H, Jeon S, Lee JM,
Kim JH, Seong JK, et al. Cortical thickness and hippocampal shape in pure
vascular mild cognitive impairment and dementia of subcortical type. Eur J
Neurol (2014) 21:744-751. doi:10.1111/ene.12376

24, Jung N-Y, Cho H, Kim YJ, Kim HJ, Lee JM, Park S, Kim ST, Kim E-
J, Kim JS, Moon SH, et al. The impact of education on cortical thickness in
amyloid-negative subcortical vascular dementia: cognitive reserve hypothesis.
Alzheimers Res Ther (2018) 10:103. doi:10.1186/s13195-018-0432-5

25. Fischl B. FreeSurfer. Neuroimage (2012) 62:774-781.

26. Moore DW, Kovanlikaya I, Heier LA, Raj A, Huang C, Chu K-W,
Relkin NR. A Pilot Study of Quantitative MRI Measurements of Ventricular
Volume and Cortical Atrophy for the Differential Diagnosis of Normal Pres-
sure Hydrocephalus. Neurol Res Int (2012) 2012:1-6.
doi:10.1155/2012/718150

27. Li Q, Pardoe H, Lichter R, Werden E, Raffelt A, Cumming T, Brodt-
mann A. Cortical thickness estimation in longitudinal stroke studies: A compar-
ison of 3 measurement methods. Neurolmage Clin (2015) 8:526-535.
doi:10.1016/j.nic.2014.08.017

28. Schwarz CG, Gunter JL, Wiste HJ, Przybelski SA, Weigand SD, Ward
CP, Senjem ML, Vemuri P, Murray ME, Dickson DW, et al. A large-scale
comparison of cortical thickness and volume methods for measuring Alzhei-
mer’s disease severity. Neurolmage Clin (2016) 11:802-812. doi:10.1016/
j-nicl.2016.05.017

29. Iscan Z, Jin TB, Kendrick A, Szeglin B, Lu H, Trivedi M, Fava M,
McGrath PJ, Weissman M, Kurian BT, et al. Test-retest reliability of freesurfer
measurements within and between sites: Effects of visual approval process.
Hum Brain Mapp (2015) 36:3472-3485. doi:10.1002/hbm.22856

30. Backhausen LL, Herting MM, Buse J, Roessner V, Smolka MN, Vet-
ter NC. Quality Control of Structural MRI Images Applied Using FreeSurfer—
A Hands-On Workflow to Rate Motion Artifacts. Front Neurosci (2016) 10:
doi:10.3389/fnins.2016.00558

31. Gronenschild EH, Habets P, Jacobs HI, Mengelers R, Rozendaal N,


https://doi.org/10.1101/2020.08.04.236760
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.236760; this version posted August 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

van OJ, Marcelis M. The effects of FreeSurfer version, workstation type, and
Macintosh operating system version on anatomical volume and cortical thick-
ness measurements. PLoOSONE (2012) 7:e38234.

32. McCarthy CS, Ramprashad A, Thompson C, Botti J-A, Coman IL,
Kates WR. A comparison of FreeSurfer-generated data with and without manu-
al intervention. Front Neurosci (2015) 9: doi:10.3389/fnins.2015.00379

33. Waters AB, Mace RA, Sawyer KS, Gansler DA. Identifying errors in
Freesurfer automated skull stripping and the incremental utility of manual
intervention. Brain Imaging Behav (2019) 13:1281-1291. doi:10.1007/s11682-
018-9951-8

34, Guenette JP, Stern RA, Tripodis Y, Chua AS, Schultz V, Sydnor VJ,
Somes N, Karmacharya S, Lepage C, Wrobel P, et al. Automated versus manu-
al segmentation of brain region volumes in former football players. Neu-
rolmage Clin (2018) 18:888-896. doi:10.1016/j.nicl.2018.03.026

35. Canna A, Russo AG, Ponticorvo S, Manara R, Pepino A, Sansone M,
Di Salle F, Esposito F. Automated search of control points in surface-based
morphometry. Neuroimage (2018) 176:56-70. doi:10.1016/
j-neuroimage.2018.04.035

36. Beelen C, Phan TV, Wouters J, Ghesquiére P, Vandermosten M. In-
vestigating the Added Value of FreeSurfer’s Manual Editing Procedure for the
Study of the Reading Network in a Pediatric Population. Front Hum Neurosci
(2020) 14: doi:10.3389/fnhum.2020.00143

37. Li Q, Pardoe H, Lichter R, Werden E, Raffelt A, Cumming T, Brodt-
mann A. Cortical thickness estimation in longitudinal stroke studies: A compar-
ison of 3 measurement methods. Neurolmage Clin (2015) 8:526-535.
doi:10.1016/j.nicl.2014.08.017

38. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van
der Kouwe A, Killiany R, Kennedy D, Klaveness S, et al. Whole brain segmen-
tation: automated labeling of neuroanatomical structures in the human brain.
Neuron (2002) 33:341-355.

39. Schneider JA, Bennett DA. Where vascular meets neurodegenerative
disease. Stroke (2010) 41:S144-S146.

40. Farhan SMK, Bartha R, Black SE, Corbett D, Finger E, Freedman M,
Greenberg B, Grimes DA, Hegele RA, Hudson C, et al. The Ontario Neuro-
degenerative Disease Research Initiative (ONDRI). Can J Neurol Sci (2017)
44:196-202. doi:10.1017/cjn.2016.415

41. Sunderland KM, Beaton D, Arnott SR, Kleinstiver P, Kwan D, Law-
rence-Dewar JM, Ramirez J, Tan B, Bartha R, Black SE, et al. The Ontario
Neurodegenerative Disease Research Initiative. medRxiv (2020)
2020.07.30.20165456. doi:10.1101/2020.07.30.20165456

42. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J.
Interobserver agreement for the assessment of handicap in stroke patients.
Stroke (1988) 19:604-7. doi:10.1161/01.str.19.5.604

43, Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead

V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment,

MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc
(2005) 53:695-699.

44, Duchesne S, Chouinard I, Potvin O, Fonov VS, Khademi A, Bartha R,
Bellec P, Collins DL, Descoteaux M, Hoge R, et al. The Canadian Dementia
Imaging Protocol: Harmonizing National Cohorts. J Magn Reson Imaging
(2019) 49:456-465. doi:10.1002/jmri.26197

45. Hachinski V, Tadecola C, Petersen RC, Breteler MM, Nyenhuis DL,
Black SE, Powers WJ, Decarli C, Merino JG, Kalaria RN, et al. National Insti-
tute of Neurological Disorders and Stroke-Canadian Stroke Network vascular
cognitive impairment harmonization standards. Stroke (2006) 37:2220-2241.

46. Haddad SMH, Scott CJM, Ozzoude M, Holmes M, Arnott SR, Na-
nayakkara ND, Ramirez J, Black SE, Dowlatshahi D, Strother SC, et al. Com-
parison of Quality Control Methods for Automated Diffusion Tensor Imaging
Analysis Pipelines. PLoS One (2020)

47. Ramirez J, Holmes MF, Scott CJM, Ozzoude M, Adamo S, Szilagyi
GM, Gao F, Amott SR, Dewar JML, Beaton D, et al. Ontario Neurodegenera-
tive Disease Research Initiative ( ONDRI ): Structural MRI methods & out-
come measures. Front Neurol (2020) Available at: https://www.biorxiv.org/
content/10.1101/2019.12.13.875823v2

48. Sunderland KM, Beaton D, Fraser J, Kwan D, McLaughlin PM, Mon-
tero-Odasso M, Peltsch AJ, Pieruccini-Faria F, Sahlas DJ, Swartz RH, et al.
The utility of multivariate outlier detection techniques for data quality evalua-
tion in large studies: an application within the ONDRI project. BMC Med Res
Methodol (2019) 19:102. doi:10.1186/s12874-019-0737-5

49. Beaton D, Sunderland KM, ADNI, Levine B, Mandzia J, Masellis M,
Swartz RH, Troyer AK, ONDRI, Binns MA, et al. Generalization of the mini-
mum covariance determinant algorithm for categorical and mixed data types.
bioRxiv (2019)333005. doi:10.1101/333005

50. Wang Y, Catindig JA, Hilal S, Soon HW, Ting E, Wong TY, Venketa-
subramanian N, Chen C, Qiu A. Multi-stage segmentation of white matter
hyperintensity, cortical and lacunar infarcts. Neuroimage (2012) 60:2379—
2388. doi:10.1016/j.neuroimage.2012.02.034

51. Paternic6é D, Manes M, Premi E, Cosseddu M, Gazzina S, Alberici A,
Archetti S, Bonomi E, Cotelli MS, Cotelli M, et al. Frontotemporal dementia
and language networks: cortical thickness reduction is driven by dyslexia sus-
ceptibility genes. Sci Rep (2016) 6:30848. doi:10.1038/srep30848

52. Siegel JS, Shulman GL, Corbetta M. Measuring functional connectivi-
ty in stroke: Approaches and considerations. J Cereb Blood Flow Metab (2017)
37:2665-2678. doi:10.1177/0271678X17709198

53. Zavaliangos-Petropulu. Testing a convolutional neural network-based
hippocampal segmentation method in a stroke population. (2020) doi:https://
doi.org/10.1101/2020.01.28.924068

54. Yang X, Han X, Park E, Aylward S, Kwitt R, Niethammer M.
“Registration of Pathological Images,” in, 97-107. doi:10.1007/978-3-319-
46630-9_10

55. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F,
Frayne R, Lindley RI, O’Brien JT, Barkhof F, Benavente OR, et al. Neuroim-
aging standards for research into small vessel disease and its contribution to
ageing and neurodegeneration. Lancet Neurol (2013) 12:822-838.

56. Levy-Cooperman N, Ramirez J, Lobaugh NJ, Black SE. Misclassified
tissue volumes in Alzheimer disease patients with white matter hyperintensi-
ties: importance of lesion segmentation procedures for volumetric analysis.
Stroke (2008) 39:1134-1141.

57. Dadar M, Pascoal TA, Manitsirikul S, Misquitta K, Fonov VS, Tar-
taglia MC, Breitner J, Rosa-Neto P, Carmichael OT, Decarli C, et al. Valida-
tion of a Regression Technique for Segmentation of White Matter Hyperinten-
sities in Alzheimer’s Disease. IEEE Trans Med Imaging (2017) 36:1758—1768.
doi:10.1109/TM1.2017.2693978

58. Sudre CH, Cardoso MJ, Ourselin S. Longitudinal segmentation of age-
related white matter hyperintensities. Med Image Anal (2017) 38:50-64.
doi:10.1016/j.media.2017.02.007

59. Habes M, Erus G, Toledo JB, Zhang T, Bryan N, Launer LJ, Rosseel
Y, Janowitz D, Doshi J, Auwera S Van Der, et al. White matter hyperintensities
and imaging patterns of brain ageing in the general population. Brain (2016)
doi:10.1093/brain/aww008

60. Heinen R, Steenwijk MD, Barkhof F, Biesbroek JM, van der Flier
WM, Kuijf HJ, Prins ND, Vrenken H, Biessels GJ, de Bresser J. Performance
of five automated white matter hyperintensity segmentation methods in a multi-
center dataset. Sci Rep (2019) 9:16742. doi:10.1038/s41598-019-52966-0

61. Salvado G, Brugulat-Serrat A, Sudre CH, Grau-Rivera O, Suarez-
Calvet M, Falcon C, Fauria K, Cardoso MJ, Barkhof F, Molinuevo JL, et al.
Spatial patterns of white matter hyperintensities associated with Alzheimer’s
disease risk factors in a cognitively healthy middle-aged cohort. Alzheimers
Res Ther (2019) 11:12. doi:10.1186/s13195-018-0460-1

62. Jeerakathil T, Wolf PA, Beiser A, Hald JK, Au R, Kase CS, Massaro
IM, Decarli C. Cerebral microbleeds: prevalence and associations with cardio-
vascular risk factors in the Framingham Study. Stroke (2004) 35:1831-1835.

63. Longstreth Jr. WT, Manolio TA, Arnold A, Burke GL, Bryan N, Jun-
greis CA, Enright PL, O’Leary D, Fried L. Clinical correlates of white matter
findings on cranial magnetic resonance imaging of 3301 elderly people. The
Cardiovascular Health Study. Stroke (1996) 27:1274-1282.

64. Jongen C, van der Grond J, Kappelle LJ, Biessels GJ, Viergever MA,
Pluim JPW. Automated measurement of brain and white matter lesion volume
in type 2 diabetes mellitus. Diabetologia (2007) 50:1509—-1516. doi:10.1007/
s00125-007-0688-y

65. Frey BM, Petersen M, Mayer C, Schulz M, Cheng B, Thomalla G.
Characterization of White Matter Hyperintensities in Large-Scale MRI-Studies.
Front Neurol (2019) 10: doi:10.3389/fheur.2019.00238

66. Righart R, Duering M, Gonik M, Jouvent E, Reyes S, Hervé D, Cha-
briat H, Dichgans M. Impact of regional cortical and subcortical changes on
processing speed in cerebral small vessel disease. Neurolmage Clin (2013)
2:854-861. doi:10.1016/j.nicl.2013.06.006

67. Fujishima M, Maikusa N, Nakamura K, Nakatsuka M, Matsuda H,
Meguro K. Mild cognitive impairment, poor episodic memory, and late-life
depression are associated with cerebral cortical thinning and increased white
matter hyperintensities. Front Aging Neurosci (2014) 6: doi:10.3389/
fnagi.2014.00306

68. Jung W-B, Mun C-W, Kim Y-H, Park JM, Lee BD, Lee YM, Moon E,
Jeong HJ, Chung YI. Cortical atrophy, reduced integrity of white matter and
cognitive impairment in subcortical vascular dementia of Binswanger type.
Psychiatry Clin Neurosci (2014) 68:821-832. doi:10.1111/pcn.12196


https://doi.org/10.1101/2020.08.04.236760
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.236760; this version posted August 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

69. Tchistiakova E, MacIntosh BJ. Summative effects of vascular risk
factors on cortical thickness in mild cognitive impairment. Neurobiol Aging
(2016) 45:98-106. doi:10.1016/j.neurobiolaging.2016.05.011

70. Tuladhar AM, Reid AT, Shumskaya E, de Laat KF, van Norden
AGW, van Dijk EJ, Norris DG, de Leeuw F-E. Relationship Between White
Matter Hyperintensities, Cortical Thickness, and Cognition. Stroke (2015)
46:425-432. doi:10.1161/STROKEAHA.114.007146

71. Tchistiakova E, Anderson ND, Greenwood CE, MacIntosh BJ. Com-
bined effects of type 2 diabetes and hypertension associated with cortical thin-
ning and impaired cerebrovascular reactivity relative to hypertension alone in

older adults. Neurolmage Clin (2014) 5:36—41. doi:10.1016/j.nicl.2014.05.020

72. Hilal S, Xin X, Ang SL, Tan CS, Venketasubramanian N, Niessen WJ,
Vrooman H, Wong TY, Chen C, Ikram MK. Risk Factors and Consequences of
Cortical Thickness in an Asian Population. Medicine (Baltimore) (2015)
94:e852. doi:10.1097/MD.0000000000000852

73. (Bud) Craig AD. How do you feel — now? The anterior insula and
human awareness. Nat Rev Neurosci (2009) 10:59—-70. doi:10.1038/nrn2555

74. Couto B, Sedefio L, Sposato LA, Sigman M, Riccio PM, Salles A,
Lopez V, Schroeder J, Manes F, Ibanez A. Insular networks for emotional
processing and social cognition: Comparison of two case reports with either
cortical or subcortical involvement. Cortex (2013) 49:1420-1434. doi:10.1016/
j-cortex.2012.08.006

75. Ibafiez A, Gleichgerrcht E, Manes F. Clinical effects of insular damage
in humans. Brain Struct Funct (2010) 214:397-410. doi:10.1007/s00429-010-
0256-y

76. Moon Y, Moon W-J, Kim H, Han S-H. Regional Atrophy of the Insu-
lar Cortex Is Associated with Neuropsychiatric Symptoms in Alzheimer’s
Disease Patients. Eur Neurol (2014) 71:223-229. doi:10.1159/000356343

77. Limongi R, Tomio A, Ibanez A. Dynamical predictions of insular hubs
for social cognition and their application to stroke. Front Behav Neurosci
(2014) 8: doi:10.3389/fnbeh.2014.00380

78. Neth BJ, Graff-Radford J, Mielke MM, Przybelski SA, Lesnick TG,
Schwarz CG, Reid RI, Senjem ML, Lowe VJ, Machulda MM, et al. Relation-
ship Between Risk Factors and Brain Reserve in Late Middle Age: Implications
for Cognitive Aging. Front Aging Neurosci (2020) 11: doi:10.3389/
fnagi.2019.00355

79. Vemuri P, Lesnick TG, Przybelski SA, Graff-Radford J, Reid RI,
Lowe VJ, Zuk SM, Senjem ML, Schwarz CG, Gunter JL, et al. Development of
a cerebrovascular magnetic resonance imaging biomarker for cognitive aging.
Ann Neurol (2018) 84:705-716. doi:10.1002/ana.25346

80. Fortea J, Vilaplana E, Alcolea D, Carmona-Iragui M, Sanchez-
Saudinos MB, Sala I, Anton-Aguirre S, Gonzélez S, Medrano S, Pegueroles J,
et al. Cerebrospinal fluid B-amyloid and phospho-tau biomarker interactions
affecting brain structure in preclinical Alzheimer disease. Ann Neurol (2014)
76:223-230. doi:10.1002/ana.24186

81. Johnson SC, Christian BT, Okonkwo OC, Oh JM, Harding S, Xu G,
Hillmer AT, Wooten DW, Murali D, Barnhart TE, et al. Amyloid burden and
neural function in people at risk for Alzheimer’s Disease. Neurobiol Aging
(2014) 35:576-584. doi:10.1016/j.neurobiolaging.2013.09.028

82. Vemuri P, Lesnick TG, Przybelski SA, Graff-Radford J, Reid RI,
Lowe VJ, Zuk SM, Senjem ML, Schwarz CG, Gunter JL, et al. Development of
a cerebrovascular magnetic resonance imaging biomarker for cognitive aging.
Ann Neurol (2018) 84:705-716. doi:10.1002/ana.25346

83. Subbanna NK, Rajashekar D, Cheng B, Thomalla G, Fiehler J, Arbel
T, Forkert ND. Stroke Lesion Segmentation in FLAIR MRI Datasets Using
Customized Markov Random Fields. Front Neurol (2019) 10: doi:10.3389/
fneur.2019.00541

84. Dalca AV, Sridharan R, Cloonan L, Fitzpatrick KM, Kanakis A, Furie
KL, Rosand J, Wu O, Sabuncu M, Rost NS, et al. “Segmentation of Cerebro-
vascular Pathologies in Stroke Patients with Spatial and Shape Priors,” in, 773—
780. doi:10.1007/978-3-319-10470-6_96

85. Ntiri, E.E., Holmes, M.F., Forooshani, P.M., Ramirez, J., Gao, F.,
Ozzoude, M., Adamo, S., Scott, C.J.M., Dowlatshahi, D., Lawrence-Dewar,
J.M., Kwan, D., Lang, A.E., Symons, S., Bartha, R., Strother, S., Tardif, J.C.,
Masellis, M., Swartz, R.H., Moody, A M. Neuroinformatics Improved segmen-
tation of the intracranial and ventricular volumes in populations with cerebro-
vascular lesions and atrophy using 3D CNNs. doi:10.1101/2020.03.23.000844

86. Gorelick PB, Scuteri A, Black SE, DeCarli C, Greenberg SM, ladecola
C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, et al. Vascular contributions
to cognitive impairment and dementia: a statement for healthcare professionals
from the american heart association/american stroke association. Stroke (2011)
42:2672-2713.

87. McLaughlin PM, Sunderland KM, Beaton D, Binns MA, Kwan D,

Levine B, Orange JB, Peltsch AJ, Roberts AC, Strother SC, et al. The Quality
Assurance and Quality Control Protocol for Neuropsychological Data Collec-
tion and Curation in the Ontario Neurodegenerative Disease Research Initiative
(ONDRI) Study. Assessment (2020)107319112091393.
doi:10.1177/1073191120913933


https://doi.org/10.1101/2020.08.04.236760
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.236760; this version posted August 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

SUPPLEMENTAL FIGURES

Figure S1. Cortical ribbon Quality Control ‘Overestimation’ rating example. Left image shows an axial slice of a T1 that was skull-
stripped using the Unmodified FreeSurfer procedure. Right image shows the segmentation that results from the Unmodified
procedure. Red arrows point to areas of non-brain matter, such as the dura or skull, that were erroneously classified as cortex and/or
white matter.

Figure S2. Cortical ribbon Quality Control ‘Underestimation’ rating example. Left image shows a coronal slice of a T1 that was skull-
stripped using the Unmodified FreeSurfer procedure. Right image shows the segmentation (ribbon) that results from the Unmodified
procedure. Red arrows point to areas of the brain that are missing or have been erroneously removed.
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Figure S3. Cortical ribbon Quality Control ‘Fail’ rating example. Left image shows a coronal slice of the original T1 that was run through
the Unmodified FreeSurfer procedure. Right image shows the segmentation (ribbon) that resulted from the Unmodified procedure.
Red arrows point to areas of the brain that are missing and have been erroneously removed (temporal lobe and one entire
hemisphere).

Figure S4. Tissue segmentation Quality Control ‘Fail’ rating example. Left image shows a
coronal slice of the original T1 that was run through the Unmodified FreeSurfer procedure.
Right image shows the tissue segmentation that resulted from the Unmodified procedure
where white matter (WM) is shown in green and gray matter (GM) is shown in red. Blue
arrows point to areas where: 1) GM is misclassified as WM, underestimating cortical
thickness, 2-3) WM is misclassified as GM, overestimating cortical thickness.
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