

1 Bulk flow of cerebrospinal fluid 2 observed in periarterial spaces is not 3 an artifact of injection

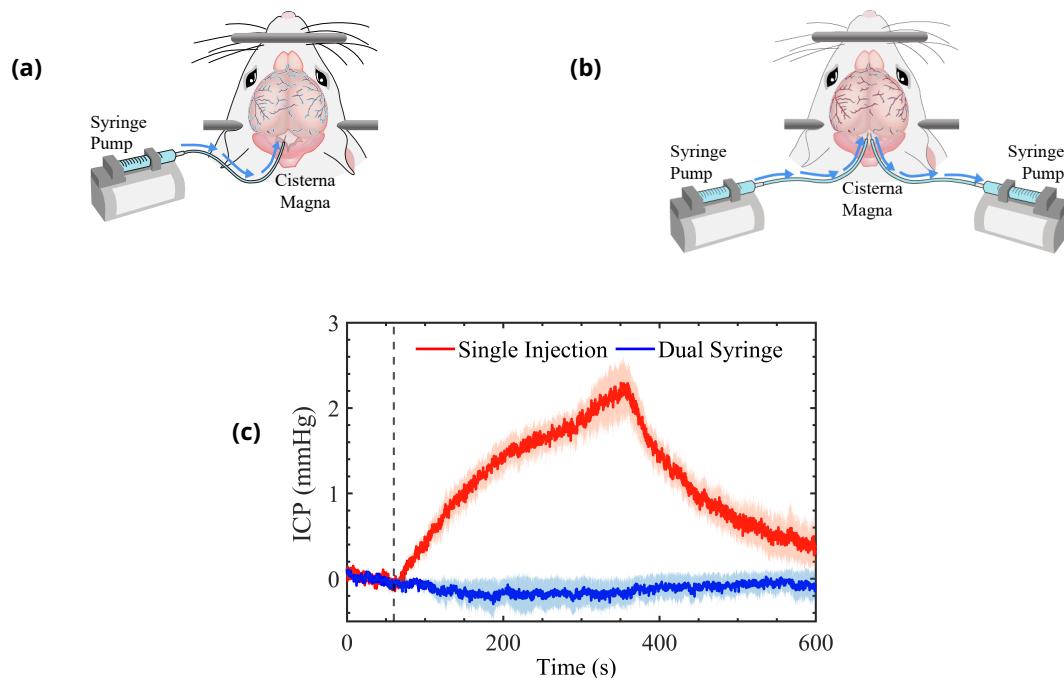
4 **Aditya Raghunandan^{1,+}, Antonio Ladrón-de-Guevara^{2,+}, Jeffrey Tithof^{1,3},**
5 **Humberto Mestre², Maiken Nedergaard^{2,4}, John H. Thomas¹, Douglas H. Kelley^{1,*}**

*For correspondence:

d.h.kelley@rochester.edu (Douglas H. Kelley)

¹Department of Mechanical Engineering, University of Rochester, Rochester, NY 14620, USA; ²Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; ³Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; ⁴Center for Translational Neuromedicine, University of Copenhagen, Copenhagen N, Denmark, 2200; ¹Department of Mechanical Engineering, University of Rochester, Rochester, NY 14620, USA; ²Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; ³Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; ⁴Center for Translational Neuromedicine, University of Copenhagen, Copenhagen N, Denmark, 2200

17 **Abstract**


18 Cerebrospinal fluid (CSF) flowing through periarterial spaces is integral to the brain's mechanism for
19 clearing metabolic waste products. Experiments that track tracer particles injected into the cisterna
20 magna of mouse brains have shown evidence of pulsatile CSF flow in pial periarterial spaces, with a
21 bulk flow in the same direction as blood flow. However, the driving mechanism remains elusive.
22 Several studies have suggested that the bulk flow might be an artifact, driven by the injection itself.
23 Here, we address this hypothesis with new *in vivo* experiments where tracer particles are injected
24 into the cisterna magna using a dual-syringe system, with simultaneous injection and withdrawal of
25 equal amounts of fluid. This method produces no net increase in CSF volume and no significant
26 increase in intracranial pressure. Yet, particle-tracking reveals flows in the pial periarterial spaces
27 that are completely consistent with the flows observed in earlier experiments with single-syringe
28 injection.

29 **Introduction**

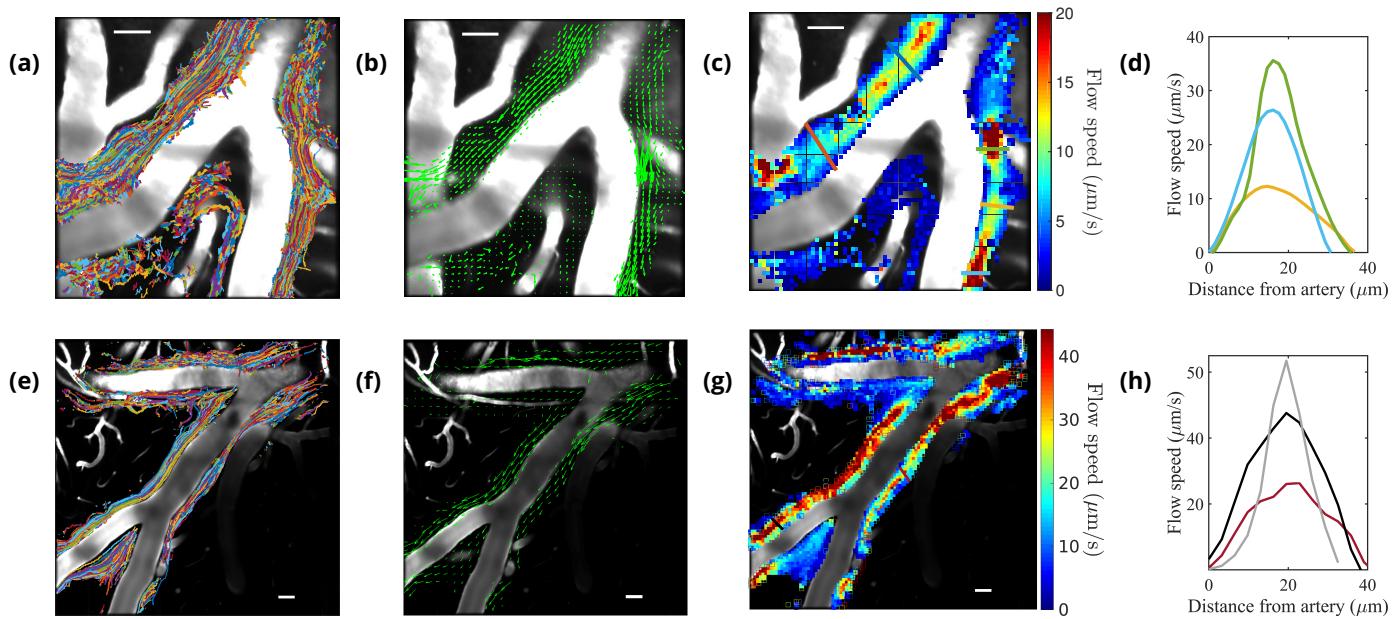
30 Cerebrospinal fluid (CSF) flowing in perivascular spaces (PVS) – annular tunnels that surround the
31 brain's vasculature — plays a crucial role in clearing metabolic waste products from the brain (Iliff
32 *et al.*, 2012; Xie *et al.*, 2013). The failure to remove such waste products, including toxic protein
33 species, has been implicated in the etiology of several neurological disorders, including Alzheimer's
34 disease (Iliff *et al.*, 2012; Peng *et al.*, 2016). Recently, *in vivo* experiments that combine two-photon
35 microscopy and flow visualization in live mice have used the motion of fluorescent microspheres
36 injected into the cisterna magna (CM) to measure the flow of CSF through the periarterial spaces
37 surrounding pial (surface) arteries. The results show pulsatile flow, in lock-step synchrony with the
38 cardiac cycle and with an average (bulk) flow in the same direction as that of the arterial blood
39 flow (Bedussi *et al.* (2017); Mestre *et al.* (2018b)). Characterizing the flow, however, is easier than

41 determining its driver. Although arterial pulsation has long been considered as a possible driving
42 mechanism for the bulk flow (*Bilston et al., 2003; Hadaczek et al., 2006; Wang and Olbricht, 2011;*
43 *Iliff et al., 2013; Thomas, 2019*), that notion remains controversial (*Diem et al., 2017; Kedarasetti et al., 2020a; van Veluw et al., 2020*), and other mechanisms are possible.

45 One such mechanism is the injection of tracers into the CM, which might cause a pressure
46 gradient that drives a flow in the surface PVS (*Smith et al., 2017; Smith and Verkman, 2018; Croci et al., 2019; Sharp et al., 2019; van Veluw et al., 2020; Vinje et al., 2020; Kedarasetti et al., 2020a*).
47 Injection of CSF tracers is known to raise the intracranial pressure (ICP) by 1 - 3 mmHg (*Iliff et al., 2013; Mestre et al., 2020*), consistent with the fact that a volume of fluid is being added to the
48 rigid skull (*Hladky and Barrand, 2018; Bakker et al., 2019*). If that ICP increase is not uniform,
49 the resulting pressure gradient could drive fluid into low-resistance pathways such as surface
50 periarterial spaces (*Faghih and Sharp, 2018; Bedussi et al., 2017*). In that case, the bulk flows
51 observed in detail by *Mestre et al. (2018b)* might have been artifacts of the injection. *Mestre et al. (2018b)*
52 showed that the flows did not decay over time, as would be expected if they were injection
53 artifacts, but given that injection artifacts have been suggested in several more recent publications,
54 we decided to test the hypothesis with additional *in vivo* experiments, essentially identical to the
55 earlier experiments (*Mestre et al., 2018b*), but employing a new particle-injection method.

Figure 1. Schematic representation of the cisterna magna injection using (a) the single-syringe protocol for injection of 10 μ L at 2 μ L/min and (b) the dual-syringe protocol for simultaneous injection and withdrawal of 20 μ L at 2 μ L/min. The effect of single-injection and dual-syringe tracer infusion upon intracranial pressure (ICP) is shown in (c). The ICP was monitored continuously during injection of CSF tracers into the CM of mice. Injection begins at 60 s, indicated by the vertical dashed line. Single-injection infusion of 10 μ L at a rate of 2 μ L/min resulted in a mild change of \sim 2.5 mmHg in ICP, whereas little or no change in ICP was observed during the simultaneous injection and withdrawal in the dual-syringe protocol. Repeated measures two-way analysis of variance (ANOVA) was performed; interaction P value < 0.0001 ; $n = 5$ mice for single-injection and $n = 6$ mice for dual-syringe. The shaded regions above and below the plot lines indicate the standard error of the mean (SEM).

58 The new injection protocol, illustrated in Figure 1b, employs a dual-syringe system to infuse the
59 tracer particles. In this system, two cannulae connected to synchronized syringe pumps are inserted
60 into the CM; one line injects fluid in which the tracer particles are suspended, while the other line
61 simultaneously withdraws an identical amount of fluid at the same volumetric flow rate. Thus, no
62 net volume of fluid is added to the intracranial compartment, and hence we expect no significant
63 change in ICP. We use two-photon microscopy to visualize the motion of the fluorescent tracer
64 particles and measure the flow in the surface periarterial spaces using particle tracking velocimetry.
65 We also simultaneously measure changes to ICP while monitoring heart and respiration rates. We
66 compare the flow characteristics measured under the new protocol with those measured previously
67 using the traditional single-syringe injection (*Bedussi et al., 2017; Mestre et al., 2018b*) (depicted in
68 Fig. 1a). (For this comparison, the data from Mestre et al. (*Mestre et al., 2018b*) analyzed here are
69 from the control mice, not the hypertension mice.) Our new results are completely consistent with
70 the previous results. With the new infusion protocol, the flow is again pulsatile in nature, in step
71 with the cardiac cycle, with a net (bulk) flow in the direction of arterial blood flow. We find nearly
72 identical mean flow speeds and other flow characteristics with the new infusion protocol. Our new
73 experiments confirm that the flows we observed in periarterial spaces in our earlier experiments
74 are natural, not artifacts of the tracer infusion, and provide additional statistical information about
75 these flows.


76 **Results**

77 **Changes in intracranial pressure**

78 In a group of mice, we evaluated the effect of tracer infusion upon ICP. A 30-gauge needle was
79 inserted stereotactically into the right lateral ventricle and connected to a pressure transducer to
80 monitor ICP during CSF tracer injection into the CM, using both the single-injection ($n = 6$ mice) and
81 dual-syringe ($n=5$) protocols (Fig. 1c). In agreement with prior studies using similar single-injection
82 protocols (*Iliff et al., 2013; Xie et al., 2013; Mestre et al., 2020*), we found that the injection of $10 \mu\text{L}$
83 of CSF tracer into the CM at a rate of $2 \mu\text{L}/\text{min}$ resulted in a mild elevation of ICP ($\sim 2.5 \text{ mmHg}$)
84 that relaxed to baseline values within 5 min of the cessation of injection (Fig. 1c). On the other
85 hand, when ICP was measured during the dual-syringe infusion, we observed that the simultaneous
86 injection of the tracer and withdrawal of CSF did not significantly alter ICP (Fig. 1c), as expected
87 given the absence of any net change in the volume of fluid in the intracranial CSF compartment.
88 Based upon these findings, we conducted intracisternal infusion of fluorescent microspheres into
89 the CM using the dual-syringe protocol to perform particle-tracking studies and determine the
90 characteristics of CSF flow in the absence of any transient elevation of ICP caused by the infusion
91 protocol.

92 **Flow measurements in perivascular spaces**

93 We studied the motion of tracer particles infused with the new dual-syringe protocol (lower panels
94 in Fig. 2) and compared it with the motion of tracer particles observed by (*Mestre et al., 2018b*)
95 using the single-injection protocol (upper panels in Fig. 2), using particle tracking to examine flow of
96 CSF in pial periarterial spaces.

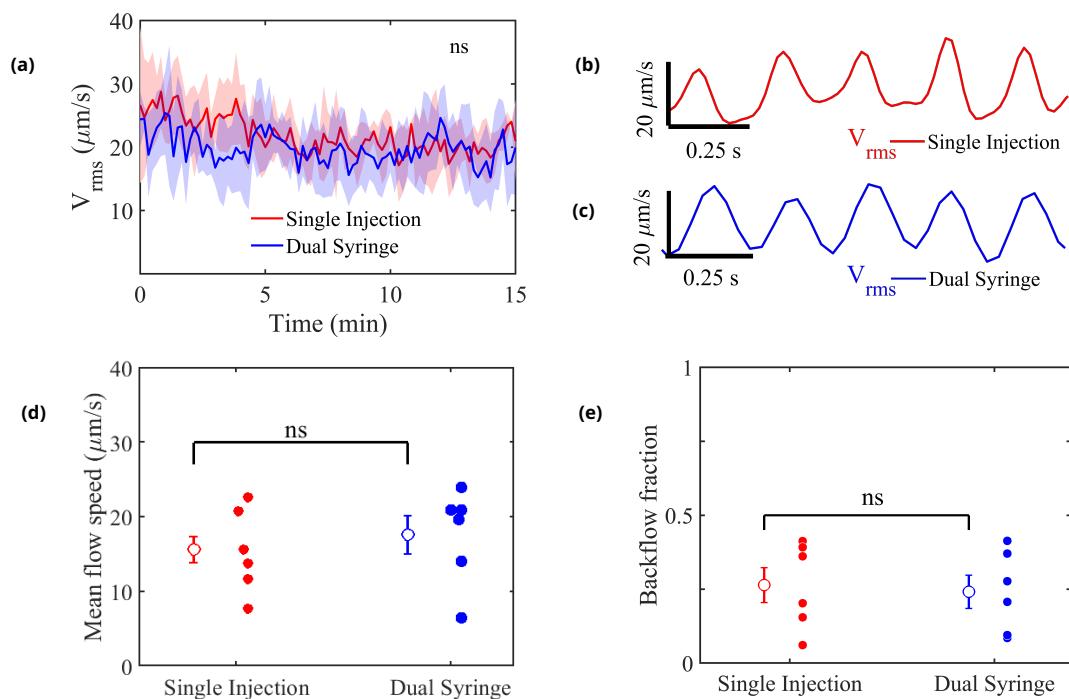


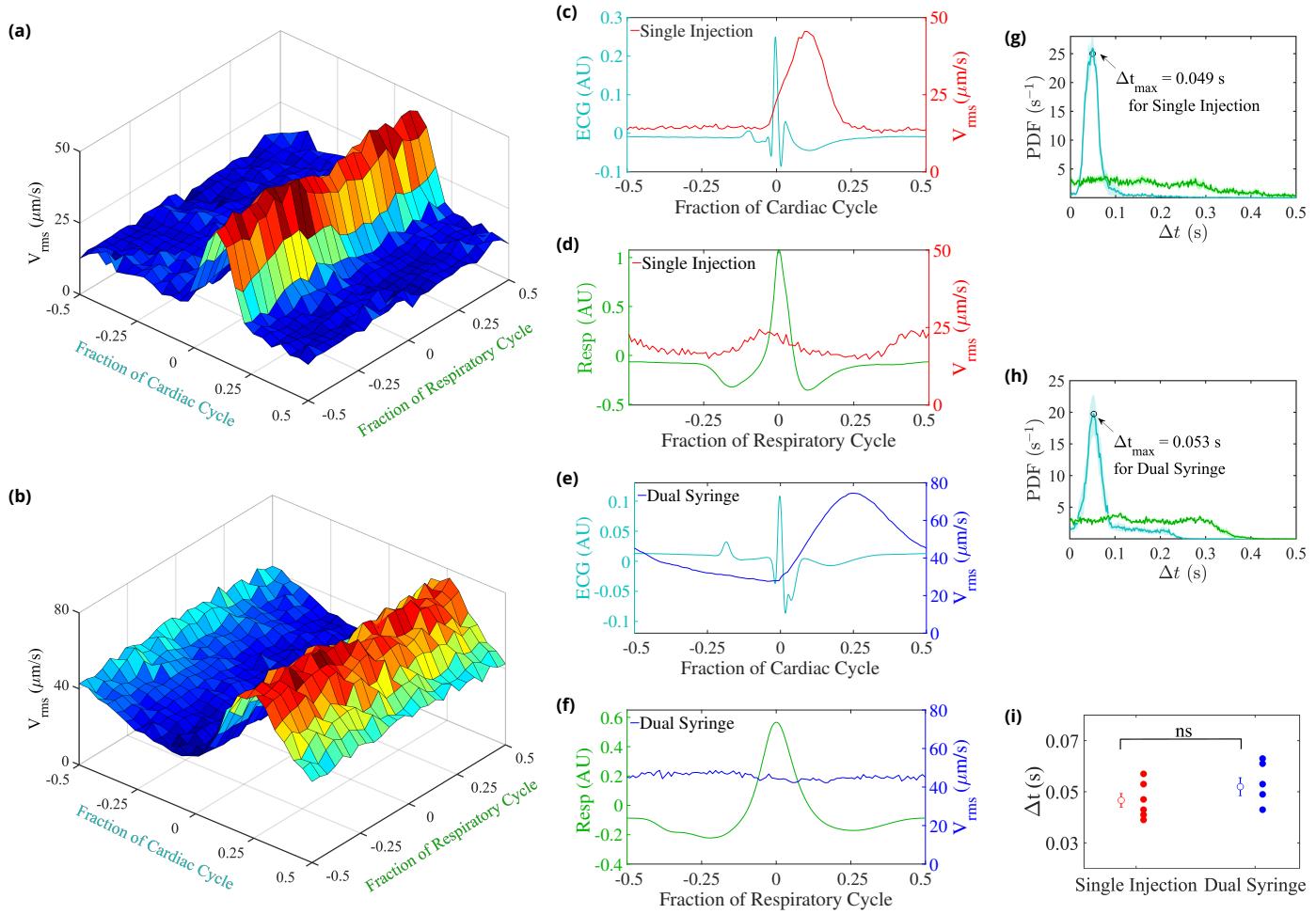
Figure 2. Particle tracking velocimetry in surface periarterial spaces using the single-injection method (panels in first row (*Mestre et al., 2018b*)) and the new dual-syringe method (second row). The superimposed particle tracks shown in panels (a) and (e) have similar, continuous spatial distributions and show similar sizes of the perivascular spaces. The time-averaged velocity fields shown in panels (b) and (f) both show net flow of fluid in the same direction as the blood flow. The flow-speed distributions plotted in panels (c) and (g) show comparable speeds, with the fastest flow at the center of the imaged periarterial space and the slowest flow near the boundaries. Panels (d) and (h) show average flow-speed profiles across the corresponding colored lines spanning the PVS in panels (c) and (g), smoothed by interpolation. The parabolic-like nature of these velocity profiles is what is expected for viscous flow in an open channel. Scale bars indicate 50 μm .

97 The periarterial spaces of the cortical branches of the middle cerebral artery (MCA) were chosen
 98 for imaging. In the new protocol, particles appeared in the visualized spaces ~ 300 s after infusion
 99 was complete. This time scale is similar to that in our previous report (*Mestre et al., 2018b*) of
 100 292 ± 26 s, but particle counts were lower than those observed using the single-injection technique,
 101 likely because some of the injected particles were siphoned into the withdrawal line of the dual-
 102 syringe setup. However, a sufficient number of particles made their way into the PVSs to enable
 103 rigorous flow measurements (see Supplemental Video S1). Results obtained from the particle
 104 tracking analysis are shown in Figure 2. Each of the six experiments using the new protocol lasted
 105 at least 10 minutes and allowed us to track at least 6200 particles. An example of the superimposed
 106 particle tracks imaged in an experiment is shown in Figure 2e. The particle tracks are mostly
 107 confined to the perivascular spaces surrounding the artery, occasionally crossing from one side of
 108 the artery to the other. The distribution of particle tracks is spatially continuous across the width of
 109 the imaged PVSs under both infusion methods (Figs. 2a (*Mestre et al., 2018b*) & 2e), reaffirming
 110 that surface periarterial spaces are open, rather than porous, spaces (*Min-Rivas et al., 2020*). The
 111 direction of the observed fluid flow in the different branches is indicated by the arrows in Figures 2b
 112 and 2f. If injection were driving the flow, we would expect to observe dominant directional transport
 113 of tracer particles only when using the single-injection method, and little or no transport when
 114 using the dual-syringe method. The time-averaged (bulk) flow for both infusion methods is in the
 115 same direction as that of the blood flow, providing evidence that CSF flow in perivascular spaces is
 116 not caused by the injection. For both infusion methods, we observed no net flow in the direction
 117 opposite to that of blood flow, as some recent reports have suggested (*Aldea et al., 2019; van Veluw
 118 et al., 2020*). Figure 2g shows that the average flow speed in pial (surface) periarterial spaces varies
 119 across the PVS, consistent with prior reports (*Mestre et al., 2018b*) shown in Figure 2c. The velocity
 120 profile is parabolic-like (Figs. 2d and 2h); the flow is fastest (~ 50 $\mu\text{m/s}$) at the center of the PVS and
 121 slows to zero at the walls. This parabolic-like shape is consistent with laminar, viscous-dominated

122 flow of CSF through an open annular space, and not through a porous medium, indicating that pial
 123 periarterial spaces are open *Min-Rivas et al. (2020)*.

124 Further analysis of the data obtained from particle tracking demonstrates the close similarity
 125 between the flows observed in the two protocols, as shown in Figure 3. A time-history of the
 126 measured flows — quantified by the spatial root-mean-square velocity computed at each instant
 127 of time (V_{rms}) — portrays very similar behavior over times much longer than the time it takes for
 128 the ICP to return to normal after the infusion (Fig. 3a). (The times shown here begin when particles
 129 were first seen or when the imaging was started: these times differ by less than 1 minute and so do
 130 not affect the results significantly.) The pulsatile nature of the flow at small time scales is depicted
 131 in Figures 3b and 3c. If injection-induced elevated ICP were driving the flow, we would observe
 132 large V_{rms} values early in the single-injection experiments, followed by an exponential decay, and we
 133 would observe little or no flow in the dual-syringe experiments, in which the ICP remains unchanged.
 134 Since we observe very similar trends in the time-history profiles in both infusion protocols, the
 135 mechanisms driving the flow are apparently independent of the infusion method.

Figure 3. Measured flow characteristics. Panel (a) shows V_{rms} over the course of the velocity measurements for both infusion methods. Repeated measures two-way ANOVA was performed; ns, not significant; $n = 5$ mice for single-injection and $n = 6$ mice for dual-syringe. The solid lines represent the mean value of V_{rms} and the shaded area represents the standard error of the mean within each time bin. The pulsatility of typical measured flows is depicted in panels (b) and (c). Panel (d) shows mean downstream flow speeds and panel (e) shows backflow fractions for the individual experiments, with overall mean values shown as open circles (and bars showing the standard error of the mean). The nearly identical values for the two protocols demonstrate that the flow is independent of the injection method employed. Unpaired Student's *t*-test was performed; $n = 5$ or 6 mice per group; ns, not significant; mean \pm SEM.


136 Figure 3d shows mean flow speeds computed by averaging the downstream velocity compo-
 137 nent over space and time for each experiment. The overall mean flow speed (open circles) is
 138 $15.71 \pm 6.2 \mu\text{m/s}$ for all the single-injection experiments and $17.67 \pm 4.42 \mu\text{m/s}$ for all the dual
 139 syringe experiments, values that differ by less than the standard error of the mean in either set of
 140 experiments. Significantly greater differences in mean flow speed are caused by animal-to-animal
 141 variations than by changing from single-injection to dual-syringe methods. These values are also
 142 nearly identical to the mean speed of $17 \pm 2 \mu\text{m/s}$ reported by *Bedussi et al. (2017)*, from exper-

143 iments that used a single-injection protocol with a lower injection rate. The mean flow speeds
144 represent the speeds at which tracer particles (or cerebrospinal fluid) are transported in the direc-
145 tion of arterial blood flow (downstream), and presumably into the brain. If the observed flows were
146 injection-induced, we would expect faster mean flows with the single-injection method than with
147 the dual-syringe method.

148 We also computed a 'backflow fraction' for each experiment, as the fraction of the downstream
149 velocity measurements showing motion in the retrograde direction (opposite that of the blood flow);
150 the results are shown in Figure 3e. An injection-driven flow would be dominantly unidirectional and
151 would exhibit a much smaller backflow fraction. However, the backflow fraction is nearly identical:
152 0.26 ± 0.059 for single-injection and 0.24 ± 0.056 for dual-syringe infusion respectively. As with
153 flow speed, mean values differ by less than the standard error of the mean, so animal-to-animal
154 variations exceed the effects of changing the injection protocol. The nearly identical mean flow
155 speeds and backflow fractions further demonstrate that the observed flows are natural, and not
156 artifacts of the infusion.

157 **Pulsatile flow is regulated by the cardiac cycle**

158 It has been variously suggested that CSF flow might be driven by the cardiac cycle, the respiratory
159 cycle, or perhaps both (*Rennels et al., 1985; Hadaczek et al., 2006; Yamada et al., 2013; Bedussi
160 et al., 2017*), with evidence indicating much stronger correlation with the cardiac cycle (*Iliff et al.,
161 2013; Mestre et al., 2018b*). We used the simultaneous measurements of the electrocardiogram
162 (ECG) and respiration in conjunction with particle tracking to determine the relative importance
163 of the cardiac and respiratory cycles (*Santisakultarm et al., 2012*), and also to see if there is any
164 difference in these relationships between the two infusion methods (Fig. 4).

Figure 4. CSF velocity variations over the cardiac and respiratory cycles. Panels (a) and (b) show the measured V_{rms} conditionally averaged over the cardiac and respiratory cycles, based on the synchronized measurements of ECG, respiration, and velocity, for the single-injection (a) and the dual-syringe (b) protocols. Panel (c) for single injection and panel (e) for dual syringe both show that the peaks in the ECG are immediately followed by peaks in V_{rms} , indicating a strong correlation between heart rate and fluid motion in both injection protocols. No consistent trends are seen when V_{rms} is averaged over the respiratory cycle, as shown in panels (d) and (f). Panels (g) and (h) show the mean and the standard error of the mean of probability density functions of the delay time Δt between the peak in the cardiac (cyan) or respiration (green) cycle and the subsequent peak in V_{rms} , for single-injection ($n = 5$) and dual-syringe ($n = 6$) methods respectively. Panel (i) shows the average Δt between peaks in the cardiac cycle and V_{rms} for both protocols; in both, the peak in V_{rms} typically occurs ~ 0.05 s after the peak in the cardiac cycle. Unpaired Student's *t*-test was performed; $n = 5$ or 6 mice per group; ns, not significant; mean \pm SEM.

165 We find that the measured time-dependent components of flow quantities such as V_{rms} are
 166 strongly modulated by the cardiac cycle but only weakly by respiration (Figs. 4a (**Mestre et al.**,
 167 2018b) & 4b). This strong correlation of the pulsatile component of flow with the heart rate is
 168 exhibited under both the single-syringe and dual-syringe protocols, as shown in Figures 4c and 4e,
 169 where the peak in the V_{rms} occurs soon after the peak in the cardiac cycle. Probability density
 170 functions of Δt , the delay time between peaks in V_{rms} and cardiac/respiratory cycles, also predict
 171 a much greater likelihood of peaks in V_{rms} following the peak in the cardiac cycle (Figs. 4g & 4h).
 172 We observe nearly identical average delay times of ~ 0.05 s between peaks in V_{rms} and the cardiac
 173 cycle for both protocols (Fig. 4i). No such correlation is observed when the V_{rms} is conditionally
 174 averaged over respiration cycles (Figs. 4d and 4f). These observations corroborate prior reports that
 175 the cardiac cycle drives the dominant oscillatory component of CSF flow in the surface periarterial
 176 spaces, unaffected by injection protocol.

177 Discussion

178 Healthy removal of metabolic waste from the brain is believed to occur via circulation of CSF,
179 which enters brain tissue through perivascular spaces surrounding pial arteries (*Rasmussen et al.,*
180 *2018; Reeves et al., 2020; Nedergaard and Goldman, 2020*). Whereas experiments in live mice have
181 shown that fluid is pumped in the direction of blood flow and into brain, perhaps by forces linked
182 to the pulsation of arterial walls, several published papers have hypothesized that the observed
183 flows might instead be artifacts of non-natural elevation of ICP caused by tracer infusion into the
184 cisterna magna. In this study, we designed a new infusion protocol that enabled tracer-particle
185 infusion with no net addition of fluid and near-zero changes in ICP. We used two-photon microscopy
186 and particle-tracking velocimetry, and found flows of CSF in the surface periarterial spaces that are
187 statistically identical to the flows found earlier using the single-injection protocol. The measured
188 flows are pulsatile, viscous-dominated, laminar flows, with mean flow in the direction of blood
189 flow in the cerebral arteries. Our flow visualization techniques and synchronized measurements of
190 ICP and heart and respiration rates enabled us to show that the observed flows are not driven by
191 pressure differences induced by the tracer infusion.

192 Our new experiments provide several lines of evidence that the observed bulk flow is not
193 induced by tracer infusion methods currently used. Tracer infusion at rates of 1 – 2 $\mu\text{L}/\text{min}$ have
194 typically been employed (*Bedussi et al., 2017; Mestre et al., 2018b*) to add 10 μL of fluid to the
195 subarachnoid space. Although this addition of fluid is greater than the natural CSF production rate
196 (0.38 $\mu\text{L}/\text{min}$ (*Oshio et al., 2005*)), and it induces a small increase in ICP, our results show that the ICP
197 returns to its baseline value within 5 minutes after injection is completed. If infusion were propelling
198 the mean flow, particle transport would cease after the ICP reverted to normal, or would not occur
199 at all with dual-syringe injection, where the ICP is not affected. However, we typically observe
200 particles being transported along the periarterial spaces for 30 min, long after the return of ICP to
201 its baseline value in the single-syringe experiments and at comparable times in the dual-syringe
202 experiments.

203 Elevated ICP levels create large pressure differences across the brain, but these pressure
204 differences will undergo exponential decay because of the brain's compliance and proclivity to
205 achieve stasis. If this exponential relaxation of ICP were to drive fluid flow, the measurements from
206 particle tracking would reflect this decay, exhibiting fast flows at early times which then gradually
207 subside. However, our measurements show that the mean flow remains nearly constant and similar
208 over periods that are 2 to 3 times longer than the infusion time, for several healthy mice and both
209 infusion protocols. Variability is probably due to physiological differences between different mice.
210 Moreover, if infusion-driven flows were prevalent, we would expect to see much faster mean flow
211 speeds. Yet, with the new dual-syringe method, with no net infusion, we observe flow speeds that
212 are nearly identical to those observed in our earlier study (*Mestre et al., 2018b*), and very close to
213 those in a study that used injection rates many orders of magnitude smaller (*Bedussi et al., 2017*).
214 An infusion-driven flow would also be unidirectional, with no retrograde motion, but we observed
215 consistent backflows of particles for both infusion protocols. Finally, if the ICP elevation induced
216 by the single-injection protocol were responsible for the tracer penetration into the brain, then
217 variations associated with arousal state (*Xie et al., 2013*), anesthesia (*Hablitz et al., 2019*), blood
218 pressure *Mestre et al. (2018a)*, and other biological mechanisms would not have occurred.

219 Our results confirm that the cardiac cycle — not respiration — drives the oscillatory component
220 of the observed periarterial flows. The peaks of V_{rms} that we measured across specimens, for both
221 infusion protocols, appear shortly after the peaks in the cardiac cycle, but are not correlated with
222 the respiratory cycle. Probability density functions show that the delay times between the peaks in
223 the cardiac cycle and the peaks in V_{rms} are nearly identical for the two infusion methods. Although
224 we present compelling evidence that the cardiac cycle drives the purely oscillatory component of the
225 pulsatile flow, we cannot rule out other natural mechanisms that might be driving the average (bulk)
226 flow, such as CSF production, functional hyperemia (*Kedarasetti et al., 2020b*), or vasomotion (*van*

227 *Veluw et al., 2020; Kiviniemi et al., 2016*). We do conclude, however, that the currently employed
228 methods of tracer infusion are not responsible for the observed flows.

229 Materials and Methods

230 Animals and surgical preparation

231 All experiments were approved and conducted in accordance with the relevant guidelines and
232 regulations stipulated by the University Committee on Animal Resources of the University of
233 Rochester Medical Center (Protocol No. 2011-023), certified by Association for Assessment and
234 Accreditation of Laboratory Animal Care. An effort was made to minimize the number of animals
235 used. We used 8- to 12-week-old male C57BL/6 mice acquired from Charles River Laboratories
236 (Wilmington, MA, USA). In all experiments, animals were anesthetized with a combination of
237 ketamine (100 mg/kg) and xylazine (10 mg/kg) administered intraperitoneally. Depth of anesthesia
238 was determined by the pedal reflex test. Once reflexes had ceased, anesthetized mice were fixed
239 in a stereotaxic frame for the surgical procedure and body temperature was kept at 37°C with a
240 temperature-controlled warming pad.

241 Dual-syringe protocol

242 For *in vivo* imaging, anesthetized mice were fixed in a stereotaxic frame and body temperature was
243 maintained at 37.5°C with a rectal probe-controlled heated platform (Harvard Apparatus). Two
244 30-gauge needles were inserted into the cisterna magna, as previously described (Xavier et al.,
245 2018). Briefly, the dura mater of mice was exposed after blunt dissection of the neck muscles so
246 that a cannula could be implanted into the cisterna magna (CM), which is continuous with the
247 subarachnoid space. A cranial window was prepared over the right middle cerebral artery (MCA)
248 distribution. The dura was left intact, and the craniotomy (\approx 4 mm in diameter) was filled with
249 aCSF, covered with a modified glass coverslip, and sealed with dental acrylic. Afterwards, two
250 30-gauge needles were inserted into the cisterna magna, as described above. Using a syringe pump
251 (Harvard Apparatus Pump 11 Elite), red fluorescent polystyrene microspheres (FluoSpheresTM M
252 1.0 μ m, 580/605 nm, 0.25% solids in aCSF, Invitrogen) were infused up to a total volume of 20 μ L via
253 one of the cisterna magna cannulae while CSF was simultaneously withdrawn through the other
254 cannula at an equal rate of 2 μ L/min with a coupled syringe pump.

255 Intracranial pressure measurements

256 Anesthetized mice were fixed in a stereotaxic frame, and two 30-gauge needles were inserted
257 into the cisterna magna, as described above. A third cannula was inserted via a small burr hole
258 into the right lateral ventricle (0.85 mm lateral, 2.10 mm ventral and 0.22 mm caudal to bregma).
259 Mice were then placed in a prone position. In the first set of experiments, 10 μ L of artificial CSF
260 (aCSF) was injected into the CM at a rate of 2 μ L/min via one of the CM cannulae using a syringe
261 pump (Harvard Apparatus Pump 11 Elite). In the second set of experiments, aCSF was injected
262 at the same rate while withdrawing CSF from the cisterna magna via the other CM cannula at an
263 equal rate using a coupled syringe pump (Harvard Apparatus Pump 11 Elite). In both experiments,
264 intracranial pressure (ICP) was monitored via the ventricle cannulation connected to a transducer
265 and a pressure monitor (BP-1, World Precision Instruments). ICP was acquired at 1 kHz, digitized,
266 and monitored continuously for the duration of the infusion experiments with a DigiData 1550B
267 digitizer and AxoScope software (Axon Instruments).

268 *In vivo* two-photon laser-scanning microscopy

269 Two-photon imaging was performed using a resonant scanner B scope (Thorlabs) with a Chameleon
270 Ultra II laser (Coherent) and a 20x water immersion objective (1.0 NA, Olympus). Intravascular
271 FITC-dextran and red microspheres were excited at a 820 nm wavelength and images were ac-
272 quired at 30 Hz (ThorSync software) simultaneously with physiological recordings (3 kHz, ThorSync

273 software), as previously described (*Mestre et al., 2018b*). To visualize the vasculature, fluorescein
274 isothiocyanate–dextran (FITC–dextran, 2,000 kDa) was injected intravenously via the femoral vein
275 immediately before imaging. Segments of the middle cerebral artery were distinguished on the
276 basis of morphology: surface arteries passing superficially to surface veins and exhibiting less
277 branching at superficial cortical depths. ECG and respiratory rate were acquired at 1 kHz and
278 250 Hz, respectively, using a small-animal physiological monitoring device (Harvard Apparatus). The
279 signals were digitized and recorded with a DigiData 1550A digitizer and AxoScope software (Axon
280 Instruments).

281 **Image processing**

282 Images with spatial dimensions 512 x 512 were obtained from two-photon microscopy. Each image
283 is 16-bit with two channels, red and green. The FITC-dextran injected in the vasculature is captured
284 via the green channel while the red channel is used to image the fluorescent microspheres flowing
285 in the perivascular spaces. Image registration via rigid translation is performed on each image in
286 the time series to account for movement by the mouse in the background. The image registration is
287 implemented using an efficient algorithm in Matlab (*Guizar-Sicairos et al., 2008*) to an accuracy of
288 0.2 pixels. Erroneous correlations in the translation are manually corrected by linear interpolation.
289 The translations obtained are sequentially applied to images that are padded with zero-value
290 pixels. This ensures spatial dimension homogeneity across all images without modifying the image
291 resolution. Particles are then detected by applying a minimum intensity threshold to each image.
292 Typically, particles were resolved across 3-4 pixels in the image with spatial resolution of 1.29 μm .

293 **Particle-tracking velocimetry**

294 The particles detected in each image were tracked using an automated PTV routine in MATLAB (*Kel-
295 ley and Ouellette, 2011; Ouellette et al., 2006*). Briefly, the algorithm locates each particle with a
296 sub-pixel accuracy and obtains a series of particle locations (particle tracks) for the entire duration
297 of the recorded video. Particle velocities were calculated by convolution with a Gaussian smoothing
298 and differentiation kernel. Stagnant particles that have adhered to the wall of the artery or the outer
299 wall of the PVS, and hence no longer track the CSF flow, were masked in each image by subtracting
300 a dynamic background image. This image was different for each frame and was computed by
301 taking the average of 100 frames before and 100 frames after the given image. This method of
302 masking was applied only to the dual-syringe data; the single-syringe data used a simpler masking
303 approach with a single background image (*Mestre et al., 2018b*). Time-averaged flow velocities
304 were obtained by segregating the imaged domain into a 70 x 70 grid, with a resolution of 7.5 x 7.5
305 pixels in each direction. All velocity measurements for a chosen time interval were binned based on
306 their grid position. Average flow speeds were computed using bins with at least 15 measurements.
307 The downstream velocity component was calculated as the dot product $\mathbf{u} \cdot \hat{\mathbf{u}}_{avg}$, where \mathbf{u} is the
308 instantaneous particle velocity and $\hat{\mathbf{u}}_{avg}$ is the field of unit vectors computed from the time-averaged
309 flow field, in the direction of arterial blood flow.

310 **Statistical analysis**

311 All statistical analyses were performed on GraphPad Prism 8 (GraphPad Software). Data in all
312 graphs are plotted as mean \pm standard error of the mean (SEM) over the individual data points
313 and lines from each mouse. Statistical tests were selected after evaluating normality (D'Agostino
314 Pearson omnibus test). When the sample size did not allow for normality testing, both parametric
315 and nonparametric tests were performed and, in all cases, yielded the same result. Sphericity was
316 not assumed; in all repeated measures, two-way ANOVAs and a Geisser-Greenhouse correction
317 were performed. All hypothesis testing was two-tailed and exact P values were calculated at a 0.05
318 level of significance and stated in the figure legends.

319 Acknowledgments

320 We thank Keith Sharp for recommending something like our dual-syringe experiments to us in July
321 2019. We also thank Dan Xue for drafting the schematic.

322 References

323 **Aldea R**, Weller RO, Wilcock DM, Carare RO, Richardson G. Cerebrovascular smooth muscle cells as the drivers
324 of intramural periarterial drainage of the brain. *Front Aging Neurosci*. 2019; 11.

325 **Asgari M**, de Zélicourt D, Kurtcuoglu V. Glymphatic solute transport does not require bulk flow. *Sci Rep*. 2016
326 Nov; p. 1-11.

327 **Bakker ENTP**, Naessens DMP, VanBavel E. Paravascular spaces: entry to or exit from the brain? *Experimental
328 physiology*. 2019; 104(7):1013-1017.

329 **Bedussi B**, Almasian M, de Vos J, VanBavel E, Bakker ENTP. Paravascular spaces at the brain surface: Low
330 resistance pathways for cerebrospinal fluid flow. *J Cerebr Blood F Met*. 2017 Oct; p. 0271678X1773798-8.

331 **Bilston LE**, Fletcher DF, Brodbelt AR, Stoodley MA. Arterial Pulsation-driven Cerebrospinal Fluid Flow in the
332 Perivascular Space: A Computational Model. *Comput Method Biomech*. 2003 Sep; 6(4):235-241.

333 **Croci M**, Vinje V, Rognes ME. Uncertainty quantification of parenchymal tracer distribution using random
334 diffusion and convective velocity fields. *Fluids Barriers CNS*. 2019; 16(1):32.

335 **Diem AK**, MacGregor Sharp M, Gatherer M, Bressloff NW, Carare RO, Richardson G. Arterial Pulsations cannot
336 Drive Intramural Periarterial Drainage: Significance for $\text{A}\beta$ Drainage. *Front Neurosci*. 2017 Aug; 11:353-9.

337 **Faghih MM**, Sharp MK. Is bulk flow plausible in perivascular, paravascular and paravenous channels? *Fluids
338 Barriers CNS*. 2018; 15(1):1-10.

339 **Guizar-Sicairos M**, Thurman ST, Fienup JR. Efficient subpixel image registration algorithms. *Optics Letters*.
340 2008; 33(2):156-158.

341 **Hablitz LM**, Vinitsky HS, Sun Q, Staeger FF, Sigurdsson B, Mortensen KN, Lilius NM T O. Increased glymphatic
342 influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. *Science Advances*.
343 2019; 5(2):eaav5447.

344 **Hadaczek P**, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, Park JW, Bankiewicz K. The "Perivascular Pump"
345 Driven by Arterial Pulsation Is a Powerful Mechanism for the Distribution of Therapeutic Molecules within the
346 Brain. *Mol Ther*. 2006 Jun; 14(1):69-78.

347 **Hladky SB**, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways
348 and via the blood-brain barrier. *Fluids Barriers CNS*. 2018; 15(1):30.

349 **Iliff JJ**, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA,
350 Nagelhus EA, Nedergaard M. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and
351 the Clearance of Interstitial Solutes, Including Amyloid β . *Sci Transl Med*. 2012 Aug; 4(147ra111):4.

352 **Iliff JJ**, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M. Cerebral Arterial
353 Pulsation Drives Paravascular CSF-Interstitial Fluid Exchange in the Murine Brain. *J Neurosci*. 2013 Nov;
354 33(46):18190-18199.

355 **Kedarasetti RT**, Drew P T, Costanzo F. Arterial pulsations drive oscillatory flow of CSF but not directional
356 pumping. *Sci Rep*. 2020; 10(1).

357 **Kedarasetti RT**, Turner KL, Echagarruga C, Gluckman BJ, Drew PJ, Costanzo F. Functional hyperemia drives fluid
358 exchange in the paravascular space. *Fluids and Barriers of the CNS*. 2020; 17(1):1-25.

359 **Kelley DH**, Ouellette NT. Using particle tracking to measure flow instabilities in an undergraduate laboratory
360 experiment. *Am J Phys*. 2011; 79(3):267-273.

361 **Kiviniemi V**, Wang X, Korhonen V, Keinänen T, Tuovinen T, Autio J, LeVan P, Keilholz S, Zang YF, Hennig J,
362 Nedergaard M. Ultra-fast magnetic resonance encephalography of physiological brain activity-Glymphatic
363 pulsation mechanisms? *Journal of Cerebral Blood Flow & Metabolism*. 2016; 36(6):1033-1045.

364 **Mestre H**, Hablitz LM, Xavier ALR, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Castellanos Rivera RM,
365 Simon MJ, Pike MM, Plà V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, et al.
366 Aquaporin-4-dependent glymphatic solute transport in the rodent brain. *eLife*. 2018; 7:e40070.

367 **Mestre H**, Mori Y, Nedergaard M. The Brain's Glymphatic System: Current Controversies. *Trends in Neurosciences*. 2020; .

369 **Mestre H**, Tithof J, Du T, Song W, Peng W, Sweeney AM, Olveda G, Thomas JH, Nedergaard M, Kelley DH. Flow
370 of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. *Nat Commun*. 2018;
371 9(1):4878.

372 **Min-Rivas F**, Liu J, Martell BC, Du T, Mestre H, Nedergaard M, Tithof J, Thomas JH, Kelley DH. Surface periarterial
373 spaces in the mouse brain are open, not porous. *J Roy Soc Interface*. 2020; 17(172):20200593.

374 **Nedergaard M**, Goldman SA. Glymphatic failure as a final common pathway to dementia. *Science*. 2020;
375 370(6512):50-56.

376 **Oshio K**, Watanabe H, Song Y, Verkman AS, Manley GT. Reduced cerebrospinal fluid production and intracranial
377 pressure in mice lacking choroid plexus water channel Aquaporin-1. *The FASEB J*. 2005; 19(1):76-78.

378 **Ouellette NT**, Xu H, Bodenschatz E. A quantitative study of three-dimensional Lagrangian particle tracking
379 algorithms. *Experiments in Fluids*. 2006; 40(2):301-313.

380 **Peng W**, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, Regan S, Kasper T, Peng S, Ding F, Benveniste H,
381 Nedergaard M, Deane R. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease.
382 *Neurobiology of disease*. 2016; 93:215-225.

383 **Rasmussen MK**, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. *The Lancet
384 Neurology*. 2018; 17(11):1016-1024.

385 **Reeves BC**, Karimy JK, Kundishora AJ, Mestre H, Cerci HM, Matouk C, Alper SL, Lundgaard I, Nedergaard M, Kahle
386 KT. Glymphatic system impairment in Alzheimer's disease and idiopathic normal pressure hydrocephalus.
387 *Trends in Molecular Medicine*. 2020; 26(3):285-295.

388 **Rennels ML**, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a 'paravascular' fluid circulation in
389 the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the
390 brain from the subarachnoid space. *Brain Res*. 1985; 326(1):47-63.

391 **Santiskultarm TP**, Cornelius NR, Nishimura N, Schafer Al, Silver RT, Doerschuk PC, Olbricht WL, Schaffer CB. In
392 vivo two-photon excited fluorescence microscopy reveals cardiac-and respiration-dependent pulsatile blood
393 flow in cortical blood vessels in mice. *American Journal of Physiology-Heart and Circulatory Physiology*. 2012;
394 302(7):H1367-H1377.

395 **Sharp MK**, Carare RO, Martin BA. Dispersion in porous media in oscillatory flow between flat plates: applications
396 to intrathecal, periarterial and paraarterial solute transport in the central nervous system. *Fluids Barriers
397 CNS*. 2019; 16(1):13.

398 **Smith AJ**, Verkman AS. The "glymphatic" mechanism for solute clearance in Alzheimer's disease: game changer
399 or unproven speculation? *The FASEB Journal*. 2018; 32(2):543-551.

400 **Smith AJ**, Yao X, Dix JA, Jin BJ, Verkman AS. Test of the 'glymphatic' hypothesis demonstrates diffusive and
401 aquaporin-4-independent solute transport in rodent brain parenchyma. *eLife*. 2017; 6:e27679.

402 **Thomas JH**. Fluid dynamics of cerebrospinal fluid flow in perivascular spaces. *J R Soc Interface*. 2019 Apr;
403 16(1):52-57.

404 **van Veluw SJ**, Hou SS, Calvo-Rodriguez M, Arbel-Ornath M, Snyder AC, Frosch MP, Greenberg SM, Bacskaï
405 BJ. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. *Neuron*. 2020;
406 105(3):549-561.

407 **Vinje V**, Eklund A, Mardal KA, Rognes ME, Støverud KH. Intracranial pressure elevation alters CSF clearance
408 pathways. *Fluids Barriers CNS*. 2020; 17(1):1-19.

409 **Wang P**, Olbricht WL. Fluid mechanics in the perivascular space. *J Theor Biol*. 2011 Apr; 274(1):52-57.

410 **Xavier AL**, Hauglund NL, von Holstein-Rathlou S, Li Q, Sanggaard S, Lou N, Lundgaard I, Nedergaard M. Cannula
411 implantation into the cisterna magna of rodents. *J Visualized Exp*. 2018; (135):e57378.

412 **Xie L**, Kang H, Xu Q, Chen MJ, Liao Y, Thiagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T,
413 Deane R, Nedergaard M. Sleep drives metabolite clearance from the adult brain. *Science*. 2013; 342(6156):373–
414 377.

415 **Yamada S**, Miyazaki M, Yamashita Y, Ouyang C, Yui M, Nakahashi M, Shimizu S, Aoki I, Morohoshi Y, McComb JG.
416 Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. *Fluids*
417 *Barriers CNS*. 2013; 10(1):36.