

1 Dopamine-gated memory selection during slow wave sleep

2

3 **One Sentence Summary:**

4 Dopamine before sleep promotes forgetting of weak memory traces associated with increased
5 spindle amplitude around the peak of a slow oscillations.

6

7 **Authors:**

8 Hanna Isotalus 1, 2 *

9 -- hanna.isotalus@bristol.ac.uk

10 Will J Carr 1

11 -- wc17397@bristol.ac.uk

12 George G Averill 1

13 -- george.g.averill@gmail.com

14 Oliver Radtke 6

15 -- Oliver.Radtke@hhu.de

16 James Selwood 1, 3

17 -- james.selwood@bristol.ac.uk

18 Rachel Williams 1

19 -- Rachel.Williams@nbt.nhs.uk

20 Elizabeth Ford 1

21 -- b-ford@outlook.com

22 Liz McCullagh 7

23 -- liz.McCullagh@UHBW.nhs.uk

24 James McErlane 1
25 -- james.mcerlane1@gmail.com
26 Cian O'Donnell 8
27 -- cian.odonnell@bristol.ac.uk
28 Claire Durant 4
29 -- Claire.Durant@bristol.ac.uk
30 Ullrich Bartsch 5
31 -- Ullrich.Bartsch@bristol.ac.uk
32 Matt W Jones 5
33 -- Matt.Jones@bristol.ac.uk
34 Carlos Muñoz-Neira 1
35 -- carlos.munoz@bristol.ac.uk
36 Alfie R Wearn 1
37 -- alfie.wearn@bristol.ac.uk
38 John P Grogan 1,9
39 -- john.grogan@bristol.ac.uk
40 Elizabeth J Coulthard 1, 3 *
41 -- Elizabeth.Coulthard@bristol.ac.uk
42
43 *Corresponding authors
44 **Affiliations:**

45 1 Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of
46 Bristol, Bristol

47 2 Digital Health, Faculty of Engineering, University of Bristol, Bristol

48 3 Southmead Hospital, North Bristol NHS Trust, Bristol

49 4 Experimental Psychology, University of Bristol, Bristol

50 5 School of Physiology, Pharmacology and Neuroscience, University of Bristol

51 6 Department of Neurology, Centre for Movement Disorders and Neuromodulation, Medical
52 Faculty, Heinrich-Heine-University, Düsseldorf.

53 7 Production Pharmacy, Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS
54 Trust

55 8 School of Computer Science, Electrical and Electronic Engineering, and Engineering
56 Mathematics, University of Bristol, Bristol

57 9 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford

58 **Abstract:**

59 The human brain selectively stores knowledge of the world to optimise future behaviour,
60 automatically rehearsing, contextualising or discarding information to create a robust record of
61 experiences. Storage or forgetting evolves over time, particularly during sleep. We have
62 previously shown that dopamine given in the form of L-DOPA tablets improves long-term
63 memory in Parkinson's disease, but only when given overnight. L-DOPA is already prescribed
64 widely with a good safety profile and could potentially be rapidly repurposed to improve
65 cognitive performance and improve quality of life in, for example, early Alzheimer's Disease, if
66 we understood the best time of day to prescribe. Therefore, we sought to test how dopamine
67 shaped long-term memory formation before and during sleep in a double-blind randomised
68 placebo-controlled cross-over trial of healthy older adults ($n = 35$). We administered L-DOPA
69 after word-list learning to be active during repeat exposure to a proportion of the words and
70 during subsequent nocturnal sleep. Nocturnal dopamine accelerated forgetting for words
71 presented once but it did not affect memory for words presented twice. During slow wave sleep,
72 L-DOPA also increased spindle amplitude around slow oscillation peaks. Larger dopamine-
73 induced difference in word memory was associated with a larger increase in spindle amplitude.
74 Dopamine-dependent memory processing may therefore modulate spindles dependent on slow-
75 oscillation phase. Further, overnight dopamine increased total slow wave sleep duration by
76 approximately 11%. This pharmaceutical modification of slow wave sleep may have potential
77 health-enhancing benefits in old age that could include cognitive enhancement and Alzheimer's
78 prevention.

79 **Introduction**

80 The brain selectively extracts and stores important details of our daily lives, while demoting
81 irrelevant information - you have probably forgotten where you parked your car while shopping
82 last week, but you will remember your parking slot in an airport carpark after a week's holiday.
83 When memories are first encoded they form traces known as engrams – or changes in neuronal
84 and synaptic activity that represent a memory (1, 2). Depending on context and relevance,
85 engrams can be integrated within memory networks for the long term or forgotten through a set
86 of processes that start immediately and progress during wake and sleep (3-5).

87

88 The complex milieu that underpins memory formation depends on several neurotransmitters
89 including dopamine. This transmitter is released from two midbrain areas - locus coeruleus and
90 ventral tegmental area – which directly project to the hippocampus (6). Exogenous dopamine
91 administration can modulate memory persistence, particularly after initial learning (7-10). In
92 humans with dopamine depletion due to Parkinson's disease, memory consolidation improves
93 with overnight administration of L-DOPA (Levodopa – which increases dopamine
94 concentrations in the brain), but the timing of the dopamine manipulation relative to learning
95 critically determines its effects on memory (8, 11).

96

97 During memory encoding and shortly after, engrams of important information can be prioritised
98 for storage, based either on previous knowledge, repeated exposure, or other associations, such
99 as financial or emotional value (12, 13). At a molecular level, synaptic, 'tagging' for information
100 prioritised for storage, protein synthesis and synaptic modifications occur within hours of
101 encountering information (14, 15). The dopaminergic connection between midbrain and
102 hippocampus may selectively bias long-term memory storage by altering synaptic tagging or the
103 protein synthesis involved in synaptic tagging (15-17).

104

105 As well as prospectively prioritising, or tagging, memories for later replay during sleep, dopamine
106 may directly act during sleep *per se* (18). As engram storage evolves, newly acquired memories are
107 spontaneously repeated (17); sleep affords an optimal neurophysiological state during which to
108 enact this process - although replay occurs during wake too (19). Patterns of activation within
109 hippocampal neuronal assemblies are selectively replayed during sharp wave ripples which are, in
110 turn, temporally coupled to sleep spindles and slow oscillations, prominent during non-REM
111 sleep (20-24).

112

113 Contextual information at a later time-point can also retroactively alter the likelihood that
114 previous memories are stored for longer term (25-27). Dopaminergic modulation of memory
115 may underpin contextually-driven modification of engrams (16, 28-30). Exogenous
116 administration of dopamine may therefore alter the likelihood of memory stabilisation when
117 given *after* initial learning, during re-exposure and consolidation.

118

119 It is important to point out that as well as actively prioritising relevant memories for storage,
120 several neurobiological substrates could promote forgetting (31, 32). In drosophila, the
121 ‘forgetting cells’ promote changes in cellular signalling that weaken the engram by releasing
122 dopamine. Dopamine enhances encoding of new memories at the cost of triggering forgetting of
123 competing information (33, 34). This dopamine-induced strategic forgetting is selective to weakly
124 encoded memories – presumably, an automatic strategy for ensuring retention of more
125 behaviourally relevant information. In humans, retroactive retrieval of already learnt information
126 has been shown to simultaneously enhance memory for the retrieved information while inducing

127 forgetting of contextually related information (27). This retrieval induced forgetting is caused by
128 an *active* inhibition of the competing memory traces during recall (35, 36).

129

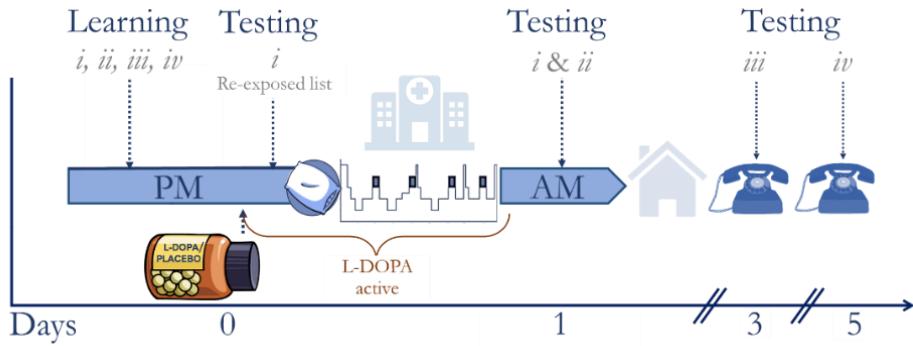
130 Here we propose a role for dopamine in *selecting* memories for long-term storage. Specifically, we
131 propose that, after initial learning, dopamine biases human memory in favour of strongly
132 encoded memory traces as opposed to weaker traces. We tested the hypothesis that L-DOPA
133 given after initial learning (to be active during re-exposure and subsequent sleep) will increase
134 memory retention compared to placebo. We also predicted that no such effect would be
135 observed for words that were not re-exposed. We predicted the primary effects of dopamine
136 during long-term memory evolution would be mediated through modulation of slow wave sleep
137 duration and sleep spindle characteristics.

138

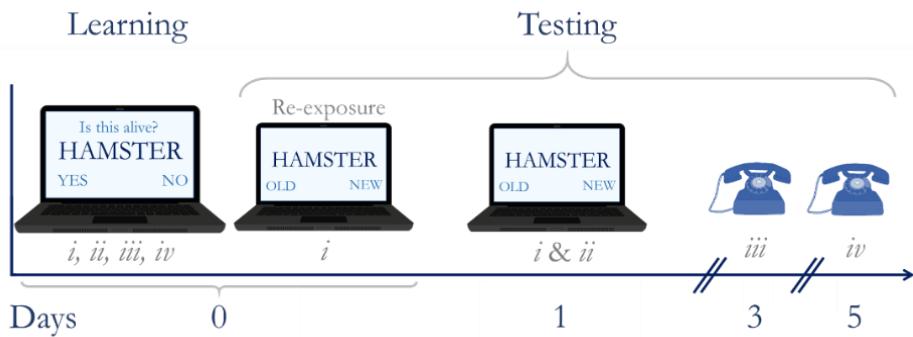
139 In this double-blind randomised within-subjects placebo-controlled trial, we show that a single
140 dose of exogenous dopamine (L-DOPA) given after learning (to be active during re-exposure
141 and subsequent nocturnal sleep) unexpectedly accelerates forgetting of non-repeated information
142 effectively biasing memory selection away from weakly encoded items. Investigation of sleep
143 characteristics further showed that spindle amplitude during slow wave sleep was higher on L-
144 DOPA compared to placebo, and this effect was slow oscillation phase dependent. The
145 magnitude of this increase in spindle amplitude correlated with the behavioural effect of
146 dopamine on memory selection. Further, we show that nocturnal L-DOPA increases slow wave
147 sleep duration by ~11%.

148

149 We also report a secondary placebo-controlled randomised control study in which we found that
150 L-DOPA did not affect encoding or retrieval of learned words, further suggesting that the


151 effects of L-DOPA in the main experiment were enacted during repetition, consolidation and/or
152 sleep.

153


154 [Results](#)

155 To study the relationships between dopamine, sleep and forgetting, we carefully timed
156 administration of L-DOPA to increase dopamine concentration in healthy older adults across
157 two placebo-controlled double-blind randomised crossover experiments: the main experiment
158 and a secondary experiment. The overarching structure enabled targeting of L-DOPA to
159 different memory processes – in the main experiment ([Fig. 1a.](#)), we explored the effects of
160 dopamine on memory consolidation by administering long-acting L-DOPA after learning, to be
161 active after initial learning and during nocturnal sleep ([37](#)). In the secondary experiment, we used
162 short-acting L-DOPA to target memory retrieval (testing) or encoding (learning), but not sleep.

A

b

Figures are not to scale.

Fig. 1. Experiment 1 Study procedure

- a. In this placebo-controlled randomised crossover trial, healthy elderly volunteers completed two overnight sleep polysomnography visits. In the evenings, they learnt a set of words (Fig. 1b.) 45min *before* receiving 200mg L-DOPA CR or placebo. 75min *after* dosing a portion of the words were re-exposed. The orange bracket denotes when L-DOPA was active. Therefore, L-DOPA was active during re-exposure and sleep but not during learning or memory tests on days 1, 3, or 5. Apart from treatment (L-DOPA or placebo) the nights were identical. Each volunteer completed both nights.
- b. Participants were asked to memorise 80 words shown on a computer screen one at a time. The words were separated into four lists for testing (Lists *i, ii, iii, iv* – 20 words each) but during learning they were shown in a random, interleaved, order. 2h after learning,

participants were re-exposed to List *i* by a recognition test. The following morning, ~12 hours after initial learning, memory for Lists *i* and *ii* was tested (random, interleaved), while lists *iii* and *iv* were tested 3 and 5 days later over the phone. Each test was performed using a recognition test with a unique set of distractor words. The testing procedure was fully explained to participants before learning.

163

164 In the main experiment, 35 healthy elderly volunteers (age = 68.9 ± 3.5 years; 22 Female)
165 completed two overnight study visits (**Fig. 1a.**) which were identical except for treatment
166 allocation. On each visit, we administered controlled release L-DOPA (CR; co-beneldopa
167 200/50mg) or placebo *after* participants had learnt information (word Lists *i*, *ii*, *iii* and *iv*, **Fig.**
168 **1b.**). Participants were re-exposed to a quarter of the items (List *i*) shortly after L-DOPA (or
169 placebo) administration through a recognition memory test – this manipulation was performed
170 to strengthen the memory for each List *i* word. Memory for the re-exposed items (List *i*) was
171 tested the following day together with a matched number of items that had not been re-exposed
172 (List *ii* – weak memory). Memory for the remainder of the items was probed 3 or 5 days after
173 learning (Lists *iii* and *iv*). The participants knew some words would be tested both in the evening
174 and in the morning, and the remainder of the words would only be tested once.

175

176 Initial learning occurred before L-DOPA (/ placebo), whereas memory re-exposure and a full
177 night of sleep occurred after L-DOPA (/ placebo). Therefore, we were able to isolate the effects
178 of dopamine on re-exposure, consolidation and sleep-dependent processing from its effects on
179 initial encoding and retrieval. Items presented only once (Lists *ii*, *iii*, *iv*) were expected to have
180 induced weaker memory traces than the re-exposed items (List *i*).

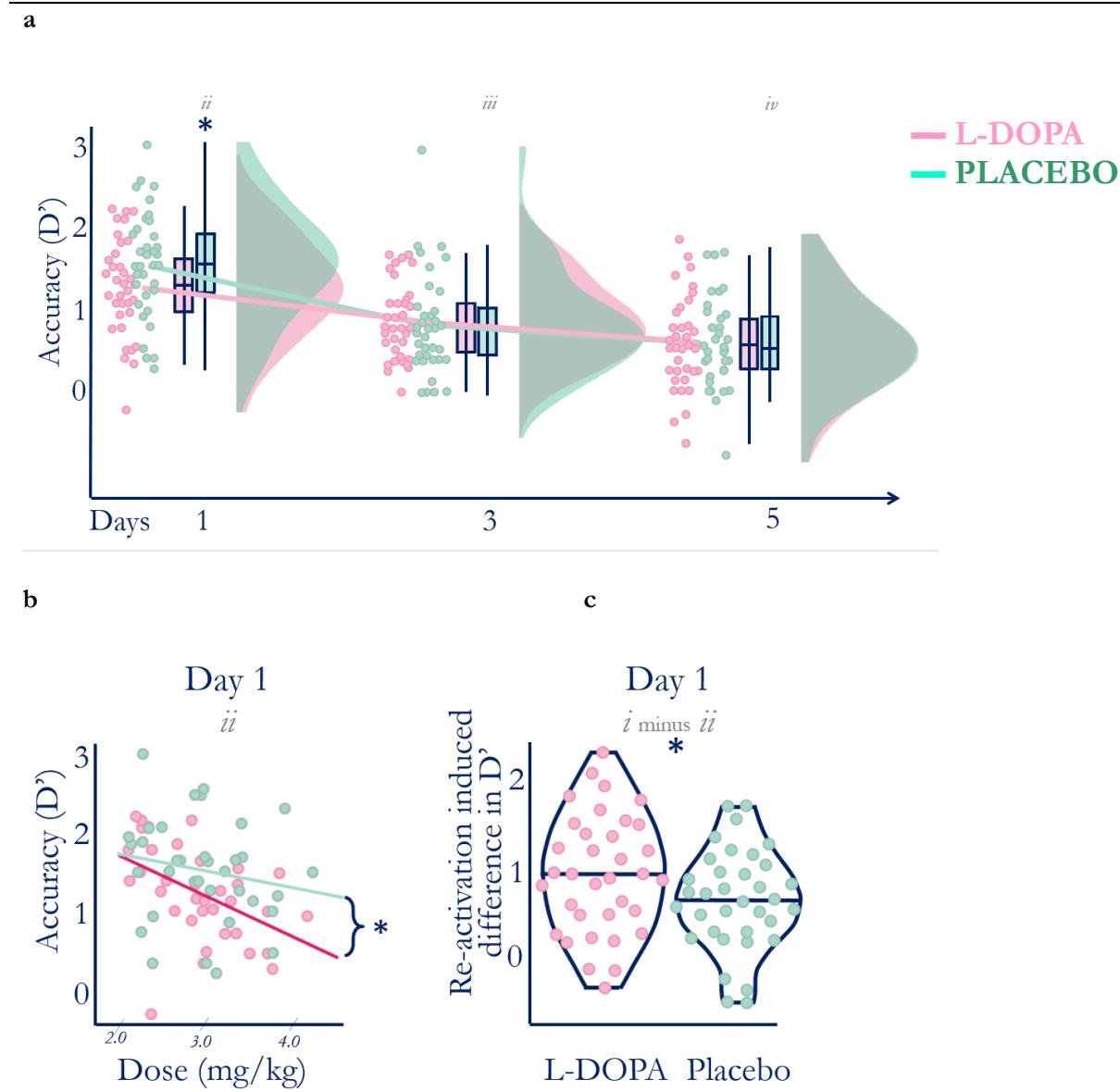
181

182 We used d' (D-prime) as a measure of recognition memory accuracy for each list. D' is a
183 sensitivity index that takes into account both the accurately detected signal (hits) and inaccurately
184 identified noise (false alarms) (38). In other words, d' captures not just correctly identified “old”
185 words during the recognition test, but it also accounts for incorrect judgements of “new” items
186 as “old”. D' can be calculated as the difference between the Z-transformed rates of correct hit
187 responses and incorrect false alarms. A higher d' therefore indicates better ability at performing
188 the task, while 0 indicates performance at chance.

189

190 L-DOPA accelerates forgetting during sleep

191 L-DOPA given after learning accelerated forgetting of items presented only once when memory
192 was tested the next day (List *ii*) but not at greater delays (Lists *iii, iv*, **Fig. 2a.**). First, we
193 performed pairwise comparisons between the L-DOPA and placebo conditions for each single-
194 exposure list. Data was missing for one participant from Day 5 test following placebo, and
195 therefore we analysed each list separately, as opposed to using an ANOVA which would require
196 removing the participant's data from all analyses. These comparisons demonstrated that d' was
197 reduced on L-DOPA ($d'_{List\ ii} = 1.249 \pm 0.59$) compared to placebo ($d'_{List\ ii} = 1.544, \pm 0.65$) at
198 Day 1 (paired $t(34) = -3.333$, $p = 0.002$, $BF_{10} = 16.6$, $n = 35$). By Day 3 there was no difference
199 ($d'_{List\ iii}$: L-DOPA = 0.86 ± 0.46 ; placebo = 0.82 ± 0.63 ; Wilcoxon's $Z = 338$, $p = 0.313$, $BF_{01} =$
200 5.2 , $n = 35$; $d'_{List\ iv}$: L-DOPA = 0.58 ± 0.58 ; placebo = 0.59 ± 0.55 ; $t(33) = -0.02$, $p = 0.982$, BF_{01}
201 = 5.4 , $n = 34$). The reduction in List *ii* accuracy remained after correcting for false discovery rate
202 for the three tests (Benjamini-Hochberg corrected $p = 0.006$) (39). Together these findings show
203 that L-DOPA accelerates the speed of forgetting for information over 1 night, but this
204 information would be lost in the longer term even without L-DOPA (**Fig. 2a.**, SM1). This
205 suggests that dopamine may play an important part in either selecting memories for storage or
206 initiating forgetting.


207

208 We were also interested in any dose-dependent effects of L-DOPA on memory. Body weight is
209 known to influence the cumulative dose and pharmacokinetic properties of L-DOPA (40), as
210 well as L-DOPA's effect on memory in humans (9). We used a mixed linear model to investigate
211 the effect of dose (based on body weight). A model with weight-adjusted dose (mg/kg), delay
212 from learning (days) and the interaction term (delay * dose) as fixed effects and participants as
213 random effects (including random intercepts and slopes of delay by participant) revealed a main
214 effect of delay ($t(33.7) = -9.142$, $p < 0.001$), no overall effect of dose ($t(20.3) = -1.36$, $p = 0.188$)

215 and a delay * dose interaction ($t(98.2) = 2.33, p = 0.022, n = 35$). The two effects remained
216 following false discovery rate correction for the whole model (SM 2). Next, we performed a
217 series of post-hoc correlational analyses to determine which effects were driving this interaction.

218

219 The degree of forgetting correlated with L-DOPA dose (Spearman's $\rho = -0.56, p < 0.001, n =$
220 $35, p_{\text{corrected}} < 0.001$ after correcting for all post hoc correlations) but not with placebo (Fig. 2b. –
221 Spearman's $\rho = -0.23, p = 0.18, n = 35$). The degree of forgetting did not correlate with L-
222 DOPA dose ($p > 0.36$) on days 3 or 5 in either condition. The lack of correlation in the placebo
223 arm suggests that these effects were not driven by bodyweight but were instead associated with
224 the treatment. The delay*dose interaction was therefore driven by L-DOPA affecting memory
225 for List *ii* on Day 1 but not at subsequent delays. This suggests that L-DOPA accelerates initial
226 forgetting in a dose-dependent manner, but it does not influence memory for more strongly
227 encoded items that would be retained 3 or 5 days later.

Fig. 2. Nocturnal dopamine dose-dependently modulates memory

a. Higher d' at Day 1 on placebo (green) compared with L-DOPA (red) shows that overnight L-DOPA increased forgetting when memory was tested next day (List *ii*) but not 3 or 5 days later (Lists *iii* and *iv* respectively) compared to placebo. Note that L-DOPA was no longer active during memory tests. Therefore, L-DOPA during sleep accelerates forgetting of weakly encoded information that is naturally forgotten by day 3. Boxplot shows quartiles with kernel densities plotted to the right.

- b.** Higher L-DOPA dose during consolidation was correlated with poorer Day 1 recall of List *ii* d' (Spearman's $\rho = -.056$, $p < 0.001$, red) but no such relationship was found on the placebo night ($\rho = -0.23$, $p = 0.180$, green). Notably, these two relationships were also different (Pearson's r-to-z transform $z = -2.634$, $p = 0.008$) suggesting the effect is driven by dose and not body weight alone. Lines of best fit are shown for illustration purposes.
- c.** L-DOPA increased the relative benefit of re-exposed compared to other items (List *i* d' minus List *ii* d'). This relative benefit was larger after L-DOPA ($d'_{List\ i - ii} = 0.953 \pm 0.67$) compared to placebo ($d'_{List\ i - ii} = 0.643 \pm 0.56$; $t(34) = 2.48$, $p = 0.018$, $BF_{10} = 2.6$). This difference was driven both by an increase in List *i* d' and a decrease in List *ii* d' on L-DOPA, although the former was not significant (SM 3). Lines show maximum, median, and minimum values (horizontally) and kernel densities (vertically).

228 **L-DOPA accelerates forgetting of weak but not strong engrams**

229 Next, we investigated whether dopamine modulates how re-exposure affects memory. As
230 expected, strong memory traces (re-exposed items – List *i*) were better retained (more ‘hits’)
231 than others (List *ii*) both following L-DOPA (**Hits** $_{List\ i} = 18.1 \pm 2.1$; **Hits** $_{List\ ii} = 13.8 \pm 3.3$; $t(34)$
232 $= 8.49$, $p < 0.001$) and following placebo (**Hits** $_{List\ i} = 18.0 \pm 2.4$; **Hits** $_{List\ ii} = 15.0 \pm 3.0$; $t(34) =$
233 7.18 , $p < 0.001$).

234

235 While L-DOPA accelerated baseline forgetting for weaker items as shown above ($d'_{List\ ii} = 1.25 \pm$
236 0.59) compared to placebo ($d'_{List\ ii} = 1.54 \pm 0.11$, $t(34) = -3.333$, $p = 0.002$, $BF_{01} = 0.1$, SM 3), re-
237 exposed List *i* items were not affected by the treatment ($d'_{List\ i} = 2.20 \pm 0.78$; placebo $d'_{List\ i} =$
238 2.19 ± 0.77 ; $t(34) = 0.134$, $p = 0.894$, $BF_{10} = 5.5$, **Fig. 2c.**, SM 4, 5). Note that we expected that
239 L-DOPA would have enhanced retention for strong engrams while leaving weaker memories
240 unaffected. Instead, L-DOPA accelerated forgetting of weaker information leaving stronger
241 memories largely unaffected.

242

243 To quantify this relative effect of dopamine on single-exposed compared to re-exposed items, we
244 used the paired difference between the strongly and weakly encoded lists (i.e. d' for List i minus
245 d' for List ii) from the Day 1 recognition test. This relative benefit was larger following L-DOPA
246 ($d'_{List\ i:ii} = 0.953 \pm 0.67$) compared to placebo ($d'_{List\ i:ii} = 0.643 \pm 0.56$, $t(34) = 2.48$, $p = 0.018$,
247 $BF_{10} = 2.6$, **Fig. 2.c.**). Therefore, L-DOPA selectively biased memory retention away from non-
248 repeated items resulting in a larger difference between the two lists on L-DOPA compared to
249 placebo.

250

251 To reiterate, L-DOPA differentially modulated strong and weak memory traces, augmenting
252 differences between them. Furthermore, we performed two post-hoc analyses that showed that
253 the treatment had no effect on the false alarm rate ($t(34) = 0.527$, $p = 0.601$, $BF_{01} = 4.8$). Rather,
254 L-DOPA reduced the hit rate ($List\ ii - t(34) = -2.89$, $p = 0.007$, $BF_{10} = 6.0$) – the hits rather than
255 the false alarms drive all the effects of L-DOPA on d' we identified. This implies that effects of
256 dopamine are related to engram strength rather than modulation of noise that generates false
257 responses.

258

259 Importantly, there was no difference in performance during the evening re-exposure tests
260 between placebo and L-DOPA conditions (Day 0 List i paired $t(34) = .83$, $p = 0.412$, $BF_{01} = 4.0$,
261 *SM 4*). The Bayes Factor (BF_{01}) suggested that these results were 4 times more likely to have
262 been recorded under the null than the alternative distribution. Therefore, dopamine did not
263 affect memory performance before sleep – the effects we report here only manifest after or
264 during the re-exposure.

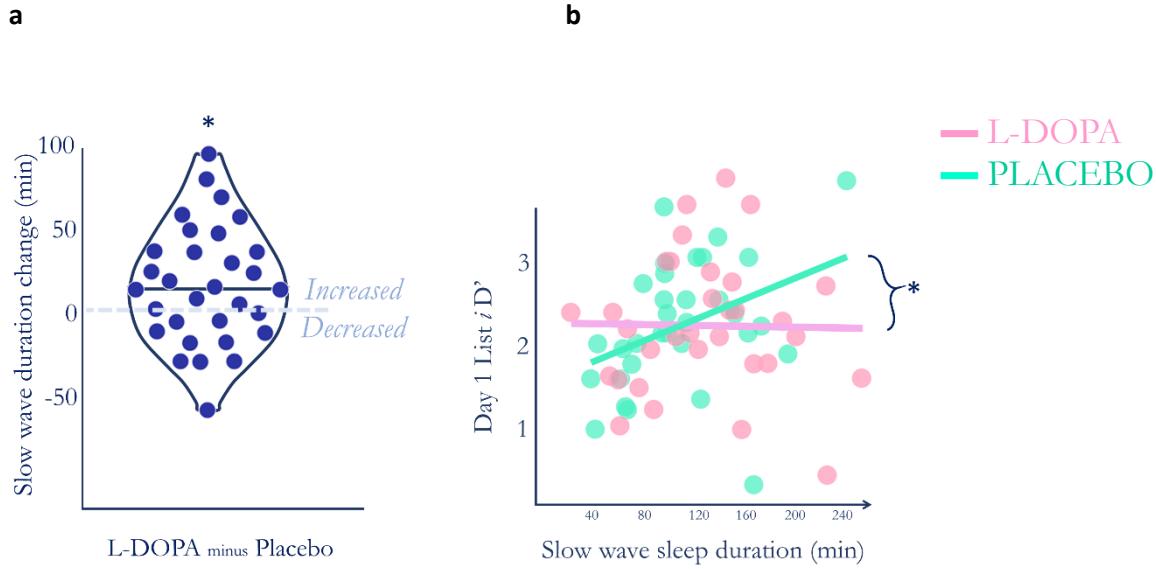
265

266 Together, these findings provide evidence that dopamine biases selection of memories for long
267 term storage by accelerating forgetting of weakly-encoded information, a process that could free
268 memory capacity for storage of more strongly encoded items. Dopamine may bias memory in
269 this way during sleep. Next, we explored polysomnography measures for potential
270 neurophysiological mechanisms underlying dopamine's effects on memory.

271

272 **L-DOPA prolongs slow wave sleep**

273 Nocturnal L-DOPA increased time spent in slow wave sleep (stage N3) by ~10.6% (**Fig. 3.a.**)
274 but did not markedly affect the time in other sleep stages or total sleep time (*SM 6*). As most
275 slow wave sleep occurs in the first 4 hours of sleep and the absorption profile of L-DOPA
276 controlled release strongly predicts that dopamine would be increased in the first half of the
277 night ([37](#)), we expected that dopamine would predominantly affect sleep during this time. As
278 predicted, the observed increase in slow wave sleep occurred only during the first half of the
279 night (as defined by the mid-point between lights-off and lights-on times) on L-DOPA (90.2 ±
280 34.1 min) compared to placebo (76.8 ± 30.3 min, $t(30) = -3.07$, $p = 0.005$, $BF_{10} = 8.7$, $n = 31$,
281 for missing data see *SM 7*). L-DOPA did not affect slow wave sleep duration during the second
282 half of the night ($t(30) = -0.387$, $p = 0.703$, $BF_{01} = 4.9$).


283

284 Next, we explored the relationship between L-DOPA's effect on total slow wave sleep duration
285 with its effects on memory. Overall, longer slow wave sleep duration was associated with
286 enhanced accuracy for the repeated items (List *i*) on placebo (Spearman's $\rho = 0.450$, $p = 0.009$).
287 This effect did not occur for List *ii* (non-repeated items), and it disappeared after participants
288 took L-DOPA (List *ii* Spearman's $\rho = -0.043$, $p = 0.810$, **Fig. 3.b.**, *SM 8*). This suggests that
289 slow wave sleep duration is associated with consolidation of stronger memory traces, but it does

290 not suggest a direct relationship between slow wave sleep duration and acceleration of forgetting
291 of weaker memory traces on dopamine.

292

293 We next asked what neurophysiological processes underlie the quicker forgetting of weaker
294 compared to stronger memory traces on L-DOPA.

Fig. 3. L-DOPA and slow wave sleep duration

- a. Paired differences in slow wave sleep duration show that most volunteers (dots above zero) had increased slow wave sleep on L-DOPA compared to placebo. The duration was increased by an average of ~10.6% on L-DOPA compared to placebo ($t(31) = 2.702, p = 0.011, BF_{10} = 4.0$). This effect remained after false discovery rate correction accounting for each sleep stage ($p_{\text{corrected}} = 0.044$).
- b. Longer slow wave sleep duration was correlated with better memory for strongly encoded information on placebo (Spearman's $\rho = 0.45, p = 0.009, p_{\text{corrected}} = 0.012$, green), but after L-DOPA was given this effect disappeared ($\rho = 0.043, p = 0.810$, red). The two relationships were different (Pearson's r -to- $z = -1.99, p = 0.046$). This strongly suggests that L-DOPA does not increase the relative effect of re-exposure by merely increasing slow wave sleep. Lines of best fit are presented for illustration.

295

296 L-DOPA increases spindle amplitude during slow wave sleep

297 Spindles are a prominent feature of NREM sleep and are associated with memory retention (41,

298 42). L-DOPA increased slow wave sleep spindle amplitude, and while this increase was small on

299 average ($m_{\text{placebo}} = 28.3 \pm 8.5 \mu\text{V}$; $m_{\text{L-DOPA}} = 28.9 \pm 83 \mu\text{V}$; Wilcoxon's $Z = 95.0$, $p_{\text{corrected}} =$
300 0.008 , $\text{BF}_{10} = 3.6$), this effect was manifest in 25 out of 31 participants with spindle data available
301 (Fig. 4.a., SM 9). This change was not correlated with the weight adjusted dose (Pearson's $r = -$
302 0.139 , $p = 0.456$), nor did we find any correlations between spindle amplitude and the d'
303 difference between Lists *i* and *ii* on either L-DOPA (Spearman's $\rho = 0.047$, $p = 0.801$) or
304 Placebo (Spearman's $\rho = -0.040$, $p = 0.833$, SM 8). However, the paired change of slow wave
305 spindle amplitude and the d' difference for strong and weak memories between the L-DOPA
306 and placebo nights was positively correlated ($\rho = 0.438$, $p = 0.015$, $n = 30$, Fig. 4.b.).

307

308 In other words, the behavioural effect of L-DOPA on memory based on engram strength was
309 associated with the increase in spindle amplitude on L-DOPA. This effect was specific to the L-
310 DOPA-mediated *difference* in memory and spindle amplitude between strong and weak memory
311 traces, and it was not present for List *i* or *ii* alone (SM 8).

312

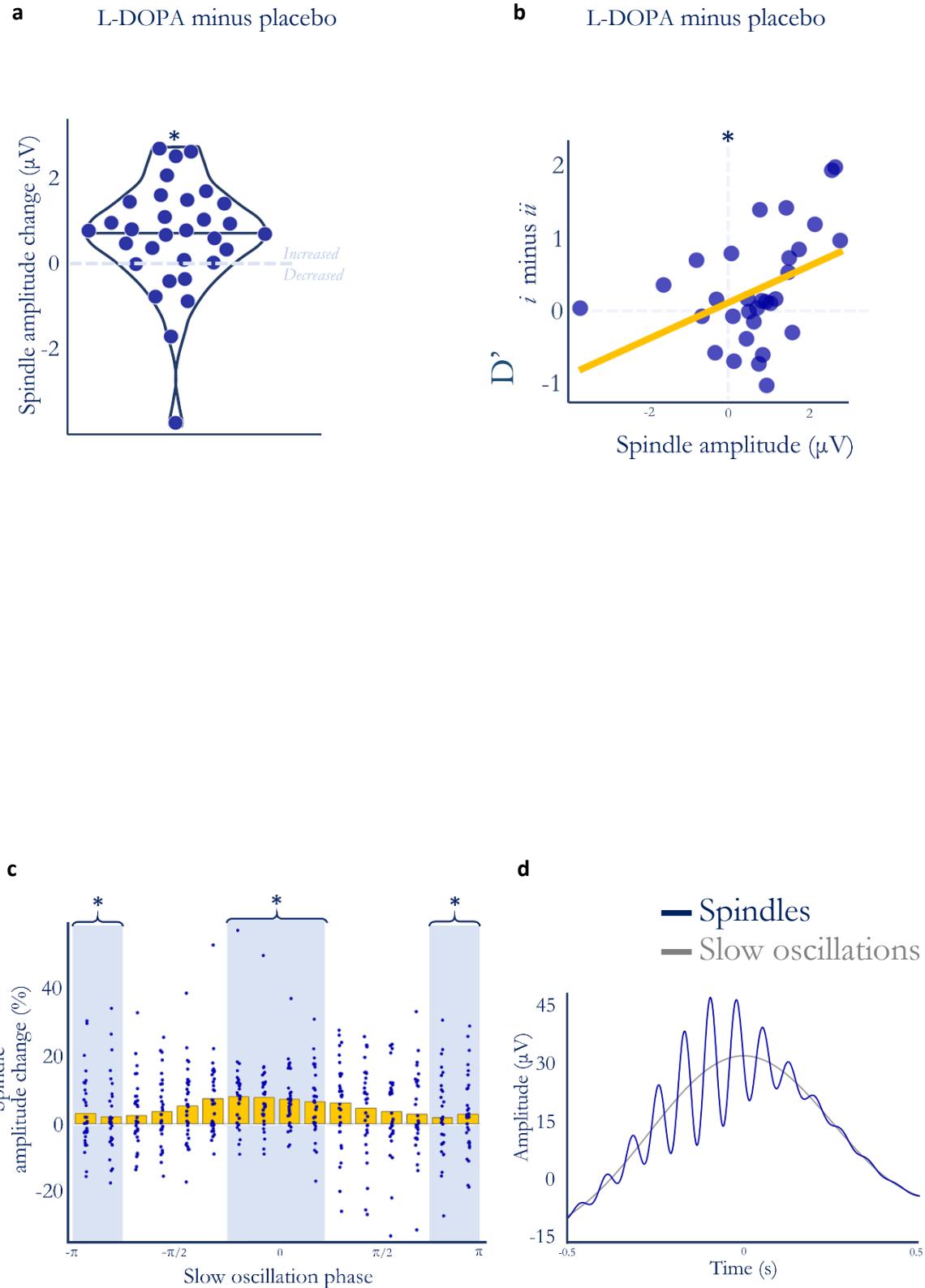
313 L-DOPA affects spindles most at slow oscillations peaks

314 Temporal coupling between slow oscillations and spindles have been shown to predict memory
315 performance, and this coupling is impaired by aging (43). As we observed effects of L-DOPA on
316 both memory and spindle physiology, we next explored whether L-DOPA's effects on memory
317 performance could be due to an alteration in slow oscillation – spindle coupling.

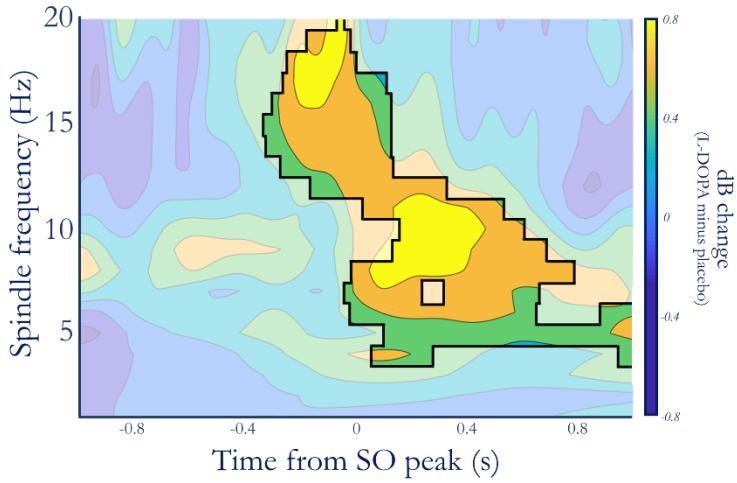
318 Periods of time during which the maximum spindle amplitude occurred during a slow oscillation
319 events were identified, segmenting the slow oscillations into 16 phase bins (then grouped into 4
320 shaded and white areas in Fig. 4c.). L-DOPA had a slow oscillation phase dependent effect on
321 spindle amplitude, with a larger increase around the zero phase (Fig. 4c.). The peak change

322 occurred in the $-\pi/4$ to $+\pi/4$ grouping, the same that showed the highest mean spindle amplitude
323 for both L-DOPA and placebo conditions (**Fig. 4c., d.**).

324 To see whether this effect was specific to this spindle region-of-interest (ROI) we also
325 performed spectral composition analyses of each slow oscillation – spindle co-occurrence. A
326 spectral mean was calculated for each participant for L-DOPA and placebo conditions using
327 Morlet Wavelet convolution (**Fig. 4e**). Changes in power between L-DOPA and placebo were
328 then identified using a cluster-based permutation method. Cluster analysis of the *a priori* spindle
329 ROI revealed an increase in power on L-DOPA compared to placebo ($p = 0.002$). **Fig. 4e**.
330 demonstrates the primary cluster (threshold $\alpha = 0.01$ $p = 0.002$) when this same analysis was
331 carried out on the surrounding time-frequency space. It suggests that the power increase extends
332 beyond the spindle ROI, into theta and alpha bands following the slow oscillation peak.


333

334 L-DOPA therefore altered the neural dynamics that underlie the synchronised relationship
335 between slow oscillations, spindles, and potentially other frequencies. This may represent either a
336 phase-specific effect of dopamine during sleep, or a secondary effect on these dynamics caused
337 by a dopaminergic bias of early awake consolidation or re-exposure.


338

339 We found no associations between L-DOPA and other slow oscillation characteristics (all $p >$
340 0.09, *SM 9*). Exploratory analyses revealed no differences between L-DOPA and placebo on
341 subjective sleep measures (St Mary's Hospital Sleep Questionnaire ([44](#)) or Leeds Sleep
342 Evaluation Questionnaire ([45](#)) (*SM 10*).

343

e

Fig. 4. L-DOPA, memory, and spindle amplitude

- a. Nocturnal L-DOPA increased spindle amplitude ($n = 31$, Wilcoxon's $z = 401$, $p = 0.002$, $p_{\text{corrected}} = 0.008$, $\text{BF}_{10} = 3.6$) suggesting an effect of L-DOPA on regional coherence during slow wave spindles.
- b. The L-DOPA mediated increase in spindle amplitude was associated with the L-DOPA mediated increase in the relative benefit of re-exposure on d' (Fig. 2c.) (Spearman's $\rho = 0.438$, $p = 0.015$). Note that this relationship is non-linear, line is fitted in the figure for illustration.
- c. The dopamine-induced spindle amplitude increase is slow oscillation phase-dependent. Mean spindle amplitude change (normalised to baseline amplitude ($[\text{placebo} + \text{L-DOPA}]/2$)) is higher on L-DOPA around the zero phase of slow oscillations. We compared the effect of L-DOPA at the peak (zero phase) and trough (π phase) of the slow oscillation. The L-DOPA mediated spindle amplitude increase was larger in the 4 zero-centric bins compared to the 4 π -centric bins (outermost on either side) – (paired $t(30) = 2.12$, $p=0.043$, $\text{BF}_{10} = 1.3$). Yellow bars show the mean amplitude change with individual participants' spindle amplitude change overlaid. Spindle amplitude peaked in the $-\pi/4$ to $-\pi/8$ phase bin for both placebo and L-DOPA.

- d. Peak-locked grand average mean slow oscillation events (grey) superimposed with the peak-locked average of all spindle events (blue) that occurred during slow oscillations – averaged across both L-DOPA and placebo nights.
- e. Paired permutation cluster analysis in time-frequency space comparing L-DOPA and placebo conditions for all slow oscillation - spindle co-occurrence events, centered on the slow oscillation peak. All shown differences denote increased activity on L-DOPA (cluster threshold of $\alpha = 0.01$, time-frequency space outside significant clusters is greyed). Overall $p = 0.002$ for the largest cluster.

344

345 L-DOPA does not modulate memory at encoding or retrieval – Secondary experiment
346 Whilst there were no differences in performance between L-DOPA and placebo during the re-
347 exposure test in the evening (*SM 4*), it is possible that the observed effect of L-DOPA on
348 memory was driven by either L-DOPA enhancing encoding during the re-exposure or by
349 residual amounts of L-DOPA acting during retrieval. To investigate whether dopamine was
350 affecting these stages of memory, we ran a secondary placebo-controlled experiment
351 manipulating dopamine levels at encoding or retrieval.

352

353 In the secondary experiment, healthy elderly participants were given short-acting L-DOPA an
354 hour before encoding and, in a separate memory task, an hour before retrieval (*SM 11, 12*). Note
355 that we used short-acting Levodopa here rather than controlled-release (as in the main
356 experiment) as the processes we were probing were discrete events rather than evolving
357 processes. We did not find an effect of L-DOPA on encoding ($t(28) = -0.352$, $p = 0.728$, $BF_{01} =$
358 4.6 , $n = 32$) or retrieval ($t(27) = -0.393$, $p = 0.698$, $BF_{01} = 4.6$, $n = 28$) with a 24-hour delay
359 between learning and test (*SM 12, 14*, for missing data see *SM 7*). Therefore, at the doses and
360 timings used here, dopamine appears to have a temporally and functionally specific effect biasing

361 memory towards important information after initial learning, during either re-exposure, sleep or
362 both.

363

364 Whilst the results from this control study support our initial interpretation that L-DOPA affects
365 memory *after* initial learning but *before* retrieval, it is important to note that due to practical
366 reasons direct statistical comparisons between the two studies cannot be made. First, due to the
367 different profiles of the treatments used (controlled release versus short acting), the L-DOPA
368 doses participants were exposed to were different; 2.1 mg/kg for the control study compared to
369 2.9 mg/kg for the main experiment. Second, whilst the memory tasks used were similar word-list
370 tasks, they were not identical.

371

372 Discussion

373 Dopamine accelerates forgetting for weakly encoded information during sleep – while more
374 strongly encoded information is relatively preserved – and increases duration of slow wave sleep
375 by 10.6%. The behavioural effect of dopamine on strongly versus weakly encoded information is
376 associated with a dopamine-driven increase in spindle amplitude during slow wave sleep. This
377 increase in spindle amplitude only occurs around the peak of slow oscillations.

378

379 Traditionally, forgetting is considered a passive process where information is “lost”. However,
380 newer animal models support an active, more strategic, forgetting process mediated by dopamine
381 [\(31, 33, 34, 46\)](#). We showed that dopamine increased forgetting for information at 1-day delay
382 but not at later timepoints. Therefore, dopamine may accelerate forgetting of low importance
383 information that would inevitably be lost over time. Our data suggest an *active* dopamine-
384 dependent forgetting mechanism in humans – which can be conceived as dopamine biasing

385 memory selection away from weakly encoded items. This may in turn allow prioritisation of
386 strongly encoded or salient items for consolidation.

387

388 Such prioritisation may be further explained – through analogy with drosophila experiments – by
389 a second dopaminergic system that protects important information from forgetting (46). Human
390 behavioural evidence supports preferential consolidation of salient or rewarded information
391 during sleep (19, 47, 48), and we tie this more closely to dopaminergic modulation. Contrary to
392 hypothesis,, we did not find evidence for a dopamine-driven direct enhancement in
393 consolidation of strongly encoded information here. The relative effect of dopamine on
394 forgetting of low versus high importance items suggests a more nuanced dopaminergic effect -
395 biasing memory away from weaker memory traces Given L-DOPA is already widely used in
396 clinical practice for Parkinson’s disease and could be quickly repurposed if this effect is beneficial
397 for memory overall, this certainly warrants attention and further clinical research.

398

399 There is clear evidence that memory processes before sleep can alter slow wave sleep
400 characteristics, particularly in the early part of the night (49). We administered dopamine while
401 participants were awake, 2h before their bedtime, thus it is possible that at least a portion of the
402 dopamine-driven increase in forgetting occurred during wake. Whilst we cannot rule this out, we
403 did observe that L-DOPA compared to placebo was associated with changes in scalp
404 electrophysiology during sleep, with some of these effects being associated with memory
405 performance. Therefore, we suggest that the dopamine-driven changes on memory were sleep-
406 dependent.

407

408 While changes in spindle characteristics are well known to be associated with memory and
409 neurodegeneration (50), this study directly links dopamine with behavioural relevance of
410 spindles. Spindle amplitude is shaped by the interplay between the thalamus and the cortex (51),
411 and increased amplitude reflects a more coherent and wider topographical expression of spindle-
412 related activity, i.e. better coordination between the brain regions (52, 53). Behaviourally, spindle
413 amplitude has also been associated with enhanced memory retention during a motivated
414 forgetting task (54) and during a tagging paradigm (55). This coordinated activity between the
415 thalamus and cortex during sleep may thus be associated with selecting memories for later
416 retention. Consistent with this, we showed that greater spindle amplitude was associated with a
417 larger dopamine-induced difference between retention of strongly and weakly encoded
418 information.

419

420 L-DOPA mainly increased spindle amplitude around the peak of slow oscillations, which
421 occurred despite no change in slow-oscillation amplitude. Spindles peaked just before zero
422 phase, consistent with previous findings in healthy elderly (43). Spindles, particularly when
423 nested in slow oscillation peaks, are hallmarks of sleep-dependent memory consolidation (56).
424 Age-related uncoupling of spindles from peak of slow oscillations increases overnight forgetting
425 (43). We interpret dopaminergic increase in spindles synchronised to near zero phase of slow
426 oscillation as enhancement of physiological spindle activity to modulate memory consolidation.

427

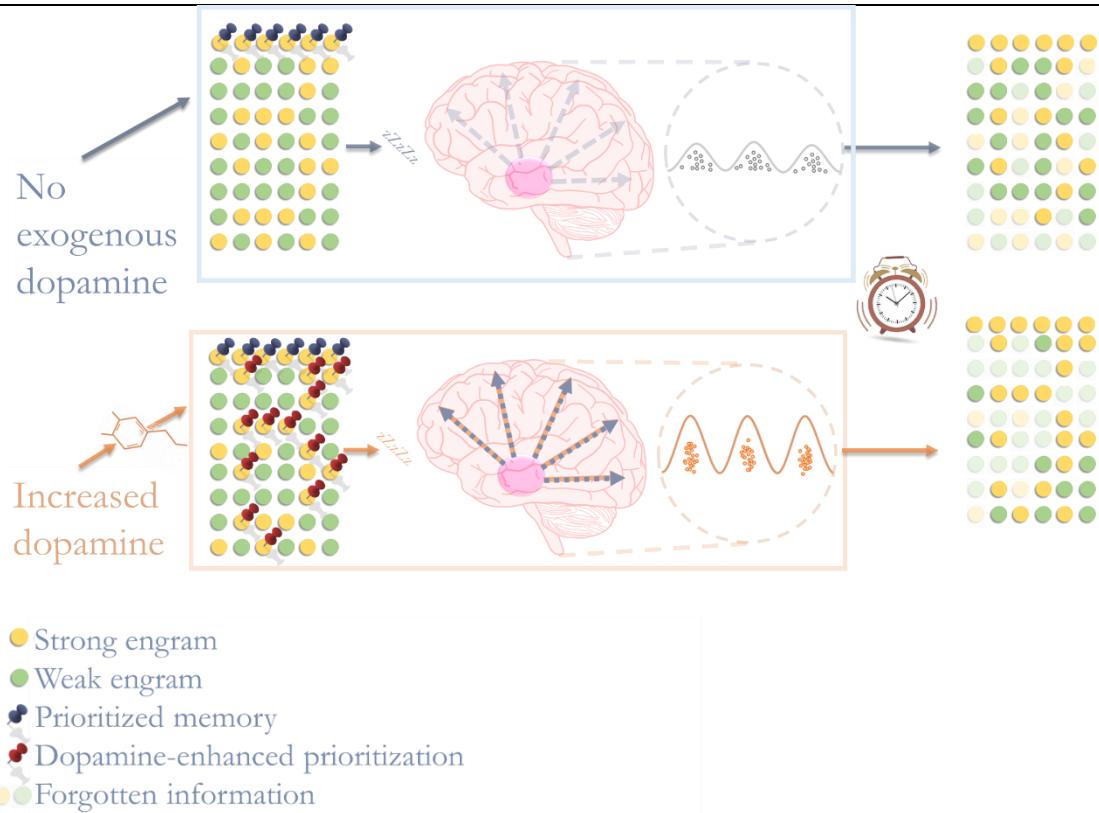
428 There are two possible explanations for our finding – (1) dopamine directly enhances spindle
429 amplitude which in turn enhances the way in which memory is biased based on encoding
430 strength (2) or dopamine during memory re-exposure before sleep results in stronger behavioural
431 tags that in turn alter subsequent spindle amplitude to reflect the changes in the memory engram
432 that took place during tagging. These effects are not mutually exclusive, and indeed could be

433 interacting. Future experiments separating the effects of sleep consolidation from re-exposure
434 benefit are necessary to disentangle this.

435

436 We suggest that two simultaneous processes may be at play (Fig. 5.). First, during learning a
437 portion of information is “tagged” as important (57), and dopamine enhances this process by
438 creating a stronger tag (58, 59). Second, during subsequent sleep, dopamine increases forgetting
439 for the less important, non-tagged items while the tag shields the important (or re-exposed)
440 information from forgetting (60, 61). This theory has been proposed before, and the current
441 study adds to it by implicating (dopamine-mediated) crosstalk between the thalamus and the
442 cortex during spindles as a potential mechanism for the later effects.

443


444 Our observed findings may be specific to older people. Memory loss is a prominent problem in
445 old age and our eventual goal is to improve quality of life through cognitive enhancement,
446 justifying the use of a target population of interest to future trials. There is drop-out of
447 dopaminergic neurons that comes with old age (62-64) (62-64) which has been shown to affect
448 the impact of taking dopaminergic medications on cognition (65). Ageing decreases the duration
449 of slow wave sleep, and the number and amplitude of spindles (66), with some reporting nearly a
450 50% reduction in spindle amplitude with advanced age (67). Models in non-aged animals suggest
451 that D2 receptors promote wakefulness (68) and dopamine levels are generally higher during
452 wake than sleep in animals (69). In young healthy adults, direct administration of a dopamine
453 antagonist during slow wave sleep actually increases the duration of slow waves sleep (70). It has
454 been noted before that the wake-promoting effects of dopamine in the young contradict the
455 sleepiness that is a recognised side effect of L-DOPA in patients with Parkinson’s disease (71).
456 Therefore, age should be considered when interpreting the effects of dopamine on memory and
457 sleep.

458

459 Furthermore, slow wave sleep may be affected early in Alzheimer's Disease (72). Interrupting
460 slow wave sleep is proposed to hinder clearance of amyloid from the brain and amyloid plaques
461 are one of the key pathological changes in Alzheimer's Disease (73, 74). L-DOPA is routinely
462 prescribed for Parkinson's disease with a good safety profile; however, the impacts of L-DOPA
463 on sleep have not been assessed in detail except in small studies of Parkinson's disease (75-77).
464 Our finding that L-DOPA may ameliorate age-dependent spindle loss with concomitant memory
465 benefits could be promising for treating age-related memory decline, or more severe memory
466 deficits found in Alzheimer's dementia. Perhaps more excitingly, our current findings may have
467 implications for prevention of Alzheimer's disease. Through increasing slow wave sleep duration
468 and spindle amplitude with nocturnal dopamine, we open up a new therapeutic avenue for
469 Alzheimer's disease prevention – repurposing L-DOPA to prevent Alzheimer's.

470

471 Together, our findings suggest that the repetition-benefit on memory is improved by dopamine
472 at the time of the repetition and during sleep-consolidation, which is mediated by increased slow
473 wave sleep duration and spindle amplitude. We propose that this dopamine-induced increase in
474 spindle amplitude reflects more synchronous cortical activity during spindles increasing
475 forgetting of weakly encoded items and with a net effect of augmenting the difference between
476 strongly and weakly encoded engrams (Fig. 5.). These findings have potential clinical impact in
477 enhancing sleep and memory selection in old age, and in mild amnesic disease.

Fig. 5. Dopamine modulates memory after learning by enhancing memory

prioritisation and subsequent sleep processes.

A proportion of important information (yellow engram) is earmarked for retention by a neural “tag” during re-exposure (blue pin). Dopamine during re-exposure enhances this effect (red pins) at the expense of unpinned engrams (green). During sleep, weak engrams are preferentially forgotten whilst ear-marked information remains unaffected, leading to a more selective memory trace. Dopamine modulates these selective memory processes by enhancing synchronisation in cortical firing patterns during spindles, at the peak of slow oscillations. Together these two processes (enhanced prioritisation and synchronisation) bias subsequent memory.

478 **Method**

479 **Participants**

480 We recruited 70 elderly (65+ years) volunteers to complete the two studies reported here (n = 35
481 each study, see *SM 4, 15, 16*). All aspects of this research adhered with the Declaration of
482 Helsinki and we had relevant ethical and regulatory (UK) approvals in place (Study 1 ISRCTN:
483 90897064).

484

485 **Design**

486 Study 1: In the main placebo-controlled double-blind randomised study, volunteers were initially
487 screened over the phone for common exclusions, and then invited for three in-house visits. On
488 the first visit they were fully screened for eligibility, and they practiced the memory task. They
489 were asked about their usual sleeping pattern so that the second and third visits could be
490 designed to follow each participants' usual sleep routines as much as possible. On the second
491 visit, volunteers arrived on site in the evening where they were re-consented and screened for
492 continued eligibility. For an outline of the evening see **Fig. 1a.**, *SM 11*.

493

494 First, volunteers learnt a verbal memory task (**Fig. 1b.**). Thirty minutes after learning, they were
495 given 200mg L-DOPA or placebo. 75 min after dosing, a quarter of the items (List *i*) were re-
496 exposed by a recognition test where no feedback was given. The purpose of this test was to
497 create a stronger memory trace. 45 min after the re-exposure the volunteers went to bed. Each
498 evening was designed based on each participants' usual sleeping pattern (L-DOPA administered
499 2h prior to switching the lights off for the night at their usual bedtime).

500

501 Volunteers slept on-site for a full night, and they were woken up at their usual wake-up time.
502 Around 1.5h after waking up, approximately 12h after dosing, volunteers' verbal memory was
503 tested again (Lists *i* and *ii*) before they left the study site. 2 and 4 days later (3 and 5 days after
504 learning) they were contacted over the phone for follow-up recognition memory tests (for Lists
505 *iii* and *iv*, respectively).

506

507 The second and third visits were identical except for treatment (L-DOPA / placebo) allocation.
508 This study obtained ethical approval from the South West Central Bristol NHS Research Ethics
509 Committee (REF: 16/SW0028) and clinical trial authorisation from the Medicines and
510 Healthcare products Regulatory Agency (IRAS ID:178711) .

511

512 Study 2: In the secondary placebo-controlled double-blind crossover experiment, volunteers
513 were first screened over the phone before inviting them on site for the test sets. Each test set
514 carried over for three days: On the Day -1 (relative to dosing) participants learnt word-list on
515 site, on Day 0 they were dosed with 150mg L-DOPA (or placebo, *SM 11, 12*) and then tested on
516 the previously learnt words (retrieval test). Immediately following this, they learnt another word-
517 list (encoding condition) for which their memory was tested the following day (Day 1) over the
518 phone. Therefore, participants learnt two word lists on each test. There tests were timed so there
519 was approximately 24h in between learning and test.

520

521 This study obtained ethical approval from the University of Bristol Faculty of Medicine and
522 Dentistry Ethics Committee (REF: 12161).

523

524 **Treatment**

525 Study 1: In the main placebo-controlled randomised double-blind study, each participant was
526 dosed with co-beneldopa controlled release (containing 200mg L-DOPA) was given in capsule
527 form and placebo (encapsulated inert powder, matched for appearance). Blinding and
528 randomisation were performed in blocks of 6 by author LM, Production Pharmacy, Bristol Royal
529 Infirmary, University Hospitals Bristol and Weston NHS Trust. On the study nights, dose was
530 given by an on-site medic who was blind to treatment condition and played no role in collecting
531 data. The treatments were given at different visits. Both treatments were preceded by
532 Domperidone 10mg (tablet) to alleviate possible nausea caused by L-DOPA.

533

534 Study 2: In the L-DOPA condition of the secondary study volunteers received 10mg of
535 Domperidone (anti-emetic) 30 minutes before co-beneldopa (containing 150mg L-DOPA). Both
536 medications were dispersible, and they mixed into cordial to hide taste and residue. In the
537 placebo condition, volunteers received plain cordial in place of Domperidone and vitamin C
538 mixed into cordial in place of L-DOPA. Blinding and randomisation were performed by
539 members of the research group who had no other involvement in this study.

540

541 While the two experiments were designed to complement one another, for practical reasons
542 there were several important differences in study designs. First, the L-DOPA given in the main
543 study was long-acting and of higher dose (4-8 hours cf. 1-4 hours and 200mg cf. 150mg) to
544 target consolidation during sleep which is a longer process than encoding or retrieval. Second,
545 the controlled release L-DOPA in the main study was encapsulated, whilst in the secondary
546 study we used dispersible L-DOPA. For this reason, the placebo used in the main experiment
547 was encapsulated inert powder, whilst in the second study we used dispersible vitamin C. These

548 differences and individual differences in dopamine absorption and metabolism introduce
549 unmeasurable differences between the two experiments that need to be considered when
550 interpreting differences between them.

551

552 **Verbal memory test**

553 Study 1: Volunteers learnt four lists (*i*, *ii*, *iii*, and *iv*) of 20 target words (total 80 targets)
554 presented on a computer screen one at a time, in a random, interleaved order (**Fig. 1b.**, *SM 12*).
555 Each word was presented once for 3.6s during which the volunteers were asked to determine if
556 the items were alive or not to assist learning. They were instructed to remember as many of the
557 words as they could.

558

559 During test phases, volunteers were presented with a list of 40 (days 0, 3, and 5) or 80 words (day
560 1), half of which were targets (present at learning) and half of which were distractors (not
561 presented previously). They were asked to judge whether words were targets or not. On days 0,
562 1, 3, and 5 memory was tested for Lists *i*, *i* and *ii*, *iii*, and *iv* respectively. Therefore, List *i* was
563 tested twice: First in the evening while L-DOPA (/ placebo) was active in the system and then
564 again in the morning together with List *ii*. The re-exposed and novel (List *i* and List *ii*,
565 respectively) targets tested on day 1 were assessed to study L-DOPA's effect on behavioural
566 tagging of 'important' information. The rationale was that when a word is presented a second
567 time (during re-exposure), it will be deemed more important and will be preferentially
568 remembered. The distractors were unique at each test.

569

570 Study 2: The purpose of this study was to test L-DOPA's effects on retrieval and encoding. Two
571 separate memory tests were conducted (*SM 13*).

572

573 *Retrieval:* During learning on D-1 (day before dosing) volunteers were presented with 48
574 complete nouns on a computer screen. They were instructed to read the words aloud and try to
575 memorise them for later. Each word was shown once for 5 seconds separated by a fixation cross
576 in the middle of the screen for 2 seconds and no responses to the words were made during
577 learning. There were no breaks in the learning block (total duration = 5mins 36secs). Memory
578 was tested using unique words 30 minutes (D-1, baseline) and 24 hours (D0) after learning. The
579 D0 test was given when L-DOPA was at its peak concentration (\sim 1h following dosing). In the
580 test phases (D-1 and D0). This test took approximately 5 minutes to administer.

581

582 *Encoding:* D0 around 1.5 hours after dosing, after the test for the previous task had finished,
583 volunteers saw a list of 96 complete nouns presented on the computer screen. Each word was
584 displayed for 5 seconds, followed by a fixation cross for 2 seconds. The words were first
585 presented in a random order over two blocks, and then again in a different random order over
586 two more blocks, each word was presented twice (n blocks = 4, n words per block = 48, n
587 breaks = 3, block duration = 5 min 36 s). Memory was prompted immediately after learning
588 (D0), and 1, 3, and 5 days later. Each target was tested once with unique distractors (SM 14).

589

590 Across experiments, learning and tests were completed on a laptop on-site, or over the phone.
591 The experiments were programmed in the MATLAB environment (2015b or 2017a) using the
592 Psychophysics Toolbox V3 (78). The scripts and data are available from corresponding authors
593 upon request.

594

595 **Polysomnography**

596 In the main experiment, standard in-laboratory polysomnography, including video, was recorded
597 during both study nights using the Embla N9000 amplifier and Embla RemLogic software
598 (Natus Medical Inc., California) at CRIC Bristol, University of Bristol, Bristol, UK. We recorded
599 12 scalp EEG channels (F3, Fz, F4, C3, Cz, C4, M1, Pz, M2, O1, O2, and a ground electrode
600 approximately between Cz/P3 and C3/Pz) placed according to the 10-20-20 system. Eye
601 movements were detected by electro-oculogram recorded from E1 and E2 sites, and muscle tone
602 from electromyogram recorded below the chin. A 2-lead ECG was also recorded. All signals
603 were sampled at 500Hz. The recordings started 2.5h after dosing when lights were switched off
604 for the night and continued until the volunteer woke up.

605

606 **Analysis**

607 *EEG*

608 **Event scoring:** Sleep stages in 30s epochs were identified manually in accordance to standard
609 criteria (79) by two expert scorers, and a third scorer visually assessed a random 10% of ratings
610 for quality. Durations of N1, N2, N3 (i.e. slow wave sleep), REM, awake, asleep and total time in
611 bed were extracted in minutes. First and second halves of the nights were defined by the middle
612 time-point between switching lights ON and OFF. When there was an odd number of epochs,
613 they were rounded so that the first half of the night had the extra epoch.

614

615 **Spindle detection:** Spindle characteristics were then isolated with in-house written MATLAB
616 scripts using the EEGLab toolbox (80). Electrodes were re-referenced to contralateral mastoid
617 and empty and high variance epochs were removed. Thereafter, only data from the Cz electrode
618 was used. First, the channel was visually inspected and epochs with high noise or clear artefacts
619 were removed manually. Data was then filtered (high pass 11Hz, low pass 17Hz) and rectified.

620 Next data was smoothed using a moving average window of 200ms before down-sampling to
621 100Hz (from 500Hz) for computational efficiency. An event was marked as a spindle if the
622 threshold exceeded the 90th percentile for that data set (i.e. sorting data into an ascending order
623 and including top 10%) for .5 – 3 seconds, with a minimum of 0.5s between spindle events.

624

625 **Slow oscillations:** The slow oscillation detection process followed the same re-referencing and
626 noise removal methods used for spindle detection, without smoothing. Data from the CZ
627 electrode was filtered between 0.16Hz and 1.25Hz and then z-scored. We applied a threshold of
628 75%; if the slow oscillation amplitude surpassed this threshold for 0.5 - 5 seconds (including
629 multiple events if separated by <0.25s), it was marked as a slow oscillation. The duration of the
630 event was determined by the closest oscillation maxima following the amplitude dropping below
631 a 60% threshold on each side.

632

633 **Spindles and slow oscillations:** We identified spindle-slow oscillation co-occurrences as cases
634 where the maximum amplitude of a spindle event coincided with a slow oscillation event, again
635 using the CZ electrode. Using the time stamp of the spindle max amplitude as the centre point,
636 we calculated how spindle amplitude varied with slow oscillation phase over one cycle. First, we
637 divided the oscillation events into 16 bins, equally distributed in phase space around zero, to
638 calculate how the spindle amplitude varied with slow oscillation phase for each coinciding case
639 (for statistical analysis we grouped together 4 adjacent frequency data points (bins) to generate 4
640 bins as shown in **Fig. 4c**).

641

642 The spectral composition of each was done using a Morlet wavelet time-frequency method over
643 a 4s window centred on the slow oscillation peak. Morlet waves at 20 frequencies were used,

644 with 3 cycles for the lowest frequency (1Hz) and 6 cycles otherwise (2-20Hz). A spectral mean
645 was next calculated for each participant for L-DOPA and placebo conditions (**Fig. 4e.**). A
646 cluster-based permutation method (permutation $n = 500$, cluster threshold of $\alpha = 0.01$),
647 implemented with the Fieldtrip toolbox (81), was used to identify power differences. Based on
648 the finding that max spindle amplitude occurring near zero slow oscillation phase predicts to
649 memory performance in ageing {Helfrich, 2018 #3297}, an a-priori spindle region of interest of
650 11 - 16Hz, -0.5 - 0.5s was chosen for initial analysis. This same cluster method was then carried
651 out on the wider time-frequency space, 1 – 20Hz, -1 – 1s, the primary cluster ($p=0.002$) of which
652 is shown in **Fig. 4e..**

653

654

655 Behaviour

656 **Pairwise comparisons** (placebo versus L-DOPA) were calculated using either t-tests or
657 Wilcoxon's rank tests in R 3.5.3 using RStudio. We also employed a Bayesian paired t-tests in
658 JASP 0.9.2.0 (82) to obtain Bayes Factors (BF) – this allows more meaningful estimates of
659 confidence in both significantly different and null results than standard t-tests. BF gives the
660 probability of the data under either hypothesis. E.g. a BF_{10} of 5 would denote that the data is 5
661 times more likely to have been sampled from the alternative compared to the null distribution,
662 while a BF_{01} of 5 would denote that the data is 5 times less likely to have been sampled from the
663 alternative compared to the null distribution (i.e. 01 versus 10). We defined the prior (expected)
664 distribution as a Cauchy distribution with a mean of 0 and an interquartile range of .5 [$\delta \sim$
665 Cauchy (0, .5)]. In other words, we predicted that the δ lies between -.5 and .5 with a 50%
666 confidence. We selected this one as the δ s in cognitive neurosciences typically are within those
667 bounds, and as we did not have an informed prediction for the effect sizes.

668

669 All mixed modelling was performed on R 3.5.3 using Rstudio, lme4 (83) and lmerTest (84). We
670 included the participants as random effects and the dose (mg/kg) and the memory test delay
671 (Day 1, Day 3 and Day 5), or memory strength (re-enforced versus not), depending on the
672 analysis, as fixed effects. All fixed effects were mean-centred but not scaled. We selected the
673 model using the maximum feasible fit as this has previously been shown to be the best approach
674 for confirmatory hypothesis testing (85).

675 **List of supplementary materials:**

676 SM 1 : Paired differences for delayed memory test
677 SM 2 : L-DOPA accelerates forgetting.
678 SM 3 : Re-activated items better retained in both conditions
679 SM 4 : Pairwise accuracy for List i across tests
680 SM 5: L-DOPA has disparate effects on forgetting rate depending on whether items were re-
681 exposed or not
682 SM 6 : Single dose of nocturnal L-DOPA increases time spent in slow wave sleep by 10.6%.
683 SM 7 : Missing data
684 SM 8 : Sleep and memory correlations on L-DOPA and placebo
685 SM 9 : L-DOPA increases spindle amplitude
686 SM 10 : Subjective sleep measures
687 SM 11 : Sleep visit timeline
688 SM 12 : Verbal Memory Task
689 SM 13 : Secondary study timeline

690 SM 14 : Study 2 results

691 SM 15: Demographic information

692 SM 16 : Exclusion and inclusion criteria

693 SM 17 : Secondary study results

694 SM 18 : Individual Power Change

695 SM 19 : CONSORT diagram

696 **References**

697 1. S. Tonegawa, X. Liu, S. Ramirez, R. Redondo, Memory Engram Cells Have Come of Age.
698 *Neuron* **87**, 918-931 (2015).

699 2. R. Semon, *Die nmemischen Empfindungen*. (Willhelm Engelmann, Leipzig, 1909).

700 3. H. Eichenbaum, P. Dudchenko, E. Wood, M. Shapiro, H. Tanila, The hippocampus, memory,
701 and place cells: is it spatial memory or a memory space? *Neuron* **23**, 209-226 (1999).

702 4. J. L. McGaugh, Making lasting memories: remembering the significant. *Proc Natl Acad Sci U S*
703 *A* **110 Suppl 2**, 10402-10407 (2013).

704 5. L. R. Squire, L. Genzel, J. T. Wixted, R. G. Morris, Memory Consolidation. *Csh Perspect Biol* **7**,
705 (2015).

706 6. J. Lisman, A. A. Grace, E. Duzel, A neoHebbian framework for episodic memory; role of
707 dopamine-dependent late LTP. *Trends in Neurosciences* **34**, 536-547 (2011).

708 7. G. B. Feld, L. Besedovsky, K. Kaida, T. F. Munte, J. Born, Dopamine D2-like Receptor
709 Activation Wipes Out Preferential Consolidation of High over Low Reward Memories during
710 Human Sleep. *J Cognitive Neurosci* **26**, 2310-2320 (2014).

711 8. J. P. Grogan, R. Bogacz, D. Tsivos, A. Whone, E. J. Coulthard, Dopamine and Consolidation of
712 Episodic Memory: Timing is Everything. *J Cogn Neurosci* **27**, 2035-2050 (2015).

713 9. R. Chowdhury, M. Guitart-Masip, N. Bunzeck, R. J. Dolan, E. Duzel, Dopamine Modulates
714 Episodic Memory Persistence in Old Age. *Journal of Neuroscience* **32**, 14193-14204 (2012).

715 10. A. S. Franca *et al.*, D2 dopamine receptor regulation of learning, sleep and plasticity.
716 *European neuropsychopharmacology : the journal of the European College of*
717 *Neuropsychopharmacology* **25**, 493-504 (2015).

718 11. E. J. Coulthard *et al.*, Distinct roles of dopamine and subthalamic nucleus in learning and
719 probabilistic decision making. *Brain* **135**, 3721-3734 (2012).

720 12. U. Frey, R. G. M. Morris, Synaptic tagging and long-term potentiation. *Nature* **385**, 533-536
721 (1997).

722 13. R. L. Redondo, R. G. Morris, Making memories last: the synaptic tagging and capture
723 hypothesis. *Nature reviews. Neuroscience* **12**, 17-30 (2011).

724 14. S. H. Wang, R. L. Redondo, R. G. M. Morris, Relevance of synaptic tagging and capture to the
725 persistence of long-term potentiation and everyday spatial memory. *Proceedings of the*
726 *National Academy of Sciences of the United States of America* **107**, 19537-19542 (2010).

727 15. A. J. Duszkiewicz, C. G. McNamara, T. Takeuchi, L. Genzel, Novelty and Dopaminergic
728 Modulation of Memory Persistence: A Tale of Two Systems. *Trends in Neurosciences* **42**, 102-
729 114 (2019).

730 16. G. B. Feld, J. Born, Neurochemical mechanisms for memory processing during sleep: basic
731 findings in humans and neuropsychiatric implications. *Neuropsychopharmacol.* (2019).

732 17. F. Michon, J. J. Sun, C. Y. Kim, D. Ciliberti, F. Kloosterman, Post-learning Hippocampal Replay
733 Selectively Reinforces Spatial Memory for Highly Rewarded Locations. *Current biology : CB*
734 **29**, 1436-1444.e1435 (2019).

735 18. D. Liu, Y. Dan, A Motor Theory of Sleep-Wake Control: Arousal-Action Circuit. *Annual review*
736 *of neuroscience* **42**, 27-46 (2019).

737 19. D. Oudiette, J. W. Antony, J. D. Creery, K. A. Paller, The Role of Memory Reactivation during
738 Wakefulness and Sleep in Determining Which Memories Endure. *Journal of Neuroscience* **33**,
739 6672-U6758 (2013).

740 20. R. Stickgold, Sleep-dependent memory consolidation. *Nature* **437**, 1272-1278 (2005).

741 21. G. M. van de Ven, S. Trouche, C. G. McNamara, K. Allen, D. Dupret, Hippocampal Offline
742 Reactivation Consolidates Recently Formed Cell Assembly Patterns during Sharp Wave-
743 Ripples. *Neuron* **92**, 968-974 (2016).

744 22. M. Molle, O. Yeshenko, L. Marshall, S. J. Sara, J. Born, Hippocampal sharp wave-ripples linked
745 to slow oscillations in rat slow-wave sleep. *J Neurophysiol* **96**, 62-70 (2006).

746 23. M. Y. Yang, N. K. Logothetis, O. Eschenko, Occurrence of Hippocampal Ripples is Associated
747 with Activity Suppression in the Mediodorsal Thalamic Nucleus. *Journal of Neuroscience* **39**,
748 434-444 (2019).

749 24. N. Maingret, G. Girardeau, R. Todorova, M. Goutierre, M. Zugaro, Hippocampo-cortical
750 coupling mediates memory consolidation during sleep. *Nat Neurosci* **19**, 959-964 (2016).

751 25. A. Patil, V. P. Murty, J. E. Dunsmoor, E. A. Phelps, L. Davachi, Reward retroactively enhances
752 memory consolidation for related items. *Learning & Memory* **24**, 65-69 (2017).

753 26. J. E. Dunsmoor, V. P. Murty, L. Davachi, E. A. Phelps, Emotional learning selectively and
754 retroactively strengthens memories for related events. *Nature* **520**, 345-348 (2015).

755 27. M. C. Anderson, R. A. Bjork, E. L. Bjork, Remembering Can Cause Forgetting - Retrieval
756 Dynamics in Long-Term-Memory. *J Exp Psychol Learn* **20**, 1063-1087 (1994).

757 28. M. Alizadeh Asfestani, V. Brechmann, J. Santiago, J. Born, G. B. Feld, Consolidation of reward
758 memory during sleep does not require dopaminergic activation. *BioRxiv*, (2019, bioRxiv).

759 29. C. G. McNamara, A. Tejero-Cantero, S. Trouche, N. Campo-Urriza, D. Dupret, Dopaminergic
760 neurons promote hippocampal reactivation and spatial memory persistence. *Nat Neurosci*
761 **17**, 1658-1660 (2014).

762 30. S. N. Gomperts, F. Kloosterman, M. A. Wilson, VTA neurons coordinate with the
763 hippocampal reactivation of spatial experience. *Elife* **4**, (2015).

764 31. R. L. Davis, Y. Zhong, The Biology of Forgetting-A Perspective. *Neuron* **95**, 490-503 (2017).

765 32. J. T. Wixted, The psychology and neuroscience of forgetting. *Annu Rev Psychol* **55**, 235-269
766 (2004).

767 33. J. A. Berry, I. Cervantes-Sandoval, E. P. Nicholas, R. L. Davis, Dopamine Is Required for
768 Learning and Forgetting in Drosophila. *Neuron* **74**, 530-542 (2012).

769 34. J. A. Berry, A. Phan, R. L. Davis, Dopamine Neurons Mediate Learning and Forgetting through
770 Bidirectional Modulation of a Memory Trace. *Cell Rep* **25**, 651-+ (2018).

771 35. M. C. Anderson, E. L. Bjork, R. A. Bjork, Retrieval-induced forgetting: Evidence for a recall-
772 specific mechanism. *Psychon B Rev* **7**, 522-530 (2000).

773 36. M. Wimber, A. Alink, I. Charest, N. Kriegeskorte, M. C. Anderson, Retrieval induces adaptive
774 forgetting of competing memories via cortical pattern suppression. *Nat Neurosci* **18**, 582-+
775 (2015).

776 37. A. Hsu, H. M. Yao, S. Gupta, N. B. Modi, Comparison of the pharmacokinetics of an oral
777 extended-release capsule formulation of carbidopa-levodopa (IPX066) with immediate-
778 release carbidopa-levodopa (Sinemet((R))), sustained-release carbidopa-levodopa
779 (Sinemet((R)) CR), and carbidopa-levodopa-entacapone (Stalevo((R))). *Journal of clinical*
780 *pharmacology* **55**, 995-1003 (2015).

781 38. T. G. Birdsall, R. A. Roberts, On the Theory of Signal Detectability - an Optimum
782 Nonsequential Observation-Decision Procedure. *Ieee Transactions on Information Theory* **11**,
783 195-204 (1965).

784 39. Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate - a Practical and Powerful
785 Approach to Multiple Testing. *J R Stat Soc B* **57**, 289-300 (1995).

786 40. M. Zappia *et al.*, Body weight influences pharmacokinetics of levodopa in Parkinson's
787 disease. *Clin Neuropharmacol* **25**, 79-82 (2002).

788 41. S. A. Cairney, A. A. V. Guttesen, N. El Marj, B. P. Staresina, Memory Consolidation Is Linked to
789 Spindle-Mediated Information Processing during Sleep. *Curr Biol* **28**, 948-+ (2018).

790 42. J. W. Antony *et al.*, Sleep Spindle Refractoriness Segregates Periods of Memory Reactivation.
791 *Curr Biol* **28**, 1736-1743 e1734 (2018).

792 43. R. F. Helfrich, B. A. Mander, W. J. Jagust, R. T. Knight, M. P. Walker, Old Brains Come
793 Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting. *Neuron*
794 **97**, 221-230 e224 (2018).

795 44. B. W. Ellis *et al.*, The St. Mary's Hospital Sleep Questionnaire: A Study of Reliability. *Sleep* **4**,
796 93-97 (1981).

797 45. A. C. Parrott, I. Hindmarch, The Leeds Sleep Evaluation Questionnaire in
798 psychopharmacological investigations - a review. *Psychopharmacology (Berl)* **71**, 173-179
799 (1980).

800 46. J. A. Berry, I. Cervantes-Sandoval, M. Chakraborty, R. L. Davis, Sleep Facilitates Memory by
801 Blocking Dopamine Neuron-Mediated Forgetting. *Cell* **161**, 1656-1667 (2015).

802 47. I. Wilhelm *et al.*, Sleep Selectively Enhances Memory Expected to Be of Future Relevance.
803 *Journal of Neuroscience* **31**, 1563-1569 (2011).

804 48. E. van Rijn, C. Lucignoli, C. Izura, M. T. Blagrove, Sleep-dependent memory consolidation is
805 related to perceived value of learned material. *J Sleep Res* **25**, 204-205 (2016).

806 49. M. Mölle, O. Eschenko, S. Gais, S. J. Sara, J. Born, The influence of learning on sleep slow
807 oscillations and associated spindles and ripples in humans and rats. **29**, 1071-1081 (2009).

808 50. V. Latreille *et al.*, Sleep spindles in Parkinson's disease may predict the development of
809 dementia. *Neurobiology of aging* **36**, 1083-1090 (2015).

810 51. D. Contreras, A. Destexhe, T. J. Sejnowski, M. Steriade, Spatiotemporal patterns of spindle
811 oscillations in cortex and thalamus. *The Journal of neuroscience : the official journal of the*
812 *Society for Neuroscience* **17**, 1179-1196 (1997).

813 52. Y. Nir *et al.*, Regional slow waves and spindles in human sleep. *Neuron* **70**, 153-169 (2011).

814 53. R. Cox, A. C. Schapiro, D. S. Manoach, R. Stickgold, Individual Differences in Frequency and
815 Topography of Slow and Fast Sleep Spindles. *Front Hum Neurosci* **11**, 433 (2017).

816 54. B. Blaskovich, A. Szollosi, F. Gombos, M. Racsmay, P. Simor, The Benefit of Directed
817 Forgetting Persists After a Daytime Nap: The Role of Spindles and Rapid Eye Movement
818 Sleep in the Consolidation of Relevant Memories. *Sleep* **40**, (2017).

819 55. D. P. J. Heib *et al.*, Oscillatory Theta Activity during Memory Formation and Its Impact on
820 Overnight Consolidation: A Missing Link? *J Cognitive Neurosci* **27**, 1648-1658 (2015).

821 56. B. P. Staresina *et al.*, Hierarchical nesting of slow oscillations, spindles and ripples in the
822 human hippocampus during sleep. *Nat Neurosci* **18**, 1679-1686 (2015).

823 57. U. Frey, R. G. M. Morris, Weak before strong: Dissociating synaptic tagging and plasticity
824 factor accounts of late-LTP. *Eur J Neurosci* **10**, 20-20 (1998).

825 58. C. Clopath, Synaptic consolidation: an approach to long-term learning. *Cogn Neurodynamics*
826 **6**, 251-257 (2012).

827 59. S. Sajikumar, J. U. Frey, Late-associativity, synaptic tagging, and the role of dopamine during
828 LTP and LTD. *Neurobiol Learn Mem* **82**, 12-25 (2004).

829 60. C. O'Donnell, T. J. Sejnowski, Selective Memory Generalization by Spatial Patterning of
830 Protein Synthesis. *Neuron* **82**, 398-412 (2014).

831 61. G. Rauchs *et al.*, Sleep Contributes to the Strengthening of Some Memories Over Others,
832 Depending on Hippocampal Activity at Learning. *Journal of Neuroscience* **31**, 2563-2568
833 (2011).

834 62. S. W. MacDonald, S. Karlsson, A. Rieckmann, L. Nyberg, L. Backman, Aging-related increases
835 in behavioral variability: relations to losses of dopamine D1 receptors. *The Journal of
836 neuroscience : the official journal of the Society for Neuroscience* **32**, 8186-8191 (2012).

837 63. S. J. Kish, K. Shannak, A. Rajput, J. H. N. Deck, O. Hornykiewicz, Aging Produces a Specific
838 Pattern of Striatal Dopamine Loss - Implications for the Etiology of Idiopathic Parkinsons-
839 Disease. *J Neurochem* **58**, 642-648 (1992).

840 64. A. Carlsson *et al.*, Biogenic amines in human brain in normal aging, senile dementia, and
841 chronic alcoholism. *Adv Biochem Psychopharmacol* **23**, 295-304 (1980).

842 65. A. M. Morcom *et al.*, Memory Encoding and Dopamine in the Aging Brain: A
843 Psychopharmacological Neuroimaging Study. *Cerebral Cortex* **20**, 743-757 (2010).

844 66. A. Nicolas, D. Petit, S. Rompre, J. Montplaisir, Sleep spindle characteristics in healthy
845 subjects of different age groups. *Clinical neurophysiology : official journal of the
846 International Federation of Clinical Neurophysiology* **112**, 521-527 (2001).

847 67. K. Crowley, J. Trinder, Y. Kim, M. Carrington, I. M. Colrain, The effects of normal aging on
848 sleep spindle and K-complex production. *Clinical neurophysiology : official journal of the
849 International Federation of Clinical Neurophysiology* **113**, 1615-1622 (2002).

850 68. W.-M. Qu *et al.*, Essential Role of Dopamine D₂ Receptor in the Maintenance of
851 Wakefulness, But Not in Homeostatic Regulation of Sleep, in Mice. **30**, 4382-4389 (2010).

852 69. H. Dong *et al.*, Dorsal Striatum Dopamine Levels Fluctuate Across the Sleep–Wake Cycle and
853 Respond to Salient Stimuli in Mice. **13**, (2019).

854 70. D. N. Eder, M. Zdravkovic, G. Wildschiodtz, Selective alterations of the first NREM sleep cycle
855 in humans by a dopamine D1 receptor antagonist (NNC-687). *Journal of psychiatric research*
856 **37**, 305-312 (2003).

857 71. C. R. Cantor, M. B. Stern, Dopamine agonists and sleep in Parkinson's disease. *Neurology* **26**,
858 71-78 (2002).

859 72. M. P. Walker, The Role of Slow Wave Sleep in Memory Processing. *Journal of clinical sleep
860 medicine : JCSM : official publication of the American Academy of Sleep Medicine* **5**, S20-S26
861 (2009).

862 73. L. Xie *et al.*, Sleep Drives Metabolite Clearance from the Adult Brain. *Science* **342**, 373-377
863 (2013).

864 74. Y.-E. S. Ju *et al.*, Slow wave sleep disruption increases cerebrospinal fluid amyloid- β levels.
865 *Brain* **140**, 2104-2111 (2017).

866 75. N. J. Diederich, V. Paolini, M. Vaillant, Slow wave sleep and dopaminergic treatment in
867 Parkinson's disease: a polysomnographic study. *Acta Neurol Scand* **120**, 308-313 (2009).

868 76. S. P. Joy *et al.*, Serial macro-architectural alterations with levodopa in Parkinson's disease:
869 Polysomnography (PSG)-based analysis. *Annals of Indian Academy of Neurology* **18**, 309-313
870 (2015).

871 77. S. Wailke, J. Herzog, K. Witt, G. Deuschl, J. Volkmann, Effect of controlled-release levodopa
872 on the microstructure of sleep in Parkinson's disease. *European journal of neurology* **18**, 590-
873 596 (2011).

874 78. M. Kleiner, D. Brainard, D. Pelli, What's new in Psychtoolbox-3? *Perception* **36**, 14-14 (2007).

875 79. R. B. Berry *et al.*, AASM Scoring Manual Updates for 2017 (Version 2.4). *J Clin Sleep Med* **13**,
876 665-666 (2017).

877 80. A. Delorme, S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG
878 dynamics including independent component analysis. *J Neurosci Meth* **134**, 9-21 (2004).

879 81. R. Oostenveld, P. Fries, E. Maris, J. Schoffelen, FieldTrip: Open Source Software for Advanced
880 Analysis of MEG, EEG, and Invasive Electrophysiological Data. *Computational Intelligence
881 and Neuroscience* **2011**, (2011).

882 82. JASP. (2018).

883 83. LME4-Authors. (2019).

884 84. A. Kuznetsova, P. B. Brockhoff, R. H. B. Christensen. (2019).

885 85. D. J. Barr, R. Levy, C. Scheepers, H. J. Tily, Random effects structure for confirmatory
886 hypothesis testing: Keep it maximal. *J Mem Lang* **68**, 255-278 (2013).

887

888

889 **Acknowledgements**

890 First, we would like to thank each of our participants for their time. We would also like to thank
891 doctors Nicholas O'Donnell, Lisa Knight, Hilary Archer, Elizabeth Mallam, David Evans and
892 Tom Dalton for providing clinical cover for this study, and doctors Claire Rice and Catherine
893 Pennington for their time and guidance as the steering committee. We are grateful for Alex
894 Howat, Nerea Irigoras Izagirre, and Will Mears for their substantial help in collecting the data.
895 We would like to thank Phil Boreham, cardiologist, for advising us on the safe use of
896 domperidone. We would also like to thank Join Dementia Research, Bristol Brain Centre, North
897 Bristol NHS trust, and CRICBristol staff, and our funders; the Medical Research Council,
898 BRACE Bristol and the David Telling Trust.

899

900 **Author contributions**

901 HKI and EJC designed Study 1. MWJ, CD, CO, and LM contributed significantly to designing
902 Study 1. Randomisation and blinding were performed by LM for Study 1. HKI, JPG and EJC
903 designed Study 2. HKI and JPG developed the verbal memory tasks. HKI, GA, JPG, WJC and
904 UB wrote all analysis scripts. Sleep scoring was performed by WJC and OR and overseen by
905 HKI, spindle and slow oscillation analyses were carried out by HKI, WJC and UB. CO and UB
906 gave further statistical guidance. All data collection was overseen by HKI, JPG and EJC. Data
907 was collected by HKI, WJC, GA, OR, JS, RW, EF, JM, CD, ARW, CMN, and JPG. Further
908 clinical cover was provided by EJC, JM and JS. HKI, EJC, WJC, JPG, CO, MWJ and UB
909 interpreted the data. HKI and EJC wrote the manuscript, all authors contributed to the editing
910 of the manuscript and approved of the final version.

911

912 **Competing interests statement:**

913 The authors have no competing interests.

914

915 **Data availability:**

916 Contact the corresponding authors for copies of the MATLAB and R scripts used in analysis,
917 the experimental standard operating procedures, MATLAB scripts for the verbal memory tasks,
918 or word list. Data will be shared in line with sponsor's requirement for availability of
919 anonymised datasets from clinical trials. The data for the control study can also be shared upon
920 request.

921

922 **Code availability:**

923 Contact the corresponding authors for copies of the MATLAB and R scripts used in analysis.