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ABSTRACT 

Background: Regional changes to cortical thickness in individuals with neurodegenerative and cerebro-
vascular diseases can be estimated using specialised neuroimaging software. However, the presence of 
cerebral small vessel disease, focal atrophy, and cortico-subcortical stroke lesions, pose significant chal-
lenges that increase the likelihood of misclassification errors and segmentation failures.  

Purpose: The main goal of this study was to examine a correction procedure developed for enhancing 
FreeSurfer’s cortical thickness estimation tool, particularly when applied to the most challenging MRI 
obtained from participants with chronic stroke and cerebrovascular disease, with varying degrees of neuro-
vascular lesions and brain atrophy.  

Methods: In 155 cerebrovascular disease patients enrolled in the Ontario Neurodegenerative Disease Re-
search Initiative (ONDRI), FreeSurfer outputs were compared between a fully automated, unmodified 
procedure and a corrected procedure that accounted for potential sources of error due to atrophy and neu-
rovascular lesions. Quality control (QC) measures were obtained from both procedures. Association be-
tween cortical thickness and global cognitive status as assessed by the Montreal Cognitive Assessment 
(MoCA) score was also investigated from both procedures.  

Results: Corrected procedures increased ‘Acceptable’ QC ratings from 18% to 76% for the cortical ribbon 
and from 38% to 92% for tissue segmentation. Corrected procedures reduced ‘Fail’ ratings from 11% to 
0% for the cortical ribbon and 62% to 8% for tissue segmentation. FreeSurfer-based segmentation of T1-
weighted white matter hypointensities were significantly greater in the corrected procedure (5.8mL vs. 
15.9mL, p<0.001). The unmodified procedure yielded no significant associations with global cognitive 
status, whereas the corrected procedure yielded positive associations between MoCA total score and clus-
ters of cortical thickness in the left superior parietal (p=0.018) and left insula (p=0.04) regions. Further 
analyses with the corrected cortical thickness results and MoCA subscores showed a positive association 
between left superior parietal cortical thickness and Attention (p<0.001).  

Conclusions: These findings suggest that correction procedures that account for brain atrophy and neuro-
vascular lesions can significantly improve FreeSurfer’s segmentation results, reduce failure rates, and 
potentially increase sensitivity to examine brain-behaviour relationships. Future work will examine rela-
tionships between cortical thickness, cerebral small vessel disease, and neurodegenerative disease in the 
ONDRI study.  

INTRODUCTION 

Cortical thickness quantification obtained from magnetic reso-
nance imaging (MRI) can been used to examine regional varia-
tions of the cerebral cortex that have been associated with nor-
mal ageing and dementia due to neurodegeneration (1–4). Cor-
tical thinning in specific topographical regions of the brain has 
been used to accurately determine patterns of neurodegenera-
tion in mild cognitive impairment (MCI) (5), Alzheimer’s dis-
ease (AD), frontotemporal dementia (FTD) (6–13), Parkin-
son’s disease (PD) (14–17), amyotrophic lateral sclerosis 
(ALS) (18–21), and vascular cognitive impairment (22–24). 

FreeSurfer (FS) is a neuroimaging software package that in-
cludes a widely used surface-based analysis technique that is 
able to automatically estimate cortical thickness from T1-
weighted MRI (25). However, degraded image quality and 
subtle changes introduced by pathology makes it challenging 

for FS to achieve accurate and reliable brain extraction and 
white matter (WM) segmentation (26–31). Although FS pro-
vides manual intervention steps to troubleshoot its output (eg. 
via control points, WM lesion edits, and pial edits), they are 
labour-intensive. Further, they may introduce user-bias, espe-
cially in MRI from individuals with significant brain atrophy, 
cortical stroke lesions, and cerebral small vessel disease. Previ-
ous studies examining FS manual correction approaches found 
that while manual editing may result in differences in morpho-
metrical estimation between the methods in some brain regions 
(32–37), sensitivity results are inconsistent at individual or 
clinical group levels (32–34). 

Estimation of cortical thickness in patients with cerebrovascu-
lar disease (CVD) can be the most challenging due to cortico-
subcortical chronic stroke lesions, significant volumes of white 
matter hyperintensities (WMH), lacunar infarcts, MRI-visible 
perivascular spaces (PVS), cortical microinfarcts, and the pres-
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ence of focal brain atrophy. Given that the performance of FS’s 
tissue classification is highly dependent on a uniform intensity 
of voxels in a particular brain region and the integrity of the 
neighbouring voxels, vascular lesions and focal brain atrophy 
often result in erroneous tissue segmentations, particularly in 
regions with high surface area and curvature (38). These chal-
lenges reduce the accuracy of tissue segmentation, which in 
turn reduces the accuracy of cortical thickness estimation. 
Since many age-related neurodegenerative diseases have focal 
and diffuse brain atrophy that is further exacerbated by comor-
bid cerebrovascular pathology (39), additional procedures to 
account for these potentially challenging variations in image 
contrast are needed. 

In this paper, we examined results from a FS correction proce-
dure that was applied to MRI obtained from a heterogeneous 
CVD cohort with varying degrees cerebral small vessel disease, 
chronic cortico-subcortical stroke lesions, and brain atrophy.  

MATERIALS AND METHODS 

Study Participants 

Participants (N=155) recruited to the CVD cohort of the Ontar-
io Neurodegenerative Disease Research Initiative (ONDRI) 
(40) (http://ondri.ca) were selected for methodological valida-
tion of the FS correction procedure for cortical thickness esti-
mation. The ONDRI study is a multi-modal, multi-site observa-
tional research study investigating individuals with neuro-
degenerative diseases. Study participants were recruited at vari-
ous health centres across Ontario, Canada: London Health Sci-
ence Centre and Parkwood Institute in London; Hamilton Gen-
eral Hospital and McMaster Medical Centre in Hamilton; The 
Ottawa Civic Hospital in Ottawa; Thunder Bay Regional 
Health Sciences Centre in Thunder Bay; St. Michael’s Hospi-
tal, Sunnybrook Health Sciences Centre, Baycrest Health Sci-
ences, Centre for Addiction and Mental Health, and Toronto 
Western Hospital (University Health Network) in Toronto.  

Detailed inclusion and exclusion criteria for the ONDRI CVD 
participants are previously reported (40,41). Briefly, partici-
pants who had experienced a mild to moderate ischemic stroke 
event, documented with MRI or CT, over 3 months prior to 
enrollment, a Modified Rankin Scale (MRS) score (42) rangin 
g from 0 to 3, and a Montreal Cognitive Assessment (MoCA) 
score (43) ranging 18-30 were included. Participants were ex-
cluded if they had severe cognitive impairment, aphasia, a non-
vascular cause of symptoms, inability to write or had severe 
functional disability preventing them to perform assessments, a 
history of dementia prior to the stroke event, had severe claus-
trophobia or other contra-indications to MRI procedures. Ethics 
approval was obtained from all participating institutions and 
performed in accordance with the Declaration of Helsinki. All 
participants provided informed consent, and subsequently un-
derwent clinical evaluation, MRI, and other assessments as part 
of the full ONDRI protocol (40).  

MRI Acquisition & Pre-processing 

MRI protocols were harmonised with the Canadian Dementia 
Imaging Protocol (CDIP) (44), and were in compliance with 
the National Institute of Neurological Disorders and Stroke–
Canadian Stroke Network Vascular Cognitive Impairment Har-
monization Standards (45). Detailed MRI protocols are report-
ed elsewhere (46,47). In brief, the structural MRI used in the 
current study include: a high-resolution 3D T1-weighted (T1), 
an interleaved proton density (PD) and T2-weighted (T2), and a 
T2 fluid-attenuated inversion recovery (FLAIR) images. 

ONDRI’s structural image processing pipeline (47) will be con-
sidered as the pre-processing step for the Corrected FS proce-

dure. Briefly, ONDRI’s neuroimaging platform used previously 
published and validated methods, where outputs were further 
subjected to comprehensive quality control measures from ON-
DRI’s neuroinformatic platform using a novel outlier detection 
algorithm for the identification of anomalous data (48,49). This 
comprehensive multi-feature segmentation pipeline was applied 
to co-registered T1, PD, T2, and FLAIR images to generate 
skull stripped and tissue segmentation masks for each individu-
al, which included manual tracing of cortico-subcortical stroke 
lesions that were identified and verified on T1 and FLAIR im-
ages by an expert research neuroradiologist. The final output of 
the pipeline produced a skull-stripped brain mask with seg-
mented voxels comprising of 4 different ‘normal tissue’ classes 
and 5 different ‘lesion tissue’ classes: normal appearing white 
matter (NAWM), normal appearing gray matter (NAGM), sul-
cal and ventricular cerebrospinal fluid (sCSF/vCSF), 
periventricular and deep white matter hyperintensities (pWMH/
dWMH), lacunes, MRI-visible perivascular spaces (PVS), and 
cortico-subcortical stroke lesions. The skull stripped and lesion
-labelled masks were introduced at different processing stages 
of the Corrected FS procedure described below.  

FreeSurfer (FS) Processing Overview  

All scans were processed using the stable version of FS (Linux 
FSv6.0). Two methods were applied to the same participant’s 
MRI: a) Unmodified FS and b) Corrected FS. After applying 
the two methods, visual inspection was performed by two expe-
rienced neuroimaging analysts (M.H. = rater1; K.W. = rater2). 
The images were either rated a “pass” or “fail” based on the 
overall cortical ribbon and tissue segmentation as described in 
the Quality Control Assessment Procedures in the following 
section. 

Unmodified FS: The unmodified procedure involved the stand-
ard reconstruction steps in the FS pipeline with the default set-
tings on all participants without any manual interventions. 
Briefly, the standard reconstruction steps included skull strip-
ping, WM segmentation, intensity normalisation, surface recon-
struction, subcortical segmentation, cortical parcellation and 
thickness  (25).  

Corrected FS: The corrected procedure involved dividing the 
reconstruction steps into the following three stages in order to 
incorporate the skull stripped brain and lesion masks from the 
ONDRI processing pipeline into FS’s pipeline.  

Stage 1 (autorecon1) - This involved replacing the “skull 
stripped mask” (brainmask.mgz) generated by FS’s standard 
skull stripping method with an improved skull stripped mask 
from the ONDRI skull stripping method. 

Stage 2 (autorecon2) - The second intervention (autorecon2) 
involved the integration of lesion masks from ONDRI into the 

Table 1. Study participant demographics and neuroimaging volumet-
rics (n=155). All data are presented as mean (SD) unless otherwise 
indicated. 
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initial version of brain tissue segmentation file 
(aseg.presurf.mgz) generated by FS’s standard segmentation of 
the brain which includes subcortical structures, WM, GM, CSF, 
and white matter hypointensities. The lesions were given an 
index value of “77” corresponding to the lesion value in the FS 
pipeline. 

Stage 3 - Lastly, the modified aseg.presurf.mgz and brain mask 
were used as inputs in the last stage of FS pipeline stage 3 
(autorecon2-noaseg -autorecon3) for automatic cortical parcel-
lation and statistics.  

Quality Control Assessment Procedures 

The accuracy of the cortical ribbon and tissue segmentation 
from the Unmodified and Corrected FS procedures was evalu-
ated using Freeview, a visualisation tool that is packaged with 
FS. Using the T1 image as the reference, the cortical ribbon 
accuracy was assessed visually and given a rating for: 1) Over-
estimation – areas of non-brain matter, such as the dura mater 
or skull, were erroneously classified as cortex (Supplemental 
Figure S1); 2) Underestimation – areas of the brain are missing 
or have been erroneously removed from the brain mask 
(Supplemental Figure S2); 3) Acceptable/Good – no signifi-
cant areas of over/underestimation; 4) Fail – significant areas of 
overestimation and/or underestimation, including the complete 
absence of a cortical ribbon (Supplemental Figure S3). Using 
the T1 GM-WM intensity differences as a reference, the quality 
of the tissue segmentation (aseg.mgz) was given a PASS/FAIL 
rating based on the accuracy of WM-GM boundary (FS white 
matter intensity ~110) (Supplemental Figure S4). Two expert 
neuroimaging analysts performed the visual ratings and 
achieved high inter-rater reliability results (cortical ribbon: k = 
0.9, 95% C.I.: 0.7, 1.00, p < 0.001; tissue segmentation: k = 
0.7, 95% C.I.: 0.5, 0.9, p < 0.001). 

Statistical Analysis  

Statistical analyses were conducted using Statistical Package 
for Social Sciences (SPSS v.24) and FS’s packaged analytic 
software when described. Paired sample t-tests were conducted 
to determine if the mean lesion volume was significantly differ-
ent between the unmodified and corrected procedures. This was 
achieved using the “White matter Hypointensities” identified 
by FS, which was adjusted for head size using estimated total 
intracranial volume (eTIV) and log transformed. 

A whole brain vertex-wise surface-based cortical thickness 
analysis was performed on both methods using the built-in gen-
eral linear model (GLM). Thickness was calculated by the soft-
ware as the distance between the GM and WM boundaries (also 
known as the pial surface boundaries) at every vertex in each 
hemisphere. Each participant’s cortex was anatomically parcel-
lated with every sulcus and gyrus labelled, and resampled to 
FS’s default average surface map (fsaverage). A 10-mm full-
width half-maximum (FWHM) Gaussian spatial smoothing 
kernel was applied to the surface to improve the signal-to-noise 
ratio. Age, stroke, and lacunar volumes were included as nui-
sance regressors. Stroke and lacunar volumes were head size 
corrected using total intracranial volume.  

MoCA total score was included as a regressor of interest to 
determine the association between cortical thickness and global 
cognitive status in participants with CVD. Associations be-
tween cortical thickness and cognition were further explored 
using MoCA sub-scores (Visuospatial / Executive, Naming, 
Memory, Attention, Language, Abstraction, Delayed Recall, 
and Orientation). Monte Carlo simulations with 5000 iterations 
were used to correct for multiple comparisons. This method 
implemented a cluster-wise threshold of 2 and cluster-wise 

probability (p(cwp)) of p < 0.05 (two-sided). Bonferroni correc-
tion was applied across the two hemispheres. 

RESULTS 

Study participant demographics and clinical characteristics are 
summarized in Table 1. Quality control (QC) results are sum-
marized in Table 2.  

For the cortical ribbon QC, compared to the Unmodified FS 
procedure, the Corrected ‘Acceptable’ ratings increased from 
18% to 76%. For tissue segmentation QC, compared to the Un-
modified FS procedure, the Corrected procedure’s ‘Acceptable’ 
ratings increased from 38% to 92%. For the cortical ribbon QC, 
the ‘Fail’ ratings were reduced from 11% (Unmodified) to 0% 
(Corrected). While for the tissue segmentation QC, the ‘Fail’ 
ratings were reduced from 62% to 8% for Unmodified and Cor-
rected procedures respectively (e.g. Figure 1). 

When comparing Unmodified and Corrected procedures, results 
from a paired sample t-test revealed a significant increase 
(~63%) in eTIV-adjusted log white matter hypointensity vol-
umes, (5824.5 ± 6378.4 mm3 to 15877.1 ± 17964.2 mm3, p < 
0.001). 

Cortical thickness analyses based on Unmodified FS revealed 
no significant associations with MoCA total score after ac-
counting for age, stroke, and lacunar volumes. However, the 
same analyses based on the Corrected FS revealed significant 
clusters in the left superior parietal and left insula regions were 
positively associated with MoCA total score (p(cwp) = 0.018; p

(cwp) = 0.040, respectively) (Table 3, Figure 2). Further anal-
yses with the Corrected data and MoCA sub-scores using the 
significant clusters showed a positive association between left 
superior parietal thickness and the Attention sub-score.  

DISCUSSION 

Regional cortical thickness measures obtained from partici-
pants’ MRI using FS is a useful imaging biomarker of cortical 
atrophy, within and between the various disease cohorts repre-
sented in ONDRI. The increase in accuracy and reduction in 
failure rates due to our correction procedures described here has 
the opportunity to advance the study of structural biomarkers in 
neurodegeneration, by minimising data loss and increasing sta-
tistical power. This correction procedure enabled the investiga-
tion of participants with significant atrophy and cerebrovascular 
lesion burden, which can present significant challenges to corti-
cal thickness estimation, cortical and subcortical volumetrics, 
and other downstream processes (e.g. connectivity analyses of 
functional and diffusion MRI). Moreover, the correction proce-
dures may improve the sensitivity of estimated features that 
may have otherwise been undetectable. 

Table 2. Quality control results for FreeSurfer Unmodified and 
Corrected procedures. 
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In the unmodified procedure, a failure rate of more than 60% 
was reported for tissue segmentation. This is in line with the 
concept that most segmentation difficulties reported in individ-
uals with CVD result from inaccurate identification of tissue 
boundaries, which is highly dependent on the homogenous in-
tensity of voxels in a particular brain region, especially in those 
with high surface area and curvature (50). Accurate and reliable 
skull stripping is important for cortical thickness estimation, 
since false positive classification of non-brain tissue (e.g. skull, 
dura and pial maters) could result in poor estimation of the GM
-WM border, which in turn can result in erroneous patterns of 
cortical thickness. Skull stripping segmentation accuracy is 
particularly relevant in ageing and neurodegenerative popula-
tions, where brain atrophy is accompanied by increased CSF 
volumes and a decreased separation between GM and WM in-
tensities (10,14,15,18,22,51).  

While small acute strokes may have minimal effects on tissue 
segmentation, large chronic cortico-subcortical stroke lesions 
introduce alterations to brain morphometry resulting in failed 
segmentation in most brain segmentation algorithms (50,52–
54). Although this issue is particularly relevant in individuals 
with CVD, cerebral small vessel disease and brain atrophy that 
are commonly observed in patients with Alzheimer’s and other 
related dementias present similar challenges when estimating 
cortical thickness. 

Incorporating more accurate brain extraction and lesion masks 
from ONDRI reduced the overall failure rate to less than 8% 
when the corrected procedure was applied. This improvement 
could be attributed to the use of multi-modal imaging sequenc-
es in the ONDRI structural neuroimaging pipeline (47). This 
method produces consistent and accurate brain extraction and 
lesion segmentation. Although imaging markers of small vessel 
disease, such as WMH, appear hyperintense (bright) on PD/T2 
and FLAIR MRI, these lesions appear hypointense or isointense 

to GM on T1, thus overlapping in intensity with normal appear-
ing GM (55). If present in confluent patches, it can result in 
significant inflation of GM voxel misclassification when using 
only T1-based segmentation approaches (56). Considering the 
significant WMH burden and atrophy in our sample, it was 
helpful that the FS pipeline allowed for these types of interven-
tions. In line with this, we found a significant increase in white 
matter hypointensities burden (~63%) after incorporating ON-
DRI’s lesion segmentation to the FS pipeline.  

Several studies have underscored the importance of optimal 
lesion segmentation in various clinical population (57–61), par-
ticularly in populations at risk of developing small vessel dis-
ease (59,62–64). A recent systematic review by Frey et al., 
(2019) provided a comprehensive overview of the importance 
of WMH segmentation in large-scale MRI studies. They pro-
posed a clear need for developing a guideline to cover the de-
scription of WMH segmentation approach, as a way of optimis-
ing the multitude of segmentation techniques available. This is 
crucial, especially in medium to large sample size studies with 
clinical populations that donate their time to research. Further-
more, the flexibility of the FS pipeline to allow for such modifi-
cation supports the individualised imaging methods used in the 
ONDRI study. This increases the study’s statistical power 

whilst including participants with challenging pathologies that 
otherwise might have failed when processed using the default 
settings, and in turn, reduces sampling bias related to the imag-
ing method requirements (27).  

Only data that underwent the FS correction demonstrated a re-
lationship with cognition, whereby greater corrected cortical 
thickness in the left superior parietal cortex and in the insula 
was associated with higher MoCA total scores. Further analysis 
with MoCA sub-scores revealed that corrected cortical thick-
ness in the left superior parietal cortex was associated in partic-
ular with higher Attention sub-scores. Several studies have re-
ported a significant association between cortical thickness and 
cognitive function in participants with SVD and other diseases 
associated with vascular risk factors (66–70). Across these 
studies the effect of cortical thickness varies, with some report-
ing relationships with executive function, processing speed, 
memory (66,71), whilst others reporting relationships with 
memory and attention (67,70). A study by Hilal et al. (2015) 
demonstrated that WMH and microbleeds were associated with 
thinning in the temporal and insular regions and associated 
multi-domain cognitive dysfunction. The insula is an important 
structure with extensive connections to cortical and subcortical 
regions, and is involved in various processes, such as empathy, 
emotion, body sensation, and other aspects of social cognition 
(73,74). Thus, insular atrophy as a result of stroke could lead to 
significant cognitive dysfunction and socioemotional deficits in 
participants with cerebral small vessel disease and other comor-
bid neurodegenerative diseases (75–77). Further, the observed 
association between superior parietal thickness and the Atten-
tion sub-score is consistent with recent work showing that 

Figure 1. Comparison of outputs generated from the unmodified (A-B) 
vs the corrected (C-D) FreeSurfer procedures. A) Skull-stripped coronal 
image from the unmodified procedure. B) Segmentation result from 
the unmodified procedure overlaid on the skull-stripped T1. C) Skull-
stripped coronal image from the corrected procedure. D) Segmentation 
result from the unmodified procedure overlaid on the skull-stripped T1. 
Segmentation: Red =  gray matter; Green/White = right/left white 
matter; Pink = lesion. Blue arrows point to areas of the brain that are 
missing or have been erroneously removed from the segmentation.  

Table 3. Cortical thickness analyses showing significant clusters with 
Montreal Cognitive Assessment  

Abbreviations: LowCWP = Lower clusterwise p-value, 90% confidence 
interval; HiCWP = Upper clusterwise p-value, 90% confidence; P(cwp) = 
clusterwise p-value; MoCA = Montreal Cognitive Assessment 
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smoking-related superior parietal thinning was associated with 
decreased global cognition, as well as decreased visuospatial 
and attentional functioning (78). This is in line with the con-
cept that better vascular health is associated with increased 
superior parietal thickness in neurodegenerative diseases (79–
81), suggesting a compensatory response to early brain patho-
logical changes (82). Future analyses using our method will 
investigate the associations between vascular risk factors and 
cortical thickness in predicting cognitive decline in neuro-
degenerative diseases with comorbid cerebral small vessel dis-
ease. 

The ability to decrease the failure rate was the key strength of 
this work. Although our correction procedures were derived 
from ONDRI’s imaging pipeline, similar correction procedures 
that can account for vascular lesions and brain atrophy could 
be applied in other studies using FS (or any number of cortical 
thickness estimation tools) to study challenging clinical popu-
lations (57,83–85). Hence, the decision to validate and apply 
this method to individuals with CVD presenting with a range 
of various combined pathologies including focal and global 
atrophy, large and small cortico-subcortical chronic stroke le-
sions, diffuse and focal WMH, lacunar infarcts, cortical mi-
croinfarcts, and enlarged PVS (55,86). This combination of 
brain pathologies brings a unique set of potential challenges for 
cortical thickness estimation. 

The findings reported here should also be considered in light of 
several limitations. The cross-sectional analysis of this project 
limits our ability to examine the robustness of our method lon-
gitudinally. As ONDRI is a longitudinal study, future work 
will implement our method at several follow-up time points, 
within and between all disease cohorts, providing a unique 
opportunity to investigate relationships between cortical thick-
ness and other neurodegenerative biomarkers for predicting 
disease progression. Another benefit to the FS correction is its 
potential to facilitate better understanding of brain-behaviour 
relationships by increasing the sensitivity and accuracy of the 
cortical estimation tool.  As demonstrated, only corrected corti-
cal estimations correlated with a measure of global cognitive 
status. Future work will examine cross-sectional and longitudi-
nal relationships between cortical thickness, vascular risk fac-
tors, neurodegeneration, and associations with comprehensive 
neuropsychological testing (87). 

CONCLUSIONS 

Given these results, our findings strongly suggest that individu-
alised accounting of brain atrophy and neurovascular lesions in 
cortical thickness estimation tools such as FS, can significantly 
improve the segmentation results, reduce failure rates to mini-
mise biased samples, and potentially increase sensitivity to 
examine brain-behaviour relationships. Most importantly, these 
correction efforts invested to reduce data loss and inaccuracies, 
acknowledge the significant time and effort our patients have 
donated to participate in the ONDRI research study.  
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SUPPLEMENTAL FIGURES 

Figure S1. Cortical ribbon Quality Control ‘Overestimation’ rating example. Left image shows an axial slice of a T1 that was skull-
stripped using the Unmodified FreeSurfer procedure. Right image shows the segmentation that results from the Unmodified 
procedure.  Red arrows point to areas of non-brain matter, such as the dura or skull, that were erroneously classified as cortex and/or 
white matter.  

Figure S2. Cortical ribbon Quality Control ‘Underestimation’ rating example. Left image shows a coronal slice of a T1 that was skull-
stripped using the Unmodified FreeSurfer procedure. Right image shows the segmentation (ribbon) that results from the Unmodified 
procedure. Red arrows point to areas of the brain that are missing or have been erroneously removed.  
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Figure S3. Cortical ribbon Quality Control ‘Fail’ rating example. Left image shows a coronal slice of the original T1 that was run through 
the Unmodified FreeSurfer procedure. Right image shows the segmentation (ribbon) that resulted from the Unmodified procedure. 
Red arrows point to areas of the brain that are missing and have been erroneously removed (temporal lobe and one entire 
hemisphere).  

Figure S4. Tissue segmentation Quality Control ‘Fail’ rating example. Left image shows a 
coronal slice of the original T1 that was run through the Unmodified FreeSurfer procedure. 
Right image shows the tissue segmentation that resulted from the Unmodified procedure 
where white matter (WM) is shown in green and gray matter (GM) is shown in red.  Blue 
arrows point to areas where: 1) GM is misclassified as WM, underestimating cortical 
thickness, 2-3) WM is misclassified as GM, overestimating cortical thickness.  
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