

Competitive mapping allows to identify and exclude human DNA contamination in ancient faunal genomic datasets

Tatiana R. Feuerborn^{1,2,3,4,*}, Elle Palkopoulou³, Tom van der Valk^{3,4}, Johanna von Seth^{3,4,5}, Arielle R. Munters⁶, Patrícia Pečnerová⁷, Marianne Dehasque^{3,4,5}, Irene Ureña⁸, Erik Ersmark^{3,4}, Vendela Kempe Lagerholm^{2,4}, Maja Krzewinska^{2,4}, Ricardo Rodríguez-Varela^{2,4}, Anders Götherström^{2,4}, Love Dalén^{3,4}, David Díez-del-Molino^{3,4,5,*}

¹ Globe Institute, University of Copenhagen, Copenhagen, Denmark.

² Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.

³ Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.

⁴ Centre for Palaeogenetics, Stockholm, Sweden.

⁵ Department of Zoology, Stockholm University, Stockholm, Sweden.

⁶ Department of Organismal Biology, Human Evolution, Uppsala University, Sweden.

⁷ Department of Biology, University of Copenhagen, Denmark.

⁸ CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.

* Correspondence: Tatiana R. Feuerborn (tatianafeuerborn@palaeome.org), David Díez-del-Molino (diez.molino@gmail.com)

25 **Abstract**

26 Background

27 After over a decade of developments in field collection, laboratory methods and advances in high-
28 throughput sequencing, contamination remains a key issue in ancient DNA research. Currently,
29 human and microbial contaminant DNA still impose challenges on cost-effective sequencing and
30 accurate interpretation of ancient DNA data.

31 Results

32 Here we investigate whether human contaminating DNA can be found in ancient faunal
33 sequencing datasets. We identify variable levels of human contamination, which persists even after
34 the sequence reads have been mapped to the faunal reference genomes. This contamination has
35 the potential to affect a range of downstream analyses.

36 Conclusions

37 We propose a fast and simple method, based on competitive mapping, which allows identifying
38 and removing human contamination from ancient faunal DNA datasets with limited losses of true
39 ancient data. This method could represent an important tool for the ancient DNA field.

40

41 **Keywords**

42 Ancient DNA; DNA contamination removal; palaeogenomics; competitive mapping

43

44 **Background**

45 Right after the death of an organism, microbial communities colonize the decomposing tissues and
46 together with enzymes from the organism they start degrading the DNA molecules (Lindahl 1993;
47 Renaud, Schubert, et al. 2019). DNA degradation is dependent on time and environmental
48 variables such as temperature but also humidity and acidity (Kistler et al. 2017). Even though the
49 specific model for DNA decay is still debated and it is likely multifactorial (Kistler et al. 2017), the
50 consequence is that ancient remains typically contain very few quantities of endogenous DNA and
51 these sequences are characterized by short fragment sizes (Dabney et al. 2013).

52 A second major challenge of ancient DNA research is contamination from exogenous sources
53 (Malmström et al. 2005; Clio Der Sarkissian et al. 2015). Environmental DNA molecules in the soil
54 matrix the ancient sample was recovered from can easily overwhelm the small amounts of
55 endogenous DNA of the ancient sample. This is also true for DNA from people who collected and
56 handled the samples in the field and/or museum collections (C. Der Sarkissian et al. 2014; Green

57 et al. 2006). While the use of Polymerase Chain Reaction (PCR) technology allowed ancient DNA
58 research to overcome these low concentration problems, the sensitivity of the PCR has made it
59 very difficult to avoid introducing modern contaminant sequences among the authentic ancient
60 DNA (Willerslev and Cooper 2005).

61 In the last decade, together with more refined DNA extraction and laboratory methods tailored to
62 efficiently retrieve very short and scarce DNA sequences (Gamba et al. 2016; Dabney et al. 2013),
63 it has become possible to obtain massive amounts of sequences from ancient material using high-
64 throughput sequencing technologies. These technologies have allowed the recovery of hundreds
65 of ancient human (reviewed in Slatkin and Racimo (2016) and other high quality ancient faunal
66 genomes such as those from horses (Orlando et al. 2013), wooly mammoths (Palkopoulou et al.
67 2015), and bears (Barlow et al. 2020). However, the challenges from exogenous contamination
68 remain and have sparked a search for computational methods to identify and monitor contaminant
69 DNA sequences in ancient sequencing datasets.

70 Aside from the short fragment size, the other most notable characteristic of ancient DNA is post-
71 mortem damage. After death, the repairing mechanisms of DNA damage such as hydrolysis and
72 oxidation stop functioning, and this damage accumulates in predictable patterns (Renaud,
73 Schubert, et al. 2019). The most common ancient DNA damage is deamination of cytosines to
74 uracils in the overhangs of fragmented DNA molecules (Gilbert et al. 2003; Stiller et al. 2006;
75 Briggs et al. 2007). This results in an excess of C to T substitutions in the 5' end (and G to A in the
76 3' end) of ancient DNA sequences. Since this feature is very common in sequences derived from
77 ancient DNA sources and absent in younger samples, it has been widely used as a key criteria to
78 authenticate ancient DNA experiments (Dabney et al. 2013; Sawyer et al. 2012).

79 In modern-day ancient DNA studies, exogenous sequences are differentiated from real ancient
80 sequences from the source organism by mapping all sequences to a reference genome and
81 keeping only those that result in alignments with less than a defined number of differences (Prüfer
82 et al. 2010; Kircher 2012). This approach to circumvent environmental contamination has gained
83 general acceptance, and currently exogenous contaminants are at most considered problematic
84 due to their consumption of sequencing capacity. However, the probability of spurious alignments
85 from exogenous sequences occurring by chance increases with decreasing sequence length
86 (Smith, Waterman, and Burks 1985). In order to avoid these, thresholds for minimum fragment
87 length, that still allow for enough specificity of the alignments, are used (Green et al. 2010;
88 Matthias Meyer et al. 2016; de Filippo, Meyer, and Prüfer 2018).

89 Modern human contamination is especially problematic for human palaeogenomic studies since
90 ancient, anatomically modern humans typically fall within the variation of modern humans (Allentoft
91 et al. 2015; Lazaridis et al. 2014). This has led to the development of a plethora of methods aimed
92 at computationally quantifying and monitoring exogenous contamination in ancient human DNA

93 datasets (Matthias Meyer et al. 2012; Fu et al. 2014; Rasmussen et al. 2015; Racimo, Renaud,
94 and Slatkin 2016). However, the number of methods that allow for the effective exclusion of this
95 type of contamination remains limited. For example, (Skoglund et al. 2014) used the differential
96 empirical distributions of post-mortem damage (PMD) scores, based on both base quality scores
97 and their level of polymorphism with respect to the reference genome, to differentiate DNA
98 sequences from ancient and modern samples. The PMD scores in a contaminated ancient sample
99 could then be used to successfully identify and separate the sequences that are most likely to have
100 originated from an ancient template molecule from the contaminant ones. Even though this method
101 can allow for the enrichment of the proportion of ancient sequences several-fold in respect to the
102 contaminant sequences, the amount of data lost in the process is very large (45%-90% depending
103 on the age of the ancient sample, Skoglund et al. 2014).

104 Here we investigate the presence of exogenous sequences in ancient sequencing files to evaluate
105 the pervasiveness of human contamination in ancient faunal DNA studies. We use competitive
106 mapping to identify the levels of contamination in ancient faunal sequencing files and characterize
107 the exogenous sequences by using summary statistics to compare them to those of authentic
108 ancient DNA. We then present this strategy as a simple and fast method that enables the
109 conservative removal of human contamination from ancient faunal datasets with a limited loss of
110 true ancient DNA sequences.

111

112 **Results**

113 We first mapped the raw reads from all sequenced samples (50 ancient dogs, *Canis lupus*
114 *familiaris*, and 20 woolly mammoths, *Mammuthus primigenius*) to three separate reference
115 genomes: the African savannah elephant, dog and human. We found variable levels of sequences
116 confidently mapped to foreign reference genomes (average 0.25% for non-target and 0.86%
117 human) in these sequencing files (Fig. 1A). Most of the files (>95%) contained less than 0.071% of
118 sequences mapped to human and 0.054% the non-target species. We then estimated average
119 read length (mRL) and post-mortem damage scores (PMD^R) for all alignments and detected
120 significant differences in both indices between sequences mapping to target and to non-target and
121 human, but not between the sequences mapping to the non-target species and human references
122 (Fig. S1).

123 To investigate whether the target BAM files contain human contaminant sequences we remapped
124 the aligned reads to a concatenated reference composed by the reference genome of the target
125 species, dog or elephant, and the human reference genome (Fig. 2A). This *competitive mapping*
126 approach allowed us to differentiate between three kinds of reads contained in the target species
127 BAM files. First, reads which align to the target reference genome and not to the human reference
128 genome. These sequences represent the endogenous alignments that originate from the sample

129 and not from human or microbial contamination. Second, reads which align to the human reference
130 genome and not to the target species reference genome. These sequences represent the fraction
131 of human contamination in the faunal BAM files. And third, reads that align to both the target
132 reference and the human reference genomes. These sequences could have three origins, 1) true
133 endogenous sequences from regions of the genome highly conserved or identical to the human
134 genome, 2) human contaminant sequences from regions of the genome highly conserved or
135 identical to the target genome, or 3) microbial contaminant sequences that would align to any
136 mammalian genome by random chance. In any case, because these sequences map to both target
137 and human reference genomes at the same time they would thus be discarded when applying
138 mapping quality filters (Fig. 2A).

139 For each sample, we extracted the reads aligned to the target species of the concatenated
140 reference, representing the true ancient sequences, as well as the human, representing the
141 amount of human contamination contained in the original target BAM file. We found that the
142 alignment files from almost all samples contained sequencing reads that preferentially mapped to
143 the human part of the reference genome than to the target part (average 0.03%; range 0 - 1.3%)
144 (Fig. 1B, Supplementary Table 1). However, we caution that, because an unknown fraction of the
145 reads discarded due to the mapping quality filters should also be human contaminant, the fraction
146 of reads in the human part of the concatenated reference represents only a lower bound for the
147 amount of contamination in the original faunal BAM file. Finally, both mRL and PMD^R were
148 significantly lower in the sequences mapped to the human part than in the ones mapped to the
149 target (Fig. 4).

150 When using competitive mapping, a fraction of sequences that align to both the target and the
151 human parts of the concatenated reference, were lost (Fig. 2A). Our results indicated that this
152 fraction was an average of 1.33% of the total number of reads per sample (range 0.6 - 4.3%, Fig.
153 5, Supplementary Table 1). However, when accounting only for conserved regions between the
154 target species genome and the human genome, the amount of lost sequences was higher
155 (average 4.53%; range 2.7 - 17.8%).

156

157 **Discussion**

158 Contamination in raw sequencing files

159 Overall, we found low levels of sequences mapped to foreign reference genomes in the raw
160 sequencing files (Fig. 1A). In fact, the proportion of reads mapping to the non-target species and
161 human were highly correlated (Fig. 3A), suggesting that they had a common origin. Given that
162 human DNA is a common mammal contamination source in ancient DNA studies (Malmström et al.
163 2005; Hofreiter, Serre, et al. 2001; Cooper and Poinar 2000; Korlević et al. 2015), it is then likely

164 that a variable amount of contaminant human reads map to the two reference genomes used here,
165 elephant and dog. In fact, there were notable exceptions to the amount of faunal sequences
166 mapping to human, for example one sample contained a higher proportion of sequences mapped
167 to the human (38.9%) than to the target species (12.3%). This suggested that there could be high
168 levels of human DNA contamination in particular sequencing files.

169 When characterizing mRL and PMD^R in the sequences mapping to the different reference
170 genomes we found differences between the sequences mapping to target compared to non-target
171 and human (Fig. S1), in line with the latter being mostly composed by contaminant sequences and
172 the former mostly true endogenous reads. Interestingly, our results suggest almost no differences
173 between the sequences mapping to the non-target species and human references, reinforcing the
174 idea that these two files are composed of sequences with a common origin.

175 Human contamination in faunal BAM files

176 Given that we detected contaminant human sequences in all our ancient fauna sequencing files,
177 we next used competitive mapping to explore whether these contaminant reads can be also found
178 in the BAM file of the target species that would be used for downstream genomic analyses. We
179 found that the BAM files from almost all samples contained sequencing reads that preferentially
180 mapped to the human part of the concatenated reference genome, but the proportion was
181 generally low (Fig. 1B). Interestingly, the proportion of reads mapped to the human reference from
182 the raw data and the fraction of reads mapping to the human part of the concatenated reference in
183 the target BAM after competitive mapping are not correlated (Fig. 3B). This indicates that the
184 amount of human contamination in raw sequencing files is not a good predictor for the amount of
185 human contamination that is retained in the target BAM files after alignment to the target reference
186 genome.

187 We then estimated mRL and PMD^R for the true ancient sequences and the contaminant
188 sequences. For both mammoth and dog samples we found a clear distinction in PMD^R of the
189 sequences mapping to the target species and the ones mapped to human, with higher PMD^R for
190 the target species, representing true ancient sequences, and lower for the human sequences (Fig.
191 4C, 4F). However, we found that the contaminant human reads also displayed a lower mRL (Fig.
192 4B, 4E). This was contrary to the expectation of modern human contaminant sequences being
193 longer than true ancient sequences, but can be explained by the fact that shorter contaminant
194 sequences align easier to evolutionary conserved regions of the target species reference genome
195 than longer sequences (de Filippo, Meyer, and Prüfer 2018; Lee and Schatz 2012).

196 Considering species by species, the mammoth samples displayed a clearer distinction in PMD^R
197 than the dog samples when comparing the reads mapped to the target and to the human parts of
198 the concatenated reference (Fig. 4A, 4D). This may be related to both the age of the samples post-
199 mortem and the age since collection. PMD scores are roughly proportional to the sample's age

200 (Skoglund et al. 2014), and while the mammoth samples are thousands of years old, they have
201 been housed in collections for less than 30 years. The dog samples on the other hand were only a
202 maximum of 1,000 years old (Supplementary Table 1), but were housed in museum collections
203 since their excavation or collection for up to 125 years. Because the conditions in museum
204 collections are usually far from ideal for DNA preservation (Burrell, Disotell, and Bergey 2015;
205 Díez-del-Molino et al. 2018), this extended period of storage therefore could have had an impact
206 on the preservation of both endogenous dog and contaminant human DNA sequences in the
207 ancient dog samples comparison to the mammoth samples.

208 Excluding contaminant reads from faunal BAM files

209 The presence of contaminant human sequences in ancient faunal BAM files can be challenging for
210 any downstream analyses that are based on evolutionary conserved parts of the genome, such as
211 coding regions, since the contaminant sequences are concentrated in these regions. Other
212 downstream analyses based on genome-wide scans such as estimations of heterozygosity,
213 estimation of inbreeding levels using runs-of-homozygosity, or analyses focused on the presence
214 of rare variants (Schiffels et al. 2016) can be highly affected by the emergence of false variants
215 caused by human contamination (Renaud, Hanghøj, et al. 2019; Llamas et al. 2017). This is
216 especially true for analyses based on low to medium coverage samples, such as most ancient
217 DNA studies. Additionally, since an unknown fraction of the reads discarded using competitive
218 mapping can be of human origin, our detected levels of exogenous human sequences in ancient
219 faunal alignments represent only the lower bound of contamination for these files.

220 We therefore propose that the method applied here, using competitive mapping of the raw data to
221 a concatenated reference genome composed by the reference genome of the target species and
222 the human genome, represents a fast and simple approach to effectively exclude contaminating
223 human DNA from ancient faunal BAM files (Fig. 2B). An additional advantage of this approach is
224 that a large part of contamination from short microbial reads, common in ancient datasets (de
225 Filippo, Meyer, and Prüfer 2018), should also be excluded with this method as many of these short
226 reads would align to both target and human parts of the concatenated reference and are filtered
227 out using the mapping quality filters.

228 One relevant downside of using competitive mapping could be the loss of data. True ancient
229 sequences from the target species that belong to conserved regions of the genome and are
230 identical between the target species and human, would align to both parts of the concatenated
231 reference, and thus be lost when using the mapping quality filters. However, our results indicate
232 that the amount of data lost this way is very limited in a genome-wide context (average 1.3%), and
233 slightly concentrated in conserved regions of the genome (average 4.5%). Unfortunately, we do not
234 have a practical way to estimate what fraction of those sequences are true target sequences and
235 how many are of human or microbial origin.

236 **Conclusions**

237 We show that variable levels of contaminant human sequences exist in ancient faunal datasets. To
238 some extent, this human contamination persists even after sequence reads have been mapped to
239 faunal reference genomes, and is then characterized by short fragment lengths that are
240 concentrated in evolutionary conserved regions of the genome. This results in human contaminant
241 sequences being included in ancient faunal alignment files and thus have the potential to affect a
242 range of downstream analyses. To address this, we here propose a fast and simple strategy:
243 competitive mapping of raw sequencing data to a concatenated reference composed of the target
244 species genome and a human genome, where only the sequences aligned to the target part of the
245 concatenated reference genome are kept for downstream analyses. This approach leads to a small
246 loss of data, but allows for the effective removal of the putative human contaminant sequences.

247 Contamination is a key issue in ancient DNA studies. Preventive measures both during field
248 collection and in the laboratory therefore remain a critical aspect of ancient DNA research (Llamas
249 et al. 2017; Korlević et al. 2015). There is a growing array of computational methods that allow to
250 confidently identify contamination levels (reviewed in Renaud, Schubert, et al. 2019), but few that
251 allow to efficiently separate authentic ancient sequences from contaminating DNA (Skoglund et al.
252 2014; de Filippo, Meyer, and Prüfer 2018). Thus, the method we propose here represents an
253 important addition to the selection of tools aimed at computationally reducing the effects of human
254 contamination in ancient faunal DNA research.

255

256 **Materials and Methods**

257 Samples

258 We analyzed genomic data from 70 ancient and historical mammalian specimens, 50 dogs and 20
259 woolly mammoths (Supplementary Table 1). The materials derived from dogs originate from a
260 variety of contexts (ethnographic collections and archaeological excavations) and materials (teeth
261 and bones) which have been stored in museum collections for up to 125 years after
262 collection/excavation. The twenty mammoth samples were all collected in Wrangel Island in
263 several expeditions along the last 30 years.

264 Laboratory procedures

265 For all samples, the outer layers of bones, teeth and tusk were removed using an electric powered
266 drill (Dremel, USA) in order to minimize external contamination. Approximately 50 mg of bone
267 powder was recovered from inside the bone, tooth or tusk using an electric drill operated at low
268 speed. We then extracted DNA from all samples using the silica-based protocol described in
269 (Ersmark et al. 2015). Thirty-four of the dog samples were additionally subjected to a pre-digestion

270 step, incubated with EDTA, urea, and proteinase K for one hour at 55°C, to further reduce the
271 amount of contamination within the extract by removing the superficial DNA. We did not treat any
272 of the extracts with USER enzyme in order to enable assessment of post-mortem damage rates
273 following DNA sequencing.

274 We constructed Illumina genomic libraries for sequencing from the DNA extracts using established
275 ancient DNA protocols (M. Meyer and Kircher 2010; Carøe et al. 2017). All libraries were amplified
276 using indexes unique for each sample and were subsequently pooled and sequenced on a total of
277 4 lanes on the Illumina HiSeq2500 platform at the National Genomics Infrastructure (Science for
278 Life Laboratory, Stockholm), using paired-end 2x150bp settings.

279 Data analyses

280 We trimmed sequencing adapters and merged paired-end reads using *SeqPrep v.1.1*
281 (github.com/jstjohn/SeqPrep) with default settings (excluding reads shorter than 30bp) and a slight
282 modification of the source code to calculate the base qualities in the overlapping region
283 (Palkopoulou et al. 2015). We then mapped the merged reads to three separate reference
284 genomes: the African savannah elephant genome (LoxAfr4, Broad Institute), the dog genome
285 (CanFam3.1, Lindblad-Toh et al. 2005), and the human reference genome (Hg19). All mappings
286 were performed using *BWA aln v0.7.8* (Li and Durbin 2009) using settings adapted for ancient
287 DNA as in Pečnerová et al. (2017).

288 We removed PCR duplicates from the alignments using a custom script which takes into account
289 both starting and end coordinates of the reads to be identified as duplicates (Palkopoulou et al.
290 2018) and estimated the number of unique mapping reads using *samtools v1.8* (Li et al. 2009). In
291 all cases, we refer to *mapped reads* to those sequences retained after filtering by mapping quality
292 > 30. We consider true endogenous sequences those mapping to the target species (i.e dog
293 reference for ancient dog samples and elephant reference for mammoth samples) and exogenous
294 contaminant sequences those mapping to the non-target reference (i.e elephant and human
295 references for ancient dog samples and dog and human references for mammoth samples). To
296 characterize the sequences mapping to the target reference genome as well as the ones mapping
297 to the non-target and human references using two characteristics of ancient DNA: short fragment
298 size (Rogaev et al. 2006; Allentoft et al. 2012; Kistler et al. 2017) measured as median read length
299 (mRL) and deamination patterns (Briggs et al. 2010; Hofreiter, Jaenicke, et al. 2001) measured as
300 post-mortem damage scores (PMD, (Skoglund et al. 2014). For each sample, we define the PMD
301 ratio (PMD^R) as the fraction of sequences that display a PMD score > 5. Therefore, a higher PMD^R
302 value indicates that the sample contains more sequences with larger PMD scores, thus it is more
303 'ancient'.

304 In order to estimate the amount of data lost using competitive mapping we identified conserved
305 regions between the elephant and human genomes as well as the dog and human genomes. We

306 first used a custom script to split the human reference genome into non-overlapping 35bp long
307 sequences. We then mapped the obtained short sequences to the other two reference genomes,
308 dog and elephant, using *BWA aln* with settings optimized for mapping short reads (Li 2013;
309 Schubert et al. 2012). For each mapping, we filtered out reads with mapping quality below 30 and
310 identified all genomic regions with at least one read mapped. The resulting BED files were used
311 together with *samtools flagstat* to estimate the number of reads mapping to conserved regions
312 before and after competitive mapping.

313

314 **Acknowledgements**

315 The authors would like to acknowledge support from Science for Life Laboratory, the National
316 Genomics Infrastructure, and UPPMAX (project numbers: b2014312 and SNIC2020/5-3) for
317 providing assistance in massive parallel sequencing and computational infrastructure. Genetic
318 analyses were funded through a grant from the Swedish Research Council (VR grant 2012-3869)
319 awarded to L.D.. J.v.S. and LD. acknowledge support from FORMAS (project 2015-676), T.R.F.
320 acknowledges support from the EU-funded ITN project ArchSci2020 (grant no. 676154) and for the
321 Qimmeq Project funding from the Velux Foundations, the Aage og Johanne Louis-Hansens Fond
322 and the Wellcome Trust (grant no. 210119/Z/18/Z). D.D.dM. was supported through a Carl
323 Tryggers scholarship (grant CTS17:109).

324

325 **Author contributions**

326 T.R.F. and D.D.dM. conceived the study with input from the rest of the coauthors. T.R.F., E.P., and
327 J.v.S. performed lab procedures. T.R.F. and D.D.dM. analyzed the data. T.R.F. and D.D.dM. wrote
328 the manuscript with contributions from all other coauthors. All authors contributed to and approved
329 the final version of the manuscript.

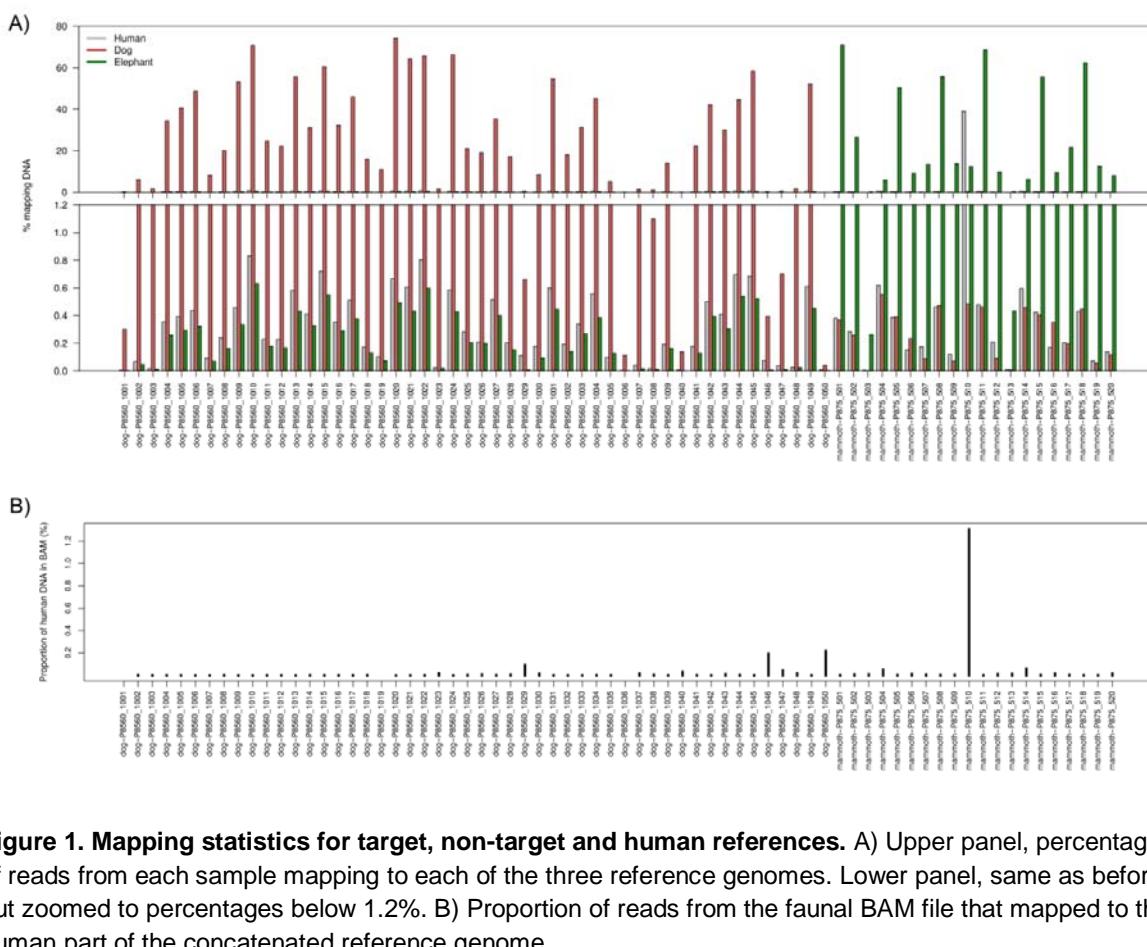
330

331 **Data availability**

332 All sequencing data generated in this study are available at the European Nucleotide Archive
333 ([ebi.ac.uk/ena](https://www.ebi.ac.uk/ena)) with accession numbers XXX-XXX.

334

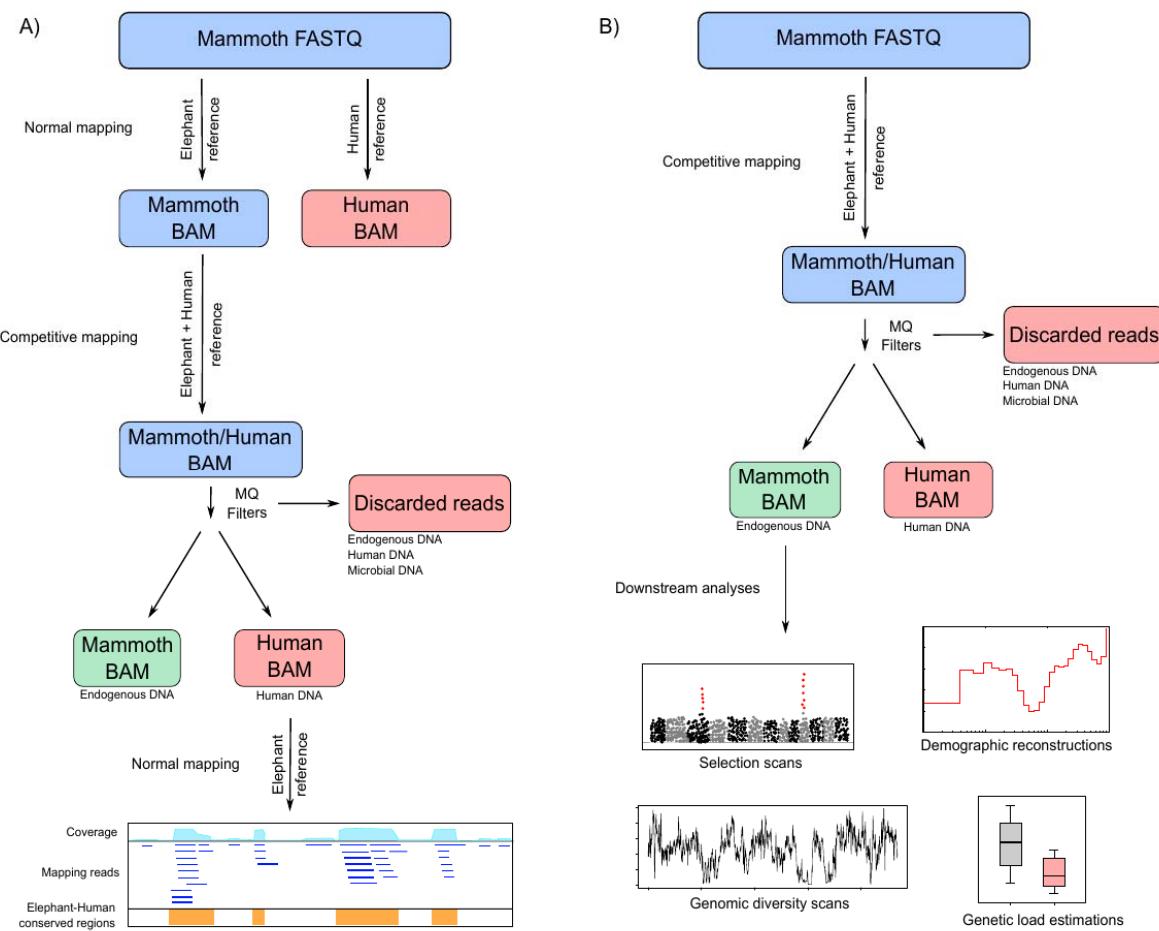
335 **References**


336 Allentoft, Morten E., Matthew Collins, David Harker, James Haile, Charlotte L. Oskam, Marie L.
337 Hale, Paula F. Campos, et al. 2012. "The Half-Life of DNA in Bone: Measuring Decay Kinetics
338 in 158 Dated Fossils." *Proceedings of the Royal Society B: Biological Sciences*.

- 339 https://doi.org/10.1098/rspb.2012.1745.
340 Allentoft, Morten E., Martin Sikora, Karl-Göran Sjögren, Simon Rasmussen, Morten Rasmussen,
341 Jesper Stenderup, Peter B. Damgaard, et al. 2015. "Population Genomics of Bronze Age
342 Eurasia." *Nature* 522 (7555): 167–72.
343 Barlow, Axel, Johanna L. A. Paijmans, Federica Alberti, Boris Gasparyan, Guy Bar-Oz, Ron
344 Pinhasi, Irina Foronova, et al. 2020. "Middle Pleistocene Cave Bear Genome Calibrates the
345 Evolutionary History of Palaearctic Bears." <https://doi.org/10.2139/ssrn.3523359>.
346 Briggs, Adrian W., Udo Stenzel, Philip L. F. Johnson, Richard E. Green, Janet Kelso, Kay Prüfer,
347 Matthias Meyer, et al. 2007. "Patterns of Damage in Genomic DNA Sequences from a
348 Neandertal." *Proceedings of the National Academy of Sciences of the United States of
349 America* 104 (37): 14616–21.
350 Briggs, Adrian W., Udo Stenzel, Matthias Meyer, Johannes Krause, Martin Kircher, and Svante
351 Pääbo. 2010. "Removal of Deaminated Cytosines and Detection of in Vivo Methylation in
352 Ancient DNA." *Nucleic Acids Research* 38 (6): e87.
353 Burrell, Andrew S., Todd R. Disotell, and Christina M. Bergey. 2015. "The Use of Museum
354 Specimens with High-Throughput DNA Sequencers." *Journal of Human Evolution* 79
355 (February): 35–44.
356 Carøe, Christian, Shyam Gopalakrishnan, Lasse Vinner, Sarah S. T. Mak, Mikkel-Holger S.
357 Sinding, José A. Samaniego, Nathan Wales, Thomas Sicheritz-Pontén, and M. Thomas P.
358 Gilbert. 2017. "Single-Tube Library Preparation for Degraded DNA." *Methods in Ecology and
359 Evolution*.
360 Cooper, A., and H. N. Poinar. 2000. "Ancient DNA: Do It Right or Not at All." *Science*. American
361 Association for the Advancement of Science.
362 Dabney, Jesse, Michael Knapp, Isabelle Glocke, Marie-Theres Gansauge, Antje Weihmann, Birgit
363 Nickel, Cristina Valdiosera, et al. 2013. "Complete Mitochondrial Genome Sequence of a
364 Middle Pleistocene Cave Bear Reconstructed from Ultrashort DNA Fragments." *Proceedings
365 of the National Academy of Sciences of the United States of America* 110 (39): 15758–63.
366 Der Sarkissian, C., L. Ermini, H. Jónsson, A. N. Alekseev, E. Crubézy, B. Shapiro, and L. Orlando.
367 2014. "Shotgun Microbial Profiling of Fossil Remains." *Molecular Ecology* 23 (7): 1780–98.
368 Der Sarkissian, Clio, Morten E. Allentoft, María C. Ávila-Arcos, Ross Barnett, Paula F. Campos,
369 Enrico Cappellini, Luca Ermini, et al. 2015. "Ancient Genomics." *Philosophical Transactions of
370 the Royal Society of London. Series B, Biological Sciences* 370 (1660): 20130387.
371 Díez-del-Molino, David, Fatima Sánchez-Barreiro, Ian Barnes, M. Thomas P. Gilbert, and Love
372 Dalén. 2018. "Quantifying Temporal Genomic Erosion in Endangered Species." *Trends in
373 Ecology & Evolution* 33 (3): 176–85.
374 Ersmark, Erik, Ludovic Orlando, Edson Sandoval-Castellanos, Ian Barnes, Ross Barnett, Anthony
375 Stuart, Adrian Lister, and Love Dalén. 2015. "Population Demography and Genetic Diversity in
376 the Pleistocene Cave Lion." *Open Quaternary* 1 (4): 1–14.
377 Filippo, Cesare de, Matthias Meyer, and Kay Prüfer. 2018. "Quantifying and Reducing Spurious
378 Alignments for the Analysis of Ultra-Short Ancient DNA Sequences." *BMC Biology* 16 (1): 121.
379 Fu, Qiaomei, Heng Li, Priya Moorjani, Flora Jay, Sergey M. Slepchenko, Aleksei A. Bondarev,
380 Philip L. F. Johnson, et al. 2014. "Genome Sequence of a 45,000-Year-Old Modern Human
381 from Western Siberia." *Nature* 514 (7523): 445–49.
382 Gamba, Cristina, Kristian Hanghøj, Charleen Gaunitz, Ahmed H. Alfarhan, Saleh A. Alquraishi,
383 Khaled A. S. Al-Rasheid, Daniel G. Bradley, and Ludovic Orlando. 2016. "Comparing the
384 Performance of Three Ancient DNA Extraction Methods for High-Throughput Sequencing."
385 *Molecular Ecology Resources* 16 (2): 459–69.
386 Gilbert, M. Thomas P., Eske Willerslev, Anders J. Hansen, Ian Barnes, Lars Rudbeck, Niels
387 Lynnerup, and Alan Cooper. 2003. "Distribution Patterns of Postmortem Damage in Human
388 Mitochondrial DNA." *American Journal of Human Genetics* 72 (1): 32–47.
389 Green, Richard E., Johannes Krause, Adrian W. Briggs, Tomislav Maricic, Udo Stenzel, Martin
390 Kircher, Nick Patterson, et al. 2010. "A Draft Sequence of the Neandertal Genome." *Science*
391 328 (5979): 710–22.
392 Green, Richard E., Johannes Krause, Susan E. Ptak, Adrian W. Briggs, Michael T. Ronan, Jan F.
393 Simons, Lei Du, et al. 2006. "Analysis of One Million Base Pairs of Neanderthal DNA." *Nature*
394 444 (7117): 330–36.
395 Hofreiter, M., V. Jaenicke, D. Serre, A. von Haeseler, and S. Pääbo. 2001. "DNA Sequences from

- 396 Multiple Amplifications Reveal Artifacts Induced by Cytosine Deamination in Ancient DNA."
397 *Nucleic Acids Research* 29 (23): 4793–99.
398 Hofreiter, M., D. Serre, H. N. Poinar, M. Kuch, and S. Pääbo. 2001. "Ancient DNA." *Nature*
399 *Reviews. Genetics* 2 (5): 353–59.
400 Kircher, Martin. 2012. "Analysis of High-Throughput Ancient DNA Sequencing Data." *Methods in*
401 *Molecular Biology* 840: 197–228.
402 Kistler, Logan, Roselyn Ware, Oliver Smith, Matthew Collins, and Robin G. Allaby. 2017. "A New
403 Model for Ancient DNA Decay Based on Paleogenomic Meta-Analysis." *Nucleic Acids*
404 *Research* 45 (11): 6310–20.
405 Korlević, Petra, Tobias Gerber, Marie-Theres Gansauge, Mateja Hajdinjak, Sarah Nagel, Ayinuer
406 Aximu-Petri, and Matthias Meyer. 2015. "Reducing Microbial and Human Contamination in
407 DNA Extractions from Ancient Bones and Teeth." *BioTechniques* 59 (2): 87–93.
408 Lazaridis, Iosif, Nick Patterson, Alissa Mittnik, Gabriel Renaud, Swapan Mallick, Karola Kirsanow,
409 Peter H. Sudmant, et al. 2014. "Ancient Human Genomes Suggest Three Ancestral
410 Populations for Present-Day Europeans." *Nature* 513 (7518): 409–13.
411 Lee, Hayan, and Michael C. Schatz. 2012. "Genomic Dark Matter: The Reliability of Short Read
412 Mapping Illustrated by the Genome Mappability Score." *Bioinformatics* 28 (16): 2097–2105.
413 Li, Heng. 2013. "Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-
414 MEM." *arXiv [q-bio.GN]*. arXiv. <http://arxiv.org/abs/1303.3997>.
415 Li, Heng, and Richard Durbin. 2009. "Fast and Accurate Short Read Alignment with Burrows-
416 Wheeler Transform." *Bioinformatics* 25 (14): 1754–60.
417 Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth,
418 Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing Subgroup.
419 2009. "The Sequence Alignment/Map Format and SAMtools." *Bioinformatics* 25 (16): 2078–
420 79.
421 Lindahl, T. 1993. "Instability and Decay of the Primary Structure of DNA." *Nature* 362 (6422): 709–
422 15.
423 Lindblad-Toh, Kerstin, Claire M. Wade, Tarjei S. Mikkelsen, Elinor K. Karlsson, David B. Jaffe,
424 Michael Kamal, Michele Clamp, et al. 2005. "Genome Sequence, Comparative Analysis and
425 Haplotype Structure of the Domestic Dog." *Nature* 438 (7069): 803–19.
426 Llamas, Bastien, Guido Valverde, Lars Fehren-Schmitz, Laura S. Weyrich, Alan Cooper, and
427 Wolfgang Haak. 2017. "From the Field to the Laboratory: Controlling DNA Contamination in
428 Human Ancient DNA Research in the High-Throughput Sequencing Era." *STAR: Science &*
429 *Technology of Archaeological Research* 3 (1): 1–14.
430 Malmström, Helena, Jan Storå, Love Dalén, Gunilla Holmlund, and Anders Götherström. 2005.
431 "Extensive Human DNA Contamination in Extracts from Ancient Dog Bones and Teeth."
432 *Molecular Biology and Evolution* 22 (10): 2040–47.
433 Meyer, Matthias, Juan-Luis Arsuaga, Cesare de Filippo, Sarah Nagel, Ayinuer Aximu-Petri, Birgit
434 Nickel, Ignacio Martínez, et al. 2016. "Nuclear DNA Sequences from the Middle Pleistocene
435 Sima de Los Huesos Hominins." *Nature*, 1–15.
436 Meyer, Matthias, Martin Kircher, Marie-Theres Gansauge, Heng Li, Fernando Racimo, Swapan
437 Mallick, Joshua G. Schraiber, et al. 2012. "A High-Coverage Genome Sequence from an
438 Archaic Denisovan Individual." *Science* 338 (6104): 222–26.
439 Meyer, M., and M. Kircher. 2010. "Illumina Sequencing Library Preparation for Highly Multiplexed
440 Target Capture and Sequencing." *Cold Spring Harbor Protocols*.
441 <https://doi.org/10.1101/pdb.prot5448>.
442 Orlando, Ludovic, Aurélien Ginolhac, Guojie Zhang, Duane Froese, Anders Albrechtsen, Mathias
443 Stiller, Mikkel Schubert, et al. 2013. "Recalibrating Equus Evolution Using the Genome
444 Sequence of an Early Middle Pleistocene Horse." *Nature* 499: 74–78.
445 Palkopoulou, Eleftheria, Mark Lipson, Swapan Mallick, Svend Nielsen, Nadin Rohland, Sina
446 Baleka, Emil Karpinski, et al. 2018. "A Comprehensive Genomic History of Extinct and Living
447 Elephants." *Proceedings of the National Academy of Sciences of the United States of America*
448 115 (11): E2566–74.
449 Palkopoulou, Eleftheria, Swapan Mallick, Pontus Skoglund, Jacob Enk, Nadin Rohland, Heng Li,
450 Ayça Omrak, et al. 2015. "Complete Genomes Reveal Signatures of Demographic and
451 Genetic Declines in the Woolly Mammoth." *Current Biology: CB* 25 (10): 1395–1400.
452 Pečnerová, Patrícia, David Díez-Del-Molino, Nicolas Dussex, Tatiana Feuerborn, Johanna von

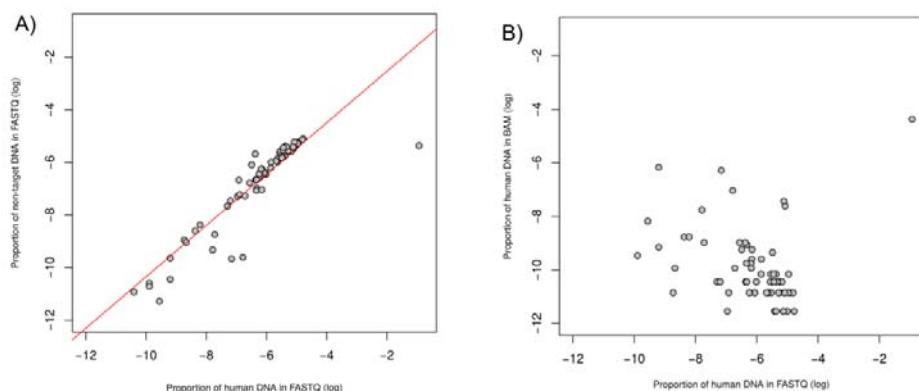
- 453 Seth, Johannes van der Plicht, Pavel Nikolskiy, Alexei Tikhonov, Sergey Vartanyan, and Love
454 Dalén. 2017. "Genome-Based Sexing Provides Clues about Behavior and Social Structure in
455 the Woolly Mammoth." *Current Biology: CB* 27 (22): 3505–10.e3.
- 456 Prüfer, Kay, Udo Stenzel, Michael Hofreiter, Svante Pääbo, Janet Kelso, and Richard E. Green.
457 2010. "Computational Challenges in the Analysis of Ancient DNA." *Genome Biology* 11 (5):
458 R47.
- 459 Racimo, Fernando, Gabriel Renaud, and Montgomery Slatkin. 2016. "Joint Estimation of
460 Contamination, Error and Demography for Nuclear DNA from Ancient Humans." *PLOS*
461 *Genetics*. <https://doi.org/10.1371/journal.pgen.1005972>.
- 462 Rasmussen, Morten, Martin Sikora, Anders Albrechtsen, Thorfinn Sand Korneliussen, J. Víctor
463 Moreno-Mayar, G. David Poznik, Christoph P. E. Zollikofer, et al. 2015. "The Ancestry and
464 Affiliations of Kennewick Man." *Nature* 523 (7561): 455–58.
- 465 Renaud, Gabriel, Kristian Hanghøj, Thorfinn Sand Korneliussen, Eske Willerslev, and Ludovic
466 Orlando. 2019. "Joint Estimates of Heterozygosity and Runs of Homozygosity for Modern and
467 Ancient Samples." *Genetics* 212 (3): 587–614.
- 468 Renaud, Gabriel, Mikkel Schubert, Susanna Sawyer, and Ludovic Orlando. 2019. "Authentication
469 and Assessment of Contamination in Ancient DNA." *Methods in Molecular Biology* 1963: 163–
470 94.
- 471 Rogaev, Evgeny I., Yuri K. Moliaka, Boris A. Malyarchuk, Fyodor A. Kondrashov, Miroslava V.
472 Derenko, Ilya Chumakov, and Anastasia P. Grigorenko. 2006. "Complete Mitochondrial
473 Genome and Phylogeny of Pleistocene mammoth *Mammuthus Primigenius*." *PLoS Biology* 4
474 (3).
475 <https://journals.plos.org/plosbiology/article/file?type=printable&id=10.1371/journal.pbio.0040073>.
- 476 Sawyer, Susanna, Johannes Krause, Katerina Guschnski, Vincent Savolainen, and Svante
477 Pääbo. 2012. "Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in
478 Ancient DNA." *PLoS One* 7 (3): e34131.
- 479 Schiffels, Stephan, Wolfgang Haak, Pärta Paajanen, Bastien Llamas, Elizabeth Popescu, Louise
480 Loe, Rachel Clarke, et al. 2016. "Iron Age and Anglo-Saxon Genomes from East England
481 Reveal British Migration History." *Nature Communications* 7 (January): 10408.
- 482 Schubert, Mikkel, Aurelien Ginolhac, Stinus Lindgreen, John F. Thompson, Khaled A. S. Al-
483 Rasheid, Eske Willerslev, Anders Krogh, and Ludovic Orlando. 2012. "Improving Ancient DNA
484 Read Mapping against Modern Reference Genomes." *BMC Genomics* 13 (May): 178.
- 485 Skoglund, Pontus, Bernd H. Northoff, Michael V. Shunkov, Anatoli P. Derevianko, Svante Pääbo,
486 Johannes Krause, and Mattias Jakobsson. 2014. "Separating Endogenous Ancient DNA from
487 Modern Day Contamination in a Siberian Neandertal." *Proceedings of the National Academy
488 of Sciences of the United States of America* 111 (6): 2229–34.
- 489 Slatkin, Montgomery, and Fernando Racimo. 2016. "Ancient DNA and Human History."
490 *Proceedings of the National Academy of Sciences* 2016 (23): 1–8.
- 491 Smith, T. F., M. S. Waterman, and C. Burks. 1985. "The Statistical Distribution of Nucleic Acid
492 Similarities." *Nucleic Acids Research* 13 (2): 645–56.
- 493 Stiller, M., R. E. Green, M. Ronan, J. F. Simons, L. Du, W. He, M. Egholm, et al. 2006. "Patterns of
494 Nucleotide Misincorporations during Enzymatic Amplification and Direct Large-Scale
495 Sequencing of Ancient DNA." *Proceedings of the National Academy of Sciences of the United
496 States of America* 103 (37): 13578–84.
- 497 Willerslev, Eske, and Alan Cooper. 2005. "Ancient DNA." *Proceedings. Biological Sciences / The
498 Royal Society* 272 (1558): 3–16.
- 499
- 500
- 501


502 **Figures**

503

504 **Figure 1. Mapping statistics for target, non-target and human references.** A) Upper panel, percentage
 505 of reads from each sample mapping to each of the three reference genomes. Lower panel, same as before
 506 but zoomed to percentages below 1.2%. B) Proportion of reads from the faunal BAM file that mapped to the
 507 human part of the concatenated reference genome.

508

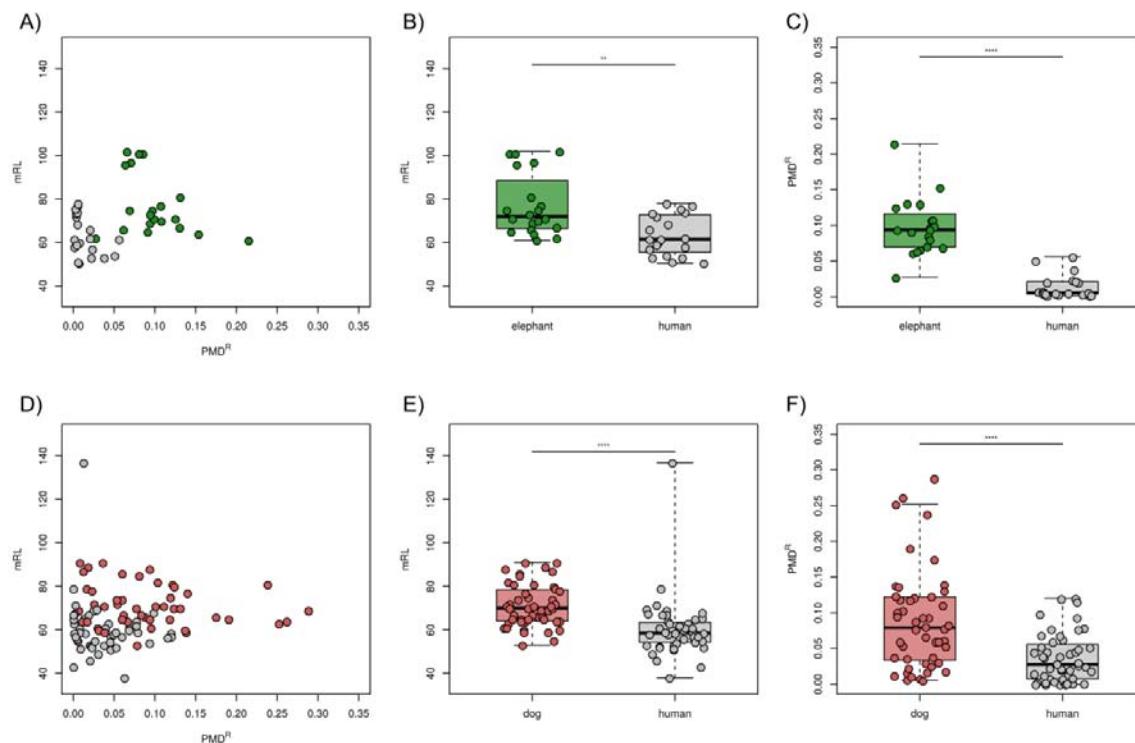

509

510 **Figure 2. Schematic view of the competitive mapping analyses.** FASTQ files represent 'raw' sequencing
 511 files and BAM files represent alignments to a reference genome. Color boxes indicate different types of data:
 512 blue, files that need processing; red, discarded data; and green, data for downstream analyses. A)
 513 Schematic view of the analyses performed in this manuscript. An example using a mammoth sample is
 514 shown. First, normal mapping to the elephant reference. Second, competitive mapping to a concatenated
 515 reference of an elephant and human to detect human contamination in the alignments. Third, normal
 516 mapping human data to the elephant reference to check that they map preferentially to conserved regions of
 517 the genome. B) Schematic view of a competitive mapping pipeline using a mammoth sample. After
 518 competitive mapping, only the sequences mapping to the elephant part of the concatenated reference will be
 519 used for downstream analyses.

520

521

522

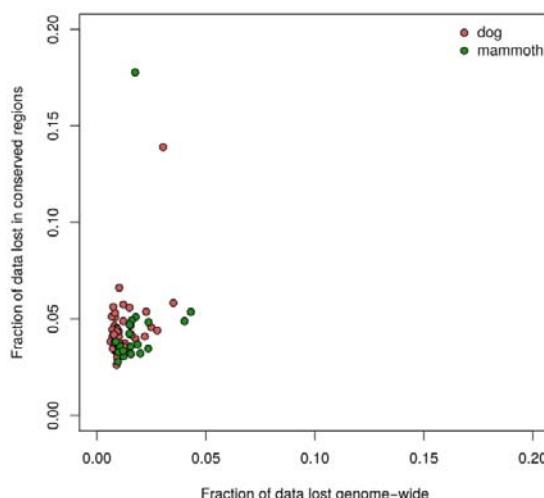


523

524

525 **Figure 3. Proportions of sequences mapping to human, target and non-target reference from the**
526 **FASTQ and BAM files.** A) Correlation between the proportion of reads mapping to human and to the non-
527 target species in the raw FASTQ sequencing files ($r^2 = 0.81$, $F = 303.8$, $p\text{-value} = <2.2\text{e-}16$). B) Correlation
528 between the proportion of reads mapping to human in the raw FASTQ sequencing files and the proportion of
529 reads mapping to human from the faunal BAM file ($r^2 = 0.01$, $F = 1.7$, $p\text{-value} = 0.2$).

530



531

532 **Figure 4. Characterization of endogenous and human contaminant reads in faunal BAM files.** A)
533 Comparisons of PMDR and mRL for all mammoth samples. B) mRL for mammoth sequences mapping to the
534 elephant or the human parts of the concatenated reference (Wilcoxon rank sum test, $W = 313.5$, $p\text{-value} =$
535 0.00223). C) PMDR for mammoth sequences mapping to the elephant or the human parts of the
536 concatenated reference (Wilcoxon rank sum test, $W = 397$, $p\text{-value} = 1.016\text{e-}10$). D) Comparisons of PMDR
537 and mRL for all ancient dog samples. E) mRL for dog sequences mapping to the dog or the human parts of

538 the concatenated reference (Wilcoxon rank sum test, $W = 1929$, p-value = 1.251e-08). F) PMD^R for dog
539 sequences mapping to the dog or the human parts of the concatenated reference (Wilcoxon rank sum test,
540 $W = 1743$, p-value = 1.511e-05). In all cases, **: p-value < 0.01 and ****: p-value < 0.0001.

541

542

543 **Figure 5. Data lost per sample after competitive mapping.** Fraction of data lost in each sample at
544 genome-wide level and only in conserved regions. Colors indicate different species.

545

546

547

548

549

550 **Supplementary Information for: “Competitive mapping allows to identify and**
551 **exclude human DNA contamination in ancient faunal genomic datasets”**

552

553 Tatiana R. Feuerborn, Elle Palkopoulou, Tom van der Valk, Johanna von Seth, Arielle R. Munters, Patrícia
554 Pečnerová, Marianne Dehasque, Irene Ureña, Erik Ersmark, Vendela Kempe Lagerholm, Maja Krzewinska,
555 Ricardo Rodríguez-Varela, Anders Götherström, Love Dalen, David Díez-del-Molino

556

557

558

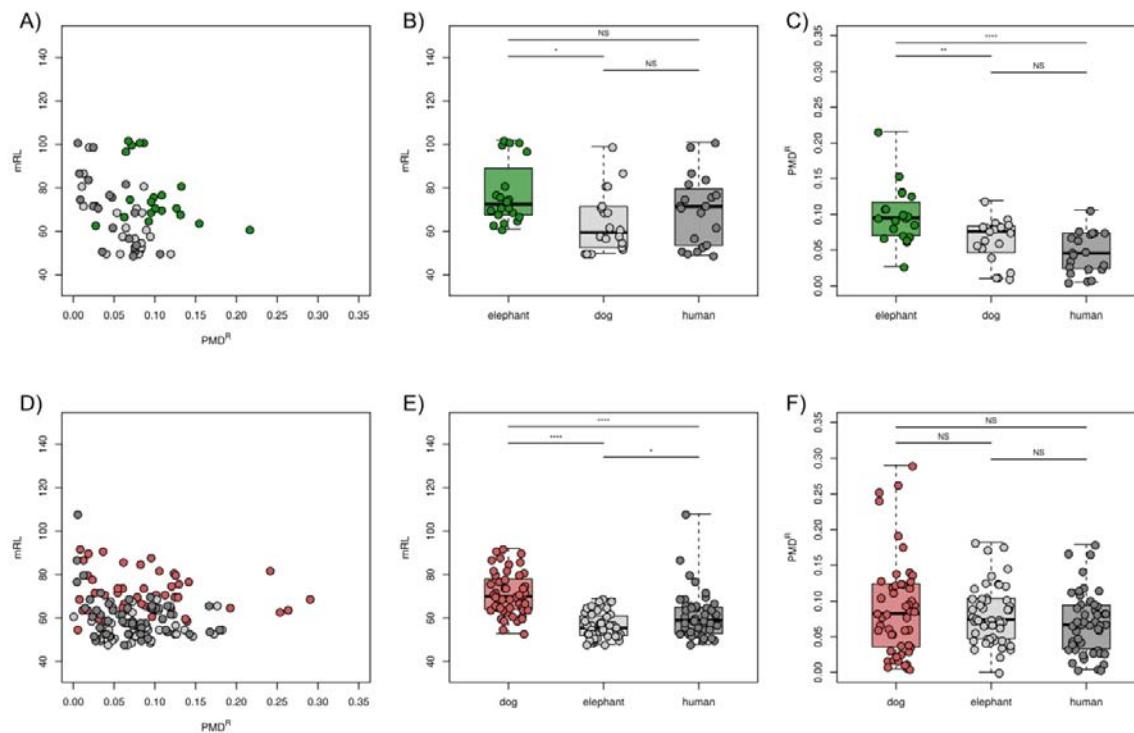
559

560 Supplementary Information contains:

561 Figure S1

562 Supplementary Table 1

563


564

565

566

567

568

569

570 **Figure S1: Characterization of sequences mapping to the target, non-target and human references.** A)
571 Comparisons of PMD^R and mRL for all mammoth samples. B) mRL for mammoth sequences mapping to the
572 elephant, dog and human references. B) PMD^R for mammoth sequences mapping to the elephant, dog and
573 human references. D) Comparisons of PMD^R and mRL for all ancient dog samples. B) mRL for dog
574 sequences mapping to the elephant, dog and human references. B) PMD^R for dog sequences mapping to
575 the elephant, dog and human references. All pairwise comparisons are done using Tukey's tests. In all
576 cases, NS: p-value >0.05, *: p-value <0.05, **: p-value < 0.01 and ****: p-value < 0.0001.

577

578