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Abstract

High-throughput biological data analysis commonly involves identifying “interesting” features (e.g.,
genes, genomic regions, and proteins), whose values differ between two conditions, from numerous
features measured simultaneously. The most widely-used criterion to ensure the analysis reliability is
the false discovery rate (FDR), the expected proportion of uninteresting features among the identified
ones. Existing bioinformatics tools primarily control the FDR based on p-values. However, obtain-
ing valid p-values relies on either reasonable assumptions of data distribution or large numbers of
replicates under both conditions, two requirements that are often unmet in biological studies. To ad-
dress this issue, we propose Clipper, a general statistical framework for FDR control without relying
on p-values or specific data distributions. Clipper is applicable to identifying both enriched and dif-
ferential features from high-throughput biological data of diverse types. In comprehensive simulation
and real-data benchmarking, Clipper outperforms existing generic FDR control methods and specific
bioinformatics tools designed for various tasks, including peak calling from ChIP-seq data, differentially
expressed gene identification from bulk or single-cell RNA-seq data, differentially interacting chromatin
region identification from Hi-C data, and peptide identification from mass spectrometry data. Notably,
our benchmarking results for peptide identification are based on the first mass spectrometry data stan-
dard with a realistic dynamic range. Our results demonstrate Clipper’s flexibility and reliability for FDR
control, as well as its broad applications in high-throughput data analysis.

Significance Statement

The reproducibility crisis has been increasingly alarming in biomedical research, which often involves
high-throughput data analysis to identify targets for downstream experimental validation. False discov-
ery rate (FDR) is the state-of-the-art criterion to guard reproducibility in such biological data analysis.
Existing bioinformatics tools control the FDR using p-values, which are usually ill-posed, leading to
failed FDR control or poor power. Clipper is a flexible, powerful FDR-control framework that removes
the need for high-resolution, well-calibrated p-values. Applicable to various bioinformatics analyses,
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Clipper outperforms popular bioinformatics tools, including identifying peaks from ChIP-seq data, differ-
entially expressed genes from bulk or single-cell RNA-seq data, and differentially interacting chromatin
regions from Hi-C data. Clipper is a significant computational advance to addressing the reproducibility
crisis in biomedical research.

Introduction

High-throughput technologies are widely used to measure system-wide biological features, such as
genes, genomic regions, and proteins (“high-throughput” means the number of features is large, at
least in thousands). The most common goal of analyzing high-throughput data is to contrast two condi-
tions so as to reliably screen “interesting features,” where “interesting” means “enriched” or “differential.”
“Enriched features” are defined to have higher expected measurements (without measurement errors)
under the experimental (i.e., treatment) condition than the background (i.e., the negative control) con-
dition. The detection of enriched features is called “enrichment analysis.” For example, typical enrich-
ment analyses include calling protein-binding sites in a genome from chromatin immunoprecipitation
sequencing (ChIP-seq) data [1, 2] and identifying peptides from mass spectrometry (MS) data [3]. In
contrast, “differential features” are defined to have different expected measurements between two con-
ditions, and their detection is called “differential analysis.” For example, popular differential analyses
include the identification of differentially expressed genes (DEGs) from genome-wide gene expres-
sion data (e.g., microarray and RNA sequencing (RNA-seq) data [4—10]) and differentially interacting
chromatin regions (DIRs) from Hi-C data [11-13] (Fig. 1a). In most scientific research, the interesting
features only constitute a small proportion of all features, and the remaining majority is referred to as
“uninteresting features.”

The identified features, also called the “discoveries” from enrichment or differential analysis, are
subject to further investigation and validation. Hence, to reduce experimental validation that is often
laborious or expensive, researchers demand reliable discoveries that contain few false discoveries. Ac-
cordingly, the false discovery rate (FDR) [14] has been developed as a statistical criterion for ensuring
discoveries’ reliability. The FDR technically is defined as the expected proportion of uninteresting fea-
tures among the discoveries under the frequentist statistical paradigm. In parallel, under the Bayesian
paradigm, other criteria have been developed, including the Bayesian false discovery rate [15], the local
false discovery rate (local fdr) [16], and the local false sign rate [17]. Among all these frequentist and
Bayesian criteria, the FDR is the dominant criterion for setting thresholds in biological data analysis [1,
10, 18-24] and is thus the focus of this paper.

FDR control refers to the goal of finding discoveries such that the FDR is under a pre-specified
threshold (e.g., 0.05). Existing computational methods for FDR control primarily rely on p-values, one
per feature. Among the p-value-based methods, the most classic and popular ones are the Benjamini-
Hochberg (BH) procedure [14] and the Storey’s g-value [25]; later development introduced methods
that incorporate feature weights [26] or covariates (e.g., independent hypothesis weighting (IHW) [27],
adaptive p-value thresholding [28], and Boca and Leek’s FDR regression [29]) to boost the detection
power. All these methods set a p-value cutoff based on the pre-specified FDR threshold. However,
the calculation of p-values requires either distributional assumptions, which are often questionable, or
large numbers of replicates, which are often unachievable in biological studies (see Results). Due to
these limitations of p-value-based methods in high-throughput biological data analysis, bicinformatics
tools often output ill-posed p-values. This issue is evidenced by serious concerns about the widespread
miscalculation and misuse of p-values in the scientific community [30]. As a result, bioinformatics tools
using questionable p-values either cannot reliably control the FDR to a target level [23] or lack power
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to make discoveries [31]; see Results. Therefore, p-value-free control of FDR is desirable, as it would
make data analysis more transparent and thus improve the reproducibility of scientific research.

Although p-value-free FDR control has been implemented in the MACS2 method for ChIP-seq peak
calling [1] and the SAM method for microarray DEG identification [32], these two methods are restricted
to specific applications and lack theoretical guarantee for FDR control'. More recently, the Barber-
Candes (BC) procedure has been proposed to achieve theoretical FDR control without using p-values
[35], and it has been shown to perform comparably to the BH procedure with well-calibrated p-values
[36]. The BC procedure is advantageous because it does not require well-calibrated p-values, so it holds
tremendous potential in various high-throughput data analyses where p-value calibration is challenging
[37]. For example, a recent paper has implemented a generalization of the BC procedure to control the
FDR in peptide identification from MS data [38].

Inspired by the BC procedure, we propose a general statistical framework Clipper to provide reliable
FDR control for high-throughput biological data analysis, without using p-values or relying on specific
data distributions. Clipper is a robust and flexible framework that applies to both enrichment and dif-
ferential analyses and that works for high-throughput data with various characteristics, including data
distributions, replicate numbers (from one to multiple), and outlier existence.

Results

Clipper consists of two main steps: construction and thresholding of contrast scores. First, Clipper
defines a contrast score for each feature, as a replacement of a p-value, to summarize that feature’s
measurements between two conditions and to describe the degree of interestingness of that feature.
Second, as its name suggests, Clipper establishes a cutoff on features’ contrast scores and calls as
discoveries the features whose contrast scores exceed the cutoff (see Online Methods and Supplemen-
tary). Clipper is a flexible framework that only requires a minimal input: all features’ measurements
under two conditions and a target FDR threshold (e.g., 5%) (Fig. 1b).

Clipper only relies on two fundamental statistical assumptions of biological data analysis: (1) mea-
surement errors (i.e., differences between measurements and their expectations, with the expectations
including both biological signals and batch effects) are independent across all features and replicates;
(2) every uninteresting feature has measurement errors identically distributed across all replicates under
both conditions. These two assumptions are used in almost all bioinformatics tools and are commonly
referred to as the “measurement model” in statistical genomics [39]. With these two assumptions, Clip-
per has a theoretical guarantee for FDR control under both enrichment and differential analyses with
any number of replicates (see Online Methods and Supp. Section S2).

To verify Clipper’s performance, we designed comprehensive simulation studies to benchmark Clip-
per against existing generic FDR control methods (Supp. Section S1). We also benchmarked Clipper
against bioinformatics tools in studies including peak calling from ChlP-seq data, peptide identification
from mass spectrometry data, DEG identification from bulk or single-cell RNA-seq data, and DIR iden-
tification from Hi-C data. Notably, our benchmarking results for peptide identification are based on the
first MS data standard with a realistic dynamic range.

Clipper has verified FDR control and power advantage in simulation

Simulation is essential because we can generate numerous datasets from the same distribution with
known truths to calculate the FDR, which is not observable from real data. Our simulation covers both

T Although later works have studied some theoretical properties of SAM, they are not about the exact control of the FDR [33,
34].
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enrichment and differential analyses. In enrichment analysis, we consider four “experimental designs”:
1vs1 design (one replicate per condition), 2vs1 design (two and one replicates under the experimen-
tal and background conditions, respectively), 3vs3 design (three replicates per condition), and 10vs10
design (ten replicates per condition). In differential analysis, since Clipper requires that at least one con-
dition has two replicates, we only consider the 2vs1 and 3vs3 designs. For each analysis and design,
we simulated data from three “distributional families"—Gaussian, Poisson, and negative binomial—for
individual features under two “background scenarios” (i.e., scenarios of the background condition): ho-
mogeneous and heterogeneous. Under the homogeneous scenario, all features’ measurements follow
the same distribution under the background condition; otherwise, we are under the heterogeneous
scenario, which is ubiquitous in applications, e.g., identifying DEGs from RNA-seq data and calling
protein-binding sites from ChlP-seq data. By simulation setting, we refer to a combination of an experi-
mental design, a distributional family, and a background scenario. The details of simulation settings are
described in Supp. Section S4.

For both enrichment and differential analyses and each simulation setting, we compared Clipper
against generic FDR control methods, including p-value-based methods and local-fdr-based methods.
The p-value-based methods include BH-pair, BH-pool, qvalue-pair, and qvalue-pool, where “BH” and
“gvalue” stand for p-value thresholding procedures, and “pair” and “pool” represent the paired and
pooled p-value calculation approaches, respectively. The local-fdr-based methods include locfdr-emp
and locfdr-swap, where “emp” and “swap” represent the empirical null and swapping null local-fdr cal-
culation approaches, respectively. See Online Methods for detail.

The comparison results are in Fig. 2 and Supp. Figs. S1-S11. A good FDR control method should
have actual FDR no larger than the target FDR threshold and achieve high power. The results show
that Clipper controls the FDR and is overall more powerful than other methods, excluding those that
fail to control the FDR, under all settings. Clipper is also shown to be more robust to the number
of features and the existence of outliers than other methods. In detail, in both enrichment analyses
(1vs1, 2vs1, 3vs3, and 10vs10 designs) and differential analyses (2vs1 and 3vs3 designs), Clipper
consistently controls the FDR, and it is more powerful than the generic methods in most cases under
the realistic, heterogeneous background, where features do not follow the same distribution under the
background condition. Under the idealistic, homogeneous background, Clipper is still powerful and only
second to BH-pool and gvalue-pool, which, however, cannot control the FDR under the heterogeneous
background.

Here we summarize the performance of the generic FDR control methods. First, the two p-value-
based methods using the pooled approach, BH-pool and gvalue-pool, are the most powerful under the
idealistic, homogeneous background, which is their inherent assumption; however, they cannot control
the FDR under the heterogeneous background (Fig. 2b). Besides, they cannot control the FDR when
the number of features is small (Fig. 2a and Supp. Fig. S1). These results show that the validity
of BH-pool and gvalue-pool requires a large number of features and the homogeneous background
assumption, two requirements that rarely hold in biological applications.

Second, the four p-value-based methods using the paired approach with misspecified models or mis-
formulated tests (BH-pair-mis, qvalue-pair-mis, BH-pair-2as1, and qvalue-pair-2as1; see Online Meth-
ods) fail to control the FDR by a large margin in most cases, and rarely when they control the FDR, they
lack power (Fig. 2c—d and Supp. Figs. S1-S8). These results confirm that the BH-pair and gvalue-pair
rely on the correct model specification to control the FDR; however, the correct model specification is
hardly achievable with no more than three replicates per condition.

Third, even when models are correctly specified (an idealistic scenario), the p-value-based methods
that use the paired approach—BH-pair-correct and qvalue-pair-correct (see Online Methods)—fail to
control the FDR in the existence of outliers (Fig. 2e and Supp. Figs. S3 and S7) or for the negative
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binomial distribution with unknown dispersion (Fig. 2f and Supp. Fig. S9). It is worth noting that even
when they control the FDR, they are less powerful than Clipper in most cases except for the 3vs3
differential analysis with the Poisson distribution (Fig. 2d and Supp. Figs. S4 and S8).

Fourth, the two local-fdr-based methods—Ilocfdr-emp and locfdr-swap—achieve the FDR control
under all designs and analyses; however, they are less powerful than Clipper in most cases (Supp.
Figs. S1-S4).

Fifth, when the numbers of replicates are large (10vs10 design), non-parametric tests become ap-
plicable. We compared Clipper with three BH-pair methods that use different statistical tests: BH-pair-
Wilcoxon (the non-parametric Wilcoxon rank-sum test), BH-pair-permutation (the non-parametric per-
mutation test), and BH-pair-parametric (the parametric test based on the correct model specification,
equivalent to BH-pair-correct). Although all the three methods control the FDR, they are less powerful
than Clipper (Supp. Fig. S10).

Moreover, the above five phenomena are consistently observed across the three distributions (Gaus-
sian, Poission, and negative binomial) that we have examined, further confirming the robustness of
Clipper.

In addition, for the 3vs3 enrichment analysis, we also varied the proportion of interesting features
as 10%, 20%, and 40%. The comparison results in Supp. Fig. S3 (columns 1 and 3 for 10%) and Supp.
Fig. S12 (for 20% and 40%) show that the performance of Clipper is robust to the proportion of interesting
features.

The above results are all based on simulations with independent features. To examine the robust-
ness of Clipper, we introduced feature correlations to our simulated data, on which we compared Clipper
with other generic FDR control methods. The comparison results in Supp. Fig. S11 show that even when
the feature independence assumption is violated, Clipper still demonstrates strong performance in both
FDR control and power.

Clipper has broad applications in omics data analyses

We then demonstrate the use of Clipper in four omics data applications: peak calling from ChIP-seq
data, peptide identification from MS data, DEG identification from bulk or single-cell RNA-seq data,
and DIR identification from Hi-C data. The first two applications are enrichment analyses, and the last
two are differential analyses. In each application, we compared Clipper with mainstream bioinformatics
methods to demonstrate Clipper’s superiority in FDR control and detection power.

Peak calling from ChiP-seq data (enrichment analysis I)

ChlP-seq is a genome-wide experimental assay for measuring binding intensities of a DNA-associated
protein [40], often a transcription factor that activates or represses gene expression [41, 42]. ChlIP-seq
data are crucial for studying gene expression regulation, and the indispensable analysis is to identify
genomic regions with enriched sequence reads in ChlP-seq data. These regions are likely to be bound
by the target protein and thus of biological interest. The identification of these regions is termed “peak
calling” in ChlP-seq data analysis.

As the identified peaks are subject to experimental validation that is often expensive [43], it is es-
sential to control the FDR of peak identification to reduce unnecessary costs. The two most highly-cited
peak-calling methods are MACS2 [1] and [2], both of which claim to control the FDR for their identified
peaks. Specifically, both MACS2 and HOMER assume that the read counts for each putative peak (one
count per sample/replicate) follow the Poisson distribution, and they use modified paired approaches to
assign each putative peak a p-value and a corresponding Storey’s g-value. Then given a target FDR


https://doi.org/10.1101/2020.11.19.390773
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.390773; this version posted July 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

threshold 0 < ¢ < 1, they call the putative peaks with g-values < ¢ as identified peaks. Despite being
popular, MACS2 and HOMER have not been verified for their FDR control, to our knowledge.

To verify the FDR control of MACS2 and HOMER (Supp. Section S5.1), we used ENCODE ChlIP-seq
data of cell line GM12878 [44] and ChiPulate [45], a ChIP-seq data simulator, to generate semi-synthetic
data with spiked-in peaks (Supp. Section S6.1). We examined the actual FDR and power of MACS2
and HOMER in a range of target FDR thresholds: ¢ = 1%,2%,...,10%. Fig. 4a shows that MACS2
and HOMER cannot control the FDR as standalone peak-calling methods. However, with Clipper as an
add-on (Supp. Section S7.1), both MACS2 and HOMER can guarantee the FDR control. This result
demonstrates the flexibility and usability of Clipper for reducing false discoveries in peak calling analysis.

Technically, the failed FDR control by MACS2 and HOMER is attributable to the likely model misspec-
ification and test misformulation in their use of the paired approach. Both MACS2 and HOMER assume
the Poisson distribution for read counts in a putative peak; however, it has been widely acknowledged
that read counts are over-dispersed and thus better modeled by the negative binomial distribution [46].
Besides, MACS2 uses one-sample tests to compute p-values when two-sample tests should have been
performed. As a result, the p-values of MACS2 and HOMER are questionable, so using their p-values
for FDR control would not lead to success. (Note that MACS2 does not use p-values to control the FDR
but instead swaps experimental and background samples to calculate the empirical FDR; yet, we em-
phasize that controlling the empirical FDR does not guarantee the FDR control.) As a remedy, Clipper
strengthens both methods to control the FDR while maintaining high power.

It is known that uninteresting regions tend to have larger read counts in the control sample than in
the experimental (ChlP) sample, making them more likely to have negative contrast scores than positive
ones. However, this phenmenon does not violate Clipper’s theoretical assumption (Lemma 1(a) in Supp.
Section S2), which can be relaxed as we note in Methods.

Peptide identification from MS data (enrichment analysis II)

The state-of-the-art proteomics studies use MS experiments and database search algorithms to iden-
tify and quantify proteins in biological samples. In a typical proteomics experiment, a protein mixture
sample is first digested into peptides and then measured by tandem MS technology as mass spectra,
which encode peptide sequence information. “Peptide identification” is the process that decodes mass
spectra and converts mass spectra into peptide sequences in a protein sequence database via search
algorithms. The search process matches each mass spectrum to peptide sequences in the database
and outputs the best match, called a “peptide-spectrum match” (PSM). The identified PSMs are used
to infer and quantify proteins in a high-throughput manner.

False PSMs could occur when mass spectra are matched to wrong peptide sequences due to is-
sues such as low-quality spectra, data-processing errors, and incomplete protein databases, causing
problems in the downstream protein identification and quantification [47]. Therefore, a common goal of
database search algorithms is to simultaneously control the FDR and maximize the number of identi-
fied PSMs, so as to maximize the number of proteins identified in a proteomics study [3, 48]. A widely
used FDR control strategy is the target-decoy search, where mass spectra of interest are matched to
peptide sequences in both the original (target) database and a decoy database that contains artificial
false protein sequences. The resulting PSMs are called the target PSMs and decoy PSMs, respectively.
The decoy PSMs, i.e., matched mass spectrum and decoy peptide pairs, are known to be false and
thus used by database search algorithms to control the FDR. Mainstream database search algorithms
output a g-value for each PSM, target or decoy. Discoveries are the target PSMs whose g-values are
no greater than the target FDR threshold q.

We used the first comprehensive benchmark dataset from an archaea species Pyrococcus furiosus
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to examine the FDR control and power of a popular database search algorithm SEQUEST [3] (Supp.
Section S5.2). Using this benchmark dataset (Supp. Section S6.2), we demonstrate that, as an add-on,
Clipper improves the power of SEQUEST. Specifically, Clipper treats mass spectra as features. For each
mass spectrum, Clipper considers its measurement under the experimental condition as the —log;,-
transformed g-value of the target PSM that includes it, and its measurement under the background
condition as the —log;,,-transformed g-value of the decoy PSM that includes it. Then Clipper decides
which mass spectra and their corresponding target PSMs are discoveries (Supp. Section S7.2). Based
on the benchmark dataset, we examined the empirical FDR, i.e., the FDP calculated based on the
true positives and negatives, and the power of SEQUEST with or without Clipper as an add-on, for a
range of target FDR thresholds: ¢ = 1%,2%,...,10%. Fig. 4b shows that although SEQUEST and
SEQUEST+Clipper both control the FDR, SEQUEST+Clipper consistently improves the power, thus
enhancing the peptide identification efficiency of proteomics experiments.

While preparing this manuscript, we found a recent work [38] that used a similar idea to identify PSMs
without using p-values. Clipper differs from this work in two aspects: (1) Clipper is directly applicable as
an add-on to any existing database search algorithms that output g-values; (2) Clipper is not restricted
to the peptide identification application.

DEG identification from bulk RNA-seq data (differential analysis 1)

RNA-seq data measure genome-wide gene expression levels in biological samples. An important use
of RNA-seq data is the DEG analysis, which aims to discover genes whose expression levels change
between two conditions. The FDR is a widely used criterion in DEG analysis [4-9].

We compared Clipper with two popular DEG identification methods: edgeR [4] and DESeq2 [5]
(Supp. Section S5.3). Specifically, when we implemented Clipper, we first performed the trimmed mean
of M values (TMM) normalization [49] to correct for batch effects; then we treated genes as features
and their normalized expression levels as measurements under two conditions (Supp. Section S7.3).
We also implemented two versions of DESeq2 and edgeR: with or without IHW, a popular procedure
for boosting the power of p-value-based FDR control methods by incorporating feature covariates [27].
In our implementation of the two versions of DESeg2 and edgeR, we used their standard pipelines,
including normalization, model fitting, and gene filtering (edgeR only). To verify the FDR control, we
generated four realistic synthetic datasets from two real RNA-seq datasets—one from classical and
non-classical human monocytes [50] and the other from yeasts with or without snf2 knockout [51]—
using simulation strategies 1 and 2 (Supp. Section S6.3).

In detail, in simulation strategy 1, we used bulk RNA-seq samples from two conditions to compute a
fold change for every gene between the two conditions; then we defined true DEGs as the genes whose
fold changes exceeded a threshold; next, we randomly drew three RNA-seq samples and treated them
as replicates from each condition (m = n = 3 as in Methods); using those subsampled replicates of
two conditions, we preserved the true DEGs’ read counts and permuted the read counts of the true
non-DEGs, i.e., the genes other than true DEGs, between conditions. In summary, simulation strategy
1 guarantees that the measurements of true non-DEGs are i.i.d., an assumption that Clipper relies on
for theoretical FDR control.

In simulation strategy 2, borrowed from a benchmark study [52], we first randomly selected at most
30% genes as true DEGs; next, we randomly drew six RNA-seq samples from one condition (classical
human monocytes and yeasts without knockout) and split the samples into two “synthetic conditions,”
each with three replicates (m = n = 3 as in Methods); then for each true DEG, we multiplied its read
counts under one of the two synthetic conditions (randomly picked independently for each gene) by a
randomly generated fold change (see Supp. Section S6.3); finally, for the true non-DEGs, we preserved
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their read counts in the six samples. In summary, simulation strategy 2 preserves batch effects, if
existent in real data, for the true non-DEGs (the majority of genes). As a result, the semi-synthetic data
generated under strategy 2 may violate the Clipper assumption for theoretical FDR control and thus can
help evaluate the robustness of Clipper on real data.

The four semi-synthetic datasets have ground truths (true DEGs and non-DEGs) to evaluate each
DEG identification method’s FDR and power for a range of target FDR thresholds: ¢ = 1%, 2%, ..., 10%.
Our results in Fig. 3a and Supp. Figs. S15a—S17a show that Clipper consistently controls the FDR
and achieves high power on all four semi-synthetic datasets. In contrast, DESeg2 and edgeR cannot
consistently control the FDR except for the yeast semi-synthetic dataset generated under simulation
strategy 2. Given the fact that DESeqg2 and edgeR do not consistently perform well on the three other
semi-synthetic datasets, we hypothesize that their parametric distributional assumptions, if violated on
real data, hinder valid FDR control, in line with our motivation for developing Clipper. By examining
whether true non-DEGs’ p-values calculated by DESeq2 or edgeR follow the theoretical Uniform|0, 1]
distribution, we find that the answer is no for many non-DEGs, as indicated by the small p-values (one
per non-DEG) of uniformity tests (Supp. Fig.S30); this issue is more serious for DESeq2, consistent
with the worse FDR control of DESeq2 (Fig. 3a and Supp. Figs. S15a—-S17a). Furthermore, we observe
that adding IHW to edgeR and DESeqg2 has negligible effects on the four semi-synthetic datasets.

To further explain why DESeq2 fails to control the FDR, we examined the p-value distributions of 16
non-DEGs that were most frequently identified (from the 100 semi-synthetic datasets generated from the
human monocyte dataset using simulation strategy 1) by DESeq2 at the target FDR threshold ¢ = 0.05.
Our results in Supp. Fig. S18 show that the 16 non-DEGs’ p-values are non-uniformly distributed with a
mode close to 0. Such unusual enrichment of overly small p-values makes these non-DEGs mistakenly
called discoveries by DESeq2.

In addition, we compared the DEG ranking by Clipper, edgeR, and DESeq2 in two ways. First, for
true DEGs, we compared their ranking by each method with their true ranking based on true expression
fold changes (from large to small, as in semi-synthetic data generation in Supp. Section S6.3). Specifi-
cally, we ranked true DEGs using Clipper’s contrast scores (from large to small), edgeR’s p-values (from
small to large), or DESeq2'’s p-values (from small to large). Our results in Fig. 3b and Supp. Figs. S15b—
S17b show that Clipper’s contrast scores exhibit the most consistent ranking with the ranking based on
true fold changes. Second, to compare the power of Clipper, edgeR, and DESeq2 based on their DEG
rankings instead of nominal p-values, we calculated their power under the actual FDRs, which only de-
pend on gene rankings (for the definition of actual FDR, see Supp. Section S6.3). Fig. 3a and Supp.
Figs. S15a—S17a show that, when Clipper, edgeR, and DESeg2 have the same actual FDR, Clipper
consistently outperforms edgeR and DESeq?2 in terms of power, i.e., Clipper has the most true DEGs in
its top ranked genes.

We also compared the reproducibility of Clipper, edgeR, and DESeqg2 in the presence of sampling
randomness. Specifically, we used two semi-synthetic datasets (generated independently from the
same procedure in Supp. Section S6.3) as technical replicates and computed Clipper’s contrast scores
and edgeR’s and DESeq’s p-values on each dataset. For each method, we evaluated its reproducibility
between the two semi-synthetic datasets by computing three criteria—the irreproducibility discovery
rate (IDR) [53], Pearson correlation, and Spearman correlation—using its contrast scores or negative
log,, transformed p-values. Fig. 3c and Supp. Figs. S15-S17c¢ show that Clipper’s contrast scores have
higher reproducibility by all three criteria compared to edgeR’s and DESeq2’s p-values.

Finally, we compared Clipper with DESeq2 and edgeR on the real RNA-seq data of classical and
non-classical human monocytes [50]. In this dataset, gene expression changes are expected to be as-
sociated with the immune response process. We input three classical and three non-classical samples
into Clipper, DESeq2, and edgeR for DEG identification. Fig. 5a shows that edgeR identifies the fewest
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DEGs, while DESeq2 identifies the most DEGs, followed by Clipper. Notably, most DEGs identified by
DESeq2 are not identified by Clipper or edgeR. To investigate whether DESeq2 makes too many false
discoveries and whether the DEGs found by Clipper but missed by DESeq2 or edgeR are biologically
meaningful, we performed functional analysis on the set of DEGs identified by each method. We first
performed the gene ontology (GO) analysis on the three sets of identified DEGs using the R package
clusterProfiler [54]. Fig. 5b (“Total”) shows that more GO terms are enriched (with enrichment g-
values < 0.01) in the DEGs identified by Clipper than in the DEGs identified by DESeq2 or edgeR. For
the GO terms enriched in all three sets of identified DEGs, Fig. 5¢ shows that they are all related to the
immune response and thus biologically meaningful. Notably, these biologically meaningful GO terms
have more significant enrichment in the DEGs identified by Clipper than in those identified by edgeR and
DESeq2. We further performed GO analysis on the DEGs uniquely identified by one method in pairwise
comparisons of Clipper vs. DESeqg2 and Clipper vs. edgeR. Fig. 5b and Supp. Fig. S20 show that mul-
tiple immune-related GO terms are enriched in Clipper-specific DEGs, while no GO terms are enriched
in edgeR-specific or DESeq2-specific DEGs. In addition, we examined the DEGs that were identified
by Clipper only but missed by both edgeR and DESeqg2. Fig. 5d and Supplementary Table show that
these genes include multiple key immune-related genes, including CD36, DUSP2, and TNFAIP3. We
further performed pathway analysis on these genes and the DEGs that were identified by DEseg2 only
but missed by both edgeR and Clipper, using the R package limma [10]. Supp. Fig. S21a shows that
the DEGs that were only identified by Clipper have significant enrichment for immune-related pathways
including phagosome, a key function of monocytes and macrophages. On the contrary, Supp. Fig. S21b
shows that fewer immune-related pathways are enriched in DEGs that were only identified by DESeq2.
Altogether, these results confirm the capacity of Clipper in real-data DEG analysis, and they are consis-
tent with our simulation results that edgeR lacks power, while DESeq?2 fails to control the FDR.

DEG identification from single-cell RNA-seq data (differential analysis II)

Single-cell RNA sequencing (scRNA-seq) technologies have revolutionized biomedical sciences by en-
abling genome-wide profiling of gene expression levels at an unprecedented single-cell resolution. DEG
analysis is widely applied to scRNA-seq data for discovering genes whose expression levels change be-
tween two conditions or between two cell types. Compared with bulk RNA-seq data, scRNA-seq data
have many more “replicates” (i.e., cells, whose number is often in hundreds) under each condition or
within each cell type.

We compared Clipper with edgeR [4], MAST [55], Monocle3 [56], the two-sample ¢ test, and the
Wilcoxon rank-sum test, five methods that are either popular or reported to have comparatively top
performance from a previous benchmark study [57]. To verify the FDR control, we used scDesign2, a
flexible probabilistic simulator to generate scRNA-seq count data with known true DEGs [58]. scDesign2
offers three key advantages that enable the generation of realistic synthetic scRNA-seq count data: (1)
it captures distinct marginal distributions of different genes; (2) it preserves gene-gene correlations; (3)
it adapts to various scRNA-seq protocols. Using scDesign2, we generated two synthetic sScRNA-seq
datasets from two real scRNA-seq datasets of peripheral blood mononuclear cells (PBMCs) [59]: one
using 10x Genomics [60] and the other using Drop-seq [61]. Each synthetic dataset contains two cell
types, CD4+ T cells and cytotoxic T cells, which we treated as two conditions. Having true DEGs known,
the synthetic datasets allow us to evaluate Clipper’s and the other five methods’ FDRs and power for a
range of target FDR thresholds: ¢ = 1%, 2%, ...,10%. Fig. 4d and Supp. Fig. S19 show that on both
10x Genomics and Drop-seq synthetic datasets, Clipper consistently controls the FDR and remains the
most powerful among all the methods that achieve FDR control. These results demonstrate Clipper’s
robust performance in scRNA-seq DEG analysis.
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DIR analysis of Hi-C data (differential analysis Ill)

Hi-C experiments are widely used to investigate spatial organizations of chromosomes and map chro-
matin interactions across the genome. A Hi-C dataset is often processed and summarized into an in-
teraction matrix, whose rows and columns represent manually binned chromosomal regions and whose
(i, 4)-th entry represents the measured contact intensity between the i-th and j-th binned regions. The
DIR analysis aims to identify pairs of genomic regions whose contact intensities differ between condi-
tions. Same as DEG analysis, DIR analysis also uses the FDR as a decision criterion [11-13].

We compared Clipper with three popular DIR identification methods: diffHic [13], FIND [12], and
multiHiCcompare [11] (Supp. Section S5.5). Specifically, we applied Clipper to DIR identification by
treating pairs of genomic regions as features and contact intensities as measurements. To verify the
FDR control of Clipper (Supp. Section S7.5), diffHiC, FIND, and multiHiCcompare, we generated re-
alistic semi-synthetic data from real interaction matrices of ENCODE cell line GM12878 [44] with true
spiked-in DIRs to evaluate the FDR and power (Supp. Section S6.5). We examined the actual FDR
and power in a range of target FDR thresholds: ¢ = 1%, 2%, ...,10%. Fig. 4d shows that Clipper and
diffHic are the only two methods that consistently control the FDR, while multiHiCcompare and FIND
fail by a large margin. In terms of power, Clipper outperforms diffHic except for ¢ = 0.01 and 0.02,
even though Clipper has not been optimized for Hi-C data analysis. This result demonstrates Clipper’s
general applicability and strong potential for DIR analysis.

Discussion

In this paper, we proposed a new statistical framework, Clipper, for identifying interesting features with
FDR control from high-throughput data. Clipper avoids the use of p-values and makes FDR control more
reliable and flexible. We used comprehensive simulation studies to verify the FDR control by Clipper
under various settings. We demonstrate that Clipper outperforms existing generic FDR control methods
by having higher power and greater robustness to model misspecification. We further applied Clipper to
four popular bioinformatics analyses: peak calling from ChlP-seq data, peptide identification from MS
data, DEG identification from RNA-seq data, and DIR identification from Hi-C data. Our results indicate
that Clipper can provide a powerful add-on to existing bioinformatics tools to improve the reliability of
FDR control and thus the reproducibility of scientific discoveries.

Clipper’'s FDR control procedures (BC and GZ procedures in Methods) are motivated by the Barber-
Candes (BC)’s knockoff paper [35] and the Gimenez-Zou’s multiple knockoff paper [62], but we do
not need to construct knockoffs in enrichment analysis when two conditions have the same number of
replicates; the reason is that the replicates under the background condition serve as natural negative
controls. For differential analysis and enrichment analysis with unequal numbers of replicates, in order
to guarantee the theoretical assumptions for FDR control, Clipper uses permutations instead of the
complicated knockoff construction because Clipper only examines features marginally and does not
concern about features’ joint distribution.

We validated the FDR control by Clipper using extensive and concrete simulations, including both
model-based and real-data-based data generation with ground truths, which are widely used to validate
newly developed computational frameworks [63]. In contrast, in most bioinformatics method papers,
the FDR control was merely mentioned but rarely validated. Many of them assumed that using the
BH procedure on p-values would lead to valid FDR control; however, the reality is often otherwise
because p-values would be invalid when model assumptions were violated or the p-value calculation
was problematic. Here we voice the importance of validating the FDR control in bioinformatics method
development, and we use this work as a demonstration. We believe that Clipper provides a powerful
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booster to this movement. As a p-value-free alternative to the classic p-value-based BH procedure,
Clipper relies less on model assumptions and is thus more robust to model misspecifications, making it
an appealing choice for FDR control in diverse high-throughput biomedical data analyses.

Clipper is a flexible framework that is easily generalizable to identify a variety of interesting features.
The core component of Clipper summarizes each feature’s measurements under each condition into an
informative statistic (e.g., the sample mean); then Clipper combines each feature’s informative statistics
under two conditions into a contrast score to enable FDR control. The current implementation of Clip-
per only uses the sample mean as the informative statistic to identify the interesting features that have
distinct expected values under two conditions. However, by modifying the informative statistic, we can
generalize Clipper to identify the features that are interesting in other aspects, e.g., having different vari-
ances between two conditions. Regarding the contrast score, Clipper currently makes careful choices
between two contrast scores, minus and maximum, based on the number of replicates and the analysis
task (enrichment or differential).

Notably, Clipper achieves FDR control and high power using those two simple contrast scores,
which are calculated for individual features without borrowing information from other features. How-
ever, Clipper does leverage the power of multiple testing by setting a contrast score threshold based on
all features’ contrast scores. This is a likely reason why Clipper achieves good power even with simple
contrast scores. An advantage of Clipper is that it allows other definitions of contrast scores, such as
the two-sample ¢ statistic that considers within-condition variances. Empirical evidence (Supp. Figs.
S13 and S14) shows that the Clipper variant using the two-sample ¢ statistic is underpowered by the
default Clipper, which uses the minus summary statistic (difference of two conditions’ sample means)
as the contrast score in the 3vs3 enrichment analysis or as the degree of interestingness in the 3vs3
differential analysis (see Methods). Here is our current interpretation of this seemingly counter-intuitive
result.

e First, both the minus statistic and the ¢ statistic satisfy Clipper’s theoretical conditions (Lemmas 1
and 3 in Supp. Section S2), which guarantee the FDR control by the BC and GZ procedures; this
is confirmed in Supp. Figs. S13 and S14. Hence, from the FDR control perspective, Clipper does
not require the adjustment for within-condition variances by using a ¢ statistic.

e Second, Clipper is different from the two-sample ¢ test or the regression-based ¢ test, where the
t statistic was purposely derived as a pivotal statistic so that its null distribution (the ¢ distribution)
does not depend on unknown parameters. Since Clipper does not require a null distribution for
each feature, the advantage of the ¢ statistic being pivotal no longer matters.

e Third, the minus statistic only requires estimates of two conditions’ mean parameters, while the ¢
statistic additionally requires estimates of the two conditions’ variances. Hence, when the sample
sizes (i.e., the numbers of replicates) are small, the two more parameters that need estimation in
the ¢ statistic might contribute to the observed power loss of the Clipper ¢ statistic variant. Indeed,
the power difference between the two statistics diminishes as the sample sizes increase from
3vs3 in Supp. Figs. S13-S14 to 10vs10 in Supp. Figs. S10 (where we compared the default
Clipper with BH-pair-parametric, which is based on the two-sample ¢ test and is highly similar to
the Clipper t statistic variant).

e Fourth, we observe empirically that a contrast score would have better power if its distribution
(based on its values of all features) has a larger range and a heavier right tail (in the positive
domain). Compared to the minus statistic, the ¢ statistic has a smaller range and a lighter right tail
due to its adjustment for features’ within-condition variances (Supp. Fig. S28). This observation is
consistent with the power difference of the two statistics.
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Beyond our current interpretation, however, we admit that future studies are needed to explore alterna-
tive contrast scores and their power with respect to data characteristics and analysis tasks. Further-
more, we may generalize Clipper to be robust against sample batch effects by constructing the contrast
score as a regression-based test statistic that has batch effects removed.

Our current version of Clipper allows the identification of interesting features between two conditions.
However, there is a growing need to generalize our framework to identify features across more than two
conditions. For example, temporal analysis based on scRNA-seq data aims to identify genes whose
expression levels change along time [31]. To tailor Clipper for such analysis, we could define a new
contrast score that differentiates the genes with stationary expression (uninteresting features) from the
other genes with varying expression (interesting features). Further studies are needed to explore the
possibility of extending Clipper to the regression framework so that Clipper can accommodate data of
multiple conditions or even continuous conditions, as well as adjusting for confounding covariates.

We have demonstrated the broad application potential of Clipper in various bioinformatics data anal-
yses. Specifically, when used as an add-on to established, popular bioinformatics methods such as
MACS?2 for peak calling and SEQUEST for peptide identification, Clipper guaranteed the desired FDR
control and in some cases boosted the power. However, many more careful thoughts are needed to
escalate Clipper into standalone bioinformatics methods for specific data analyses, for which data pro-
cessing and characteristics (e.g., peak lengths, GC contents, proportions of zeros, and batch effects)
must be appropriately accounted for before Clipper is used for the FDR control [57, 64]. We expect that
the Clipper framework will propel future development of bioinformatics methods by providing a flexible
p-value-free approach to control the FDR, thus improving the reliability of scientific discoveries.

After finishing this manuscript, we were informed of the work by He et al. [65], which is highly similar
to the part of Clipper for differential analysis, as both work use permutation for generating negative
controls and the GZ procedure for thresholding (test statistics in He et al. and contrast scores in Clipper).
However, the test statistics used in He et al. are the two-sample ¢ statistic and the two-sample Wilcoxon
statistic, both of which are different from the minus and maximum contrast scores used in Clipper.
While we leave the optimization of contrast scores to future work, we note that the two-sample Wilcoxon
statistic, though being a valid contrast score for differential analysis, requires a large sample size to
achieve good power. For this reason, we did not consider it as a contrast score in the current Clipper
implementation, whose focus is on sample-sample-size high-throughout biological data.

Methods

Notations and assumptions

We first introduce notations and assumptions used in Clipper. While the differential analysis treats
the two conditions symmetric, the enrichment analysis requires one condition to be the experimental
condition (i.e., the condition of interest) and the other condition to be the background condition (i.e., the
negative control). For simplicity, we use the same set of notations for both analyses. For two random
vectors X = (X1,...,X,,)  and Y = (Y3,...,Y,,) ", we write X L Y if X; is independent of Y; for all
i=1,...,mandj=1,...,n. To avoid confusion, we use card(A) to denote the cardinality of a set A
and |c| to denote the absolute value of a scalar c. We define a V b := max(a, b).

Clipper only requires two inputs: the target FDR threshold ¢ € (0,1) and the input data. Regarding
the input data, we use d to denote the number of features with measurements under two conditions,
and we use m and n to denote the numbers of replicates under the two conditions. For each feature
j=1,....d weuse X; = (Xj1,...,X;;»)" € R and Y; = (Yj1,...,Y;n)" € R”, to denote its
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measurements under the two conditions, where R, denotes the set of non-negative real numbers. We
assume that all measurements are non-negative, as in the case of most high-throughput experiments.
(If this assumption does not hold, transformations can be applied to make data satisfy this assumption.)

Clipper has the following assumptions on the joint distribution of X4,..., X4, Y1,...,Y 4. Forj =
1,...,d, Clipper assumes that X;i, ..., X, are identically distributed, so are Yj1,...,Y,,. Let px; =
E[X;:] and py; = E[Y}1] denote the expected measurement of feature j under the two conditions,
respectively. Then conditioning on {ux;}9_, and {uy;}7_;,
X1, Xjm, Y51, -+, Y, are mutually independent ; (1)

X, L X, Y; LYrand X; LY, Vj,k=1,...,d

An enrichment analysis aims to identify interesting features with px; > py; (with X; and Y'; defined as
the measurements under the experimental and background conditions, respectively), while a differential
analysis aims to call interesting features with px; # py;. We define N := {j : ux; = py,} as the set
of uninteresting features and denote N := card(/N). In both analyses, Clipper further assumes that an
uninteresting feature j satisfies

X1, Xjm, Y1, -+, Yj, are identically distributed ,Vj € N (2)

Clipper consists of two main steps: construction and thresholding of contrast scores. First, Clipper
computes contrast scores, one per feature, as summary statistics that reflect the extent to which features
are interesting. Second, Clipper establishes a contrast-score cutoff and calls as discoveries the features
whose contrast scores exceed the cutoff.

To construct contrast scores, Clipper uses two summary statistics #(-,-) : R x RZ, — R to extract
data information regarding whether a feature is interesting or not:

(S () = & g 3)
("% (@, y) := max (2, ) - sign (& — §) . (4)

where x = (z1,...,2,)" € RY,, y = (Y1, yn) € RY, 7 = Zﬁlxi/m, y = Z?:l y;/n, and
sign(-) : R — {—1,0,1} with sign(z) = 1 if > 0, sign(z) = —1 if z < 0, and sign(z) = 0 otherwise.

Notably, other summary statistics can also be used to construct contrast scores. For example, an
alternative summary statistic is the ¢ statistic from the two-sample ¢ test:

T-p

tx,y) = . 5

- \/E?il(rm—f)“rZ?’:l(yz—?)? ©)
m+n—2

Then we introduce how Clipper works in three analysis tasks: the enrichment analysis with equal
numbers of replicates under two conditions (m = n), the enrichment analysis with different numbers of
replicates under two conditions (m # n), and the differential analysis (when m +n > 2).

Enrichment analysis with equal numbers of replicates (m = n)

Under the enrichment analysis, we assume that X; € R, and Y; € RZ are the measurements of
feature j, j = 1,...,d, under the experimental and background conditions with m and n replicates,
respectively. We start with the simple case when m = n. Clipper defines a contrast score C; of feature
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j in one of two ways:

Cj = t""(X,;,Y;) minus contrast score, (6)
or

C; :=t""(X;,Y;) maximum contrast score. (7)

Fig. 6a shows a cartoon illustration of contrast scores when m = n = 1. Accordingly, a large positive
value of C; bears evidence that px; > py;. Motivated by Barber and Candés [35], Clipper uses the
following procedure to control the FDR under the target level ¢ € (0, 1).

Definition 1 (Barber-Candeés (BC) procedure for thresholding contrast scores [35]) Given contrast
scores {C; }?:p C={|C;|: C;#0; j=1,...,d} is defined as the set of non-zero absolute values of
C;’s. The BC procedure finds a contrast-score cutoff TBC based on the target FDR threshold g € (0,1)

as

TBC .= min {t eC: card({y : G < —t}) +1 } (8)

<
card({j: C; >t v1 — 1

and outputs {j : C; > TB°} as discoveries.

Enrichment analysis with any humbers of replicates m and n

When m # n, Clipper constructs contrast scores via permutation of replicates across conditions. The
idea is that, after permutation, every feature becomes uninteresting and can serve as its own negative
control.

Definition 2 (Permutation) We define o as permutation, i.e., a bijection from the set {1,--- ,m + n}
onto itself, and we rewrite the data X 1,..., X 4,Y1,...,Y 4 into a matrix W :
Wll T Wlm Wl(m+1) to Wl(m+n) Xll o Xl'rn Yll c Yln
W= : : = . :
War -+ Wam Waimeny - Wagmn) Xar - Xam Yo - Yan

We then apply o to permute the columns of W and obtain

Wlo’(l) c Wlo’(m) Wlo('m+1) o Wla(m+n)
W, = . .

Wda‘(l) t de(m) WdU(m+1) o Wdo‘(7n+n)

from which we obtain the permuted measurements { (X 7,Y7) }jzl, where

P T
X5 = (Wioys-- s Wiom)
Y; = (Wja(m-‘rl)a ) VVj(T(’rrL+’rL))T : (9)

In the enrichment analysis, if two permutations ¢ and o’ satisfy that

{0(1)’ T 7U(m)} = {U/(l)’ T 70/(m)} )

then we define o and ¢’ to be in one equivalence class. That is, permutations in the same equivalence
class lead to the same division of m + n replicates (from the two conditions) into two groups with sizes
m and n. In total, there are ("'™) equivalence classes of permutations.
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We define oy as the identity permutation such that oq(i) =i forall i € {1,--- ,m + n}. In addition,
Clipper randomly samples % equivalence classes o1, . . ., o, with equal probabilities without replacement
from the other hyax := (m,jj”) — 1 equivalence classes (after excluding the equivalence class containing
0p). Note that h,,., is the maximum value h can take.

Clipper then obtains {(X{°,Y7°), (X7, Y{"),--- ,(th,th)}j:l, where (X, Y*) are the per-
muted measurements based on oy, £ = 0, 1,...,h. Then Clipper computes 77 := tmi““S(X;”,Y;”) to
indicate the degree of “interestingness” of feature j reflected by (X7, Y 7*). Note that Clipper chooses
tmmus instead of ¢™#* because empirical evidence shows that ™" |eads to better power. Sorting
{T7} 1, gives

Tj(o) > Tj(l) > > Tj(h) )

Then Clipper defines the contrast score of feature j, j = 1,...,d, in one of two ways:
(0) (1) ¢ 4(0) 4

T =T if T =1T7°

Cj = W %0 S minus contrast score, (10)
7 =15 otherwise

or
(0) i+ (0) _ o (1)

’Tj ‘ it 7 = 770 > T

Cj=1¢ 0 it 7% =71V maximum contrast score . (11)

- ’T;O) ‘ otherwise

The intuition behind the contrast scores is that, if C; < 0, then Tj(o) # T7°, which means that at least
one of T7,..., T7" (after random permutation) is greater than 777 calculated from the original data
(identity permutation), suggesting that feature j is likely an uninteresting feature in enrichment analysis.
Fig. 6b (right) shows a cartoon illustration of contrast scores when m = 2 and n = 1. Motivated by
Gimenez and Zou [62], we propose the following procedure for Clipper to control the FDR under the
target level ¢ € (0,1).

Definition 3 (Gimenez-Zou (GZ) procedure for thresholding contrast scores [62]) Given h € {1,

-, hmax } @nd contrast scores {Cj}.‘jzl, C={|C;|: C; #0; j=1,...,d} Is defined as the set of non-
zero absolute values of C;’s. The GZ procedure finds a contrast-score cutoff T% based on the target
FDR threshold q € (0,1) as:

(12)

1.1 PO, < —
TG .= min{tEC: ptpcard({j: 05 < —1)) gq}

card({j: C; > t}) v1

and outputs {j : C; > T%} as discoveries.

Differential analysis with m +n > 2

For differential analysis, Clipper also uses permutation to construct contrast scores. When m # n, the
equivalence classes of permutations are defined the same as for the enrichment analysis with m # n.
When m = n, there is a slight change in the definition of equivalence classes of permutations: if o and
o’ satisfy that

{o(1),--,o(m)} ={o'(1),--- o' (m)} or {o’(m +1),--- ,0'(2m)},

then we say that o and ¢’ are in one equivalence class. In total, there are hiota = (’”g”) (when
m # n) or (27;”)/2 (when m = n) equivalence classes of permutations. Hence, to have more than one
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equivalence class, we cannot perform differential analysis with m = n = 1; in other words, the total
number of replicates m + n must be at least 3.

Then Clipper randomly samples o4, ..., 0, with equal probabilities without replacement from the
hmax = htotal — 1 €quivalence classes that exclude the class containing oy, i.e., the identity permutation.
Note that Ay is the maximum value h can take. Next, Clipper computes 77 := |tmi““3(X;”,Yj"«) ,
where X7° and Y7* are the permuted data defined in (9), and it defines C; as the contrast score of
feature j, j = 1,...,d, in the same ways as in (10) or (11). Fig. 6b (left) shows a cartoon illustration of
contrast scores when m =2 andn = 1.

Same as in the enrichment analysis with m # n, Clipper also uses the GZ procedure [62] to set a
cutoff on contrast scores to control the FDR under the target level ¢ € (0,1).

Granted, when we use permutations to construct contrast scores in the GZ procedure, we can con-
vert contrast scores into permutation-based p-values (see Supp. S1.1.2). However, when the numbers
of replicates are small, the number of possible permutations is small, so permutation-based p-values
would have a low resolution (e.g., when m = 2 and n = 1, the number of non-identity permutations is
only 2). Hence, applying the BH procedure to the permutation-based p-values would result in almost
no power. Although Yekutieli and Benjamini proposed another thresholding procedure for permutation-
based p-values [66], it still requires the number of permutations to be large to obtain a reliable FDR
control. Furthermore, if we apply the SeqStep+ procedure by Barber and Candés [35] to permutation-
based p-values, it would be equivalent to our application of the GZ procedure to contrast scores (Supp.
Section S1.1.2).

For both differential and enrichment analyses, the two contrast scores (minus and maximum) can
both control the FDR. Based on the power comparison results in Supp. Section S3 and Supp. Figs. S22—
S25, Clipper has the following default choice of contrast score: for the enrichment analysis when two
conditions have the same number of replicates (“Enrichment analysis with equal numbers of replicates
(m = n)” in Methods), Clipper uses the BC procedure with the minus contrast score; for the enrichment
analysis when two conditions have different numbers of replicates (“Enrichment analysis with any num-
bers of replicates m and »n” in Methods) or the differential analysis (“Differential analysis with m +n > 2”
in Methods), Clipper uses the GZ procedure with maximum contrast score.

Generic FDR control methods

In our simulation analysis, we compared Clipper against generic FDR control methods including p-value-
based methods and local-fdr-based methods. Briefly, each p-value-based method is a combination of
a p-value calculation approach and a p-value thresholding procedure. We use either the “paired” or
“pooled” approach (see next paragraph) to calculate p-values of features and then threshold the p-
values using the BH procedure (Supp. Definition S1) or Storey’s qvalue procedure (Supp. Definition S2)
to make discoveries (Supp. Section S1.1). As a result, we have four p-value-based methods: BH-pair,
BH-pool, gvalue-pair, and gvalue-pool (Fig. 1b).

Regarding the existing p-value calculation approaches in bioinformatics tools, we categorize them
as “paired” or “pooled.” The paired approach has been widely used to detect DEGs and protein-binding
sites [1, 2, 4, 5]. It examines one feature at a time and compares the feature’s measurements between
two conditions using a statistical test. In contrast, the pooled approach is popular in proteomics for iden-
tifying peptide sequences from MS data [67]. For every feature, it defines a test statistic and estimates
a null distribution by pooling all features’ observed test statistic values under the background condition.
Finally, it calculates a p-value for every feature under the experimental condition based on the feature’s
observed test statistic and the null distribution.

In parallel to p-value-based methods, local-fdr-based methods estimate local fdrs of features and
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then threshold the local fdrs using the locfdr procedure (Supp. Definition S5) to make discoveries. The
estimation of local fdrs takes one of two approaches: (1) empirical null, which is estimated parametrically
from the test statistic values that are likely drawn from the null distribution, and (2) swapping null, which
is constructed by swapping measurements between experimental and background conditions. The
resulting two local-fdr-based-methods are referred to as locfdr-emp and locfdr-swap (Figs. 1b and 2).
Supp. Section S1 provides a detailed explanation of these generic methods and how we implemented
them in this work.

Specific to the p-value-based methods, for the paired approach, besides the ideal implementation
that uses the correct model to calculate p-values (BH-pair-correct and qvalue-pair-correct), we also
consider common mis-implementations. The first mis-implementations is misspecification of the dis-
tribution (BH-pair-mis and qvalue-pair-mis). An example is the detection of protein-binding sites from
ChlIP-seq data. A common assumption is that ChlP-seq read counts in a genomic region (i.e., a feature)
follow the Poisson distribution [1, 2], which implies that the counts have the variance equal to the mean.
However, if only two replicates are available, it is impossible to check whether this Poisson distribution
is reasonably specified. The second mis-implementation is the misspecification of a two-sample test
as a one-sample test (BH-pair-2as1 and gvalue-pair-2as1), which ignores the sampling randomness of
replicates under one condition. This issue is implicit but widespread in bioinformatics methods [1, 68].

To summarize, we compared Clipper against the following implementations of generic FDR control
methods:

e BH-pool or qvalue-pool: p-values calculated by the pooled approach and thresholded by the BH
or gvalue procedure.

e BH-pair-correct or qvalue-pair-correct: p-values calculated by the paired approach with the
correct model specification and thresholded by the BH or qvalue procedure.

e BH-pair-mis or qvalue-pair-mis: p-values calculated by the paired approach with a misspecified
model and thresholded by the BH or qvalue procedure.

e BH-pair-2as1 or qvalue-pair-2as1: p-values calculated by the paired approach that misformu-
lates a two-sample test as a one-sample test (2as1) and thresholded by the BH or qvalue proce-
dure.

e locfdr-emp: local fdrs calculated by the empirical null approach and thresholded by the locfdr
procedure.

¢ locfdr-swap: local fdrs calculated by the swapping approach and thresholded by the locfdr pro-
cedure.

Real datasets

e The H3K4me3 ChlP-seq dataset with one experimental sample (GEO accession number GSM733708)
and two control samples (GEO accession number GSM733742) from the cell line GM12878 is
available at ftp://hgdownload.cse.ucsc.edu/goldenPath/hgl9/encodeDCC/wgEncodeBroadHistone/,
with the experimental sample under the filename wgEncodeBroadHistoneGm12878H3k4me3StdAlnRepl . bam
and the two control samples under the filenames wgEncodeBroadHistoneGm12878ControlStdAlnRepl.bam
and wgEncodeBroadHistoneGm12878ControlStdAlnRep2.bam. The processed dataset is available
athttps://zenodo.org/record/4404882.

e The MS benchmark dataset will be published in a future manuscript. Interested readers should
contact Dr. Leo Wang at lewang@coh.org.
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e The human monocyte RNA-seq dataset is available at https://www.ncbi.nlm.nih.gov/Traces/
study/7acc=srp082682. The dataset includes 17 samples of classical monocytes and 17 samples
of non-classical monocytes, and it is converted to a sample-by-gene count matrix by R package
GenomicFeatures (v 1.40.1). The processed count matrix is available at https://zenodo.org/
record/4404882.

e The Hi-C dataset from the cell line GM12878 is available at https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE63525. The count matrix is under the filename
GSE63525_GM12878_primary_intrachromosomal contact matrices.tar.gz, and the matrix cor-
responding to Chromosome 1 and bin width 1MB is used. The processed dataset is available at
https://zenodo.org/record/4404882.

Software packages used in this study

e p.adjust R function (in R package stats v 4.0.2 with default arguments) [14]: used for BH-pool,
BH-pair-correct, BH-pair-mis, and BH-pair-2as1.

e qvalue R package (v 2.20.0 with default arguments) [69]: used for qvalue-pool, gqvalue-pair-correct,
gvalue-pair-mis, and qvalue-pair-2as1.

e locfdr R package (v 1.1-8 with default arguments) [70]: used for locfdr-emp.

e MACS2 software package (v 2.2.6 with default settings) [1]: available at https://github.com/
macs3-project/MACS/releases/tag/v2.2.6.

e ChlPulate software package [45]: available at https://github.com/vishakad/chipulate.

e HOMER software package (findPeaks v 3.1.9.2 with default settings) [2]: available at https://
www.bcgsc.ca/platform/bioinfo/software/findpeaks/releases/3.1.9.2/findpeaks3-1-9-2-tar.

gz.

e SEQUEST in Proteome Discoverer (v 2.3.0.523 with default settings) [3]: commercial software
by ThermoScientific.

e edgeR R package (v 3.30.0 with default arguments) [4]: available at https://www.bioconductor.
org/packages/release/bioc/html/edgeR.html.

e DESeq2 R package (v 1.28.1 with default arguments) [5]: available at http://bioconductor.org/
packages/release/bioc/html/DESeq2.html.

¢ limma R package (v 3.44.3 with default arguments) [10]: available at https://www.bioconductor.
org/packages/release/bioc/html/limma.html.

e MAST R package (v 1.14.0 with default arguments) [55]: available at https://www.bioconductor.
org/packages/release/bioc/html/MAST.html.

e monocle3 R package (v 0.2.3.0 with default arguments) [56]: available at https://www.bioconductor.
org/packages/release/bioc/html/monocle3.html.

e MultiHiCcompare R package (v 1.6.0 with default arguments) [11]: available at https://bioconductor.
org/packages/release/bioc/html/multiHiCcompare.html.

¢ diffHic R package (v 1.20.0 with default arguments) [13]: available at https://www.bioconductor.
org/packages/release/bioc/html/diffHic.html.
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e FIND R package (v 0.99 with default arguments) [12]: available at https://bitbucket.org/

nadhir/find/src/master/.

Software, code, and video tutorial

e The Clipper R package is available at https://github. com/JSB-UCLA/Clipper/.

e The code and processed data for reproducing the figures are available at https://zenodo.org/
record/4404882.

¢ A video introduction of Clipper is available at https://youtu.be/-GXyHiJMpLo.
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Figure 1: High-throughput omics data analyses and generic FDR control methods. (a) lllustration of four
common high-throughput omics data analyses: peak calling from ChlP-seq data, peptide identification from MS
data, DEG analysis from RNA-seq data, and DIR analysis from Hi-C data. In these four analyses, the corresponding
features are genomic regions (yellow intervals), peptide-spectrum matches (PSMs; a pair of a mass spectrum and a
peptide sequence), genes (columns in the heatmaps), and chromatin interacting regions (entries in the heatmaps).
(b) lllustration of Clipper and five generic FDR control methods: BH-pair (and gvalue-pair), BH-pool (and qvalue-
pool), and locfdr. The input data are d features with m and n repeated measurements under the experimental and
background conditions, respectively. Clipper computes a contrast score for each feature based on the feature’s m
and n measurements, decides a contrast-score cutoff, and calls the features with contrast scores above the cutoff
as discoveries. (This illustration is Clipper for enrichment analysis with m = n.) BH-pair or qvalue-pair computes a
p-value for each feature based on the feature’s m and n measurements, sets a p-value cutoff, and calls the features
with p-values below the cutoff as discoveries. BH-pool or gvalue-pool constructs a null distribution from the d
features’ average (across the n replicates) measurements under the background condition, calculates a p-value for
each feature based on the null distribution and the feature’s average (across the m replicates) measurements under
the experimental condition, sets a p-value cutoff, and calls the features with p-values below the cutoff as discoveries.
The locfdr method computes a summary statistic for each feature based on the feature’s m and n measurements,
estimates the empirical null distribution and the empirical distribution of the statistic across features, computes a
local fdr for each feature, sets a local fdr cutoff, and calls the features with local fdr below the cutoff as discoveries.
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Figure 2: Comparison of Clipper with generic FDR control methods in terms of their FDR control and power
in six example simulation studies. (a) 1vs1 enrichment analysis with 1000 features generated from the Gaussian
distribution with a homogeneous background; (b) 1vs1 enrichment analysis with 10,000 features generated from
the Gaussian distribution with a heterogeneous background; (c) 2vs1 enrichment analysis with 10,000 features
generated from the Poisson distribution with a heterogeneous background; (d) 3vs3 enrichment analysis with 10,000
features generated from the Gaussian distribution without outliers and with a heterogeneous background; (e) 3vs3
enrichment analysis with 10,000 features generated from the Gaussian distribution without outliers and with a
heterogeneous background; (f) 3vs3 differential analysis with 10,000 features generated from the negative binomial
distribution with a heterogeneous background. At target FDR thresholds ¢ € {1%,2%, --- ,10%}, each method’s
actual FDRs and power are approximated by the averages of false discovery proportions (see Eq. (S14) in the
Supplementary) and power evaluated on 200 simulated datasets. In each panel, the top row shows each method’s
actual FDRs at target FDR thresholds: whenever the actual FDR is larger than the target FDR (the solid line is
higher than the dashed line), FDR control is failed; the bottom row shows each method’s actual FDRs and power
at the target FDR threshold ¢ = 5%: whenever the actual FDR is greater than ¢ (on the right of the vertical dashed
line), FDR control is failed. Under the FDR control, the larger the power, the better. Note that BH-pair-correct is
not included in (a)—(c) because it is impossible to correctly specify the model with only one replicate per condition;
locfdr-swap is not included in (a)—(b) because it is inapplicable to the 1vs1 design.
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Figure 3: Comparison of Clipper and two popular DEG identification methods—edgeR and DESeq2—in
DEG analysis on semi-synthetic bulk RNA-seq data (generated from human monocyte real data using sim-
ulation strategy 2 in Supp. Section S6.3). (a) FDR control, power given the same target FDR, and power given
the same actual FDR. (b) Ranking consistency of the true DEGs among the top 100 DEGs identified by each
method. The consistency is defined between the genes’ ranking based on edgeR/DESeq2’s p-values or Clipper’s
contrast scores and their ranking based on true expression fold changes. (c) Reproducibility between two semi-
synthetic datasets as technical replicates. Three reproducibility criteria are used: the IDR, Pearson correlation, and
Spearman correalation. Each criterion is calculated for edgeR/DESeq2’s p-values or Clipper’s contrast scores on
the two semi-synthetic datasets. Among the three methods, only Clipper controls the FDR, and Clipper achieves
the highest power, the best gene ranking consistency, and the best reproducibility.
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Figure 4: Comparison of Clipper and popular bioinformatics methods in terms of FDR control and power.
(a) peaking calling analysis on semi-synthetic ChIP-seq data; (b) peptide identification on real proteomics data;
(c) DEG analysis on synthetic 10x Genomics scRNA-seq data; (d) DIR analysis on semi-synthetic Hi-C data. In
all four panels, the target FDR threshold ¢ ranges from 1% to 10%. In the “Actual FDR vs. Target FDR” plot of
each panel, points above the dashed diagonal line indicate failed FDR control; when this happens, the power of the
corresponding methods is not shown, including HOMER in (a), MACS2 for target FDR less than 5% in (a), edgeR
in (c), and multiHICcompare, and FIND in (d). In all four applications, Clipper controls the FDR while maintaining
high power, demonstrating Clipper’s broad applicability in high-throughput data analyses.
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Figure 5: Application of Clipper, DESeq2, and edgeR to identifying DEGs from the classical and non-
classical human monocyte dataset. (a) A Venn diagram showing the overlaps of the identified DEGs (at the FDR
threshold ¢ = 5%) by the three DE methods. (b) Numbers of GO terms enriched (with enrichment g-values < 0.01)
in the DEGs found by Clipper, DESeg2 and edgeR (column 3), or in the DEGs specifically identified by Clipper
or DESeqg2/edgeR in the pairwise comparison between Clipper and DESeq2 (column 1) or between Clipper and
edgeR (column 2). More GO terms are enriched in the DEGs identified by Clipper than in those identified by edgeR
or DESeq2. (¢) Enrichment g-values of four GO terms that are found enriched (with enrichment g-values < 0.01) in
all three sets of identified DEGs, one set per method. All the four terms are most enriched in the DEGs identified by
Clipper. (d) A scatterplot of the claimed FDR of Clipper against that of edgeR for all the DEGs identified by Clipper,
edgeR or DESeq2. The 46 DEGs only identified by Clipper are highlighted with red.
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Figure 6: lllustration of the construction of contrast scores. (a) 1vs1 enrichment analysis; (b) 2vs1 differential
analysis (left) or enrichment analysis (right). In each panel, an interesting feature (top) and an uninteresting fea-
ture (bottom) are plotted for contrast; both features have measurements under the experimental and background
conditions. In (a), each feature’s measurements are summarized into a maximum (max) contrast score or a minus
contrast score. In (b), each feature’s measurements are permuted across the two conditions, resulting in two sets of
permuted measurements. Then for each feature, we calculate its degrees of interestingness (as the difference that
equals the average of experimental measurements minus the average of background measurements (in enrichment
analysis; right), or the absolute value of the difference (in differential analysis; left)) from its original measurements
and permuted measurements, respectively. Finally, we summarize each feature’s degrees of interestingness into a
maximum (max) contrast score or a minus contrast score.
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Supplementary Material

S1 Review of generic FDR control methods

To facilitate our discussion, we introduce the notations for data. For feature j = 1,...,d, we use

X; =X, Xjm)" e R and Y; = (Yj1,....Y;n)" € RZ, to denote its measurements under
the experimental and background conditions, respectively. We assume that X, ..., X;,, are identically

distributed, so are Yji,...,Y),. Let ux; = E[X;1] and py; = E[Y;;] denote the expected measure-
ment of feature j under the two conditions, respectively. Then we denote by X; the sample average of
X1, ,X;m and by Y; the sample average of Y;1,- -+, Yjy.

S1.1  P-value-based methods

Here we describe the details of p-value-based FDR control methods, including BH-pair, BH-pool, qvalue-
pair, and gvalue-pool. Each of these four methods first computes p-values using either the pooled ap-
proach or the paired approach, and it then relies on the BH procedure [1] or Storey’s qvalue procedure
[2] for FDR control. In short, every p-value-based method is a combination of a p-value calculation ap-
proach and a p-value thresholding procedure. Below we introduce two p-value calculation approaches
(paired and pooled) and two p-value thresholding procedures (BH and Storey’s gvalue).

S§1.1.1 P-value calculation approaches

The paired approach. The paired approach examines one feature at a time and compares its mea-
surements between two conditions. Besides the ideal implementation, i.e., the correct paired approach
that uses the correct model to calculate p-values, we also include commonly-used flawed implementa-
tions that either misspecify the distribution, i.e., the misspecified paired approach, or misformulate the
two-sample test as a one-sample test, i.e., the 2as1 paired approach.

Here we use the negative binomial distribution as an example to demonstrate the ideas of the correct,
misspecified, and 2as1 paried approaches. Suppose that for each feature j, its measurements under
each condition follow a negative binomial distribution, and the two distributions under the two conditions
have the same dispersion; thatis, X1, -, X;m " NB (tx;,05) ;Y51,- .Y, " NB (1y4,0;), where
6, is the dispersion parameter such that the variance Var(X;) = px; + 015 ;-

e The correct paired approach assumes that the two negative binomial distributions have the same
dispersion parameter 6;, and it uses the two-sample test for the null hypothesis Hy : ux; = py;
against the alternative hypothesis H; : ux; > py; (enrichment analysis) or Hy : px; # pyj
(differential analysis).

e The misspecified paired approach misspecifies the negative binomial distribution as Poisson, and
it uses the two-sample test for the null hypothesis Hj : nx; = py; against the alternative hypoth-
esis Hy : px; > py; (enrichment analysis) or H; : px; # py; (differential analysis).

e The 2as1 paired approach bluntly assumes yy; = Y;, and it performs the one-sample test based
on Xji,...,X;m for the null hypotheses Hy : ux; = Y; against the alternative hypothesis H; :
pxj > Y; (enrichment analysis) or H; : pux; # Y; (differential analysis).

The pooled approach. The pooled approach pools all features’ average measurements under the
background condition {Yj}j:l to form a null distribution, and it calculates a p-value for each feature j
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by comparing X to the null distribution. Specifically, in enrichment analysis, the p-value of feature j is
computed as: o
card ({k‘ 1Y, > Xj})
bj = d :

In differential analysis, the p-value of feature j is computed as:

p; = 2-min (card ({k jk > X;1}) 7 card ({k :jk < Xj})) .
S$1.1.2 P-value thresholding procedures for FDR control

Definition S1 (BH procedure for thresholding p-values [1]) The features’ p-valuesp., ..., pq are sorted
in an ascending orderp(y < pe2) < ... < pa). Given the target FDR threshold q, the Benjamini-Hochberg
(BH) procedure finds a p-value cutoff TBH as

TBH

Q.

= D(k)s Wherek::max{j:1,...,d:p(j)S q}. (S1)

Then BH outputs {j : p; < T®"} as discoveries.

Definition S2 (Storey’s qvalue procedure for thresholding p-values [2]) The features’ p-valuesp,...,pq
are sorted in an ascending order p1y < pi2) < ... < pq)- Let 7o denote an estimate of the probability
P(the i-th feature is uninteresting) (see Storey [2] for details). Storey’s qvalue procedure defines the

qg-value for p(qy as
. 7o - d - P(a)
qa\p =
( (d)) card ({k Pk < P(a)

= 70 * P(d) -
}) (d)

Thenforj=d—1,d-2,...,1, the g-value for p;) is defined as:

A . A o - d'p(j)
G(pesy) :==min | ¢(piv1))s .
) ( G+ Card ({k ipr < p(j)})

Then Storey’s qvalue procedure outputs {j : 4(p;) < q} as discoveries.

We use function qvalue from R package qvalue (v 2.20.0; with default estimate 7) to calculate
g-values.

Definition S3 (SeqStep+ procedure for thresholding p-values [3]) Define Hg as the null hypothesis
for feature j and p; as the p-value for Hj, j = 1,...,d. Order the null hypotheses H}, ..., H¢ from
the most to the least promising (here more promising means more likely to be interesting) and denote
the resulting null hypotheses and p-values as Hy", ..., HS" and pyy,...,pw. Given any target FDR
threshold q, a pre-specified constant s € (0,1), and subset K C {1,...,d}, the SeqStep+ procedure
finds a cutoff j as

(S2)

A d ({& k<i: _
j:=max{j€l€;1+oar ({ e, k< p(k)>s)}<1 Sq}

card({k‘elC,kgj:p(k)gs)}vl - s

Then SeqStep+ rejects {Héj ), Py) <8, j < j, je IC}. If the orders of the null hypotheses are inde-
pendent of the p-values, the SeqStep+ procedure ensures FDR control.

The GZ procedure (Definition 3) used in Clipper is a special case of the SeqStep+ procedure with
s = 1/(h+1). Recall that given the number of non-identical permutations h € {1, - , hmax } and contrast
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scores {C;}9_,, the GZ procedure sorts {|C;|}?_, in a decreasing order:

ICyl > |1C)l = --- > |Clay] .- (S3)

To see the connection between the GZ procedure and SeqStep+, we consider the null hypothesis for
the j-th ordered feature, j = 1,...,d, as Hé]) D ux(j) = My (;) and define the corresponding p-value

Py) = MhTiff) where r(T(‘J%) is the rank of T(‘;(; in {T(‘Jﬁ;, - ,Tég’} in a descending order. We also define
K:={j=1,...,d:C; # 0} as the subset of features with non-zero C;’s. Finally, we input the p-values,
null hypothesis orders in (S3), s = 1/(h + 1), ¢ and K into the SeqStep+ procedure, and we obtain the
GZ procedure.

The BC procedure (Definition 1) is a further special case with & = 1, p(;) == (1(C;) > 0) + 1) /2,

andC:={j=1,...,d:C; #0}.

S1.2 Local-fdr-based methods

The FDR is statistical criterion that ensures the reliability of discoveries as a whole. In contrast, the
local fdr focuses on the reliability of each discovery. The definition of the local fdr relies on some pre-
computed summary statistics z; for feature j, j = 1,...,d. In the calculation of local fdr, {z1,..., z4}
are assumed to be realizations of an abstract random variable Z that represents any feature. Let pg
or p; denote the prior probability that any feature is uninteresting or interesting, with pg + p; = 1. Let
fo(2) := P(Z = z| uninteresting ) or fi(z) := P(Z = z| interesting ) denote the conditional probability
density of Z at z given that Z represents an uninteresting or interesting feature. Thus by Bayes’ theorem,
the posterior probability of any feature being uninteresting given its summary statistic Z = z is

P(uninteresting | Z = z) = po fo(2)/f(z), (S4)

where f(z) := pofo(2) + p1f1(2) is the marginal probability density of Z. Accordingly, the local fdr of
feature j is defined as follows.

Definition S4 (Local fdr [4]) Given notations defined above, the local fdr of feature j is defined as
local-fdr; := fo(z;)/f(z;).

Because py < 1, local-fdr; is an upper bound of the posterior probability of feature j being uninteresting
given its summary statistic z;, defined in (S4).

Note that another definition of the local fdr is the posterior probability P(uninteresting | z) in (S4) [5].
Although this other definition is more reasonable, we do not use it but choose Definition S4 because
the estimation of p is ususally difficult. Another reason is that uninteresting features are the dominant
majority in high-throughput biological data, so p, is often close to 1.

We define local-fdr-based methods as a type of FDR control methods by thresholding local fdrs of
features under the target FDR threshold ¢. Although the local fdr is different from FDR, it has been
shown that thresholding the local fdrs at ¢ will approximately control the FDR under ¢ [4]. This makes
local-fdr-based methods competitors against Clipper and p-value-based methods.

Every local-fdr-based method is a combination of a local fdr calculation approach and a local fdr
thresholding procedure. Below we introduce two local fdr calculation approaches (empirical null and
swapping) and one local fdr thresholding procedure. After the combination, we have two local-fdr-based
methods: locfdr-emp and locfdr-swap.
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S§1.2.1 Local fdr calculation approaches

With zq,..., 24, the calculation of local fdr defined in Definition S4 requires the estimation of f, and
f, two probability densities. f is estimated by nonparametric density estimation, and f; is estimated
by either the empirical null approach [4] or the swapping approach, which shuffles replicates between
conditions [5]. With the estimated f and f,, the estimated local fdr of feature j is

local-fdr; := fo(z;)/f (). (S5)

The empirical null approach. This approach assumes a parametric distribution, typically the Gaussian
distribution, to estimate f,. Then with the density estimate f, the local fdr is estimated for each feature
j. The implementation of this approach depends on the numbers of replicates.

¢ In 1vs1 enrichment and differential analyses, we define z; as
D .
Zj = : y J — s

where Dj = le — Y}'l and D = Z?:l Dj/d

¢ In 2vs1 enrichment and differential analyses, we define z; as

where s3; = 377 | (X — X;)2

¢ In mvsn enrichment and differential analyses with m,n > 2, we define z; as the two-sample
t-statistic with unequal variances:

XY
Zj = s
s2 52 .
X5 oy %y
m n

where 3, = 15 Y7 (X — X;)? and 53, = 245 >0 (Y — Y;)? are the sample variances of
feature j under the experimental and background conditions.

Then {m‘j}?zl are estimated from {z;}4_, by function locfdr in R package locfdr (v 1.1-8; with
default arguments).
The swapping approach. This approach swaps [m/2] replicates under the experimental condition
with [n/2] replicates under the background condition. Then it calculates the summary statistic for each
feature on the swapped data, obtaining zi,...,2}. Finally, it estimates f, and f by applying kernel
density estimation to 21,...,2} and z1,..., zq, respectively (by function kde in R package ks). With fo
and f, {mj ¢_, are calculated by Definition S4.

The implementation of this approach depends on the numbers of replicates. Below are three special
cases included in this work.

e In 1vs1 enrichment and differential analyses, the swapping approach is inapplicable because
interesting features would not become uninteresting after the swapping.
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e In 2vs1 enrichment and differential analyses, we define z; and 2/ as

_ X+ X
Z]— 9 — 141,
. Xj+ Y
STy T A

e In 3vs3 enrichment and differential analyses with, we define z; and 2/ as

X1+ Xjo . Y1 +Y;

T 2
p_ X+ Y Xp+ Y
z; = 5 — 5 .

Then we apply kernel density estimation to {zj};l:l and {z;,}d:1 to obtain f and f,, respectively. By

j
(S5), we calculate {locfdr; }4_,.

S$1.2.2 The local fdr thresholding procedure

Definition S5 (locfdr procedure) Given the local fdr estimates {/oaﬁdrj};?:l and the target FDR
threshold q, the locfdr procedure outputs {j = 1,...,d : local-fdr; < q} as discoveries.

S2 The Clipper methodology

Clipper is a flexible framework that reliably controls the FDR without using p-values in high-throughput
data analysis with two conditions. Clipper has two functionalities: (l) enrichment analysis, which iden-
tifies the “interesting” features that have higher expected measurements (i.e., true signals) under the
experimental condition than the background, a.k.a. negative control condition (if the goal is to identify
the interesting features with smaller expected measurements under the experimental condition, enrich-
ment analysis can be applied after the values are negated); (ll) differential analysis, which identifies the
interesting features that have different expected measurements between the two conditions. For both
functionalities, uninteresting features are defined as those that have equal expected measurements
under the two conditions.

Clipper only relies on two fundamental statistical assumptions of biological data analysis: (1) mea-
surement errors (i.e., differences between measurements and their expectations, with the expectations
including biological signals and batch effects) are independent across all features and experiments;
(2) every uninteresting feature has measurement errors identically distributed across all experiments.
These two assumptions are used in almost all bioinformatics tools and commonly referred to as the
“measurement model” in statistical genomics [6].

In the following subsections, we will first introduce notations and assumptions used in Clipper. Then
we will detail how Clipper works and discuss its theoretical guarantee in three analysis tasks: the
enrichment analysis with equal numbers of replicates under two conditions (m = n), the enrichment
analysis with different numbers of replicates under two conditions (m # n), and the differential analysis
(when m +n > 2)..

S2.1 Notations and assumptions

To facilitate our discussion, we first introduce the following mathematical notations. For two random
vectors X = (X1,...,X,,)"andY = (Y1,...,Y,) ", or two sets of random variables X = {X1,..., X,,,}
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and Y = {Y1,...,Y,},wewrite X L Y orX LY ifX,isindependent of Y; foralli = 1,...,m and
j=1,...,n. To avoid confusion, we use card(A) to denote the cardinality of a set A and |c| to denote
the absolute value of a scalar ¢. We define a V b := max(a, b).

Clipper only requires two inputs: the target FDR threshold ¢ € (0,1) and the input data. Regarding
the input data, we use d to denote the number of features with measurements under two conditions,
and we use m and n to denote the numbers of replicates under the two conditions. For each feature
j=1...,d weuse X; = (X;1,....,X;m)" € R, andY; = (Yj1,...,Y;)" € RZ, to denote its
measurements under the two conditions, where R, denotes the set of non-negative real numbers. We
assume that all measurements are non-negative, as in the case of most high-throughput experiments.
(If this assumption does not hold, transformations can be applied to make data satisfy this assumption.)

Clipper has the following assumptions on the joint distribution of X4,..., X4, Y4,..., Y. Forj =
1,...,d, Clipper assumes that X;i, ..., X, are identically distributed, so are Yj1,...,Y,. Let ux; =
E[X;:] and py; = E[Y}1] denote the expected measurement of feature j under the two conditions,
respectively. Then conditioning on {ux;}9_, and {uy;}9_;,
X1, Xjm, Y1, -+, Yj, are mutually independent ; (S6)

X; L X, Y; LYrand X; LY, Vj,k=1,...,d

An enrichment analysis aims to identify interesting features with px; > py; (with X ; and Y'; defined
as the measurements under the experimental and background conditions, respectively), while a differ-
ential analysis aims to call interesting features with yx; # py ;. We define NV := {j : ux; = py;} as the
set of uninteresting features and denote N := card(N). In both analyses, Clipper further assumes that
an uninteresting feature j satisfies

X1, s Xjm, Y1, , Y}, are identically distributed ,Vj € V. (87)

Clipper consists of two main steps: construction and thresholding of contrast scores. First, Clipper
computes contrast scores, one per feature, as summary statistics that reflect the extent to which features
are interesting. Second, Clipper establishes a contrast-score cutoff and calls as discoveries the features
whose contrast scores exceed the cutoff.

To construct contrast scores, Clipper uses two summary statistics ¢(-,-) : R x RZ; — R to extract
data information regarding whether a feature is interesting or not:

S (2, y) =T - g (S8)
" (x,y) := max (z,y) - sign (z — g) , (S9)

I

where £ = (z1,...,2,)" € RT”, y = (Y1, yn) | € RZ,, & = Y xi/m, § = Y.i" yi/n, and
sign(-) : R — {—1,0,1} with sign(z) = 1 if > 0, sign(z) = —1 if z < 0, and sign(z) = 0 otherwise.
Notably, other summary statistics can also be used to construct contrast scores. For example, an
alternative summary statistic is the ¢ statistic from the two-sample ¢ test:
-y

tt ,Y) = .
- \/Zﬁl(xi*fVJrZ?:l(yi*?V
m+n—2
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S2.2 Enrichment analysis with equal numbers of replicates (m = n)

Under the enrichment analysis, we assume that X; € R, and Y; € RZ are the measurements of
feature j, j = 1,...,d, under the experimental and background conditions with m and n replicates,
respectively. We start with the simple case when m = n. Clipper defines a contrast score C; of feature
j in one of two ways:

Cj = t""(X ;.Y ) minus contrast score, (S10)
or

Cj :=t""(X;,Y;) maximum contrast score . (S11)

Accordingly, a large positive value of C; bears evidence that nx; > ny;. Motivated by Barber and
Candes [3] and Arias-Castro and Chen [7], Clipper proposes the following BC procedure to control the
FDR under the target level ¢ € (0, 1).

Definition S6 (Barber-Candés (BC) procedure for thresholding contrast scores [3]) Given contrast
scores {C} }jzl, C={|C;|:C; #0; j=1,...,d} is defined as the set of non-zero absolute values of
C;’s. The BC procedure finds a contrast-score cutoff TBC based on the target FDR threshold q € (0,1)

as
card({j : C; < —t}) +1
card((j:C, =)V = q}

TBC .= min {t eC: (S12)

and outputs {j : C; > TB} as discoveries.

Theorem 1 Suppose that the input data satisfy the Clipper assumptions (S6)—S7) and m = n. Then
for any q € (0,1) and either definition of constrast scores in (S10) or (S11), the contrast-score cutoff
TBC found by the BC procedure guarantees that the discoveries have the FDR under q:

FDR =E

card ({j eEN:Cj ZTBC}) -
card({j: C; >TBCv1 | =D

where N' = {j : ux,; = py,} denotes the set of uninteresting features.

The proof of Theorem 1 (Supp. Section S8) requires two key ingredients: Lemma 1, which states
important properties of contrast scores, and Lemma 2 from [8], which states a property of a Bernoulli
process with independent but not necessarily identically distributed random variables. The cutoff T8¢
can be viewed as a stopping time of a Bernoulli process.

Lemma 1 Suppose that the input data that satisfy the Clipper assumptions (S6)—S7) and m = n, and
that Clipper constructs contrast scores {C; }j:l based on (S10) or (S11). Denote S; = sign (C;) €
{-1,0,1}. Then {S; }?:1 satisfy the following properties:

(a) Si,...,Sq are mutually independent ;
(b) P(S; =1)=P(S; =—1) forall j € N;
(c) {Sj}jeN 1LC.

Notably, Lemma 1(a) can be relaxed as P(S; = 1) < P(S; = —1) for all j € A'. Then Lemma 2 still
holds, and so does Theorem 1, making Clipper still have theoretical FDR control.
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Lemma 2 Suppose that Z., . .., Z, are independent with Z; ~ Bernoulli(p;), and min; p; > p > 0. Let
J be a stopping time in reverse time with respect to the filtration {F;}, where

Fi=o({(Z1+-+Z;), Zjs1, -+, Za}) (S13)
with o(-) denoting a c-algebra. Then

. 1+J <,
1+Z1 4+ 2y

Here we give a brief intuition about how Lemma 2 bridges Lemma 1 and Theorem 1 for FDR control.
First we note that the false discovery proportion (FDP), whose expectation is the FDR, satisfies

card ({] eEN:C; > TBC})

Fbp:= card ({j : C; > TBC}) v 1 (S14)
_ card({je./\/':CjoBC}) 'card({je./\/‘:ng—TBc})—l—l (515)
card({j e N : C; < —TBC}) +1 card ({j : C; > TBC}) v 1
card({jE./\/’:C’joBc}) .card({j:ng—TBc})—l—l (516)
Tcard({jeN:C; <-TBCH+1 card({j:C; >TBC})Vv1
card ({] eEN:C; > TBC}) (517)

Tcard{jeN:C; < -TBC}H +1 0

where the last inequality follows from the definition of TB¢ (S12).

By its definition, if TBC exists, it is positive. This implies that Clipper would never call the features
with C; = 0 as discoveries. Here we sketch the idea of proving Theorem 1 by considering a simplified
case where C is fixed instead of being random; that is, we assume the features with non-zero contrast
scores to be known. Then, without loss of generality, we assume C = {1,...,d}. Then we order the
absolute values of uninteresting features’ contrast scores, i.e., elements in {|C;| : j € N}, from the
largest to the smallest, denoted by [Cy)| > |C(g)| > -+ > [Ci|. Let J = 37, 1(|C;| > TB), the
number of uninteresting features whose contrast scores have absolute values no less than 7€, When
J>0,|Cqy| = >|C.y| > TBC. Define Z, = 1 (Cy) <0), k=1,...,N. Then for each order k, the
following holds

C(k.) ZTBC<:> |C(k)’ ZTBC and C(k.) >0<«<= k< Jand Z =0;

C(k) < —TB¢ — ’C(k)’ > TB€ and C(k) <0< k<Jand Z, =1.

Then the upper bound of FDP becomes

card((jEN G 2T S 1(Cw2T)
card({j e N': C; < —TBC}) +1 1+ 25:1 1 (C(k) < —TBC)
_ Zi:l 1 (Cu = T7°) g

1‘*‘22:1]1(0%) < —TEC)
1-Z)++(-2)
U+ 21+ + 2y

14+ J
= -1)-q.
1+Zy+--+ 2,

By Lemma 1(a)—(b), Z, "~" Bernoulli(0.5), which together with Lemma 1(c) satisfy the condition of
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Lemma 2 and make p = 0.5. Then by Lemma 2, we have

1+J

FDR = E[FDP] < E
R ey ey

—1l-q<(p ' =1)-qg=q,

which is the statement of Theorem 1. The complete proof of Theorem 1 is in Supp. Section S8.

S§2.2.1 An optional, heuristic fix if the BC procedure makes no discoveries

Although the BC procedure has theoretical guarantee of FDR control, it lacks power when the num-
ber of replicates m = n, the target FDR threshold ¢, and the number of features d are all small (e.g.,
m=mn =1,¢ = 0.01 and d = 1000 in Fig. S22). As a result, the BC procedure may lead to no dis-
coveries. In that case, Clipper implements a heuristic fix—an approximate p-value Benjamini-Hochberg
(aBH) procedure—to increase the power. The aBH procedure constructs an empirical null distribution of
contrast scores by additionally assuming that uninteresting features’ contrast scores follow a symmetric
distribution around zero; it then computes approximate p-values of features based on the empirical null
distribution, and finally it uses the BH procedure [1] to threshold the approximate p-values.

Definition S7 (The aBH procedure) Given contrast scores {C; }?:1, an empirical null distribution is
definedon& :={C;:C; <0;5=1,...,d}U{-C;: C; <0;5=1,...,d}. The aBH procedure defines
the approximate p-value of feature j as

Then it applies the BH procedure with the target FDR threshold q to {p; };1:1 to call discoveries.

S2.3 Enrichment analysis with any numbers of replicates m and »

When m # n, the BC procedure cannot guarantee FDR control because Lemma 1 no longer holds. To
control the FDR in a more general setting (m = n or m # n), Clipper constructs contrast scores via
permutation of replicates across conditions. The idea is that, after permutation, every feature becomes
uninteresting and can serve as its own negative control.

Definition S8 (Permutation) We define o as permutation, i.e., a bijection from the set {1,--- ,m + n}
onto itself, and we rewrite the data X 1,..., X 4,Y1,...,Y 4 into a matrix W:
Wll T Wlm Wl(m+1) o W1(77L+7L) Xll e le Yll te Yln
W= : : = . :
War -+ Wam Waime)y - Wagman) X1 - Xam Yo -+ Yan

We then apply o to permute the columns of W and obtain

Wla(l) e Wla(m) Wl(r(m+1) e Wla(7r1,+n)

Wdo’(l) t Wdo’(m) Wdo’(erl) T Wdo‘(m+n)
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from which we obtain the permuted measurements {(X?,Y?) }j: ,» Where

o T
X7 = (Wioqys s Wiotm))

- T
Y7 = (Wiomin) -+ Wio(mn)

(518)

In the enrichment analysis, if two permutations o and ¢’ satisfy that

then we define o and ¢’ to be in one equivalence class. That is, permutations in the same equivalence
class lead to the same division of m + n replicates (from the two conditions) into two groups with sizes
m and n. In total, there are ("'") equivalence classes of permutations.

We define o as the identity permutation such that o¢(i) = ¢ forall : € {1,--- ,m + n}. In addition,
Clipper randomly samples % equivalence classes o1, . . ., o, With equal probabilities without replacement

from the other hyax := (mjg”) — 1 equivalence classes (after excluding the equivalence class containing
o9). Note that hp., is the maximum value h can take.
H H oz o o lea Oh Oh d o o

Clipper then obtains {(X7°,Y7°), (X7, Y7"),--- (X", Y )}j:1’ where (Xj‘f,ij) are the per-
muted measurements based on g, £ = 0,...,h. Then Clipper computes T;” = t““n“S(X;V,Y?Z) to
indicate the degree of “interestingness” of feature j reflected by (X7, Y 7*). Note that Clipper chooses
tminus instead of t™#* because empirical evidence shows that ¢t™i"us |eads to better power. Sorting
{17}, gives

7O > 71 5 5 )
J - J - — J :

Then Clipper defines the contrast score of feature j, j = 1,...,d, in one of two ways:

7O 1™ i 7 = 700
Cj = W %0 S minus contrast score, (S19)
7 =T; otherwise
or
(0) H 0) _ o (1)
DR A
C;=4 0 it 7% =1V maximum contrast score . (S20)

- ‘TJ.(O) ‘ otherwise

The intuition behind the contrast scores is that, if C; < 0, then ]1(Tj(°) = T7°) = 0, which means that
at least one of 77, ..., 77" (after random permutation) is greater than 77° calculated from the original
data (identity permutation), suggesting that feature j is likely an uninteresting feature in enrichment
analysis. Motivated by Gimenez and Zou [9], we propose the following procedure for Clipper to control
the FDR under the target level ¢ € (0,1).

Definition S9 (Gimenez-Zou (GZ) procedure for thresholding contrast scores [9]) Given h € {1,
.-+, hmax } @nd contrast scores {Cj}gzl, C={|C;|: C; #0; j=1,...,d} Is defined as the set of non-
zero absolute values of C;’s. The GZ procedure finds a contrast-score cutoff T%% based on the target
FDR threshold q € (0,1) as:

(S21)

1,1 PO < —
TGZ .— min{tGC: nt hcard({j.CJ < 1) SC]}

card({j: C; > t}) v1

and outputs {j : C; > T%} as discoveries.

10
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Theorem 2 Suppose that the input data that satisfy the Clipper assumptions (S6)—S7). Then for any
q € (0,1) and either definition of contrast scores in (S19) or (S20), the contrast-score cutoff T<%found
by the GZ procedure (S21) guarantees that the discoveries have the FDR under q:

card ({j eN:C; > TGZ})

FDR =E
R card({j : C; > TG%}) v 1

<q,

where N denotes the set of uninteresting features.

The proof of Theorem 2 (Supp. Section S8) is similar to that of Theorem 1 and requires two key
ingredients: Lemma 2, which is also used in the proof of Theorem 1, and Lemma 3, which is similar
to Lemma 1 and is about the properties of signs of {C;}7_,. The cutoff 7<% can also be viewed as a
stopping time of a Bernoulli process.

Lemma 3 For input data that satisfy the Clipper assumptions (S6) and (S7), Clipper constructs contrast
scores {C;}7_, based on (S20) or (S19). Denote S; = sign(C;) € {-1,0,1}. Then {S;}_, and
{C; }?:1 satisfy the following properties:

(a) Si,...,Sq are mutually independent ;

(b) P(S; =1) < 41 forall j € N;

(©) {S;},en LC.

We note that the GZ procedure is also applicable to the enrichment analysis with equal numbers of
replicates, i.e., m = n (Section S2.2). We will compare the GZ procedure against the BC procedure in
our results.

S2.4 Differential analysis with m +n > 2

For differential analysis, Clipper also uses permutation to construct contrast scores. When m # n, the
equivalence classes of permutations are defined the same as for the enrichment analysis with m # n.
When m = n, there is a slight change in the definition of equivalence classes of permutations: if o and
o’ satisfy that

{o(1),--- o(m)} ={o'(1), -~ ,0'(m)} or {o"(m + 1),--- 0’ (2m)},

then we say that o and ¢’ are in one equivalence class. In total, there are hiotar = (m;") (when
m # n) or (27’77)/2 (when m = n) equivalence classes of permutations. Hence, to have more than one
equivalence class, we cannot perform differential analysis with m = n = 1; in other words, the total
number of replicates m + n must be at least 3.

Then Clipper randomly samples o4, ..., 0, with equal probabilities without replacement from the
hmax = htotal — 1 €quivalence classes that exclude the class containing oy, i.e., the identity permutation.
Note that Ay is the maximum value h can take. Next, Clipper computes 777 := |tmi““S(X;”,Yj@) ,
where X7‘ and Y'7* are the permuted data defined in (S18), and it defines C; as the contrast score of
feature j, j =1,...,d, in the same ways as in (S19) or (S20).

Same as in the enrichment analysis with m # n, Clipper also uses the GZ procedure [9] to set a
cutoff on contrast scores to control the FDR under the target level ¢ € (0, 1), following Theorem 2.
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S2.5 Clipper variant algorithms

For nomenclature, we assign the following names to Clipper variant algorithms, each of which combines
a contrast score definition with a thresholding procedure.

e Clipper-minus-BC: minus contrast score C; = t™"*(X;,Y ;) (S10) and BC procedure (Definition
S6);

e Clipper-minus-aBH: minus contrast score C; = t™"(X ;Y ;) and aBH procedure (Definition
S7);

o Clipper-minus-GZ: minus contrast score 7; = T\ — T\ " (S19) and GZ procedure (Definition S9);

e Clipper-max-BC: maximum contrast score C; = t™*(X;,Y ;) (S11) and BC procedure;
¢ Clipper-max-aBH: maximum contrast score C; = t™**(X ;,Y ;) and aBH procedure;

¢ Clipper-max-GZ: maximum contrast score 7; = Tj(o) (S20) and GZ procedure.

S2.6 R package “Clipper”

In the R package Clipper, the default implementation is as follows. Based on the power comparison
results in Section S3 and Figs. S22, S23, S24, and S25, Clipper uses Clipper-minus-BC as the default
algorithm for the enrichment analysis with equal numbers of replicates; when there are no discoveries,
Clipper suggests users to increase the target FDR threshold ¢ or to use the Clipper-minus-aBH algorithm
with the current ¢. For the enrichment analysis with different numbers of replicates under two conditions
or the differential analysis, Clipper uses the Clipper-max-GZ algorithm by default.

S3 Comparison of Clipper variant algorithms

We compared Clipper variant algorithms applicable to each experimental design. Based on the com-
parison results, we selected a variant algorithm as the default Clipper implementation for each design.

e 1vs1 enrichment analysis. Under each of the 12 settings, we compared Clipper-minus-BC,
Clipper-minus-aBH, Clipper-max-BC, and Clipper-max-aBH (Section S2.5), the only four Clipper
variant algorithms applicable to 1vs1 enrichment analysis. The results in Fig. S22 show that,
regardless of the contrast scores being minus or maximum (max), the BC procedure always guar-
antees the FDR control under a range of target FDR thresholds ¢ € {1%, 2%, --- ,10%}. Notably,
in terms of power, the two contrast scores consistently have different advantages under the two
background scenarios: Clipper-max-BC has higher power under the homogeneous background,
while Clipper-minus-BC is more powerful under the heterogeneous background. Considering that
the heterogeneous scenario is prevalent in high-throughput biological data, the minus contrast
score is preferred. As the power of Clipper-minus-BC drops when ¢ is too small (¢ < 3%) and d
is not too large (d = 1000), we consider the aBH procedure as an alternative to control the FDR.
The results show that Clipper-minus-aBH is indeed more powerful when Clipper-minus-BC lacks
power; however, Clipper-minus-aBH cannot guarantee the exact FDR control as Clipper-minus-
BC does. Therefore, Clipper uses Clipper-minus-BC by default in 1vs1 enrichment analysis, and
it recommends users to increase ¢ when too few discoveries are made; if users reject this option,
then Clipper would use Clipper-minus-aBH to increase power for the current q.
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e 2vs1 enrichment analysis. Under each of the 6 settings, we compared Clipper-minus-GZ and
Clipper-max-GZ (Section S2.5), the only two Clipper variant algorithms applicable to 2vs1 enrich-
ment analysis. For either algorithm, we further compared two numbers of permutation equivalence
classes: h = 1 or 2, where the latter is hp.x = (:1”) — 1—the maximum number of equivalence
classes that do not include the identity permutation. Note that h is a required input parameter
for the GZ procedure. The results in Fig. S23 show that, regardless of h and the contrast score
definition—maximum (max) or minus, the GZ procedure always guarantees the FDR control un-
der all target FDR thresholds ¢ € {1%,2%, --- ,10%}. In terms of power, Clipper-max-GZ(h = 1)
is consistently more powerful than the other three Clipper variants under all settings. Therefore,
Clipper uses Clipper-max-GZ(h = 1) by default in enrichment analysis with unequal numbers of

replicates under two conditions.

e 3vs3 enrichment analysis. Under each of the 12 settings, we compared five Clipper vari-
ant algorithms: Clipper-minus-BC, Clipper-minus-aBH, Clipper-max-BC, Clipper-max-aBH, and
Clipper-max-GZ (Section S2.5). Fig. S24 shows the comparison of the first four variants: regard-
less of the contrast scores being minus or maximum (max), the BC procedure simultaneously
guarantees the FDR control and achieves good power under a range of target FDR thresholds
q € {1%,2%,--- ,10%}. Similar to the results in the 1vs1 enrichment analysis, Clipper-max-BC
has higher power under the homogeneous background, while Clipper-minus-BC is more power-
ful under the heterogeneous background. By the same reasoning—the prevalent heterogeneous
scenarios in high-throughput biological data—we prefer the minus contrast score. Unlike the 1vs1
enrichment analysis, here Clipper-minus-BC is consistently as powerful as Clipper-minus-aBH,
even when ¢ is small, but Clipper-minus-aBH cannot guarantee the exact FDR control. Therefore,
Clipper-minus-BC achieves the overall best performance among the first four Clipper variants.
Given that the GZ procedure is also applicable to this setting, we further compared Clipper-minus-
BC with Clipper-max-GZ(h = 1), the most powerful Clipper variant with the GZ procedure and
the default Clipper implementation in the 2vs1 enrichment and differential analyses and the 3vs3
differential analysis. The results in Fig. S26 show that while both Clipper-minus-BC and Clipper-
max-GZ(h = 1) control the FDR, the former is more powerful. Hence, we will use Clipper-minus-
BC as the default when both conditions have more than one and the same number of replicates.

Under the simulation settings from Gaussian distributions, we also compared Clipper-minus-BC

with another Clipper variant using the BC procedure and the ¢ statistic as the contrast score
(Clipper-t), where the ¢ statistic is from the two-sample ¢ test. Fig. S13 shows that, although
Clipper-t always guarantees the FDR control under a range of target FDR thresholds ¢ € {1%, 2%, - - - , 10%},
it has lower power compared to Clipper-minus-BC, our default Clipper for enrichment analysis with

equal numbers of replicates. Based on this result, we did not consider the ¢ statistic as an alter-

native contrast score for Clipper.

e 2vsi differential analysis. Similar to 2vs1 enrichment analysis, under each of the 6 settings, we
compared Clipper-minus-GZ and Clipper-max-GZ (Section S2.5) with h = 1 or 2. The results in
Fig. S23 show that, regardless of i and the contrast score definition—maximum (max) or minus,
the GZ procedure always guarantees the FDR control under a range of target FDR thresholds
q € {1%,2%,--- ,10%}. Notably, in terms of power, Clipper-minus-GZ(h = 2) is the most pow-
erful when when ¢ is very small (¢ < 2%) under Poisson and negative binomial settings, while
Clipper-max-GZ(h = 1) is the most powerful otherwise. Considering that Clipper-max-GZ(h = 1)
outperforms the other three Clipper variants in most cases, Clipper uses Clipper-max-GZ(h = 1)
by default in 2vs1 differential analysis, and it recommends users to use Clipper-minus-GZ(h = 2)
when too few discoveries are made.
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o 3vs3 differential analysis. Under each of the 12 settings, we compared Clipper-minus-GZ, and
Clipper-max-GZ (Section S2.5) with h = 1, 3 or 9, where h = 9 iS hyax = (g)/Q — 1—the maxi-
mum number of equivalence classes that do not include the identity permutation. The results in
Fig. S25 show that, regardless of h and the contrast score definition—maximum (max) or minus,
the GZ procedure always guarantees the FDR control under a range of target FDR thresholds
q € {1%,2%,--- ,10%}. In terms of power, Clipper-max-GZ(h = 1) is consistently more powerful
than the other Clipper variant algorithms under all settings. Therefore, Clipper uses Clipper-max-
GZ(h = 1) by default in 3vs3 differential analysis.

Under the simulation settings from Gaussian distributions, we also compared Clipper-max-GZ
with another Clipper variant using the GZ procedure and the ¢ statistic to calculate the degree of
interestingness (Clipper-t), where the ¢ statistic is from the two-sample ¢ test. Fig. S14 shows that,
although Clipper-t always guarantees the FDR control under a range of target FDR thresholds
q € {1%,2%,--- ,10%}, it has lower power compared to Clipper-max-GZ, our default Clipper for
differential analysis. Based on this result, we did not consider the ¢ statistic as an alternative
contrast scores for Clipper.

In summary, whenever Clipper-minus-BC is applicable (enrichment analysis with equal number of repli-
cates under two conditions), it is chosen as the default Clipper implementation; otherwise, Clipper-max-
GZ(h = 1) is the default.

S4 Data generation and detailed implementation of the paired ap-
proach (a p-value calculation approach) in simulation studies

We describe how we simulated data and how we implemented the paired approach in different simu-
lation settings: 1vs1 enrichment analysis, 2vs1 enrichment analysis, 3vs3 enrichment analysis, 2vs1
differential analysis, and 3vs3 differential analysis, combined with three distribution families (Gaussian,
Poisson, and negative binomial) and two background scenarios (homogeneous and heterogeneous).
Under some settings, we considered different numbers of features and the existence of outliers.

In each simulation setting, we generated 200 simulated datasets, computed an FDP and an empirical
power on each dataset, and averaged the 200 FDPs and 200 empirical powers to approximate the FDR
and power, repsectively. For notation simplicity, we use N(u,o?) to denote the Gaussian distribution
with mean . and variance o2, Pois(\) to denote the Poisson distribution with mean A, and NB(y, 6) to
denote the negative binomial distribution with mean p and dispersion 6 (such that its variance equals
1+ 0p?).

For each design and analysis, we compared the default Clipper implementation with other generic
FDR control methods. Specifically, seven generic methods (BH-pool, gvalue-pool, BH-pair-mis, qvalue-
pair-mis, BH-pair-2as1, qvalue-pair-2as1, and locfdr-emp) are included in all designs and analyses. The
two methods relying on correct model specification, BH-pair-correct and qvalue-pair-correct, are only
included in the 3vs3 enrichment and differential analyses, because it is almost impossible to correctly
specify a model with fewer than three replicates per condition. The permutation-based method, locfdr-
swap, is excluded from the 1vs1 enrichment analysis because it requires at least one condition to have
more than one replicate.

In addition to the above designs and analyses, we also compared the default Clipper implementa-
tion with BH-pair methods that use parametric or non-parametric tests to calculate p-values when the
numbers of replicates are 10 under both conditions for enrichment analysis, i.e., 10vs10 enrichment
analysis.
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S4.1 1vs1 enrichment analysis

We simulated data with d = 1000 and 10,000 features under two background scenarios and three distri-
butional families—a total of 12 settings. In each setting, 10% of the features are interesting (1.x; > 1y ;),
and the rest are uninteresting (with .x; = py ;). Recall that A" denotes the set of uninteresting features.

Gaussian distribution

We simulated data from Gaussian using the following procedure:

¢ Under the homogeneous background scenario, we set uiy-; = 0 for all d features. For uninteresting
features, we set px; = uy; = 0 for j € V. For interesting features, we generated {11x;},¢ar i.i.d.
from N(5,1).

e Under the heterogeneous background scenario, we generated {uyj}?zl i.i.d. from N(0,22). For
uninteresting features, we set ux; = uy; for j € N. For interesting features, we generated

{ux;}jen iid. from N(5,1).
e We independently generated X;; from N(ux;,1) and Y;; from N(uy;,1), 5 =1,...,d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-
sumed that the null distribution of X;; — Yj1, j =1,...,dis N(0,5%), where

2 2
d

1 < 1< 1 1<
712 EZ +d712 Yi - EZ
Jj=1 Jj=1 Jj=1 Jj=1
This is a misspecified model that assumes that 1. x;’s are all equal and so are yy;’s. Then we computed
the p-value of feature j = 1, ..., d as the right tail probability of X;, —Y;, in N(0,62),i.e., 1—® (w)
where @ is the cumulative distribution function of N(0,1).
To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated

N(Y;1,1) conditioning on the observed Y;; as the null distribution of X;;. Then we calculated the
p-value of feature j = 1,...,d as the right tail probability of X;; in N(Y;1,1 ) e, 1 - (X; —Y;).

Poisson distribution

We simulated data from Poisson using the following procedure:

e Under the homogeneous background scenario, we set pny; = 20 for all d features. For uninterest-
ing features, we set ux; = py; = 20 for j € N. For interesting features, we generated {1x;} ¢z
i.i.d. from Pois(40).

e Under the heterogeneous background scenario, we generated {uyj}le i.i.d. from Pois(20). For
uninteresting features, we set ux; = py; for j € N. For interesting features, we generated
{ux;}jen 1.i.d. from Pois(40).

¢ We independently generated X, from Pois(p1x;) and Yj; from Pois(uy ), j =1,...,d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we first
defined a log-transformation f(z) = log(z + 0.01), which we applied to X;; and Yj1, j = 1,...,d. We
assumed that the null distribution of f(X;1) — f(Y;j1), 5 =1,...,dis N(0,62), where

2 2

d 1¢ 1 1<
P Fen Ta S | g | 10 g2 1

Jj=1
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This model misspecifies the Poisson distribution as the log-normal distribution.

Then we computed the p-value of feature j = 1, ..., d as the right tail probability of f(X;1) — f(Yj1)
in N(0,62),i.e,1—® (M) where @ is the cumulative distribution function of N (0, 1).

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated
Pois(Y;1) conditioning on the observed Y;; as the null distribution of X;;. Then we calculated the p-
value of feature j = 1,...,d as the right tail probability of X, in Pois(Y;1), i.e., P(Z > X,1) where
Z ~ Pois(Yj1).

Negative binomial distribution
We simulated data from negative binomial using the following procedure:

e Under the homogeneous background scenario, we set py; = 20 for all d features. For uninterest-
ing features, we set nx; = py; = 20 for j € N. For interesting features, we generated {ux;itjen
i.i.d. from NB(45,4571).

¢ Under the heterogeneous background scenario, we generated {uyj};?zl i.i.d. from NB(20,2071).
For uninteresting features, we set px; = puy; for j € N. For interesting features, we generated
{1x;}jgn idd. from NB(45,4571).

e We independently generated X from NB(ux;, px;) and Yj1 from NB(uyj, py5), 5 =1,... ,d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-
sumed that for each uninteresting feature j, Y;; and X;; follow the same Poisson distribution. We cal-
culated the p-value of feature j from a two-sample Poisson test for the null hypothesis Hy : ux; = py;
against the alternative hypothesis H; : j1x; > py; using function poisson.test in R package stats.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated
NB(le,YJ}l) conditioning on the observed Yj; as the null distribution of X;;. Then we calculated
the p-value of feature j =1, ..., d as the right tail probability of X, in NB(le,Yj]l).

S$4.2 2vsi1 enrichment analysis

We simulated data with d = 10,000 features under two background scenarios and three distributional
families—a total of 6 settings. In each setting, 10% of the features are interesting (1.x; > py;) and the
rest are uninteresting (with px; = p1y;). Recall that A/ denotes the set of uninteresting features.
Gaussian distribution

We simulated data from Gaussian using the following procedure:

e Under the homogeneous background scenario, we set uiy-; = 0 for all d features. For uninteresting
features, we set 1x; = py; = 0 for j € V. For interesting features, we generated {11x; } ;¢ 1.i.d.
from N(5,1).

e Under the heterogeneous background scenario, we generated {yy ;},cn i.i.d. from N(0,22%) and
set ux; = py; for j € N. We next generated {1y }¢n i.i.d. from N(0,22) and {jix;}jen id.d.
from N(5,1).

¢ We independently generated X;; and X, from N(ux;, 1) and Yj; from N(uy,,1), 5 =1,...,d.
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To implement the misspecified paired approach (as in BH-pair-mis and gvalue-pair-mis), we as-
sumed that the null distribution of (X1 + X;2) — Yj1, j =1,...,d, is N(0,6?), where

2 2

1 & 1 & 1 < 1
e PIP I Bt DI IEY I e B L DI
<

j=11i=1 j=11i=1 =1

This is a misspecified model that assumes px;’s are all equal and so are uy;’s. Then we computed
the p-value of feature j = 1,...,d as the right tail probability of 1(X;1 + X;2) — Yj;1 in N(0,62), i.e.,
1-® w , Where @ is the cumulative distribution function of N (0, 1).

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated
N(Y;1,1/2) conditioning on the observed Y;; as the null distribution of £(X;; + X;2). Then we cal-

culated the p-value of feature j = 1,...,d as the right tail probability of £ (X ;1 + X2) in N(Y;1,1/2), i.e.,

1 (X1 +X52)~ Y
1o (A ),

Poisson distribution
We simulated data from Poisson using the following procedure:

e Under the homogeneous background scenario, we set uy; = 20 for all d features. For uninterest-
ing features, we set ux; = py; = 20 for j € N. For interesting features, we generated {1.x;} ¢z
i.i.d. from Pois(40).

e Under the heterogeneous background scenario, we generated {Myj};l:l i.i.d. from Pois(20). For
uninteresting features, we set px; = py; for j € N. For interesting features, we generated
{1x;}jen 1.i.d. from Pois(40).

¢ We independently generated X;; and X, from Pois(ux ;) and Y;; from Pois(uy;), j =1,...,d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we first
defined a log-transformation f(z) = log(z + 0.01), which we applied to X;; and Yj1, j = 1,...,d. We
assumed that the null distribution of f(X;1) + f(Xj2) —2f(Yj1),7=1,...,dis N(0,62), where

2

Ul =

d d
5= S ) = 5 3 F)
j=1 j=1
This model misspecifies the Poisson distribution as the log-normal distribution.

Then we computed the p-value of feature j =1, ..., d as the right tail probability of f(X;1)+ f(X;2)—
2f(Y;1) in N(0,62),ie.,1—® (f(Xﬂ”f()gﬂ)’mel)), where & is the cumulative distribution function of
N(0,1).

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we assumed
that for each uninteresting feature j, X;; and Xj;, independently follow Pois(Y;1) conditioning on the
observed Yj;. Then we calculated the p-value of feature j = 1,...,d by performing a one-sample
Poisson test using the R function poisson.test for the null hypothesis Hy : ux;, = Y;1 against the
alternative hypothesis H; : ux, > Yj1.

Negative binomial distribution

We simulated data from negative binomial using the following procedure:
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e Under the homogeneous background scenario, we set 11y; = 20 for all d features. For uninterest-
ing features, we set pux; = py; = 20 for j € N. For interesting features, we generated {1ix;} ;¢
i.i.d. from NB(45,4571).

e Under the heterogeneous background scenario, we generated {yy;}7_, i.i.d. from NB(20,2071).
For uninteresting features, we set 1x; = py; for j € N. For interesting features, we generated
{rx;}jgn iid. from NB(45,4571).

e We independently generated X;; and X, from NB(ux;, ux;) and Yj1 from NB(uyj, py;), j =
1,....d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-
sumed that for each uninteresting feature j, X;;, i = 1,2 and Y}; follow the same Poisson distribu-
tion. We calculated the p-value of feature j from a two-sample Poisson test for the null hypothesis
Hy : px; = py; against the alternative hypothesis H; : px; > py; using the function poisson.test in
R package stats.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated
NB(2Y;1, (2Y;1)~') conditioning on the observed Y;; as the null distribution of X;; + X;>. Then we cal-
culated the p-value of feature j = 1,...,d as the right tail probability of X;; + X2 in NB(2Y;1, (2Y;1)71).

S4.3 3vs3 enrichment analysis

We simulated data with and without outliers under two background scenarios and three distributional
families—a total of 12 settings. In each setting, we generated d = 10,000 features, among which 10%
are interesting (with pux; > py;) and the rest are uninteresting (with px; = py;). For the results in
Fig. S12, we simulated data without outliers under two background scenarios and three distributional
families using two more proportions of interesting features: 20% and 40%. The data generation under the
Gaussian, Poisson, and negative binomial distributions is the same as the settings with 10% interesting
features.

Under the settings with outliers, we generated {O : j = 1,...,d;i = 1,...,3} and {O}; : j =
1,...,d;i = 1,...,3} iid. from Bernoulli(0.1), where O% = 1 or O}, = 1 indicates X;; or Yj; is an
outlier, respectively. Under settings without outliers, O = O}, =0forallj =1,...,d;i=1,...,3.

Gaussian distribution

e Under the homogeneous background scenario, we set uiy-; = 0 for all d features. For uninteresting
features, we set ux; = uy; = 0 for j € N. For interesting features, we generated {px;}tjen iid.
from N(5,1).

¢ Under the heterogeneous background scenario, we generated {uyj}jzl i.i.d. from N(0,22). For
uninteresting features, we set px; = py; for j € N. For interesting features, we generated
{uxj}jgn iid. from N(5,1).

e We independently generated X;; from N(ux;,1) if Oj-g = 0 or from the top 1% percentile of
N(pxj,1) if Oﬁ =1,j=1,...,d;% =1,...,3. Similarly, we independently generated Y;; from
N(pyj,1) if O); = 0 or from the top 1% percentile of N(uy;,1)if O, =1,j=1,...,d;i=1,...,3.

e For the results in Supp. Fig. S13, under the heterogeneous background scenario, we generated
{uy;}4_, iid. from N(0,2%), and {s;}7_, i.i.d. from a uniform distribution U (0.5, 2). For uninter-
esting features, we set ux; = py; for j € N. For interesting features, we generated {1ix;} ;¢
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i.id. from N(5,1). We then independently generated X;; from N(ux;,s3) if O = 0 or from the

J
top 1% percentile of N(ux;,s3) if OX =1,j=1,...,d;i=1,...,3. Similarly, we independently
generated Y;; from N(uy;,s?) if O); = 0 or from the top 1% percentile of N(uy;,s?) if O = 1,

J
j=1,....di=1,....3.

e For the results in Supp. Fig. S11, we generated correlated features. We first selected 10 groups
of features (2 groups of interesting features and 8 groups of uninteresting features), with each
group containing 200 features. For each group &, we used k1, . . ., kogo to denote the indices of the
200 features within that group and generated {X,;}7% from a multivariate Gaussian distribution
Ny, Xr), where py, = (xk,, - - - X ke ) @Nd Xy is @ matrix with diagonal entries as 1 and other
entries as a fixed correlation. In our simulation, the fixed correlation took two values: 0.2 and 0.4.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct), we cal-
culated the p-value of feature j from a two-sample t-test with equal variance for the null hypothesis
Hy : px;j = pyj against the alternative hypothesis H; : pix; > py .

To implement the misspecified paired approach (as in BH-pair-mis and gvalue-pair-mis), we calcu-
lated the p-value of feature j from a two-sample t-test with unequal variance for the null hypothesis
Hy : px,; = py, against the alternative hypothesis Hy : pix, > py; -

To implement the 2as1 paired approach (as in BH-pair-2as1 and qgvalue-pair-2as1), we assumed
that for each uninteresting feature j, X;;, i = 1,...,3 are i.i.d. Gaussian with mean Y; conditioning
on the observed Y; and unknown variance. We calculated the p-value of feature j using a one-sample
t-test for the null hypothesis Hy : px, = Y; against the alternative hypothesis H : px; > Y;.

Poisson distribution
We simulated data from Poisson using the following procedure:

¢ Under the homogeneous background scenario, we set 11y; = 20 for all d features. For uninterest-
ing features, we set ux; = py; = 20 for j € N. For interesting features, we generated {/:x;} j¢n
i.i.d. from Pois(40).

e Under the heterogeneous background scenario, we generated {uyj};lzl i.i.d. from Pois(20). For
uninteresting features, we set px; = py; for j € N. For interesting features, we generated
{ux;}jen 1.i.d. from Pois(40).

e We independently generated X;; from Pois(ux;) if o;g = 0 or from the top 1% percentile of
Pois(px ;) if Off =1,j=1,...,d,%=1,...,3. Similarly, we independently generated Y;; from
Pois(puy ;) if OY; = 0 or from the top 1% percentile of Pois(uy;) if O}, =1, =1,...,d; 1,...,3.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct), we cal-
culated the p-value of feature j by performing a two-sample Poisson test for the null hypothesis Hy :
ix; = py; against the alternative hypothesis H; : px; > py; using the function poisson.test in R
package stats.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we first
defined a log-transformation f(z) = log(x + 0.01), which we applied to X;; and Yj;, j = 1,...,d;
i = 1,...,3. We assumed that for each uninteresting feature j, {f(X;:)}?_, and {f(Y;:)};_, follow
Gaussian distributions with mean ps(x ;) and ps(y;), respectively. Then we computed the p-value of
feature j using a two-sample equal variance t-test for the null hypothesis Hy : 11y(xj) = piy(v;) against
the alternative hypothesis Hy : py(xj) > py(yvj)-
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To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we assumed
that for each uninteresting feature j, {X;;}3_, follow Pois(Y;) conditioning on the observed Y;. We
calculated the p-value of feature j by performing a one-sample Poisson test for the null hypothesis
H, : ux; = Y; against the alternative hypothesis H; : ux; > Y; using R function poisson.test from
package stats.

Negative binomial distribution

We simulated data from negative binomial using the following procedure:

¢ Under the homogeneous background scenario, we set 11y; = 20 for all d features. For uninterest-
ing features, we set jx; = py; = 20 for j € N. For interesting features, we generated {1ix;} ;¢
i.i.d. from NB(45,4571).

¢ Under the heterogeneous background scenario, we generated {uyj};i:l i.i.d. from NB(20,2071).
For uninteresting features, we set px; = uy; for j € N. For interesting features, we generated
{rx;}jgn iid. from NB(45,4571).

e We independently generated X, from NB(qu,u;(;) if o;g = 0 or from the top 1% percentile of
NB(qu,u;(;) if OX =1,j=1,...,d,i=1,...,3. Similarly, we independently generated Y;; from
NB(pyj, py ;) if OY =0or from the top 1% percentile of NB(uy;, uy;) if OF = 1, j = 1,...,d,
i=1,...,3.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct), we per-
formed a two-sample negative binomial test for the null hypothesis Hy : px; = pny; against the alterna-
tive Hy : pux; > puy; using T := 32 X;; — S22 Y}; as the test statistic. We computed the p-value of
feature j as the right tail probability

P(T; > t;) Z Z P(ixﬁz@)]lm(gyﬁkl),

k1=0 ko=Fky+t; i=1

where ¢; is the realization of T7;, P(37_, X;; > k2) and P(Y7_, Yj; = k1) can be estimated from the
null distribution of X;; and Yj;, j = 1,...,d; i = 1,...,3. As 30_, X;; and 3.;_, Y;, follow the same
distribution under null, we estimated px; and py; as fix; = fiy; = (Zle ji +ZZ 1Y;:)/6. Then, we
calculated P(Y°7_, X;; > ky) and P(3°°_, Y;; = k1) using the estimated distribution of X;; and Y;; as
NB(fixj, (fix;)~") and NB(iy, (fiy;) 1), respectively, j =1,...,d;i=1,...,3.

To implement the misspecified paired approach (as in BH-pair-mis and gvalue-pair-mis), we as-
sumed that for each uninteresting feature j, {X;;}3_, and {Y};}3_, follow the same Poisson distribu-
tion. We calculated the p-value of feature j from a two-sample Poisson test for the null hypothesis
Hy : px; = py; against the alternative hypothesis H; : px; > py; using function poisson.test in R
package stats.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qgvalue-pair-2as1), we treated
NB(X2, Yy, (322, Y5:)~ ") conditioning on the observed $°7_, Y;; as the null distribution of S>°_| X ..
Then we calculated the p-value of feature j = 1,...,d as the right tail probability of Zle Xj; in

NB(El 1 Jw(ZZ 1 Yi) ™ b

S4.4 10vs10 enrichment analysis

We simulated data without outliers under heterogeneous background scenario and three distributional
families—a total of 3 settings. In each setting, we generated d = 10,000 features, among which 10% are
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interesting (with ux; > py;) and the rest are uninteresting (with px; = py;).

The data generation under the Gaussian, Poisson, and negative binomial distributions is the same
as in the 3vs3 enrichment analysis (Section S4.3) except that we set the number of replicates to 10
under each condition, and we did not generate outliers.

The correct paired approaches in BH-pair-parametric are the same as the corresponding BH-pair-
correct in the 3vs3 enrichment analysis (Section S4.3) except that, under the negative binomial distribu-
tion, the test statistic 73 and its null distribution should have the number of replicates changed from 3 to
10. The misspecified and 2as1 paired approaches (BH-pair-mis and BH-pair-2as1) are also the same
as the corresponding approaches in the 3vs3 enrichment analysis (Section S4.3).

To implement the non-parametric paired approaches, we calculated the p-value of feature j from
the one-sided two-sample Wilcoxon rank-sum test (using R function wilcox.test in package stats) in
BH-pair-Wilcoxon and from the one-sided two-sample permutation test (using R function oneway_test
in package coin) in BH-pair-permutation.

S4.5 2vsi differential analysis

We simulated data with d = 10,000 features under two background scenarios and three distributional
families—a total of 6 settings. In each setting, we set 10% features as “up-regulated” with 11 x; > uy;
and another 10% features as “down-regulated” with px; < py ;.

Gaussian distribution
We simulated data from Gaussian using the following procedure:

¢ Under the homogeneous background scenario, we set iiy-; = 0 for all d features. For uninteresting
features, we set ux,; = py; = 0 for j € N. For up-regulated features, we generated 1.y i.i.d. from
N(5,1). For down-regulated features, generated px; i.i.d. from N(—5,1).

e Under the heterogeneous background scenario, we generated {uyj}?zl i.i.d. from N(0,22). For
uninteresting features, we set 11x; = py; for j € N. For up-regulated features, we generated 1 x
i.i.d. from N(5,1). For down-regulated features, generated px; i.i.d. from N(—5,1).

e We independently generated X;; and X, from N(ux;,1) and Yj; from N(uyj,1), 5 =1,...,d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-
sumed that the null distribution of £ (X1 + X;2) — Yj1, j =1,...,d,is N(0,6?%), where

2 2

2 ;iz PORE ol o P9 EFRREE oY (NN B ot¥H
7 T 2021 7T 94 i d—1 T ae

Jj=11i=1 Jj=11i=1 Jj=1

This is a misspecified model assuming that n.x;’s are all equal and so are uy;’s. Then we computed
the p-value of feature j = 1,...,d as the two-sided tail probability of (X ;1 + X;2) — Y;1 in N(0,62), i.e.,
2-min(1—® %(X”J’f”)_m) , P ( (XJ“L;(”) YJI)), where @ is the cumulative distribution function
of N(0,1).

To implement the 2as1 paired approach (as in BH-pair-2as1 and gvalue-pair-2as1), we treated
N(Y;1,1) conditioning on the observed Y;; as the null distribution of X;;. Then we calculated the
p-value of feature j = 1,...,d as the two-sided tail probability of (X;1 + Xj2) in N(Y;1,1/2), i.e

. 3(Xj14+X52)— le 3 (Xj1+X;2) Y1
(o () o (EEES)
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Poisson distribution
We simulated data from Poisson using the following procedure:

¢ Under the homogeneous background scenario, we set p1y; = 20 for all d features. For uninterest-
ing features, we set px; = uy; = 20 for j € N. For up-regulated features, we generated . x; i.i.d.
from Pois(60). For down-regulated features, we generated pix; i.i.d. from Pois(5) .

¢ Under the heterogeneous background scenario, we generated {uyj}f:l i.i.d. from Pois(20). For
uninteresting features, we set px; = py; for j € N. For up-regulated features, we generated i x;
i.i.d. from Pois(60). For down-regulated features, we generated sux; i.i.d. from Pois(5) .

e We independently generated X;; and X, from Pois(ux;) and Y1 from Pois(uy;), j =1,...,d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we first
defined a log-transformation f(z) = log(z + 0.01), which we applied to X;; and Yj1, j = 1,...,d. We
assumed that the null distribution of f(X;1) + f(Xj2) — 2f(Y;1), 5 = 1,...,d is N(0,62), where

2

B 6 d 1 d
0% === | FO) = 5D F()
j=1 j=1

This model misspecifies the Poisson distribution as the log-normal distribution. Then we computed the
p-value of feature j = 1,...,d as the two-sided tail probability of f(X;1) + f(X;2) —2f(Y;1) in N(0,52),
i.e.,2 -min(1—® f(Xj1)+-f()gj2)_2f(Y”)) . (f(Xj1)+-f()§f2)‘2f(’/fl))>, where & is the cumulative distri-
bution function of N (0, 1).

To implement the 2as1 paired approach (as in BH-pair-2as1 and qgvalue-pair-2as1), we assumed
that for each uninteresting feature j, X;; and X;, independently follow Pois(Y;;) conditioning on the
observed Y;;. Then we calculated the p-value of feature j = 1,...,d by performing a one-sample
Poisson test using the R function poisson.test for the null hypothesis H, : ux, = Y;1 against the
alternative hypothesis H; : ux, # Yj1.

Negative binomial distribution
We simulated data from negative binomial using the following procedure:

e Under the homogeneous background scenario, we set py; = 30 for all d features. For uninterest-
ing features, we set jx; = puy; = 30 for j € N. For up-regulated features, we generated 1. x i.i.d.
from NB(70,70~1). For down-regulated features, we generated py; i.i.d. from NB(7,771).

e Under the heterogeneous background scenario, we generated {uyj};l:l i.i.d. from NB(30,3071).
For uninteresting features, we set ux; = py, for j € N. For up-regulated features, we gener-
ated ux; i.i.d. from NB(70,70~1). For down-regulated features, we generated px; i.i.d. from
NB(7,7°1).

e We independently generated X;; and X, from NB(ux;, ;) and Yj1 from NB(uyj, py;), j =
1,....d.

To implement the misspecified paired approach (as in BH-pair-mis and gvalue-pair-mis), we as-
sumed that for each uninteresting feature j, X1, X2, and Y}, follow the same Poisson distribution. We
calculated the p-value of feature j from a two-sample Poisson test for the null hypothesis Hy : px; = py;
against the alternative hypothesis H; : 1x; # py; using the function poisson.test in R package stats.
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To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated
NB(2Y;1, (2Y;1) ') conditioning on the observed Y;; as the null distribution of X ;; + X ;2. Then we calcu-
lated the p-value of feature j = 1, ..., d as the two-sided tail probability of X ;1 +X 2 in NB(2Yj1, (2Y;1) 1),
i.e., twice the smaller of the left-tail and right-tail probabilities.

S4.6 3vs3 differential analysis

We simulated data with or without outliers under two background scenarios and three distributional
families—a total of 12 settings. In each setting, we generated d = 10,000 features, among which 10%
features were “up-regulated features” with px; > py; and another 10% were “down-regulated features”
with px; < py ;.

Under the settings with outliers, we generated {Ojg cj=1,...,d;i = 1,...,3} and {O}’i D=
1,...,d;i = 1,...,3} i.i.d. from Bernoulli(0.1), where O = 1 or O); = 1 indicates X;; or Y}; is an
outlier, respectively. Under settings without outliers, OX = O} =0forallj =1,...,d;i=1,...,3.

Gaussian distribution

¢ Under the homogeneous background scenario, we set uiy-; = 0 for all d features. For uninteresting
features, we set jix; = py; = 0 for j € N. For up-regulated features, we generated . x; i.i.d. from
N(5,1). For down-regulated features, generated px; i.i.d. from N(—5,1).

e Under the heterogeneous background scenario, we generated {yy;}9_, i.i.d. from N(0,2%). For
uninteresting features, we set nx; = uy; for j € N. For up-regulated features, we generated yx;
i.i.d. from N(5,1). For down-regulated features, generated px; i.i.d. from N(—5,1).

e We independently generated X, from N(ux;,1) if Ojg = 0 or from the top 1% percentile of
N(uxj,1) if Oj.g =1,j=1,...,d;i = 1,...,3. Similarly, we independently generated Y;; from
N(py;,1) if O = 0 or from the top 1% percentile of N(uy;,1)ifOY; =1,j=1,...,d;i=1,...,3.

e For the results in Supp. Fig. S14, under the heterogeneous background scenario, we generated
{uy;}9=, iid. from N(0,2%), and {s;}7_, i.i.d. from a uniform distribution U(0.5,2). For uninter-
esting features, we set px; = uy, for j € N. For up-regulated features, we generated px; i.i.d.
from N(5,1). For down-regulated features, generated nx; i.i.d. from N(-5,1). We then inde-
pendently generated X;; from N (ux;,s3) if O = 0 or from the top 1% percentile of N(ux;,s?)
ifOX =1,j=1,...,d;i=1,...,3. Similarly, we independently generated Y;; from N (uy;, s?) if
Oﬁ = 0 or from the top 1% percentile of N(Myj,s?) if O]’.’i =1,j=1,...,d;i=1,...,3.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct), we cal-
culated the p-value of feature j from a two-sample t-test with equal variance for the null hypothesis
Hy : px; = py; against the alternative hypothesis H : pix; # py .

To implement the misspecified paired approach (as in BH-pair-mis and gvalue-pair-mis), we calcu-
lated the p-value of feature j from a two-sample t-test with unequal variance for the null hypothesis
Hy : px,; = py, against the alternative hypothesis H; : pux, # py; -

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated
N(Y;,1) conditioning on observed Y; as the null distribution of X;;, i = 1,...,3. We calculated the
p-value of feature j using a one-sample t-test for the null hypothesis Hy : ux, = Y; against the alterna-
tive hypothesis H : ux, # ;.
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Poisson distribution
We simulated data from Poisson using the following procedure:

¢ Under the homogeneous background scenario, we set 11y; = 20 for all d features. For uninterest-
ing features, we set px; = puy,; = 20 for j € N. For up-regulated features, we generated . x; i.i.d.
from Pois(40). For down-regulated features, we generated px; i.i.d. from Pois(5) .

e Under the heterogeneous background scenario, we generated {uyj}‘j:l i.i.d. from Pois(20). For
uninteresting features, we set nx; = uy; for j € N. For up-regulated features, we generated yx;
i.i.d. from Pois(40). For down-regulated features, we generated p.x; i.i.d. from Pois(5) .

e We independently generated X, from Pois(ux;) if Ojg = 0 or from the top 1% percentile of
Pois(ux;) if Oj.g =1,j=1,...,d; i = 1,...,3. Similarly, we independently generated Y;; from
Pois(py ;) if O); = 0 or from the top 1% percentile of Pois(uy ;) if OY; = 1,7 =1,...,d;i=1,...,3.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct), we cal-
culated the p-value of feature j by performing a two-sample Poisson test for the null hypothesis Hy :
ix; = py; against the alternative hypothesis H; : px; # py; using function poisson.test in R pack-
age stats.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we first
defined a log-transformation f(z) = log(xz + 0.01), which we applied to X;; and Y};, j = 1,...,d;
i = 1,...,3. We assumed that for each uninteresting feature j, {f(X;;)}?_, and {f(Y;:)}?_, follow
Gaussian distributions with mean ps(x ;) and ps(y;), respectively. Then we computed the p-value of
feature j using a two-sample equal variance t-test for the null hypothesis Hy : pif(x;) = f15(v;) against
the alternative hypothesis H; : py(xj) # ts(vj)-

To implement the 2as1 paired approach (as in BH-pair-2as1 and qgvalue-pair-2as1), we assumed
that for each uninteresting feature j, {X;;}7_, follow Pois(Y;) conditioning on the observed Y;. We
calculated the p-value of feature j by performing a one-sample Poisson test for the null hypothesis
H, : ux; = Y; against the alternative hypothesis H; : x; # Y; using the function poisson.test in R
package stats.

Negative binomial distribution
We simulated data from negative binomial using the following procedure:

e Under the homogeneous background scenario, we set ny; = 30 for all d features. For uninterest-
ing features, we set yx; = puy; = 30 for j € N. For up-regulated features, we generated 1. x; i.i.d.
from NB(70,70~1). For down-regulated features, we generated py; i.i.d. from NB(7,771).

e Under the heterogeneous background scenario, we generated {uyj}jzl i.i.d. from NB(30,3071).
For uninteresting features, we set ux; = py, for j € N. For up-regulated features, we gener-
ated py; ii.d. from NB(70,70~!). For down-regulated features, we generated py; i.i.d. from
NB(7,7°1).

e We independently generated X;; from NB(qu,u;(;) if Ojf = 0 or from the top 1% percentile of
NB(/J,X]',[L;(;-) ifOX =1;j=1,...,d,i=1,...,3. Similarly, we independently generated Y; from
NB(py, py;) if O, = 0 or from the top 1% percentile of NB(uy;, uy}) if OF, = 1,5 = 1,...,d;
i=1,...,3.

To implement the correct paired approach with unknown dispersion (as in BH-pair-correct and
gvalue-pair-correct), we performed a two-sample negative binomial test for the null hypothesis Hy :
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Wx; = py; against the alternative hypothesis H; : nx; # py; using the coefficient from the negative bi-
nomial regression as the test statistic. Specifically, for each feature j we performed a negative binomial
regression by treating the condition labels as a categorical covariate and feature j's measurements as
the response. We implemented this regression analysis using function glm.nb in R package MASS and
extracted the p-value of the coefficient as the p-value of feature j. The dispersion parameter was not
pre-specified but estimated by glm.nb.

To implement the correct paired approach with known dispersion, we performed a similar negative
binomial regression but with the pre-specified dispersion parameter 30! for each feature j. Then
we computed the feature’'s p-value as the p-value of the coefficient of the condition covariate. We
implemented this regression analysis using function glm in R package stats.

To implement the misspecified paired approach (as in BH-pair-mis and gvalue-pair-mis), we as-
sumed that for each uninteresting feature j, {X;;}3_, and {Y};}3_, follow the same Poisson distribu-
tion. We calculated the p-value of feature j from a two-sample Poisson test for the null hypothesis
Hy : px; = py; against the alternative hypothesis H; : px; # py; using function poisson.test in R
package stats.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we first used
function glm.nb in R package MASS to estimate /iy; and éyj from {Y}; ?:1- Then we computed the
p-value of feature j by treating NB(3/y;, (30ij)*1) as the null distribution of Zle X,; and calculated
its two-sided tail probability, i.e., twice the smaller of the left-tail and right-tail probabilities.

S5 Bioinformatic methods with FDR control functionality

S5.1 Peak calling methods for ChiP-seq data

MACS2 MACS2 [10] uses sliding windows with a fixed length across the genome and identifies peaks
by using a Poisson distribution to model the read counts within each window, which has one read count
per replicate. Specifically, for each region (which is combined from sliding windows), MACS2 performs
a one-sample Poisson test to calculate a p-value, where the null distribution is set to be Poisson with
its parameter estimated from the background. By thresholding p-values, MACS2 identifies a set of
candidate peaks. It also estimates for each candidate peak a g-value by swapping the experimental
sample with the background (negative control) sample, and the g-values are used for FDR control. We
used MACS2 software (version 2.2.6) with its default settings.

HOMER We used findPeaks, a program in HOMER [11], to perform peak calling on ChIP-seq data.
The p-value calculation in findPeaks is similar to that in MACS2; that is, findPeaks also uses the Pois-
son distribution as the null distribution of read counts in a genomic region, and it also estimates the
Poisson mean from the background sample. Then findPeaks identifies peaks by setting thresholds on
p-values and fold-changes (the folder change of a region is defined as the observed read count under
the experimental sample divided by the estimated Poisson mean from the the background sample). We
used findPeaks version 3.1.9.2.

S$5.2 SEQUEST for peptide identification from MS data

SEQUEST SEQUEST uses probability-based scoring to identify PSMs from mass-spectrometry data.
We ran SEQUEST in Proteome Discoverer 2.3.0.523 (ThermoScientific) with the following settings: 10
ppm precursor tolerance; 0.6 Da fragment tolerance; static modifications: methylthio (C); dynamic mod-
ifications: deamination (NQ), oxidation (M). We ran Percolator [12] in conjunction with SEQUEST with
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the target/decoy selection mode set to “separate.” For SEQUEST, for a range of target FDR thresholds
(¢ € {1%,2%,...,10%}), we identified the target PSMs with SEQUEST g-values no greater than ¢ as
discoveries. To prepare the input for Clipper, we set peptide and protein FDRs to 100% to obtain the
entire lists of target PSMs and decoy PSMs with their SEQUEST g-values.

S5.3 Differentially expressed gene (DEG) methods for bulk RNA-seq data

edgeR edgeR models each gene’s read counts by using a negative binomial regression, where the
condition is incorporated as an indicator covariate, and the condition’s coefficient represents the gene-
wise differential expression effect [13]. We used R package edgeR version 3.30.0.

DESeq2 DESeq2 uses a similar negative binomial regression as edgeR to model each gene’s read
counts under two conditions. DESeq2 differs from edgeR mainly in their estimation of the dispersion
parameter in the negative binomial distribution [14]. We used R package DESeq2 version 1.28.1.

S5.4 Differentially expressed gene (DEG) methods for scRNA-seq data

MAST MAST models each gene’s log read counts (TPM) by using a two-part generalized regression
model. Each gene’s expression rate was modeled using logistic regression and, conditioning on a cell
expressing the gene, the gene’s expression level was modeled as Gaussian [15]. We used R package
MAST version 1.14.0.

Monocle3 Monocle3 uses a generalized linear model to model each gene’s normalized expression
value, with other information included as covariates (time, treatment, and so on) [16]. We used R
package monocle3 version 0.2.3.0.

S5.5 Differentially interacting chromatin regions (DIR) methods for Hi-C data

MultiHiCcompare MultiHiCcompare relies on a non-parametric method to jointly normalize multiple
Hi-C interaction matrices [17]. It uses a generalized linear model to detect DIRs. MultiHiCcompare is
an extension of the HiCcompare package [18]. We used R package multiHiCcompare version 1.6.0.

diffHic diffHic uses the statistical framework of the edgeR package to model biological variability and
to test for significant differences between conditions [19]. We used R package diffHic version 1.20.0.

FIND FIND uses a spatial Poisson process to detect chromosomal regions that display a significant
difference between two regions’ contact intensity and their neighbouring contact intensities [20]. We
used R package FIND version 0.99.
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S6 Benchmark data generation in omics data applications

S6.1 ChlIP-seq data with synthetic spike-in peaks

We used two control samples (which we refer to as Control 1 and Control 2) from H3K4me3 ChIP-seq
data in Chromosome 1 of the cell line GM12878 [21].

(i) We created two semi-synthetic experimental samples by adding synthetic true peaks to Control
1. To mimic real H3K4me3 ChlIP-seq data, where peaks are located predominantly in promoter
regions, we added synthetic true peaks to promoter regions annotated from Ensembl BioMart
(Ensemble hg 19, regulation 104) [22]. Specifically, we randomly sampled 585 genes’ promoter
regions from Chromosome 1. We then used ChlPulate to simulate reads from these promoter
regions (for each simulation, extraction efficiency parameter and PCR efficiency parameter were
randomly sampled from a uniform distribution between 0 to 1; binding energy parameters were
randomly sampled from a uniform distribution between 0 and 2; sequencing depth parameter was
set to 50). Then we added the simulated reads to Control 1. We repeated this procedure for twice
to obtain two semi-synthetic experimental samples (i.e., two replicates under the experimental
condition).

(i) We repeated Step (i) for 20 times to generate 20 sets of semi-synthetic experimental samples.
For each set of experimental samples, we paired them with Control 2, which was treated as the
background sample (i.e., one replicate under the background condition). Hence, we obtained 20
semi-synthetic ChIP-seq datasets, each containing 585 synthetic true peaks.

(iii) After applying a peak calling method to these 20 semi-synthetic datasets, we evaluated the method’s
20 FDPs and 20 empirical power, which were then averaged as the method’s approximate FDR
and power. In the evaluation, a called peak was a true positive if it overlapped with a synthetic
true peak; otherwise, it was a false positive.

S6.2 Real MS benchmark data

We purchased the complex proteomics standard (CPS) (part number 400510) from Agilent (Agilent,
Santa Clara, CA, USA). The CPS contains soluble proteins extracted from the archaeon Pyrococcus
furiosus (Pfu), which has a complete protein database; that is, all proteins from Pfu were catalogued
into its protein database with known protein sequences. We subjected the CPS to a shotgun proteomics
analysis that generated mass spectra of Pfu.

To generate a benchmark dataset, we first generated a reference database by concatenating the Uniprot
Pyrococcus furiosus (Pfu) database, the Uniprot Human database, and two contaminant databases: the
CRAPome [23] and the contaminant database from MaxQuant [24]. During the process, we purified the
reference database by first performing in silico digestion of Pfu proteins and then removing human pro-
teins that contained Pfu peptides from the reference database. We then input the Pfu mass spectra
(from the CPS) and the purified reference database into SEQUEST. We considered a target PSM as
true if SEQUEST reported its protein as from Pfu or the two contaminants; otherwise (if from Human),
we considered the target PSM as false. The in silico digestion was performed in Python using the
pyteomics.parser function from pyteomics with the following settings: Trypsin digestion, two allowed
missed cleavages, minimum peptide length of six [25, 26].
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S6.3 Bulk RNA-seq data with synthetic spike-in DEGs

We generated four sets of realistic semi-synthetic data from two real RNA-seq datasets. The first one
is a human monocyte RNA-seq dataset including 17 samples of classical monocytes and 17 samples of
non-classical monocytes [27]. Each sample contains expression levels of d = 52,376 transcripts.

The second one is a yeast RNA-seq dataset including 48 samples of a snf2 knockout mutant cell
line and 48 samples of negative control (without the knockout) [28]. Each sample contains expression
levels of d = 7126 genes. We preprocessed this dataset by removing low-quality replicates (replicates
6, 13, 25, 35 from the knockout; replicates 21, 22, 25, 28, 34, 36 from the control) identified by the original
paper Gierlinski et al. [28], leaving us with 44 replicates under the knockout condition and 42 replicates
under the negative control.

Here we describe our simulation strategy 1. Given either the human monocyte dataset or the yeast
dataset, we performed the following steps.

(i) We first performed normalization on all samples across two conditions using the edgeR normal-
ization method trimmed mean of M-values (TMM) [29]. We denote the resulting normalized read
count matrix of classical human monocytes or yeasts without the knockout by X! and the nor-
malized read count matrix of non-classical human monocytes or yeast with the knockout by X2,
respectively. Following the convention in bioinformatics, the columns and rows of X! and X2
represent biological samples and genes, respectively.

(i) To define true DEGs, we first computed the fold change of gene j by FC; = [(X3 +1)/(X} +1)]
for j = 1,...,d, where X} and X7 denote the j-th row vector of X' and X respectively and ~
denotes the average of elements in a vector. We added the pseudo-count of 1 to avoid division by
0. We defined true DEGs as those with |log, FC,;| > 4 for the human monocyte dataset and with
|log, FC,;| > 1.5 for the yeast dataset, resulting 191 true human DEGs (transcripts) and 152 true
yeast DEGs.

(iii) We generated semi-synthetic data with 3 samples under both the experimental and background
conditions, a typical design in bulk RNA-seq experiments. Specifically, if gene j is a true DEG,
we randomly sampled without replacement 3 values from le as counts under the experimental
condition, and another 3 values from X? as counts under the background condition. If gene j is
not a true DEG, we randomly sampled 6 values without replacement from (X}, X%) and randomly
split them into 3 and 3 counts under two conditions. Doing so guaranteed that a non-DEG’s read
counts are i.i.d. regardless of condition.

(iv) We repeated Step (iii) for 100 times to generate 100 semi-synthetic datasets.

Next, we describe our simulation strategy 2. Let us now re-use notations X' to denote the original
read count matrix of classical human monocytes or yeast without the knockout, and X2 to denote the
original read count matrix of non-classical human monocytes or yeast with the knockout. Both X' and
X2 have rows as genes or transcripts and columns as biological samples. Given either the human
monocyte dataset or the yeast dataset, we performed the following steps.

(i) We first identified genes whose read counts are positive in all samples under both conditions and
denote the number of such genes by d,,. Then from these identified genes, we randomly sampled
without replacement min(d,, 0.3d) genes as true DEGs. The remaining d — min(d,,0.3d) genes
were considered true non-DEGs.

(i) To generate fold changes of true DEGs, we first computed the fold change of gene j by FC; =
(X3 +1)/(X] +1)] for j = 1,...,d, where X} and X? denote the j-th row vector of X' and X?
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respectively and - denotes the average of elements in a vector. Let W denote {FC; : FC; >
16,7 =1,...,d} for the human monocyte dataset and {FC; : FC; > 1.5,j = 1,...,d} for the yeast
dataset. We then sorted unique elements in W and denoted them by w;) < --- < w(,,), where
n,, is the number of unique elements in WW. To generate a fold change of a true DEG, say gene
j,» we randomly generated an integer v with equal probability from {1,--- ,n, — 1} and a value p
from Uniform(0, 1). Then we calculated the fold change as R; = w,) + p(wy4+1) — w(y)). Using
this approach, generated the fold changes independently for all true DEGs.

(iii)y Next, we randomly sampled 6 replicates without replacement from X2 and split them into two
groups of 3 replicates. We denote the resulting matrices as X' and X2, whose j-th rows are
denoted respectively by X! and X2. If gene j is a true DEG, we generated U; from Bernoulli(1/2).
Then we set gene ;s expression levels under the two conditions to R; X} and X3 if U; = 0 or X
and ij(f if U; = 1. If gene j is not a true DEG, its expression levels under the two conditions
would remain unchanged, i.e., X} and X?. Such data generation strategy has no guarantee of
i.i.d. read counts for non-DEGs if the samples in X2 have batch effects.

(iv) We repeated Step (iii) for 100 times to generate 100 semi-synthetic datasets.

The human monocyte RNA-seq dataset is available in the NCBI Sequence Read Archive (SRA) un-
der accession number SRP082682 (https://www.ncbi.nlm.nih.gov/Traces/study/7acc=srp082682).
The yeast RNA-seq data is available in the European Nucleotide Archive (ENA) archive with project ID
PRJEB5348 (https://www.ebi.ac.uk/ena/browser/view/PRIJEB5348).

S$6.4 Single-cell RNA-seq data with synthetic spike-in DEGs

We used scDesign2, a flexible probabilistic simulator to generate realistic scRNA-seq count data with
gene correlations captured [30]. Using scDesign2, we generated two sets of semi-synthetic data from
two peripheral blood mononuclear cell (PBMC) real datasets [31]: one generated using the 10x Ge-
nomics protocol [32] and the other using Drop-seq [33]. Each synthetic dataset contains two types of
cells: CD4+ T cells, and cytotoxic T cells, which we treated as two conditions. Starting with the real data
generated using either 10x Genomics or Drop-seq, we used the following steps to generate synthetic
scRNA-seq data.

(i) First, we fit the real data count matrices using R function fit_model_scDesign2 for each cell type
by specifying the underlying distribution of each gene as negative binomial. Denote the resulting
marginal distributions of gene j as NB(ji;1, éjl) for CD4+ T cells and N B(fi;2, éjg) for cytotoxic
Tcells, j = 1,...,d. The gene-gene correlations with each cell type were fitted using a copula
model.

(i) Let X°d* and Xv** denote the read count matrices of CD4+ T cells and cytotoxic T cells. To define
true DEGs, we first computed the log fold change of gene j by logFC;; = log, [(X$%* +1)/(X5** + 1)]
forj =1,...,d, where X¢!* and X?ym denote the j-th row vector of X4 and Xt respectively
and ~ denotes the average of elements in a vector. We then selected 1000 genes with the largest
absolute fold changes as true DEGs and kept the remaining ones as true non-DEGs.

(iii) We simulated the semi-synthetic datasets using R function simulate_count_scDesign2. Specifi-
cally, we set the number of synthetic cells generated by scDesign2 equal to the number of real
cells for each cell type. If a gene j is a true DEG, we specify its marginal distributions under the
two conditions as N B(ji;1, éjl) and NB(,an,éﬂ) respectively. If a gene j is a true non-DEG, we
specify its marginal distribution under both conditions as NB((fij1 + fij2)/2, (0;1 + 6;2)/2). We
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used the fitted copula models from the two cell types to generate genes’ (correlated) expression
read counts.

(iv) We repeated Step (iii) for 200 times to generate 200 semi-synthetic datasets.

Both fit_model scDesign2 and simulate_count_scDesign2 come from R package scDesign2 [30].
The 10x Genomic PBMC dataset and the Drop-seq PBMC dataset are available from the Gene Ex-
pression Omnibus (GEO) with accession number GSE132044 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE132044) and the Single Cell Portal with accession numbers SCP424 (https://
singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data).

S$6.5 Hi-C data with synthetic spike-in DIRs

The real Hi-C interaction matrix contains the pairwise contact intensities of 250 binned genomic regions
in Chromosome 1. Itis from the cell line GM12878 and available in the NCBI Gene Expression Omnibus
(GEO) under accession number GSE63525. We denote the real interaction matrix as X", Because
Xreal js symmetric, we only focus on its upper triangular part.

(i) Among the (250 x 250 — 250)/2 = 31,125 upper triangular entries (i.e., region pairs), we selected
404 entries as true up-regulated DIRs, and 550 entries as true down-regulated DIRs (Fig. S29).

(i) Next, for the (4, j)-th entry, we generated a log fold change, denoted by f;;, between the two
conditions as follows. We simulated f;; from truncated Normal(100/|i — j|,0.5%) with support
[0.05, 00) if the (i, j)-th entry is up-regulated, or from truncated Normal(—100/]i — jl,0.5%) with
support (—oo, —0.05] if the (i, j)-th entry is down-regulated; if the (i, j)-th entry is not differential,
we set f;; = 0.

(i) Then we specify the mean measurement of the (i, j)-th entry under the two conditions as px;; =
[Xreall, . and py;; = [Xre2l];; - efid | respectively.

(iv) We generated synthetic read counts of the (i, j)-th entry from NB(zx;;, 1000~1) and NB(uy-;, 100071)
respectively under the two conditions.

(v) We repeated Step (iv) for 200 times to generate 200 semi-synthetic datasets.

S7 Implementation of Clipper in omics data applications

Below we briefly introduce the implementation of Clipper in the four omics data applications. All the
results were obtained by running using R package Clipper (see package vignette for details: https:
//github.com/JSB-UCLA/Clipper/blob/master/vignettes/Clipper.pdf).

S7.1 Peak calling from ChlIP-seq data

(i) We consider each genomic location, i.e., a base pair, as a feature and each ChlP-seq sample
as a replicate under the experimental or background condition. Then we consider the read count
of each location in each sample as the corresponding feature’s measurement. Doing so, we
summarized ChIP-seq data into a d x (m + n) matrix, where d is the number of locations, and m
and n are the numbers of experimental and control samples, respectively. We then applied Clipper
to perform an enrichment analysis to obtain the contrast score C; for each location j. In our study,
m = n = 1, so the default Clipper implementation is Clipper-minus-BC.
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(if) For any target FDR threshold g, Clipper gives a cutoff T, on contrast scores.

(iii) We then used existing peak calling methods, e.g., MACS2 and HOMER, to call candidate peaks
with the least stringent g-value cutoff. For example, when we used MACS2, we set the g-value
cutoff as 1.

(iv) We computed the contrast score of each candidate peak as the median of the contrast scores of
all the locations within.

(v) The candidate peaks with contrast scores greater than or equal to T, are called discoveries.

S7.2 Peptide identification from mass spectrometry data

(i) We consider each mass spectrum as a feature and its target/decoy PSM as a replicate under the
experimental/background condition respectively. Then we consider — log,,(g-value + 0.01) as the
measurement of each PSM, where the g-value is output by SEQUEST. Doing so, we summarized
the SEQUEST output into a d x (m + n) matrix, where d is the number of mass spectra, and
m and n are the numbers of experimental and control samples, respectively. We then applied
Clipper to perform an enrichment analysis to obtain a contrast score C; for each mass spectrum
j. If the mass spectrum has no decoy or background measurement, we set C; = 0. In our study,
m = n = 1, so the default Clipper implementation is Clipper-minus-BC.

(i) For any target FDR threshold ¢, Clipper gives a cutoff T;, on contrast scores.

(iii) The target PSMs whose mass spectra have contrast scores greater than or equal to T, are called
discoveries.

S7.3 DEG identification from bulk RNA-seq data

(i) We consider each gene as a feature and the class label—classical and non-classical human
monocytes—as the two conditions. We first performed the TMM normalization method [29]. Then
we consider log,-transformed read counts with a pseudocount 1 as measurements. Doing so, we
summarized the gene expression matrix into a d x (m+mn) matrix, where d is the number of genes,
and m and n are the numbers of samples under the two conditions, respectively. We then applied
Clipper to perform a differential analysis to obtain a contrast score C; for each gene. In our study,
m = n = 3, so the default Clipper implementation is Clipper-max-GZ with h = 9, the maximum
number of permutations when we have three replicates under both conditions.

(i) For any target FDR threshold ¢, Clipper gives a cutoff T;, on contrast scores.

(i) The genes with contrast scores greater than or equal to T, are called discoveries.

S7.4 DEG identification from scRNA-seq data

(i) We consider each gene as a feature and the cell type—CD4+ T cells and cytotoxic T cells—as
the two conditions. We first performed the TMM normalization [29]. Then we consider log,-
transformed read counts with a pseudocount 1 as measurements. Doing so, we summarized the
gene expression matrix into a d x (m + n) matrix, where d is the number of genes, and m and
n are the numbers of samples under the two conditions, respectively. We then applied Clipper to
perform differential analysis to obtain a contrast score C; for each gene j. In our study, m = 1172,
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n = 789 for Drop-seq dataset and m = 963, n = 694 for 10x Genomics dataset. The default
Clipper implementation is Clipper-max-GZ with h = 1, the default number of permutations.

(i) For any target FDR threshold ¢, Clipper gives a cutoff T;, on contrast scores.

(i) The genes with contrast scores greater than or equal to T, are called discoveries.

S7.5 DIR identification from Hi-C data

(i) We consider each pair of genomic regions as a feature and manually created two conditions. Then
we consider log-transformed read counts as measurements. Doing so, we summarized the gene
expression matrix into a d x (m + n) matrix, where d is the total pairs of genomic regions, and m
and n are the numbers of samples under the two conditions, respectively. We then applied Clipper
to perform a differential analysis to obtain a contrast score C; for each pair of genomic regions. In
our study, m = n = 2, so the default Clipper implementation is Clipper-max-GZ with h = 1.

(if) For any target FDR threshold ¢, Clipper gives a cutoff T, on contrast scores.

(iii) The pairs of genomic regions with contrast scores greater than or equal to 7; are called discover-
ies.

S8 Proofs

S8.1 Proof of Theorem 1

We first prove Theorem 1, which relies on Lemmas 1 and 2. Here we only include the proof of Lemma
1 and defer the proof of Lemma 2 to Section S8.3.

Proof 1 (Proof of Lemma 1) Here we prove that Lemma 1 holds when C; is constructed using (S10);
the proof is similar when C; is constructed using (S11).

When input data satisfy (S6) and (S7) and m = n, properties (a) and (b) can be derived directly. To
prove property (c), it suffices to prove that for any j € N with C; # 0, S; is independent of |C}|.

Note that X; and Y; are i.i.d for j € N" when m = n. Hence for any measurable set A C [0, +oc),

P(S; =1,|C) € A) =P (t™"(X;,Y ;) € A) =P (t™™(Y;, X;) € A) = P(S; = —1,|Cj| € A).

The first equality holds because t™(X ;,Y ;) = C; = |C;| when S; = 1. The second equality holds
because t™"s(X ;,Y ;) and t™s(Y ;, X ;) are identically distributed when j € N. The third equality
holds because t™™(Y ;, X ;) = —C;; if —C; € A, then S; = —1.

Because P (S; = 1,|C;j| € A)+P(S; = —1,|C;| € A) =P (|C}| € A), it follows that

1
P(S; = 1,10l € A) = SP(|C] € A) =P(S; = DP(|Cj| € A) ,
2

where the last equality holds because P(S; = 1) = 1/2 by property (b).
Hence, S; and |C;| are independentVj € N.

Proof 2 (Proof of Theorem 1) Define a random subset of N as M :=N\{j e N : C; =0} ={j e N:
S; # 0}.

First note that by Lemma 1(b), P(S; = —1) = P(C; < 0) = 1/2 forall j € M C N. Assume
without loss of generality that M = {1,...,d'}. We order {|C;| : j € M}, from the largest to the
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smallest, denoted by |C(1)| > |C(g)l > --- > |Cia|. Let J = 3, 1(ICj| > TBC), the number of
uninteresting features whose contrast scores have absolute values no less than T®C. When J > 0,
ICyl = -++ = |Cry| = TBC. Define Z, = 1(Cy,y <0), k = 1,...,d". Then for each order k, the
following holds

C(k) ZTBC<:> ’C(k)’ ZTBC andC(k) >0« k< Jand Z,=0;

Ciry £ TP = |Cy| = TP and Cpy < 0=k < Jand Z;, = 1.
Then

card({j e M :C; > TBC}) ZZ/:I 1(Cyy > TBC)
card({j e M: C; < =TP°H +1 140 1(Cyy < —TEC)
_ Zi:l 1 (C(k) Z TBC)
1+ 3521 1 (Cy < —TE€)
(-2t + (- 2))

L+ 21+ + 2,

B 1+J .
I+ Zi++ 2y

Because {S;},cn Is independent of C (Lemma 1(c)), Lemma 1(a)-(b) still holds after C+,...,Cq are
reordered as C(yy,...,Cay. Thus Zy, ..., Zy are i.i.d. from Bernoulli(1/2). To summarize, it holds that

{Z}ienm ‘ M Bernoulli(1/2) .

Then by applying Lemma 2 and making p = 0.5, we have:

card({j eM:C; > TBC})
[card({j €EM:C; < -TBC}) +1 M=t (522)
Then
FDR — E card({j.ej\/‘ : C; > TBCY)
card({j : C; > TBC}) v 1
- card({j e N': C; > TBC}) .card({jEN:ng—TBC})—i—l
card({j e N : C; < —TBC}) +1 card({j : C; = TBC}) v 1
- [ card({j € N': C; > TBC}) card({j : C; < -TBC}) +1
card({j e N': C; < —TBC}) +1  card({j : C; > TBC}) v 1

card({j € N': C; > TBC})
=4 card({j e N : C; < —TBC}) +1
card({j € M : C; > TBC})
card({j e M : C; < -TBC}) 41

<q¢-E|E

.l

where M is random subset of N' such that for each j € M, |C;| > 0. The last inequality follows from
(S22).

<q

— )
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S8.2 Proof of Theorem 2

We then prove Theorem 2, which relies on Lemmas 2 and 3. Here we introduce the proof of Lemma 3
and defer the proof of Lemma 2 to Section S8.3.

Proof 3 (Proof of Lemma 3) With input data satisfying (S6) and (S7), C; constructed from (S19) or
(S20), property (a) can be derived directly.

To show property (b), note that for each uninteresting feature j ¢ N', X ; andY ; are from the same
distribution; thus {T}*}}_, are identically distributed. Define an event £; := {ZLO W17t = Tj(o)) = 1},
which indicates thatTj(O), the maximizer of {T7* M, is unique. Then conditional on ;, the maximizer is
equally likely to be any of {0, ..., h}, and it follows that P(S; = 1| £,) = (T =T\ | £) = 1/(h + 1).
Conditioning on that £; does not happen, P(S; = 1| &5) = 0. ThusP(S; = 1) = P(S; = 1| &;)P(&;) +
P(S; =1[&P(ES) < 1/(h+1).

The proof of property (c) is similar to the Proof of Lemma 1(c). It suffices to show that for any j € N
with C; # 0 (that is, £; occurs), S; is independent of |C;|. As X ; andY ; are from the same distribution,
{77} h_, are identically distributed. Hence for any measurable set A C [0, +c0),

P(S; =1,IC5l € A| &) =P (170 =T\, |Cj| € A| &)

Loy 1142

1
= EP(SJ =-1,|C;l € A[&;).

The first equality holds because T7° = Tj(o) when S; = 1. The second equality holds because
{T]f”f}j}:o are identically distributed when j € N. The third equality holds because T7° # T;O) when
S;=—1.

Because P (S; =1,|Cj|l € A| &) +P(S; =—1,|C;| € A| &) =P (|C)] € A|E;), it follows that

1
P(S;=11C;l € Al &) = ——P(ICj| € A &) =P(S; =1 &)P(|ICs| € A &)
h+1

where the last equality holds because P(S; =1 |&;) =1/(h +1).
Hence, S; and |C;| are independentVj € N with C; # 0.

Proof 4 (Proof of Theorem 2) Define a random subset of N 'as M := N\{j e N : C; =0} = {j €
N : S; # 0}. Assume without loss of generality that M = {1,...,d'}. We order {|C}| : j € M}, from
the largest to the smallest, denoted by |C(1)| > |Cg)| > --- > [Car)|. Let J =3\ 1 (|5 > T9?), the
number of uninteresting features whose contrast scores have absolute values no less than TS%. When
J>0,|Ca)| == |Cp| = T Define Z;, = 1 (Ciy < 0), k =1,...,d". Then for each order k, the
following holds:

Ciry =2 T <= |Cypy| > T and Cyy > 0 <=k < J and Z;, = 0;

Cipy £ —T = |Cpy| 2 T” and C(y) < 0=k < Jand Z, = 1.
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Then it follows that

card({j € M : C; > TG%}) S 1(Cyy > TC%)

card({j € M: C; < =T92}) +1 1457 1(C < —TG%)
Y 1(Cwy =T
1+ 1 (Cy < —T9)
A=Z1)+--+(1—-2y)
1+2Z+-+2;
14 J

= —1.
L+ 2+ + 2y

Because {S;},cn Is independent of C (Lemma 1(c)), Lemma 1(a)-(b) still holds after C+,...,Cy are
reordered as C(yy,...,Cay. Thus Zy,..., Zy are i.i.d. from Bernoulli(px). To summarize, it holds that

{Zi}tiepm | M e Bernoulli(py,) -

Then by applying Lemma 2 and making p = h/(h + 1), we have:

{ card({j € M : C; > TG?%})

card({j € M : C; < —TGZ}) + 1} <1/h. (523)

Then

card({j eEN:C; > TGZ})
card({j : C; > TG%}) v 1

—E[ card({j € N': C; > T¢%}) card({j e N': C; < —T9%}) +1

FDR:E[

card({j e N : C; < -TGZ}) +1 card({j: C; > TG}V 1

card({j € N': C; > T¢%}) teard({j: C; < —T9%}) + +
card({j e N: C; < —TGZ})+1  card({j: C; > TGZ}) v 1

<h-E

card({j € N': C; > T¢%})
card({j e N: C; < —=TG%}) + 1

; O, Gz
<hg E|E card.({jEM.Cjo 12
card({j e M : C; < -TG%}) +1

§hq-El

|

where the second inequality follows from the definition of Ty (S21) and the last inequality follows from
(823).

<gq

=4,

S8.3 Proof of Lemma 2

Finally, we derive Lemma 2 by following the same proof same as in [8], which relies on Lemma 4 and
Corollary 1.

Lemma 4 Suppose that Z1,...,7Z, gk Bernoulli(p). Let J be a stopping time in reverse time with

respect to the filtration {F,}, where F; = o ({(Z1+---+ Z;), Zj+1, --- , Zq}) with o(-) denoting a o-
algebra, and the variables 7, . .., Z; are exchangeable with respect to {F;}. Then
E 1+J <!

1+Z1+---+ 25 —
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Proof 5 (Proof of Lemma 4) Define
Yy=Z1+--+Z; € F,
and define the process

M= 1+ 14y
TUl4 2+ + Z; 1Y

e Fj.

In [3], it is shown that E[M,] < p~!. Therefore, by the optional stopping time theorem it suffices to show
that {M;} is a supermartingale with respect fto {F;}. As{Z.,...,Z;1.1} are exchangeable with respect
to Fj+1, we have

Y+
P(Zjp1=1|Fjm) = L—.
( Jj+1 ‘ ]+1) 1+j
Therefore, ifY; 1 > 0,
E[M; | Fya] = T B(Zia = 0| Fpan) + gt P (Zya = 1] Fypa)
J J 1+}/j+1 J J 1+Y'J+1_1 J J
_ 145 145 -Yin I+ Y
1+Y 1+ I1+Yjp—1 1+j
L+ Yjn
1+ (+1)
1+Y;11
:Mj+1.

IfinsteadY; 1 = 0, then triviallyY; = 0, and M; = 1+ j < 2+ j = M;y1. This proves that {M;} is a
supermartingale with respect to { F;} as desired.

Corollary 1 Suppose that A C {1,...,d} is fixed, while Z1, ..., Z, sk Bernoulli(p). Let J be a stop-

ping time in reverse time with respect to the filtration { F,}, where F; = o ({Zkgj,k:eA ZyU{Z,j<k<dke A})
with o(-) denoting a o-algebra, and the variables {Z;, : k < j, k € A} are exchangeable with respect to

F;. Then

E

14+card({k: k < J ke A}) <1
L+ > k< sken Zr o

Proof 6 (Proof of Corollary 1) Let A = {j1,...,jm} Where1 < j; < --- < j < d. Then by consider-
ing the i.i.d. sequence
Zjy.. 2,

in place of Z, ..., Z4, we see that this result is equivalent to Lemma 4.

Proof 7 (Proof of Lemma 2) [From [3]] We may assume p < 1 to avoid the trivial case. We first in-

troduce a different definition for {Z;}4_, by defining a random set A C {1,...,d} where for each j,
independently,
: _1—pj
P(jeA= =,
We then define random variables Q1, . ..,Qq4 RSl Bernoulli(p), which are generated independently of
the random set A. Finally, we define
Zj=Q;-1(jeA+1(G¢A. (S24)

Then {Z;}{_, are mutually independent and P(Z; =1) = 1 —-P(j € A)-P(Q; = 0) = p;, that is,
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Z; ~ Bernoulli(p;). This new definition of { Z; }34:1 meet all the conditions required by Lemma 2, so that
we can apply this new definition in the following proof.
AsZ;=Q;-1(je A)+1(j ¢ A) forall j, we have

1+J _ltcad({j<J:jeAf) tcard({j < J:j¢ A}) < l+card({j < J:j€ A})
(S25)
where the last step uses the identify 4¢ < % whenever 0 < b < a and ¢ > 0. Therefore, it will be

sufficient to prove that
l+card({j < J:j€ A})
1+2<rjea@s

E

M <p (S26)

To prove (S26), first let Q; = Q; - 1(j € A), and define a filtration {F}} where F is the c-algebra
generated as

Fi=o({@i++ Q5@ QuA}).
Next for any j, by (S24) we see that

Zl—|—--'+Zj,Zj+1,...,Zd€f]/’ = ]:j g./T"]/,

so J is a stopping time (in reverse time) with respect to F;. Finally, since the Q;'s are independent of
A, (526) follows from Corollary 1 after conditioning on A.
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Figure S1: In the 1vs1 enrichment analysis, comparison of Clipper and four other generic FDR control meth-
ods (BH-pool, BH-pair-2as1, BH-pair-mis, and locfdr-emp) in terms of their FDR control and power. At target FDR
thresholds ¢ € {1%, 2%, - - - , 10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets
with d = 1000 or 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (¢) the
negative binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) back-
ground scenarios. Among the methods that control the FDR, Clipper is the second most powerful for homogeneous
background and the most powerful for heterogeneous background.
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Figure S2: In the 2vs1 enrichment analysis (columns 1 and 3) and differential analysis (columns 2 and 4), com-
parison of Clipper and five other generic FDR control methods (BH-pooled, BH-pair-2as1, BH-pair-mis, locfdr-emp,
and locfdr-swap) in terms of their FDR control and power. At target FDR thresholds ¢ € {1%,2%, --- ,10%}, each
method’s actual FDRs and power are evaluated on 200 simulated datasets with d = 10,000 features generated
from (a) the Gaussian distribution, (b) the Poisson distribution, or (¢) the negative binomial distribution under ho-
mogeneous(two left columns) and heterogeneous (two right columns) background scenarios. Among the methods
that control the FDR, Clipper is the second most powerful for homogeneous background and the most powerful for
heterogeneous background (except for differential analysis with ¢ < 2%).
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Figure S3: In the 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), compari-
son of Clipper and six other generic FDR control methods (BH-pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis,
locfdr-emp, and locfdr-swap)in terms of their FDR control and power in 3vs3 enrichment analysis with possible
outliers. At target FDR thresholds ¢ € {1%,2%, --- ,10%}, each method’s actual FDRs and power are evaluated
on 200 simulated datasets with d = 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson
distribution, or (c¢) the negative binomial distribution under homogeneous (two left columns) and heterogeneous
(two right columns) background scenarios. 10% of the features are interesting features. Among the methods that
control the FDR, Clipper is the second most powerful for homogeneous background and the most powerful for
heterogeneous background.
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Figure S4: In the 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4),
comparison of Clipper and six other generic FDR control methods (BH-pooled, BH-pair-correct, BH-pair-2as1,
BH-pair-mis, locfdr-emp, and locfdr-swap) in terms of their FDR control and power. At target FDR thresholds
qg € {1%,2%,---,10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets with
d = 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (¢) the negative
binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) background
scenarios. Among the methods that control the FDR, Clipper is the second most powerful for homogeneous back-
ground and the most powerful for heterogeneous background (except for Poisson distribution where Clipper is

second to BH-pair-correct, an idealistic method).
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Figure S5: In the 1vs1 enrichment analysis, comparison of Clipper and three other generic FDR control methods
using Storey’s g-value (qvalue-pool, qvalie-pair-2as1, and qvalue-pair-mis) in terms of their FDR control and power.
At target FDR thresholds ¢ € {1%,2%,---,10%}, each method’s actual FDRs and power are evaluated on 200
simulated datasets with d = 1000 or 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson
distribution, or (c¢) the negative binomial distribution under homogeneous (two left columns) and heterogeneous
(two right columns) background scenarios. Among the methods that control the FDR, Clipper is the second most
powerful for homogeneous background and the most powerful for heterogeneous background.
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Figure S6: In the 2vs1 enrichment analysis (columns 1 and 3) and differential analysis (columns 2 and 4), compar-
ison of Clipper and three other generic FDR control methods using Storey’s g-value (qvalue-pool, qvalie-pair-2as1,
and qvalue-pair-mis) in terms of their FDR control and power. At target FDR thresholds ¢ € {1%,2%,--- ,10%},
each method’s actual FDRs and power are evaluated on 200 simulated datasets with d = 10,000 features generated
from (a) the Gaussian distribution, (b) the Poisson distribution, or (¢) the negative binomial distribution under ho-
mogeneous (two left columns) and heterogeneous (two right columns) background scenarios. Among the methods
that control the FDR, Clipper is the second most powerful for homogeneous background and the most powerful for

heterogeneous background.
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Figure S7: In the 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), com-
parison of Clipper and four other generic FDR control methods using Storey’s g-value (qvalue-pooled, qvalue-pair-
correct, qvalue-pair-2as1, and gvalue-pair-mis) in terms of their FDR control and power in 3vs3 enrichment analysis
with possible outliers. At target FDR thresholds ¢ € {1%,2%, --- ,10%}, each method’s actual FDRs and power
are evaluated on 200 simulated datasets with d = 10,000 features generated from (a) the Gaussian distribution,
(b) the Poisson distribution, or (c) the negative binomial distribution under homogeneous (two left columns) and
heterogeneous (two right columns) background scenarios. Among the methods that control the FDR, Clipper is the
second most powerful for homogeneous background and the most powerful for heterogeneous background.
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Figure S8: In the 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4), com-
parison of Clipper and four other generic FDR control methods using Storey’s g-value (qvalue-pooled, qvalue-pair-
correct, qvalue-pair-2as1, and qvalue-pair-mis) in terms of their FDR control and power. At target FDR thresholds
q € {1%,2%,---,10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets with
d = 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (¢) the negative
binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) background
scenarios. Among the methods that control the FDR, Clipper is the second most powerful for homogeneous back-
ground and the most powerful for heterogeneous background (except for Poisson distribution where Clipper is
second to gqvalue-pair-correct, an idealistic method).
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Figure S9: In the 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison
of Clipper, BH-pair-correct (known dispersion), and BH-pair-correct (unknown dispersion) in terms of their FDR
control and power. At target FDR thresholds ¢ € {1%,2%, - -- ,10%}, each method’s actual FDRs and power are
evaluated on 200 simulated datasets with d = 10,000 features generated from the negative binomial distribution
under homogeneous (two left columns) and heterogeneous (two right columns) background scenarios. BH-pair-
correct (unknown dispersion) cannot control the FDR in all settings. In contrast, Clipper is consistently the most
powerful for homogeneous and heterogeneous background.

47


https://doi.org/10.1101/2020.11.19.390773
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.390773; this version posted July 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Gaussian Poisson Negative binomial

Heterogeneous Heterogeneous Heterogeneous

a Without outlier

100 100 100
75 75 75
50 50 50
S 25 25 25
5
T 10 10 10
g . 5 :
[&]
< g 4 4
2| 4 2 . 21 A
0246810 0246 810 02 4 6 810
1007 4 ooeoeees 100 eerees 1007 _ .

75 75 BH-pair-2as1
50 50 /// BH-pair-mis

i

Power (%)
a1
o

~= BH-pair—parametric
25 25 25 == BH-pair—permutation
246810 %2a6s81m0 % 246810  BH-pair-Wicoxon
=< BH-pool
b With outliers -~ Clipper
19% 198 19% locfdr-emp
50 50 50 locfdr-swap
S 25 25
5
T 10 10
‘ ‘
Q
< 4 4
2 2

0246 810 0246810

100} ooopsmomeee 100 100
$ 75 - 75 75
:;: 50 50 50
g 25 / 25 25
00246810 00246810 00246810
Target FDR (%) Target FDR (%) Target FDR (%)

Figure S10: In the 10vs10 enrichment analysis with and without outliers, comparison of Clipper and eight generic
FDR control methods (BH-pooled, BH-pair-Wilcoxon, BH-pair-parametric, and BH-pair-permutation, BH-pair-2as1,
BH-pair-mis, locfdr-emp, and locfdr-swap) in terms of their FDR control and power. At target FDR thresholds
q € {1%,2%,---,10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets with
d = 10,000 features generated from the Gaussian distribution (left), the Poisson distribution (middle), or the negative
binomial distribution (right) under heterogeneous background scenarios. Clipper achieves the highest power for all
three distributions.
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Figure S11: In the 3vs3 enrichment analysis with correlated features, comparison of Clipper and six other
generic FDR control methods (BH-pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis, locfdr-emp, and locfdr-
swap) in terms of their FDR control and power in 3vs3 enrichment analysis. At target FDR thresholds ¢ €
{1%, 2%, --- ,10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets with d =
10,000 features generated from a multivariate Gaussian distribution with a correlation 0.2 (columns 1 and 3) or 0.4
(columns 2 and 4) between features. Among the methods that control the FDR, Clipper is the second most powerful
for homogeneous background and the most powerful for heterogeneous background.
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Figure S12: In 3vs3 enrichment analysis with different proportions of interesting features without outliers,
comparison of Clipper and six generic FDR control methods (BH-pooled, BH-pair-correct, BH-pair-2as1, BH-
pair-mis, locfdr-emp, and locfdr-swap) in terms of their FDR control and power. At target FDR thresholds
qg € {1%,2%,---,10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets with
d = 10,000 features generated from the Gaussian distribution, the Poisson distribution, or the negative binomial
distribution, with the proportion of interesting features being 0.2 (columns 1 and 3) or 0.4 (columns 2 and 4) under
homogeneous (columns 1 and 2) and heterogeneous (columns 3 and 4) background scenarios. Clipper achieves
the highest power for all distributions.

50


https://doi.org/10.1101/2020.11.19.390773
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.390773; this version posted July 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Homogeneous background

No outlier
a Gaussian

100 100

75 75

50 50
g
@
[a]
L
s
p=}
B
<

100

Outlier

0246 810

=——————— 100

0246 810

W
< 75 75
S 7
% 50 7 50
g /
£ 25 25
sl L
0246810 0246 810
b Poisson
100 100
75 75
50 50| e
S
@
o
L
T
p}
3
<

Power (%)

0246 810

0246 810

0246 810

¢ Negative binomial

Actual FDR (%)

Power (%)

100 100
75 75
50 . 50
25 ~ 25

& / ;
10 5
8 ;
6 /
4 P
2

100) ey 100 e
75{ 75|
50 50

25 25

0 0

0246 810

0246 810

0246 810

Target FDR (%)

100 . 100 -
75l T s /w
50 50

25 25

% 226810 % 246810

Target FDR (%)

Actual FDR (%)

Actual FDR (%)

Power (%)

Actual FDR (%)

Power (%)

Heterogeneous background

No outlier

Outlier

100

g5

ag) 50 Yy

£ 25 /
0

100 100
75 75
50 . 50f e
251 25
/
10 10
8 / 8
6 6
4 4
2 76/ 21 . F
0246810 0246810
100 100 i
;;;;:y:,w—) A Ak
75 75
50 50
25 / 25 /
0 0

0246 810

02 46 810

0246 810

0246 810

100 100
75| o s
50 501~
25 // 251
0 0
0246810 0246810

Target FDR (%)

Target FDR (%)

—— Clipper
Clipper-t
BH-pool
BH-pair—correct
BH-pair-2as1
BH-pair-mis
locfdr-emp
locfdr-swap

Figure S13: In the 3vs3 enrichment analysis with and without outliers, comparison of the default Clipper, the Clipper
variant using the ¢ statistic as the contrast score (Clipper-t), and six generic FDR control methods (Clipper BH-
pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis, locfdr-emp, and locfdr-swap) in terms of their FDR control and
power. At target FDR thresholds ¢ € {1%, 2%, - - - ,10%}, each method’s actual FDRs and power are evaluated on
200 simulated datasets with d = 10,000 features generated from the Gaussian distribution, the Poisson distribution,
or the negative binomial distribution under homogeneous (columns 1 and 2) and heterogeneous (columns 3 and 4)
background scenarios. Clipper achieves higher power than Clipper-t does.
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Figure S14: In the 3vs3 differential analysis with and without outliers, comparison of the default Clipper, the
Clipper variant using the ¢ statistic to calculate the degree of interestingness (Clipper-t), and six generic FDR
control methods (Clipper BH-pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis, locfdr-emp, and locfdr-swap) in
terms of their FDR control and power. At target FDR thresholds ¢ € {1%,2%,--- ,10%}, each method’s actual
FDRs and power are evaluated on 200 simulated datasets with d = 10,000 features generated from the Gaussian
distribution, the Poisson distribution, or the negative binomial distribution under homogeneous (columns 1 and 2)
and heterogeneous (columns 3 and 4) background scenarios. Clipper achieves higher power than Clipper-t does.

52


https://doi.org/10.1101/2020.11.19.390773
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.390773; this version posted July 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Human monocyte semi-synthetic datasets by simulation strategy 1
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Figure S15: Comparison of Clipper and two popular DEG identification methods—edgeR and DESegq2—in DEG
analysis on semi-synthetic bulk RNA-seq data (generated from human monocyte real data using simulation strategy
1 in Supp. Section S6.3). (a) FDR control, power given the same target FDR, and power given the same actual FDR.
(b) Ranking consistency of the true DEGs among the top 100 DEGs identified by each method. The consistency
is defined between the genes’ ranking based on edgeR/DESeq2’s p-values or Clipper’s contrast scores and their
ranking based on true expression fold changes. (¢) Reproducibility between two semi-synthetic datasets as tech-
nical replicates. Three reproducibility criteria are used: the IDR, Pearson correlation, and Spearman correalation.
Each criterion is calculated for edgeR/DESeqg2’s p-values or Clipper’'s contrast scores on the two semi-synthetic
datasets. Among the three methods, only Clipper controls the FDR, and Clipper achieves the highest power, the
best gene ranking consistency, and the best reproducibility.
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Yeast semi-synthetic datasets by simulation strategy 1
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Figure S16: Comparison of Clipper and two popular DEG identification methods—edgeR and DESeg2—in DEG
analysis on semi-synthetic bulk RNA-seq data (generated from yeast real data using simulation strategy 1 in Supp.
Section S6.3). (a) FDR control, power given the same target FDR, and power given the same actual FDR. (b)
Ranking consistency of the true DEGs among the top 100 DEGs identified by each method. The consistency is
defined between the genes’ ranking based on edgeR/DESeq2’s p-values or Clipper’'s contrast scores and their
ranking based on true expression fold changes. (¢) Reproducibility between two semi-synthetic datasets as tech-
nical replicates. Three reproducibility criteria are used: the IDR, Pearson correlation, and Spearman correalation.
Each criterion is calculated for edgeR/DESeqg2’s p-values or Clipper’'s contrast scores on the two semi-synthetic
datasets. Among the three methods, only Clipper controls the FDR, and Clipper achieves the highest power, the
best gene ranking consistency, and the best reproducibility.
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Yeast semi-synthetic datasets by simulation strategy 2
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Figure S17: Comparison of Clipper and two popular DEG identification methods—edgeR and DESeg2—in DEG
analysis on semi-synthetic bulk RNA-seq data (generated from yeast real data using simulation strategy 2 in Supp.
Section S6.3). (a) FDR control, power given the same target FDR, and power given the same actual FDR. (b)
Ranking consistency of the true DEGs among the top 100 DEGs identified by each method. The consistency is
defined between the genes’ ranking based on edgeR/DESeq2’s p-values or Clipper’'s contrast scores and their
ranking based on true expression fold changes. (¢) Reproducibility between two semi-synthetic datasets as tech-
nical replicates. Three reproducibility criteria are used: the IDR, Pearson correlation, and Spearman correalation.
Each criterion is calculated for edgeR/DESeqg2’s p-values or Clipper’'s contrast scores on the two semi-synthetic
datasets. Among the three methods, only Clipper controls the FDR, and Clipper achieves the highest power, the
best gene ranking consistency, and the best reproducibility.
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Figure S18: The p-value distributions of 16 non-DEGs that are most frequently identified by DESeq2 at ¢ = 5%
from 200 semi-synthetic datasets. The p-values of these 16 genes tend to be overly small, and their distributions
are non-uniform with a mode close to 0.
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Figure S19: Comparison of Clipper and five scRNA-seq DEG identification methods on synthetic Drop-seq data
generated by scDesign2 (based on a real Drop-seq dataset of PBMCs). The target FDR threhold ¢ ranges from
1% to 10%. In the “Actual FDR vs. Target FDR” plot (left), points above the dashed diagonal line indicate failed
FDR control. Clipper controls the FDR while maintaining high power, demonstrating Clipper’s good performance in
single-cell DE analyses.
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d

GO terms enriched in Clipper—specific DEGs in Clipper vs. DESeq2 comparison

GO term (ID) qvalue (Clipper)
neutrophil activation (GO:0042119) 3.104557e-10
granulocyte activation (GO:0036230) 3.104557e-10
neutrophil degranulation (GO:0043312) 8.587750e-10
neutrophil activation involved in immune response (GO:0002283) 8.591455e-10
neutrophil mediated immunity (GO:0002446) 3.104557e-10

b

GO terms enriched in Clipper—specific DEGs in Clipper vs. edgeR comparison

GO term (ID) qvalue (Clipper)
neutrophil degranulation (GO:0043312) 8.587750e-10
neutrophil activation involved in immune response (GO:0002283) 8.591455e-10
neutrophil activation (GO:0042119) 3.104557e-10
neutrophil mediated immunity (GO:0002446) 3.104557e-10
granulocyte activation (GO:0036230) 3.104557e-10
cellular response to chemical stress (GO:0062197) 2.157116e-03
response to oxidative stress (GO:0006979) 3.141033e-03
cellular response to oxidative stress (GO:0034599) 2.902893e-03

Figure S20: Enrichment g-values of GO terms that are found enriched in the DEGs that are uniquely identified
by Clipper in pairwise comparison of (a) Clipper vs. edgeR and (b) Clipper vs. DESeg2. These GO terms are all
related to immune response and thus biologically meaningful.
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Figure S21: The p-values of the top enriched pathways in the DEGs that are uniquely identified by (a) Clipper and
(b) DESeq2; i.e., the DEGs that are only identified by one method by missed by the other two methods. There are
more immune-related pathways enriched in (a) than (b).
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Figure S22: In 1vs1 enrichment analysis, comparison of four Clipper variant algorithms (Clipper-minus-BC,
Clipper-minus-aBH, Clipper-max-BC, and Clipper-max-aBH) in terms of their FDR control and power. At target
FDR thresholds ¢ € {1%,2%,--- ,10%}, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d = 1000 or 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribu-
tion, or (¢) the negative binomial distribution under homogeneous (two left columns) and heterogeneous (two right
columns) background scenarios. Clipper-minus-BC is chosen as the default implementation under this scenario.
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Figure S23: In the 2vs1 enrichment analysis (columns 1 and 3) and differential analysis (columns 2 and 4), compar-
ison of four Clipper variant algorithms (Clipper-minus-GZ(h=1), Clipper-minus-GZ(h=2), Clipper-max-GZ(h=1), and
Clipper-max-GZ(h=2)) in terms of their FDR control and power. At target FDR thresholds ¢ € {1%,2%,--- ,10%},
each method’s actual FDRs and power are evaluated on 200 simulated datasets with d = 10,000 features generated
from (a) the Gaussian distribution, (b) the Poisson distribution, or (¢) the negative binomial distribution under homo-
geneous (two left columns) and heterogeneous (two right columns) background scenarios. Clipper-max-GZ(h=1)
is chosen as the default implementation under this scenario.
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Figure S24: In 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison
of four Clipper variant algorithms (Clipper-minus-BC, Clipper-minus-aBH, Clipper-max-BC, and Clipper-max-aBH)
in terms of their FDR control and power. At target FDR thresholds ¢ € {1%, 2%, --- ,10%}, each method’s actual
FDRs and power are evaluated on 200 simulated datasets with d = 10,000 features generated from (a) the Gaussian
distribution, (b) the Poisson distribution, or (¢) the negative binomial distribution under homogeneous (two left
columns) and heterogeneous (two right columns) background scenarios. Clipper-minus-BC is chosen as the default
implementation under this scenario.
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Figure S25: In 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison
of six Clipper variant algorithms (Clipper-minus-GZ(h=1), Clipper-minus-GZ(h=3), Clipper-minus-GZ(h=9), Clipper-
max-GZ(h=1), Clipper-max-GZ(h=3), and Clipper-max-GZ(h=9)) in terms of their FDR control and power. At target
FDR thresholds ¢ € {1%,2%, - -- ,10%}, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d = 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c)
the negative binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns)
background scenarios. Clipper-max-GZ(h=1) is chosen as the default implementation under this scenario.
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Figure S26: In the 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), compar-
ison of two Clipper variant algorithms (Clipper-minus-BC, Clipper-max-GZ(h=1)) in terms of their FDR control and
power. At target FDR thresholds ¢ € {1%,2%,---,10%}, each method’s actual FDRs and power are evaluated
on 200 simulated datasets with d = 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson
distribution, or (c¢) the negative binomial distribution under homogeneous (two left columns) and heterogeneous
(two right columns) background scenarios. Clipper-minus-BC is chosen as the default implementation under this
scenario.
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Figure S28: In the 3vs3 enrichment analysis, distributions of contrast scores used by two Clipper variants: the
default Clipper using the minus contrast score (top) and the Clipper variant using the two-sample ¢ statistic (bottom).
Features are generated from the Gaussian distribution under the heterogeneous background scenario (see Supp.
Section S4). The vertical dashed lines indicate the contrast score cutoffs found by the BC procedure at the target
FDR threshold ¢ = 1%. The distribution of the minus contrast scores has a heavier right tail (5.22%) than that of
the distribution of the ¢ statistic contrast scores (1.19%).
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Figure S29: (a) log,,-transformed mean Hi-C interaction matrices (ux and py in Section S6.5) under the two

conditions. DIR regions are highlighted in red squares. (b) In one randomly picked Hi-C semi-synthetic dataset,
closer genomic regions tend to have higher contact intensities.
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Figure S30: Histograms of p-values (one p-value per non-DEG) that are obtained by testing whether each non-
DEG'’s p-values (output by DESeq2 or edgeR) follow a uniform distribution. For each real dataset (yeasts on the
top and human monocytes on the bottom) and each simulation strategy (red for strategy 1 and blue for strategy
2), a histogram is plotted for DESeq2 (left) or edgeR (right); each p-value is calculated across 100 semi-synthetic
datasets (excluding NA p-values). In each panel, more right skewed histograms are considered better.
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