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Abstract

There is considerable inter-individual and inter-population variability in response to viruses. The
potential of monocytes to elicit type-I interferon responses has attracted attention to their role in
viral infections. Here, we use an ex vivo model to characterize the role of cellular heterogeneity
in human variation of monocyte responses to influenza A virus (IAV) exposure. Using single-cell
RNA-sequencing, we show widespread inter-individual variability in the percentage of IAV-
infected monocytes. We show that cells escaping viral infection display increased mRNA
expression of type-I interferon stimulated genes and decreased expression of ribosomal genes,
relative to both infected cells and those never exposed to IAV. While this host defense strategy
is shared between CD16"/CD16™ monocytes, we also uncover CD16"-specific mMRNA expression
of IL6 and TNF in response to IAV, and a stronger resistance of CD16" monocytes to IAV
infection. Notably, individuals with high cellular susceptibility to IAV are characterized by a lower
activation at basal state of an IRF/STAT-induced transcriptional network, which includes antiviral
genes such as IFITM3, MX1, and OASS3. Finally, using flow cytometry and bulk RNA-sequencing
across 200 individuals of African and European ancestry, we observe a higher number of CD16"
monocytes and lower susceptibility to 1AV infection among monocytes from individuals of
African-descent. Collectively, our results reveal the effects of IAV infection on the transcriptional
landscape of human monocytes and highlight previously unappreciated differences in cellular
susceptibility to IAV infection between individuals of African and European ancestry, which may

account for the greater susceptibility of Africans to severe influenza.

Significance Statement

Monocytes may play a critical role during severe viral infections. Our study tackles how
heterogeneity in monocyte subsets and activation contributes to shape individual differences in
the transcriptional response to viral infections. Using single-cell RNA-sequencing, we reveal
heterogeneity in monocyte susceptibility to IAV infection, both between CD16*/CD16 monocytes
and across individuals, driven by differences in basal activation of an IRF/STAT-induced antiviral
program. Furthermore, we show a decreased ability of IAV to infect and replicate in monocytes
from African-ancestry individuals, with possible implications for antigen presentation and
lymphocyte activation. These results highlight the importance of early cellular activation in

determining an individuals’ innate immune response to viral infection.
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Main Text

Introduction

Respiratory viruses with pandemic potential pose enormous health and economic impacts on the
human population. In the last century, we have witnessed outbreaks of several coronaviruses,
including SARS-CoV-2, SARS-CoV-1 and MERS, and a number of avian and swine influenza A
viruses (IAV). A particularly harrowing and shared feature of these pandemics are the sudden
deaths of otherwise healthy individuals (1). A hyperinflammatory state characterized by high
levels of inflammatory cytokines, often referred to as a ‘cytokine storm’ (2, 3), has emerged as a
hallmark of these severe viral infections. While still controversial, there is increasing evidence to
suggest that the mononuclear phagocyte system is an important immunological determinant of
this phenotype (4-6). Upon viral infection, sentinel cells such as lung-resident macrophages
trigger complex signaling cascades that recruit leukocytes to the site of infection, among them
monocytes. These infiltrating monocytes differentiate into monocyte-derived dendritic cells or
macrophages, enabling viral clearance through the induction of the adaptive response, and help
replenish the pool of tissue-resident alveolar macrophages (4, 7).

In humans, circulating monocytes are divided into classical (~80%), intermediate (~15%),
and nonclassical (~5%) subsets, based on surface receptor expression of the cluster-
determinant antigens CD14 and CD16 (8). While nonclassical monocytes (CD14°CD16"") are
long-lived and ‘patrol’ healthy tissues through long-range crawling on the endothelium, classical
(CD14""CD16) and intermediate (CD14""CD16") monocytes are recruited to the lung in
response to viral infection, where they secrete inflammatory cytokines and chemokines, as well
as type | interferons (IFNs) (7, 9-11). In most individuals, recruited cells help clear infection
despite being susceptible to infection themselves (12, 13); yet, in some individuals, a
dysfunctional immune response occurs resulting in widespread lung inflammation. Whether
monocyte subsets behave differently upon viral exposure, and how direct viral sensing and
exposure to secreted cytokines shape monocyte activation and differentiation are not well
understood.

Variation in blood composition and cellular proportions have been shown to be one of the
main factors underlying transcriptional variation in immune genes across individuals (14), with
these proportions being influenced by both genetic and non-heritable factors (15-17). Recently,
we characterized the genetic architecture of transcriptional responses of primary monocytes
from 200 individuals of African and European ancestry to ex vivo challenge with viral stimuli (18).
In this model, where we were able to control for viral determinants of disease (i.e. dose and

strain), we reported marked inter- and intra-population differences in transcriptional responses to
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IAV. While our analyses revealed numerous cis-expression quantitative trait loci (18), genetic
variants could only account for a small fraction of expression variation, in line with other studies
(14, 19).

Here, we implemented single-cell RNA-sequencing (scRNA-seq) on human primary
monocytes exposed to IAV to investigate (i) the effects of direct viral infection versus activation
by exposure to secreted cytokines, (ii) the subset-specific responses of monocytes to viral
challenge, and (iii) the extent of interindividual and between-population variation in the

proportions of monocyte subsets and the degree of monocyte susceptibility to 1AV infection.

Results

Using single-cell RNA-sequencing to investigate cellular heterogeneity. To investigate the
role of cellular heterogeneity in driving immune variability across individuals, we performed a
time-course experiment where we monitored the CD14" fraction of peripheral blood
mononuclear cells (PBMCs) from eight donors, both in the presence and absence of viral
challenge. To maximize inter-individual variability, we chose individuals from two distinct
ancestries whose cells demonstrated extreme responses to viral stimuli in a previous bulk RNA-
seq experiment (18). Droplet-based scRNA-seq was performed on monocytes from all eight
donors immediately before infection initiation (To), as well as at 2 (T,), 4 (T4), 6 (Ts), and 8 (Tsg)
hours post challenge with A/USSR/90/1977(H1N1) at a multiplicity of infection (MOI) equal to 1
(IAV-challenged) and mock infection (nhon-infected). To mitigate batch effects, we pooled IAV-
challenged and non-infected cells from distinct donors in each library, assigning cells to their
condition in silico via genetic barcoding (20). After stringent quality control, our final dataset
contained 88,559 high-quality cells, among which we predicted >99% monocyte purity at T, (Fig.
1A; Sl Appendix, Figs. S1 and S2). At later time points, a substantial fraction of non-infected
cells (up to 70% at Tg) were predicted to be macrophage-like, indicating monocyte differentiation
over the course of the experiment. For clarity, we refer to cells as monocytes at Tp and as

monocyte-derived cells from T,-Ts.

Stable FCGR3A expression distinguishes monocyte subsets over time. We next sought to
characterize each cell by its mMRNA expression of the canonical monocyte markers, CD14 and
CD16, given that much of the structure in our data was associated with FCGR3A (aka CD16)
MRNA expression. In droplet-based scRNA-seq, encapsulation of ambient mRNAs emanating
from dying cells can occur during library preparation leading to spurious mRNA detection (21).

We thus used a statistical framework to test whether CD14 and CD16 were expressed at a level
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significantly higher than expected when accounting for potential contamination from the ambient
pool (Methods). Despite having been positively selected for the CD14 antigen, only 32.4% of
monocytes significantly expressed CD14 at Ty; this percentage further decreased at later time
points and remained <15% across all time points and conditions (average 6.4% s.d.: 5.0%, Sl
Appendix, Fig. S3A-C). On the other hand, 12.1% of monocytes significantly expressed
FCGR3A (CD16) (referred to as CD16") at To, this marker proving much more stable across
conditions and time points (9.3% of CD16" cells on average, s.d.: 1.8%, Fig. 1B and S|
Appendix, Fig. S3D-F). While we deciphered classical, intermediate, and nonclassical
monocytes subsets at T (SI Appendix, Note 1 and Fig. S4; Dataset S1), we focus on the
simpler distinction of CD16 and CD16" subsets given that positive-selection for monocytes does
not capture the entire nonclassical population and that we were unable to distinguish the

intermediate and noncanonical subsets after T.

Functional features of monocyte subsets are conserved upon manipulation. To assess
how transcriptional profiles of CD16  and CD16" monocytes and their derived-cells differ, we
focused on the 5,681 genes expressed with a normalized log count > 0.1 in at least one
condition, time point, and subset (Dataset S2A). We found that the log, fold change in gene
expression between CD16" subsets remained relatively stable over the course of the
experiment (Pearson r between time points >0.42, and >0.52 for the non-infected and IAV-
challenged conditions respectively, p-values < 2.2x10™°; SI Appendix, Fig. S5A), and
differentially expressed genes between CD16"" subsets were largely the same across conditions
(Pearson r = 0.92, p-value < 2.2x10™°; S| Appendix, Fig. S5B). We thus searched for genes
that were consistently differentially expressed between CD16" and CD16 cells across all time
points (including To), conditions, and donors. We identified 266 genes over-expressed
(log2FC>0.2, FDR<1%) in CD16" cells relative to CD16" cells, and 389 genes that showed the
opposite pattern, and performed a GO-term enrichment analysis on these genes (Dataset S2B).
Consistent with previous reports (22-24), CD16™ subsets were characterized by high expression
of several proinflammatory S100 Calcium Binding Proteins (S100A12, S100A9, and S100A8),
contributing to a sizable GO-term enrichment in the defense response to fungus pathway
(GO:0050832: OR=41.3, FDR=4.9x10™), while CD16" subsets were characterized by high
expression of Fc-gamma receptor signaling pathway genes (G0O:0038096: OR=8.7,
FDR=6.2x10"®). Notably, CD16" subsets over-expressed several type | IFN stimulated genes
(ISGs) relative to CD16" subsets (e.g. GO:000071357: OR=5.3, FDR=2.6x107®), including the

well-known viral restriction factors IFITM3 and OAS1. Collectively, these results demonstrate
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CD16 is a reliable marker at the mRNA level and that CD16"" monocyte subsets maintain

functional differences upon manipulation.

scRNA-seq highlights heterogeneity in monocyte susceptibility and viral transcription.
Using the presence of IAV transcripts as a proxy for infection (Fig. 1B), we next sought to
distinguish cells that were successfully infected from those that were not. Among monocyte-
derived cells that were exposed to IAV, we found that 50.3% expressed IAV transcripts above
ambient levels when allowing up to 10% of mMRNAs to come from the ambient pool. In contrast,
less than 1% of non-infected cells showed evidence of viral transcription, supporting the validity
of the threshold used to detect IAV expressing cells (Fig. 1C). We deemed cells with statistical
evidence for expression of 1AV transcripts from the IAV-challenged condition as ‘infected’, while
the remaining cells from this condition were considered as ‘bystanders’, as these either did not
come into contact with the virus or were able to fully repress viral mRNA transcription. When
comparing the percentage of infected cells between subsets, we noticed that CD16" cells were
slightly less likely to be infected than CD16" cells (42.3% sd: 4.0% for CD16" relative to 49.4%
sd: 5.4% for CD16", generalized linear model with CD16"" status, donor, and time point as
covariates, p-value=0.006). This suggests a higher resistance of CD16" to IAV infection,
possibly related to the higher expression of ISGs observed in this subset (Dataset S2 A and B).

We observed that the proportions of viral mMRNAs among infected cells were bimodally
distributed and largely varied between the clusters identified in our unsupervised analysis (Fig.
1D). We used a Gaussian mixture model to locate the two modes of the distribution and further
sub-classify infected cells into those with lower IAV mRNA levels (<1-6%) and those with higher
IAV mRNA levels (6-83%); while viral mMRNA levels are dictated by both the rate of transcription
and degradation, for simplicity we refer to these infected cell states as ‘low IAV-transcribers’ and
‘high IAV-transcribers’, respectively. The proportions of infected cells among individuals
remained largely unchanged over the course of the experiment; however, high-IAV transcribers
were virtually absent at 2h (<2% of infected cells), peaked to ~36% of IAV-infected cells at 4h,
and decreased to 8.5% by 8h, suggesting that high-IAV transcribers represent a transient state
of IAV-infection preceding IAV-induced apoptosis (Fig. 1E). These results reveal profound

heterogeneity in monocyte susceptibility and subsequent viral transcription upon IAV-challenge.

Interplay of cytokine and ribosome networks drive cell states upon infection. To
characterize host transcriptional responses over time, we next subsampled each subset (CD16

/CD16"%), cell state (unexposed, bystander, infected), and time point in our scRNA-seq data to
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100 cells, while ensuring a balanced representation of all donors. We then focused on the 6,669
host genes with average log, normalized count >0.1 in at least one subgroup (Dataset S3A).
Overall, CD16 and CD16" subsets behaved similarly upon stimulation with changes in gene
expression between cell states being strongly correlated among subsets (Pearson r = 0.83-0.95,
p-values < 2.2x10'%; SI Appendix, Fig. S6). GO term enrichment analyses of shared responses
(FDR<1% & log,FC >0.2 in same direction in both subsets) uncovered several functional
categories interacting to shape the activation state of cells (Fig. 2A; Dataset S3B). Both
bystander and infected cells showed increased mMRNA expression of genes involved in antigen
processing and presentation via class | MHC (GO:0019885, OR=53.7, FDR < 2.0x10®) and
response to type | IFN (GO:0034340, OR >14.8, FDR < 3.3x10%°). Yet, bystander cells showed
increased mMRNA expression of type | IFN response and defense response to virus pathways
relative to infected cells (GO:0034340: OR=13.4, FDR=4.4x10"; GO:0051607: OR=9.0,
FDR=2.1x10""), while infected cells displayed higher mRNA expression of mitochondrial
(GO:0005743, OR=4.7, FDR=3.3x10"®) and ribosomal genes (GO: 0005840, OR=117,
FDR=1.0x10"®).

Among infected cells, ribosomal genes showed higher activity among high IAV-transcribing
cells relative to low IAV-transcribing cells (Fig. 2B, comparison only made at T, due to sample
size constraints, e.g. GO:0019083: OR=137, FDR=6.1x10°). This observation is consistent with
the notion that the expression of viral proteins is dependent on cellular ribosomes, with recent
data suggesting that IAVs do not induce a global shut-off of cellular translation but rather a
reshaping of the translation landscape (25-27). Likewise, among bystander cells, numerous
ribosomal genes were downregulated at later time points relative to unexposed cells (Fig. 2A
and C; GO:0019083, OR=5.3, FDR=4.2x10"°), suggesting that repression of ribosomal subunits
plays an active role in limiting viral replication. Collectively, these results suggest that ISGs and

ribosomal expression interact to shape cell states upon I1AV-challenge.

Increased IRF and STAT activity drives stronger antiviral response. Despite qualitatively
similar responses to infection between CD16/CD16" subsets (Sl Appendix, Fig. S6), we
hypothesized that subtle differences in the intensity of such responses might contribute to the
increased resistance of CD16" cells to infection. We thus performed an interaction test on the
subsampled scRNA-seq data, and searched for genes for which transcriptional response upon
IAV-challenge differed between CD16 and CD16" subsets in either infected and/or bystander
cells (SI Appendix, Fig. S6 A and B; Dataset S3A). At FDR<1%, we identified a total of 335

such genes, of which 98 differed between subsets only in bystander cells, 144 only in infected
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cells, and 93 in both. Hierarchical clustering highlighted eight major patterns of transcriptional
responses (modules) among the 335 genes, several of which were associated with specific
biological functions (Fig. 3A; Dataset S3 C and D). Notably, module 1 (green) was enriched for
genes in the antiviral response pathway (GO:0051607, OR=23.2, FDR<5.43x107) and displayed
a stronger response in infected CD16" cells relative to CD16" infected cells. Of additional interest
was the transient CD16" specific transcription of the inflammatory cytokine genes IL6 and TNF,
following viral challenge (Fig. 3B). We also found that several genes involved in the regulation
and production of IL-6 and TNFa are over-expressed in CD16" subsets at all time-points and
conditions (Dataset S2B), but only see active transcription of the cytokines upon viral exposure.
These results reveal the strong antiviral and inflammatory potential of CD16" relative to CD16
monocytes in response to viral infection (28).

We next sought to characterize the regulatory architecture underlying the 335 genes whose
transcriptional response to IAV-challenge differed between monocyte subsets. Using SCENIC
(29), we identified 113 high-confidence gene regulatory networks, or ‘regulons’, which are active
in non-infected and/or IAV-challenged cells, each composed of a transcription factor (TF) and a
set of predicted targets (genes). We used these 113 regulons to search for an
enrichment/depletion of TF targets among the eight modules of genes displaying subset-specific
response to infection (Dataset S3E). Among modules associated with an increased expression
in cells exposed to IAV (modules 1-5), we observed a widespread over-representation of targets
of IFN regulatory factors (IRFs) and signal transducing and activators of transcription (STATS)
(Fig. 3C), reinforcing the central role of the IFN response upon IAV challenge. Interestingly,
several of these factors displayed subset-specific activity themselves in response to 1AV
(IRF1/2/7 and STAT1/2/3, FDR<1%), mirroring the expression patterns of module 1 (Pearson
r>0.92). These results collectively highlight a CD16"-specific inflammatory response upon IAV-
challenge and suggest stronger activation of IRF and STAT transcription factors as driver of the

increased antiviral response observed in CD16" cells upon IAV infection.

Basal activation differences correlate with monocyte susceptibility. To explore the degree
of inter-individual variation upon viral challenge, we next quantified IAV transcripts in the
monocyte-derived cells of each individual, and created pseudo-bulk estimates by averaging the
percent of viral mMRNAs per-cell across all cells from each donor at each time point (Fig. 4A).
While viral MRNAs peaked at the same time for all individuals, we observed extensive variation
in the levels of viral MRNAs and percentages of infected cells across individuals (Fig. 4B). To

identify specific genes that might underlie infection potential, we focused on the 4,589 genes
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that were expressed at > 0.1 log, normalized counts in at least one canonical monocyte subset
at To. We identified a total of 3,131 genes that differed among our eight donors in either
classical, intermediate, and/or nonclassical monocyte subsets (Kruskal-Wallis Rank Test, FDR
1%; Dataset S4A). Within each subset, focusing on genes that significantly differ between
donors, we searched for those for which mean expression at basal state was correlated with the
percentage of infected cells at T, among our eight donors. Despite our limited sample size, we
found that cellular susceptibility was strongly correlated with basal expression of the well-known
host viral restriction factor IFITM3. Although it reached significance only in nonclassical
monocytes (FDR~1%), the association remained strong in other subsets (p < 4.1 x10™; Fig. 4C).
We next relaxed our search to all genes for which basal expression showed nominal
correlation (p < 0.01) with the percentage of infected cells at T,. Depending on the monocyte
subset, between 3.6 to 8.3% of genes matched these criteria, resulting in a set of 118 genes
displaying correlation with monocyte susceptibility in at least one subset. These 118 genes were
collectively enriched for several related biological processes such as defense response to virus
(GO:0051607, OR=15.3, FDR=9.2x10™"°) and response to type | IFN (GO:0034340, OR=19.6
FDR=8.4x10""°) (Dataset S4B). Among genes contributing to this enrichment, we found
additional antiviral genes such as OAS3, and MX1, as well as the critical TF, IRF7, involved in
the severity of IAV-infection both in mice and humans (30-32). Finally, overlap with the TF
targets identified by SCENIC revealed strong enrichments of several IRFs and STATs among
the 118 genes, including IRF7, as well as STAT1, STAT2 and IRF9 that form the tripartite IFN-
stimulated gene factor 3 (ISGF3) (Fig. 4D; Dataset S4C). Together, our results provide
evidence that the basal mMRNA expression of genes related to IFN-induced and antiviral
responses are indicative of the proportion of cells that will become infected in the first cycle of

IAV infection.

African-ancestry monocytes are more resistant to infection. Lastly, we wondered how our
findings of inter-individual variation might extrapolate to the population level. In a previous study
(18), we challenged the primary monocytes from 200 Belgian individuals of African (AFB) and
European (EUB) ancestry with the same IAV strain and MOI used in the present study, and
performed bulk RNA-seq at 6 hours post infection (hpi). While basal (T,) expression profiles
were not collected, flow cytometry labelling of CD14 and CD16 was performed on the CD14"-
selected monocytes for the majority of donors. Interestingly, AFB individuals had higher
proportions of CD16" cells than EUB individuals (Fig. 5A; SI Appendix, Fig. S7). In light of our
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findings that CD16" cells are more resistant to IAV infection, we hypothesized that this might
translate to lower infection rates among AFB monocytes relative to EUB monocytes.

To test this hypothesis, we mapped the bulk RNA-seq profiles collected 6hpi challenge with
IAV for the 200 individuals to a combined human-lAV reference. Excluding 1 sample with low
quality RNAs, we found that 0.02-13.5% of RNA-seq reads from each sample were of viral origin
(Fig. 5B). Reassuringly, these percentages correlated with IAV mRNA levels estimated from the
single cell experiment across all time points for the eight donors used in the present study
(Pearson r > 0.84, p-value < 8.9x10°), with the strongest correlation being observed at the peak
of viral transcription (T,) (Pearson r = 0.97, p-value=5.1x10"). These observations indicate that
ex vivo cellular susceptibility is highly reproducible among individuals, even across different
experimental protocols and technologies. Among the 199 bulk profiles, AFB and EUB samples
presented overlapping but significantly shifted distributions of total IAV-mapping reads (Fig. 5B,
4.9% vs. 6.8% of reads, respectively, Wilcoxon p-value = 5.3x10®), and of each of the 10
primary viral transcripts (Fig. 5C, Wilcoxon p-value < 5.5x10™).

Using the transcriptional profiles obtained from the scRNA-seq data at Ts, we estimated the
proportion of reads coming from each inferred cell state in these bulk RNA-seq profiles (Fig. 5D
and 5E; Sl Appendix, Note S2 and Fig. S8A). We found that, on average, AFB monocytes
were more resistant to IAV infection than EUB monocytes (39.2% vs. 48.9% infected,
respectively, Wilcoxon p-value = 5.3x10™°). Differences in the estimated percentage of infected
cells alone explained 63% of the inter-individual variability in viral mMRNA levels (Fig. 5F), and
was sufficient to account for the observed difference in viral MRNA levels between AFB and
EUB individuals (p-value=0.16 after adjusting on infected cells, compared to p-value=5.3x10®
without adjustment). Nonetheless, variation in the percentage of high/low transcribers among
infected cells accounted for an additional 19% of variance in viral mMRNA expression (Sl
Appendix, Note S2 and Fig. S8B). Finally, the ratio of CD16"/CD16 cells negatively correlated
with the percentage of infected cells, albeit weakly (-0.27, p-value = 0.0165 adjusted on
population). Altogether, these results show that population differences in viral mMRNA levels are
primarily driven by the overall proportion of cells that will ultimately become infected, with only a
fraction of the differences being attributable to the different proportions of CD16"" subsets

observed in individuals of African and European ancestry.
Discussion

We performed scRNA-seq on primary monocytes, before and after ex vivo IAV-challenge, to

assess transcriptional differences between monocytes infected by IAV (i.e. infected) versus
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those activated only by exposure to secreted cytokines (i.e. bystanders), and to identify subset-
specific responses of monocytes to viral challenge. We found that bystander cells display
increased mMRNA expression of ISGs relative to infected cells; yet, we additionally observed both
an induction of ribosomal gene mRNA expression in IAV-transcribing cells and a down
regulation of these genes in bystander cells at later time points. While the former is likely
induced by the virus to enhance mRNA translation (33), the repression of ribosomal expression
observed in bystander cells may reflect a host mechanism to contain infection by shutting down
the translational machinery of neighboring cells. Interestingly, the interplay of ribosomal and ISG
expression also distinguished infected cells into two distinct states (high and low IAV-
transcribers), providing an explanation for the high cell-to-cell variation in 1AV replication
observed among circulating monocytes, which has also been documented in other cell types
and during natural infection (34-41).

While these patterns are generally shared across CD16™ and CD16" subsets, we found
CD16" cells to be slightly more resistant to infection. This is likely attributable to their higher
absolute expression of some ISGs relative to CD16 cells (independent of viral exposure), as
well as their more robust upregulation of antiviral genes upon IAV-challenge, which we found to
be driven by stronger activity of IRF transcription factors. Interestingly, CD16" cells displayed
transient MRNA expression of IL6 and TNF upon viral exposure (both infected and bystander
cells), two cytokines that have been widely implicated in cytokine storms (5). Collectively, these
findings highlight the opposing roles of ISG and ribosomal gene mRNA expression on viral
transcription, and reveal the stronger antiviral and pro-inflammatory potential of CD16" monocyte
subsets.

At the population level, we found that the ratio of CD16*/CD16™ at basal state was predictive
of the percentage of monocytes that were susceptible to IAV infection, and observed that
African-ancestry individuals harbored more CD16" monocytes on average than European-
ancestry individuals residing in the same city (Ghent, Belgium), consistent with previous
observations (42). Independently of monocyte subset proportions, we identified that individuals
presenting lower monocyte susceptibility to IAV had a higher basal activation of an IRF/STAT-
driven antiviral program. These findings suggest that the fate of a monocyte hinges upon its
basal activation state, and that the infection potential differs both within an individuals’ monocyte
population, in part based on the differentiation status of the cell (i.e. CD16-positivity), but also
between individuals, where a CD16 cell from one individual may have a higher antiviral state
than a CD16" cell from another individual. This latter phenomenon likely reflects the influence of

both genetic and non-heritable factors on transcriptional variation in immune genes (14, 15).
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These inter- and intra-population differences are noteworthy in and of themselves, and raise
questions about how such differences in susceptibility of monocytic cells to infection - and
differences in proportions of monocyte subsets - may relate to viral disease.

African Americans are more often hospitalized than other self-defined ethnic groups by both
influenza and COVID-19, even when adjusting for age and various social factors such as
poverty and vaccination status (43, 44). Thus, should monocyte infection play a role in the
severity of viral infections, our results would imply a paradox where higher infection and
replication of IAV in circulating monocytes is associated with an advantage to fight viral infection
in vivo. Such a paradox could possibly be explained by an enhanced antigen presenting
capacity of infected cells, with higher infection of European-monocytes facilitating the activation
of T cell antiviral responses (13, 45). In support of this hypothesis, we observe that infected and
bystander cells display comparable induction of antigen-presentation genes relative to non-
exposed cells. This suggests that infected cells maintain their ability to present viral antigens to
the adaptive immune system, while actively producing these antigens. Independently, but not
mutually exclusively, proportions of monocyte subsets in circulation may play a role in viral
disease; of note, patients with severe influenza and COVID-19 harbor higher proportions of
intermediate monocytes in peripheral blood than patients with mild disease (46, 47). Given our
finding that CD16" subsets are the main drivers of inflammatory cytokine gene expression such
as IL6 and TNF, and that African-ancestry individuals harbor a larger fraction of these monocyte
subsets, it is tangible to conceive that monocyte subset compaosition prior to infection may

influence disease outcome, and potentially serve as a biomarker.
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Materials and methods

Experimental model and subjects. All individuals from this study were part of the
EVOIMMUNOPOP cohort, which has been previously described (18). Briefly, 200 healthy male
donors living in Belgium of self-reported African descent (AFB) or European descent (EUB) were
recruited. Inclusion was restricted to nominally healthy individuals between 19 and 50 years of
age at the time of sample collection. Serological testing was performed for all donors to exclude
those with serological signs of past or ongoing infection with human immunodeficiency virus
(HIV), hepatitis B virus (HBV) or hepatitis C virus (HCV).

Single-cell analyses and RNA sequencing. For eight selected donors (4 individuals from each
ancestry, selected from extremes of the first principal component of gene expression in our
previous study of monocyte response to IAV-challenge (18)), 100x10° PBMCs were thawed,
washed twice and resuspended in complete medium: pre-warmed RPMI-1640 Glutamax
medium, supplemented with 10% FCS and 1% penicillin/streptomycin (Cat# 15140-122, Life
Technologies). Monocytes were then positively selected with magnetic CD14 microbeads,
according to the manufacturer’s instructions (Cat#130-050-201, Miltenyi Biotec). The number of
monocytes was determined with the Countless2 automated cell counter system (Cat#
AMQAX1000, ThermoFisher Scientific) in the presence of trypan blue. For each donor,
monocytes were seeded at 0.5x10° monocytes per well on 24-well NUNC plates in 500 pL of
complete media and allowed to rest for one hour at 37°C under 5% CO,. Five-hundred
microliters of complete media (hon-infected) or A/JUSSR/90/1977(H1N1) at a concentration of
1x10° pfu/mL in complete media (IAV-challenged, MOI=1) were added to each sample.
Following one hour of staging at 4°C, plates were centrifuged at 1300 rpm for 10 minutes at 4°C,
media was removed by pipette, and each well was washed with 1mL complete media. The spin
was repeated, media removed by pipette, and samples were resuspended in 1mL pre-warmed
complete media before being transferred to an incubator at 37°C under 5% CO, to initiate
infection (To).

At each time point (Tq, T, T4, Ts, and Tg), samples were mixed by pipetting and transferred
to Eppendorf tubes. Wells were washed with 300uL of PBS + 0.04% BSA and transferred to the
same tubes. Collection tubes were centrifuged at 1300 rpm for 10 minutes, media was removed
and replaced with 1mL PBS + 0.04% BSA and an aliquot of 10uL was taken to count each
sample on a Countless2 automated cell counter system, before repeating the centrifugations.

Individual samples were adjusted to 2x10° live cells/mL.
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Samples were multiplexed for running on the 10X Chromium (Cat# 120223 & 1000074, 10X
Genomics) by mixing equal proportions from 6-8 samples in a manner that balanced conditions
and allowed us to assess for batch effects across lanes (SI Appendix, Table S1). Multiplexed
samples were counted with the Countless2 automated cell counter system and adjusted to
target recovery of 10,000 cells per reaction of the Chromium Single Cell 3' Reagent Kits v3
(Cat# 1000092 & 1000078, 10X Genomics) assuming a recovery rate of 50%. GEM Generation
& Barcoding, Post GEM-RT Cleanup & cDNA Amplification, and 3" Gene Expression Library
Construction were performed as per manufacturer’s instructions (48). All 13 libraries were mixed
prior to sequencing across 13 different lanes from an Illumina HiSeq X (28bp barcode + 91bp

insert — target 400 M reads pairs per lane), leading to a total of 5.3 billon reads.

Sample Genotyping. Genotyping data [accession EGAS00001001895] were obtained for all
200 individuals from the EvolmmunoPop cohort based on both lllumina HumanOmni5-Quad
BeadChips and whole-exome sequencing with the Nextera Rapid Capture Expanded Exome kit
(18). The 3,782,260 SNPs obtained after stringent quality control were then used for imputation,
based on the 1,000 Genomes Project imputation reference panel (Phase 1 v3.2010/11/23) (49),
leading to a final set of 19,619,457 high-quality SNPs, of which 7,766,248 SNPs had a MAF >5%

in our cohort.

Processing of scRNA-seq data. Basic pre-processing of the sequencing data was performed
with CellRanger v3.0.2 (50), including the mkfastq, count, and aggr commands. Default
parameters and our combined human-lIAV reference were used, and batch correction was
disabled in the aggr command. Cell-containing droplets (n=132,130) were traced back to
individual donors using two independent methods, Demuxlet and SoupOrCell, which capitalize
on genetic variation in the sequencing reads (20, 51). Barcodes with ambiguous and/or non-
concordant calls between the two programs were used to establish suitable QC metrics. We
found that barcodes deemed as doublets (i.e. the droplet contained two or more cells originating
from different donors) were more likely to be nearest-neighbors in a knn-graph with other
doublets than assigned singlets. We used this feature to identify droplets presumed to contain
two or more cells originating from the same donor; barcodes with > 5 doublets as nearest-
neighbors were excluded from further analysis (SI Appendix, Fig. S1 A and B). Additionally,
droplets containing low-quality cells (i.e. damaged, dying) were excluded using the following
thresholds: < 1500 total counts, < 500 genes, or > 50% mitochondrial gene content (SI
Appendix, Fig. S1C). This QC resulted in a final data set of 96,386 single cells.
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Transcriptomes (i.e. counts) were adjusted for the presence of ambient RNA with SoupX,
(https://github.com/constantAmateur/SoupX/, accessed November 28, 2019) (21), using

estimated contamination fractions (per 10X library) from SoupOrCell (51). SoupX-adjusted
counts were normalized using pool-based size factors followed by deconvolution as
implemented in the scran R package (52). Feature selection was performed by (i) constructing a
mean-variance trend in the log-counts and retaining genes found to exhibit more variation than
expected assuming Poisson-distributed technical noise, as implemented in the makeTechTrend
and TrendVar functions from package scran (52), and (ii) selecting genes expressed in at least
25 cells (n=22,603). The first 10 PCs of the data were retained for data visualization and
clustering analyses. Graph-based clustering was performed by building the shared nearest-
neighbor graph with the buildSNNGraph function from scran (52) using a series of k values, and
cell clusters were defined with the igraph Walktrap algorithm (53). Similar clustering results were
obtained based on the knn-graphs generated using k=25, 50, 75, and 100, and k=25 was used
for all downstream analyses (SI Appendix, Fig. S2A). Cell types were predicted using SingleR
and the built-in BlueprintEncodeData reference (54). Based on the clustering and cell-type
predictions, we removed cells belonging to clusters associated with lymphoid cell types or low

QC metrics from downstream analyses (SI Appendix, Fig. S2 B and C).

Accounting for ambient RNA contamination in sScRNA-Seq Data and assigning cell states.
Droplet-based scRNA-seq methods capture ambient mMRNASs present in the cell suspension in
addition to cell specific mMRNAs. To estimate which cells in our experiment were genuinely
expressing mRNAs for CD14, FCGR3A (CD16), and those originating from the virus, we
implemented a two-step strategy utilizing the estimateNonExpressionCells function of the SoupX
package (21). This function estimates whether each cell contains significantly more counts of a
provided gene-set than would be expected under a Poisson model, given the estimated ambient
RNA from its library of origin and the maximum contamination fraction. First, we used the viral
genes to estimate the true maximum contamination fraction, based on the assumption that cells
from the non-infected state should only contain viral reads from ambient mMRNA captured in their
droplets. To do so, we modified the estimateNonExpressionCells function to return p-values, and
performed the test on each of our 13 libraries with a range of maximum contamination values
from 1-50% (step of 1%) using the viral genes. We then computed FDR adjusted p-values for
each maximum contamination value on the 88,559 high-quality, single monocytes. The number
of non-simulated cells deemed to significantly express IAV transcripts (FDR<0.01) was used as

a proxy for false positives. In examining the relationship between this number and the number of
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IAV-challenged cells found to significantly express viral transcripts at FDR<0.01 (Fig. 1C), we
found that a maximum contamination fraction of 10% resulted in a 1% false positive rate
(defined as the percentage of non-infected cells from T,-Tg that were deemed to significantly
express IAV transcripts). This parameter value was then used to correct for contamination from
ambient for all genes considered (CD14, FCGR3A and IAV transcripts).

Assigning cell states and investigating sources of variability in IAV levels. We used a
maximum contamination fraction of 10% to test for significant expression of IAV transcripts in
each cell (Fig. 1 C-E). IAV-challenged cells that contained a significant amount of IAV transcripts
were considered as infected, while the others were deemed bystanders. To distinguish low from
high IAV-transcribing cells, a Gaussian mixture model was fitted to the total percentage of viral
MRNAs per cell across all infected cells, using the normalmixEM function from mixtools R
package with k=2 (55). Each cell was assigned to the cluster with the highest posterior
probability, and the cluster of cells with higher IAV content was annotated as high IAV-

transcribing.

Characterizing monocyte subsets and transcriptional profiles from scRNA-seq data.
Principal components analysis of 6,601 cells at To was used to order monocytes along a
differentiation axis separating CD14" cells from CD16" cells. We then computed the average
percentage of classical and nonclassical monocytes obtained by FACS across the eight donors,
weighting each individual by the number of high-quality cells in the scRNA-seq data at T,. Based
on these percentages (87.1% for classical and 7.6% for nonclassical), we annotated the
monocytes on each side of the differentiation axis as classical and nonclassical, respectively,
with the remaining 5.3% of monocytes being annotated as intermediates. Validity of our
approach was confirmed by correlating the proportion of monocytes assigned to each subset
across the eight donors, with the percentage of classical, intermediate and nonclassical
monocytes estimated by FACS.

Differential expression between subsets was assessed for the 4,859 genes expressed at an
average logCount > 0.1 in any of the 3 subsets. Specifically, Wilcoxon rank tests were
implemented in the scran package (52), using the findMarkers function and blocking on donor.
We considered genes to be differentially expressed (DE) between monocyte subsets when gene
expression was significant at an FDR<1% and log,FC>0.2. The 848 genes that differed between
classical (CL) and nonclassical (NC) monocyte subsets were classified according to their

behavior in intermediate monocytes (INT). They were either deemed ‘similar to classical’ (DE
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between INT and NC, but not between INT and CL), ‘similar to nonclassical’ (DE between INT
and CL, but not between INT and NC), or ‘intermediate’ (all other cases).

At later time points, comparisons between CD16" and CD16~ monocytes subsets were done
based on 5,681 genes expressed with a hormalized log count > 0.1 on average in either subset,
in at least one condition and time point. For each subset, log, fold change in gene expression
relative to T, were correlated across times points. Differential expression between CD16" and
CD16 cells was assessed with findMarkers (52), based on Wilcoxon rank tests and blocking on
donors, time points and condition. Again, an FDR<1% and log,FC>0.2 were required to define
differentially expressed genes. To assess how CD16" status alters the infection of monocytes
by IAV, we used logistic regression to model bystander/infected status as a function of CD16""

status, while adjusting on donor, and time point (as factors).

Characterizing subset-specific responses to |IAV challenge. To allow comparison between
responses of CD16" and CD16™ monocytes, 100 cells were subsampled from each subset and
cell state, and at each time point. When subsampling, we ensured balanced representation of all
donors across each monocyte subset and cell state, by using sampling weights that were
inversely proportional to each donor representation in the original dataset. After sampling, a total
of 6,669 genes with normalized log counts >0.1 on average in at least one group (cell-state x
subset x time point) was selected for further analyses. For each monocyte subset, differences in
expression between cell states (unexposed, bystander, infected) as well as between high- and
low-1AV transcribing infected cells were performed using the findMarkers function from the scran
package (52) and blocked on time-point. For each comparison, genes were considered to be
differentially expressed between cell states when gene expression was significant at an
FDR=1% (Wilcoxon rank tests) and the log, fold change was > 0.2. In addition, for each
comparison between cell states, we tested for differences in response between subsets using a

linear model of the form:

(10) Expr ;~ State; + subset; + State; . subset;
where Expr ;is the expression of the gene being tested in cell i, State; is an indicator variable
that distinguishes the two cell states being compared (e.g. unexposed and bystander), and

subset; is an indicator variable that reflects the CD16"" status of cell i. The 335 genes with

significant interactions at a 1% FDR (for unexposed-bystander and unexposed-infected
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comparisons) were clustered using the hclust R function with method ‘Ward.D2'.

DynamicTreeCut algorithm (56) was used to identify eight major patterns of response to 1AV.

Transcription factor enrichment analyses. To estimate Transcription Factor (TF) activity and
define TF-targets relationships, we ran the R SCENIC pipeline (29) on the expression matrix
(pre-normalization) on a random subsample of 4800 cells (100 cells from each donor at each
time point and each condition, pre-exclusion of dying and contaminant cells) with default
parameters. For each gene, motif-enrichment was considered for either cis-regulatory regions
located <10kb from the TSS (distal regulatory elements), or between 500 bp upstream and 100
bp downstream of the promoter (proximal regulatory elements). To do so, motif-enrichment
scores for all human genes (hg38 build, refseq_r80), were retrieved from

https://resources.aertslab.org/cistarget and used as input for the Rcistarget package (29).

Sets of high-confidence targets for the 113 TFs whose activity could be quantified by
SCENIC were then extracted and used for enrichment analysis. For each gene module, TF
enrichment was assessed using a Fisher’s exact test with the 6,669 expressed genes as
background (Dataset 3). Resulting p-values were adjusted using a global Benjamini-Hochberg
correction for all eight modules and 113 TFs.

For each TF, with its targets enriched among one of the eight modules, TF activity inferred
by SCENIC was used to test for subset-specific activity using a linear model of the form:

(11) TF ;~ State; + subset; + State; . subset;
where TF; is the activity of the TF being tested in cell i, State; is an indicator variable that
distinguishes the two cell states being compared (e.g. unexposed and bystander), and subset; is
an indicator variable that reflects the CD16"" status of cell i. Average TF activity was then
computed for each cell state, subset and time point, and correlated with gene expression of the
associated module, to assess the link between TF activation and the TF-target enriched

modules.

Association of the outcome of 1AV infection using basal gene expression. For each of the
three monocyte subsets detected at basal state, Kruskall-wallis test was used to search for
genes whose expression levels significantly differ across donors. Within each monocyte subset,
we then computed the average expression of each gene for all eight donors and correlated it
with the percentage of infected cells at 4hpi. Genes that differed in expression between donors
(FDR<£1%), and passed a nominal p-value threshold of 0.01 for association with IAV levels in

any of the 3 subsets, were selected for downstream enrichment analyses. For genes nominally
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correlated with viral mRNA levels, TF enrichment was assessed as previously using a Fisher’s
exact test with all 4,859 genes expressed at Ty as background (Dataset S4), and Benjamini-

Hochberg correction for all 113 TFs was applied.

Gene Ontology enrichment analyses. All Gene Ontology (GO) enrichment analyses were
performed with GOSeq package using default settings (57). Background gene sets consisted of
all genes that had average log-normalized expression value > 0.1 in at least one of the
groupings being examined, and are described in the text. Only enrichments significant at
FDR<5% are reported.

Pseudo-bulk estimates from scRNA-seq data. Pseudo bulk estimates of IAV mRNA levels
were computed by measuring, for each donor and time point, the mean percentage of reads of
viral origin across all cells from the sample. At each time point, we then used a Pearson’s
correlation test to compare pseudo-bulk estimates for the 8 donors with IAV mRNA levels
obtained in bulk data at 6hpi.

Monocyte subset characterization of EVOIMMUNOPOP samples via FACS. For 174 of the
200 EVOIMMUNOPORP donors, proportions of classical, intermediate and nonclassical
monocytes were determined based on a fraction of 10° CD14" positively-selected monocytes,
stained according to the manufacturer’s instructions, with fluorescent APC-conjugated anti-CD14
and PE-conjugated anti-CD16 antibodies (Cat#130-091-243 and Cat #130-091-245,
respectively, Miltenyi Biotec). Samples were then analyzed on a MACSQuant Analyzer 10

benchtop flow cytometer (Miltenyi Biotec).

Quantification of canonical monocyte subsets in EVOIMMUNOPOP samples. FlowJo
v10.6.1 software (58) was used with the gating strategy depicted in SI Appendix, Fig. S1to
quantify monocyte subsets for 174 EVOIMMUNOPOP donors. Population-level differences in
proportion of canonical monocyte subsets were assessed using Wilcoxon Rank tests.
Correlation of the ratio of CD16" to CD16" cells with IAV mRNA levels was assessed using a
linear model of the form

(1) 1AV~ ratio + Pop,

where ‘IAV’ are IAV mRNA levels, ‘ratio’ is the percentage of CD16™ monocytes (non
classical+intermediates) divided by the percentage of CD16  monocytes (classical), and ‘Pop’ is

and indicator variable separating AFB from EUB individuals.
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Analysis of bulk RNA-seq profiles from the EVOIMMUNOPOP cohort. A combined human-
IAV reference was generated by concatenation of the primary human genome assembly
(GRCh38) with the 8 segments of the human influenza A virus (IAV) A/JUSSR/90/1977(H1N1)
genome (accession numbers CY010372-CY010379). Comprehensive human gene annotation
was obtained from GENCODE (release 27) and merged with the 12 known transcripts of
A/USSR/90/1977(H1N1). RNA-seq reads (FASTQs) for all 970 samples that passed quality
control in our previous study (18) [accession EGAS00001001895] were mapped to the
combined reference with the STAR aligner (v.2.5.0a) (59) and assessed for quality with
QualiMap ‘bamqc’ and ‘rnaseq’ (60, 61). Expression of viral mMRNAs was measured as the
percentage of uniquely-mapped reads aligning to the IAV genome. Reassuringly, the mean
percentage of RNA-seq reads among samples from the IAV-challenged condition was 5.86%
versus <0.01% in the other four conditions. Comparison of the percentage of IAV reads between
populations was done using a Wilcoxon rank test. StringTie (v.1.3.3) (62) was used to quantify
expression levels in transcripts per million mapped reads (TPM) for each annotated transcript.
Gene expression data were filtered to remove genes with little evidence of activation (mean
ZTPM score < -3) (63) in any of the 5 conditions, and their quality was checked by principal
component analysis (PCA). As GC content, 5/3' bias, date of the experiment and library batch
were previously determined to be the strongest confounding factors on transcript expression
(18), we corrected the data for these factors. First, we adjusted the data for GC content and 5'/3'
bias using linear models. Then, we imputed missing values by k-nearest neighbor imputation
and adjusted for experiment date and library batch by sequentially running ComBat (64) for each
batch effect, with condition and population as covariates. After batch effect correction, only IAV-

stimulated samples were kept for downstream analyses.

Cell states deconvolution from bulk RNA sequencing. To assess the percentage of total
transcripts that originate from each cell state across the 199 IAV-challenged samples, we pooled
cells from Tg into 3 groups, based on their assigned cell-state (bystander, infected: high and low
IAV-transcribing) and to which we added a 4™ group containing all singlets that were either (i)
assigned to cluster numbers 3, 8, 10, and 11 (dying cells) or (ii) discarded based on their high
mitochondrial content or low read counts (dead cells). We then estimated pseudo-bulk profiles
for each group by summing UMIs across all cells and computing the number of UMIs associated
to each gene per million of sequenced UMIs. TPM profiles obtained from bulk data were then

normalized to improve comparison with pseudo-bulk. Specifically, we first computed a global
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pseudo-bulk profile of the entire single cell dataset as the average of the pseudo bulk profiles
from the 4 cell states (bystander, infected: high and low IAV-transcribing, or dying/dead),
weighted by the percentage of UMIs they contribute to the overall pool of cells. To account for
the difference in how gene expression is quantified between the two methods (3’ end counts for
scRNA-seq and full-length gene coverage for bulk RNA-seq), we computed for each gene i a
normalization factor s; given by
(5) s; = log(TPM,) —log(PB;)

where PB; is the number of UMI per million for gene i in the global pseudo-bulk profile, and TPM,
is the average expression of the gene i in the 199 IAV-stimulated samples from the bulk RNA-
seq data. For each gene, s; was then subtracted from the log transformed TPM to yield a
normalized TPM profiles. We next applied DeconRNAseq (65) to the normalized log TPM
profiles from all individuals, using the log-transformed pseudo bulk profiles from the 4 cell states
as a basis for deconvolution. Quality of the deconvolution was assessed using leave-one-out
cross validation, based on the eight individuals for whom we had scRNA-seq data. Specifically,
for each of these eight individuals, bulk mMRNAs were decomposed using pseudo-bulk profiles
recomputed based on the seven other individuals. The resulting proportions were then
compared with the percentage of UMIs that originate in each cell-state in the scRNA-seq to
assess the quality of the deconvolution. Comparisons between populations were performed
using Wilcoxon rank tests.

The effect of the percentage of infected cells and percentage of high IAV-transcribing cells
among infected cells on the total IAV mRNA levels were assessed by modeling

(6) IAV ~ INF + POP
and

(7) IAV ~ HI + POP
where IAV are the IAV mRNA levels across the 199 bulk mRNA samples, INF and HI are
respectively the percentage of infected cells and the percentage of high IAV-transcribing cells
among infected cells that we estimated from the deconvolution, and POP is a factor variable
reflection the population (EUB or AFB). The fraction n of population differences attributable to
difference in rate of infection was estimating by comparing model (6) with model (8) below

(8) IAV ~ POP

and computing n = 100 X (1 - %) with B; the effect of population on IAV levels in model (i). To

8

assess how the contribution of the percentage of high 1AV transcribing cells to total IAV mMRNA
levels differed between populations, we used a linear model of the form
(9) IAV ~ HI + POP + HI:POP
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and tested for significant effect of the interaction term HI:POP on IAV mRNA levels.

Data availability

The bulk RNA-seq data used in this study are available at the European Genome Phenome
archive under accession number [EGAS00001001895]. The single cell RNA-seq data generated
during this study are available at the European Genome Phenome archive under accession
number [EGAS00001005000]. Code generated as part of this study is available on Github
(https://github.com/h-e-g/PopDiff _MonocytelAV).
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Fig. 1. Single-Cell RNA-Sequencing of 88,559 Monocytes and Their Derived Cells. (A) Post-QC
tSNE colored by unsupervised graph-based clusters. (B) Post-QC tSNE colored by FCGR3A (CD16)
log, normalized counts (top), or percentage of viral MRNAs (bottom). (C) Determination of the
maximum contamination fraction by ambient RNA. The number of non-infected cells deemed to
significantly express IAV transcripts (presumed false positives) versus the number of IAV-challenged
cells deemed to significantly express IAV transcripts across a range of maximum contamination
fractions from 1-50% (color bar). Dotted grey line is drawn at 1% on the x-axis. A maximum
contamination fraction of 10% results in 1% of non-infected cells being classified as infected (false
positive proxy), and half of IAV-challenged cells showing evidence of viral transcription. (D)
Distribution of counts of viral origin across all donors, from T, to Ts. Cells are shown separately for
non-infected (top) and IAV-challenged (bottom) conditions. Fill color reflects the cell state
assignments. Note that the threshold used to define infected cells is dependent on the number of
viral MRNAs in the ambient pool, and varies across libraries. (E) Post-QC tSNE stratified by time
point. For each time point, cells are colored according to their CD16" status (see key) and their
assigned cell state (same as depicted in D). For each condition and time point, stacked bar charts
below the tSNE represent the relative proportions of the various cell states and subsets.
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Fig. 2. Gradient of mMRNA Expression from Ribosomal and IFN-Stimulated Genes
Separates Bystander and Infected Cells. (A) Transcriptional responses of cells upon IAV-
challenge (T,-Ts) highlight the interplay between IFN response (G0:0034340), ribosomal
(G0:0005840), and mitochondrial (GO:0005743) genes. The log,FC change in gene expression
between unexposed and bystander cells is plotted on the x-axis, while the log,FC change in
gene expression between unexposed and infected cells is plotted on the y-axis. Values are
plotted based on a meta-analysis across time points and subsets, based on a subsampled data
set with balanced representation of all donors. (B) The interplay between IFN response
(G0:0034340), ribosomal (G0O:0005840), and mitochondrial (GO:0005743) genes among cells
exposed to IAV. The log,FC change in gene expression between low IAV-transcribing infected
and bystander cells is plotted on the x-axis, while the log,FC change in gene expression
between low IAV-transcribing infected and high IAV-transcribing infected cells is plotted on the y-
axis. Values are plotted based on a meta-analysis across monocyte subsets at T4. (C) mRNA
expression levels of representative IFN-stimulated (MX1) and ribosomal (RPL34) genes across
the subsampled dataset. Colors reflect the cell state and subset assignment depicted in Fig. 1 D
and E.
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Fig. 3. IRFs and STATs Have a Central Role in the Subset-Specific Responses to IAV
Infection. (A) Heatmap of scaled gene expression from 335 genes displaying a subset-specific
response to infection challenge. Genes are grouped into 8 modules based on hierarchical
clustering of their expression patterns. Representative genes from each module are labelled. (B)
Mean expression over time of IL6 and TNF, across the different monocyte subsets and cell
states. (C) Network of transcription factors (round nodes) associated with each gene expression
module (square nodes). Transcription factor nodes are colored according to the number of
modules they are associated with. Black lines represent enrichments of the module in TF
targets, while red lines represent depletions.
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Fig. 4. Basal IRF/STAT-Induced Transcriptional Network Underlies Inter-Individual
Differences in Monocyte Susceptibility and IAV levels. (A) Pseudo-bulk estimates of the
percentage of counts of viral origin in IAV-challenged condition (T,-Tg). Donors are colored
based on the rank of these pseudo-bulk estimates at the peak of viral transcription, T4, from that
with highest observed viral mMRNA level (D1) to that of the lowest (D8). (B) Proportions of cell
states from the IAV-challenged condition at T,, T4, Ts, and Tg, in the eight donors. X-axis is
ordered by decreasing viral mMRNA levels found at T4 (D1-D8). (C) Log normalized expression
values of IFITM3 across all cells, stratified by canonical monocyte subsets, and separated by
donor. Colors reflect the different donors depicted in A. For each donor and monocyte subset,
the violin plots show the full distribution of IFITM3 expression across individual cells and
boxplots highlight the median and interquartile range. (D) Enrichment of SCENIC-predicted
targets among the 118 genes whose basal expression at T correlates with the percentage of
infected cells at later time points (odds ratio and 95% confidence interval). Red line designates
an odds ratio equal to 1. Only TFs significantly enriched among the 118 candidate genes are
shown (FDR < 0.05). Abbreviations: classical (CL), intermediate (INT), and nonclassical (NC).
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Fig. 5. African-Ancestry Individuals Display Increased Number of CD16" Cells and Lower
Susceptibility to IAV Infection. (A) Variation in the number of classical (CD14""CD16),
intermediate (CD14""CD16"), and nonclassical (CD14"'CD16"") monocytes across African- and
European- ancestry individuals following CD14" selection from PBMCs (Nars=89, Ngye=85).
Colors reflect population (AFB in red and EUB in blue). All three subsets are significantly
different between populations (p-value<0.01). (B) Inter- and intra-population variation in the
percentage of RNA-seq reads mapping to the 1AV genome (naps=100, ngys=99). Colors reflect
population (AFB in red and EUB in blue). The percentage of RNA-seq reads mapping to the IAV
genome is significantly higher in European-ancestry individuals relative to African-ancestry
individuals (p-value=5.3x10®). (C) Inter- and intra-population variation in viral MRNA expression
at 6hpi (nars=100, ngys=99). Expression levels for each of the 10 primary transcripts of IAV are
plotted. Colors reflect population (AFB in red and EUB in blue). All IAV transcripts are
significantly higher in European-ancestry individuals on average (p-value<0.001). (D) Estimated
distribution of the percentage of cells from each cell state in the bulk RNA-seq data (nars =100,
nNeus=99). Fill colors reflect cell state assignments, while outlines of boxplots reflect population
(AFB in red and EUB in blue). (E) Distribution of the percentage of high IAV-transcribers among
infected cells, stratified by population. One individual with no infected cell was excluded
(nars=99, neus=99). (F) Percentage of RNA-seq reads of viral origin as a function of the
estimated proportion of infected cells (nars=100, ngyr=99), colored by population (AFB in red and
EUB in blue). A and C: Outlier points are not displayed. Abbreviations: African-ancestry
individuals from Belgium (AFB), European-ancestry individuals from Belgium (EUB), transcripts
per million (TPM), influenza A virus (IAV), mean fluorescent intensity (MFI), classical (CL),
intermediate (INT), and nonclassical (NC). * p-value < 0.01; ** p-value < 0.001; *** p-value <
0.0001
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