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Abstract

The flexible retrieval of knowledge is critical in everyday situations involving problem
solving, reasoning and social interaction. Current theories emphasise the importance
of a left-lateralised semantic control network (SCN) in supporting flexible semantic
behaviour, while a bilateral multiple-demand network (MDN) is implicated in
executive functions across domains. No study, however, has examined whether
semantic and non-semantic demands are reflected in a common neural code within
regions specifically implicated in semantic control. Using functional MRI and
univariate parametric modulation analysis as well as multivariate pattern analysis, we
found that semantic and non-semantic demands gave rise to both similar and distinct
neural responses across control-related networks. Though activity patterns in SCN
and MDN could decode the difficulty of both semantic and verbal working memory
decisions, there was no shared common neural coding of cognitive demands in SCN
regions. In contrast, regions in MDN showed common patterns across manipulations
of semantic and working memory control demands, with successful cross-
classification of difficulty across tasks. Therefore, SCN and MDN can be dissociated

according to the information they maintain about cognitive demands.
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Introduction

Our semantic knowledge encompasses disparate features and associations for any
given concept (e.g., APPLE can go with PIE but also HORSE). While this allows us
to understand the significance of diverse experiences, it raises the question of how
we generate coherent patterns of semantic retrieval that diverge from strong
associations in the semantic store. The controlled semantic cognition framework
suggests that a distributed neural network manipulates activation within the semantic
representational system to generate inferences and behaviours that are appropriate
for the context in which they occur (Lambon Ralph et al. 2017). In well-practised
contexts, in which the relevant information is robustly encoded, conceptual
representations need little constraint from semantic control processes to produce the
correct response. In contrast, situations requiring the retrieval of weakly-encoded
information or uncharacteristic features, and the suppression of strong but currently-
irrelevant patterns of retrieval, depend more on control processes to shape semantic
retrieval (Jefferies et al. 2020). Converging evidence from neuroimaging, patient and
neuromodulation studies suggests that left inferolateral prefrontal cortex, posterior
middle temporal gyrus, pre-supplementary motor area and intraparietal sulcus form a
semantic control network (SCN); these sites all respond to diverse manipulations of
semantic control demands (Jefferies and Lambon Ralph 2006; Hoffman et al. 2010;
Jefferies 2013; Lambon Ralph 2014; Nozari and Thompson-Schill 2016; Lambon

Ralph et al. 2017; Chiou et al. 2018).

An outstanding question concerns the degree to which the neural mechanisms
underpinning semantic control are specialised for this domain. A bilateral “multiple
demand” network (MDN), including frontal, parietal, cingulate and opercular brain

regions (Duncan and Owen 2000; Duncan 2010; Fedorenko et al. 2013), supports a
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diverse range of cognitively-demanding tasks, including selective attention, working
memory (WM), task switching, response inhibition, conflict monitoring and problem-
solving (Fedorenko et al. 2013; Fedorenko 2014; Crittenden et al. 2016; Assem et al.
2020; Diachek et al. 2020). Meta-analyses of neuroimaging studies identify a
network for semantic control that partially overlaps with MDN (Figure 3; Noonan et al.
2013; Jackson 2020). However, there also appear to be anatomical differences
between these networks: regions supporting semantic control extend into more
anterior areas of left inferior frontal gyrus, and posterior middle temporal areas,
which are not implicated in executive control more generally. Moreover, SCN shows
strong left-lateralisation, in contrast to other aspects of control, which are bilateral or
even right-lateralized (Gonzalez Alam et al. 2018; Gonzalez Alam et al. 2019;

Jefferies et al. 2020).

Moreover, it is still poorly understood whether semantic control demands are
analogous to domain-general control processes. Some studies have argued that
there are important differences in the processes supported by MDN and SCN: for
example, when semantic category is used as the basis of go-no go decisions,
behavioural inhibition is still associated with right-lateralised MD regions, not
activation within SCN (Gonzalez-Alam et al., 2018). This suggests that semantic
control processes are only recruited when conceptual information itself must be
controlled, and not whenever semantic tasks become hard. Semantic control might
involve distinct neural processes not shared by the control of action or visual
attention, since controlled semantic retrieval draws on heteromodal memory
representations and information integration, supported by DMN (Price et al. 2015;
Margulies et al. 2016; Price et al. 2016; Pylkkanen 2019; Lanzoni et al. 2020), along

with control processes (Davey et al. 2016). The SCN sits at the intersection of DMN
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and MDN, showing structural and intrinsic functional connectivity to regions in both
networks (Davey et al., 2016) and falling between these networks on whole-brain
connectivity and functional gradients (Wang et al. 2020): in this way, it might support
functional coupling between DMN and MDN in the left-lateralised semantic network.
While a few studies have manipulated both linguistic and non-linguistic demands,
observing common modulation of the neural response in anterior insula and/or
anterior cingulate cortex (Eckert et al. 2009; Erb et al. 2013; Fedorenko et al. 2013;
Piai et al. 2013), prior studies failed to match the task structure and task difficulty
across these domains. More importantly, we are still lacking knowledge about

whether MDN and SCN regions share the same neural coding.

Here, we conducted a pair of fMRI studies to assess the nature of neural signals
relating to semantic and domain-general control demands. First, we contrasted
parametric manipulations of difficulty for semantic judgements (by varying the
strength of association) and verbal working memory (by varying load), to identify
sites specifically implicated in semantic and non-semantic control. We matched the
task/trial structure and input modality across semantic and non-semantic domains.
Next, using pattern classification analyses which examine the multivariate pattern of
activation across voxels (Haynes and Rees 2006; Norman et al. 2006; Tong and
Pratte 2012; Haynes 2015), we tested which regions in the brain could decode
semantic demands and working memory load. Finally, we assessed whether SCN
and MD regions could cross-classify difficulty across semantic and non-semantic
judgements. In this way, the current study tests the extent to which a shared neural

currency underlies both semantic control and working memory load.
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Materials and Methods

Participants

A group of 32 young healthy participants aged 19~35 (mean age = 21.97 £13.47
years; 19 females) was recruited from the University of York. They were all right-
handed, native English speakers, with normal or corrected-to-normal vision and no
history of psychiatric or neurological illness. The study was approved by the
Research Ethics Committee of the York Neuroimaging Centre. All volunteers
provided informed written consent and received monetary compensation or course
credit for their participation. The data from one task was excluded for four
participants due to head motion, and one additional working memory dataset was
excluded due to errors in recording the responses. The final sample included 28
participants for the semantic task and 27 participants for the working memory task,

with 26 participants completing both tasks.
Design

Participants completed two experiments, presented in separate sessions. The first
session included four functional scans while participants performed a semantic
association task. The second session included three working memory functional
scans and a structural scan (see Figure 1 for an example of each task). A slow
event-related design was adopted for the two sessions in order to better characterise
the activation pattern for each trial. Each trial lasted 9s and each run included 48

trials in the semantic task and 40 trials in the working memory task.
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Semantic association task design

Participants were asked to decide if pairs of words were semantically associated or
not. The stimuli were 192 English concrete noun word-pairs. We excluded any
abstract nouns and items drawn from the same taxonomic category, so that only
thematic links were evaluated in this task (i.e. forest — path or bath — duck; these
items are related because they are found or used together). The strength of the
thematic link between the items varied parametrically from no clear link to highly
related; in this way, participants were free to decide based on their own experience if
the words had a discernible semantic link. There were no ‘correct’ and ‘incorrect’
responses: instead, we expected slower response times and less convergence
across participants for items judged to be ‘related’ when the associative strength
between the items was weak, and for items judged to be ‘unrelated’ when the
associative strength between the items was strong (see behavioural below). Overall,
there were roughly equal numbers of ‘related’ and ‘unrelated’ responses across

participants.

Each trial began with a visually presented word (WORD-1) which lasted 1.5s,
followed by a fixation presented at the centre of the screen for 1.5s. Then, the
second word (WORD-2) was presented for 1.5s, followed by a blank screen for 1.5s.
Participants had 3s from the onset of WORD-2 to judge whether this word pair was
semantically associated or not by pressing one of two buttons with their right hand
(using their index and middle fingers). During the inter-trial interval (3s), a red fixation
cross was presented until the next trial began. Both response time (RT) and
response choice were recorded. Participants finished 4 runs of the semantic task,

each lasting 7.3 min. Before the scan, they completed a practice session to
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familiarise themselves with the task and key responses (see Figure 1 for task

schematic).
Semantic stimuli

To quantify the strength of semantic relationships in the association task, distributed
representations of word meanings were obtained from the word2vec neural network,
trained on the 100 billion-word Google News dataset (Mikolov et al. 2013). In
common with other distributional models of word meaning, the word2vec model
represents words as high-dimensional vectors with 300 dimensions, where the
similarity of two words’ vectors indicates that they appear in similar contexts, and
thus are assumed to have related meanings. The word2vec vectors used here were
found to outperform other available vector datasets in predicting human semantic
judgements in a recent study (Pereira et al. 2016). We defined the strength of the
semantic relationship between words using the cosine similarity method. This value
was calculated for each word pair presented as a trial, allowing us to characterise

the trials on a continuum from strongly related to unrelated.

While word2vec values were higher for trials judged to be semantically related
overall (see below), there was considerable variation for both related and unrelated
judgements. Since different numbers of items were judged to be thematically related
and unrelated across participants, we split related and unrelated trials for each
participant into five levels according to their word2vec value, each with the same
number of word-pairs. In order to simplify the presentation of the results, the analysis
was based on these five levels of word2vec unless otherwise stated. We reasoned
that higher word2vec values would be associated with lower task demands for trials

judged to be related, and with higher task demands for trials judged to be unrelated.
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This was confirmed by behavioural analyses (see below). Word2vec values did not
correlate with psycholinguistic variables from N-Watch (Davis 2005), including word
length (number of letters: Word1, r =0.099, p = 0.17; Word2, r =0.113, p = 0.119),
word frequency (Word1, r = 0.033, p = 0.657; Word2, r =0.111, p = 0.127) or
imageability (Word1, r =-0.004, p = 0.958; Word2, r =-0.010, p = 0.901). We also
computed a semantic decision consistency index for each word pair by calculating
how many participants judged it to be semantically associated (expressed as a
proportion of the total participants tested). Word2vec was significantly positively
correlated with this consistency value (r = 0.773, p < 0.0001), showing that people

were more likely to judge word pairs as related when they had high word2vec values.

Verbal working memory task

The working memory task had a similar structure to the semantic task (see Figure 1).
Each trial began with a letter string (3 to 7 letters) presented at the centre of the
screen for 1.5s, followed by a fixation presented for 1.5s. Participants were asked to
remember these letters. Next, two letters were shown on the screen for 1.5s.
Participants judged whether both of them had been presented in the letter string by
pressing one of two buttons within 3s (participants were told the order of the letters
on the screen did not matter). Then a red fixation cross was presented for 3s, until
the start of the next trial. Participants completed 3 runs, each containing 40 trials and
lasting for 6.1 minutes. The working memory load was manipulated by varying the
number of letters memorised in each trial; there were five levels of load from 3to 7
letters (to match the five levels of word2vec in the semantic task), with 8 trials at
each level in each run, presented in a random order. Both response time (RT) and
accuracy were recorded, and participants were asked to respond as quickly and

accurately as possible.

10
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Mixed-Effects Modelling of Behavioural Data

Since participants judged different numbers of items to be semantically related and
unrelated in the semantic task, mixed-effects modelling was used for the analysis of
the behavioural data. This approach is particularly suitable when the number of trials
in each condition differs across participants (Mumford and Poldrack 2007; Ward et al.
2013). Semantic association strength (or working memory load) was used as a
predictor of the decision participants made (in the semantic task: judgements of
whether the words were related or unrelated; in the working memory task: whether
the response was correct or incorrect) and, in separate models, how long the
reaction time this decision took (i.e., RT). Participants were included as a random
effect. The mixed-effects model was implemented with Ime4 in R (Bates et al. 2014).
We used the likelihood ratio test (i.e., Chi-Square test) to compare models with and
without the effect of semantic association strength and working memory load level, in
order to determine whether the inclusion of the difficulty manipulations significantly

improved the model fit.

Neuroimaging data acquisition

Imaging data were acquired on a 3.0 T GE HDx Excite Magnetic Resonance Imaging
(MRI) scanner using an eight-channel phased array head coil at the York
Neuroimaging Centre. A single-shot T2*-weighted gradient-echo, EPI sequence was
used for functional imaging acquisition with the following parameters: TR/TE/@ =
1500 ms/15 ms/90°, FOV =192 x 192 mm, matrix = 64 x 64, 3 x 3 x4 mm voxel size,
32 axial slices without a gap. Slices were tilted approximately 30° relative to the AC-
PC line to improve the signal-to-noise ratio in the anterior temporal lobe and

orbitofrontal cortex (Deichmann et al. 2003; Wimmer and Biichel 2019). Anatomical
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MRI was acquired using a T1-weighted, 3D, gradient-echo pulse-sequence
(MPRAGE). The parameters for this sequence were as follows: TR/TE/@ = 7.8s/2.3
ms/20°, FOV = 256 x 256 mm, matrix = 256 x 256, and slice thickness =1 mm. A
total of 176 sagittal slices were acquired to provide high-resolution structural images
of the whole brain. The relatively short TE was used to minimise the EPI distortion
around ATL. We calculated the temporal signal-to-noise ratio (tSNR) for each
participant by dividing the mean of the smoothed time series in each voxel by its
standard deviation in each run; we then averaged the tSNR across all runs for the
semantic task. These tSNR values were comparable with previous studies (Hoffman
et al. 2015; Striem-Amit et al. 2018), and were at acceptable levels (Murphy et al.
2007), although lowest at the anterior temporal pole (mean value: 107.8).
Supplementary Figure S8 shows tSNR for a range of ROIs and the full tSNR map in

MNI space is available to view online: https://neurovault.org/images/441927/.

fMRI Data Pre-processing Analysis

Image pre-processing and statistical analysis were performed using FEAT (FMRI
Expert Analysis Tool) version 6.00, part of FSL (FMRIB software library, version
5.0.11, www.fmrib.ox.ac.uk/fsl). The first 4 volumes before the task were discarded
to allow for T1 equilibrium. The remaining images were then realigned to correct for
head movements. Translational movement parameters never exceeded one voxel in
any direction for any participant or session. Data were spatially smoothed using a 5
mm FWHM Gaussian kernel. The data were filtered in the temporal domain using a
nonlinear high-pass filter with a 100 s cut-off. A two-step registration procedure was
used whereby EPI images were first registered to the MPRAGE structural image

(Jenkinson and Smith 2001). Registration from MPRAGE structural image to
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standard space was further refined using FNIRT nonlinear registration (Andersson et

al. 2007).

Univariate Parametric Modulation Analysis

We examined the parametric effect of semantic control demands (i.e. the strength of
association between WORD-1 and WORD-2) in the decision phase of the task, using
general linear modelling within the FILM module of FSL with pre-whitening turned on.
Trials judged to be semantically related (YES trials) and unrelated (NO trials) by
participants were separately modelled, using their demeaned word2vec values as
the weight, and the RT of each trial as the duration. In addition, we included
unmodulated regressors for the trials judged to be related and unrelated, as well as
regressors containing WORD-1 and the within-trial fixation between the words. The
second fixation interval between the trials was not coded and thus treated as an
implicit baseline. Regressors of no interest were included to account for head motion.
Three contrasts (related vs. baseline, unrelated vs. baseline, and related vs.
unrelated) were defined to examine the effect of semantic control demands on trials

judged to be related and unrelated.

The working memory task was analysed in a similar way. Correct and incorrect trials
were separately modelled. For correct trials, the parametric effect of difficulty was
modelled by including memory load as the weight, and reaction time as the duration
of each trial; we also included unmodulated regressors for these trials. In addition,
we included three unmodulated regressors: incorrect trials, the first word and the first
within-trial fixation. The second fixation interval between the trials was not coded and
thus treated as an implicit baseline. Regressors of no interest were included to

account for head motion. Two contrasts (correct > baseline and the reverse) were
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defined to examine how memory load parametrically modulated neural activation in

the brain.

For both semantic and WM models, a higher-level analysis was conducted to
perform cross-run averaging using a fixed-effects model. These contrasts were then
carried forward into the group-level analysis, using FMRIB’s Local Analysis of Mixed
Effects 1 + 2 with automatic outlier detection (Beckmann et al. 2003; Woolrich et al.
2004; Woolrich 2008). Unless otherwise noted, group images were thresholded
using cluster detection statistics, with a height threshold of z > 3.1 and a cluster
probability of p < 0.05, corrected for whole-brain multiple comparisons using
Gaussian Random Field Theory. The same threshold was used for both univariate
and MVPA analysis. Uncorrected statistical maps are available to view online:

(https://neurovault.org/collections/8710/).
Multivoxel Pattern Analysis
Single-trial Response Estimation

We used the least square-single (LSS) approach to estimate the activation pattern
for each trial during the decision phase in the two tasks. Each trial's decision was
separately modelled in one regressor and all other trials were modelled together as a
second regressor; we also included WORD-1 and the fixation as additional
regressors. Pre-whitening was applied. The same pre-processing procedure as in
the univariate analysis was used except that no spatial smoothing was applied. This
voxel-wise GLM was used to compute the activation associated with each trial in the
two tasks. Classification was performed on t statistic maps, derived from beta
weights associated with each regressor, to increase reliability by normalizing for

noise (Walther et al., 2016).

14
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Network Selection and Parcellation

We used two complementary multivariate approaches to assess representations of
control demands; both network/ROI-based and whole-brain searchlight methods. We
used two networks defined from previous studies: the semantic control network
(SCN) and multiple-demand network (MDN) (Fedorenko et al. 2013; Jackson 2020).
We decomposed these networks into semantic control specific (SCN specific) areas,
which did not overlap with MDN; multiple-demand specific (MDN specific) regions,
which did not overlap with SCN; and shared control regions identified from the
overlap between MDN and SCN. As a comparison, we also examined regions within
the semantic network not implicated in control. To identify these regions, we
downloaded a semantic meta-analysis from Neurosynth (search term ‘semantic’;
1031 contributing studies; http://www.neurosynth.org/analyses/terms/). Then, we
removed regions within this semantic network which overlapped with the two control
networks to identify semantic regions predominately associated with semantic
representation or more automatic aspects of semantic retrieval, mostly within default-
mode network (e.g. in lateral temporal cortex and angular gyrus). All of the voxels
within the network maps defined above were included within network-based ROIs.
Intraparietal sulcus was not included because the sequence did not allow us to cover
the whole brain for some participants. In total, thirty ROIs were defined; four ROIs in
semantic non-control areas, three ROIs in SCN areas, six ROIs in the overlap of
MDN and SCN, and seventeen ROIs in MDN specific areas. These thirty ROIs are

available online: https://osf.io/bau5c/, see Figure S3A for the four networks.
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Support Vector Regression Analysis

Epsilon-insensitive support vector regression analysis (SVR) (Drucker et al. 1997)
was conducted using a linear support vector machine (SVM) (Chang and Lin 2011)
and custom code implemented in MATLAB (The MathWorks) (code is available at:
https://osf.io/bau5c/). In contrast to conventional support vector machine
classification (SVM), the SVR does not depend on categorical classification (i.e.,
predictions falling on the correct or incorrect side of a hyperplane); instead, it outputs
estimations using a regression approach. This approach was used to estimate the
difficulty level or cognitive demand for each trial. For each level of difficulty (based on
inverse word2vec for semantic trials judged to be related, word2vec for semantic
trials judged to be unrelated and memory load in the working memory task), the test
and training data were normalized (i.e., mean subtracted and divided by the standard
deviation) across voxels within each region of interest (i.e., searchlight, ROI) (Misaki
et al. 2010). This allowed an evaluation of the pattern of activity across voxels
without contamination from mean signal differences within the searchlight or ROI
across the difficulty levels (i.e., the univariate effect) (Misaki et al. 2010; Jimura and
Poldrack 2012; Coutanche 2013). The SVR cost parameter was set to 0.001. For
each searchlight or ROI, the accuracy of SVR prediction was then calculated within-
participant, defined as the z-transformed Pearson’s correlation coefficient between
actual and predicted values of the difficulty parameter for the left-run-out data, with
the actual difficulty levels ranging from 1 (easy) to 5 (hard) in both tasks. The epsilon

parameter in the SVR model was set to epsilon = 0.01 (Jimura and Poldrack 2012).

For each participant, three separate SVR classifiers were trained to decode cognitive

demands: these examined the difficulty of semantic trials judged to be related
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(difficulty maximised for low association trials), the difficulty of semantic trials judged
to be unrelated (difficulty maximised for high association trials), and the difficulty of
working memory trials (difficulty maximised for highest memory load). We examined
generalization of difficulty effects within the semantic domain (i.e. between trials
judged to be semantically-related and unrelated). In order to test whether semantic
control and executive control share a common neural code, we also performed a
series of generalization (cross-task classification) analyses, in which classifiers were
trained on each task type (semantic related; semantic unrelated; working memory)
and tested on the other task types (i.e. trained on semantic related, tested on
working memory), resulting in 4 SVR decoding accuracy types. All classification
analyses were performed using a leave-one-run-out cross-validation. SVR decoding

was performed using searchlight and ROI approaches.

For searchlight-based analysis, for each voxel, signals were extracted from a cubic
region containing 125 surrounding voxels. The searchlight analysis was conducted in
standard space. A random-effects model was used for group analysis. Since no first-

level variance was available, an ordinary least square (OLS) model was used.

For the network ROI-based analysis, because the number of voxels in the network
ROls varied and differences in ROI size are likely to influence classifier performance,
classification analyses were performed by randomly subsampling 200 voxels from
each ROI. This process was repeated for 100 iterations for each ROI and subject,
with each iteration involving a different random sample of 200 voxels. The 100
iterations in each ROI were averaged into one value, and this value from all ROIs

were averaged again for each brain network.
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Results

Behavioural Results

Overall, equal numbers of word pairs were judged to be related or unrelated by the
participants (mean ratio: 0.491 vs. 0.495, x2(1) = 0.00021, p > 0.995). Linear mixed
effects models examined whether associative strength and working memory load
were reliable predictors of behaviour. We found that both the strength of the
semantic association (word2vec value) and working memory load successfully
manipulated task difficulty. For the semantic task, the continuous word2vec value
was positively associated with a higher probability that participants would identify a
semantic relationship between the words (x2(1) = 2421.3, p < 0.001) using a logistic
regression approach. When word pairs were grouped into 5 levels according to their

word2vec value, the relationship was still significant (x2(1) = 2467.8, p < 0.001).

Since we used a continuous manipulation of associative strength, and there is no
categorical boundary of word2vec values which can capture the trials reliably judged
to be related and unrelated, we were not able to compute a traditional error score for
the semantic task. We expected that for those word-pairs judged to be related in
meaning, higher word2vec values would facilitate semantic decision-making. For
these trials, the pattern of semantic retrieval required by the task (i.e. the
identification of a linking context) is likely to be well-supported by dominant
information in long-term memory. Since the linking context is highly accessible on
these trials, there is less uncertainty about the relevant response, and potential
conflict between the response options is reduced. In contrast, when items are judged
to be semantically related even when they have less semantic overlap as assessed

by word2vec, it is thought that control processes must be engaged to shape
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activation within the semantic store; this is because a dominant linking context is not
readily available in long-term memory. In this situation, task-irrelevant but more
dominant semantic associations to the two words may need to be suppressed and
there is likely to be more uncertainty about the decision. For trials in which words are
judged to be unrelated in meaning, the effect of strength of association is expected
to have the opposite effect on task difficulty. When the two items have very different
meanings and are not remotely connected to each other, it is relatively easy to
decide that they are not semantically associated; low word2vec values should be
associated with lower decisional uncertainty. In contrast, when participants decide
that two words are unrelated even when they are somewhat linked according to
word2vec, the semantic decision is expected to be more difficult, with greater
uncertainty or response conflict emerging from their partial relationship. Participants

may need to recruit control processes to overcome this conflict or uncertainty.

Mean RT for each level is presented in Figure 1C, separately for related (YES) and
unrelated (NO) decisions. To examine how association strength level modulated RT
for trials judged to be related and unrelated, we performed linear mixed effects
analyses with participant as a between-subject variable and association level as a
within-subject variable. This revealed a significant effect of level of association
strength for both related and unrelated decisions. Association strength level was
negatively associated with RT (x2(1) = 146.6, p < 0.001) for related trials and
positively associated with reaction time for unrelated trials (x2(1) = 58.668, p <
0.001). It was more difficult for participants to retrieve a semantic connection
between two words when strength of association was lower; on the contrary, it was
easier for them to decide there was no semantic connection between word pairs with

low word2vec values.
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For the working memory task, the proportion of correct responses was 84.8%, when
all memory load levels were considered. The more items to be maintained or
manipulated in working memory, the more difficult the trial was expected to become.
A logistic regression showed that higher working memory load was associated with
lower accuracy (x2(1) = 112.4, p < 0.001). A further linear mixed effects model with
participant as a between-subject variable and memory load as a within-subject
variable revealed a significant positive relationship between load level and RT for

correct responses (x2(1) = 39.826, p < 0.001).

Lastly, a two-way repeated-measures ANOVA was conducted examining the effects
of task condition (semantic related, unrelated and working memory correct) and
difficulty level (five levels per task) on the proportional change in RT for each
difficulty level of the task, relative to the average RT for each condition. The results
showed a significant interaction between conditions and difficulty levels
(F(5.395,134.881) = 8.329, p < 0.001, Greenhouse-Geisser corrected), along with a
main effect of difficulty level (F(3.134, 78.346) = 53.262, p < 0.001, Greenhouse-
Geisser corrected). Together, these results suggest that association strength and
memory load successfully manipulated task difficulty, with the semantic task showing

a stronger influence on RT than WM load.
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Figure 1. Experiment paradigm and behavioural results. A. Semantic association task;
participants were asked to decide if word pairs were semantically related or not. B. Word pair
examples for both related and unrelated decisions from one participant, with association
strength increasing from Level 1 (L1; little semantic overlap) to Level 5 (L5; high semantic
overlap). These trials were assigned to related and unrelated sets of trials on an individual
basis for each participant, depending on their decisions, and then split into 5 levels, based
on word2vec scores. C. RT for semantic decisions across 5 levels of word2vec for word
pairs judged to be related and unrelated. D. Working memory task; participants were asked
to decide if two probe letters were presented in a sequence, in any order. E. Working
memory load ranged from 3 to 7 items. F. RT for working memory trials across 5 levels of

load, for correct and incorrect decisions.
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fMRI Results

The Parametric Effect of Word2vec on Brain Activation

We identified brain areas showing an increase or decrease in activation as a function
of association strength (using the continuous word2vec scores). It was harder for
participants to decide that items were semantically related when they were weakly
associated; consequently, we would expect stronger responses in semantic control
and multiple demand regions for these trials. It was also harder for participants to
decide that items were semantically unrelated when they had greater word2vec
values; therefore we would expect opposite effects of word2vec for related and
unrelated trials in brain regions supporting demanding semantic decisions. The direct
comparison of word2vec effects for semantically-related and unrelated decisions can
identify brain areas responding to semantic similarity but not difficulty, while the
combination of negative effects of word2vec for related decisions and positive effects
of word2vec for unrelated decisions can identify brain regions that respond to the

difficulty of semantic decisions, without a confound of semantic relatedness.

For related trials, weaker associations elicited greater activity in regions linked to
semantic control in previous studies, including left inferior frontal gyrus (IFG), left
middle frontal gyrus (MFG), superior frontal gyrus (SFG) and left posterior middle
temporal gyrus (pMTG); see Figure 2A. Similarly, when participants decided that
items were unrelated, there was stronger activation in left inferior frontal gyrus,
middle frontal gyrus, superior frontal gyrus and frontal orbital cortex (FOC) when

these items had higher word2vec scores; see Figure 2B.
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We investigated common and distinct effects of semantic control demands across
trials classified as related and unrelated. A conjunction analysis revealed that
rejecting strongly associated word pairs and accepting weakly associated word pairs
recruited common semantic control regions including left inferior frontal gyrus, middle
frontal gyrus, superior frontal gyrus and frontal orbital cortex, see Figure 2D. There
were no significant differences in the parametric effects of semantic control demands
or semantic relatedness for trials judged to be related and unrelated in a direct
contrast. There were also no common effects of semantic similarity (i.e. positive

effects of word2vec that were shared across related and unrelated decisions).

In addition, although we could not compute task accuracy in our main analysis (since
we manipulated strength of association in a continuous way, and participants were
asked to split this distribution into related and unrelated trials), a supplementary
control analysis removed trials with unexpected word2vec scores, given the decision
that was made. An additional regressor was included to capture trials judged to be
related even though they had particularly low word2vec values (bottom 25% of
word2vec values), and trials judged to be unrelated that had particularly high
word2vec values (top 25% of word2vec values). The results were very similar to the

analysis above; see Supplementary Figure S1A.

The Parametric Effect of Working Memory Load on Brain Activation and the

Comparison with Semantic Control

For correct working memory trials, a significant parametric effect of memory load
was found in right middle frontal gyrus, frontal pole (FP) and superior frontal gyrus

consistent with previous studies in which higher working memory loads elicited
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greater activity in distributed bilateral areas within the multiple-demand network

(MDN); see Figure 2C.*

We performed further analyses to establish the common and distinct parametric
effects of semantic control demands and working memory load. We compared
correct working memory trials and word pairs judged to be semantically-related,
since participants made YES decisions in both situations. Since semantic
relatedness was varied in a continuous fashion while working memory load was
manipulated across five levels, we first divided the semantically related trials into five
difficulty levels according to their word2vec values, with lower word2vec
corresponding to harder trials (re-analysis of the univariate activation for the
semantic task using these five levels replicated the findings above and obtained
highly similar results, see Supplementary Figure S1B). To simplify the following
univariate and multivariate results focussed on the comparison of the semantic and
working memory tasks, we used five levels of difficulty or association strength for the

thematically related and unrelated decisions, unless otherwise mentioned.

A conjunction analysis showed a significant overlap between semantic control
demands and working memory load in superior frontal gyrus and pre-supplementary
motor area (pre-SMA); see Figure 2F. Direct contrasts of these semantic and non-
semantic difficulty effects revealed stronger effects of difficulty in the working
memory than the semantic task in right-lateralized regions mainly within the multiple-
demand network, including right middle frontal gyrus, frontal pole and supramarginal

gyrus (SMG); Figure 2G. There was a greater effect of semantic control demands in

! A supplementary analysis, thresholded at Z > 2.6, revealed a more distributed neural
substrate for working memory load including bilateral middle frontal gyrus, precentral gyrus
and occipital fusiform cortex; see Supplementary Figure S2A.

24


https://doi.org/10.1101/2020.11.16.384883
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.384883; this version posted April 1, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

distributed areas in the left hemisphere, including IFG, frontal orbital cortex, superior
frontal gyrus, lateral occipital cortex (LOC), precuneus, hippocampus,
parahippocampal gyrus and temporal fusiform, consistent with previous observations
that semantic control is strongly left-lateralized; Figure 2E. A supplementary ROI-
based analysis using percent signal change to directly compare the parametric effect
of difficulty against implicit baseline in the two tasks showed that the task differences
in most of the clusters in Figure 2E and Figure 2G were driven by increased
responses to more difficult trials, and not solely by negative parametric effects of

difficulty in the other task (see detailed information in Supplementary Figure S2B).

A Semantic Control: Related B Semantic Control: Unrelated € WM Control Correct

D Conjunction: Semantic Control  E Comparison: Semantic Control
Related & Unrelated Related vs. WM Correct
F Conjunction: Semantic Control G Comparison: WM Control Correct

./ Related & WM Control Correct vs. Semantic Control Related

Le

AN,

SLy

Figure 2. Univariate results with cluster thresholded at Z = 3.1, p = 0.05. A. Parametric
modulation effect of associative strength for trials judged to be semantically related. B.

Parametric modulation effect of associative strength for trials judged to be unrelated. C.
Parametric modulation effect of working memory for correct trials. D. The conjunction of
semantic control parametric effects across trials judged to be related and unrelated (i.e.

negative word2vec for related trials and positive word2vec for unrelated trials). E. Areas
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showing a stronger parametric effect of control demands for semantic judgements (negative
effect of word2vec for related trials) compared to working memory (effect of memory load for
correct trials). F. The conjunction of the parametric modulation effect for semantic control
(from related trials) and working memory load (correct trials). G. A larger parametric
modulation effect for working memory load (correct trials) compared with semantic control
demands (negative effect of word2vec on semantically-related trials). There are no additional

clusters within brain views not shown for each contrast.

Identifying the Neural Coding of Semantic and Working Memory Demand
Using a Searchlight Approach

In order to test whether the same neural code supported semantic control demands
and working memory load, we examined classification of control demands (task
difficulty) in each task, and cross-classification of difficulty across tasks using a
whole-brain searchlight approach. For the semantic task, word2vec (as a measure of
relatedness) and difficulty (as assessed by behavioural performance) show an
opposite relationship for trials judged to be related and unrelated. We therefore
reasoned that a classifier sensitive to control demands would show a positive
correlation between actual and predicted control demands when trained on related
trials (which had low word2vec values for more difficult trials) and then tested on
unrelated trials (which had high word2vec values for more difficult trials), or vice
versa. In contrast, brain regions showing a negative correlation across these trial
types would be sensitive to the associative strength of the presented items,
irrespective of the subsequent judgement. Moreover, brain regions able to cross-
classify difficulty between semantic and working memory tasks are sensitive to

domain-general control demands.
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After controlling for univariate activation (see Methods), we found difficulty could be
decoded for semantically-related trials in lateral and medial frontal and parietal areas,
bilaterally, as well as left posterior middle temporal gyrus, see Figure 3A. We also
found significant decoding of difficulty for semantically-unrelated trials in similar
areas, see Figure 3B. Finally, we searched for brain regions that supported cross-
classification of difficulty across semantically-related and unrelated trials (training on
one condition and testing on the other). Significant positive cross-classification was
identified in distributed regions including left inferior and middle frontal gyrus,
bilateral superior frontal gyrus/paracingulate gyrus, left posterior middle temporal
lobe, bilateral lateral occipital cortex/angular gyrus, see Figure 3D. These sites were
sensitive to semantic difficulty irrespective of strength of association, while there
were no significant clusters showing negative correlation in the cross-decoding
between related and unrelated trials, suggesting our classifiers were not sensitive to
semantic relatedness.

Brain regions that coded for working memory load were found in frontal, parietal,
temporal as well as visual cortex, bilaterally (see Figure 3C). Compared to the neural
underpinnings of semantic control, which were strongly left-lateralised, the
multivariate effect of working memory load was bilateral. There was significant cross-
task classification between semantic and working memory tasks in bilateral insula,
pre-supplementary motor area and left precentral gyrus, see Figure 3E. Most of
these voxels fell within the SCN+MDN (29.6%) and MDN (52%), and few were within
SCN (0.9%), see Figure 3G. This result suggests that SCN regions do not support a
shared neural coding between semantic and non-semantic control demands, while
MDN regions (including those overlapping with SCN) show common patterns across

manipulations of semantic and working memory control demands. In contrast, cross-
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classification of difficulty between related and unrelated semantic decisions
overlapped with SCN-only regions (9716 voxels in total, see Figure 3F).

Finally, to establish whether regions in MDN showed higher cross-task decoding
accuracy than SCN regions, we conducted an ROI analysis. This analysis also
established whether SCN regions can decode non-semantic as well as semantic
task demands when a less stringent threshold is applied (i.e. when no multiple
comparison correction for whole-brain analysis is applied). ROIs (cubes containing
125 voxels) were defined from the univariate parametric analysis and from published
network maps (see Supplementary Materials Figure S3). We defined the SCN ROI
for each participant using their peak response to the contrast of parametric effects of
control demands for semantic judgements compared to working memory load in the
left inferior frontal gyrus (LIFG). We defined the MDN ROI using each participant’s
peak coordinate for the conjunction of parametric effects for semantic control (from
related trials) and working memory load in the presupplementary motor cortex (pre-
SMA). We extracted the decoding accuracy for each participant in these two ROIs
and compared them using ANOVA. There was a significant interaction between
network ROI and cross-classification type (cross-classification of difficulty across
related and unrelated trials within the semantic domain vs. cross classification of
semantic control demands and working memory load; F(1,25) = 5.38, p = 0.029).
There were also significant main effects of cross-classification type (F(1,25) = 21.98,
p <0.001) and ROI (F(1,25) = 14.66, p = 0.001). Simple t-tests revealed that there
was significant cross-task decoding in pre-SMA (p < 0.001), but no such effect in
LIFG (p = 1). As expected, cross-task decoding accuracy was significantly higher in
pre-SMA than in LIFG (p < 0.001). Both ROIs supported cross-condition decoding of

difficulty within the semantic domain (i.e. between trials judged to be related and
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unrelated; p < 0.001), and there was no significant difference in decoding accuracy
between pre-SMA and LIFG (p = 0.459). All p values are adjusted by Bonferroni
correction.

These results demonstrate the critical role of SCN regions in coding for semantic
control demands, alongside the role of MDN (in MDN-only and MDN+SCN regions)
in representing the difficulty of both semantic and non-semantic control demands in a

common neural code.
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Figure 3. SVR decoding of control demands. A. Brain regions representing control demands
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for semantic trials judged to be related. B. Brain regions representing control demands for
semantic trials judged to be unrelated. C. Brain regions representing working memory load.
D. Brain regions with significant cross-classification of difficulty between semantic trials

judged to be related and unrelated. E. Brain regions with significant cross-task classification
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of difficulty. F. Voxel distribution in Figure 3D across regions identified as (i) semantic not
control, (ii) within the semantic control network (SCN) but outside multiple-demand cortex, (iii)
within both semantic control and multiple-demand networks (SCN+MDN), and (iv) falling in
multiple-demand regions not implicated in semantic cognition (MDN). Voxels showing
significant cross-classification outside these networks are also shown (Others); 9716 voxels
in total. G. Voxel distribution in Figure 3E across semantic not control, SCN only, SCN+MDN,
MDN only and other networks, 933 voxels in total. H. ROIs definition example. The SCN ROI
was defined for each participant individually using their peak coordinates in the univariate
contrast between parametric effects of control demands in semantic judgements compared
to working memory load in the left inferior frontal gyrus (LIFG, a cube with 125 voxels, mean
MNI coordinates across the sample: X =-50, Y =28, Z = 12). The MDN ROI was defined
using each participant’s peak coordinates in the univariate conjunction analysis of the
parametric effects of semantic control demands (for related trials) and working memory load
(correct trials) in the presupplementary motor cortex (pre-SMA, a cube with 125 voxels,

mean MNI coordinates across the sample: X =-6, Y =22, Z =52). |. There was only
significant cross-task decoding of difficulty across semantic and WM tasks in the pre-SMA,
but no such effect in the LIFG, and the cross-task decoding accuracy was significant higher
in pre-SMA than in LIFG. Both ROIs supported cross-trial decoding of difficulty between
related and unrelated trials within the semantic domain, and there was no significant
difference in decoding accuracy between pre-SMA and LIFG. All p values were Bonferroni

corrected. ***p < 0.001/2. **p < 0.01/2. *p < 0.05/2.

To further check the robustness of our conclusions, we examined classification of
control demands in each task, and cross-classification of difficulty across tasks,
within pre-defined MDN and SCN networks. We performed a series of SVR decoding
analyses in ROIs selected to fall within the following areas: (i) sites within the

semantic network but not implicated in control; (i) SCN (defined as voxels within the
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semantic control network identified by Noonan et al. (2013) and updated by Jackson
(2020), and yet outside the MDN); (iii) regions common to both SCN and MDN; (iv)
MDN (defined as voxels within the multiple-demand network identified by Fedorenko
et al. (2013), and not within the SCN. In a control analysis, we also randomly
subsampled 200 voxels in each ROI in each network. Details are provided in
Supplementary Figures S3 to S4. These analyses support our key conclusions:
cross-classification of difficulty between semantic and WM tasks was only found in
MDN-only and SCN+MDN regions, not in SCN-only or semantic not control network
regions; and there was a decreasing pattern in cross-task decoding and the
representation of working memory load from shared MDN+SCN regions, through
SCN to semantic regions not implicated in control. However, the difficulty of both

tasks could be individually decoded in all four networks (see below for discussion).

Discussion

This study parametrically manipulated the difficulty of semantic and verbal working
memory judgements to delineate common and distinct neural mechanisms
supporting control processes in these two domains. Across two experiments, we
investigated the brain’s univariate and multivariate responses to different
manipulations of difficulty: in a semantic relatedness task, we varied the strength of
association between probe and target words, while in a verbal working memory task,
we manipulated the number of items to be maintained (working memory load).
Retrieving semantic links between weakly associated words is known to elicit
stronger activation within the “semantic control network” (SCN) (Noonan et al. 2013;

Jackson 2020), while higher loads in working memory are associated with greater
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responses within the “multiple demand network” (MDN) (Fedorenko et al. 2013) —
particularly, left-lateralised parts of this network for verbal working memory (Emch et
al. 2019). This comparison is therefore ideal to establish similarities and differences
in the neural basis of these forms of control, with any divergence unlikely to be
accounted for by the use of language (as both tasks were verbal in nature). We
obtained convergent evidence across analyses for both common and distinct neural
responses to difficulty across networks. Dorsolateral prefrontal cortex and pre-
supplementary motor area (within MDN) showed a common response to difficulty
across tasks; in decoding analyses, MDN showed common patterns of activation
across manipulations of semantic and non-semantic demands, and cross-
classification of difficulty across tasks. In contrast, left inferior frontal gyrus within
SCN showed an effect of difficulty that was greater for the semantic task; moreover,
there was no shared neural coding of cognitive demands in SCN regions, consistent
with the view that semantic control has a neural basis distinct from other cognitive

demands beyond the semantic domain.

The semantic control network, encompassing left inferior frontal gyrus and posterior
middle temporal gyrus, is known to activate across a wide range of manipulations of
semantic control demands — including a stronger response for weak associations,
ambiguous words, and multiple distractors (Noonan et al. 2013; Davey et al. 2016;
Jackson 2020). Since these regions are implicated in semantic cognition, as well as
in control processes, one point of contention is the extent to which semantic retrieval
per se, which is potentially increased in more demanding conditions, can explain this
pattern of results. A unique strength of this study is that we can distinguish the
impacts of semantic control and within-trial semantic similarity through the

comparison of difficulty in trials judged by participants to be related and unrelated.
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This is because semantic similarity has opposite effects of difficulty in these two sets
of trials: when participants decide there is a semantic link between two words, more
control is needed to make this link when the words are more weakly associated; in
contrast, when participants decide there is no semantic link between two words,
more control is needed for this decision when the words are more strongly
associated. The univariate analyses found equivalent effects of difficulty in left
inferior frontal gyrus for trials judged to be related and unrelated; consequently, we
can conclude this site is sensitive to the difficulty of semantic decisions and not
strength of association per se. This is exactly the pattern that we would expect for

brain regions implicated in semantic control but not long-term conceptual similarity.

In addition to investigating the involvement of SCN and MDN in semantic and non-
semantic tasks differing in difficulty, we examined the characteristics of cognitive
control in multivariate analyses of activation patterns using a whole-brain searchlight
approach and SVR decoding for the first time. Our results revealed significant
information about semantic demands within both SCN and MDN; however, cross-
classification of control demands across related and unrelated semantic trials
identified regions within SCN that lie beyond MDN, while cross-classification of
control demands across semantic and WM tasks identified MDN regions — both
regions that overlap with SCN, and other MDN regions that lie beyond the semantic
network. These findings point to functional heterogeneity across control network
regions (Dixon et al. 2018). Though previous studies revealed that distributed areas
in the left lateral frontal, medial frontal, lateral temporal and parietal regions support
the representation of semantic relatedness (Mahon and Caramazza 2010), our
decoding generalization analysis provided strong evidence that semantically-related

and unrelated judgements share the same neural code relating to difficulty in SCN
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(despite opposing effects of semantic similarity). We additionally demonstrated that
working memory load is reflected in the activation patterns of SCN as well as MDN;
both networks are sensitive to the difficulty of both semantic and non-semantic tasks:
this places limits on observations that language and domain-general control
demands are reliant on distinct neural substrates (Fedorenko 2014; Blank and
Fedorenko 2017; Diachek et al. 2020; Fedorenko and Blank 2020). Importantly, we
were not able to decode difficulty across tasks in SCN (when training on working
memory load and testing on semantic association strength or vice versa), even in an
ROI analysis, suggesting that the multivariate neural codes relating to the difficulty of

semantic and working memory judgements may be distinct in SCN.

In supplementary network-based decoding analyses, we also examined the
decoding of task demands within parts of the semantic network not implicated in
control processes, primarily regions within default mode network (DMN; including
anterior lateral temporal cortex and angular gyrus). Decoding of task difficulty was
less accurate in DMN than in control networks — yet semantic regions not implicated
in control were still able to decode difficulty across tasks. The DMN has long been
considered a ‘task-negative’ network, only engaged when the brain is not occupied
by an externally-presented task, and associated with internally-oriented cognitive
processes such as mind-wandering, memory retrieval and future planning (Buckner
and DiNicola 2019). DMN regions typically show deactivation relative to rest during
challenging tasks (Raichle et al. 2001; Raichle 2015). However, our multivariate
analysis examined normalized activation across voxels within each region of interest
(i.e., searchlight, ROI) (Misaki et al. 2010; Jimura and Poldrack 2012; Coutanche
2013); consequently, greater mean deactivation in hard versus easy tasks is unlikely

to be the basis for the decoding results in DMN. Instead, task difficulty may have
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related to specific patterns of activation and/or deactivation in this network, for
example, reflecting the way that DMN changes its pattern of connectivity to suit the
ongoing task demands (Cole et al. 2013). Research indicates that semantically-
relevant regions of DMN show increased connectivity to executive cortex during
control-demanding semantic tasks (Krieger-Redwood et al. 2015). Moreover, beyond
the semantic domain, DMN shows dynamically changing patterns of connectivity with
other brain networks, including those implicated in control and attention, as working
memory load is varied (Vatansever et al. 2015). In line with the view that DMN may
play a more active role in even demanding aspects of cognition, recent studies show
that multivariate patterns in both DMN and MDN track goal information instead of
conceptual similarity (Wang et al. 2020), and that DMN represents broad task
context (Wen et al. 2020). The current results are therefore consistent with growing
evidence that DMN can contribute to controlled as well as more automatic aspects of
cognition, even as it deactivates (Elton and Gao 2015; Raichle 2015; Vatansever et

al. 2015; Vatansever et al. 2017).

As proposed by Duncan (2010, 2013, 2016), MDN captures an abstract code relating
to the difficulty of decisions across multiple domains. Frontal-parietal regions in MDN
have been shown to flexibly represent goal-directed information, including visual,
auditory, motor, and rule information, to support context-appropriate behaviour (Cole
et al. 2013; Crittenden et al. 2016; Woolgar et al. 2016; Bhandari et al. 2018).
However, the current study, to our knowledge, is the first to test whether semantic
and non-semantic verbal demands share a common neural currency in the brain via
cross-classification analyses. Converging evidence from both ROI/Network and
searchlight-based analyses revealed that only regions in MDN (including the overlap

with SCN) could cross-classify task difficulty across domains. This observation is
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noteworthy given previous proposals that the “language” network is largely distinct
from MDN regions in LIFG (Fedorenko and Blank 2020); we find that additional
regions are recruited to support semantic control, in line with this view, but that MDN
regions are also recruited in these circumstances, giving rise to functional overlap.
Our results suggest that SCN diverges from this pattern in important ways. There
was no such common currency in SCN-specific regions or non-control semantic
areas. Semantic cognition is thought to emerge from heteromodal brain

regions (Lambon Ralph et al. 2017); in line with this, a heteromodal control network
which only partially overlaps with MDN has been shown to support the retrieval of
both verbal and non-verbal information (Krieger-Redwood et al. 2015). Semantic
control processes could regulate the activation of semantic features, thought to draw
on unimodal systems supporting vision, audition and action etc. — for example, when
linking dog to beach, activation might be focussed on running, swimming and digging
actions, as opposed to the physical features of a dog (such as its ears and tail).
These features are thought to rely on interactions between the heteromodal ‘hub’
within anterolateral temporal cortex and ‘spoke’ systems in unimodal cortex;
consequently, semantic control processes could bias activation towards relevant
spoke systems, resulting in a more relevant response within the heteromodal hub
when these features are distilled into a coherent meaning (Jackson et al. 2019;
Zhang et al. 2020). This process could be largely analogous to the way that MDN
regions are thought to bias processing towards task-relevant inputs or sensory
features. However, our observation that there are semantic-specific control
processes beyond MDN is consistent with the view that this mechanism is

supplemented by separate semantic control representations that interface with the
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long-term conceptual store. This evidence allows us to reject the account that

semantic control demands are exactly analogous to other types of cognitive demand.

Contemporary accounts of brain organization suggest that neural function is
organized along a connectivity gradient from unimodal regions of sensorimotor
cortex, through executive regions to transmodal default mode network (Margulies et
al. 2016; Huntenburg et al. 2018). Wang et al. (2020) suggested this gradient can
capture the orderly transitions between MDN, SCN and DMN in semantic processing.
Given that SCN has greater proximity to DMN than MDN along this principal gradient
of connectivity, this network might be able to more efficiently select, retrieve and act
on semantic information stored in heteromodal DMN regions. Our results showed a
decreasing pattern in cross-task decoding and the representation of working memory
load from MDN and shared MDN+SCN regions, through SCN to semantic regions
not implicated in control (see Supplementary Materials Figure S3) — with this series
of networks following the principal gradient (Wang et al. 2020). In a similar

way, Gonzélez-Garcia et al. (2018) found regions in DMN and MDN have similar
representational formats relating to prior experience, and occupy adjacent positions

on the principal gradient.

One limitation of the current study was that different metrics (strength of association
and working memory load) were used to manipulate difficulty across the semantic
and working memory tasks, and it is difficult to directly compare these manipulations.
The WM task was associated with faster responses, perhaps because word reading
takes longer than letter identification, but RT reading times are not necessarily
relevant to the activation of control networks. Similarly, the effect of strength of
association had a larger effect on RT than working memory load, although RT does

not provide a direct measure of cognitive control demands. Our task design focussed
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on manipulating task demands in the verbal domain when semantic cognition was or
was not required, and the tasks were similar in their visual presentation and in the
button-press response. Future studies could manipulate semantic and non-semantic
tasks in more directly comparable ways, for example by presenting strong vs. weak
distractors or more vs. less information to support a specific decision. A better match

in difficulty across tasks might result in further cross-task classification results,

extending beyond the regions identified here.

In summary, univariate and multivariate pattern analyses provide strong evidence
that semantic control demands and working memory load recruit both common and
distinct processes in the multiple-demand and semantic control networks,
respectively. Though semantic demand and domain general demand are
represented in both control networks, there was only shared neural coding of
difficulty across tasks in MDN, and different neural coding of control demands in
SCN. These findings indicate SCN and MDN can be dissociated according to the

information that they maintain about cognitive demands.
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