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1  Abstract
2 The human brain remains active in the absence of explicit tasks and forms networks of
3  correlated activity. Resting-state functional magnetic resonance imaging (rsfMRI)
4  measures brain activity at rest, which has been linked with both cognitive and clinical
5 outcomes. The genetic variants influencing human brain function are largely unknown.
6 Here we utilized rsfMRI from 44,190 individuals of multiple ancestries (37,339 in the UK
7  Biobank) to discover and validate the common genetic variants influencing intrinsic
8  brain activity. We identified hundreds of novel genetic loci associated with intrinsic
9 functional signatures (P < 2.8 x 101%), including associations to the central executive,
10 default mode, and salience networks involved in the triple network model of
11  psychopathology. A number of intrinsic brain activity associated loci colocalized with
12 brain disorder GWAS (e.g., Alzheimer's disease, Parkinson's disease, schizophrenia) and
13 cognition, such as 19913.32, 17qg21.31, and 2pl6.1. Particularly, we detected a
14  colocalization between one (rs429358) of the two variants in the APOE €4 locus and
15 function of the default mode, central executive, attention, and visual networks. Genetic
16  correlation analysis demonstrated shared genetic influences between brain function and
17  brain structure in the same regions. We also detected significant genetic correlations
18  with 26 other complex traits, such as ADHD, major depressive disorder, schizophrenia,
19 intelligence, education, sleep, subjective well-being, and neuroticism. Common variants
20  associated with intrinsic brain activity were enriched within regulatory element in brain
21  tissues.
22
23 Keywords: Amplitude; Functional connectivity; Intrinsic brain activity; GWAS;
24 Resting-state fMRI; Triple network model; UK Biobank.
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1  The human brain is a complex system where functional organization and communication
2 between brain networks are necessary for behavior and cognition'. The human brain
3 remains active in the absence of explicit tasks or stimuli, resulting in an intrinsic
4  functional architecture. Utilizing changes in blood oxygen level-dependent (BOLD)
5 signal®®, resting-state functional magnetic resonance imaging’ (rsfMRI) captures
6 spontaneous intrinsic brain activity®. Specifically, the spontaneous neural activity and
7  non-neural physiological processes within each functional region are quantified by the
8  amplitude of low frequency fluctuations (ALFF) in BOLD time series®®1°. Moreover, the
9 inter-regional correlations in spontaneous neuronal variability are used to construct a
10  functional connectivity matrix, which measures the magnitude of temporal synchrony
11  between each pair of brain regions®11,
12
13 rsfMRI has led to the discovery of multiple resting-state networks (RSNs) present in
14  neurotypical human brains, including the default mode, central executive (i.e.,
15 frontoparietal), attention, limbic, salience, somatomotor, and visual networks!?14,
16  Among these RSNs, the central executive, default mode, and salience networks are
17  three core neurocognitive networks that support efficient cognition'>'’. Accumulating
18 evidence suggests that the functional organization and dynamic interaction of these
19 three networks underlie a wide range of mental disorders, resulting in the triple
20  network model of psychopathology®!®. Supporting this model, differences in RSNs have
21 been detected in multiple neurological and psychiatric disorders!® relative to
22 neurotypical controls, such as Alzheimer’s disease?’, Parkinson’s disease?!, and major
23 depressive disorder (MDD)?2.
24
25 Twin and family studies have largely reported a low to moderate degree of genetic
26  contributions to intrinsic brain activity?>?°. For example, the family-based heritability
27  estimates of major RSNs ranged from 20% to 40% in the Human Connectome Project
28  (HCP)*. In a previous study using about 8,000 UK Biobank (UKB) individuals!, the SNP
29  heritability®? of amplitude and functional connectivity traits can be higher than 30%.
30 Although there were multiple candidate gene studies for intrinsic brain activity (such as
31 for APOE*® and KIBRA3%), currently only one genome-wide association study (GWAS)3!
32  has been successfully performed on rsfMRI?®> (n = 8000). This is likely due to both
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1 insufficient sample size for GWAS discovery and weaker genetic effects on brain
2 function than structure33>3° It is also known that functional connectivity traits in
3 rsfMRI are typically noisier than brain structural traits measured in other neuroimaging
4  modalities. In addition, imaging batch effects®® (e.g., image acquisition, processing
5 procedures, and software) may cause additional technical variability in rsfMRI
6 analyses*!, making GWAS meta-analysis and independent replication particularly
7  challenging. Therefore, genetic variants influencing intrinsic brain activity have
8 remained largely undiscovered and their shared genetic influences with other complex
9 traits and clinical outcomes are unknown.
10
11 To address these challenges, here we collected individual-level rsfMRI data from four
12  independent studies, including the UK Biobank*, Adolescent Brain Cognitive
13  Development (ABCD*%), Philadelphia Neurodevelopmental Cohort (PNC*), and HCP*.
14  We harmonized rsfMRI processing procedures by following the unified UKB brain
15  imaging pipeline®®. Functional brain regions and corresponding functional connectivity
16  were characterized via spatial Independent Component Analysis (ICA)*’*¢ for 44,190
17  individuals from multiple ancestries, including 37,339 from UK Biobank. As in previous
18  studies®®#°, two parcellations with different dimensionalities*>*° (25 and 100 regions,
19  respectively) were separately applied in spatial ICA and we focused on the 76 (21 and
20 55, respectively) regions that had been previously confirmed to be non-artifactual®. Two
21  group of neuroimaging phenotypes were then generated: the first group contains 76
22 (node) amplitude traits reflecting the regional spontaneous neuronal activity; and the
23 second group includes 1,695 (i.e., 21 x 20/2 + 55 x 54/2) (edge) functional connectivity
24 traits that quantify the inter-regional co-activity, as well as 6 global functional
25  connectivity measures summarizing all of the 1,695 pairwise functional connectivity
26  traits3l. These 1,777 traits were then used to explore the genetic architecture of intrinsic
27  brain activity. To aid interpretation of GWAS results, the functional brain regions
28 characterized in ICA were labelled by using the automated anatomical labeling (AAL)
29 atlas®® and were mapped onto major functional networks defined in Yeo, et al. ** and
30 Finn, et al. 2. Our GWAS results can be easily explored and downloaded through the
31 Brain Imaging Genetics Knowledge Portal (BIG-KP) https://bigkp.org.
32
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1  RESULTS

2 Genetics of the intrinsic brain functional architecture.

3 SNP heritability was estimated for the 1,777 intrinsic brain activity traits via GCTA®2. The

4 mean heritability (h?) estimate was 27.2% (range = (10%, 36.5%), standard error = 6.0%)

5  for the 76 amplitude traits, all of which remained significant after adjusting for multiple

6 comparisons by using the Benjamini-Hochberg procedure to control false discovery rate

7  (FDR) at 0.05 level (1,777 tests, Fig. 1a and Supplementary Table 1). Among the 1,701

8 functional connectivity traits, 1,230 had significant (again at 5% FDR) heritability with

9  estimates varying from 3% to 61% (mean = 9.6%, standard error = 5.8%). Ten functional
10  connectivity traits had heritability higher than 30%, including 4 global functional
11  connectivity measures (Supplementary Fig. 1) and 6 pairwise functional connectivity
12  traits (Fig. 1b). These most heritable traits were most related to the central executive,
13 default mode, and salience networks in the triple network model of psychopathology?®.
14  To examine whether intrinsic brain activity within the triple network in general had
15 higher heritability, we classified the 76 amplitude traits into two categories 1) fully or
16  partially within the triple network and 2) outside the triple network. Correspondingly,
17  the 1,695 pairwise functional connectivity traits were classified into 1) within the triple
18 network, 2) outside the triple network, and 3) between the triple and non-triple
19 networks. We found that amplitude traits within the triple network had significantly
20  higher heritability than those outside the triple network (mean = 30.5% vs. 22.3%, P =
21 6.3 x 10!, two-sided Wilcoxon rank test) (Fig. 1c). Similarly, functional connectivity
22 traits within the triple network had higher heritability than interactions outside the
23 triple network or between the triple and non-triple networks (mean = 12.5% vs. 7%, P =
24 1.9 x 102%%). These results indicate that the level of genetic control might be higher in
25  core neurocognitive networks. The range of heritability estimates was consistent with
26  previous results®!, suggesting that common genetic variants had a low to moderate
27  degree of contributions to inter-individual variability of intrinsic brain activity. The
28  overall genetic effects on both amplitude and functional connectivity were lower than
29 those on brain structure. For example, the average heritability was reported to be 48.7%
30 for diffusion tensor imaging (DTI) traits of brain structural connectivity in white matter
31 tracts®® and 40% for regional brain volumes measuring brain morphometry®’.
32  Nevertheless, as shown below, intrinsic brain activity may be more functionally relevant
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1  with stronger genetic connections to brain disorders than brain structure, such as

2 Alzheimer's disease.

3

4  Genome-wide association discovery was carried out for 1,777 intrinsic brain activity

5  traits using UKB individuals of British ancestry (n = 34,691, Methods). The Manhattan

6 and QQ plots can be found in the BIG-KP server. At the significance level 2.8 x 10711 (5 x

7 10%/1,777, i.e., the standard GWAS threshold, Bonferroni-adjusted for the 1,777 traits),

8 FUMA>* identified 264 lead independent variants (linkage disequilibrium [LD] r?> < 0.1),

9 and then characterized 606 significant locus-trait associations for 197 traits (75
10 amplitude and 122 functional connectivity (Supplementary Tables 2-3, Supplementary
11  Fig. 2, Methods). The amplitude traits typically had multiple associated variants and a
12 number of variants were widely related to the amplitude in different brain regions, such
13 as rs429358 (nearest gene APOE), rs2274224 (PLCE1), and rs1133400 (INPP5A). In
14  addition, rs2279829 (ZIC4), rs62158211 (AC016745.1), and rs115877304 (NR2F1-AS1)
15 were associated with multiple functional connectivity traits. Global and pairwise
16  functional connectivity traits that had at least 5 significant variants were again most
17 related to the central executive, default mode, and salience networks (Supplementary
18  Fig. 3). Of the 14 associated variants that had been identified in the previous GWAS3?,
19 12 were in LD (r? = 0.6) with our significant variants, most of which were associated
20  with amplitude traits. In summary, our analyses identify many novel variants associated
21  with intrinsic functional signatures and illustrate the global genetic influences on
22 functional connectivity across the whole brain. The degree of genetic control is higher in
23  the central executive, default mode, and salience networks, whose cross-network
24  interactions closely control multiple cognitive functions and affect major brain
25  disorders®®.
26
27  Replication and the effect of ancestry.
28 We aimed to replicate our results in UKB British GWAS using other independent
29  datasets. First, we repeated GWAS on UKB individuals of White but Non-British ancestry
30 (UKBW, n = 1,970) and three non-UKB European-ancestry cohorts, including ABCD
31 European (ABCDE, n = 3,821), HCP (n = 495), and PNC (n = 510). We meta-analyzed the
32  four European GWAS (total n = 6,796) and checked whether the locus-trait associations
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1 detected in UKB British GWAS can be replicated. For the 606 significant associations,
2 101 (16.7%) passed the 8.2 x 107 (i.e., 0.05/606) Bonferroni significance level in this
3 validation GWAS, and 599 (98.8%) were significant at FDR 5% level. Next, we performed
4  GWAS on four non-European validation datasets: the UKB Asian (UKBA, n = 446), UKB
5 Black (UKBBL, n = 232), ABCD Hispanic (ABCDH, n = 768), and ABCD African American
6 (ABCDA, n=1,257). We meta-analyzed these four non-European GWAS (total n = 2,703)
7 and found that 39 (6.4%) passed the Bonferroni significance level and 601 (99.2%) were
8 significant at FDR 5% level. Some associations with rs3781658 (ANO1), rs7083220
9 (PWWHP2B), rs9373978 (FHL5), rs11187838 (PLCE1), and rs35124509 (EPHA3) were
10 replicated in both European and non-European datasets at the stringent Bonferroni
11  significance level. Moreover, we performed a third meta-analysis to combine all of the
12  eight validation datasets, after which the number of replicated associations moved up to
13 136 (22.4%) and 602 (99.3%) at Bonferroni and FDR significance levels, respectively.
14  These results are summarized in Supplementary Table 4. Overall, our results suggest
15 that the associated genetic loci discovered in UKB British GWAS have high
16  generalizability in independent rsfMRI studies, despite the fact that these studies may
17  use different imaging protocols/MRI scanners and recruit participants from different age
18 groups. The strong homogeneity of GWAS results likely benefit, in part, from the
19  consistent rsfMRI processing procedures that we applied to these datasets.
20
21  In addition, we utilized polygenic risk scores® (PRS) derived from UKB British GWAS for
22 further evidence of replication (Methods). For the 197 traits that had significant
23 variants, 168 had significant PRS in at least one of the four European validation GWAS
24  datasets at FDR 5% level (197 x 4 tests, Supplementary Table 5), illustrating the
25  significant out-of-sample prediction power of polygenic influences from our discovery
26  GWAS results. The largest incremental R-squared (after adjusting the effects of age, sex,
27  and ten genetic principal components) were observed on the 2nd, 3rd, 4th, and 6th
28 global functional connectivity measures in UKBW and HCP datasets, which were larger
29 than 5% (range = (5.1%, 5.7%), P range = (1.1 x 1024 4 x 107%)). To evaluate the
30 consistency across ancestry, PRS was also constructed on the four non-European
31 validation datasets. UKBA had the best validation performance among the four datasets,
32  with 86 PRS being significant at FDR 5% level (197 x 4 tests, Supplementary Table 6).
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1 The number of significant PRS was reduced to 59, 39, and 31 in ABCDH, ABCDA, and
2 UKBBL, respectively. In summary, these PRS results illustrate the overall consistency of
3 genetic effects in European cohorts and also show that there may be population specific
4  influences on brain function in other cohorts, though much smaller sample sizes and
5 difficulty in conducting cross ancestry PRS strongly limit the interpretability of these
6 analyses. More efforts are required to identify causal variants associated with functional
7  brainin global diverse populations and perform better cross-population PRS predictions.
8
9 The shared genetic loci with brain-related complex traits and disorders.
10 To evaluate the shared genetic influences between intrinsic brain activity and other
11  complex traits, we carried out association lookups for independent significant variants
12 (and their LD tags, i.e., variants with LD, r* > 0.6) detected in UKB British GWAS
13 (Methods). In the NHGRI-EBI GWAS catalog®®, our results tagged many variants reported
14  for a wide range of complex traits in different trait domains, such as neurological and
15  psychiatric disorders, cognitive performance, education, bone mineral density, sleep,
16  smoking/drinking, brain structure, and anthropometric traits. Below we highlighted
17  colocalizations in a few selected genomic regions.
18
19  The index variants rs429358 (APOE), rs34404554 (TOMMA40), rs157582(TOMMA40), and
20  rs157592 (APOC1) in the 19913.32 region (Fig. 2a, Supplementary Fig. 4) had genetic
21  effects on the amplitude of many functional brain regions that were most in the default
22  mode, central executive (i.e., frontoparietal), attention, and visual networks. It is well
23 known that 19q13.32 is a risk locus of Alzheimer's disease and rs429358 is one of the
24 two variants in the APOE €4 locus. In this region, we tagged variants associated with
25 dementia and decline in mental ability, including Alzheimer's disease®’?,
26  frontotemporal dementia®®, cerebral amyloid angiopathy®!, cognitive decline®?,
27  cognitive impairment test score®, as well as many biomarkers of Alzheimer's disease,
28 such as neurofibrillary tangles®®, neuritic plaque®!, cerebral amyloid deposition®,
29 cerebrospinal fluid protein levels®3, and cortical amyloid beta load®. Altered amplitude
30 activity has been widely reported in patients of cognitive impairment and Alzheimer's
31 disease®®®’. The brain degeneration related to Alzheimer's disease may begin in the
32 frontoparietal regions® and was associated with dysfunction of multiple RSNs,
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1  especially the default mode network®. Our findings suggest the shared genetic
2  influences between intrinsic neuronal activity and brain atrophy of Alzheimer’s disease.
3

4  Next, the variant rs62061845 (KANSL1) in the 17g21.31 region (Supplementary Fig. 5)
5 was associated with functional connectivity over the inferior frontal, middle frontal,
6 superior frontal, middle temporal, and supplementary motor area regions in the default
7 mode and salience networks. Variants in LD with rs62061845 have been frequently
8 reported to be associated with Parkinson's disease studies®®7’3. As a system-level
9 progressive neurodegenerative disorder’?, Parkinson's disease not only leads to motor
10 abnormalities, but also has non-motor symptoms such as temporal perception
11  abnormalities’”> and impaired connectivity among frontal regions’®. Cognitive
12 dysfunction and disrupted coupling between default mode and salience networks were
13 commonly reported in Parkinson's disease!’. In addition to Parkinson's disease, the
14  17921.31 region was widely related to other complex traits, including neurological
15 disorders (e.g., Alzheimer's disease’’, corticobasal degeneration’®, progressive
16  supranuclear palsy’®), psychiatric disorders (e.g., autism spectrum disorder®, depressive
17  symptoms®l), educational attainment®?, psychological traits (e.g., neuroticism3l),
18  cognitive traits (cognitive ability®3), sleep®*, heel bone mineral density®>, alcohol use
19  disorder®®, subcortical brain volumes3?, cortical surface area and thickness3®, and white
20  matter microstructure®3,
21
22 In addition, the 2p16.1 (Fig. 2b, Supplementary Fig. 6) and 5q15 (Supplementary Fig. 7)
23 regions were mainly associated with interactions among the central executive, default
24  mode, and salience networks. We observed colocalizations with psychiatric disorders
25 (e.g., schizophrenia®’, MDD?®, depressive symptoms®, autism spectrum disorder®),
26  psychological traits (e.g., neuroticism®!, well-being spectrum®?), sleep?, cognitive traits
27 (e.g., intelligence®®), and educational attainment®. Dysregulated triple network
28 interactions were frequently reported in patients of schizophrenia®*, depression®®, and
29  autism spectrum disorder®®. Similarly, the 2q24.2 (Supplementary Fig. 8) and 10926.13
30 (Supplementary Fig. 9) regions had genetic effects on functional connectivity traits
31 involved in the central executive, default mode, salience, and limbic networks. In these
32  two regions, our identified variants tagged those that have been implicated with
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1 schizophrenia®, educational attainment®?, cognitive traits (e.g., cognitive ability®3),
2 smoking/drinking (e.g., smoking status®®, alcohol consumption®?), hippocampus subfield
3 volumes!®, and heel bone mineral density®®. We also observed colocalizations in some
4  other genomic regions, such as in 2q14.1 region (Fig. 2c, Supplementary Fig. 10) with
5 sleep traits (e.g., sleep duration®, insomnia®?), in 3p11.1 (Supplementary Fig. 11) with
6  cognitive traits (e.g., intelligencel®?, math ability?), and in 5q14.3 (Supplementary Fig.
7 12) with cognitive traits® and educational attainment®2. All of these results are
8 summarized in Supplementary Table 7. In summary, intrinsic brain function has wide
9 genetic links to a large number of brain-related complex traits and clinical outcomes,
10  especially neurological and psychiatric disorders and cognitive traits. Integration of
11 GWAS of brain function with these clinical outcomes may help to explain the underlying
12 brain functional mechanisms leading to risk for these disorders.
13
14  Genetic correlations with brain structure, brain disorders, and cognition.
15 The intricate brain neuroanatomical structure is fundamental in supporting brain
16  function. To explore whether genetically mediated brain structural changes were
17  associated with brain function, we examined pairwise genetic correlations (gc) between
18 1,777 intrinsic brain activity traits and 315 brain structure traits via LDSC!%? (Methods),
19 including 100 regional brain volumes3’ and 215 DTI traits of brain structural connectivity
20 in white matter tracts'®. There were 151 significant pairs between 94 intrinsic brain
21  functional traits and 73 brain structural traits at FDR 5% level (315 x 1,777 tests, |gc]|
22 range=(0.22,0.61), Prange = (1.2 x 102}, 1.5 x 10°°), Supplementary Table 8).
23
24 We found significant genetic correlations between regional brain volumes and
25  functional connectivity strengths (|gc| range = (0.22, 0.61), P range = (1.2 x 102}, 1.2 x
26 10%), Supplementary Fig. 13). Most of the observed correlations were related to higher
27  order brain functional networks, particularly the attention, default mode, salience, and
28  central executive networks. For example, the insula has been widely implicated to be
29  associated with multiple functions, including but not limited to emotion, addiction, and
30 cognition through extensive connections to neocortex, the limbic system, and
31 amygdalal®. We observed genetic correlations between insula volumes and the
32  connection strengths of multiple pairs of brain regions (|gc| range = (0.22, 0.27), P< 1.2

10
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1 x 10°, Figs. 3a-b), which were largely in the default mode and central executive
2 networks, including the angular and the inferior and superior frontal regions. Similarly,
3 left inferior parietal lobule volume exhibited strong genetic correlations with
4  connectivity strengths over multiple pairs of brain regions that were known to be a part
5 of the default mode, visual, attention, and salience networks (|gc| range = (0.34, 0.49),
6 P < 9.7 x 10 Supplementary Fig. 14a). Interestingly, however, the above identified
7  genetic correlations appeared to be more specific to the left but not right. The inferior
8 parietal has been implicated to be associated with language function and is connected
9  with the Broca’s region via the superior longitudinal fasciculus (SLF)1%-197, Considering
10 language processing is left-lateralized in about 95% of right-handers and 75% of
11  left-handers'®11! the observed associations of the left inferior parietal are consistent
12  with the results reported in the literature. In addition, we observed spatial
13 colocalizations between regional brain volumes and their genetically correlated
14  functional connectivity traits in multiple brain regions. For instance, left pericalcarine
15 volume was genetically correlated with the connectivity strengths among its
16  neighboring regions, such as the calcarine, superior occipital, cuneus, precuneus, and
17  lingual, which were largely in the visual, default mode, and central executive networks
18  (Fig. 3c). More spatial overlap/proximity examples included the associations between
19 right precuneus volume and functional connectivity pairs over the precuneus, angular,
20 inferior parietal, and middle temporal regions (Supplementary Fig. 14b); and the
21  associations between postcentral volumes and functional interactions among the
22 postcentral, inferior and superior parietal, supramarginal, and precuneus regions
23 (Supplementary Fig. 14c).
24
25 Significant genetic correlations were also observed between brain structural
26  connectivity and functional connectivity (|gc| range = (0.25, 0.49), P range = (5.5 x 10719,
27 1.3 x 107), Supplementary Fig. 15). Many of the white matter tracts, in particular the
28  SLF and corpus callosum, manifested a strong genetic correlation with the interactions
29  of functional networks (Fig. 4a). These results provided genetic evidence on how these
30 distributed networks communicate across large distances. The SLF has been widely
31 documented connecting brain regions in temporal, parietal, and frontal lobes!!?.
32  Functionally, SLF has been reported associated with a wide array of brain functions,
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1 including working memory!?3, attention!'41%> and language functions!®1’, We
2 observed significant genetic correlations between SLF and connectivity strengths over
3 multiple pairs of brain regions including the frontal, parietal, and temporal regions (|gc|
4 range = (0.33, 0.49), P < 2.4 x 10°, Fig. 4b). For example, a significant association
5 between insula and temporal connection and SLF was observed. This finding is
6 consistent with the well documented broad functions of insula, including attention and
7 salience processesi®®. Furthermore, parietal and frontal connections most likely
8 reflected attention and executive control networks. Moreover, the splenium of corpus
9 callosum (SCC) is located in the most posterior part of the corpus callosum and connects
10 brain regions in the temporal, posterior parietal, and occipital lobes. Our results show
11  that SCC was genetically associated with brain regions within the parietal lobe (|gc]|
12 range = (0.34, 0.48), P < 6.5 x 10, Fig. 4c). In particular, multiple regions connected to
13 the precuneus were observed, such as the inferior parietal, supramarginal, and occipital
14  regions. The precuneus has been shown to connect multiple cortical and subcortical
15 regions. Functionally, the precuneus is one of the critical areas of the default mode
16 network and has also been implicated to be associated with attention as well as
17  memory functions!!®, Our findings suggest that these connections may be genetically
18 mediated by the SCC. Besides functional connectivity traits, amplitude traits also had
19  significant genetic associations with regional brain volumes and white matter tracts
20  (Supplementary Figs. 16-17, Supplementary Note). Overall, our results uncover the
21  genetic links between intrinsic brain function networks and the associated structural
22 substrates. As illustrated, a few pairs of the genetically correlated brain functional and
23 structural traits show high congruity in spatial location and the involved functions. There
24 has been growing interest to understand how brain topography interacts with brain
25  functional networks!!®. To our knowledge, our results are the first to indicate that
26  genetic changes in brain structure may also impact brain function.
27
28 Next, we examined the genetic correlations between 1,777 intrinsic brain activity traits
29 and 30 other complex traits, mainly focusing on brain disorders and cognition
30 (Supplementary Table 9). We found 176 significant pairs between 26 complex traits and
31 102 intrinsic brain activity traits at FDR 5% level (30 x 1,777 tests, P range = (8.6 x 1012,
32 2.3 x 103), Supplementary Table 10). Particularly, functional connectivity strengths
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1 were genetically correlated with a few brain disorders, including attention deficit
2 hyperactivity disorder (ADHD), schizophrenia (SCZ), major depressive disorder (MDD),
3 and cross disorder (five major psychiatric disorders'?°) (|gc| range = (0.18, 0.37), P< 1.2
4 x 10* Fig. 5a). For example, we observed a significant genetic correlation between
5 ADHD and functional interactions among the precentral, supplementary motor area,
6 superior frontal, putamen, and caudate regions, which were largely in the attention,
7  salience, motor, and subcortical-cerebellum networks (Fig. 5b). These brain regions
8 have been widely implicated with ADHD in previous studies. ADHD patients have been
9 observed to have stronger connectivity across the supplementary motor area,
10 precentral, and superior frontal regions!?!. These regions are also associated with
11  difficulties in performing some fine motor skills!?2. In addition, the putamen and
12 caudate regions compose the dorsal striatum, one largest part of the basal ganglia,
13 which is important in controlling motor functions!?®124 Moreover, significant genetic
14  correlations were observed between SCZ and connection strengths over the precentral,
15  postcentral, precuneus, frontal, and superior parietal regions (Fig. 5c); and between
16 MDD and the interactions among the middle temporal, angular, and superior and
17  middle frontal regions (Fig. 5d, Supplementary Note).

18

19 In addition, many genetic correlations were observed between functional connectivity
20 and cognitive traits studied in previous GWAS, including intelligence, cognitive
21  performance, general cognitive function, and numerical reasoning. For example,
22 intelligence had genetic correlations with connection strengths over multiple brain
23 regions (|gc| range = (0.11, 0.34), P < 1.8 x 104, Fig. 5e). The strongest correlation
24  located at the superior and middle frontal regions in the central executive and salience
25  networks. It is known that the frontal lobe is associated with higher level cognitive skills,
26  such as problem solving, thinking, planning, and organizing!?>. Wang, et al. 12 revealed a
27  general intelligence network for logical-math, general intelligence, and linguistic skills,
28 which widely included frontal, parietal, occipital, temporal, and limbic regions.
29  Furthermore, significant genetic correlations were broadly observed on subjective
30 well-being, education, neuroticism, sleep, risk tolerance, automobile speeding, manual
31 occupation, BMI, high blood pressure, and behavioral factors (drinking and smoking)
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1  (Supplementary Figs. 18-19). More details and interpretations can be found in

2 Supplementary Note.

3

4  Gene-level association analysis and biological annotations.

5 Gene-level association was tested via MAGMA'?’ (Methods), which detected 970

6 significant gene-trait associations (P < 1.5 x 10, adjusted for 1,777 phenotypes) for 123

7 genes (Supplementary Fig. 20, Supplementary Table 11). In addition, we applied

8 FUMA> to map significant variants (P < 2.8 x 10'!) to genes via physical position,

9 expression quantitative trait loci (eQTL) association, and 3D chromatin (Hi-C)
10 interaction, which yielded 197 more associated genes that were not discovered in
11  MAGMA (276 in total, Supplementary Table 12). For the 320 genes associated with
12 intrinsic brain activity in either MAGMA or FUMA, 84 had been linked to white matter
13 microstructurel®, 48 were reported to be associated with regional brain volumes®’, and
14 42 were related to both of them (Supplementary Table 13). These triple overlapped
15 genes were also widely associated with other complex traits, such as Parkinson's disease,
16 neuroticism, stroke, alopecia, handedness, and intelligence (Supplementary Table 14),
17  providing more insights into the genetic overlaps among brain structure, brain function,
18 and other brain-related traits. For example, MAPT, NSF, WNT3, and LRRC37A3 were risk
19  genes of Parkinson's disease, which were also associated with pallidum volumes?’, white
20 matter microstructure'®®, and intrinsic functional connectivity in central executive,
21  default mode, and salience networks. These complementary neuroimaging traits had all
22 been used to study the pathophysiology of Parkinson's disease!?813°, Similarly, CDKN2C
23 and FAF1 were associated with ischemic stroke!3! as well as multiple neuroimaging
24 traits of brain structure and function. In addition, 4 of our intrinsic brain activity
25  associated genes (CALY, SLC47A1, CYP2C8, and CYP2(C9) were targets for 11 nervous
26  system drugs'®?, such as 4 psycholeptics (ATC code: NO5) to produce calming effects, 2
27  anti-depressants (NO6A) to treat MDD and related conditions, 2 anti-migraine (N02C),
28 and one anti-dementia (NO6D) (Supplementary Table 15).
29
30 Itis of particular interest to study the functional connectivity dysfunction in Alzheimer’s
31 disease and identify the overlapped genes?®!33, Our gene-level analysis replicated APOE
32 and SORL1, which were frequently targeted in Alzheimer’s disease-candidate gene
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1 studies of functional connectivity?>!34, More importantly, we uncovered more
2 overlapped genes between intrinsic brain activity and Alzheimer’s disease, such as
3  PVRL2, TOMM40, APOC1, MAPK7, CLPTM1, HESX1, BCAR3, ANO3, and YAP1
4  (Supplementary Table 16). Interestingly, through the BIG-KP server, we found that
5 these genes had much stronger associations with intrinsic brain function than brain
6  structure. We also observed many pleiotropic genes associated with serum metabolite,
7 low density lipoprotein cholesterol, high density lipoprotein cholesterol, triglyceride,
8 type Il diabetes mellitus, and blood protein measurements, all of which might be related
9 to the Alzheimer’s disease®>!36, These results expand the overview of the shared
10 genetic components among metabolic dysfunction, blood biomarkers, brain function in
11 Alzheimer’s disease research, suggesting the potential value of integrating these traits in
12 future studies.
13
14  Toidentify the tissues and cell types in which genetic variation yields differences in brain
15  functional connectivity, we performed partitioned heritability analyses3’ for tissue type
16 and cell type specific regulatory elements!3® (Methods). We focused on the 10
17  functional connectivity traits that had heritability higher than 30%. At FDR 5% level, the
18 most significant enrichments of heritability were observed in active gene regulation
19 regions of fetal brain tissues, neurospheres, and neuron/neuronal progenitor cultured
20 cells (Supplementary Fig. 21, Supplementary Table 17). We also tried to further identify
21  brain cell type specific enrichments using chromatin accessibility data of two main gross
22 brain cell types'? (i.e., neurons (NeuN+) and glia (NeuN-)) and multiple neuronal and
23 glial cell subtypes, including oligodendrocyte (NeuN-/Sox10+), microglia, and astrocyte
24  (NeuN-/Sox10-), as well as GABAergic (NeuN+/Sox6+) and glutamatergic neurons
25  (NeuN+/Sox6-). Although enrichments were observed in some cell types, few of them
26  remained significant after adjusting for multiple testing (Supplementary Fig. 22,
27  Supplementary Table 18). Next, we performed MAGMA tissue-specific gene property!?’
28  analysis for 13 GTEx!? (v8) brain tissues (Methods). We found that genes with higher
29  expression levels in human brain tissues generally had stronger associations with
30 intrinsic brain activity, particularly for tissues sampled from cerebellar hemisphere and
31 cerebellum regions (P < 1.9 x 10, Supplementary Fig. 23, Supplementary Table 19).
32
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1  Among the associated variants of intrinsic brain activity, a few resided in frequently
2 interacting regions (FIREs) and topologically associating domain (TAD) boundaries in
3 brain tissues!*4? (Supplementary Table 20). Partitioned heritability analysis also
4  provided suggestive evidence of heritability enrichment in these FIREs and TAD
5 boundaries (Supplementary Fig. 24, Supplementary Table 21). We performed
6 additional gene mapping using 14 recent Hi-C datasets of brain tissue and cell
7  types!*1%5 (Methods). This Hi-C gene mapping prioritized 29 genes, 14 of which were
8 not identified by the Hi-C analysis in FUMA>* (Supplementary Table 22). Many of the
9 newly mapped genes have been reported for brain-related disorders/conditions, sleep,
10 and intelligence, including APOE, HSPG2, APOC1, UFL1, NR2F1, NPM1, FAM172A, FADD,
11  FHL5, and EPHAS3. Finally, MAGMA??’ gene-set analysis was performed to prioritize the
12  enriched biological pathways (Methods). We found 59 significantly enriched gene sets
13  after Bonferroni adjustment (P < 1.8 x 10°, Supplementary Table 23). Multiple
14  pathways related to nervous system were detected, such as “go neurogenesis” (GO:
15 0022008), “go neuron differentiation” (GO: 0030182), “go regulation of nervous system
16  development” (GO: 0051960), “go regulation of neuron differentiation” (GO: 0045664),
17  “go cell morphogenesis involved in neuron differentiation” (GO: 0048667), and “go
18  neuron development” (GO: 0048666).

19
20  DISCUSSION
21  In the present study, we evaluated the influences of common variants on intrinsic brain
22 functional architecture using harmonized rsfMRI data of 44,190 subjects from four
23 independent studies. Genome-wide association analysis found hundreds of novel loci
24 related to intrinsic brain activity in the UKB British cohort, which were successfully
25 replicated in independent datasets. The interactions across core neurocognitive
26  networks (central executive, default mode, and salience) in the triple network model
27  had genetic links with cognition and multiple brain disorders. Shared genetic influences
28 among functional, structural, and diffusion neuroimaging traits were also uncovered,
29 showing that brain structure and function are intimately related. Gene-level analysis
30 detected many overlapped genes between intrinsic brain activity and Alzheimer’s
31 disease. We also detected a colocalization between one of the two variants in the APOE
32 €4 locus and function of the default mode, central executive, attention, and visual
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1  networks, which may explain in part the functional mechanism underlying Alzheimer’s
2 risk. The enriched tissues and biological pathways were also prioritized in bioinformatic
3 analyses. Compared to the previous study! with about 8,000 subjects, this large-scale
4  GWAS much improved our understanding of the genetic architecture of functional
5  human brain.
6
7  Our study faces a few limitations. First, the samples in our discovery GWAS were mainly
8 from European ancestry. In our PRS analysis, we illustrated a relatively poor replication
9  of the European GWAS results within validation cohorts with non-European ancestry.
10 The non-European GWAS was of small sample size, so population specific influences will
11  be better understood when more data from global populations become available.
12 Second, our study focused on the brain functional activity at rest. A recent study?® had
13 found that combining rsfMRI and task functional magnetic resonance imaging (tfMRI)
14  may result in higher heritability estimates and potentially boost the GWAS power. Thus,
15  future studies could model rsfMRI and tfMRI together to uncover more insights into the
16  genetic influences on brain function. In addition, we applied ICA in this study, which was
17  a popular approach to characterize the functionally connected brain®. It is also of great
18 interest to evaluate the performance of other popular rsfMRI approaches (such as
19  seed-based analysis) in these large-scale datasets. Finally, although we found genetic
20 links between brain function and other complex traits, future work is needed to dissect
21  the underlying mechanisms by which genetic variation leads to differences in brain
22 activity. We expect that accumulating publicly available imaging genetics data resources
23 will lead to a better understanding of specific genes involved in human brain structure
24 function relationships and how variants can alter these relationships leading to risk for
25  neuropsychiatric disorders.
26
27  URLs.
28  Brain Imaging Genetics Knowledge Portal (BIG-KP), https://bigkp.org/;
29  Brain Imaging GWAS Summary Statistics, https://github.com/BIG-S2/GWAS;
30 UKB Imaging Pipeline, https://git.fmrib.ox.ac.uk/falmagro/UK biobank pipeline v 1;
31  PLINK, https://www.cog-genomics.org/plink2/;
32 GCTA & fastGWA, http://cnsgenomics.com/software/gcta/;
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1  METAL, https://genome.sph.umich.edu/wiki/METAL;

2  FUMA, http://fuma.ctglab.nl/;

3 MGAMA, https://ctg.cncr.nl/software/magma;

4  LDSC, https://github.com/bulik/ldsc/;

5  FINDOR, https://github.com/gkichaev/FINDOR;

6  NHGRI-EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/home;

7  The atlas of GWAS Summary Statistics, http://atlas.ctglab.nl/.

8

9 METHODS
10  Methods are available in the Methods section.
11 Note: One supplementary information pdf file and one supplementary table zip file are
12 available.
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1 Imaging phenotypes and datasets. The rsfMRI datasets were consistently processed
2 following the procedures in UK Biobank imaging pipeline®. Details about image
3 acquisition, preprocessing, and phenotype generation in each dataset can be found in
4  Supplementary Note. Following the previous study®!, we generated two groups of
5 phenotypes, including 76 node amplitude traits reflecting the spontaneous neuronal
6 activity, and 1,695 pairwise functional connectivity traits quantifying co-activity for node
7  pairs, as well as 6 global functional connectivity measures to summarize all pairwise
8 functional connectivity. To aid interpretation of these phenotypes, the functional brain
9 regions characterized in ICA were labelled using the automated anatomical labeling
10  atlas®! (Supplementary Table 24) and were mapped onto major functional networks
11  defined in Yeo, et al. ** and Finn, et al. > (Supplementary Figs. 25-26). The assighed
12 location and functional networks are provided in Supplementary Table 25. Details of
13 our mapping procedures are provided in Supplementary Note. For each continuous
14  phenotype or covariate variable, values greater than five times the median absolute
15 deviation from the median value were removed. We analyzed the following nine
16  datasets separately: 1) the UKB discovery GWAS, which used data of individuals of
17  British ancestry!#® in the UKB study (n = 34,691); 2) four European validation GWAS: UKB
18  White but Non-British (UKBW, n = 1,970), ABCD European (ABCDE, n = 3,821), HCP (n =
19  495), and PNC (n = 510); 3) two non-European UKB validation GWAS: UKB Asian (UKBA,
20 n=446) and UKB Black (UKBBL, n = 232); and 4) two non-European non-UKB validation
21  GWAS, including ABCD Hispanic (ABCDH, n = 768) and ABCD African American (ABCDA, n
22 = 1,257). See Supplementary Table 26 for a summary of these datasets and
23 demographic information. The assignment of ancestry in UKB was based on
24  self-reported ethnicity (Data-Field 21000), which was verified in Bycroft, et al. ¥4, The
25  ancestry in ABCD was assigned by combining the self-reported ethnicity and ancestry
26  inference results as in Zhao, et al. 193,
27
28 GWHAS discovery and validation. Details of genotyping and quality controls can be found
29 in Supplementary Note. SNP heritability was estimated by GCTA>? using all autosomal
30 SNPs in the UKB British cohort. We adjusted the effects of age (at imaging),
31 age-squared, sex, age-sex interaction, age-squared-sex interaction, imaging site, and the
32 top 40 genetic principle components (PCs). Genome-wide association analysis was
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1  performed in linear mixed effect model using fastGWA*’, while adjusting the same set
2 of covariates as in GCTA. GWAS were also separately performed via Plink'*® in the eight
3  validation datasets, including UKBW, UKBBL, UKBA, ABCDA, ABCDH, ABCDE, HCP, and
4  PNC, where the effects of age, age-squared, sex, imaging sites (if applicable), scanners (if
5 applicable), age-sex interaction, age-squared-sex interaction, and top ten genetic PCs
6  were adjusted.

7

8 To validate results in the UKB British discovery GWAS, meta-analysis was performed
9 using the sample-size weighted approach via METAL'*°. We examined whether the
10 locus-level associations detected in the British GWAS can be replicated in the 1)
11  meta-analyzed four European validation GWAS (UKBW, ABCDE, HCP, and PNC); 2)
12  meta-analyzed four non-European validation GWAS (UKBBL, UKBA, ABCDA, and ABCDH);
13  and 3) the combination of the above eight validation GWAS. Specifically, for each
14  meta-analyzed GWAS, we checked and reported the smallest P-value among the
15  variants within each associated locus identified in the UKB British discovery GWAS.
16  Polygenic risk scores (PRS) were constructed on eight validation datasets using Plink.
17  The BLUP effect sizes estimated from GCTA-GREML analysis in UKB British discovery
18 GWAS were used as weights in PRS construction, which accounted for the LD structures.
19  Ambiguous variants (i.e. variants with complementary alleles) were removed from
20  analysis. We tried 17 P-value thresholds for variant selection according to their marginal
21 P-values from fastGWA: 1, 0.8, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.05, 0.02, 0.01, 1 x 103, 1 x
22 10% 1x10° 1x10°% 1x 107, and 1 x 108, The best prediction accuracy achieved by a
23 single threshold was reported for each phenotype, which was measured by the
24  additional phenotypic variation that can be explained by the polygenic profile (i.e., the
25 incremental R-squared), while adjusting for the effects of age, sex, and top ten genetic
26  PCs.
27
28 The shared loci and genetic correlation. The genomic loci associated with intrinsic brain
29  activity traits were defined using FUMA (version 1.3.5e). We input UKB British discovery
30 summary statistics after reweighting the P-values using functional information via
31 FINDOR®. To define the LD boundaries, FUMA identified independent significant
32  variants, which were defined as variants with a P-value smaller than the predefined
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1  threshold and were independent of other significant variants (LD r? < 0.6). FUMA then
2 constructed LD blocks for these independent significant variants by tagging all variants
3 in LD (r* = 0.6) with at least one independent significant variant and had a MAF >
4  0.0005. These variants included those from the 1000 Genomes reference panel that may
5 not have been included in the GWAS. Moreover, within these significant variants,
6 independent lead variants were identified as those that were independent from each
7  other (LD r’< 0.1). If LD blocks of independent significant variants were close (<250 kb
8 based on the closest boundary variants of LD blocks), they were merged into a single
9 genomic locus. Thus, each genomic locus could contain multiple significant variants and
10 lead variants. Independent significant variants and all the variants in LD with them (r?> >
11  0.6) were searched by FUMA on the NHGRI-EBI GWAS catalog (version 2019-09-24) to
12 look for previously reported associations (P < 9 x 10®) with any traits. LDSC'? software
13 (version 1.0.1) was used to estimate and test the pairwise genetic correlation. We used
14  the pre-calculated LD scores provided by LDSC, which were computed using 1000
15 Genomes European data. We used HapMap3*>° variants and removed all variants in the
16  major histocompatibility complex (MHC) region. The summary statistics of intrinsic brain
17  activity traits were from the UKB British discovery GWAS and the resources of other
18 summary statistics were provided in Supplementary Table 9.
19
20 Gene-level analysis and biological annotation. Gene-based association analysis was
21  performed in UKB British participants for 18,796 protein-coding genes using MAGMA1?’
22 (version 1.07). Default MAGMA settings were used with zero window size around each
23 gene. We then carried out FUMA functional annotation and mapping analysis, in which
24 variants were annotated with their biological functionality and then were linked to
25 35,808 candidate genes by a combination of positional, eQTL, and 3D chromatin
26  interaction mappings. Brain-related tissues/cells were selected in all options and default
27  values were used for all other parameters in FUMA. For the detected genes in MAGMA
28 and FUMA, we performed lookups in the NHGRI-EBI GWAS catalog (version 2020-02-08)
29 to explore their previously reported gene-trait associations. We performed heritability
30 enrichment analysis via partitioned LDSC!*’. Baseline models were adjusted when
31 estimating and testing the enrichment scores for our tissue type and cell type specific
32  annotations. Methods to analysis chromatin data of glial and neuronal cell subtypes can
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1  befoundin Zhao, et al. 19. We also performed gene property analysis for the 13 GTEx4°
2 v8 brain tissues via MAGMA. Specifically, we examined whether the tissue-specific gene
3  expression levels can be linked to the strength of the gene-trait association. MAGMA
4  was also used to explore the enriched biological pathways, in which we tested 500
5 curated gene sets and 9,996 Gene Ontology (GO) terms from the Molecular Signatures
6 Database®! (MSigDB, version 7.0). Additional gene mapping was performed using 14
7  Hi-C datasets of brain tissue and cell types from five recent studies, including 1) the
8  promoter capture Hi-C (PCHi-C) data of hippocampus and dorsolateral prefrontal cortex
9  (DLPFC)!3; 2) the Hi-C data of hippocampus and DLPFC!#!; 3) the Hi-C data from fetal

10  and adult cortices'#?, restricting to the high confidence interactions; 4) the PCHi-C data

11  of primary astrocytes and three types of induced pluripotent stem cell (iPSC)-derived

12 neurons!* (cortical, hippocampal, and motor); and 5) proximity ligation assisted

13 chromatin immunoprecipitation (PLAC-seq) data on sorted fetal neuron cells'#,

14  including radial glial cells, intermediate progenitor cells, neurons, and interneurons. For

15 interaction intensity cutoffs, we used 2 for the -log10(P) used in datasets of Jung, et al.

16 3, 0.05 for the g-value in Schmitt, et al. *! and Giusti-Rodriguez and Sullivan 42, 5 for

17  the Chicago score in Song, et al. 44, and 0.01 for the FDR in Song, et al. 1%°.

18

19  Code availability

20 We made use of publicly available software and tools listed in URLs. Other codes used in

21  our analyses are available upon reasonable request.

22

23 Data availability

24 Our GWAS summary statistics can be downloaded at https://github.com/BIG-S2/GWAS.

25 Theindividual-level data used in the present study can be obtained from four publicly

26  accessible data resources: UK Biobank (http://www.ukbiobank.ac.uk/resources/), ABCD

27  (https://abcdstudy.org/), HCP (https://www.humanconnectome.org/), and PNC

28  (https://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html). Our

29  results can also be easily browsed through our knowledge portal https://bigkp.org/.

35


https://doi.org/10.1101/2020.07.30.229914
http://creativecommons.org/licenses/by-nc-nd/4.0/

a bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.229914; this version posted Septembgy 17, 2020. Th jght holder for thf@'ﬁ@%%fConnecﬁvit
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to displgy th ﬁ@m in perpetuity. v' Y
© Amplitude e Functional®YGHIRRIR MNHER ASeCaBNoMNGegrieafttO International license. s ;T yP=63x101 59 A
- B

- ® Functional Connectivity-ICA25 @ Global Functional Connectivity

SNP heritability

(Inferior parietal, Angular) (Inferior frontal)
(Central executive, Attention) (Default mode, Central executive)

SNP heritability

0.3

0.2

(Precuneus, Angular,

Middle cingulate)

(Default mode,

Central executive)

SNP heritability

0.2 0.3

0.1

X p=1.9x102

Middle frontal)
(Salience, Default mode)

10
h2=33.4% N |
s
@
2.
=
(Precuneus,‘AnguIar, (Superior frdntal, Middle frontal) (Middle temporal, (SupraMarginal, 10

(Central executive,
Salience, Default mode)

Middle cingulate)
(Default mode, Central executive)

Temporal pole)
(Default mode)

Inferior parietal)
(Central executive, Salience)

(Insula, Anterior cingulate) (Superior frontal, Middle frontal)

(Superior frontal,
Middle frontal)
(Central executive,
Salience, Default mode)

(Angular, Middle
temporal)
(Default mode,
Central executive)

(Central executive,
Salience, Default mode)

(Salience,
Default mode)

Figure 1: SNP heritability analysis of rsfMRI traits (n = 34,691 subjects). a) Heritability estimates
of 1,777 rstMRI traits of brain activity, including 76 amplitude traits, 1,695 pairwise functional connectivity traits
(from two parcellations with 25 and 100 dimensionalities, respectively), and 6 global functional connectivity mea-
sures. b) Location and functional network of the pairs of functional regions (i.e., nodes) characterized by spatial
independent component analysis (ICA) whose inter-regional functional connectivity had heritability (h?) higher
than 30%. The color represents the weight profile of the ICA node. For example, the functional connectivity
between two ICA nodes mainly over the inferior parietal, angular and inferior frontal regions had h? = 34.7%.
¢) Comparison of the heritability within the triple network (i.e., the three core neurocognitive networks: central
executive, default mode, and salience) and the heritability outside the triple network. P-value (P) of the two-sided

Wilcoxon rank test was used to evaluate the difference.
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Figure 2: Selected genetic loci that associated with both rsfMRI traits of brain activity and other
brain-related complex traits and disorders. We highlight local colocalization (LD r* > 0.6) in a) 19q13.32
(colocalized with Alzheimer’s disease); b) 2p16.1 (with schizophrenia); and €) 2q14.1 (with sleep). For example, in
19q13.32, we observed colocalization between the amplitude of the precuneus region in the default mode and central
executive networks with Alzheimer’s disease. Location and functional network of the displayed three rsfMRI traits
are illustrated on the bottom right. More examples of the shared genetic loci and the involved rsfMRI traits can

be found in Supplementary Figures 4-12.
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Figure 3: Selected pairwise genetic correlations between functional connectivity traits and regional
brain volumes. a) The asterisks highlight significant associations after controlling the false discovery rate at
0.05 level. The left y-axis lists the location of functional connectivity traits, the right y-axis shows the associated
functional networks, and the x-axis provides the name of regional brain volumes. The colors represent genetic
correlations (rg). b) Location of the right insula and its neighboring brain regions whose functional connectivity
strengths were genetically correlated with the right insula volume. The colors describe different brain regions. €)
Location of the left pericalcarine and its neighboring brain regions whose functional connectivity strengths were
genetically correlated with the left pericalcarine volume.
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Figure 5: Selected pairwise genetic correlations between functional connectivity traits and other
brain-related traits/disorders. a) The asterisks highlight significant associations after controlling the false
discovery rate at 0.05 level. The left y-axis lists the location of functional connectivity traits, the right y-axis
shows the associated functional networks, and the x-axis provides the name of other brain-related traits/disorders.
The colors represent genetic correlations (rg). b-e) Location of the brain regions whose functional connectivity
strengths were genetically correlated with b) attention-deficit/hyperactivity disorder (ADHD); €) schizophrenia
(SCZ); d) major depressive disorder (MDD); and e) intelligence. The colors describe different brain regions.
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