

1 **Heterogeneity of monocyte subsets and susceptibility to influenza** 2 **virus contribute to inter-population variability of protective immunity**

3
4 Mary O'Neill¹, Hélène Quach², Julien Pothlichet³, Yann Aquino¹, Aurélie Bisiaux¹, Nora Zidane⁴,
5 Matthieu Deschamps¹, Valentina Libri⁵, Milena Hasan⁵, Shen-Ying Zhang^{6,7,8}, Qian Zhang⁶,
6 Daniela Matuozzo^{7,8}, Aurélie Cobat^{7,8}, Laurent Abel^{6,7,8}, Jean-Laurent Casanova^{6,7,8,9}, Nadia
7 Naffakh¹⁰, Maxime Rotival^{1,12}, Lluis Quintana-Murci^{1,11,12}

8
9 ¹Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France

10 ²Muséum National d'Histoire Naturelle, UMR7206, CNRS, Université de Paris, Paris 75016,
11 France

12 ³DIACCURATE, Paris, 75014, France

13 ⁴Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Paris 75015,
14 France

15 ⁵Cytometry and Biomarkers UTechS, Institut Pasteur, Paris 75015, France

16 ⁶St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The
17 Rockefeller University, New York, NY, 10065, USA

18 ⁷Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick
19 Children, INSERM UMR 1163, Necker Hospital for Sick Children, Paris 75015, France

20 ⁸Paris University, Imagine Institute, Paris 75015, France

21 ⁹Howard Hughes Medical Institute, New York, NY, USA

22 ¹⁰RNA Biology of Influenza Virus Unit, Institut Pasteur, Paris, 75015, France

23 ¹¹Chair of Human Genomics and Evolution, Collège de France, Paris, 75005, France

24
25 ¹²M.R. and L.Q.M. contributed equally to this work.

26 Correspondence and requests for materials should be addressed to M.R or L.Q.-M. (email:
27 maxime.rotival@pasteur.fr, quintana@pasteur.fr).

28
29 **Authors contributions:** M.B.O, M.R. and L.Q.M. conceived and designed the study. M.B.O.,
30 H.Q., J.P., Y.A., A.B., N.Z., and M.D. conducted the experiments at the Human Evolutionary
31 Genetics Unit. M.B.O., M.R., Y.A. and D.M. developed computational methods and performed
32 bioinformatic analyses. J.P., V.L., M.H., S.Z.Y., Q.Z., A.C. L.A., J.L.C. and N.N. provided
33 resources, expertise and feedback. M.R. and L.Q.M supervised the study. L.Q.M secured
34 funding. M.B.O., M.R. and L.Q.M. wrote the manuscript with input from all authors.

35
36 **Competing Interest Statement:** The authors declare no competing interests.

37
38 **Keywords:** Influenza, monocytes, single-cell, transcriptomics, ancestry

39
40 **This PDF file includes:**

41 Main Text

42 Figures 1 to 5

1 **Abstract**

2 There is considerable inter-individual and inter-population variability in response to viruses. The
3 potential of monocytes to elicit type-I interferon responses has attracted attention to their role in
4 viral infections. Here, we use an *ex vivo* model to characterize the role of cellular heterogeneity
5 in human variation of monocyte responses to influenza A virus (IAV) exposure. Using single-cell
6 RNA-sequencing, we show widespread inter-individual variability in the percentage of IAV-
7 infected monocytes. We show that cells escaping viral infection display increased mRNA
8 expression of type-I interferon stimulated genes and decreased expression of ribosomal genes,
9 relative to both infected cells and those never exposed to IAV. While this host defense strategy
10 is shared between $CD16^+/CD16^-$ monocytes, we also uncover $CD16^+$ -specific mRNA expression
11 of *IL6* and *TNF* in response to IAV, and a stronger resistance of $CD16^+$ monocytes to IAV
12 infection. Notably, individuals with high cellular susceptibility to IAV are characterized by a lower
13 activation at basal state of an IRF/STAT-induced transcriptional network, which includes antiviral
14 genes such as *IFITM3*, *MX1*, and *OAS3*. Finally, using flow cytometry and bulk RNA-sequencing
15 across 200 individuals of African and European ancestry, we observe a higher number of $CD16^+$
16 monocytes and lower susceptibility to IAV infection among monocytes from individuals of
17 African-descent. Collectively, our results reveal the effects of IAV infection on the transcriptional
18 landscape of human monocytes and highlight previously unappreciated differences in cellular
19 susceptibility to IAV infection between individuals of African and European ancestry, which may
20 account for the greater susceptibility of Africans to severe influenza.

21

22 **Significance Statement**

23 Monocytes may play a critical role during severe viral infections. Our study tackles how
24 heterogeneity in monocyte subsets and activation contributes to shape individual differences in
25 the transcriptional response to viral infections. Using single-cell RNA-sequencing, we reveal
26 heterogeneity in monocyte susceptibility to IAV infection, both between $CD16^+/CD16^-$ monocytes
27 and across individuals, driven by differences in basal activation of an IRF/STAT-induced antiviral
28 program. Furthermore, we show a decreased ability of IAV to infect and replicate in monocytes
29 from African-ancestry individuals, with possible implications for antigen presentation and
30 lymphocyte activation. These results highlight the importance of early cellular activation in
31 determining an individuals' innate immune response to viral infection.

32

1 **Main Text**

2 **Introduction**

3 Respiratory viruses with pandemic potential pose enormous health and economic impacts on the
4 human population. In the last century, we have witnessed outbreaks of several coronaviruses,
5 including SARS-CoV-2, SARS-CoV-1 and MERS, and a number of avian and swine influenza A
6 viruses (IAV). A particularly harrowing and shared feature of these pandemics are the sudden
7 deaths of otherwise healthy individuals (1). A hyperinflammatory state characterized by high
8 levels of inflammatory cytokines, often referred to as a 'cytokine storm' (2, 3), has emerged as a
9 hallmark of these severe viral infections. While still controversial, there is increasing evidence to
10 suggest that the mononuclear phagocyte system is an important immunological determinant of
11 this phenotype (4-6). Upon viral infection, sentinel cells such as lung-resident macrophages
12 trigger complex signaling cascades that recruit leukocytes to the site of infection, among them
13 monocytes. These infiltrating monocytes differentiate into monocyte-derived dendritic cells or
14 macrophages, enabling viral clearance through the induction of the adaptive response, and help
15 replenish the pool of tissue-resident alveolar macrophages (4, 7).

16 In humans, circulating monocytes are divided into classical (~80%), intermediate (~15%),
17 and nonclassical (~5%) subsets, based on surface receptor expression of the cluster-
18 determinant antigens CD14 and CD16 (8). While nonclassical monocytes ($CD14^+CD16^{++}$) are
19 long-lived and 'patrol' healthy tissues through long-range crawling on the endothelium, classical
20 ($CD14^{++}CD16^-$) and intermediate ($CD14^{++}CD16^+$) monocytes are recruited to the lung in
21 response to viral infection, where they secrete inflammatory cytokines and chemokines, as well
22 as type I interferons (IFNs) (7, 9-11). In most individuals, recruited cells help clear infection
23 despite being susceptible to infection themselves (12, 13); yet, in some individuals, a
24 dysfunctional immune response occurs resulting in widespread lung inflammation. Whether
25 monocyte subsets behave differently upon viral exposure, and how direct viral sensing and
26 exposure to secreted cytokines shape monocyte activation and differentiation are not well
27 understood.

28 Variation in blood composition and cellular proportions have been shown to be one of the
29 main factors underlying transcriptional variation in immune genes across individuals (14), with
30 these proportions being influenced by both genetic and non-heritable factors (15-17). Recently,
31 we characterized the genetic architecture of transcriptional responses of primary monocytes
32 from 200 individuals of African and European ancestry to *ex vivo* challenge with viral stimuli (18).
33 In this model, where we were able to control for viral determinants of disease (i.e. dose and
34 strain), we reported marked inter- and intra-population differences in transcriptional responses to

1 IAV. While our analyses revealed numerous *cis*-expression quantitative trait loci (18), genetic
2 variants could only account for a small fraction of expression variation, in line with other studies
3 (14, 19).

4 Here, we implemented single-cell RNA-sequencing (scRNA-seq) on human primary
5 monocytes exposed to IAV to investigate (i) the effects of direct viral infection versus activation
6 by exposure to secreted cytokines, (ii) the subset-specific responses of monocytes to viral
7 challenge, and (iii) the extent of interindividual and between-population variation in the
8 proportions of monocyte subsets and the degree of monocyte susceptibility to IAV infection.
9

10 **Results**

11 **Using single-cell RNA-sequencing to investigate cellular heterogeneity.** To investigate the
12 role of cellular heterogeneity in driving immune variability across individuals, we performed a
13 time-course experiment where we monitored the CD14⁺ fraction of peripheral blood
14 mononuclear cells (PBMCs) from eight donors, both in the presence and absence of viral
15 challenge. To maximize inter-individual variability, we chose individuals from two distinct
16 ancestries whose cells demonstrated extreme responses to viral stimuli in a previous bulk RNA-
17 seq experiment (18). Droplet-based scRNA-seq was performed on monocytes from all eight
18 donors immediately before infection initiation (T₀), as well as at 2 (T₂), 4 (T₄), 6 (T₆), and 8 (T₈)
19 hours post challenge with A/USSR/90/1977(H1N1) at a multiplicity of infection (MOI) equal to 1
20 (IAV-challenged) and mock infection (non-infected). To mitigate batch effects, we pooled IAV-
21 challenged and non-infected cells from distinct donors in each library, assigning cells to their
22 condition in silico via genetic barcoding (20). After stringent quality control, our final dataset
23 contained 88,559 high-quality cells, among which we predicted >99% monocyte purity at T₀ (**Fig.**
24 **1A; SI Appendix, Figs. S1 and S2**). At later time points, a substantial fraction of non-infected
25 cells (up to 70% at T₈) were predicted to be macrophage-like, indicating monocyte differentiation
26 over the course of the experiment. For clarity, we refer to cells as monocytes at T₀ and as
27 monocyte-derived cells from T₂-T₈.

28
29 **Stable FCGR3A expression distinguishes monocyte subsets over time.** We next sought to
30 characterize each cell by its mRNA expression of the canonical monocyte markers, CD14 and
31 CD16, given that much of the structure in our data was associated with *FCGR3A* (aka *CD16*)
32 mRNA expression. In droplet-based scRNA-seq, encapsulation of ambient mRNAs emanating
33 from dying cells can occur during library preparation leading to spurious mRNA detection (21).
34 We thus used a statistical framework to test whether *CD14* and *CD16* were expressed at a level

1 significantly higher than expected when accounting for potential contamination from the ambient
2 pool (**Methods**). Despite having been positively selected for the CD14 antigen, only 32.4% of
3 monocytes significantly expressed *CD14* at T_0 ; this percentage further decreased at later time
4 points and remained <15% across all time points and conditions (average 6.4% s.d.: 5.0%, **SI**
5 **Appendix, Fig. S3A-C**). On the other hand, 12.1% of monocytes significantly expressed
6 *FCGR3A* (*CD16*⁺) at T_0 , this marker proving much more stable across
7 conditions and time points (9.3% of *CD16*⁺ cells on average, s.d.: 1.8%, **Fig. 1B and SI**
8 **Appendix, Fig. S3D-F**). While we deciphered classical, intermediate, and nonclassical
9 monocytes subsets at T_0 (**SI Appendix, Note 1 and Fig. S4; Dataset S1**), we focus on the
10 simpler distinction of *CD16*⁻ and *CD16*⁺ subsets given that positive-selection for monocytes does
11 not capture the entire nonclassical population and that we were unable to distinguish the
12 intermediate and noncanonical subsets after T_0 .

13

14 **Functional features of monocyte subsets are conserved upon manipulation.** To assess
15 how transcriptional profiles of *CD16*⁻ and *CD16*⁺ monocytes and their derived-cells differ, we
16 focused on the 5,681 genes expressed with a normalized log count > 0.1 in at least one
17 condition, time point, and subset (**Dataset S2A**). We found that the log₂ fold change in gene
18 expression between *CD16*^{+/−} subsets remained relatively stable over the course of the
19 experiment (Pearson r between time points >0.42, and >0.52 for the non-infected and IAV-
20 challenged conditions respectively, *p*-values < 2.2x10⁻¹⁶; **SI Appendix, Fig. S5A**), and
21 differentially expressed genes between *CD16*^{+/−} subsets were largely the same across conditions
22 (Pearson r = 0.92, *p*-value < 2.2x10⁻¹⁶; **SI Appendix, Fig. S5B**). We thus searched for genes
23 that were consistently differentially expressed between *CD16*⁺ and *CD16*⁻ cells across all time
24 points (including T_0), conditions, and donors. We identified 266 genes over-expressed
25 (log₂FC>0.2, FDR<1%) in *CD16*⁺ cells relative to *CD16*⁻ cells, and 389 genes that showed the
26 opposite pattern, and performed a GO-term enrichment analysis on these genes (**Dataset S2B**).
27 Consistent with previous reports (22-24), *CD16*⁻ subsets were characterized by high expression
28 of several proinflammatory *S100 Calcium Binding Proteins* (*S100A12*, *S100A9*, and *S100A8*),
29 contributing to a sizable GO-term enrichment in the defense response to fungus pathway
30 (GO:0050832: OR=41.3, FDR=4.9x10⁻⁴), while *CD16*⁺ subsets were characterized by high
31 expression of Fc-gamma receptor signaling pathway genes (GO:0038096: OR=8.7,
32 FDR=6.2x10⁻⁶). Notably, *CD16*⁺ subsets over-expressed several type I IFN stimulated genes
33 (ISGs) relative to *CD16*⁻ subsets (e.g. GO:000071357: OR=5.3, FDR=2.6x10⁻³), including the
34 well-known viral restriction factors *IFITM3* and *OAS1*. Collectively, these results demonstrate

1 *CD16* is a reliable marker at the mRNA level and that *CD16^{+/−}* monocyte subsets maintain
2 functional differences upon manipulation.

3
4 **scRNA-seq highlights heterogeneity in monocyte susceptibility and viral transcription.**

5 Using the presence of IAV transcripts as a proxy for infection (**Fig. 1B**), we next sought to
6 distinguish cells that were successfully infected from those that were not. Among monocyte-
7 derived cells that were exposed to IAV, we found that 50.3% expressed IAV transcripts above
8 ambient levels when allowing up to 10% of mRNAs to come from the ambient pool. In contrast,
9 less than 1% of non-infected cells showed evidence of viral transcription, supporting the validity
10 of the threshold used to detect IAV expressing cells (**Fig. 1C**). We deemed cells with statistical
11 evidence for expression of IAV transcripts from the IAV-challenged condition as ‘infected’, while
12 the remaining cells from this condition were considered as ‘bystanders’, as these either did not
13 come into contact with the virus or were able to fully repress viral mRNA transcription. When
14 comparing the percentage of infected cells between subsets, we noticed that *CD16⁺* cells were
15 slightly less likely to be infected than *CD16[−]* cells (42.3% sd: 4.0% for *CD16⁺* relative to 49.4%
16 sd: 5.4% for *CD16[−]*, generalized linear model with *CD16^{+/−}* status, donor, and time point as
17 covariates, *p*-value=0.006). This suggests a higher resistance of *CD16⁺* to IAV infection,
18 possibly related to the higher expression of ISGs observed in this subset (**Dataset S2 A and B**).

19 We observed that the proportions of viral mRNAs among infected cells were bimodally
20 distributed and largely varied between the clusters identified in our unsupervised analysis (**Fig.**
21 **1D**). We used a Gaussian mixture model to locate the two modes of the distribution and further
22 sub-classify infected cells into those with lower IAV mRNA levels (<1-6%) and those with higher
23 IAV mRNA levels (6-83%); while viral mRNA levels are dictated by both the rate of transcription
24 and degradation, for simplicity we refer to these infected cell states as ‘low IAV-transcribers’ and
25 ‘high IAV-transcribers’, respectively. The proportions of infected cells among individuals
26 remained largely unchanged over the course of the experiment; however, high-IAV transcribers
27 were virtually absent at 2h (<2% of infected cells), peaked to ~36% of IAV-infected cells at 4h,
28 and decreased to 8.5% by 8h, suggesting that high-IAV transcribers represent a transient state
29 of IAV-infection preceding IAV-induced apoptosis (**Fig. 1E**). These results reveal profound
30 heterogeneity in monocyte susceptibility and subsequent viral transcription upon IAV-challenge.

31
32 **Interplay of cytokine and ribosome networks drive cell states upon infection.** To
33 characterize host transcriptional responses over time, we next subsampled each subset (*CD16*
34 /*CD16⁺*), cell state (unexposed, bystander, infected), and time point in our scRNA-seq data to

1 100 cells, while ensuring a balanced representation of all donors. We then focused on the 6,669
2 host genes with average \log_2 normalized count >0.1 in at least one subgroup (**Dataset S3A**).
3 Overall, $CD16^-$ and $CD16^+$ subsets behaved similarly upon stimulation with changes in gene
4 expression between cell states being strongly correlated among subsets (Pearson $r = 0.83-0.95$,
5 p -values $< 2.2 \times 10^{-16}$; **SI Appendix, Fig. S6**). GO term enrichment analyses of shared responses
6 (FDR $<1\%$ & $\log_2FC >0.2$ in same direction in both subsets) uncovered several functional
7 categories interacting to shape the activation state of cells (**Fig. 2A; Dataset S3B**). Both
8 bystander and infected cells showed increased mRNA expression of genes involved in antigen
9 processing and presentation via class I MHC (GO:0019885, OR=53.7, FDR $< 2.0 \times 10^{-6}$) and
10 response to type I IFN (GO:0034340, OR >14.8 , FDR $< 3.3 \times 10^{-20}$). Yet, bystander cells showed
11 increased mRNA expression of type I IFN response and defense response to virus pathways
12 relative to infected cells (GO:0034340: OR=13.4, FDR= 4.4×10^{-7} ; GO:0051607: OR=9.0,
13 FDR= 2.1×10^{-7}), while infected cells displayed higher mRNA expression of mitochondrial
14 (GO:0005743, OR=4.7, FDR= 3.3×10^{-3}) and ribosomal genes (GO: 0005840, OR=117,
15 FDR= 1.0×10^{-78}).

16 Among infected cells, ribosomal genes showed higher activity among high IAV-transcribing
17 cells relative to low IAV-transcribing cells (**Fig. 2B**, comparison only made at T₄ due to sample
18 size constraints, e.g. GO:0019083: OR=137, FDR= 6.1×10^{-65}). This observation is consistent with
19 the notion that the expression of viral proteins is dependent on cellular ribosomes, with recent
20 data suggesting that IAVs do not induce a global shut-off of cellular translation but rather a
21 reshaping of the translation landscape (25-27). Likewise, among bystander cells, numerous
22 ribosomal genes were downregulated at later time points relative to unexposed cells (**Fig. 2A**
23 and **C**; GO:0019083, OR=5.3, FDR= 4.2×10^{-6}), suggesting that repression of ribosomal subunits
24 plays an active role in limiting viral replication. Collectively, these results suggest that ISGs and
25 ribosomal expression interact to shape cell states upon IAV-challenge.

26
27 **Increased IRF and STAT activity drives stronger antiviral response.** Despite qualitatively
28 similar responses to infection between $CD16^-$ / $CD16^+$ subsets (**SI Appendix, Fig. S6**), we
29 hypothesized that subtle differences in the intensity of such responses might contribute to the
30 increased resistance of $CD16^+$ cells to infection. We thus performed an interaction test on the
31 subsampled scRNA-seq data, and searched for genes for which transcriptional response upon
32 IAV-challenge differed between $CD16^-$ and $CD16^+$ subsets in either infected and/or bystander
33 cells (**SI Appendix, Fig. S6 A and B; Dataset S3A**). At FDR $\leq 1\%$, we identified a total of 335
34 such genes, of which 98 differed between subsets only in bystander cells, 144 only in infected

1 cells, and 93 in both. Hierarchical clustering highlighted eight major patterns of transcriptional
2 responses (modules) among the 335 genes, several of which were associated with specific
3 biological functions (**Fig. 3A; Dataset S3 C and D**). Notably, module 1 (green) was enriched for
4 genes in the antiviral response pathway (GO:0051607, OR=23.2, FDR<5.43×10⁻⁷) and displayed
5 a stronger response in infected *CD16⁺* cells relative to *CD16⁻* infected cells. Of additional interest
6 was the transient *CD16⁺* specific transcription of the inflammatory cytokine genes *IL6* and *TNF*,
7 following viral challenge (**Fig. 3B**). We also found that several genes involved in the regulation
8 and production of IL-6 and TNF α are over-expressed in *CD16⁺* subsets at all time-points and
9 conditions (**Dataset S2B**), but only see active transcription of the cytokines upon viral exposure.
10 These results reveal the strong antiviral and inflammatory potential of *CD16⁺* relative to *CD16⁻*
11 monocytes in response to viral infection (28).

12 We next sought to characterize the regulatory architecture underlying the 335 genes whose
13 transcriptional response to IAV-challenge differed between monocyte subsets. Using SCENIC
14 (29), we identified 113 high-confidence gene regulatory networks, or ‘regulons’, which are active
15 in non-infected and/or IAV-challenged cells, each composed of a transcription factor (TF) and a
16 set of predicted targets (genes). We used these 113 regulons to search for an
17 enrichment/depletion of TF targets among the eight modules of genes displaying subset-specific
18 response to infection (**Dataset S3E**). Among modules associated with an increased expression
19 in cells exposed to IAV (modules 1-5), we observed a widespread over-representation of targets
20 of IFN regulatory factors (IRFs) and signal transducing and activators of transcription (STATs)
21 (**Fig. 3C**), reinforcing the central role of the IFN response upon IAV challenge. Interestingly,
22 several of these factors displayed subset-specific activity themselves in response to IAV
23 (*IRF1/2/7* and *STAT1/2/3*, FDR<1%), mirroring the expression patterns of module 1 (Pearson
24 $r>0.92$). These results collectively highlight a *CD16⁺*-specific inflammatory response upon IAV-
25 challenge and suggest stronger activation of IRF and STAT transcription factors as driver of the
26 increased antiviral response observed in *CD16⁺* cells upon IAV infection.

27
28 **Basal activation differences correlate with monocyte susceptibility.** To explore the degree
29 of inter-individual variation upon viral challenge, we next quantified IAV transcripts in the
30 monocyte-derived cells of each individual, and created pseudo-bulk estimates by averaging the
31 percent of viral mRNAs per-cell across all cells from each donor at each time point (**Fig. 4A**).
32 While viral mRNAs peaked at the same time for all individuals, we observed extensive variation
33 in the levels of viral mRNAs and percentages of infected cells across individuals (**Fig. 4B**). To
34 identify specific genes that might underlie infection potential, we focused on the 4,589 genes

1 that were expressed at $> 0.1 \log_2$ normalized counts in at least one canonical monocyte subset
2 at T_0 . We identified a total of 3,131 genes that differed among our eight donors in either
3 classical, intermediate, and/or nonclassical monocyte subsets (Kruskal-Wallis Rank Test, FDR
4 1%; **Dataset S4A**). Within each subset, focusing on genes that significantly differ between
5 donors, we searched for those for which mean expression at basal state was correlated with the
6 percentage of infected cells at T_4 among our eight donors. Despite our limited sample size, we
7 found that cellular susceptibility was strongly correlated with basal expression of the well-known
8 host viral restriction factor *IFITM3*. Although it reached significance only in nonclassical
9 monocytes (FDR~1%), the association remained strong in other subsets ($p < 4.1 \times 10^{-4}$; **Fig. 4C**).

10 We next relaxed our search to all genes for which basal expression showed nominal
11 correlation ($p < 0.01$) with the percentage of infected cells at T_4 . Depending on the monocyte
12 subset, between 3.6 to 8.3% of genes matched these criteria, resulting in a set of 118 genes
13 displaying correlation with monocyte susceptibility in at least one subset. These 118 genes were
14 collectively enriched for several related biological processes such as defense response to virus
15 (GO:0051607, OR=15.3, FDR=9.2 $\times 10^{-19}$) and response to type I IFN (GO:0034340, OR=19.6
16 FDR=8.4 $\times 10^{-15}$) (**Dataset S4B**). Among genes contributing to this enrichment, we found
17 additional antiviral genes such as *OAS3*, and *MX1*, as well as the critical TF, *IRF7*, involved in
18 the severity of IAV-infection both in mice and humans (30-32). Finally, overlap with the TF
19 targets identified by SCENIC revealed strong enrichments of several IRFs and STATs among
20 the 118 genes, including *IRF7*, as well as *STAT1*, *STAT2* and *IRF9* that form the tripartite IFN-
21 stimulated gene factor 3 (ISGF3) (**Fig. 4D; Dataset S4C**). Together, our results provide
22 evidence that the basal mRNA expression of genes related to IFN-induced and antiviral
23 responses are indicative of the proportion of cells that will become infected in the first cycle of
24 IAV infection.

25
26 **African-ancestry monocytes are more resistant to infection.** Lastly, we wondered how our
27 findings of inter-individual variation might extrapolate to the population level. In a previous study
28 (18), we challenged the primary monocytes from 200 Belgian individuals of African (AFB) and
29 European (EUB) ancestry with the same IAV strain and MOI used in the present study, and
30 performed bulk RNA-seq at 6 hours post infection (hpi). While basal (T_0) expression profiles
31 were not collected, flow cytometry labelling of CD14 and CD16 was performed on the CD14 $^+$ -
32 selected monocytes for the majority of donors. Interestingly, AFB individuals had higher
33 proportions of CD16 $^+$ cells than EUB individuals (**Fig. 5A; SI Appendix, Fig. S7**). In light of our

1 findings that *CD16⁺* cells are more resistant to IAV infection, we hypothesized that this might
2 translate to lower infection rates among AFB monocytes relative to EUB monocytes.

3 To test this hypothesis, we mapped the bulk RNA-seq profiles collected 6hpi challenge with
4 IAV for the 200 individuals to a combined human-IAV reference. Excluding 1 sample with low
5 quality RNAs, we found that 0.02-13.5% of RNA-seq reads from each sample were of viral origin
6 (**Fig. 5B**). Reassuringly, these percentages correlated with IAV mRNA levels estimated from the
7 single cell experiment across all time points for the eight donors used in the present study
8 (Pearson $r > 0.84$, p -value $< 8.9 \times 10^{-3}$), with the strongest correlation being observed at the peak
9 of viral transcription (T_4) (Pearson $r = 0.97$, p -value = 5.1×10^{-5}). These observations indicate that
10 *ex vivo* cellular susceptibility is highly reproducible among individuals, even across different
11 experimental protocols and technologies. Among the 199 bulk profiles, AFB and EUB samples
12 presented overlapping but significantly shifted distributions of total IAV-mapping reads (**Fig. 5B**,
13 4.9% vs. 6.8% of reads, respectively, Wilcoxon p -value = 5.3×10^{-8}), and of each of the 10
14 primary viral transcripts (**Fig. 5C**, Wilcoxon p -value $< 5.5 \times 10^{-4}$).

15 Using the transcriptional profiles obtained from the scRNA-seq data at T_6 , we estimated the
16 proportion of reads coming from each inferred cell state in these bulk RNA-seq profiles (**Fig. 5D**
17 and **5E**; **SI Appendix, Note S2 and Fig. S8A**). We found that, on average, AFB monocytes
18 were more resistant to IAV infection than EUB monocytes (39.2% vs. 48.9% infected,
19 respectively, Wilcoxon p -value = 5.3×10^{-10}). Differences in the estimated percentage of infected
20 cells alone explained 63% of the inter-individual variability in viral mRNA levels (**Fig. 5F**), and
21 was sufficient to account for the observed difference in viral mRNA levels between AFB and
22 EUB individuals (p -value = 0.16 after adjusting on infected cells, compared to p -value = 5.3×10^{-8}
23 without adjustment). Nonetheless, variation in the percentage of high/low transcribers among
24 infected cells accounted for an additional 19% of variance in viral mRNA expression (**SI**
25 **Appendix, Note S2 and Fig. S8B**). Finally, the ratio of *CD16⁺*/*CD16⁻* cells negatively correlated
26 with the percentage of infected cells, albeit weakly (-0.27, p -value = 0.0165 adjusted on
27 population). Altogether, these results show that population differences in viral mRNA levels are
28 primarily driven by the overall proportion of cells that will ultimately become infected, with only a
29 fraction of the differences being attributable to the different proportions of *CD16^{+/−}* subsets
30 observed in individuals of African and European ancestry.

31

32 **Discussion**

33 We performed scRNA-seq on primary monocytes, before and after *ex vivo* IAV-challenge, to
34 assess transcriptional differences between monocytes infected by IAV (i.e. infected) versus

1 those activated only by exposure to secreted cytokines (i.e. bystanders), and to identify subset-
2 specific responses of monocytes to viral challenge. We found that bystander cells display
3 increased mRNA expression of ISGs relative to infected cells; yet, we additionally observed both
4 an induction of ribosomal gene mRNA expression in IAV-transcribing cells and a down
5 regulation of these genes in bystander cells at later time points. While the former is likely
6 induced by the virus to enhance mRNA translation (33), the repression of ribosomal expression
7 observed in bystander cells may reflect a host mechanism to contain infection by shutting down
8 the translational machinery of neighboring cells. Interestingly, the interplay of ribosomal and ISG
9 expression also distinguished infected cells into two distinct states (high and low IAV-
10 transcribers), providing an explanation for the high cell-to-cell variation in IAV replication
11 observed among circulating monocytes, which has also been documented in other cell types
12 and during natural infection (34-41).

13 While these patterns are generally shared across *CD16*⁻ and *CD16*⁺ subsets, we found
14 *CD16*⁺ cells to be slightly more resistant to infection. This is likely attributable to their higher
15 absolute expression of some ISGs relative to *CD16*⁻ cells (independent of viral exposure), as
16 well as their more robust upregulation of antiviral genes upon IAV-challenge, which we found to
17 be driven by stronger activity of IRF transcription factors. Interestingly, *CD16*⁺ cells displayed
18 transient mRNA expression of *IL6* and *TNF* upon viral exposure (both infected and bystander
19 cells), two cytokines that have been widely implicated in cytokine storms (5). Collectively, these
20 findings highlight the opposing roles of ISG and ribosomal gene mRNA expression on viral
21 transcription, and reveal the stronger antiviral and pro-inflammatory potential of *CD16*⁺ monocyte
22 subsets.

23 At the population level, we found that the ratio of *CD16*⁺/*CD16*⁻ at basal state was predictive
24 of the percentage of monocytes that were susceptible to IAV infection, and observed that
25 African-ancestry individuals harbored more *CD16*⁺ monocytes on average than European-
26 ancestry individuals residing in the same city (Ghent, Belgium), consistent with previous
27 observations (42). Independently of monocyte subset proportions, we identified that individuals
28 presenting lower monocyte susceptibility to IAV had a higher basal activation of an IRF/STAT-
29 driven antiviral program. These findings suggest that the fate of a monocyte hinges upon its
30 basal activation state, and that the infection potential differs both within an individuals' monocyte
31 population, in part based on the differentiation status of the cell (i.e. *CD16*-positivity), but also
32 between individuals, where a *CD16*⁻ cell from one individual may have a higher antiviral state
33 than a *CD16*⁺ cell from another individual. This latter phenomenon likely reflects the influence of
34 both genetic and non-heritable factors on transcriptional variation in immune genes (14, 15).

1 These inter- and intra-population differences are noteworthy in and of themselves, and raise
2 questions about how such differences in susceptibility of monocytic cells to infection - and
3 differences in proportions of monocyte subsets - may relate to viral disease.

4 African Americans are more often hospitalized than other self-defined ethnic groups by both
5 influenza and COVID-19, even when adjusting for age and various social factors such as
6 poverty and vaccination status (43, 44). Thus, should monocyte infection play a role in the
7 severity of viral infections, our results would imply a paradox where higher infection and
8 replication of IAV in circulating monocytes is associated with an advantage to fight viral infection
9 *in vivo*. Such a paradox could possibly be explained by an enhanced antigen presenting
10 capacity of infected cells, with higher infection of European-monocytes facilitating the activation
11 of T cell antiviral responses (13, 45). In support of this hypothesis, we observe that infected and
12 bystander cells display comparable induction of antigen-presentation genes relative to non-
13 exposed cells. This suggests that infected cells maintain their ability to present viral antigens to
14 the adaptive immune system, while actively producing these antigens. Independently, but not
15 mutually exclusively, proportions of monocyte subsets in circulation may play a role in viral
16 disease; of note, patients with severe influenza and COVID-19 harbor higher proportions of
17 intermediate monocytes in peripheral blood than patients with mild disease (46, 47). Given our
18 finding that *CD16⁺* subsets are the main drivers of inflammatory cytokine gene expression such
19 as *IL6* and *TNF*, and that African-ancestry individuals harbor a larger fraction of these monocyte
20 subsets, it is tangible to conceive that monocyte subset composition prior to infection may
21 influence disease outcome, and potentially serve as a biomarker.

22

1 **Materials and methods**

2 **Experimental model and subjects.** All individuals from this study were part of the
3 EVOIMMUNOPOP cohort, which has been previously described (18). Briefly, 200 healthy male
4 donors living in Belgium of self-reported African descent (AFB) or European descent (EUB) were
5 recruited. Inclusion was restricted to nominally healthy individuals between 19 and 50 years of
6 age at the time of sample collection. Serological testing was performed for all donors to exclude
7 those with serological signs of past or ongoing infection with human immunodeficiency virus
8 (HIV), hepatitis B virus (HBV) or hepatitis C virus (HCV).

9

10 **Single-cell analyses and RNA sequencing.** For eight selected donors (4 individuals from each
11 ancestry, selected from extremes of the first principal component of gene expression in our
12 previous study of monocyte response to IAV-challenge (18)), 100×10^6 PBMCs were thawed,
13 washed twice and resuspended in complete medium: pre-warmed RPMI-1640 Glutamax
14 medium, supplemented with 10% FCS and 1% penicillin/streptomycin (Cat# 15140-122, Life
15 Technologies). Monocytes were then positively selected with magnetic CD14 microbeads,
16 according to the manufacturer's instructions (Cat#130-050-201, Miltenyi Biotec). The number of
17 monocytes was determined with the Countless2 automated cell counter system (Cat#
18 AMQAX1000, ThermoFisher Scientific) in the presence of trypan blue. For each donor,
19 monocytes were seeded at 0.5×10^6 monocytes per well on 24-well NUNC plates in 500 μ L of
20 complete media and allowed to rest for one hour at 37°C under 5% CO₂. Five-hundred
21 microliters of complete media (non-infected) or A/USSR/90/1977(H1N1) at a concentration of
22 1×10^6 pfu/mL in complete media (IAV-challenged, MOI=1) were added to each sample.
23 Following one hour of staging at 4°C, plates were centrifuged at 1300 rpm for 10 minutes at 4°C,
24 media was removed by pipette, and each well was washed with 1mL complete media. The spin
25 was repeated, media removed by pipette, and samples were resuspended in 1mL pre-warmed
26 complete media before being transferred to an incubator at 37°C under 5% CO₂ to initiate
27 infection (T_0).

28 At each time point (T_0 , T_2 , T_4 , T_6 , and T_8), samples were mixed by pipetting and transferred
29 to Eppendorf tubes. Wells were washed with 300uL of PBS + 0.04% BSA and transferred to the
30 same tubes. Collection tubes were centrifuged at 1300 rpm for 10 minutes, media was removed
31 and replaced with 1mL PBS + 0.04% BSA and an aliquot of 10 μ L was taken to count each
32 sample on a Countless2 automated cell counter system, before repeating the centrifugations.
33 Individual samples were adjusted to 2×10^6 live cells/mL.

1 Samples were multiplexed for running on the 10X Chromium (Cat# 120223 & 1000074, 10X
2 Genomics) by mixing equal proportions from 6-8 samples in a manner that balanced conditions
3 and allowed us to assess for batch effects across lanes (**SI Appendix, Table S1**). Multiplexed
4 samples were counted with the Countless2 automated cell counter system and adjusted to
5 target recovery of 10,000 cells per reaction of the Chromium Single Cell 3' Reagent Kits v3
6 (Cat# 1000092 & 1000078, 10X Genomics) assuming a recovery rate of 50%. GEM Generation
7 & Barcoding, Post GEM-RT Cleanup & cDNA Amplification, and 3' Gene Expression Library
8 Construction were performed as per manufacturer's instructions (48). All 13 libraries were mixed
9 prior to sequencing across 13 different lanes from an Illumina HiSeq X (28bp barcode + 91bp
10 insert – target 400 M reads pairs per lane), leading to a total of 5.3 billion reads.

11
12 **Sample Genotyping.** Genotyping data [accession EGAS00001001895] were obtained for all
13 200 individuals from the EvolImmunoPop cohort based on both Illumina HumanOmni5-Quad
14 BeadChips and whole-exome sequencing with the Nextera Rapid Capture Expanded Exome kit
15 (18). The 3,782,260 SNPs obtained after stringent quality control were then used for imputation,
16 based on the 1,000 Genomes Project imputation reference panel (Phase 1 v3.2010/11/23) (49),
17 leading to a final set of 19,619,457 high-quality SNPs, of which 7,766,248 SNPs had a MAF $\geq 5\%$
18 in our cohort.

19
20 **Processing of scRNA-seq data.** Basic pre-processing of the sequencing data was performed
21 with CellRanger v3.0.2 (50), including the *mkfastq*, *count*, and *aggr* commands. Default
22 parameters and our combined human-IAV reference were used, and batch correction was
23 disabled in the *aggr* command. Cell-containing droplets ($n=132,130$) were traced back to
24 individual donors using two independent methods, Demuxlet and SoupOrCell, which capitalize
25 on genetic variation in the sequencing reads (20, 51). Barcodes with ambiguous and/or non-
26 concordant calls between the two programs were used to establish suitable QC metrics. We
27 found that barcodes deemed as *doublets* (i.e. the droplet contained two or more cells originating
28 from different donors) were more likely to be nearest-neighbors in a *knn*-graph with other
29 *doublets* than assigned *singlets*. We used this feature to identify droplets presumed to contain
30 two or more cells originating from the same donor; barcodes with > 5 *doublets* as nearest-
31 neighbors were excluded from further analysis (**SI Appendix, Fig. S1 A and B**). Additionally,
32 droplets containing low-quality cells (i.e. damaged, dying) were excluded using the following
33 thresholds: < 1500 total counts, < 500 genes, or $> 50\%$ mitochondrial gene content (**SI**
34 **Appendix, Fig. S1C**). This QC resulted in a final data set of 96,386 single cells.

1 Transcriptomes (i.e. counts) were adjusted for the presence of ambient RNA with SoupX,
2 (<https://github.com/constantAmateur/SoupX/>, accessed November 28, 2019) (21), using
3 estimated contamination fractions (per 10X library) from SoupOrCell (51). SoupX-adjusted
4 counts were normalized using pool-based size factors followed by deconvolution as
5 implemented in the scran R package (52). Feature selection was performed by (i) constructing a
6 mean-variance trend in the log-counts and retaining genes found to exhibit more variation than
7 expected assuming Poisson-distributed technical noise, as implemented in the makeTechTrend
8 and TrendVar functions from package scran (52), and (ii) selecting genes expressed in at least
9 25 cells ($n=22,603$). The first 10 PCs of the data were retained for data visualization and
10 clustering analyses. Graph-based clustering was performed by building the shared nearest-
11 neighbor graph with the buildSNNGraph function from scran (52) using a series of k values, and
12 cell clusters were defined with the igraph Walktrap algorithm (53). Similar clustering results were
13 obtained based on the knn -graphs generated using $k=25, 50, 75$, and 100 , and $k=25$ was used
14 for all downstream analyses (**SI Appendix, Fig. S2A**). Cell types were predicted using SingleR
15 and the built-in BlueprintEncodeData reference (54). Based on the clustering and cell-type
16 predictions, we removed cells belonging to clusters associated with lymphoid cell types or low
17 QC metrics from downstream analyses (**SI Appendix, Fig. S2 B and C**).
18

19 **Accounting for ambient RNA contamination in scRNA-Seq Data and assigning cell states.**
20 Droplet-based scRNA-seq methods capture ambient mRNAs present in the cell suspension in
21 addition to cell specific mRNAs. To estimate which cells in our experiment were genuinely
22 expressing mRNAs for *CD14*, *FCGR3A* (*CD16*), and those originating from the virus, we
23 implemented a two-step strategy utilizing the estimateNonExpressionCells function of the SoupX
24 package (21). This function estimates whether each cell contains significantly more counts of a
25 provided gene-set than would be expected under a Poisson model, given the estimated ambient
26 RNA from its library of origin and the maximum contamination fraction. First, we used the viral
27 genes to estimate the true maximum contamination fraction, based on the assumption that cells
28 from the non-infected state should only contain viral reads from ambient mRNA captured in their
29 droplets. To do so, we modified the estimateNonExpressionCells function to return p -values, and
30 performed the test on each of our 13 libraries with a range of maximum contamination values
31 from 1-50% (step of 1%) using the viral genes. We then computed FDR adjusted p -values for
32 each maximum contamination value on the 88,559 high-quality, single monocytes. The number
33 of non-simulated cells deemed to significantly express IAV transcripts (FDR<0.01) was used as
34 a proxy for false positives. In examining the relationship between this number and the number of

1 IAV-challenged cells found to significantly express viral transcripts at FDR<0.01 (**Fig. 1C**), we
2 found that a maximum contamination fraction of 10% resulted in a 1% false positive rate
3 (defined as the percentage of non-infected cells from T₂-T₈ that were deemed to significantly
4 express IAV transcripts). This parameter value was then used to correct for contamination from
5 ambient for all genes considered (*CD14*, *FCGR3A* and IAV transcripts).

6
7 **Assigning cell states and investigating sources of variability in IAV levels.** We used a
8 maximum contamination fraction of 10% to test for significant expression of IAV transcripts in
9 each cell (**Fig. 1 C-E**). IAV-challenged cells that contained a significant amount of IAV transcripts
10 were considered as infected, while the others were deemed bystanders. To distinguish low from
11 high IAV-transcribing cells, a Gaussian mixture model was fitted to the total percentage of viral
12 mRNAs per cell across all infected cells, using the normalmixEM function from mixtools R
13 package with *k*=2 (55). Each cell was assigned to the cluster with the highest posterior
14 probability, and the cluster of cells with higher IAV content was annotated as high IAV-
15 transcribing.

16
17 **Characterizing monocyte subsets and transcriptional profiles from scRNA-seq data.**
18 Principal components analysis of 6,601 cells at T₀ was used to order monocytes along a
19 differentiation axis separating *CD14*⁺ cells from *CD16*⁺ cells. We then computed the average
20 percentage of classical and nonclassical monocytes obtained by FACS across the eight donors,
21 weighting each individual by the number of high-quality cells in the scRNA-seq data at T₀. Based
22 on these percentages (87.1% for classical and 7.6% for nonclassical), we annotated the
23 monocytes on each side of the differentiation axis as classical and nonclassical, respectively,
24 with the remaining 5.3% of monocytes being annotated as intermediates. Validity of our
25 approach was confirmed by correlating the proportion of monocytes assigned to each subset
26 across the eight donors, with the percentage of classical, intermediate and nonclassical
27 monocytes estimated by FACS.

28 Differential expression between subsets was assessed for the 4,859 genes expressed at an
29 average logCount > 0.1 in any of the 3 subsets. Specifically, Wilcoxon rank tests were
30 implemented in the scran package (52), using the findMarkers function and blocking on donor.
31 We considered genes to be differentially expressed (DE) between monocyte subsets when gene
32 expression was significant at an FDR≤1% and log₂FC>0.2. The 848 genes that differed between
33 classical (CL) and nonclassical (NC) monocyte subsets were classified according to their
34 behavior in intermediate monocytes (INT). They were either deemed 'similar to classical' (DE

1 between INT and NC, but not between INT and CL), 'similar to nonclassical' (DE between INT
2 and CL, but not between INT and NC), or 'intermediate' (all other cases).

3 At later time points, comparisons between $CD16^+$ and $CD16^-$ monocytes subsets were done
4 based on 5,681 genes expressed with a normalized log count > 0.1 on average in either subset,
5 in at least one condition and time point. For each subset, \log_2 fold change in gene expression
6 relative to T_0 were correlated across times points. Differential expression between $CD16^+$ and
7 $CD16^-$ cells was assessed with findMarkers (52), based on Wilcoxon rank tests and blocking on
8 donors, time points and condition. Again, an $FDR \leq 1\%$ and $\log_2 FC > 0.2$ were required to define
9 differentially expressed genes. To assess how $CD16^{+/-}$ status alters the infection of monocytes
10 by IAV, we used logistic regression to model bystander/infected status as a function of $CD16^{+/-}$
11 status, while adjusting on donor, and time point (as factors).

12

13 **Characterizing subset-specific responses to IAV challenge.** To allow comparison between
14 responses of $CD16^+$ and $CD16^-$ monocytes, 100 cells were subsampled from each subset and
15 cell state, and at each time point. When subsampling, we ensured balanced representation of all
16 donors across each monocyte subset and cell state, by using sampling weights that were
17 inversely proportional to each donor representation in the original dataset. After sampling, a total
18 of 6,669 genes with normalized log counts > 0.1 on average in at least one group (cell-state x
19 subset x time point) was selected for further analyses. For each monocyte subset, differences in
20 expression between cell states (unexposed, bystander, infected) as well as between high- and
21 low-IAV transcribing infected cells were performed using the findMarkers function from the scran
22 package (52) and blocked on time-point. For each comparison, genes were considered to be
23 differentially expressed between cell states when gene expression was significant at an
24 $FDR = 1\%$ (Wilcoxon rank tests) and the \log_2 fold change was > 0.2 . In addition, for each
25 comparison between cell states, we tested for differences in response between subsets using a
26 linear model of the form:

27

28
$$(10) \ Expr_i \sim State_i + subset_i + State_i \cdot subset_i$$

29

30 where $Expr_i$ is the expression of the gene being tested in cell i , $State_i$ is an indicator variable
31 that distinguishes the two cell states being compared (e.g. unexposed and bystander), and
32 $subset_i$ is an indicator variable that reflects the $CD16^{+/-}$ status of cell i . The 335 genes with
33 significant interactions at a 1% FDR (for unexposed-bystander and unexposed-infected

1 comparisons) were clustered using the `hclust` R function with method 'Ward.D2'.
2 DynamicTreeCut algorithm (56) was used to identify eight major patterns of response to IAV.
3
4 **Transcription factor enrichment analyses.** To estimate Transcription Factor (TF) activity and
5 define TF-targets relationships, we ran the R SCENIC pipeline (29) on the expression matrix
6 (pre-normalization) on a random subsample of 4800 cells (100 cells from each donor at each
7 time point and each condition, pre-exclusion of dying and contaminant cells) with default
8 parameters. For each gene, motif-enrichment was considered for either *cis*-regulatory regions
9 located <10kb from the TSS (distal regulatory elements), or between 500 bp upstream and 100
10 bp downstream of the promoter (proximal regulatory elements). To do so, motif-enrichment
11 scores for all human genes (hg38 build, refseq_r80), were retrieved from
12 <https://resources.aertslab.org/cistarget> and used as input for the `Rcistarget` package (29).

13 Sets of high-confidence targets for the 113 TFs whose activity could be quantified by
14 SCENIC were then extracted and used for enrichment analysis. For each gene module, TF
15 enrichment was assessed using a Fisher's exact test with the 6,669 expressed genes as
16 background (**Dataset 3**). Resulting *p*-values were adjusted using a global Benjamini-Hochberg
17 correction for all eight modules and 113 TFs.

18 For each TF, with its targets enriched among one of the eight modules, TF activity inferred
19 by SCENIC was used to test for subset-specific activity using a linear model of the form:

20
$$(11) \ TF_i \sim State_i + subset_i + State_i \cdot subset_i$$

21 where TF_i is the activity of the TF being tested in cell i , $State_i$ is an indicator variable that
22 distinguishes the two cell states being compared (e.g. unexposed and bystander), and $subset_i$ is
23 an indicator variable that reflects the $CD16^{+/-}$ status of cell i . Average TF activity was then
24 computed for each cell state, subset and time point, and correlated with gene expression of the
25 associated module, to assess the link between TF activation and the TF-target enriched
26 modules.

27
28 **Association of the outcome of IAV infection using basal gene expression.** For each of the
29 three monocyte subsets detected at basal state, Kruskall-Wallis test was used to search for
30 genes whose expression levels significantly differ across donors. Within each monocyte subset,
31 we then computed the average expression of each gene for all eight donors and correlated it
32 with the percentage of infected cells at 4hpi. Genes that differed in expression between donors
33 ($FDR \leq 1\%$), and passed a nominal *p*-value threshold of 0.01 for association with IAV levels in
34 any of the 3 subsets, were selected for downstream enrichment analyses. For genes nominally

1 correlated with viral mRNA levels, TF enrichment was assessed as previously using a Fisher's
2 exact test with all 4,859 genes expressed at T_0 as background (**Dataset S4**), and Benjamini-
3 Hochberg correction for all 113 TFs was applied.

4
5 **Gene Ontology enrichment analyses.** All Gene Ontology (GO) enrichment analyses were
6 performed with GOSeq package using default settings (57). Background gene sets consisted of
7 all genes that had average log-normalized expression value > 0.1 in at least one of the
8 groupings being examined, and are described in the text. Only enrichments significant at
9 FDR $\leq 5\%$ are reported.

10
11 **Pseudo-bulk estimates from scRNA-seq data.** Pseudo bulk estimates of IAV mRNA levels
12 were computed by measuring, for each donor and time point, the mean percentage of reads of
13 viral origin across all cells from the sample. At each time point, we then used a Pearson's
14 correlation test to compare pseudo-bulk estimates for the 8 donors with IAV mRNA levels
15 obtained in bulk data at 6hpi.

16
17 **Monocyte subset characterization of EVOIMMUNOPOP samples via FACS.** For 174 of the
18 200 EVOIMMUNOPOP donors, proportions of classical, intermediate and nonclassical
19 monocytes were determined based on a fraction of 10^5 CD14 $^+$ positively-selected monocytes,
20 stained according to the manufacturer's instructions, with fluorescent APC-conjugated anti-CD14
21 and PE-conjugated anti-CD16 antibodies (Cat#130-091-243 and Cat #130-091-245,
22 respectively, Miltenyi Biotec). Samples were then analyzed on a MACSQuant Analyzer 10
23 benchtop flow cytometer (Miltenyi Biotec).

24
25 **Quantification of canonical monocyte subsets in EVOIMMUNOPOP samples.** FlowJo
26 v10.6.1 software (58) was used with the gating strategy depicted in **SI Appendix, Fig. S1** to
27 quantify monocyte subsets for 174 EVOIMMUNOPOP donors. Population-level differences in
28 proportion of canonical monocyte subsets were assessed using Wilcoxon Rank tests.
29 Correlation of the ratio of CD16 $^+$ to CD16 $^-$ cells with IAV mRNA levels was assessed using a
30 linear model of the form

31 (1) $IAV \sim ratio + Pop$,
32 where 'IAV' are IAV mRNA levels, 'ratio' is the percentage of CD16 $^+$ monocytes (non
33 classical+intermediates) divided by the percentage of CD16 $^-$ monocytes (classical), and 'Pop' is
34 an indicator variable separating AFB from EUB individuals.

1

2 **Analysis of bulk RNA-seq profiles from the EVOIMMUNOPOP cohort.** A combined human-
3 IAV reference was generated by concatenation of the primary human genome assembly
4 (GRCh38) with the 8 segments of the human influenza A virus (IAV) A/USSR/90/1977(H1N1)
5 genome (accession numbers CY010372-CY010379). Comprehensive human gene annotation
6 was obtained from GENCODE (release 27) and merged with the 12 known transcripts of
7 A/USSR/90/1977(H1N1). RNA-seq reads (FASTQs) for all 970 samples that passed quality
8 control in our previous study (18) [accession EGAS00001001895] were mapped to the
9 combined reference with the STAR aligner (v.2.5.0a) (59) and assessed for quality with
10 QualiMap 'bamqc' and 'rnaseq' (60, 61). Expression of viral mRNAs was measured as the
11 percentage of uniquely-mapped reads aligning to the IAV genome. Reassuringly, the mean
12 percentage of RNA-seq reads among samples from the IAV-challenged condition was 5.86%
13 versus <0.01% in the other four conditions. Comparison of the percentage of IAV reads between
14 populations was done using a Wilcoxon rank test. StringTie (v.1.3.3) (62) was used to quantify
15 expression levels in transcripts per million mapped reads (TPM) for each annotated transcript.
16 Gene expression data were filtered to remove genes with little evidence of activation (mean
17 zTPM score < -3) (63) in any of the 5 conditions, and their quality was checked by principal
18 component analysis (PCA). As GC content, 5'/3' bias, date of the experiment and library batch
19 were previously determined to be the strongest confounding factors on transcript expression
20 (18), we corrected the data for these factors. First, we adjusted the data for GC content and 5'/3'
21 bias using linear models. Then, we imputed missing values by k-nearest neighbor imputation
22 and adjusted for experiment date and library batch by sequentially running ComBat (64) for each
23 batch effect, with condition and population as covariates. After batch effect correction, only IAV-
24 stimulated samples were kept for downstream analyses.

25

26 **Cell states deconvolution from bulk RNA sequencing.** To assess the percentage of total
27 transcripts that originate from each cell state across the 199 IAV-challenged samples, we pooled
28 cells from T₆ into 3 groups, based on their assigned cell-state (bystander, infected: high and low
29 IAV-transcribing) and to which we added a 4th group containing all singlets that were either (i)
30 assigned to cluster numbers 3, 8, 10, and 11 (dying cells) or (ii) discarded based on their high
31 mitochondrial content or low read counts (dead cells). We then estimated pseudo-bulk profiles
32 for each group by summing UMIs across all cells and computing the number of UMIs associated
33 to each gene per million of sequenced UMIs. TPM profiles obtained from bulk data were then
34 normalized to improve comparison with pseudo-bulk. Specifically, we first computed a global

1 pseudo-bulk profile of the entire single cell dataset as the average of the pseudo bulk profiles
2 from the 4 cell states (bystander, infected: high and low IAV-transcribing, or dying/dead),
3 weighted by the percentage of UMIs they contribute to the overall pool of cells. To account for
4 the difference in how gene expression is quantified between the two methods (3' end counts for
5 scRNA-seq and full-length gene coverage for bulk RNA-seq), we computed for each gene i a
6 normalization factor s_i given by

$$(5) \quad s_i = \log(\overline{TPM}_i) - \log(PB_i)$$

7 where PB_i is the number of UMI per million for gene i in the global pseudo-bulk profile, and \overline{TPM}_i
8 is the average expression of the gene i in the 199 IAV-stimulated samples from the bulk RNA-
9 seq data. For each gene, s_i was then subtracted from the log transformed TPM to yield a
10 normalized TPM profiles. We next applied DeconRNAseq (65) to the normalized log TPM
11 profiles from all individuals, using the log-transformed pseudo bulk profiles from the 4 cell states
12 as a basis for deconvolution. Quality of the deconvolution was assessed using leave-one-out
13 cross validation, based on the eight individuals for whom we had scRNA-seq data. Specifically,
14 for each of these eight individuals, bulk mRNAs were decomposed using pseudo-bulk profiles
15 recomputed based on the seven other individuals. The resulting proportions were then
16 compared with the percentage of UMIs that originate in each cell-state in the scRNA-seq to
17 assess the quality of the deconvolution. Comparisons between populations were performed
18 using Wilcoxon rank tests.

20 The effect of the percentage of infected cells and percentage of high IAV-transcribing cells
21 among infected cells on the total IAV mRNA levels were assessed by modeling

$$(6) \quad IAV \sim INF + POP$$

22 and

$$(7) \quad IAV \sim HI + POP$$

25 where IAV are the IAV mRNA levels across the 199 bulk mRNA samples, INF and HI are
26 respectively the percentage of infected cells and the percentage of high IAV-transcribing cells
27 among infected cells that we estimated from the deconvolution, and POP is a factor variable
28 reflection the population (EUB or AFB). The fraction η of population differences attributable to
29 difference in rate of infection was estimating by comparing model (6) with model (8) below

$$(8) \quad IAV \sim POP$$

31 and computing $\eta = 100 \times \left(1 - \frac{\beta_6}{\beta_8}\right)$, with β_i the effect of population on IAV levels in model (i). To
32 assess how the contribution of the percentage of high IAV transcribing cells to total IAV mRNA
33 levels differed between populations, we used a linear model of the form

$$(9) \quad IAV \sim HI + POP + HI:POP$$

1 and tested for significant effect of the interaction term *HI:POP* on *IAV* mRNA levels.

2

3 **Data availability**

4 The bulk RNA-seq data used in this study are available at the European Genome Phenome
5 archive under accession number [EGAS00001001895]. The single cell RNA-seq data generated
6 during this study are available at the European Genome Phenome archive under accession
7 number [EGAS00001005000]. Code generated as part of this study is available on Github
8 (https://github.com/h-e-g/PopDiff_MonocyteIAV).

9

10 **Acknowledgments**

11 This work was supported by the *Institut Pasteur*, the *Collège de France*, the French
12 Government's *Investissement d'Avenir* program, *Laboratoires d'Excellence* "Integrative Biology
13 of Emerging Infectious Diseases" (ANR-10- LABX-62-IBEID) and "Milieu Intérieur" (ANR-10-
14 LABX-69-01), the *Fondation de France* (n°00106080), and the *Fondation pour la Recherche
15 Médicale* (Equipe FRM DEQ20180339214). M.B.O was supported by a *European Molecular
16 Biology Organization* long-term fellowship (ALTF 229-2017). We also wish to thank Tzachi Hagai
17 and John Marioni for input and feedback, and Sylvie van Der Werf and Vincent Enouf for
18 providing resources and protocols relating to influenza viruses.

19

1 References

- 2 1. V. A. Ryabkova, L. P. Churilov, Y. Shoenfeld, Influenza infection, SARS, MERS and
3 COVID-19: Cytokine storm - The common denominator and the lessons to be learned.
4 *Clinical immunology (Orlando, Fla.)* **223**, 108652 (2021).
- 5 2. F. Krammer *et al.*, Influenza. *Nat Rev Dis Primers* **4**, 3 (2018).
- 6 3. Q. Zhang *et al.*, Life-Threatening COVID-19: Defective Interferons Unleash Excessive
7 Inflammation. *Med (N Y)* **1**, 14-20 (2020).
- 8 4. A. A. Stegelmeier *et al.*, Myeloid Cells during Viral Infections and Inflammation. *Viruses*
9 **11** (2019).
- 10 5. D. C. Fajgenbaum, C. H. June, Cytokine Storm. *N Engl J Med* **383**, 2255-2273 (2020).
- 11 6. C. Guo *et al.*, Single-cell analysis of two severe COVID-19 patients reveals a monocyte-
12 associated and tocilizumab-responding cytokine storm. *Nature communications* **11**, 3924
13 (2020).
- 14 7. R. Alon *et al.*, Leukocyte trafficking to the lungs and beyond: lessons from influenza for
15 COVID-19. *Nat Rev Immunol* **21**, 49-64 (2021).
- 16 8. L. Ziegler-Heitbrock *et al.*, Nomenclature of monocytes and dendritic cells in blood. *Blood*
17 **116**, e74-80 (2010).
- 18 9. F. Geissmann, S. Jung, D. R. Littman, Blood monocytes consist of two principal subsets
19 with distinct migratory properties. *Immunity* **19**, 71-82 (2003).
- 20 10. C. Auffray *et al.*, Monitoring of blood vessels and tissues by a population of monocytes
21 with patrolling behavior. *Science* **317**, 666-670 (2007).
- 22 11. L. Ziegler-Heitbrock, The CD14+ CD16+ blood monocytes: their role in infection and
23 inflammation. *J Leukoc Biol* **81**, 584-592 (2007).
- 24 12. M. A. Hoeve, A. A. Nash, D. Jackson, R. E. Randall, I. Dransfield, Influenza virus A
25 infection of human monocyte and macrophage subpopulations reveals increased
26 susceptibility associated with cell differentiation. *PLOS ONE* **7**, e29443 (2012).
- 27 13. W. Hou *et al.*, Viral infection triggers rapid differentiation of human blood monocytes into
28 dendritic cells. *Blood* **119**, 3128-3131 (2012).
- 29 14. B. Piasecka *et al.*, Distinctive roles of age, sex, and genetics in shaping transcriptional
30 variation of human immune responses to microbial challenges. *Proceedings of the
31 National Academy of Sciences of the United States of America* **115**, E488-E497 (2018).
- 32 15. P. Brodin *et al.*, Variation in the human immune system is largely driven by non-heritable
33 influences. *Cell* **160**, 37-47 (2015).
- 34 16. W. J. Astle *et al.*, The Allelic Landscape of Human Blood Cell Trait Variation and Links to
35 Common Complex Disease. *Cell* **167**, 1415-1429 e1419 (2016).
- 36 17. E. Patin *et al.*, Natural variation in the parameters of innate immune cells is preferentially
37 driven by genetic factors. *Nat Immunol* **19**, 302-314 (2018).
- 38 18. H. Quach *et al.*, Genetic Adaptation and Neandertal Admixture Shaped the Immune
39 System of Human Populations. *Cell* **167**, 643-656 e617 (2016).
- 40 19. K. G. Ouwens *et al.*, A characterization of cis- and trans-heritability of RNA-Seq-based
41 gene expression. *Eur J Hum Genet* **28**, 253-263 (2020).
- 42 20. H. M. Kang *et al.*, Multiplexed droplet single-cell RNA-sequencing using natural genetic
43 variation. *Nature biotechnology* **36**, 89-94 (2018).
- 44 21. M. D. Young, S. Behjati, SoupX removes ambient RNA contamination from droplet-based
45 single-cell RNA sequencing data. *Gigascience* **9** (2020).
- 46 22. K. L. Wong *et al.*, Gene expression profiling reveals the defining features of the classical,
47 intermediate, and nonclassical human monocyte subsets. *Blood* **118**, e16-31 (2011).
- 48 23. V. Segura *et al.*, In-Depth Proteomic Characterization of Classical and Non-Classical
49 Monocyte Subsets. *Proteomes* **6** (2018).

- 1 24. C. Schmidl *et al.*, Transcription and enhancer profiling in human monocyte subsets.
2 *Blood* **123**, e90-99 (2014).
- 3 25. A. Bercovich-Kinori *et al.*, A systematic view on influenza induced host shutoff. *eLife* **5**
4 (2016).
- 5 26. H. M. Machkovech, J. D. Bloom, A. R. Subramaniam, Comprehensive profiling of
6 translation initiation in influenza virus infected cells. *PLoS pathogens* **15**, e1007518
7 (2019).
- 8 27. S. Li, Regulation of Ribosomal Proteins on Viral Infection. *Cells* **8** (2019).
- 9 28. J. Cros *et al.*, Human CD14dim monocytes patrol and sense nucleic acids and viruses
10 via TLR7 and TLR8 receptors. *Immunity* **33**, 375-386 (2010).
- 11 29. S. Aibar *et al.*, SCENIC: single-cell regulatory network inference and clustering. *Nature
methods* **14**, 1083-1086 (2017).
- 13 30. E. K. Allen *et al.*, SNP-mediated disruption of CTCF binding at the *IFITM3* promoter is
14 associated with risk of severe influenza in humans. *Nature Medicine* **23**, 975 (2017).
- 15 31. Q. Zhang, Human genetics of life-threatening influenza pneumonitis. *Human genetics*
16 **139**, 941-948 (2020).
- 17 32. M. J. Ciancanelli *et al.*, Infectious disease. Life-threatening influenza and impaired
18 interferon amplification in human IRF7 deficiency. *Science* **348**, 448-453 (2015).
- 19 33. B. Panthu *et al.*, The NS1 Protein from Influenza Virus Stimulates Translation Initiation by
20 Enhancing Ribosome Recruitment to mRNAs. *J Mol Biol* **429**, 3334-3352 (2017).
- 21 34. C. Wang *et al.*, Cell-to-Cell Variation in Defective Virus Expression and Effects on Host
22 Responses during Influenza Virus Infection. *mBio* **11** (2020).
- 23 35. Y. Steuerman *et al.*, Dissection of Influenza Infection In Vivo by Single-Cell RNA
24 Sequencing. *Cell systems* **6**, 679-691.e674 (2018).
- 25 36. A. B. Russell, C. Trapnell, J. D. Bloom, Extreme heterogeneity of influenza virus infection
26 in single cells. *eLife* **7** (2018).
- 27 37. J. Sun *et al.*, Single cell heterogeneity in influenza A virus gene expression shapes the
28 innate antiviral response to infection. *PLoS pathogens* **16**, e1008671 (2020).
- 29 38. I. Ramos *et al.*, Innate Immune Response to Influenza Virus at Single-Cell Resolution in
30 Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1. *Journal of
virology* **93** (2019).
- 32 39. A. B. Russell, E. Elshina, J. R. Kowalsky, A. J. W. Te Velthuis, J. D. Bloom, Single-Cell
33 Virus Sequencing of Influenza Infections That Trigger Innate Immunity. *Journal of
virology* **93** (2019).
- 35 40. E. Kudo *et al.*, Low ambient humidity impairs barrier function and innate resistance
36 against influenza infection. *Proceedings of the National Academy of Sciences of the
37 United States of America* **116**, 10905-10910 (2019).
- 38 41. Y. Cao *et al.*, Single-cell analysis of upper airway cells reveals host-viral dynamics in
39 influenza infected adults. *bioRxiv* 10.1101/2020.04.15.042978, 2020.2004.2015.042978
40 (2020).
- 41 42. L. J. Appleby *et al.*, Sources of heterogeneity in human monocyte subsets. *Immunol Lett*
42 **152**, 32-41 (2013).
- 43 43. R. Chandrasekhar *et al.*, Social determinants of influenza hospitalization in the United
44 States. *Influenza Other Respir Viruses* **11**, 479-488 (2017).
- 45 44. J. L. Hadler *et al.*, Influenza-Related Hospitalizations and Poverty Levels - United States,
46 2010-2012. *MMWR Morb Mortal Wkly Rep* **65**, 101-105 (2016).
- 47 45. N. J. Roberts, Jr., Diverse and Unexpected Roles of Human Monocytes/Macrophages in
48 the Immune Response to Influenza Virus. *Viruses* **12** (2020).
- 49 46. S. L. Cole *et al.*, M1-like monocytes are a major immunological determinant of severity in
50 previously healthy adults with life-threatening influenza. *JCI Insight* **2**, e91868 (2017).

- 1 47. Y. H. Zhou *et al.*, Pathogenic T cells and inflammatory monocytes incite inflammatory
2 storm in severe COVID-19 patients. *Natl Sci Rev* 10.1093/nsr/nwaa041, nwaa041
3 (2020).
- 4 48. 10xGenomics, Chromium Single Cell 3' Reagent Kits User Guide (v3 Chemistry).
5 (2020).
- 6 49. C. Genomes Project *et al.*, An integrated map of genetic variation from 1,092 human
7 genomes. *Nature* **491**, 56-65 (2012).
- 8 50. G. X. Zheng *et al.*, Massively parallel digital transcriptional profiling of single cells. *Nature*
9 *communications* **8**, 14049 (2017).
- 10 51. H. Heaton *et al.*, Souporcell: robust clustering of single-cell RNA-seq data by genotype
11 without reference genotypes. *Nature methods* **17**, 615-620 (2020).
- 12 52. A. T. Lun, D. J. McCarthy, J. C. Marioni, A step-by-step workflow for low-level analysis of
13 single-cell RNA-seq data with Bioconductor. *F1000Res* **5**, 2122 (2016).
- 14 53. P. Pons, M. Latapy (2005) Computing Communities in Large Networks Using Random
15 Walks. in *Computer and Information Sciences - ISCIS 2005*, eds p. Yolum, T. Güngör, F.
16 Gürgen, C. Özturan (Springer Berlin Heidelberg, Berlin, Heidelberg), pp 284-293.
- 17 54. D. Aran *et al.*, Reference-based analysis of lung single-cell sequencing reveals a
18 transitional profibrotic macrophage. *Nat Immunol* **20**, 163-172 (2019).
- 19 55. T. Benaglia, D. Chauveau, D. R. Hunter, D. S. Young, mixtools: An R Package for
20 Analyzing Mixture Models. *Journal of Statistical Software; Vol 1, Issue 6* (2010) (2009).
- 21 56. P. Langfelder, B. Zhang, S. Horvath, Defining clusters from a hierarchical cluster tree: the
22 Dynamic Tree Cut package for R. *Bioinformatics* **24**, 719-720 (2008).
- 23 57. M. D. Young, M. J. Wakefield, G. K. Smyth, A. Oshlack, Gene ontology analysis for RNA-
24 seq: accounting for selection bias. *Genome Biol* **11**, R14 (2010).
- 25 58. D. a. C. Becton (2019) FlowJo™ Software (Ashland).
- 26 59. A. Dobin *et al.*, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21
27 (2013).
- 28 60. F. García-Alcalde *et al.*, Qualimap: evaluating next-generation sequencing alignment
29 data. *Bioinformatics* **28**, 2678-2679 (2012).
- 30 61. K. Okonechnikov, A. Conesa, F. García-Alcalde, Qualimap 2: advanced multi-sample
31 quality control for high-throughput sequencing data. *Bioinformatics* **32**, 292-294 (2016).
- 32 62. M. Pertea *et al.*, StringTie enables improved reconstruction of a transcriptome from RNA-
33 seq reads. *Nature biotechnology* **33**, 290-295 (2015).
- 34 63. T. Hart, H. K. Komori, S. LaMere, K. Podshivalova, D. R. Salomon, Finding the active
35 genes in deep RNA-seq gene expression studies. *BMC genomics* **14**, 778 (2013).
- 36 64. W. E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data
37 using empirical Bayes methods. *Biostatistics (Oxford, England)* **8**, 118-127 (2007).
- 38 65. T. Gong, J. D. Szustakowski, DeconRNASeq: a statistical framework for deconvolution of
39 heterogeneous tissue samples based on mRNA-Seq data. *Bioinformatics* **29**, 1083-1085
40 (2013).
- 41
- 42

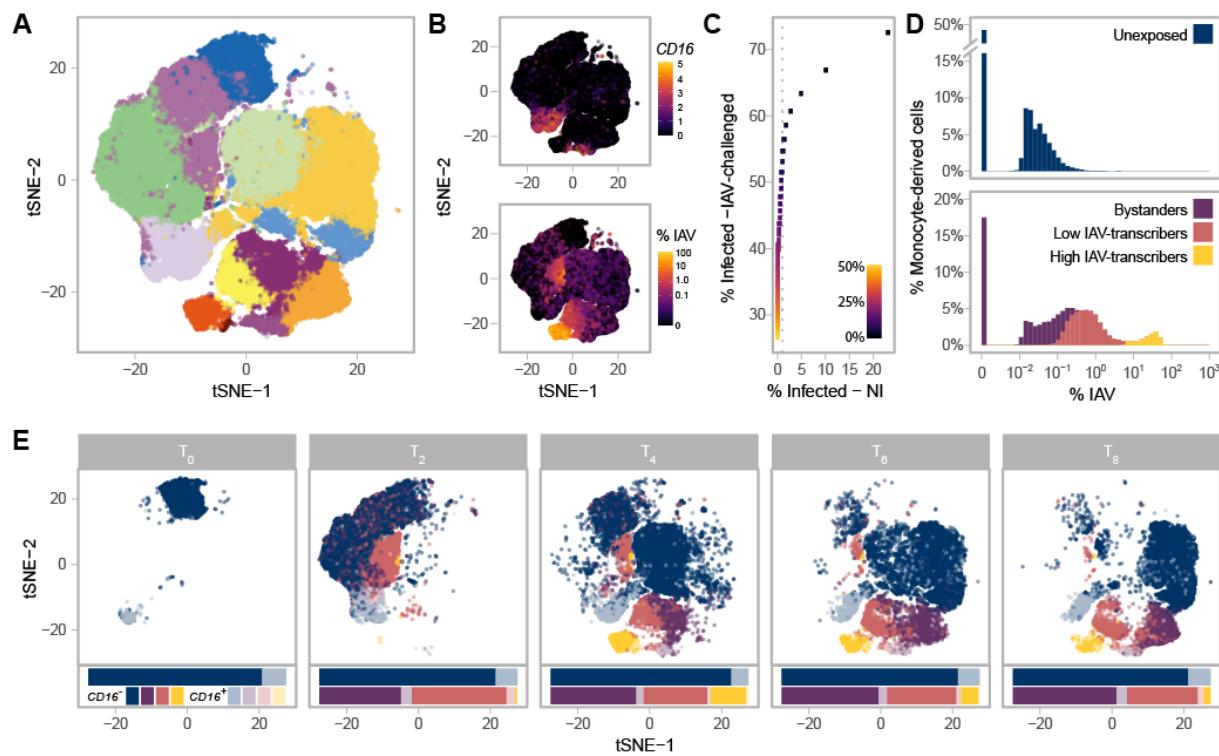


Fig. 1. Single-Cell RNA-Sequencing of 88,559 Monocytes and Their Derived Cells. (A) Post-QC tSNE colored by unsupervised graph-based clusters. (B) Post-QC tSNE colored by *FCGR3A* (*CD16*) \log_2 normalized counts (top), or percentage of viral mRNAs (bottom). (C) Determination of the maximum contamination fraction by ambient RNA. The number of non-infected cells deemed to significantly express IAV transcripts (presumed false positives) versus the number of IAV-challenged cells deemed to significantly express IAV transcripts across a range of maximum contamination fractions from 1-50% (color bar). Dotted grey line is drawn at 1% on the x-axis. A maximum contamination fraction of 10% results in 1% of non-infected cells being classified as infected (false positive proxy), and half of IAV-challenged cells showing evidence of viral transcription. (D) Distribution of counts of viral origin across all donors, from T_2 to T_8 . Cells are shown separately for non-infected (top) and IAV-challenged (bottom) conditions. Fill color reflects the cell state assignments. Note that the threshold used to define infected cells is dependent on the number of viral mRNAs in the ambient pool, and varies across libraries. (E) Post-QC tSNE stratified by time point. For each time point, cells are colored according to their *CD16⁺* status (see key) and their assigned cell state (same as depicted in D). For each condition and time point, stacked bar charts below the tSNE represent the relative proportions of the various cell states and subsets.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

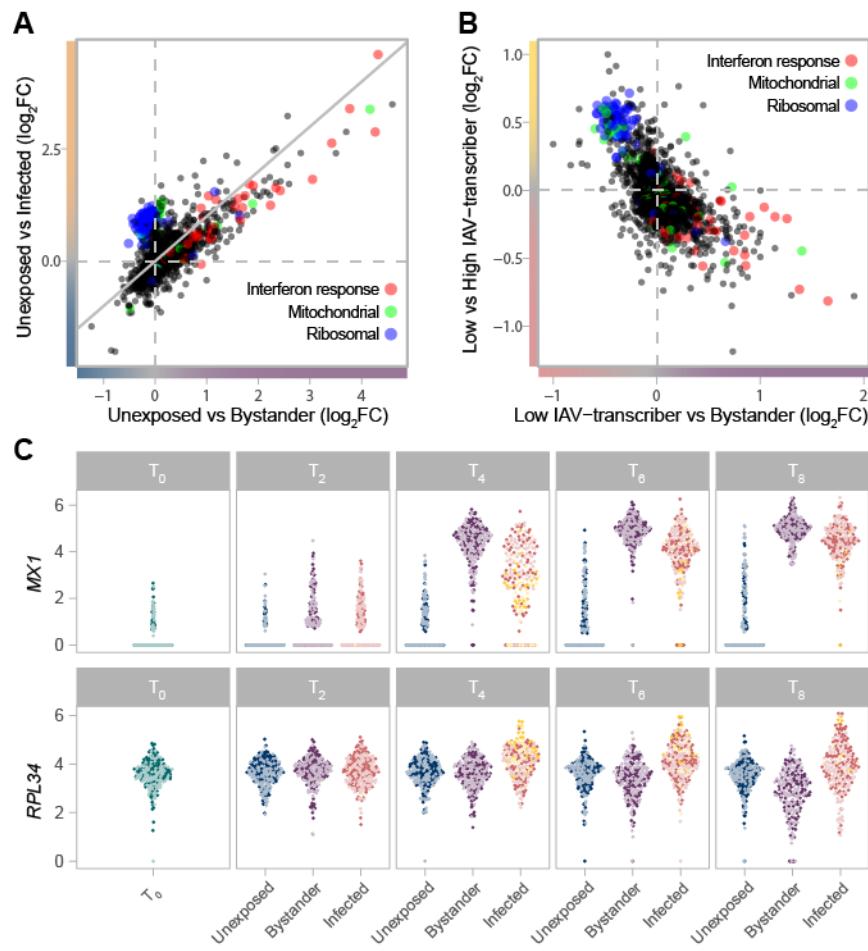


Fig. 2. Gradient of mRNA Expression from Ribosomal and IFN-Stimulated Genes Separates Bystander and Infected Cells. (A) Transcriptional responses of cells upon IAV-challenge (T₂-T₈) highlight the interplay between IFN response (GO:0034340), ribosomal (GO:0005840), and mitochondrial (GO:0005743) genes. The $\log_2\text{FC}$ change in gene expression between unexposed and bystander cells is plotted on the x-axis, while the $\log_2\text{FC}$ change in gene expression between unexposed and infected cells is plotted on the y-axis. Values are plotted based on a meta-analysis across time points and subsets, based on a subsampled data set with balanced representation of all donors. (B) The interplay between IFN response (GO:0034340), ribosomal (GO:0005840), and mitochondrial (GO:0005743) genes among cells exposed to IAV. The $\log_2\text{FC}$ change in gene expression between low IAV-transcribing infected and bystander cells is plotted on the x-axis, while the $\log_2\text{FC}$ change in gene expression between low IAV-transcribing infected and high IAV-transcribing infected cells is plotted on the y-axis. Values are plotted based on a meta-analysis across monocyte subsets at T₄. (C) mRNA expression levels of representative IFN-stimulated (*MX1*) and ribosomal (*RPL34*) genes across the subsampled dataset. Colors reflect the cell state and subset assignment depicted in **Fig. 1 D** and **E**.

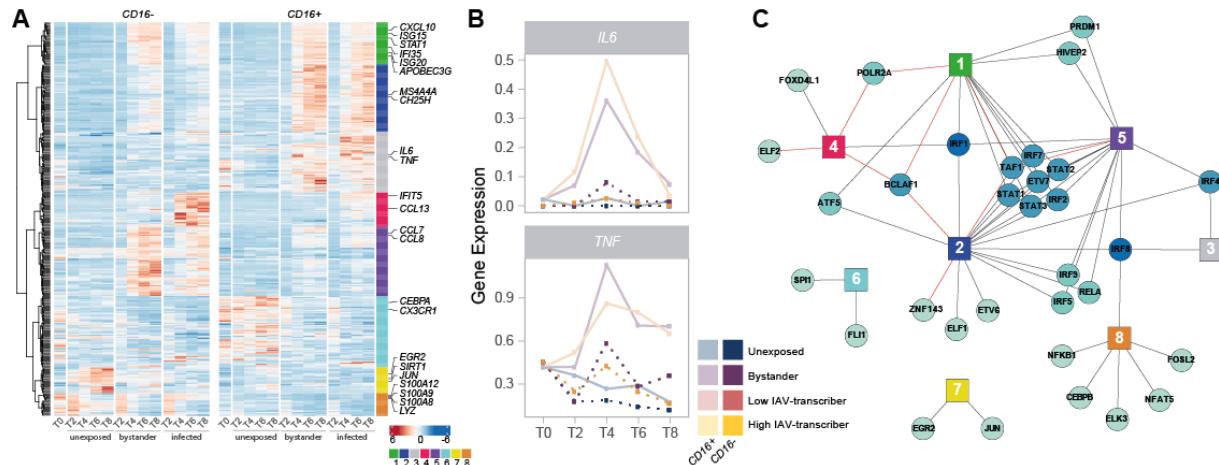


Fig. 3. IRFs and STATs Have a Central Role in the Subset-Specific Responses to IAV Infection. (A) Heatmap of scaled gene expression from 335 genes displaying a subset-specific response to infection challenge. Genes are grouped into 8 modules based on hierarchical clustering of their expression patterns. Representative genes from each module are labelled. (B) Mean expression over time of *IL6* and *TNF*, across the different monocyte subsets and cell states. (C) Network of transcription factors (round nodes) associated with each gene expression module (square nodes). Transcription factor nodes are colored according to the number of modules they are associated with. Black lines represent enrichments of the module in TF targets, while red lines represent depletions.

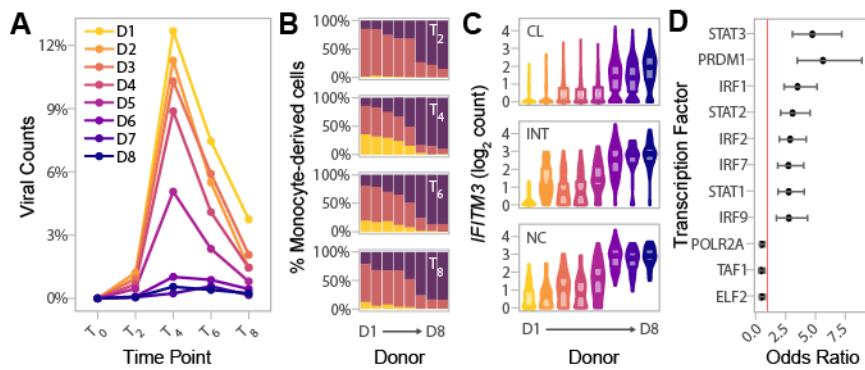


Fig. 4. Basal IRF/STAT-Induced Transcriptional Network Underlies Inter-Individual Differences in Monocyte Susceptibility and IAV levels. (A) Pseudo-bulk estimates of the percentage of counts of viral origin in IAV-challenged condition (T_2 - T_8). Donors are colored based on the rank of these pseudo-bulk estimates at the peak of viral transcription, T_4 , from that with highest observed viral mRNA level (D1) to that of the lowest (D8). (B) Proportions of cell states from the IAV-challenged condition at T_2 , T_4 , T_6 , and T_8 , in the eight donors. X-axis is ordered by decreasing viral mRNA levels found at T_4 (D1-D8). (C) Log normalized expression values of *IFTM3* across all cells, stratified by canonical monocyte subsets, and separated by donor. Colors reflect the different donors depicted in A. For each donor and monocyte subset, the violin plots show the full distribution of *IFTM3* expression across individual cells and boxplots highlight the median and interquartile range. (D) Enrichment of SCENIC-predicted targets among the 118 genes whose basal expression at T_0 correlates with the percentage of infected cells at later time points (odds ratio and 95% confidence interval). Red line designates an odds ratio equal to 1. Only TFs significantly enriched among the 118 candidate genes are shown (FDR < 0.05). Abbreviations: classical (CL), intermediate (INT), and nonclassical (NC).

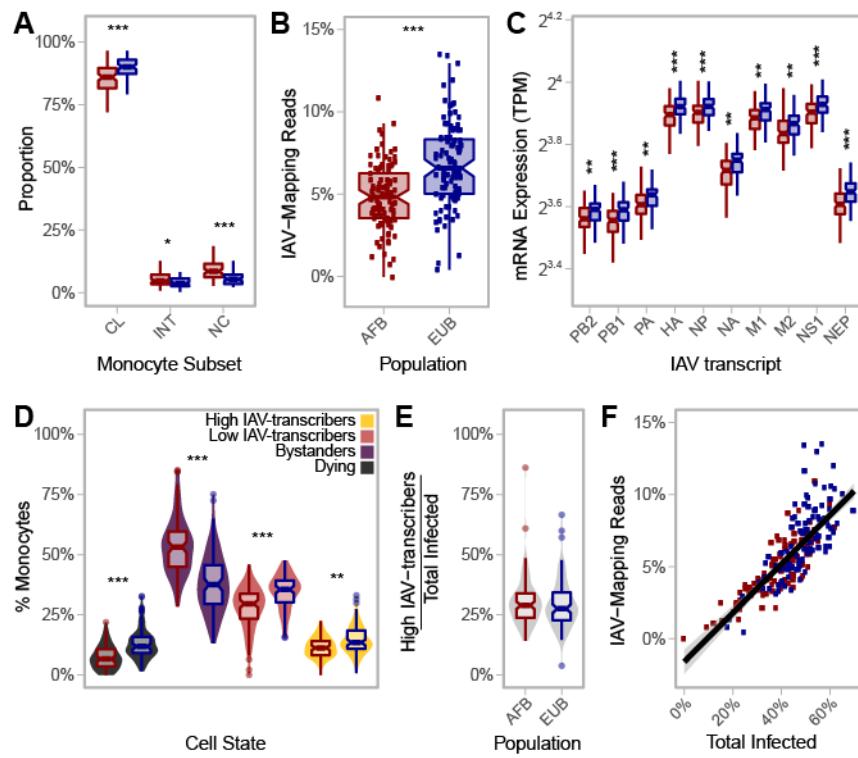


Fig. 5. African-Ancestry Individuals Display Increased Number of $CD16^+$ Cells and Lower Susceptibility to IAV Infection. (A) Variation in the number of classical ($CD14^{++}CD16^-$), intermediate ($CD14^{++}CD16^+$), and nonclassical ($CD14^+CD16^{++}$) monocytes across African- and European- ancestry individuals following $CD14^+$ selection from PBMCs ($n_{AFB}=89$, $n_{EUB}=85$). Colors reflect population (AFB in red and EUB in blue). All three subsets are significantly different between populations ($p\text{-value}<0.01$). (B) Inter- and intra-population variation in the percentage of RNA-seq reads mapping to the IAV genome ($n_{AFB}=100$, $n_{EUB}=99$). Colors reflect population (AFB in red and EUB in blue). The percentage of RNA-seq reads mapping to the IAV genome is significantly higher in European-ancestry individuals relative to African-ancestry individuals ($p\text{-value}=5.3\times 10^{-8}$). (C) Inter- and intra-population variation in viral mRNA expression at 6hpi ($n_{AFB}=100$, $n_{EUB}=99$). Expression levels for each of the 10 primary transcripts of IAV are plotted. Colors reflect population (AFB in red and EUB in blue). All IAV transcripts are significantly higher in European-ancestry individuals on average ($p\text{-value}<0.001$). (D) Estimated distribution of the percentage of cells from each cell state in the bulk RNA-seq data ($n_{AFB}=100$, $n_{EUB}=99$). Fill colors reflect cell state assignments, while outlines of boxplots reflect population (AFB in red and EUB in blue). (E) Distribution of the percentage of high IAV-transcribers among infected cells, stratified by population. One individual with no infected cell was excluded ($n_{AFB}=99$, $n_{EUB}=99$). (F) Percentage of RNA-seq reads of viral origin as a function of the estimated proportion of infected cells ($n_{AFB}=100$, $n_{EUB}=99$), colored by population (AFB in red and EUB in blue). **A and C:** Outlier points are not displayed. Abbreviations: African-ancestry individuals from Belgium (AFB), European-ancestry individuals from Belgium (EUB), transcripts per million (TPM), influenza A virus (IAV), mean fluorescent intensity (MFI), classical (CL), intermediate (INT), and nonclassical (NC). * $p\text{-value} < 0.01$; ** $p\text{-value} < 0.001$; *** $p\text{-value} < 0.0001$