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2

Abstract 1 

There is considerable inter-individual and inter-population variability in response to viruses. The 2 

potential of monocytes to elicit type-I interferon responses has attracted attention to their role in 3 

viral infections. Here, we use an ex vivo model to characterize the role of cellular heterogeneity 4 

in human variation of monocyte responses to influenza A virus (IAV) exposure. Using single-cell 5 

RNA-sequencing, we show widespread inter-individual variability in the percentage of IAV-6 

infected monocytes. We show that cells escaping viral infection display increased mRNA 7 

expression of type-I interferon stimulated genes and decreased expression of ribosomal genes, 8 

relative to both infected cells and those never exposed to IAV. While this host defense strategy 9 

is shared between CD16+/CD16- monocytes, we also uncover CD16+-specific mRNA expression 10 

of IL6 and TNF in response to IAV, and a stronger resistance of CD16+ monocytes to IAV 11 

infection. Notably, individuals with high cellular susceptibility to IAV are characterized by a lower 12 

activation at basal state of an IRF/STAT-induced transcriptional network, which includes antiviral 13 

genes such as IFITM3, MX1, and OAS3. Finally, using flow cytometry and bulk RNA-sequencing 14 

across 200 individuals of African and European ancestry, we observe a higher number of CD16+ 15 

monocytes and lower susceptibility to IAV infection among monocytes from individuals of 16 

African-descent. Collectively, our results reveal the effects of IAV infection on the transcriptional 17 

landscape of human monocytes and highlight previously unappreciated differences in cellular 18 

susceptibility to IAV infection between individuals of African and European ancestry, which may 19 

account for the greater susceptibility of Africans to severe influenza. 20 

 21 

Significance Statement 22 

Monocytes may play a critical role during severe viral infections. Our study tackles how 23 

heterogeneity in monocyte subsets and activation contributes to shape individual differences in 24 

the transcriptional response to viral infections. Using single-cell RNA-sequencing, we reveal 25 

heterogeneity in monocyte susceptibility to IAV infection, both between CD16+/CD16- monocytes 26 

and across individuals, driven by differences in basal activation of an IRF/STAT-induced antiviral 27 

program. Furthermore, we show a decreased ability of IAV to infect and replicate in monocytes 28 

from African-ancestry individuals, with possible implications for antigen presentation and 29 

lymphocyte activation. These results highlight the importance of early cellular activation in 30 

determining an individuals’ innate immune response to viral infection. 31 

  32 
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3

Main Text 1 

Introduction 2 

Respiratory viruses with pandemic potential pose enormous health and economic impacts on the 3 

human population. In the last century, we have witnessed outbreaks of several coronaviruses, 4 

including SARS-CoV-2, SARS-CoV-1 and MERS, and a number of avian and swine influenza A 5 

viruses (IAV). A particularly harrowing and shared feature of these pandemics are the sudden 6 

deaths of otherwise healthy individuals (1). A hyperinflammatory state characterized by high 7 

levels of inflammatory cytokines, often referred to as a ‘cytokine storm’ (2, 3), has emerged as a 8 

hallmark of these severe viral infections. While still controversial, there is increasing evidence to 9 

suggest that the mononuclear phagocyte system is an important immunological determinant of 10 

this phenotype (4-6). Upon viral infection, sentinel cells such as lung-resident macrophages 11 

trigger complex signaling cascades that recruit leukocytes to the site of infection, among them 12 

monocytes. These infiltrating monocytes differentiate into monocyte-derived dendritic cells or 13 

macrophages, enabling viral clearance through the induction of the adaptive response, and help 14 

replenish the pool of tissue-resident alveolar macrophages (4, 7).  15 

In humans, circulating monocytes are divided into classical (~80%), intermediate (~15%), 16 

and nonclassical (~5%) subsets, based on surface receptor expression of the cluster-17 

determinant antigens CD14 and CD16 (8). While nonclassical monocytes (CD14+CD16++) are 18 

long-lived and ‘patrol’ healthy tissues through long-range crawling on the endothelium, classical 19 

(CD14++CD16-) and intermediate (CD14++CD16+) monocytes are recruited to the lung in 20 

response to viral infection, where they secrete inflammatory cytokines and chemokines, as well 21 

as type I interferons (IFNs) (7, 9-11). In most individuals, recruited cells help clear infection 22 

despite being susceptible to infection themselves (12, 13); yet, in some individuals, a 23 

dysfunctional immune response occurs resulting in widespread lung inflammation. Whether 24 

monocyte subsets behave differently upon viral exposure, and how direct viral sensing and 25 

exposure to secreted cytokines shape monocyte activation and differentiation are not well 26 

understood. 27 

Variation in blood composition and cellular proportions have been shown to be one of the 28 

main factors underlying transcriptional variation in immune genes across individuals (14), with 29 

these proportions being influenced by both genetic and non-heritable factors (15-17). Recently, 30 

we characterized the genetic architecture of transcriptional responses of primary monocytes 31 

from 200 individuals of African and European ancestry to ex vivo challenge with viral stimuli (18). 32 

In this model, where we were able to control for viral determinants of disease (i.e. dose and 33 

strain), we reported marked inter- and intra-population differences in transcriptional responses to 34 
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IAV. While our analyses revealed numerous cis-expression quantitative trait loci (18), genetic 1 

variants could only account for a small fraction of expression variation, in line with other studies 2 

(14, 19).  3 

Here, we implemented single-cell RNA-sequencing (scRNA-seq) on human primary 4 

monocytes exposed to IAV to investigate (i) the effects of direct viral infection versus activation 5 

by exposure to secreted cytokines, (ii) the subset-specific responses of monocytes to viral 6 

challenge, and (iii) the extent of interindividual and between-population variation in the 7 

proportions of monocyte subsets and the degree of monocyte susceptibility to IAV infection.  8 

 9 

Results 10 

Using single-cell RNA-sequencing to investigate cellular heterogeneity. To investigate the 11 

role of cellular heterogeneity in driving immune variability across individuals, we performed a 12 

time-course experiment where we monitored the CD14+ fraction of peripheral blood 13 

mononuclear cells (PBMCs) from eight donors, both in the presence and absence of viral 14 

challenge. To maximize inter-individual variability, we chose individuals from two distinct 15 

ancestries whose cells demonstrated extreme responses to viral stimuli in a previous bulk RNA-16 

seq experiment (18). Droplet-based scRNA-seq was performed on monocytes from all eight 17 

donors immediately before infection initiation (T0), as well as at 2 (T2), 4 (T4), 6 (T6), and 8 (T8) 18 

hours post challenge with A/USSR/90/1977(H1N1) at a multiplicity of infection (MOI) equal to 1 19 

(IAV-challenged) and mock infection (non-infected). To mitigate batch effects, we pooled IAV-20 

challenged and non-infected cells from distinct donors in each library, assigning cells to their 21 

condition in silico via genetic barcoding (20). After stringent quality control, our final dataset 22 

contained 88,559 high-quality cells, among which we predicted >99% monocyte purity at T0 (Fig. 23 

1A; SI Appendix, Figs. S1 and S2). At later time points, a substantial fraction of non-infected 24 

cells (up to 70% at T8) were predicted to be macrophage-like, indicating monocyte differentiation 25 

over the course of the experiment. For clarity, we refer to cells as monocytes at T0 and as 26 

monocyte-derived cells from T2-T8.  27 

 28 

Stable FCGR3A expression distinguishes monocyte subsets over time. We next sought to 29 

characterize each cell by its mRNA expression of the canonical monocyte markers, CD14 and 30 

CD16, given that much of the structure in our data was associated with FCGR3A (aka CD16) 31 

mRNA expression. In droplet-based scRNA-seq, encapsulation of ambient mRNAs emanating 32 

from dying cells can occur during library preparation leading to spurious mRNA detection (21). 33 

We thus used a statistical framework to test whether CD14 and CD16 were expressed at a level 34 
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significantly higher than expected when accounting for potential contamination from the ambient 1 

pool (Methods). Despite having been positively selected for the CD14 antigen, only 32.4% of 2 

monocytes significantly expressed CD14 at T0; this percentage further decreased at later time 3 

points and remained <15% across all time points and conditions (average 6.4% s.d.: 5.0%, SI 4 

Appendix, Fig. S3A-C). On the other hand, 12.1% of monocytes significantly expressed 5 

FCGR3A (CD16) (referred to as CD16+) at T0, this marker proving much more stable across 6 

conditions and time points (9.3% of CD16+ cells on average, s.d.: 1.8%, Fig. 1B and SI 7 

Appendix, Fig. S3D-F). While we deciphered classical, intermediate, and nonclassical 8 

monocytes subsets at T0 (SI Appendix, Note 1 and Fig. S4; Dataset S1), we focus on the 9 

simpler distinction of CD16- and CD16+ subsets given that positive-selection for monocytes does 10 

not capture the entire nonclassical population and that we were unable to distinguish the 11 

intermediate and noncanonical subsets after T0. 12 

 13 

Functional features of monocyte subsets are conserved upon manipulation. To assess 14 

how transcriptional profiles of CD16- and CD16+ monocytes and their derived-cells differ, we 15 

focused on the 5,681 genes expressed with a normalized log count > 0.1 in at least one 16 

condition, time point, and subset (Dataset S2A). We found that the log2 fold change in gene 17 

expression between CD16+/- subsets remained relatively stable over the course of the 18 

experiment (Pearson r between time points >0.42, and >0.52 for the non-infected and IAV-19 

challenged conditions respectively, p-values < 2.2x10-16; SI Appendix, Fig. S5A), and 20 

differentially expressed genes between CD16+/- subsets were largely the same across conditions 21 

(Pearson r = 0.92, p-value < 2.2x10-16; SI Appendix, Fig. S5B). We thus searched for genes 22 

that were consistently differentially expressed between CD16+ and CD16- cells across all time 23 

points (including T0), conditions, and donors. We identified 266 genes over-expressed 24 

(log2FC>0.2, FDR<1%) in CD16+ cells relative to CD16- cells, and 389 genes that showed the 25 

opposite pattern, and performed a GO-term enrichment analysis on these genes (Dataset S2B). 26 

Consistent with previous reports (22-24), CD16- subsets were characterized by high expression 27 

of several proinflammatory S100 Calcium Binding Proteins (S100A12, S100A9, and S100A8), 28 

contributing to a sizable GO-term enrichment in the defense response to fungus pathway 29 

(GO:0050832: OR=41.3, FDR=4.9x10-4), while CD16+ subsets were characterized by high 30 

expression of Fc-gamma receptor signaling pathway genes (GO:0038096: OR=8.7, 31 

FDR=6.2x10-6). Notably, CD16+ subsets over-expressed several type I IFN stimulated genes 32 

(ISGs) relative to CD16- subsets (e.g. GO:000071357: OR=5.3, FDR=2.6x10-3), including the 33 

well-known viral restriction factors IFITM3 and OAS1. Collectively, these results demonstrate 34 
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CD16 is a reliable marker at the mRNA level and that CD16+/- monocyte subsets maintain 1 

functional differences upon manipulation.  2 

 3 

scRNA-seq highlights heterogeneity in monocyte susceptibility and viral transcription. 4 

Using the presence of IAV transcripts as a proxy for infection (Fig. 1B), we next sought to 5 

distinguish cells that were successfully infected from those that were not. Among monocyte-6 

derived cells that were exposed to IAV, we found that 50.3% expressed IAV transcripts above 7 

ambient levels when allowing up to 10% of mRNAs to come from the ambient pool. In contrast, 8 

less than 1% of non-infected cells showed evidence of viral transcription, supporting the validity 9 

of the threshold used to detect IAV expressing cells (Fig. 1C). We deemed cells with statistical 10 

evidence for expression of IAV transcripts from the IAV-challenged condition as ‘infected’, while 11 

the remaining cells from this condition were considered as ‘bystanders’, as these either did not 12 

come into contact with the virus or were able to fully repress viral mRNA transcription. When 13 

comparing the percentage of infected cells between subsets, we noticed that CD16+ cells were 14 

slightly less likely to be infected than CD16- cells (42.3% sd: 4.0% for CD16+ relative to 49.4% 15 

sd: 5.4% for CD16-, generalized linear model with CD16+/- status, donor, and time point as 16 

covariates, p-value=0.006). This suggests a higher resistance of CD16+ to IAV infection, 17 

possibly related to the higher expression of ISGs observed in this subset (Dataset S2 A and B). 18 

We observed that the proportions of viral mRNAs among infected cells were bimodally 19 

distributed and largely varied between the clusters identified in our unsupervised analysis (Fig. 20 

1D). We used a Gaussian mixture model to locate the two modes of the distribution and further 21 

sub-classify infected cells into those with lower IAV mRNA levels (<1-6%) and those with higher 22 

IAV mRNA levels (6-83%); while viral mRNA levels are dictated by both the rate of transcription 23 

and degradation, for simplicity we refer to these infected cell states as ‘low IAV-transcribers’ and 24 

‘high IAV-transcribers’, respectively. The proportions of infected cells among individuals 25 

remained largely unchanged over the course of the experiment; however, high-IAV transcribers 26 

were virtually absent at 2h (<2% of infected cells), peaked to ~36% of IAV-infected cells at 4h, 27 

and decreased to 8.5% by 8h, suggesting that high-IAV transcribers represent a transient state 28 

of IAV-infection preceding IAV-induced apoptosis (Fig. 1E). These results reveal profound 29 

heterogeneity in monocyte susceptibility and subsequent viral transcription upon IAV-challenge. 30 

 31 

Interplay of cytokine and ribosome networks drive cell states upon infection. To 32 

characterize host transcriptional responses over time, we next subsampled each subset (CD16-33 

/CD16+), cell state (unexposed, bystander, infected), and time point in our scRNA-seq data to 34 
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100 cells, while ensuring a balanced representation of all donors. We then focused on the 6,669 1 

host genes with average log2 normalized count >0.1 in at least one subgroup (Dataset S3A).  2 

Overall, CD16- and CD16+ subsets behaved similarly upon stimulation with changes in gene 3 

expression between cell states being strongly correlated among subsets (Pearson r = 0.83-0.95, 4 

p-values < 2.2x10-16; SI Appendix, Fig. S6). GO term enrichment analyses of shared responses 5 

(FDR<1% & log2FC >0.2 in same direction in both subsets) uncovered several functional 6 

categories interacting to shape the activation state of cells (Fig. 2A; Dataset S3B). Both 7 

bystander and infected cells showed increased mRNA expression of genes involved in antigen 8 

processing and presentation via class I MHC (GO:0019885, OR=53.7, FDR < 2.0x10-6) and 9 

response to type I IFN (GO:0034340, OR >14.8, FDR < 3.3x10-20). Yet, bystander cells showed 10 

increased mRNA expression of type I IFN response and defense response to virus pathways 11 

relative to infected cells (GO:0034340: OR=13.4, FDR=4.4x10-7; GO:0051607: OR=9.0, 12 

FDR=2.1x10-7), while infected cells displayed higher mRNA expression of mitochondrial 13 

(GO:0005743, OR=4.7, FDR=3.3x10-3) and ribosomal genes (GO: 0005840, OR=117, 14 

FDR=1.0x10-78).  15 

Among infected cells, ribosomal genes showed higher activity among high IAV-transcribing 16 

cells relative to low IAV-transcribing cells (Fig. 2B, comparison only made at T4 due to sample 17 

size constraints, e.g. GO:0019083: OR=137, FDR=6.1x10-65). This observation is consistent with 18 

the notion that the expression of viral proteins is dependent on cellular ribosomes, with recent 19 

data suggesting that IAVs do not induce a global shut-off of cellular translation but rather a 20 

reshaping of the translation landscape (25-27). Likewise, among bystander cells, numerous 21 

ribosomal genes were downregulated at later time points relative to unexposed cells (Fig. 2A 22 

and C; GO:0019083, OR=5.3, FDR=4.2x10-6), suggesting that repression of ribosomal subunits 23 

plays an active role in limiting viral replication. Collectively, these results suggest that ISGs and 24 

ribosomal expression interact to shape cell states upon IAV-challenge. 25 

 26 

Increased IRF and STAT activity drives stronger antiviral response. Despite qualitatively 27 

similar responses to infection between CD16-/CD16+ subsets (SI Appendix, Fig. S6), we 28 

hypothesized that subtle differences in the intensity of such responses might contribute to the 29 

increased resistance of CD16+ cells to infection. We thus performed an interaction test on the 30 

subsampled scRNA-seq data, and searched for genes for which transcriptional response upon 31 

IAV-challenge differed between CD16- and CD16+ subsets in either infected and/or bystander 32 

cells (SI Appendix, Fig. S6 A and B; Dataset S3A). At FDR≤1%, we identified a total of 335 33 

such genes, of which 98 differed between subsets only in bystander cells, 144 only in infected 34 
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cells, and 93 in both. Hierarchical clustering highlighted eight major patterns of transcriptional 1 

responses (modules) among the 335 genes, several of which were associated with specific 2 

biological functions (Fig. 3A; Dataset S3 C and D). Notably, module 1 (green) was enriched for 3 

genes in the antiviral response pathway (GO:0051607, OR=23.2, FDR<5.43×10-7) and displayed 4 

a stronger response in infected CD16+ cells relative to CD16- infected cells. Of additional interest 5 

was the transient CD16+ specific transcription of the inflammatory cytokine genes IL6 and TNF, 6 

following viral challenge (Fig. 3B). We also found that several genes involved in the regulation 7 

and production of IL-6 and TNFα are over-expressed in CD16+ subsets at all time-points and 8 

conditions (Dataset S2B), but only see active transcription of the cytokines upon viral exposure. 9 

These results reveal the strong antiviral and inflammatory potential of CD16+ relative to CD16- 10 

monocytes in response to viral infection (28).  11 

We next sought to characterize the regulatory architecture underlying the 335 genes whose 12 

transcriptional response to IAV-challenge differed between monocyte subsets. Using SCENIC 13 

(29), we identified 113 high-confidence gene regulatory networks, or ‘regulons’, which are active 14 

in non-infected and/or IAV-challenged cells, each composed of a transcription factor (TF) and a 15 

set of predicted targets (genes). We used these 113 regulons to search for an 16 

enrichment/depletion of TF targets among the eight modules of genes displaying subset-specific 17 

response to infection (Dataset S3E). Among modules associated with an increased expression 18 

in cells exposed to IAV (modules 1-5), we observed a widespread over-representation of targets 19 

of IFN regulatory factors (IRFs) and signal transducing and activators of transcription (STATs) 20 

(Fig. 3C), reinforcing the central role of the IFN response upon IAV challenge. Interestingly, 21 

several of these factors displayed subset-specific activity themselves in response to IAV 22 

(IRF1/2/7 and STAT1/2/3, FDR<1%), mirroring the expression patterns of module 1 (Pearson 23 

r>0.92). These results collectively highlight a CD16+-specific inflammatory response upon IAV-24 

challenge and suggest stronger activation of IRF and STAT transcription factors as driver of the 25 

increased antiviral response observed in CD16+ cells upon IAV infection. 26 

 27 

Basal activation differences correlate with monocyte susceptibility. To explore the degree 28 

of inter-individual variation upon viral challenge, we next quantified IAV transcripts in the 29 

monocyte-derived cells of each individual, and created pseudo-bulk estimates by averaging the 30 

percent of viral mRNAs per-cell across all cells from each donor at each time point (Fig. 4A). 31 

While viral mRNAs peaked at the same time for all individuals, we observed extensive variation 32 

in the levels of viral mRNAs and percentages of infected cells across individuals (Fig. 4B). To 33 

identify specific genes that might underlie infection potential, we focused on the 4,589 genes 34 
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that were expressed at > 0.1 log2 normalized counts in at least one canonical monocyte subset 1 

at T0. We identified a total of 3,131 genes that differed among our eight donors in either 2 

classical, intermediate, and/or nonclassical monocyte subsets (Kruskal-Wallis Rank Test, FDR 3 

1%; Dataset S4A). Within each subset, focusing on genes that significantly differ between 4 

donors, we searched for those for which mean expression at basal state was correlated with the 5 

percentage of infected cells at T4 among our eight donors. Despite our limited sample size, we 6 

found that cellular susceptibility was strongly correlated with basal expression of the well-known 7 

host viral restriction factor IFITM3. Although it reached significance only in nonclassical 8 

monocytes (FDR~1%), the association remained strong in other subsets (p < 4.1 ×10-4; Fig. 4C).  9 

We next relaxed our search to all genes for which basal expression showed nominal 10 

correlation (p < 0.01) with the percentage of infected cells at T4. Depending on the monocyte 11 

subset, between 3.6 to 8.3% of genes matched these criteria, resulting in a set of 118 genes 12 

displaying correlation with monocyte susceptibility in at least one subset. These 118 genes were 13 

collectively enriched for several related biological processes such as defense response to virus 14 

(GO:0051607, OR=15.3, FDR=9.2×10-19) and response to type I IFN (GO:0034340, OR=19.6 15 

FDR=8.4×10-15) (Dataset S4B). Among genes contributing to this enrichment, we found 16 

additional antiviral genes such as OAS3, and MX1, as well as the critical TF, IRF7, involved in 17 

the severity of IAV-infection both in mice and humans (30-32). Finally, overlap with the TF 18 

targets identified by SCENIC revealed strong enrichments of several IRFs and STATs among 19 

the 118 genes, including IRF7, as well as STAT1, STAT2 and IRF9 that form the tripartite IFN-20 

stimulated gene factor 3 (ISGF3) (Fig. 4D; Dataset S4C). Together, our results provide 21 

evidence that the basal mRNA expression of genes related to IFN-induced and antiviral 22 

responses are indicative of the proportion of cells that will become infected in the first cycle of 23 

IAV infection. 24 

 25 

African-ancestry monocytes are more resistant to infection. Lastly, we wondered how our 26 

findings of inter-individual variation might extrapolate to the population level. In a previous study 27 

(18), we challenged the primary monocytes from 200 Belgian individuals of African (AFB) and 28 

European (EUB) ancestry with the same IAV strain and MOI used in the present study, and 29 

performed bulk RNA-seq at 6 hours post infection (hpi). While basal (T0) expression profiles 30 

were not collected, flow cytometry labelling of CD14 and CD16 was performed on the CD14+-31 

selected monocytes for the majority of donors. Interestingly, AFB individuals had higher 32 

proportions of CD16+ cells than EUB individuals (Fig. 5A; SI Appendix, Fig. S7). In light of our 33 
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findings that CD16+ cells are more resistant to IAV infection, we hypothesized that this might 1 

translate to lower infection rates among AFB monocytes relative to EUB monocytes. 2 

To test this hypothesis, we mapped the bulk RNA-seq profiles collected 6hpi challenge with 3 

IAV for the 200 individuals to a combined human-IAV reference. Excluding 1 sample with low 4 

quality RNAs, we found that 0.02-13.5% of RNA-seq reads from each sample were of viral origin 5 

(Fig. 5B). Reassuringly, these percentages correlated with IAV mRNA levels estimated from the 6 

single cell experiment across all time points for the eight donors used in the present study 7 

(Pearson r > 0.84, p-value < 8.9×10-3), with the strongest correlation being observed at the peak 8 

of viral transcription (T4) (Pearson r = 0.97, p-value=5.1×10-5). These observations indicate that 9 

ex vivo cellular susceptibility is highly reproducible among individuals, even across different 10 

experimental protocols and technologies. Among the 199 bulk profiles, AFB and EUB samples 11 

presented overlapping but significantly shifted distributions of total IAV-mapping reads (Fig. 5B, 12 

4.9% vs. 6.8% of reads, respectively, Wilcoxon p-value = 5.3×10-8), and of each of the 10 13 

primary viral transcripts (Fig. 5C, Wilcoxon p-value < 5.5×10-4).  14 

Using the transcriptional profiles obtained from the scRNA-seq data at T6, we estimated the 15 

proportion of reads coming from each inferred cell state in these bulk RNA-seq profiles (Fig. 5D 16 

and 5E; SI Appendix, Note S2 and Fig. S8A). We found that, on average, AFB monocytes 17 

were more resistant to IAV infection than EUB monocytes (39.2% vs. 48.9% infected, 18 

respectively, Wilcoxon p-value = 5.3×10-10). Differences in the estimated percentage of infected 19 

cells alone explained 63% of the inter-individual variability in viral mRNA levels (Fig. 5F), and 20 

was sufficient to account for the observed difference in viral mRNA levels between AFB and 21 

EUB individuals (p-value=0.16 after adjusting on infected cells, compared to p-value=5.3×10-8 22 

without adjustment). Nonetheless, variation in the percentage of high/low transcribers among 23 

infected cells accounted for an additional 19% of variance in viral mRNA expression (SI 24 

Appendix, Note S2 and Fig. S8B). Finally, the ratio of CD16+/CD16- cells negatively correlated 25 

with the percentage of infected cells, albeit weakly (-0.27, p-value = 0.0165 adjusted on 26 

population). Altogether, these results show that population differences in viral mRNA levels are 27 

primarily driven by the overall proportion of cells that will ultimately become infected, with only a 28 

fraction of the differences being attributable to the different proportions of CD16+/- subsets 29 

observed in individuals of African and European ancestry. 30 

 31 

Discussion 32 

We performed scRNA-seq on primary monocytes, before and after ex vivo IAV-challenge, to 33 

assess transcriptional differences between monocytes infected by IAV (i.e. infected) versus 34 
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those activated only by exposure to secreted cytokines (i.e. bystanders), and to identify subset-1 

specific responses of monocytes to viral challenge. We found that bystander cells display 2 

increased mRNA expression of ISGs relative to infected cells; yet, we additionally observed both 3 

an induction of ribosomal gene mRNA expression in IAV-transcribing cells and a down 4 

regulation of these genes in bystander cells at later time points. While the former is likely 5 

induced by the virus to enhance mRNA translation (33), the repression of ribosomal expression 6 

observed in bystander cells may reflect a host mechanism to contain infection by shutting down 7 

the translational machinery of neighboring cells. Interestingly, the interplay of ribosomal and ISG 8 

expression also distinguished infected cells into two distinct states (high and low IAV-9 

transcribers), providing an explanation for the high cell-to-cell variation in IAV replication 10 

observed among circulating monocytes, which has also been documented in other cell types 11 

and during natural infection (34-41).  12 

While these patterns are generally shared across CD16- and CD16+ subsets, we found 13 

CD16+ cells to be slightly more resistant to infection. This is likely attributable to their higher 14 

absolute expression of some ISGs relative to CD16- cells (independent of viral exposure), as 15 

well as their more robust upregulation of antiviral genes upon IAV-challenge, which we found to 16 

be driven by stronger activity of IRF transcription factors. Interestingly, CD16+ cells displayed 17 

transient mRNA expression of IL6 and TNF upon viral exposure (both infected and bystander 18 

cells), two cytokines that have been widely implicated in cytokine storms (5). Collectively, these 19 

findings highlight the opposing roles of ISG and ribosomal gene mRNA expression on viral 20 

transcription, and reveal the stronger antiviral and pro-inflammatory potential of CD16+ monocyte 21 

subsets.  22 

At the population level, we found that the ratio of CD16+/CD16- at basal state was predictive 23 

of the percentage of monocytes that were susceptible to IAV infection, and observed that 24 

African-ancestry individuals harbored more CD16+ monocytes on average than European-25 

ancestry individuals residing in the same city (Ghent, Belgium), consistent with previous 26 

observations (42). Independently of monocyte subset proportions, we identified that individuals 27 

presenting lower monocyte susceptibility to IAV had a higher basal activation of an IRF/STAT-28 

driven antiviral program. These findings suggest that the fate of a monocyte hinges upon its 29 

basal activation state, and that the infection potential differs both within an individuals’ monocyte 30 

population, in part based on the differentiation status of the cell (i.e. CD16-positivity), but also 31 

between individuals, where a CD16- cell from one individual may have a higher antiviral state 32 

than a CD16+ cell from another individual. This latter phenomenon likely reflects the influence of 33 

both genetic and non-heritable factors on transcriptional variation in immune genes (14, 15). 34 
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These inter- and intra-population differences are noteworthy in and of themselves, and raise 1 

questions about how such differences in susceptibility of monocytic cells to infection - and 2 

differences in proportions of monocyte subsets - may relate to viral disease.  3 

African Americans are more often hospitalized than other self-defined ethnic groups by both 4 

influenza and COVID-19, even when adjusting for age and various social factors such as 5 

poverty and vaccination status (43, 44). Thus, should monocyte infection play a role in the 6 

severity of viral infections, our results would imply a paradox where higher infection and 7 

replication of IAV in circulating monocytes is associated with an advantage to fight viral infection 8 

in vivo. Such a paradox could possibly be explained by an enhanced antigen presenting 9 

capacity of infected cells, with higher infection of European-monocytes facilitating the activation 10 

of T cell antiviral responses (13, 45). In support of this hypothesis, we observe that infected and 11 

bystander cells display comparable induction of antigen-presentation genes relative to non-12 

exposed cells. This suggests that infected cells maintain their ability to present viral antigens to 13 

the adaptive immune system, while actively producing these antigens. Independently, but not 14 

mutually exclusively, proportions of monocyte subsets in circulation may play a role in viral 15 

disease; of note, patients with severe influenza and COVID-19 harbor higher proportions of 16 

intermediate monocytes in peripheral blood than patients with mild disease (46, 47). Given our 17 

finding that CD16+ subsets are the main drivers of inflammatory cytokine gene expression such 18 

as IL6 and TNF, and that African-ancestry individuals harbor a larger fraction of these monocyte 19 

subsets, it is tangible to conceive that monocyte subset composition prior to infection may 20 

influence disease outcome, and potentially serve as a biomarker. 21 

  22 
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Materials and methods 1 

Experimental model and subjects. All individuals from this study were part of the 2 

EVOIMMUNOPOP cohort, which has been previously described (18). Briefly, 200 healthy male 3 

donors living in Belgium of self-reported African descent (AFB) or European descent (EUB) were 4 

recruited. Inclusion was restricted to nominally healthy individuals between 19 and 50 years of 5 

age at the time of sample collection. Serological testing was performed for all donors to exclude 6 

those with serological signs of past or ongoing infection with human immunodeficiency virus 7 

(HIV), hepatitis B virus (HBV) or hepatitis C virus (HCV).  8 

 9 

Single-cell analyses and RNA sequencing. For eight selected donors (4 individuals from each 10 

ancestry, selected from extremes of the first principal component of gene expression in our 11 

previous study of monocyte response to IAV-challenge (18)), 100×106 PBMCs were thawed, 12 

washed twice and resuspended in complete medium: pre-warmed RPMI-1640 Glutamax 13 

medium, supplemented with 10% FCS and 1% penicillin/streptomycin (Cat# 15140-122, Life 14 

Technologies). Monocytes were then positively selected with magnetic CD14 microbeads, 15 

according to the manufacturer’s instructions (Cat#130-050-201, Miltenyi Biotec). The number of 16 

monocytes was determined with the Countless2 automated cell counter system (Cat# 17 

AMQAX1000, ThermoFisher Scientific) in the presence of trypan blue. For each donor, 18 

monocytes were seeded at 0.5×106 monocytes per well on 24-well NUNC plates in 500 µL of 19 

complete media and allowed to rest for one hour at 37°C under 5% CO2. Five-hundred 20 

microliters of complete media (non-infected) or A/USSR/90/1977(H1N1) at a concentration of 21 

1×106 pfu/mL in complete media (IAV-challenged, MOI=1) were added to each sample. 22 

Following one hour of staging at 4°C, plates were centrifuged at 1300 rpm for 10 minutes at 4°C, 23 

media was removed by pipette, and each well was washed with 1mL complete media. The spin 24 

was repeated, media removed by pipette, and samples were resuspended in 1mL pre-warmed 25 

complete media before being transferred to an incubator at 37°C under 5% CO2 to initiate 26 

infection (T0).  27 

At each time point (T0, T2, T4, T6, and T8), samples were mixed by pipetting and transferred 28 

to Eppendorf tubes. Wells were washed with 300uL of PBS + 0.04% BSA and transferred to the 29 

same tubes. Collection tubes were centrifuged at 1300 rpm for 10 minutes, media was removed 30 

and replaced with 1mL PBS + 0.04% BSA and an aliquot of 10µL was taken to count each 31 

sample on a Countless2 automated cell counter system, before repeating the centrifugations. 32 

Individual samples were adjusted to 2×106 live cells/mL.  33 
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Samples were multiplexed for running on the 10X Chromium (Cat# 120223 & 1000074, 10X 1 

Genomics) by mixing equal proportions from 6-8 samples in a manner that balanced conditions 2 

and allowed us to assess for batch effects across lanes (SI Appendix, Table S1). Multiplexed 3 

samples were counted with the Countless2 automated cell counter system and adjusted to 4 

target recovery of 10,000 cells per reaction of the Chromium Single Cell 3’ Reagent Kits v3 5 

(Cat# 1000092 & 1000078, 10X Genomics) assuming a recovery rate of 50%. GEM Generation 6 

& Barcoding, Post GEM-RT Cleanup & cDNA Amplification, and 3’ Gene Expression Library 7 

Construction were performed as per manufacturer’s instructions (48). All 13 libraries were mixed 8 

prior to sequencing across 13 different lanes from an Illumina HiSeq X (28bp barcode + 91bp 9 

insert – target 400 M reads pairs per lane), leading to a total of 5.3 billon reads.  10 

 11 

Sample Genotyping. Genotyping data [accession EGAS00001001895] were obtained for all 12 

200 individuals from the EvoImmunoPop cohort based on both Illumina HumanOmni5-Quad 13 

BeadChips and whole-exome sequencing with the Nextera Rapid Capture Expanded Exome kit 14 

(18). The 3,782,260 SNPs obtained after stringent quality control were then used for imputation, 15 

based on the 1,000 Genomes Project imputation reference panel (Phase 1 v3.2010/11/23) (49), 16 

leading to a final set of 19,619,457 high-quality SNPs, of which 7,766,248 SNPs had a MAF ≥5% 17 

in our cohort.  18 

 19 

Processing of scRNA-seq data. Basic pre-processing of the sequencing data was performed 20 

with CellRanger v3.0.2 (50), including the mkfastq, count, and aggr commands. Default 21 

parameters and our combined human-IAV reference were used, and batch correction was 22 

disabled in the aggr command. Cell-containing droplets (n=132,130) were traced back to 23 

individual donors using two independent methods, Demuxlet and SoupOrCell, which capitalize 24 

on genetic variation in the sequencing reads (20, 51). Barcodes with ambiguous and/or non-25 

concordant calls between the two programs were used to establish suitable QC metrics. We 26 

found that barcodes deemed as doublets (i.e. the droplet contained two or more cells originating 27 

from different donors) were more likely to be nearest-neighbors in a knn-graph with other 28 

doublets than assigned singlets. We used this feature to identify droplets presumed to contain 29 

two or more cells originating from the same donor; barcodes with > 5 doublets as nearest-30 

neighbors were excluded from further analysis (SI Appendix, Fig. S1 A and B). Additionally, 31 

droplets containing low-quality cells (i.e. damaged, dying) were excluded using the following 32 

thresholds: < 1500 total counts, < 500 genes, or > 50% mitochondrial gene content (SI 33 

Appendix, Fig. S1C). This QC resulted in a final data set of 96,386 single cells.  34 
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Transcriptomes (i.e. counts) were adjusted for the presence of ambient RNA with SoupX, 1 

(https://github.com/constantAmateur/SoupX/, accessed November 28, 2019) (21), using 2 

estimated contamination fractions (per 10X library) from SoupOrCell (51). SoupX-adjusted 3 

counts were normalized using pool-based size factors followed by deconvolution as 4 

implemented in the scran R package (52). Feature selection was performed by (i) constructing a 5 

mean-variance trend in the log-counts and retaining genes found to exhibit more variation than 6 

expected assuming Poisson-distributed technical noise, as implemented in the makeTechTrend 7 

and TrendVar functions from package scran (52), and (ii) selecting genes expressed in at least 8 

25 cells (n=22,603). The first 10 PCs of the data were retained for data visualization and 9 

clustering analyses. Graph-based clustering was performed by building the shared nearest-10 

neighbor graph with the buildSNNGraph function from scran (52) using a series of k values, and 11 

cell clusters were defined with the igraph Walktrap algorithm (53). Similar clustering results were 12 

obtained based on the knn-graphs generated using k=25, 50, 75, and 100, and k=25 was used 13 

for all downstream analyses (SI Appendix, Fig. S2A). Cell types were predicted using SingleR 14 

and the built-in BlueprintEncodeData reference (54). Based on the clustering and cell-type 15 

predictions, we removed cells belonging to clusters associated with lymphoid cell types or low 16 

QC metrics from downstream analyses (SI Appendix, Fig. S2 B and C). 17 

 18 

Accounting for ambient RNA contamination in scRNA-Seq Data and assigning cell states. 19 

Droplet-based scRNA-seq methods capture ambient mRNAs present in the cell suspension in 20 

addition to cell specific mRNAs. To estimate which cells in our experiment were genuinely 21 

expressing mRNAs for CD14, FCGR3A (CD16), and those originating from the virus, we 22 

implemented a two-step strategy utilizing the estimateNonExpressionCells function of the SoupX 23 

package (21). This function estimates whether each cell contains significantly more counts of a 24 

provided gene-set than would be expected under a Poisson model, given the estimated ambient 25 

RNA from its library of origin and the maximum contamination fraction. First, we used the viral 26 

genes to estimate the true maximum contamination fraction, based on the assumption that cells 27 

from the non-infected state should only contain viral reads from ambient mRNA captured in their 28 

droplets. To do so, we modified the estimateNonExpressionCells function to return p-values, and 29 

performed the test on each of our 13 libraries with a range of maximum contamination values 30 

from 1-50% (step of 1%) using the viral genes. We then computed FDR adjusted p-values for 31 

each maximum contamination value on the 88,559 high-quality, single monocytes. The number 32 

of non-simulated cells deemed to significantly express IAV transcripts (FDR<0.01) was used as 33 

a proxy for false positives. In examining the relationship between this number and the number of 34 
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IAV-challenged cells found to significantly express viral transcripts at FDR<0.01 (Fig. 1C), we 1 

found that a maximum contamination fraction of 10% resulted in a 1% false positive rate 2 

(defined as the percentage of non-infected cells from T2-T8 that were deemed to significantly 3 

express IAV transcripts). This parameter value was then used to correct for contamination from 4 

ambient for all genes considered (CD14, FCGR3A and IAV transcripts).  5 

 6 

Assigning cell states and investigating sources of variability in IAV levels. We used a 7 

maximum contamination fraction of 10% to test for significant expression of IAV transcripts in 8 

each cell (Fig. 1 C-E). IAV-challenged cells that contained a significant amount of IAV transcripts 9 

were considered as infected, while the others were deemed bystanders. To distinguish low from 10 

high IAV-transcribing cells, a Gaussian mixture model was fitted to the total percentage of viral 11 

mRNAs per cell across all infected cells, using the normalmixEM function from mixtools R 12 

package with k=2 (55). Each cell was assigned to the cluster with the highest posterior 13 

probability, and the cluster of cells with higher IAV content was annotated as high IAV-14 

transcribing.  15 

 16 

Characterizing monocyte subsets and transcriptional profiles from scRNA-seq data. 17 

Principal components analysis of 6,601 cells at T0 was used to order monocytes along a 18 

differentiation axis separating CD14+ cells from CD16+ cells. We then computed the average 19 

percentage of classical and nonclassical monocytes obtained by FACS across the eight donors, 20 

weighting each individual by the number of high-quality cells in the scRNA-seq data at T0. Based 21 

on these percentages (87.1% for classical and 7.6% for nonclassical), we annotated the 22 

monocytes on each side of the differentiation axis as classical and nonclassical, respectively, 23 

with the remaining 5.3% of monocytes being annotated as intermediates. Validity of our 24 

approach was confirmed by correlating the proportion of monocytes assigned to each subset 25 

across the eight donors, with the percentage of classical, intermediate and nonclassical 26 

monocytes estimated by FACS.  27 

Differential expression between subsets was assessed for the 4,859 genes expressed at an 28 

average logCount > 0.1 in any of the 3 subsets. Specifically, Wilcoxon rank tests were 29 

implemented in the scran package (52), using the findMarkers function and blocking on donor. 30 

We considered genes to be differentially expressed (DE) between monocyte subsets when gene 31 

expression was significant at an FDR≤1% and log2FC>0.2. The 848 genes that differed between 32 

classical (CL) and nonclassical (NC) monocyte subsets were classified according to their 33 

behavior in intermediate monocytes (INT). They were either deemed ‘similar to classical’ (DE 34 
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between INT and NC, but not between INT and CL), ‘similar to nonclassical’ (DE between INT 1 

and CL, but not between INT and NC), or ‘intermediate’ (all other cases). 2 

At later time points, comparisons between CD16+ and CD16- monocytes subsets were done 3 

based on 5,681 genes expressed with a normalized log count > 0.1 on average in either subset, 4 

in at least one condition and time point. For each subset, log2 fold change in gene expression 5 

relative to T0 were correlated across times points. Differential expression between CD16+ and 6 

CD16- cells was assessed with findMarkers (52), based on Wilcoxon rank tests and blocking on 7 

donors, time points and condition. Again, an FDR≤1% and log2FC>0.2 were required to define 8 

differentially expressed genes. To assess how CD16+/- status alters the infection of monocytes 9 

by IAV, we used logistic regression to model bystander/infected status as a function of CD16+/- 10 

status, while adjusting on donor, and time point (as factors).  11 

 12 

Characterizing subset-specific responses to IAV challenge. To allow comparison between 13 

responses of CD16+ and CD16- monocytes, 100 cells were subsampled from each subset and 14 

cell state, and at each time point. When subsampling, we ensured balanced representation of all 15 

donors across each monocyte subset and cell state, by using sampling weights that were 16 

inversely proportional to each donor representation in the original dataset. After sampling, a total 17 

of 6,669 genes with normalized log counts >0.1 on average in at least one group (cell-state x 18 

subset x time point) was selected for further analyses. For each monocyte subset, differences in 19 

expression between cell states (unexposed, bystander, infected) as well as between high- and 20 

low-IAV transcribing infected cells were performed using the findMarkers function from the scran 21 

package (52) and blocked on time-point. For each comparison, genes were considered to be 22 

differentially expressed between cell states when gene expression was significant at an 23 

FDR=1% (Wilcoxon rank tests) and the log2 fold change was > 0.2. In addition, for each 24 

comparison between cell states, we tested for differences in response between subsets using a 25 

linear model of the form: 26 

 27 

(10) ���� �~ ��	�
� �  �
��
�� � ��	�
�  .  �
��
��  28 

 29 

where ���� �is the expression of the gene being tested in cell �, ��	�
�  is an indicator variable 30 

that distinguishes the two cell states being compared (e.g. unexposed and bystander), and 31 

�
��
��  is an indicator variable that reflects the CD16+/- status of cell �. The 335 genes with 32 

significant interactions at a 1% FDR (for unexposed-bystander and unexposed-infected 33 
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comparisons) were clustered using the hclust R function with method ‘Ward.D2’. 1 

DynamicTreeCut algorithm (56) was used to identify eight major patterns of response to IAV.  2 

 3 

Transcription factor enrichment analyses. To estimate Transcription Factor (TF) activity and 4 

define TF-targets relationships, we ran the R SCENIC pipeline (29) on the expression matrix 5 

(pre-normalization) on a random subsample of 4800 cells (100 cells from each donor at each 6 

time point and each condition, pre-exclusion of dying and contaminant cells) with default 7 

parameters. For each gene, motif-enrichment was considered for either cis-regulatory regions 8 

located <10kb from the TSS (distal regulatory elements), or between 500 bp upstream and 100 9 

bp downstream of the promoter (proximal regulatory elements). To do so, motif-enrichment 10 

scores for all human genes (hg38 build, refseq_r80), were retrieved from 11 

https://resources.aertslab.org/cistarget and used as input for the Rcistarget package (29).  12 

Sets of high-confidence targets for the 113 TFs whose activity could be quantified by 13 

SCENIC were then extracted and used for enrichment analysis. For each gene module, TF 14 

enrichment was assessed using a Fisher’s exact test with the 6,669 expressed genes as 15 

background (Dataset 3). Resulting p-values were adjusted using a global Benjamini-Hochberg 16 

correction for all eight modules and 113 TFs.  17 

For each TF, with its targets enriched among one of the eight modules, TF activity inferred 18 

by SCENIC was used to test for subset-specific activity using a linear model of the form: 19 

(11) �� �~ ��	�
� �  �
��
�� � ��	�
�  .  �
��
��  20 

where ���  is the activity of the TF being tested in cell �, ��	�
�  is an indicator variable that 21 

distinguishes the two cell states being compared (e.g. unexposed and bystander), and �
��
��  is 22 

an indicator variable that reflects the CD16+/- status of cell �. Average TF activity was then 23 

computed for each cell state, subset and time point, and correlated with gene expression of the 24 

associated module, to assess the link between TF activation and the TF-target enriched 25 

modules. 26 

 27 
Association of the outcome of IAV infection using basal gene expression. For each of the 28 

three monocyte subsets detected at basal state, Kruskall-wallis test was used to search for 29 

genes whose expression levels significantly differ across donors. Within each monocyte subset, 30 

we then computed the average expression of each gene for all eight donors and correlated it 31 

with the percentage of infected cells at 4hpi. Genes that differed in expression between donors 32 

(FDR≤1%), and passed a nominal p-value threshold of 0.01 for association with IAV levels in 33 

any of the 3 subsets, were selected for downstream enrichment analyses. For genes nominally 34 
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correlated with viral mRNA levels, TF enrichment was assessed as previously using a Fisher’s 1 

exact test with all 4,859 genes expressed at T0 as background (Dataset S4), and Benjamini-2 

Hochberg correction for all 113 TFs was applied. 3 

 4 
Gene Ontology enrichment analyses. All Gene Ontology (GO) enrichment analyses were 5 

performed with GOSeq package using default settings (57). Background gene sets consisted of 6 

all genes that had average log-normalized expression value > 0.1 in at least one of the 7 

groupings being examined, and are described in the text. Only enrichments significant at 8 

FDR≤5% are reported.  9 

 10 

Pseudo-bulk estimates from scRNA-seq data. Pseudo bulk estimates of IAV mRNA levels 11 

were computed by measuring, for each donor and time point, the mean percentage of reads of 12 

viral origin across all cells from the sample. At each time point, we then used a Pearson’s 13 

correlation test to compare pseudo-bulk estimates for the 8 donors with IAV mRNA levels 14 

obtained in bulk data at 6hpi.  15 

 16 

Monocyte subset characterization of EVOIMMUNOPOP samples via FACS. For 174 of the 17 

200 EVOIMMUNOPOP donors, proportions of classical, intermediate and nonclassical 18 

monocytes were determined based on a fraction of 105 CD14+ positively-selected monocytes, 19 

stained according to the manufacturer’s instructions, with fluorescent APC-conjugated anti-CD14 20 

and PE-conjugated anti-CD16 antibodies (Cat#130-091-243 and Cat #130-091-245, 21 

respectively, Miltenyi Biotec). Samples were then analyzed on a MACSQuant Analyzer 10 22 

benchtop flow cytometer (Miltenyi Biotec). 23 

 24 

Quantification of canonical monocyte subsets in EVOIMMUNOPOP samples. FlowJo 25 

v10.6.1 software (58) was used with the gating strategy depicted in SI Appendix, Fig. S1 to 26 

quantify monocyte subsets for 174 EVOIMMUNOPOP donors. Population-level differences in 27 

proportion of canonical monocyte subsets were assessed using Wilcoxon Rank tests. 28 

Correlation of the ratio of CD16+ to CD16- cells with IAV mRNA levels was assessed using a 29 

linear model of the form  30 

(1) ���~ �	��� � ���,  31 

where ‘IAV’ are IAV mRNA levels, ‘�����’ is the percentage of CD16+ monocytes (non 32 

classical+intermediates) divided by the percentage of CD16- monocytes (classical), and ‘Pop’ is 33 

and indicator variable separating AFB from EUB individuals. 34 
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 1 

Analysis of bulk RNA-seq profiles from the EVOIMMUNOPOP cohort. A combined human-2 

IAV reference was generated by concatenation of the primary human genome assembly 3 

(GRCh38) with the 8 segments of the human influenza A virus (IAV) A/USSR/90/1977(H1N1) 4 

genome (accession numbers CY010372-CY010379). Comprehensive human gene annotation 5 

was obtained from GENCODE (release 27) and merged with the 12 known transcripts of 6 

A/USSR/90/1977(H1N1). RNA-seq reads (FASTQs) for all 970 samples that passed quality 7 

control in our previous study (18) [accession EGAS00001001895] were mapped to the 8 

combined reference with the STAR aligner (v.2.5.0a) (59) and assessed for quality with 9 

QualiMap ‘bamqc’ and ‘rnaseq’ (60, 61). Expression of viral mRNAs was measured as the 10 

percentage of uniquely-mapped reads aligning to the IAV genome. Reassuringly, the mean 11 

percentage of RNA-seq reads among samples from the IAV-challenged condition was 5.86% 12 

versus <0.01% in the other four conditions. Comparison of the percentage of IAV reads between 13 

populations was done using a Wilcoxon rank test. StringTie (v.1.3.3) (62) was used to quantify 14 

expression levels in transcripts per million mapped reads (TPM) for each annotated transcript. 15 

Gene expression data were filtered to remove genes with little evidence of activation (mean 16 

zTPM score < -3) (63) in any of the 5 conditions, and their quality was checked by principal 17 

component analysis (PCA). As GC content, 5′/3′ bias, date of the experiment and library batch 18 

were previously determined to be the strongest confounding factors on transcript expression 19 

(18), we corrected the data for these factors. First, we adjusted the data for GC content and 5′/3′ 20 

bias using linear models. Then, we imputed missing values by k-nearest neighbor imputation 21 

and adjusted for experiment date and library batch by sequentially running ComBat (64) for each 22 

batch effect, with condition and population as covariates. After batch effect correction, only IAV-23 

stimulated samples were kept for downstream analyses. 24 

 25 

Cell states deconvolution from bulk RNA sequencing. To assess the percentage of total 26 

transcripts that originate from each cell state across the 199 IAV-challenged samples, we pooled 27 

cells from T6 into 3 groups, based on their assigned cell-state (bystander, infected: high and low 28 

IAV-transcribing) and to which we added a 4th group containing all singlets that were either (i) 29 

assigned to cluster numbers 3, 8, 10, and 11 (dying cells) or (ii) discarded based on their high 30 

mitochondrial content or low read counts (dead cells). We then estimated pseudo-bulk profiles 31 

for each group by summing UMIs across all cells and computing the number of UMIs associated 32 

to each gene per million of sequenced UMIs. TPM profiles obtained from bulk data were then 33 

normalized to improve comparison with pseudo-bulk. Specifically, we first computed a global 34 
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pseudo-bulk profile of the entire single cell dataset as the average of the pseudo bulk profiles 1 

from the 4 cell states (bystander, infected: high and low IAV-transcribing, or dying/dead), 2 

weighted by the percentage of UMIs they contribute to the overall pool of cells. To account for 3 

the difference in how gene expression is quantified between the two methods (3’ end counts for 4 

scRNA-seq and full-length gene coverage for bulk RNA-seq), we computed for each gene i a 5 

normalization factor �� given by  6 

(5)  �� � log�����
�������� � log����� 7 

where ��� is the number of UMI per million for gene i in the global pseudo-bulk profile, and ����
������� 8 

is the average expression of the gene i in the 199 IAV-stimulated samples from the bulk RNA-9 

seq data. For each gene, �� was then subtracted from the log transformed TPM to yield a 10 

normalized TPM profiles. We next applied DeconRNAseq (65) to the normalized log TPM 11 

profiles from all individuals, using the log-transformed pseudo bulk profiles from the 4 cell states 12 

as a basis for deconvolution. Quality of the deconvolution was assessed using leave-one-out 13 

cross validation, based on the eight individuals for whom we had scRNA-seq data. Specifically, 14 

for each of these eight individuals, bulk mRNAs were decomposed using pseudo-bulk profiles 15 

recomputed based on the seven other individuals. The resulting proportions were then 16 

compared with the percentage of UMIs that originate in each cell-state in the scRNA-seq to 17 

assess the quality of the deconvolution. Comparisons between populations were performed 18 

using Wilcoxon rank tests.  19 

The effect of the percentage of infected cells and percentage of high IAV-transcribing cells 20 

among infected cells on the total IAV mRNA levels were assessed by modeling  21 

(6) IAV ~ INF + POP  22 

and  23 

(7) IAV ~ HI + POP  24 

where IAV are the IAV mRNA levels across the 199 bulk mRNA samples, INF and HI are 25 

respectively the percentage of infected cells and the percentage of high IAV-transcribing cells 26 

among infected cells that we estimated from the deconvolution, and POP is a factor variable 27 

reflection the population (EUB or AFB). The fraction η of population differences attributable to 28 

difference in rate of infection was estimating by comparing model (6) with model (8) below 29 

(8) IAV ~ POP  30 

and computing � � 100 " #1 � ��

��
$, with βi the effect of population on IAV levels in model (i). To 31 

assess how the contribution of the percentage of high IAV transcribing cells to total IAV mRNA 32 

levels differed between populations, we used a linear model of the form  33 

(9) IAV ~ HI + POP + HI:POP  34 
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and tested for significant effect of the interaction term HI:POP on IAV mRNA levels.  1 

 2 

Data availability 3 

The bulk RNA-seq data used in this study are available at the European Genome Phenome 4 

archive under accession number [EGAS00001001895]. The single cell RNA-seq data generated 5 

during this study are available at the European Genome Phenome archive under accession 6 

number [EGAS00001005000]. Code generated as part of this study is available on Github 7 

(https://github.com/h-e-g/PopDiff_MonocyteIAV). 8 
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 1 
 2 
Fig. 1. Single-Cell RNA-Sequencing of 88,559 Monocytes and Their Derived Cells. (A) Post-QC 3 
tSNE colored by unsupervised graph-based clusters. (B) Post-QC tSNE colored by FCGR3A (CD16) 4 
log2 normalized counts (top), or percentage of viral mRNAs (bottom). (C) Determination of the 5 
maximum contamination fraction by ambient RNA. The number of non-infected cells deemed to 6 
significantly express IAV transcripts (presumed false positives) versus the number of IAV-challenged 7 
cells deemed to significantly express IAV transcripts across a range of maximum contamination 8 
fractions from 1-50% (color bar). Dotted grey line is drawn at 1% on the x-axis. A maximum 9 
contamination fraction of 10% results in 1% of non-infected cells being classified as infected (false 10 
positive proxy), and half of IAV-challenged cells showing evidence of viral transcription. (D) 11 
Distribution of counts of viral origin across all donors, from T2 to T8. Cells are shown separately for 12 
non-infected (top) and IAV-challenged (bottom) conditions. Fill color reflects the cell state 13 
assignments. Note that the threshold used to define infected cells is dependent on the number of 14 
viral mRNAs in the ambient pool, and varies across libraries. (E) Post-QC tSNE stratified by time 15 
point. For each time point, cells are colored according to their CD16+/- status (see key) and their 16 
assigned cell state (same as depicted in D). For each condition and time point, stacked bar charts 17 
below the tSNE represent the relative proportions of the various cell states and subsets. 18 
  19 
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 1 
 2 
Fig. 2. Gradient of mRNA Expression from Ribosomal and IFN-Stimulated Genes 3 
Separates Bystander and Infected Cells. (A) Transcriptional responses of cells upon IAV-4 
challenge (T2-T8) highlight the interplay between IFN response (GO:0034340), ribosomal 5 
(GO:0005840), and mitochondrial (GO:0005743) genes. The log2FC change in gene expression 6 
between unexposed and bystander cells is plotted on the x-axis, while the log2FC change in 7 
gene expression between unexposed and infected cells is plotted on the y-axis. Values are 8 
plotted based on a meta-analysis across time points and subsets, based on a subsampled data 9 
set with balanced representation of all donors. (B) The interplay between IFN response 10 
(GO:0034340), ribosomal (GO:0005840), and mitochondrial (GO:0005743) genes among cells 11 
exposed to IAV. The log2FC change in gene expression between low IAV-transcribing infected 12 
and bystander cells is plotted on the x-axis, while the log2FC change in gene expression 13 
between low IAV-transcribing infected and high IAV-transcribing infected cells is plotted on the y-14 
axis. Values are plotted based on a meta-analysis across monocyte subsets at T4. (C) mRNA 15 
expression levels of representative IFN-stimulated (MX1) and ribosomal (RPL34) genes across 16 
the subsampled dataset. Colors reflect the cell state and subset assignment depicted in Fig. 1 D 17 
and E. 18 
 19 
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 1 
 2 
 3 
Fig. 3. IRFs and STATs Have a Central Role in the Subset-Specific Responses to IAV 4 
Infection. (A) Heatmap of scaled gene expression from 335 genes displaying a subset-specific 5 
response to infection challenge. Genes are grouped into 8 modules based on hierarchical 6 
clustering of their expression patterns. Representative genes from each module are labelled. (B) 7 
Mean expression over time of IL6 and TNF, across the different monocyte subsets and cell 8 
states. (C) Network of transcription factors (round nodes) associated with each gene expression 9 
module (square nodes). Transcription factor nodes are colored according to the number of 10 
modules they are associated with. Black lines represent enrichments of the module in TF 11 
targets, while red lines represent depletions. 12 
  13 
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 1 
 2 
 3 
Fig. 4. Basal IRF/STAT-Induced Transcriptional Network Underlies Inter-Individual 4 
Differences in Monocyte Susceptibility and IAV levels. (A) Pseudo-bulk estimates of the 5 
percentage of counts of viral origin in IAV-challenged condition (T2-T8). Donors are colored 6 
based on the rank of these pseudo-bulk estimates at the peak of viral transcription, T4, from that 7 
with highest observed viral mRNA level (D1) to that of the lowest (D8). (B) Proportions of cell 8 
states from the IAV-challenged condition at T2, T4, T6, and T8, in the eight donors. X-axis is 9 
ordered by decreasing viral mRNA levels found at T4 (D1-D8). (C) Log normalized expression 10 
values of IFITM3 across all cells, stratified by canonical monocyte subsets, and separated by 11 
donor. Colors reflect the different donors depicted in A. For each donor and monocyte subset, 12 
the violin plots show the full distribution of IFITM3 expression across individual cells and 13 
boxplots highlight the median and interquartile range. (D) Enrichment of SCENIC-predicted 14 
targets among the 118 genes whose basal expression at T0 correlates with the percentage of 15 
infected cells at later time points (odds ratio and 95% confidence interval). Red line designates 16 
an odds ratio equal to 1. Only TFs significantly enriched among the 118 candidate genes are 17 
shown (FDR < 0.05). Abbreviations: classical (CL), intermediate (INT), and nonclassical (NC). 18 
 19 
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Fig. 5. African-Ancestry Individuals Display Increased Number of CD16+ Cells and Lower 3 
Susceptibility to IAV Infection. (A) Variation in the number of classical (CD14++CD16-), 4 
intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) monocytes across African- and 5 
European- ancestry individuals following CD14+ selection from PBMCs (nAFB=89, nEUB=85). 6 
Colors reflect population (AFB in red and EUB in blue). All three subsets are significantly 7 
different between populations (p-value<0.01). (B) Inter- and intra-population variation in the 8 
percentage of RNA-seq reads mapping to the IAV genome (nAFB=100, nEUB=99). Colors reflect 9 
population (AFB in red and EUB in blue). The percentage of RNA-seq reads mapping to the IAV 10 
genome is significantly higher in European-ancestry individuals relative to African-ancestry 11 
individuals (p-value=5.3×10-8). (C) Inter- and intra-population variation in viral mRNA expression 12 
at 6hpi (nAFB=100, nEUB=99). Expression levels for each of the 10 primary transcripts of IAV are 13 
plotted. Colors reflect population (AFB in red and EUB in blue). All IAV transcripts are 14 
significantly higher in European-ancestry individuals on average (p-value<0.001). (D) Estimated 15 
distribution of the percentage of cells from each cell state in the bulk RNA-seq data (nAFB =100, 16 
nEUB=99). Fill colors reflect cell state assignments, while outlines of boxplots reflect population 17 
(AFB in red and EUB in blue). (E) Distribution of the percentage of high IAV-transcribers among 18 
infected cells, stratified by population. One individual with no infected cell was excluded 19 
(nAFB=99, nEUB=99). (F) Percentage of RNA-seq reads of viral origin as a function of the 20 
estimated proportion of infected cells (nAFB=100, nEUB=99), colored by population (AFB in red and 21 
EUB in blue). A and C: Outlier points are not displayed. Abbreviations: African-ancestry 22 
individuals from Belgium (AFB), European-ancestry individuals from Belgium (EUB), transcripts 23 
per million (TPM), influenza A virus (IAV), mean fluorescent intensity (MFI), classical (CL), 24 
intermediate (INT), and nonclassical (NC). * p-value < 0.01; ** p-value < 0.001; *** p-value < 25 
0.0001 26 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2020.12.07.414151doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414151
http://creativecommons.org/licenses/by-nc-nd/4.0/

