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Abstract	

Hi-C	data	provide	population	averaged	estimates	of	three-dimensional	chromatin	contacts	

across	cell	types	and	states	in	bulk	samples.	Effective	analysis	of	Hi-C	data	entails	controlling	

for	 the	 potential	 confounding	 factor	 of	 differential	 cell	 type	 proportions	 across	

heterogeneous	bulk	samples.	We	propose	a	novel	unsupervised	deconvolution	method	for	
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inferring	 cell	 type	 composition	 from	 bulk	 Hi-C	 data,	 the	 Two-step	 Hi-c	 UNsupervised	

DEconvolution	 appRoach	 (THUNDER).	 We	 conducted	 extensive	 simulations	 to	 test	

THUNDER	based	on	combining	two	published	single-cell	Hi-C	(scHi-C)	datasets.	THUNDER	

more	accurately	estimates	the	underlying	cell	type	proportions	compared	to	supervised	and	

unsupervised	methods	(e.g.,	MuSiC,	TOAST,	and	NMF).	We	further	demonstrate	the	practical	

utility	 of	 THUNDER	 to	 estimate	 cell	 type	 proportions	 and	 identify	 cell-type-specific	

interactions	in	Hi-C	data	from	adult	human	cortex	tissue	samples.	THUNDER	will	be	a	useful	

tool	in	adjusting	for	varying	cell	type	composition	in	population	samples,	facilitating	valid	

and	 more	 powerful	 downstream	 analysis	 such	 as	 differential	 chromatin	 organization	

studies.	 Additionally,	 THUNDER	 estimated	 contact	 profiles	 provide	 a	 useful	 exploratory	

framework	 to	 investigate	 cell-type-specificity	 of	 the	 chromatin	 interactome	 while	

experimental	data	is	still	rare.		

	

Introduction	

Statistical	deconvolution	methods	have	been	applied	extensively	to	studies	of	gene	

expression	and	DNA	methylation	to	infer	cell	type	proportions	and	estimate	cell-type-

specific	profiles(1–6).	Deconvolution	methods	infer	latent	clusters	from	observed	data	

which	can	correspond	to	either	cell	types	or	cell	states	(hereafter	we	refer	to	both	as	cell	

types).	In	epigenome-wide	association	studies	(EWAS)	where	the	individual-level	signal	is	

a	mixture	of	methylation	profiles	from	different	cell	types,	it	has	become	standard	practice	

to	control	for	inferred	cell	type	proportions	when	analyzing	heterogeneous	samples.(7)	As	

we	accumulate	chromatin	interaction	information	from	heterogeneous	samples	using	

recently	developed	technologies	such	as	Hi-C	at	an	increasing	rate,	there	will	soon	be	
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sufficient	individual	level	data	to	conduct	similar	3D-chromatin-interactome	wide	

association	studies	(3WAS)	or	chromatin	interactome	QTL	(iQTL)	studies.(8)	Similar	to	

DNA	methylation	and	gene	expression,	there	is	growing	evidence	from	single-cell	Hi-C	

(scHi-C)	data	of	important	cell-to-cell	variability	in	spatial	chromatin	interaction.(9–12)	In	

order	to	effectively	garner	insights	from	associations	between	chromatin	interactions	and	

phenotypes	of	interest	or	to	identify	genetic	determinants	underlying	variations	in	3D-	

chromatin-interactome	across	biological	samples,	future	3WAS	or	iQTL	analyses	must	

control	for	the	almost	inevitable	confounding	factor	of	differential	cell	type	proportions	

across	heterogeneous	bulk	samples.	If	not	accounted	for,	we	risk	inducing	an	increased	

false	positive	rate	by	Simpson’s	Paradox.(7,13)	However,	to	the	best	of	our	knowledge,	

there	is	no	statistical	deconvolution	method	which	is	capable	of		leveraging	both	

intrachromosomal	and	interchromosomal	contacts	for	deconvolution	across	multiple	bulk	

Hi-C	samples	simultaneously.		

There	exist	two	particular	challenges	of	performing	deconvolution	in	bulk	Hi-C	data:	a	

lack	of	cell-type-specific	Hi-C	reference	profiles	and	having	no	ubiquitous	aggregating	unit	

for	summarizing	Hi-C	data.	First,	many	deconvolution	methods	require	cell-type-specific	

reference	profiles	for	each	cell	type	potentially	present	in	a	mixture	(e.g.,	the	genes	whose	

expression	define	a	cell	type),	but	analogous	data	are	not	yet	available	for	Hi-C.	Second,	Hi-

C	data	can	be	summarized	at	several	different	structural	levels,	such	as	A/B	compartments,	

topologically	associating	domains	(TADs)(14),	frequently	interacting	regions	

(FIREs)(15,16),	chromatin	loops(17),	interchromosomal	contacts,	and/or	

intrachromosomal	contacts(18,19),	and	it	is	unclear	which	level(s)	of	measurement	are	

most	scientifically	relevant	or	effective	for	deconvolution	purposes.	In	contrast,	when	
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deconvolving	gene	expression	data	it	is	clear	that	the	aggregating	unit	of	interest	is	the	

gene.		

To	address	these	challenges,	we	propose	a	non-negative	matrix	factorization	(NMF)	

based	Two-step	Hi-c	UNsupervised	DEconvolution	appRoach	(THUNDER),	to	infer	cell	type	

proportions	from	bulk	Hi-C	data.	THUNDER	consists	of	a	feature	selection	step	and	a	

deconvolution	step,	both	of	which	rely	on	NMF.	NMF	has	been	used	in	many	computational	

biology	applications	to	cluster	genes,	discover	cancer	types	using	microarray	data,	and	

study	functional	relationships	of	genes(20–22).	In	the	first	step,	we	perform	feature	

selection	on	the	cell	type	profiles	estimated	from	an	initial	deconvolution	to	identify	

informative	bin-pairs	in	the	mixture	data	(Figure	1a,b).	In	the	second	step,	we	perform	

deconvolution	after	subsetting	the	mixture	matrix	on	informative	bin-pairs	(Figure	1c).		

To	the	best	of	our	knowledge,	THUNDER	is	the	first	unsupervised	deconvolution	

method	for	Hi-C	data	that	integrates	both	intrachromosomal	and	interchromosomal	

contact	information	to	estimate	cell	type	proportions	in	multiple	bulk	Hi-C	samples	

simultaneously.	Two	other	matrix-based	deconvolution	approaches	exist	for	Hi-C	

intrachromosomal	contact	matrices:	3CDE	infers	non-overlapping	domains	of	chromatin	

activity	in	each	cell	type	and	uses	a	linear	combination	of	binary	interaction	information	at	

these	domains	to	perform	deconvolution.(23)	Junier	et	al.	put	forth	a	method	to	infer	

overlapping	domains	of	chromatin	activity	as	well	as	their	mixture	proportions.(24)	Unlike	

THUNDER,	neither	method	integrates	information	from	interchromosomal	bin-pairs.	We	

tested	3CDE	on	our	simulated	bulk	Hi-C	mixtures,	but	found	that	it	is	almost	impossible	to	

apply	in	practice	because	it	does	not	accommodate	the	inclusion	of	interchromosomal	

contacts	and	it	requires	across-sample	cell	type	matching	to	align	proportion	estimates	
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since	it	infers	cell	type	proportions	for	each	sample	separately	(Supplementary	Figure	1).	

To	the	best	of	our	knowledge,	no	software	accompanies	the	work	by	Junier	et	al.(24)	

Carstens	et	al.	infer	chromatin	structure	ensembles	from	bulk	Hi-C	contact	information	

using	a	Bayesian	approach	but	does	not	infer	cell	type	proportions	directly.(25)		

In	this	work,	we	consider	two	other	deconvolution	methods	developed	for	gene	

expression	or	methylation	data:	MuSiC	and	TOAST.	MuSiC	is	a	reference	based	

deconvolution	method	which	estimates	cell	type	proportions	from	bulk	RNA	sequencing	

data	based	on	multi-subject	single	cell	data.(6)	TOAST	is	a	feature	selection	algorithm	for	

gene	expression	or	methylation	data	to	select	a	pre-specified	number	of	features	while	

performing	unsupervised	deconvolution	via	NMF.(3)	

	

Figure	1.	Overview	of	THUNDER	Procedure.	(a)	Overview	of	nonnegative	matrix	factorization	(NMF)	in	the	context	of	
bulk	Hi-C	data.	Three	underlying	cell	types	each	contribute	to	the	observed	contact	frequencies	in	two	bulk	Hi-C	samples.	
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The	first	step	of	the	THUNDER	algorithm	is	to	deconvolve	the	input	bulk	Hi-C	data	into	two	estimated	matrices:	the	cell	
type	profile	matrix	and	the	proportion	matrix.	(b)	In	order	to	select	informative	bin-pairs	for	deconvolution,	THUNDER	
utilizes	a	feature	selection	algorithm	specifically	tailored	to	Hi-C	data	to	analyze	the	contact	frequency	distribution	of	the	
bin-pairs	in	the	cell	type	profile	matrix.	(c)	In	the	final	step	of	THUNDER,	we	subset	the	bin-pairs	contained	in	the	input	
bulk	Hi-C	samples	to	only	informative	bin-pairs	and	perform	NMF	a	second	time.	The	proportion	matrix	is	scaled	to	be	
estimates	of	the	underlying	cell	type	proportions	in	the	bulk	Hi-C	samples.	The	cell	type	profile	matrix	estimates	cell-type-
specific	contact	distributions.		

	

Results	

THUNDER	Feature	Selection		

In	order	to	determine	the	feature	selection	method	for	THUNDER,	using	scHi-C	data	

generated	from	Ramani	et	al.	(10),	we	simulated	12	mixtures	of	Hi-C	data	at	10Mb	

resolution	consisting	of	three	cell	lines,	HAP1,	HeLa,	and	GM12878,	where	we	set	the	cell	

composition	proportions	(details	in	Methods).	We	evaluated	the	performance	of	11	

published	and	novel	NMF	feature	selection	strategies	for	intrachromosomal	only	and	

interchromosomal	only	bin-pairs	(see	Supplementary	Table	1	for	definitions).		

	 Our	simulation	results	suggest	that	the	optimal	feature	selection	method	differs	for	

deconvolving	interchromosomal	and	intrachromosomal	contacts	(Figure	2).	For	

intrachromosomal	contacts,	the	best	feature	selection	method	is	“High	CTS	(median)”	

which	prioritizes	features	with	high	cell-type-specificity	using	median-based	empirical	

thresholds	and	selects	an	average	of	353	informative	bin-pairs	out	of	an	average	of	2,590	

input	intrachromosomal	contact	features.	The	best	performing	interchromosomal	feature	

selection	method	is	“High	ACV”.		“High	ACV”	prioritizes	features	with	high	across-cell-type	

variation	(ACV)	using	mean-based	empirical	thresholds	and	selects	an	average	of	287	

informative	bin-pairs	out	of	an	average	of	42,871	input	interchromosomal	contact	features.	

We	refer	to	these	two	methods	hereforeward	as	THUNDER-intra	and	THUNDER-inter,	

respectively.	Compared	to	NMF	with	no	feature	selection,	THUNDER-intra	reduced	average	
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MAD	(mean	absolute	deviation,	smaller	indicates	better	performance)	by	42%	and	

increased	average	Pearson	correlation	by	0.4%.	Similarly,	THUNDER-inter	reduced	average	

MAD	by	69%	and	increased	average	Pearson	correlation	by	3.3%.	Feature	selection	

methods	that	require	specifying	the	number	of	informative	bin-pairs	a	priori	such	as	Fano-

100	and	Fano-1000,	which	selects	the	top	100	and	1000	features	with	highest	Fano	factor	

respectively,	exhibit	the	most	variable	performance	across	simulations,	and	perform	poorly	

relative	to	other	methods	despite	specifying	a	similar	number	of	bins.	 

 
Figure	2.	Performance	of	Feature	Selection	Strategies	for	Unsupervised	Hi-C	Deconvolution	in	HAP1,	HeLa,	and	GM12878	
Mixtures.	We	test	11	feature	selection	strategies	including	no	feature	selection	(NMF),	Fano	100,	Fano	1,000,	and	8	
feature	selection	strategies	combining	bin-pairs	with	high	cell-type-specificity	(CTS)	and	high	across-cell-type	variation	
(ACV).	Colors	are	grouped	such	that	the	“reds”	are	strategies	analyzing	the	estimated	cell-type-specific	profiles	using	the	
mean	across	bin-pairs	for	thresholding,	“blues”	are	feature	score	strategies	analyzing	the	estimated	cell-type-specific	
profiles	using	the	median	across	bin-pairs	for	thresholding,	and	“greens”	are	NMF	with	no	feature	selection	or	a	pre-
specified	number	of	features	based	on	Fano	factor.	Distributions	are	presented	across	simulation	replicates.	 
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Simulations	based	on	scHi-C	from	brain	(Lee	et	al).	

	

	
Figure	3	Performance	of	Deconvolution	Methods	on	Mixtures	with	6	Human	Brain	Cell	Types.	(a,b)	The	average	mean	
absolute	deviation	(MAD)	and	average	Pearson	correlation	comparing	the	true	underlying	cell	type	proportions	to	the	
simulated	true	proportions	across	simulations	across	5	simulation	replicates.	Lower	MAD	and	higher	Pearson	correlation	
indicates	better	performance.	Error	bars	are	equal	to	the	standard	deviation	across	simulation	replications.	(c)	Number	of	
bin-pairs	selected	by	deconvolution	methods	which	perform	feature	selection.	
	

We	tested	the	accuracy	of	THUNDER	cell	type	proportion	estimates	using	scHi-C	data	from	

Lee	et	al.(12)	to	simulate	18	Hi-C	mixtures	at	10Mb	resolution	of	6	brain	cell	types:	

microglia,	astrocytes,	oligodendrocytes,	oligodendrocyte	progenitor	cells,	endothelial	cells,	

and	neuronal	cells.	THUNDER	cell	type	proportion	estimates	were	most	accurate	when	

deconvolving	intrachromosomal	and	interchromosomal	contacts	together,	reducing	MAD	

by	9.7%	and	7.6%	and	increasing	Pearson	correlation	by	3.7%	and	1.4%	compared	to	

intrachromosomal	contacts	and	interchromosomal	contacts	respectively.		We	compared	

THUNDER’s	performance	to	NMF	with	no	feature	selection,	MuSiC,	and	TOAST	on	mixtures	

with	both	intrachromosomal	and	interchromosomal	contacts,	intrachromosomal	contacts	

only,	and	interchromosomal	contacts	only	(Figure	3).	THUNDER	outperformed	all	

alternative	reference-free	deconvolution	approaches	in	each	simulation.	When	

deconvolving	both	intrachromosomal	and	interchromosomal	contacts	together,	THUNDER	

decreased	average	MAD	by	23%	and	36%	and	increased	Pearson	correlation	by	6%	and	
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31%	relative	to	NMF	and	TOAST,	respectively.	MuSiC,	a	reference-based	deconvolution	

approach,	outperformed	THUNDER	in	all	simulation	scenarios	when	all	cell	types	in	the	

mixtures	are	present	in	the	reference	panel.	However,	due	to	the	current	paucity	of	cell-

type	specific	Hi-C	reference	panels,	we	tested	the	performance	of	MuSiC	with	one	and	two	

cell	types	randomly	removed	from	the	reference	panel	(Methods).	In	all	three	simulation	

settings,	MuSiC’s	performance	decreased	with	the	number	of	cell	types	randomly	removed	

from	the	reference	(MuSiC,	MuSiC	-	One	Missing,	and	Music	-	Two	Missing	in	Figure	3a,b).	

The	performance	of	MuSiC	one-missing	was	comparable	to	THUNDER	in	all	simulation	

settings,	and	MuSiC	-	Two	Missing	was	either	worst	or	close	to	the	worst	performing	

methods.	From	our	simulations,	THUNDER	performed	best	among	reference	free	methods,	

and	was	more	robust	compared	to	MuSiC	which	performed	poorly	when	cell	types	are	

missing	from	the	reference	panel.	We	anticipate	reference	based	methods	such	as	MuSiC	

will	become	more	advantageous	as	we	accumulate	resources	to	build	a	comprehensive	

reference	panel.	Currently,	with	limited	resources	to	construct	a	reference	dataset,	

reference	free	methods	are	more	valuable.		

	

Simulations	based	on	scHi-C	from	brain	(Giusti-Rodriguez	et	al.)	

We	applied	THUNDER	to	bulk	Hi-C	data	generated	on	cortex	tissue	from	three	postmortem	

adult	samples	(Methods).	In	downstream	analysis,	we	proceeded	with	the	deconvolution	

results	when	k=6	due	to	the	greatest	consistency	across	samples	(see	Supplemental	Figure	

2).		

In	order	to	assign	plausible	cell	type	labels	to	the	6	THUNDER	inferred	clusters,	we	

compared	the	cluster-specific	bins	to	cell-type	specific	enhancers	and	genes	from	four	cell	
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types	commonly	found	in	cortex	tissue.	5	out	of	6	THUNDER	features	(all	except	THUNDER	

cluster	4)	demonstrated	enrichment	for	neuronal	enhancers	(p	<	0.05/48	=	1.04e-3),	so	we	

assigned	each	cluster	to	a	cortical	cell	type	based	on	other	significant	enrichments	if	

possible.	THUNDER	cluster	1	showed	evidence	of	enrichment	for	neuronal	specifically	

expressed	genes	(p		=	3.2e-3)	and	was	thus	assigned	as	neurons.	THUNDER	cluster	6	

demonstrated	enrichment	for	neuronal	enhancers	(p	=	3.79e-9)	and	a	trend	(although	not	

statistically	significant)	for	enrichment	of	neuron	specific	genes	(p	=	0.104).	We	assigned	

THUNDER	cluster	6	to	neurons.	THUNDER	cluster	4	demonstrated	enrichment	with	

neuronal	enhancers	(p	=	1.89e-3),	and	was	thus	assigned	to	neurons	as	well.	Bins	distinct	

to	THUNDER	clusters	2	and	3	demonstrated	consistent	evidence	of	enrichment	of	

oligodendrocytes	(ODC)	features,	in	terms	of	enhancers	(p	=	3.3e-4	and	p	=	7.5e-9)	and	

ODC-specifically	expressed	genes	(p	=	7.5e-3	and	p	=	4.78e-3).	Therefore,	both	were	

assigned	as	ODC	cells.	THUNDER	cluster	5	was	not	assigned	to	a	cell	type	due	to	a	lack	of	

specific	enrichments.		

With	these	assigned	cell	type	labels	to	the	clusters,	THUNDER	estimated	62.7-65.2%	

neurons,	2.3-34.5%	ODCs,	and	0.3-35%	unassigned	for	the	three	samples,	largely	matching	

the	expected	ratio	of	neuronal	to	non-neuronal	cells	in	cortex	tissue.	Additionally,	

THUNDER	informative	bin-pairs	identified	biologically	relevant	cell-type	specific	

interactions.	For	example,	the	bin-pair	defined	by	genomic	regions	chr5:130Mb-131Mb	and	

chr5:131Mb-132Mb	was	an	informative	bin	pair	for	THUNDER	cluster	6,	which	was	

assigned	to	neurons	via	enrichment	analysis.	This	bin-pair	contained	14	high-confidence	

regulatory	chromatin	interactions	(HCRCI)	identified	in	the	three	adult	cortical	samples	in	

a	previous	study	with	genomic	coordinates	within	chr5:130600000-130970000	and	
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chr5:131100000-131730000,	respectively.(26)	Further,	two	neuron-specific	genes	

identified	in	our	analysis	of	data	from	Zhang	et	al.	were	contained	in	chr5:131,100,000-

131,730,000,	ACSL6	and	P4HA2.	Together,	these	results	suggest	that	this	THUNDER	

informative	bin	pair	may	correspond	to	a	group	of	neuron-specific	chromatin	interactions.	

Another	such	example	is	the	THUNDER	informative	bin-pair	defined	by	the	genomic	

regions	chr12:121Mb-122Mb	and	chr12:122Mb-123Mb	for	THUNDER	cluster	3,	which	

enrichment	analysis	suggested	as	ODCs.	The	two	regions	defining	this	bin	pair	contained	64	

HCRCIs,	and	two	ODC	specifically	expressed	genes,	P2RX7	and	ANAPC5.	Our	results	suggest	

that	THUNDER	estimated	cell-type-specific	profiles	(see	Supplemental	Table	1)	can	identify	

biologically	meaningful	cell-type-specific	interactions	from	bulk	Hi-C	data.

	

Figure	4	THUNDER	Estimated	Cell	Type	Proportions	in	3	Samples	of	Human	Cortex	Tissue.	We	use	THUNDER	to	estimate	
cell	type	proportions	for	3	Hi-C	samples	from	cortex	tissue	and	perform	enrichment	analyses	to	assign	brain	cell	types	to	
THUNDER	clusters.	Our	results	match	the	expected	ratio	of	neuronal	to	non-neuronal	cells	in	cortex	tissue.		
	
	

Computations	on	10Kb	Hi-C	data.	

THUNDER	scales	linearly	with	both	the	number	of	samples	under	inference	and	the	
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number	of	input	features	(Supplementary	Tables	1-3).	We	assessed	THUNDER’s	computing	

performance	on	Hi-C	data	of	lymphoblastoid	cell	lines	(LCLs)	derived	from	five	YRI	(Yoruba	

in	Ibadan,	Nigeria)	individuals.7	Specifically,	we	analyzed	intrachromosomal	contacts	at	

10Kb	resolution,	with	38,343,298	unique	intrachromosomal	bin-pairs	ranging	from	

380,000	to	3.5	million	bin-pairs	per	chromosome.	To	obtain	cell	type	proportion	estimates	

genome-wide	using	THUNDER,	we	first	perform	feature	selection	by	chromosome,	then	

concatenate	the	selected	features	across	chromosomes	as	input	for	the	final	deconvolution	

estimate.	THUNDER’s	average	computing	time	is	3.4	hours	(range	0.6-7.2	hours)	with	an	

average	of	57GB	memory	(range	18GB	-	103GB)	per	chromosome	using	a	single	core	on	a	

2.50	GHz	Intel	processor	with	256GB	of	RAM.	The	final	genome-wide	estimation	step	to	

obtain	cell	type	proportions,	with	693,771	(~2%)		bin-pairs	selected	as	informative,	took	

2.5	hours	and	18GB	of	memory	(Supplementary	Table	2).	Similar	summaries	are	presented	

for	analyzing	3	and	10	YRI	samples	respectively	(Supplementary	Tables	1	and	3).	One	

advantage	of	THUNDER’s	feature	selection	method	when	analyzing	genome-wide	Hi-C	data	

is	the	ease	with	which	it	can	be	parallelized	by	subsetting	the	original	input	matrix	in	

smaller	regions	than	by	chromosome,	then	concatenating	Hi-C	data	for	the	final	cell	type	

proportion	estimation	step.	This	run	time	and	memory	usage	serves	as	an	upper	limit	on	

the	computational	costs	of	running	THUNDER,	as	10Kb	is	one	of	the	finest	resolutions	of	

Hi-C	data	currently	analyzed	in	practice.		

	

	

Discussion	

	 THUNDER	is	the	first	unsupervised	deconvolution	method	for	Hi-C	data	that	
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integrates	both	intrachromosomal	and	interchromosomal	contact	information	to	estimate	

cell	type	proportions	in	multiple	bulk	Hi-C	samples.	Across	all	simulations,	THUNDER’s	

accuracy	in	estimating	cell	type	proportions	exceeded	all	reference-free	alternative	

approaches	tested.	Importantly,	THUNDER’s	feature	selection	strategy	for	identifying	

informative	bin-pairs	before	deconvolution	improves	performance	relative	to	NMF	with	no	

feature	selection.	We	found	THUNDER	to	be	a	robust	alternative	to	reference-dependent	

methods	which	may	not	estimate	cell	type	proportions	accurately	when	cells	are	missing	

from	the	reference	panel,	a	realistic	scenario	in	practice	with	Hi-C	data	deconvolution.	

Further,	we	found	that	even	in	non-cancerous	cell	lines,	the	inclusion	of	sparse	

interchromosomal	contact	information	(in	addition	to	intrachromosomal	contacts)	

improves	deconvolution	performance.	This,	however,	comes	at	the	cost	of	increased	

computational	cost.	THUNDER	also	provides	an	approach	to	infer	cell-type-specific	contact	

frequency	from	bulk	Hi-C	data.		

We	demonstrated	that	THUNDER	successfully	integrates	interchromosomal	

contacts	to	improve	deconvolution	estimates	for	Hi-C	data.	In	most	cell	types,	we	have	

more	reliable	Hi-C	data	at	a	much	larger	number	of	intrachromosomal	bin-pairs	compared	

to	interchromosomal	bin-pairs.	For	this	reason,	previous	methods	to	deconvolve	Hi-C	data	

restricted	their	estimation	to	these	intrachromosomal	contacts.	However,	even	in	

simulations	with	no	strong	interchromosomal	signatures	(for	example,	in	the	Lee	et	al	

human	brain	data),	THUNDER’s	performance	improves	when	integrating	

interchromosomal	and	intrachromosomal	data	for	deconvolution	relative	to	only	using	

intrachromosomal	contacts.	Our	results	suggest	some	value	in	including	interchromosomal	

contacts	bulk	Hi-C	deconvolution,	though	at	the	tradeoff	of	computational	efficiency.	Since	
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we	analyze	Hi-C	data	by	grouping	contacts	into	bin-pairs,	the	feature	space	increases	

rapidly	with	increasing	bins.	As	demonstrated	in	our	computation	test,	THUNDER’s	

computation	costs	increase	linearly	as	the	number	of	features	increases.	Despite	this	

tradeoff,	our	results	suggest	that	interchromosomal	bin-pairs	contain	useful	information	

that	warrant	consideration		before	excluding	these	bin-pairs	in	Hi-C	deconvolution.	

Additionally,	we	demonstrate	that	THUNDER	estimated	cell-type-specific	profiles	

are	enriched	for	relevant	cell-type-specific	enhancers	and	specifically	expressed	genes	

through	our	analysis	of	3	adult	human	cortex	samples.	We	demonstrate	how	existing	cell-

type	specific	annotations	can	be	used	to	label	THUNDER	inferred	clusters,	and	thus	provide	

cell	type	proportion	estimates	in	real	Hi-C	data.	Thus,	the	estimated	cell	type	profile	matrix	

serves	a	dual	purpose:	identifying	informative	bin-pairs	from	the	large	input	feature	space	

(dimension	reduction)	and	accurately	estimating	relative	cell-type-specific	contact	

frequency	at	informative	bin-pairs.		

An	additional	application	of	these	cell-type-specific	contact	profiles	could	be	in	fine	

mapping	of	GWAS	variants	in	non-coding	regions	of	the	genome.	Genome-wide	association	

studies	(GWAS)	have	identified	over	200,000	unique	associations	between	single-

nucleotide	polymorphisms	(SNPs)	and	common	diseases	or	traits	of	interest.(27)	However,	

the	majority	of	these	SNPs	reside	in	non-coding	regions	where	little	is	understood	about	

their	underlying	functional	mechanisms,	which	has	limited	the	adoption	of	variant-trait	

associations	into	revealing	molecular	mechanisms	and	further	into	transforming	clinical	

practice.	Functional	annotation	of	GWAS	results	are	often	most	relevant	in	a	cell-type-

specific	fashion	due	to	important	variability	across	cell	types(28).	By	further	understanding	

the	cell-type-specific	interactome	via	THUNDER’s	estimated	profiles,	we	anticipate	more	
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informative	linking	putatively	causal	variants	identified	by	GWAS	to	the	target	genes	on	

which	they	act.		

	 While	we	have	presented	results	for	Hi-C	data	here,	the	THUNDER	algorithm	could	

easily	be	modified	to	other	variations	of	Hi-C	data	such	as	HiChIP/PLAC-seq	data	(HP	data),	

which	couple	standard	Hi-C	with	chromatin	immunoprecipitation	to	profile	chromatin	

interactions	anchored	at	genomic	regions	bound	by	specific	proteins	or	histone	

modifications,	with	reduced	cost	and	enhanced	resolution.(29,30)	Used	in	concert	with	

methods	to	identify	long-range	chromatin	interactions	from	HP	data(31),	our	method	is	

anticipated	to	efficiently	leverage	interchromosomal	contacts	jointly	with	high	quality	

intrachromosomal	contacts	to	estimate	underlying	cell	type	proportions.	The	robustness	of	

our	feature	selection	strategy	and	subsequent	deconvolution	performance	warrant	future	

interrogation	in	the	setting	of	HP	data.		

There	are	three	primary	limitations	of	our	study.	First,	due	to	the	number	of	cells	

present	in	current	scHi-C	datasets	and	the	library	size,	our	simulation	analysis	was	limited	

to	a	coarse	resolution	of	10Mb	bins	when	generating	our	synthetic	bulk	Hi-C	data.	

However,	we	find	that	THUNDER	still	performs	exceedingly	well	in	estimating	true	cell	

type	proportions	even	at	coarse	resolution.	Secondly,	the	number	of	cell	types	and	the	

overall	coverage	of	the	genome	with	our	synthetic	bulk	Hi-C	data	are	both	much	lower	than	

one	would	expect	in	a	realistic	sample	of	bulk	Hi-C	data.	As	more	scHi-C	data	becomes	

available,	we	hope	to	continue	to	test	THUNDER	in	different	real-data	based	scenarios	

which	may	be	more	realistic	in	terms	of	Hi-C	data’s	read-depth.		

Conclusion	

	 To	summarize,	we	present	THUNDER,	an	unsupervised	deconvolution	approach	
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tailored	to	the	unique	challenges	of	deconvolving	Hi-C	data.	THUNDER	accurately	estimates	

cell	type	proportions	in	bulk	Hi-C	data.	THUNDER’s	biologically	motivated	feature	selection	

approach	performs	well	in	all	of	our	real	data	or	real-data	based	simulations,	including	

human	cell	lines,	human	cortex	tissue,	and	human	brain	cells.	We	have	demonstrated	the	

computational	efficiency	of	the	method	through	our	analysis	of	10Kb	resolution	Hi-C	data.	

Finally,	the	estimated	cell-type-specific	chromatin	interactome	profiles	are	valuable	for	

identifying	bin-pairs	which	interact	differentially	across	cell	types.		

Accurately	estimating	underlying	cell	type	proportions	via	THUNDER	should	be	the	

first	step	in	any	individual-level	differential	analysis	of	bulk	Hi-C	data	to	control	for	the	

almost	inevitable	confounding	factor	of	underlying	cell	type	proportions.	Additionally,	

THUNDER	provides	a	unique	tool	to	identify	differentially	interacting	bin-pairs	at	the	cell-

type-specific	level	which	can	be	associated	with	disease	or	phenotypes	of	interest.	An	R	

package	for	running	THUNDER	can	be	downloaded	from	

https://github.com/brycerowland/thundeR.git.	We	anticipate	THUNDER	to	become	a	

convenient	and	essential	tool	in	future	multi-sample	Hi-C	data	analysis.		

	

Methods	

THUNDER.	In	order	to	estimate	the	underlying	cell	type	proportions	found	in	bulk	Hi-C	

datasets,	we	propose	a	Two	Step	Hi-C	UNsupervised	DEconvolution	appRoach	(THUNDER).	

THUNDER	consists	of	a	feature	selection	step	and	a	deconvolution	step,	both	of	which	rely	

on	non-negative	matrix	factorization.	For	Hi-C	data,	𝑉denotes	the	p	x	n	mixture	matrix	of	

bulk	Hi-C	samples	with	𝑝	bin-pairs	and	𝑛	columns	of	mixture	samples.	We	let	𝑘 > 0	be	an	

integer	specified	for	the	number	of	distinct	cell	types	in	the	mixture	sample	and	is	chosen	a	
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priori.	NMF	seeks	to	find	an	approximation	𝑉 ≈ 𝑊𝐻,	where	𝑊	and	𝐻	are	𝑝 × 𝑘	and	𝑘 × 𝑛	

non-negative	matrices.	We	refer	to	𝑊	and	𝐻	as	the	cell	type	profile	and	proportion	

matrices,	respectively.	The	NMF	problem	can	be	solved	by	finding	a	local	minimum	for	the	

Euclidean	norm	between	V		and	WH,	||	𝑉 − 𝑊𝐻 ∥/,	under	the	constraint	that	W	and	H	are	

non-negative.	We	use	the	NMF	R	package(32)	with	the	updates	provided	by	Lee	and	

Seung(33)	with	random	initialization	of	the	𝑊	and	𝐻	matrices.			

	In	step	one	of	THUNDER,	we	perform	an	initial	NMF	deconvolution	estimate	on	the	

p	x	n	matrix	V	to	obtain	the	deconvolution	estimate	𝑉 ≈ 𝑊0𝐻0	where	𝑊0	is	a	p	x	k	matrix	

and	𝐻0	is	a	k	x	n	matrix.	We	then	perform	feature	selection	using	the	decomposition	to	

identify	informative	bin-pairs	across	cell	types.	THUNDER	performs	feature	selection	on	

intrachromosomal	and	interchromosomal	contacts	separately.	Let	𝑊0(𝑖, 𝑗)	denote	the	

element	in	the	𝑖67	row	and	𝑗67 	column	of	the	cell-type-specific	profile	matrix	𝑊0.	Let	𝑆9:6;< 	

and	𝑆9:6=; 	denote	the	set	of	intrachromosomal	and	interchromosomal	bin-pairs	

respectively.		

Standard	deviation	across	cell	types	for	bin-pair	𝑖	is	defined	as,		

𝑆𝐷9 = 	
1

𝑘 − 1A
B

CD0

E𝑊0(𝑖, 𝑗) −	
1
𝑘𝑊0(𝑖,⋅)G

/

	

	
Feature	score	across	cell	types	for	bin-pair	i	is	defined	as	follows.	

	

𝐹𝑆9	 = 	1	 + 	1/𝑙𝑜𝑔2(𝑘)	A 𝑝(𝑖, 𝑗)	𝑙𝑜𝑔/(𝑝(𝑖, 𝑗))
B

C	D	1
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where 𝑝(𝑖, 𝛺)is	the	probability	that	the	i-th	pairwise	bin	contributes	to	cell	type	𝛺,	i.e.	

𝑝(𝑖, 𝛺) 	= 	 O1(9,P)
∑ OR(9,C)S
TU1

.	Feature	scores	range	from	[0,1]	with	higher	scores	representing	bin-

pairs	with	higher	cell-type-specificity.	We	further	define,	

𝜇̂XY,9:6=; = 	
1

|𝑆9:6=;|
A

{9:	9∈X]^_`a}

𝑆𝐷9	

	

𝜎dXY,9:6=; = 	
1

|𝑆9:6=;| − 1
A

{9:	9∈X]^_`a}

e𝑆𝐷9 −	𝜇̂fg,9:6=;h
/
			

	

𝑚jkX,9:6;< = 𝑚𝑒𝑑𝑖𝑎𝑛{9:	9∈X]^ao}(𝐹𝑆9)		
	

𝑠̂kX,9:6;< 	= 	𝑚𝑒𝑑𝑖𝑎𝑛{9:	9∈X]^ao}(|𝑚jkX,9:6;<	 − 𝐹𝑆9|)		
	

Intrachromosomal	bin-pair	𝑖	is	defined	to	be	an	informative	bin-pair	if	𝐹𝑆9 	> 𝑚jkX,9:6;< 	+

	3𝑠̂kX,9:6;<	,	and	interchromosomal	bin	pair	j	is	defined	to	be	an	informative	bin	pair	if	

𝑆𝐷C 	> 𝜇̂XY,9:6=; 	+ 	3𝜎dXY,9:6=; 	.		

After	identifying	𝑝∗	informative	bin-pairs,	we	subset	𝑉	on	all	informative	bin-pairs	

to	form	the	reduced	𝑝∗𝑥	𝑛	mixture	matrix	𝑉∗.	We	then	perform	NMF	on	𝑉∗	to	arrive	at	our	

final	estimates,		𝑊∗		(𝑜𝑓	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛	𝑝∗	𝑥	𝑘)	and	𝐻∗	(𝑜𝑓	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛	𝑘	𝑥	𝑛).	Finally,	we	adjust	

the	columns	of	𝐻∗	to	sum	to	one	to	represent	cell	type	proportions.	The	scaled	elements	of	

𝐻∗are	cell	type	proportion	estimates	in	the	p	mixture	samples.	The	columns	of	𝑊∗	are	

parsimonious	cell-type-specific	contact	profiles.	These	parsimonious	contact	profiles	

estimate	Hi-C	contact	frequencies	at	the	bin-pairs	which	most	differentiate	the	inferred	cell	

types	in	the	Hi-C	samples.		
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MuSiC.	MuSiC	is	a	reference	based	deconvolution	method	which	estimates	cell	type	

proportions	from	bulk	RNA	sequencing	data	based	on	multi-subject	single	cell	RNA	

sequencing	data.	MuSiC	leverages	features	which	demonstrate	cross-cell	and	cross-sample	

consistency	to	apply	cell-type-specific	feature	information	in	estimating	cell	type	

proportions.	MuSiC	additionally	applies	a	tree-based	procedure	to	address	collinearity	in	

closely	related	cell	types	within	a	bulk	tissue.	To	run	MuSiC,	we	used	the	MuSiC	R	package	

(version	0.1.1)	with	default	parameters.	We	constructed	a	scHi-C	reference	dataset	using	

cells	from	Lee	et	al.	which	match	cells	considered	in	the	simulated	mixtures.	Using	

multinomial	sampling,	we	selected	n	cells	from	each	cell	type	in	the	mixture	where	n	is	

75%	of	the	minimum	number	of	cells	available	in	a	given	cell	type	within	the	Lee	el	al.	

dataset.		

	

	

TOAST.	TOAST	is	a	recently	proposed	unsupervised	deconvolution	and	feature	selection	

algorithm	which	iteratively	searches	for	cell	type-specific	features	and	performs	

composition	estimation.(3)	We	use	the	TOAST	Bioconductor	package	version	1.0.0	using	

the	default	1,000	features	for	deconvolution.	Additionally,	we	use	NMF	with	KL	divergence	

function	as	the	deconvolution	engine	of	TOAST.		

	

3CDE.	3CDE	is	a	matrix-based	deconvolution	approach	for	bulk	Hi-C		data	which	infers	

non-overlapping	domains	of	chromatin	activity	in	each	cell	type	from	data	and	uses	a	linear	

combination	of	binary	interaction	information	at	these	domains	to	deconvolve	the	contact	

frequency	matrix.(23)	We	downloaded	software	from	their	Github	page	
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(https://github.com/emresefer/3cde),	and	ran	3cdefrac.py	with	default	settings.	We	found	

that	the	results	were	not	usable	when	deconvolving	multiple	samples	with	the	same	

underlying	cell	types	without	additional	feature	matching	algorithms	(see	Supplementary	

Figure	1).		

	

Simulating	Bulk	Hi-C	Data.		

Ramani	et	al.	Dataset.	Cellular	indices	were	downloaded	from	GSE84920	which	included	6	

libraries:	ML1,	ML2,	ML3,	ML4,	PL1	and	PL2.(10)	For	our	simulations,	we	use	data	from	all	

libraries	except	ML4.	These	libraries	are	composed	of	scHi-C	data	from	five	distinct	human	

and	mouse	cell	lines.	Within	each	cell,	we	follow	the	same	preprocessing	procedure	as	

outlined	in	Ramani	et	al.	Specifically,	cellular	indices	with	fewer	than	1000	unique	reads,	a	

cis:trans	ratio	less	than	1,	and	cells	with	less	than	95%	of	reads	aligning	uniquely	to	either	

the	mouse	or	human	genomes	are	filtered	out	before	analysis.	Additionally,	we	remove	

reads	whose	genomic	distance	was	<15Kb	due	to	self-ligation,	and	only	considered	unique	

reads.	For	the	four	libraries	containing	HAP1	and	HeLa	cells	(ML1,	ML2,	PL1	and	PL2),	

cellular	indices	were	discarded	where	the	proportion	of	sites	where	the	non-reference	

allele	was	found	was	between	57%	and	99%.		

	 To	account	for	varying	levels	of	single-cell	sequencing	depth	across	libraries,	we	

consider	only	cells	with	filtered	reads	greater	than	the	2067	quantile	and	less	than	the	9067	

quantile	of	reads	and	across	all	libraries	and	cell	types	considered	in	the	simulated	mixture	

sample.	We	then	downsample	each	cell	via	multinomial	sampling	to	the	number	of	contacts	

in	the	cell	with	the	fewest	number	of	contacts	across	all	cell	types	considered	in	the	sample.	

We	construct	contact	matrices	on	the	filtered	and	downsampled	scHi-C	data	at	three	levels	
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of	data	representation	at	10Mb	bin-pair	resolution:	interchromosomal	contacts	only,	

intrachromosomal	contacts	only,	and	both	interchromosomal	contacts	and	

intrachromosomal	contacts	together.	The	total	number	of	cells	in	each	mixture	sample	is	

equal	to	the	smallest	number	of	cells	present	in	a	cell	line	after	the	filtering	step	across	cells	

in	the	mixture	sample.		

To	test	proposed	feature	selection	methods	for	THUNDER,	we	generate	three	cell	

type	mixtures	of	GM12878,	HAP1,	and	HeLa	cells.	We	generate	5	replications	of	12	bulk	

samples	(3	pure	samples	and	9	mixture	samples)	which	are	mixtures	of	the	three	cell	lines	

at	the	proportions	given	in	Supplementary	Table	4.		These	proportions	are	a	subset	of	

those	used	by	Shen-Orr	and	Tibsherani	in	their	simulated	mixture	data.(1)	

	 	

Lee	et	al.	Dataset.	4,238	scHi-C	profiles	from	the	prefrontal	cortex	region	of	two	

postmortem	adult	human	brains	were	downloaded	from	GSE130711.	Non-neuronal	cell	

types	were	previously	identified	via	clustering	based	on	CG	methylation	signature,	followed	

by	fine	clustering	of	neuronal	subtypes	using	non-CG	methylation.	For	each	cell,	we	

removed	reads	with	genomic	distance	<15kb	and	only	considered	unique	reads.		

	 We	generate	5	replications	of	18	mixtures	of	scHi-C	data	at	10Mb	resolution	

consisting	of	6	cell	groups:	oligodendrocyte	(ODC),	oligodendrocyte	progenitor	cell	(OPC),	

astrocyte	(Astro),	microglia	(MG),	endothelial	(Endo),	and	the	8	neuronal	subtypes	as	one	

group	(Neuron).	Mixtures	were	generated	at	the	same	three	resolutions	of	Hi-C	data	as	the	

mixtures	from	Ramani	et	al	(Supplemental	Table	5).	

	 In	order	to	assess	the	robustness	of	the	reference-based	deconvolution	method	

compared	to	reference-free	deconvolution	approaches,	MuSiC,	we	estimated	cell	type	
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proportions	under	three	scenarios.(6)	First,	we	estimated	cell	type	proportions	where	all	

cell	types	in	the	mixture	were	present	in	the	reference	panel.	Second,	we	randomly	

removed	one	or	two	cells,	respectively,	from	the	reference	panel	and	estimated	the	cell	

type	proportions	of	the	remaining	cells.		

	

Window	Size.	In	large	part,	the	10Mb	window	choice	was	limited	by	the	library	size	of	

current	scHi-C	datasets	and	sparsity	of	contacts	from	which	to	generate	synthetic	bulk	Hi-C	

datasets	such	that	the	true	cell	type	proportions	are	known.	Additionally,	we	report	from	

our	computation	test	on	10Kb	resolution	Hi-C	data	that	THUNDER	scales	up	to	the	much	

larger	feature	space	of	finer	resolution	Hi-C	data.	As	single-cell	technologies	improve	and	

with	more	data	accumulating,	we	will	be	able	to	test	Hi-C	deconvolution	methods	at	finer	

data	resolutions	where	truth	is	known.	

	

Feature	Selection	

The	eleven	feature	selection	methods	either	performed	feature	selection	on	the	bulk	Hi-C	

contact	frequencies	or	on	the	derived	cell-type	specific	profiles	after	an	initial	NMF	fit.	

Strategies	in	the	former	group	identify	bin-pairs	with	high	Fano	Factor	estimates	across	all	

samples.	Strategies	in	the	latter	group	identify	informative	bin-pairs	with	high	cell-type-

specificity	and/or	high	variation	across	inferred	cell	types.	Cell	type	specificity	is	measured	

by	feature	score	within	a	bin-pair	and	across	estimated	cell	types.	Across-cell-type	

variation	is	measured	by	standard	deviation	within	a	bin-pair	and	across	estimated	cell	

types.	For	both	metrics,	we	use	empirical	thresholds	based	on	the	distribution	of	these	

estimates	across	all	bin-pairs	for	feature	selection.	
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Real	Data	Analysis.	

Sullivan	Lab	eHi-C	data.	Anterior	temporal	cortex	was	dissected	from	postmortem	samples	

from	three	adults	of	European	ancestry	with	no	known	psychiatric	or	neurological	

disorder.	Protocol	for	generating	Hi-C	data	on	these	samples	has	been	described	

previously(26).	We	applied	THUNDER	to	the	three	adult	samples	at	1Mb	resolution	to	

match	the	resolution	of	our	real-data	based	simulations.	We	ran	THUNDER	on	

intrachromosomal	contacts	only,	and	performed	feature	selection	on	each	chromosome	

separately.	To	obtain	the	final	estimated	cell	type	proportions,	we	concatenated	selected	

features	across	all	chromosomes	before	running	step	2	of	the	THUNDER	algorithm.	We	

assumed	a	range	of	possible	values	for	the	number	of	cells	in	the	mixture	(k	=	3,...,7),	and	

ran	THUNDER	for	100	iterations	for	both	feature	selection	and	cell	type	proportion	

estimation.		

	 After	running	THUNDER,	we	identified	bin-pairs	that	demonstrated	specificity	to	

each	inferred	cell-type-profile.	Informative	bin-pairs	were	selected	as	specific	to	each	

inferred	cell-type-profile	if	the	row-normalized	element	of	the	basis	matrix	was	greater	

than	or	equal	to	0.3.	This	threshold	was	chosen	to	select	a	sufficient	number	of	bin-pairs	for	

each	feature.	We	then	compared	the	unique	bins	in	these	bin-pairs	with	cell-type	specific	

epigenomic	annotations	(described	below).	We	assigned	cell	types	to	the	THUNDER	

inferred	cluster-specific	contact	profiles	based	on	the	enrichment	of	epigenetic	features	

within	the	THUNDER	bins	based	on	the	results	of	a	chi-squared	test.		Finally,	we	compared	

the	THUNDER	estimated	cell-type	proportions	for	each	labelled	cluster	with	the	

distribution	of	cell	types	within	cortex	tissue.		
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Enhancer	Annotations.	We	obtained	cell-type-specific	enhancer	annotations	for	neurons,	

microglia,	oligodendrocytes,	and	astrocytes	generated	from	Nott	et	al.	They	performed	

ATAC-seq	as	well	as	H3K27ac	and	H3K4me3	chromatin	immunoprecipitation	sequencing	

on	cell-type-specific	nuclei.	We	did	not	consider	cell-type-specific	enrichments	for	

promoters	due	to	previous	evidence	supporting	that	promoters	are	mostly	conserved	

across	cell	types.(34)	

	

Cell	Type	Specifically	Expressed	Genes.	We	used	cell-type-specific	RNA-seq	data	in	neurons,	

microglia,	oligodendrocytes,	and	astrocytes	generated	by	Zhang	et	al.	to	identify	cell	type	

specific	genes.(35)	We	defined	a	cell	type	specific	gene	as	a	gene	where	the	difference	

between	the	cell	type	specific	expression	and	the	mean	expression	level	of	all	other	genes	

was	greater	than	one.	To	examine	overlap	with	Hi-C	bins,	we	check	the	region	within	2kb	of	

the	gene	transcription	start	site.		

	

High-confidence	regulatory	chromatin	interactions.	High	confidence	regulatory	chromatin	

interactions	(HCRCIs)	are	genomic	regions	physically	proximal	in	the	nuclear	3D	space.	

HCRCIs	were	identified	for	the	three	adult	cortex	tissue	samples	as	described	above	in	a	

previous	study.(26)	HCRCIs	are	interacts	that	demonstrated	significant	evidence	of	

increased	interaction	frequency	(p	<	2.31	10-11)	and	overlapped	with	open	chromatin,	

active	histone	marks,	or	transcription	start	sites	of	brain-expressed	genes.	Data	were	

generated	with	two	10	Kb	anchors	that	are	≥20	Kb	and	≤2	Mb	apart.	
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Computation	Test	with	10Kb	Hi-C	data.		

In	order	to	assess	the	computational	costs	of	THUNDER	on	genome-wide	Hi-C	data,	we	

apply	THUNDER	to	intrachromosomal	Hi-C	data	at	10Kb	resolution	in	YRI	samples.(8)	We	

randomly	select	5	samples	to	be	included	in	the	analyses.	First,	we	perform	feature	

selection	for	each	chromosome	through	simple	parallelization.	Then,	we	concatenate	the	

selected	features	across	all	chromosomes	for	the	final	deconvolution	estimate.	We	use	

computing	time	and	memory	usage	to	assess	the	computational	efficiency	for	both	feature	

selection	and	estimation	of	cell	type	proportions	across	the	three	datasets.		
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