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Abstract 17 

Organism abundance is a critical parameter in ecology, but its estimation is often challenging. 18 

Approaches utilizing eDNA to indirectly estimate abundance have recently generated substantial 19 

interest. However, preliminary correlations observed between eDNA concentration and 20 

abundance in nature are typically moderate in strength with significant unexplained variation. 21 

Here we apply a novel approach to integrate allometric scaling coefficients into models of eDNA 22 

concentration and organism abundance. We hypothesize that eDNA particle production scales 23 

non-linearly with mass, with scaling coefficients < 1. Wild populations often exhibit substantial 24 

variation in individual body size distributions; we therefore predict that the distribution of mass 25 

across individuals within a population will influence population-level eDNA production rates. To 26 

test our hypothesis, we collected standardized body size distribution and mark-recapture 27 

abundance data using whole-lake experiments involving nine populations of brook trout. We 28 

correlated eDNA concentration with three metrics of abundance: density (individuals/ha), 29 

biomass (kg/ha), and allometrically scaled mass (ASM) (∑(individual mass0.73)/ha). Density and 30 

biomass were both significantly positively correlated with eDNA concentration (adj. R2 = 0.59 31 

and 0.63, respectively), but ASM exhibited improved model fit (adj. R2 = 0.78). We also 32 

demonstrate how estimates of ASM derived from eDNA samples in ‘unknown’ systems can be 33 

converted to biomass or density estimates with additional size structure data. Future experiments 34 

should empirically validate allometric scaling coefficients for eDNA production, particularly 35 

where substantial intraspecific size distribution variation exists. Incorporating allometric scaling 36 

may improve predictive models to the extent that eDNA concentration may become a reliable 37 

indicator of abundance in nature. 38 

 39 
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Introduction 42 

 Developing methods to estimate animal abundance in nature has attracted the attention of 43 

researchers and managers alike for over a century (Schwarz & Seber, 1999). Abundance is a 44 

fundamental population parameter in ecology, conservation, and natural resource management 45 

(Luikart, Ryman, Tallmon, Schwartz, & Allendorf, 2010), with direct impacts on ecological 46 

interactions (Krebs, 2009), ecosystem functioning (Schaus et al., 2010), population persistence 47 

and adaptability (Jamieson & Allendorf, 2012), as well as ecosystem services/resources (Immell 48 

& Anthony, 2008; Schwarz & Seber, 1999). Methodologies to estimate animal abundance 49 

represent a well-developed field of empirical research in ecology that has progressed remarkably 50 

(Schwarz & Seber, 1999; Seber, 1986). Yet despite this success, the estimation of abundance in 51 

nature is often challenging; obtaining robust estimates in natural populations using traditional 52 

methods can be time-consuming, costly, labor intensive, or even impossible to obtain for some 53 

populations (Luikart et al., 2010; Ovenden et al., 2016; Yates, Bernos, & Fraser, 2017).  54 

 The recent development of novel molecular tools has renewed interest in utilizing genetic 55 

information to indirectly estimate abundance in difficult-to-sample natural populations 56 

(Goldberg, Strickler, & Pilliod, 2015; Luikart et al., 2010). Molecular techniques that quantify 57 

the concentration of environmental DNA (eDNA) particles represent a promising tool, with 58 

recent studies demonstrating support for a correlation between eDNA concentration and 59 

abundance (Pilliod, Goldberg, Arkle, & Waits, 2013; Takahara, Minamoto, Yamanaka, Doi, & 60 

Kawabata, 2012; Thomsen et al., 2012). In addition to monitoring of species of conservation 61 

concern, eDNA represents a potential indirect-but-accurate means to quantify abundance that has 62 

broad implications for species harvesting, invasive species control, and monitoring of key 63 

indicator species used to assess ecosystem health (Barnes & Turner, 2016). 64 
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 Laboratory studies have demonstrated a strong correlation between eDNA concentration 65 

and abundance (Eichmiller, Miller, & Sorensen, 2016; Klymus, Richter, Chapman, & Paukert, 66 

2015), exhibiting a mean correlation coefficient of 0.9 (R2 = 0.81) (Yates, Fraser, & Derry, 67 

2019). Studies in nature, however, have generally found weaker correlations than laboratory 68 

studies, with a mean correlation coefficient  of 0.71-0.75 (R2 = 0.51-0.57) (Yates et al., 2019). 69 

Although correlations remain moderately strong in nature, much of the variation in eDNA 70 

particle concentration across environments often remains unexplained. As a result, the extent to 71 

which eDNA could be used to reliably infer abundance in nature remains limited without 72 

significant improvements in modelling or technology. 73 

 In nature, organismal abundance is typically quantified by evaluating individual density 74 

(i.e. individuals/unit area) or biomass density (i.e. kg/unit area). While both metrics of abundance 75 

appear to correlate equally well with species-specific eDNA particle concentration in the wild, 76 

processes involved in the production of eDNA particles in natural environments are unlikely to 77 

scale linearly with either biomass or density. Although eDNA production tends to increase with 78 

individual mass (Maruyama, Nakamura, Yamanaka, Kondoh, & Minamoto, 2014),  individuals 79 

with a large biomass often produce fewer eDNA particles than equivalent biomass of smaller 80 

conspecifics (Maruyama et al., 2014; Mizumoto, Urabe, Kanbe, Fukushima, & Araki, 2018; 81 

Takeuchi, Iijima, Kakuzen, Watanab, & Yamada, 2019). As such, eDNA particle concentration 82 

would be expected to vary, for example, between environments that contain equal densities of 83 

individuals but with varying biomass. Similarly, environments with equal biomass but varying 84 

densities would also be likely to vary in observed eDNA particle concentration. Wild populations 85 

often exhibit substantial inter-population variation in the distribution of individual biomass 86 

(Donald, Anderson, Mayhood, Anderson, & Correlations, 1980; Guernon, Yates, Fraser, & 87 
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Derry, 2018; Millien et al., 2006; Sebens, 1987), which may in turn scale to affect overall 88 

population-level rates of eDNA production (Maruyama et al., 2014) and partially account for the 89 

substantial unexplained variation observed between eDNA concentration and traditional metrics 90 

of abundance (e.g. density and biomass) in nature (Yates et al., 2019).   91 

 Here, we extend models of physiological allometric scaling to organismal eDNA particle 92 

production to provide a framework through which differences in density, total biomass, and the 93 

distribution of individual biomass can be integrated into models of eDNA production in natural 94 

populations. Allometry refers to changes in organisms (e.g. physiological rates, morphology, 95 

etc.) that occur in relation to proportional changes in body size (Gittleman, 2011). Excretory 96 

processes (urine, fecal matter, etc.) and shedding (from scales, skin, mucous, etc.) are thought to 97 

be the two major physiological processes that contribute to the production of eDNA particles (Jo, 98 

Murakami, Yamamoto, Masuda, & Minamoto, 2019; Stewart, 2019). The metabolic theory of 99 

ecology (MTE) provides a robust, empirically validated framework through which allometry in 100 

metabolic processes (including excretion) can be modelled (Brown, Gillooly, Allen, Savage, & 101 

West, 2004). The MTE posits that metabolic processes scale non-linearly with body size 102 

according to the power function: 103 

I = I0 * Mb 104 

where I = metabolic rate, I0 = a normalization constant, M = organism body mass, and b = an 105 

allometric scaling coefficient (Allegier, Wenger, Rosemond, Schindler, & Layman, 2015; Brown 106 

et al., 2004; Vanni & McIntyre, 2016). The value of b varies depending on the physiological 107 

process; metabolic rates typically scale to the power of 0.75 (Brown et al., 2004; Isaac & 108 

Carbone, 2010), whereas values for consumptive or excretory rates are often lower (Post, 109 

Parkinson, & Johnston, 1999; Vanni & McIntyre, 2016). Nevertheless, metabolic theory predicts 110 
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that larger organisms tend to exhibit disproportionately lower rates (relative to their mass) for 111 

metabolically linked processes such as excretion (Allen & Gillooly, 2009; Vanni & McIntyre, 112 

2016). While shedding from mucous, scales, or skin may also be linked to metabolic rates, 113 

shedding rates are also likely a function of the surface area of an organism. In many aquatic 114 

organisms (particularly fish) the allometric relationship between body mass and surface area 115 

follows a similar mathematical form as metabolic processes; salmonids, for example, exhibit 116 

mass-scaling coefficients for surface area between 0.59 and 0.65 (Shea, Fryer, Pert, & Bricknell, 117 

2006).  118 

 Metabolic rates, excretory rates, and surface area (via shedding) are likely to collectively 119 

impact eDNA production, yet all follow a similar allometric form. As a result, we hypothesize 120 

that eDNA production can also be modelled as an approximate power function of individual 121 

mass and an exponential scaling coefficient with a value less than 1. That is, the rate at which 122 

eDNA production increases with body mass will decline (Figure 1a) such that, on a per-gram 123 

basis (e.g. mass-specific rate), large individuals will tend to excrete fewer eDNA particles 124 

relative to smaller conspecifics (Figure 1b). This hypothesis has important consequences for 125 

ecosystem-level processes; the utility of integrating allometric scaling in ecosystem-level models 126 

of ecological stoichiometry (Allen & Gillooly, 2009), animal excretion (Vanni & McIntyre, 127 

2016), consumption (Post et al., 1999), and nutrient cycling (Schaus et al., 2010; Schindler & 128 

Eby, 1997), for example, has long been acknowledged with broad empirical support. We 129 

therefore further hypothesize that, when scaled to the level of an entire population, allometric 130 

scaling in eDNA production will also have a substantial effect on overall population-level 131 

production of eDNA. We consequently predict that the incorporation of mass scaling coefficients 132 

to account for inter-population variation in density, biomass, and the distribution of biomass 133 
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across individuals will improve modelling efforts linking eDNA particle concentration and 134 

abundance across natural ecosystems.   135 

 To test our hypothesis, we collected standardized individual biomass data and used 136 

common mark-recapture experiments to enumerate abundance in nine populations of brook trout 137 

(Salvelinus fontinalis) in the Rocky Mountains of Canada while simultaneously collecting eDNA 138 

samples in each lake. Study populations exhibited substantial variation in individual density (63 - 139 

1177 individuals/ha), biomass density (12.6 - 52.4 kg/ha), and mean body size (43.0 - 405.9 140 

g/individual). We applied these data to specifically test two key predictions: i) brook trout eDNA 141 

particle concentration will correlate with traditional metrics of abundance (density and biomass) 142 

across the nine study lakes; and ii) incorporating allometric scaling coefficients to estimates of 143 

brook trout abundance (e.g. ∑(individual biomass0.73)/ha, or “allometrically scaled mass” 144 

(ASM)) will substantially improve models of abundance and eDNA particle concentration.  145 

 ASM estimates derived from known eDNA concentrations in novel systems lacking 146 

abundance data cannot be directly converted to traditional metrics of abundance (e.g. density and 147 

biomass) because multiple density/biomass configurations (e.g. many small fish or a small 148 

number of large fish) can produce equivalent ASM values. However, using a real-world 149 

example, we also demonstrate how ASM estimates derived from known eDNA concentrations 150 

for systems that lack abundance data on a target species can be converted into traditional 151 

estimates of abundance with additional size structure data. 152 
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Materials and Methods 153 

Study species and system 154 

 Nine brook trout populations introduced in the early 20th century to lakes located in 155 

Kootenay, Banff, and Yoho national parks (Figure S1) were monitored to determine population 156 

size and individual biomass distributions. Brook trout represent ideal populations to study 157 

allometry in eDNA production and its impact on the relationship between eDNA particle 158 

concentration and abundance. Several studies have already demonstrated significant correlations 159 

between abundance and eDNA concentration for brook trout in lotic systems (Baldigo, Sporn, 160 

George, & Ball, 2017; Wilcox et al., 2016). Brook trout populations also often exhibit substantial 161 

variation in size structure (Donald et al., 1980; Guernon et al., 2018), providing the opportunity 162 

to study populations that represent a gradient of small-to-large bodied individuals. Additionally, 163 

our study populations experience little recreational fishing pressure due to no-take policies 164 

implemented within the National Parks.  165 

 166 

Mark-recapture surveys and size structure estimates 167 

 Mark-recapture studies were conducted in 2018 between May 27th and June 30th, except 168 

for Cobb lake where isolated marking events occurred until September 12th (Figure S2). Fish 169 

were captured using a combination of fyke nets, angling, and backpack electrofishing (Table 1). 170 

Large (1 m hoop diameter, 2 cm mesh) and small (0.7 m hoop diameter and 0.8 cm mesh) fyke 171 

nets were distributed around the perimeter of lakes with the lead attached to shore and the end of 172 

the trap facing the center of the lake. Nets were checked daily to reduce stress to fish and 173 

possible cannibalism. Angling was used to supplement fish capture efforts at sites where fyke 174 

catchability was low (predominantly Cobb).  Marks were also assigned to fish captured by 175 
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electrofishing the shore and inlets/outlets of lakes with a backpack electrofisher (Smith-Root, 176 

Vancouver, Washington, USA) 177 

 Captured fish were anesthetized using clove oil and measured for fork length (± 1mm) 178 

and mass (± 0.1g). Any unmarked fish were gastrically tagged with a BioMark HPT8 pre-loaded 179 

Passive Integrated Transponder (PIT) tag (Boise, Idaho, USA). Only fish greater than or equal to 180 

80 mm were tagged to reduce tagging mortality. The tag number of any recaptured fish was 181 

recorded. All fish were processed in the shade with aerators to avoid unnecessary stress. 182 

Recovered fish were released in the center of the lake to standardize release location and 183 

promote mixing (e.g. if released near shore, fish may have been recaptured in an adjacent net, 184 

biasing mark recapture data). Marking ceased once recapture ratios approached twenty five 185 

percent for several consecutive days in order to standardize marking efforts across 186 

all populations and to ensure that enough fish were tagged to facilitate census size (Nc) estimates 187 

have confidence intervals within 10% to 25% of true values, following general methodologies 188 

reviewed in (Krebs, 2009). 189 

 Size structure estimates aimed to obtain a representative snapshot of the size structure of 190 

each population and were conducted between July 27th and September 1st, with the exception of 191 

Cobb where size structure assessments continued to October 12th (Figure S2). Fyke-nets were 192 

deployed in littoral zone areas extending to the centre of the lake and, as a result, size-structure 193 

assessments may be more biased towards small-medium bodied individuals (who prefer littoral 194 

habitats) (Tiberti et al., 2017). To obtain a relatively unbiased estimate of population size 195 

structure, fish were captured in large and small sinking mixed mesh gillnets with clear 196 

monofilament distributed throughout the lake. Large mixed-mesh gillnets were 15.6 m long, 1.8 197 

m deep and had an equal area of 64-51-89-38-76 mm mesh panels. Small mixed-mesh gillnets 198 
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were 12.5 meters long, 1.8 meters deep, and consisted of an equal area of 32-19-38-13-25 mm 199 

mesh panels. Index nets are widely used in North America for size structure assessments (Bonar, 200 

Hubert, & Willis, 2009; Hubert, Pope, & Dettmers, 2012; Johnson, 1983; Post et al., 1999; Ward, 201 

Askey, Post, Varkey, & Mcallister, 2012) as these attempt to capture a representative size/age 202 

structure of the population (Morgan, 2002).  Nets were checked daily and moved to different 203 

locations across the lake if reset in order to capture a representative sample of fish in each lake. 204 

Sampling ceased when approximately five to ten percent of the population was captured, apart 205 

from Cobb lake where size structure assessment captured approximately 71% of individuals 206 

(Table 1). Captured fish were euthanized with clove oil, PIT tags were recorded, and length/mass 207 

data were collected as described for the marking period.  208 

 209 

Population size estimation 210 

 Schnabel population size estimates, which utilize sequential marking/recapture events, 211 

were used to determine the number of fish in a lake (Schnabel, 1938). All size structure 212 

assessment removals were pooled together into one final sampling event for the population 213 

estimates which controlled for the removal of marks at large. Note that population estimates only 214 

account for fish greater than the minimum tagging size (80 mm fork length). All population 215 

estimates were conducted in R (R Development Core Team, 2017) with the mrClosed function 216 

from the Fisheries Stock Assessment package FSA (Ogle, 2016). Confidence intervals for 217 

Schnabel population estimates followed recommendations from (Seber, 2002) as implemented in 218 

the FSA package.  219 
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Density calculation 220 

 To link eDNA particle concentration with fish abundance, three metrics of density were 221 

calculated: (i) individual density (individuals/ha); (ii) biomass density (biomass/ha); (iii) and 222 

allometrically scaled mass (ASM/ha). Individual density was estimated by dividing the 223 

population size estimate by lake size (ha). Biomass density was calculated according to the 224 

following formula:  225 

������� �	
 �� �

∑ �������
���

���

���

· ��

�
	� ���. �
 

Where ∑ �������
���

���
 is the sum of the masses captured in the index net during size structure 226 

assessment, ��� is the number of fish captured in the index nets, �� is the estimated population 227 

size. This methodology assumes that the size structure assessment was representative of the 228 

population. 229 

 ASM was calculated by replacing the mass measure with mass0.73 according to the 230 

formula: 231 

��� �	
 �� �

∑ �������
����

���
�

���

· ��

�
	� ���. �
 

 232 

This density metric was included to account for the relative decline in mass-specific eDNA 233 

production or excretion rates typically observed as individual organismal mass increases 234 

(Maruyama et al., 2014; Takeuchi et al., 2019; Vanni & McIntyre, 2016). Scaling coefficients 235 

(the value of b) can vary substantially depending on the physiological process, taxonomy or 236 

environment (Allegier et al., 2015; Glazier, 2005). In the absence of data on allometric scaling in 237 

eDNA production, data on allometric scaling in metabolic or excretory rates for the same study 238 
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species can represent useful starting points. Data on allometry in excretory rates were 239 

unavailable for brook trout. However, in laboratory experiments (Hartman & Cox, 2008) found 240 

that mass-specific metabolism scaled as a power law of mass with an exponent of -0.265. The 241 

scaling exponent for absolute metabolism would therefore be 1 – 0.265 = 0.735, which we used 242 

as the value of b in our ASM model.   243 

 In difficult to sample populations, estimates of relative abundance are often obtained 244 

using catch-per-unit-effort (CPUE) metrics. As a result, most previous studies examining eDNA 245 

particle concentration and abundance utilize similar metrics (Yates et al., 2019). To evaluate the 246 

utility of CPUE as a ‘proxy’ metric of abundance in our study system, CPUE for each lake was 247 

quantified as the mean catch per-unit effort of a large and small index gillnet.  248 

   249 

eDNA sample collection  250 

 eDNA samples were collected between June 30 and July 13th, 2018. Sampling was 251 

equidistantly distributed around each lake and included four littoral and four pelagic samples. 252 

Littoral samples were collected approximately 1-3 m from shore at a depth of least 30 cm but 15 253 

cm above the bottom to avoid the unintentional collection of sediments, which can contain 254 

concentrated eDNA but also inhibit PCR reactions (Turner, Uy, & Everhart, 2015). Surface 255 

pelagic samples were collected from each lake along a vertical line through its center (identified 256 

as the midpoint of its longest axis); samples were collected along this axis at equidistant intervals 257 

within the first meter of depth (approximately 0.5m). eDNA for most fish species tends to be 258 

uniformly distributed throughout the water column of deep lakes (Hanfling et al., 2016) and 259 

shallow ponds (Evans et al., 2017). A thermal profile of the lake (e.g. temperature reading every 260 

0.5 m using a YSI professional series sonde (model 10102030) (Yellow Springs Inc., Ohio, 261 
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USA)) at the deepest point was taken immediately after sample collection. To avoid between-262 

lake contamination all eDNA samples were collected either from an inflatable kayak that was 263 

decontaminated 48h prior in a 2% regular strength household bleach solution for 15 minutes 264 

(including paddle and life-jacket) or from a canoe assigned to sample a single specific lake. 265 

Water samples were collected using sterile Whirl-PakTM bags (Uline, Ontario, Canada). 266 

 Samples were immediately filtered on the lakeshore using two chlorophyll filtering 267 

manifolds (Wildco, Florida, USA) bleached in a 30% household bleach solution for ten minutes 268 

2-12h prior to collection. All samples were stored in the shade prior to filtration in plastic 269 

washbasins bleached with a 30% solution for ten minutes, and all filtering was conducted in the 270 

shade under a tarp. Manifolds were transported in a Polar BearTM backpack cooler (Polar Bear 271 

Coolers, Georgia, USA) whose interior was wiped with a 30% household bleach solution for ten 272 

minutes. Manifold components were stored after bleaching and transported individually in sealed 273 

plastic zippered bags to limit contamination. Pencils and markers were also wiped with a 30% 274 

bleach solution. 275 

 One L of sample water from each site was filtered through a 0.7µm-pore glass fibre filter 276 

(GE Healthcare Life Sciences, Ontario, Canada) using a vacuum hand pump (Soil Moisture, 277 

California, USA); each vacuum pump was decontaminated between lakes by wiping with a 30% 278 

household bleach solution and resting for ten minutes. All littoral samples were filtered on one 279 

manifold and all pelagic samples were filtered on the other. Prior to filtering lake water samples, 280 

1 L of distilled water was filtered through each manifold as a negative control. Filters were 281 

handled using two metal forceps bleached in a 30% solution for ten minutes and transported in 282 

individual bags; one forceps was used for littoral samples and another forceps was used for 283 

pelagic samples. After filtering, filters were folded and placed directly in a sterile 2 ml 284 
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microcentrifuge tube filled with 700µl AL buffer (Qiagen, Maryland, USA) which was then 285 

labelled and individually sealed in a plastic zippered bag and placed in a second cooler that was 286 

decontaminated by wiping with a 30% household bleach solution and resting for ten minutes. 287 

This cooler contained two frozen freezer-gel packs decontaminated in a 30% bleach solution for 288 

ten minutes. If a filter became clogged (i.e. < 1 L of water was filtered) the final volume of water 289 

filtered was recorded and the sample was stored in buffer. Filters were immediately transported 290 

to, and stored in, a -20 � freezer (wiped with 30% household bleach and soaked for ten minutes) 291 

at Kootenay Crossing. Filters were stored on dry ice for transportation to Montreal (driven 292 

approximately two and a half days) where they were stored in a -80 � freezer. 293 

eDNA extraction and analysis 294 

 Each filter was extracted using a Qiagen DNeasy Blood and Tissue TM kit and 295 

QiashdredderTM spin column following a modified extraction protocol (see Appendix S1 for 296 

details). Final DNA product was eluted into 130 µl of AE buffer and stored in a clean -20 � 297 

freezer dedicated to the sole storage of eDNA samples. To avoid contamination between lakes, 298 

extractions were conducted on batches from a single lake with a single extraction blank of 700 299 

µL AL buffer included as an extraction control. Decontamination procedures were identical for 300 

both manifolds, so only a single negative control was extracted per lake. All extractions were 301 

conducted in an extraction room dedicated to the handling of sensitive eDNA samples. This 302 

room receives weekly cleaning with a 10% household bleach solution and is free of PCR 303 

products or high-concentration DNA. All individuals entering the extraction room were required 304 

to wear nitrile gloves, hair nets, shoe covers, and dedicated, clean lab coats. All lab surfaces were 305 

soaked with a 20% household bleach solution for ten minutes before and after extractions. PCR 306 
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Clean WipesTM (Thermo Scientific, Massachusetts, USA) were also used to decontaminate all 307 

lab surfaces and pipettes prior to and after extracting or handling eDNA samples.   308 

 The concentration of brook trout eDNA was quantified using the TaqMan minor groove 309 

assay published in (Wilcox et al., 2013), which targets a region of the brook trout cytochrome b 310 

mitochondrial gene. All samples were run in triplicate at a 20 µl final reaction volume on a 311 

Stratagene MX 3000P thermal cycler using Environmental Master Mix 2.0 and 5 µl of template 312 

DNA. Forward and reverse primers were included at a final concentration of 900 nM, with the 313 

probe at a final concentration of 250 nM. Each replicate was spiked with an internal positive 314 

control to test for inhibition; any replicate that exhibited inhibition (Ct > 1 in the internal positive 315 

control) was reanalyzed with diluted template DNA at 60% concentration (3 µl template + 2 µl 316 

of ultrapure water); this was sufficient to relieve inhibition in all cases. Standard curve template 317 

DNA was composed of a synthetic GblockTM gene fragment (IDT, Iowa, USA) of the targeted 318 

sequence. A triplicate no template control and triplicate five-point standard curve (1250 319 

copies/µl, 250 copies/µl, 50 copies/µl, 5 copies/µl, 2 copies/µl template concentration) were 320 

included on each 96-well plate. All qPCR reaction reagents were aliquoted into single-use 321 

volumes adequate for a single plate and reactions were prepared in the dedicated eDNA room, 322 

with the exception of the standard curve replicates due to the presence of high concentration 323 

synthetic DNA fragments. Reactions were cycled with an initial hold at 95 � for ten minutes 324 

followed by 45 cycles of 30 seconds at 95 � and 1 min at 60 �. eDNA particle concentration at 325 

each site was determined by averaging site-specific replicates. Final mean copy number values 326 

were converted (based on total volume of water filtered per sample) to total eDNA particle 327 

concentration per 1 L of sampled water (copies/L). 328 
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Data Analysis 329 

 Mean eDNA particle concentration (copies/L) for each lake was calculated by first 330 

averaging eDNA particle concentrations of the four littoral and four pelagic samples to obtain 331 

mean littoral eDNA concentration and mean pelagic eDNA concentration. A weighted-mean 332 

eDNA concentration for each lake was calculated by weighing the littoral and pelagic eDNA 333 

concentrations based on the fraction of total lake area each zone represented. Our study lakes 334 

varied substantially in size (1.7 to 18.5 ha); total pelagic and littoral areas were calculated for 335 

each lake using polygons on Google Earth. In the absence of detailed bathymetry data, the total 336 

area of the littoral zone (where sunlight can reach the lake bottom to support submerged 337 

macrophyte and benthic primary production (Kalff, 2001)) was calculated by including all lake 338 

surface area up to 20m from the shore, with the remaining area assigned to the pelagic zone. A 339 

distance of 20 m was chosen because, based on personal observation, we estimate that the littoral 340 

zone of the lakes extended an average of approximately 10-15 m from the shore. The 341 

concentration of eDNA near points of high concentration (i.e. high fish density or areas where 342 

fish feed) decreases rapidly, with concentrations dropping rapidly after 5-10 m (Ghosal, 343 

Eichmiller, Witthuhn, & Sorensen, 2018). A littoral zone of 20 m reflects these processes (10-15 344 

m littoral zone + 5-10 m for diffusion). Given these assumptions, the area of the pelagic zone 345 

expressed as a fraction of the total area of a lake increases with lake size. The relative 346 

contribution of the littoral and pelagic zones to the overall mean concentration of eDNA per lake 347 

should therefore be increasingly weighted towards the pelagic eDNA concentration as lake 348 

surface area increases.  349 

 Mean lake eDNA particle concentration (copies/L) was modelled separately as a function 350 

of the three metrics of brook trout density calculated above: individual density (individuals/ha); 351 
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biomass density (kg/ha); and allometrically scaled mass (ASM) (∑(individual mass0.73)/ha). 352 

eDNA particle concentration was included as a dependent variable in a linear regression and a 353 

separate model for each abundance metric was fitted to the observed data. Wald F–tests were 354 

used to evaluate the significance of fixed-effect terms, with model log-likelihood values were 355 

values used to compare model fit using the AIC criterion (Akaike, 1974) as in (Lacoursière-356 

Roussel, Côté, Leclerc, Bernatchez, & Cadotte, 2016), assuming that models with ΔAIC > 2 357 

exhibit significantly reduced explanatory power (Burnham & Anderson, 2002). All analyses 358 

were conducted in R (v.3.3.3) (R Development Core Team, 2017). To assess the performance of 359 

CPUE as a ‘proxy’ metric of abundance, we also examined the relationship between density and 360 

CPUE, as well as eDNA particle concentration and CPUE, using linear regression. To assess the 361 

sensitivity of the final results to the relative size of the area of the littoral zone, we ran an 362 

additional set of models in which we halved the estimated littoral area of each lake.  363 

 364 

 365 

Estimating density and biomass from predicted allometrically scaled mass: a case study for 366 

population management 367 

 Predicting abundance in unknown systems from known eDNA particle concentrations 368 

would require an inversion of the modelling relationship described above: abundance would be 369 

modelled as a function of eDNA particle concentration. Predicted estimates of ASM obtained 370 

from eDNA samples for systems lacking abundance data cannot be directly converted to 371 

traditional metrics of abundance (e.g. individual density or biomass density) because multiple 372 

density/biomass configurations (e.g. many small fish or a small number of large fish) can 373 

produce equivalent ASM values. However, with additional individual mass distribution data 374 
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from standardized size structure data any predicted ASM point-estimates can be converted to 375 

traditional metrics.  Size structure data could be exponentiated to the power of b (the allometric 376 

scaling coefficient) and the resulting scaled mass values nonparametrically bootstrapped until the 377 

cumulative sum of the bootstrapped values surpass the predicted ASM. Individual density could 378 

then be estimated by totalling the number of bootstrap “samples” required to surpass the 379 

predicted ASM; biomass density could then be estimated by multiplying the predicted density 380 

value by the untransformed mean of the size distribution. 381 

 As a case study, this technique was applied to data collected from Hidden Lake (Banff, 382 

Alberta, Canada). The brook trout population of Hidden Lake was targeted as part of rotenone-383 

based removal program by Parks Canada. eDNA samples from Hidden Lake were collected in 384 

July 2018 and extracted/analyzed using the same methodology as described above. The 385 

estimated “ASM/unit area” of the lake (including 95% prediction intervals) was calculated from 386 

the linear relationship obtained from our nine study lakes. Unfortunately, standardized size 387 

structure data were unavailable; rotenone removal efforts began in August 2018 and no brook 388 

trout remain in the system. However, prior to the use of rotenone mechanical gill netting efforts 389 

were employed during brook trout removal efforts between 2011 and August 2017 (Stitt, pers. 390 

comm.). By 2016 netting efforts had removed most large fish from the population, and fish older 391 

than age 0+ were between 90-140mm in length (Sullivan, 2017), although it should be noted that 392 

standardized size distribution data was unavailable. Of our nine study lakes, fish from Olive lake 393 

exhibited the smallest body mass, so size structure data from this lake was utilized as a “proxy” 394 

to calculate an approximate pre-rotenone individual density and biomass density of brook trout 395 

inhabiting Hidden Lake in 2018. Bootstrap simulations to quantify individual density and 396 
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biomass density utilizing the Olive size distribution and predicted ASM of Hidden Lake were run 397 

for 1000 iterations. All analyses were performed in R (R Development Core Team, 2017).  398 

Predicting allometric scaling coefficient for eDNA production in brook trout 399 

 Allometric scaling coefficients are likely to fall between a value of 0 and 1; notably, (∑ 400 

individual mass0.0)/ha is equivalent to individual density (fish/ha) and (∑individual mass1.0)/ha is 401 

equivalent to biomass density (kg/ha). Although we employed an allometric scaling coefficient 402 

of 0.73 in our model (based on metabolic data from brook trout), the “true” allometric scaling 403 

coefficient for eDNA production in our system was unknown. We used our data to predict the 404 

optimal value for the scaling coefficient given the observed eDNA particle concentration and 405 

biomass distribution data observed across our study lakes. To achieve this, we iteratively 406 

generated ASM values from our data using scaling coefficients ranging from 0 to 1 (increasing 407 

by intervals of 0.01) and sequentially modelled eDNA particle concentration data as a function 408 

of each ASM value. AIC values for each model were then used to evaluate model fit. If eDNA 409 

production scales allometrically according to a power function, we predict that the AIC values 410 

across models with scaling coefficients between 0 and 1 will exhibit an approximately upward 411 

parabolic distribution with a minimum best-fit value that corresponds to an “optimal” allometric 412 

scaling coefficient. According to the general rule described in (Burnham & Anderson, 2002), 413 

models within 2 ΔAIC also exhibit substantial support; we predict that the ‘true’ allometric 414 

scaling coefficient for brook trout eDNA production in nature will fall between the range of 415 

scaling coefficients that produce models within 2 AIC of the ‘best-fit’ scaling coefficient, 416 

although future experiments will be necessary to validate our predictions. To assess the 417 

sensitivity of this analysis to the estimated size of the littoral zone, this analysis was repeated for 418 
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models in which we halved the estimated littoral area of each lake. All analyses were performed 419 

in R (R Development Core Team, 2017). 420 

 421 
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Results 422 

Population size estimates and density 423 

 Population size estimates ranged from 145 to 3266 individuals, individual density ranged 424 

from 63 to 1131 fish/ha, biomass density ranged from 12.6 to 52.5 kg/ha, and ASM ranged from 425 

3707 to 18600 ASM/ha (Table 2, see Figure 2 for population size structure). Estimates of catch-426 

per-unit-effort (CPUE) did not exhibit a significant correlation with individual density (F1,7 = 427 

0.53, p = 0.491, Figure S3).  428 

 429 

eDNA concentrations and correlations with density metrics among lakes 430 

 Brook trout eDNA was successfully amplified from all samples in all lakes. No 431 

amplification was observed in any negative controls or extraction blanks. The R2 values for 432 

standard curves ranged from 0.984 to 0.995, with an estimated efficiency ranging from 84.2 to 433 

95.1%. Littoral and pelagic eDNA concentrations varied substantially by lake (Table 3). After 434 

weighing for lake zone area, mean eDNA concentrations ranged from 592 copies/L in Cobb to 435 

7805 copies/L in Olive.  436 

 Linear models for each density metric demonstrated positive and significant correlations 437 

with eDNA particle concentration (Table 4, Figure 3). Individual density, biomass density, and 438 

ASM accounted for 59%, 63%, and 78% of the variation in observed eDNA particle 439 

concentration (adjusted R2), respectively. AIC values indicated that individual density and 440 

biomass density metrics provided roughly equivalent model fit; however, the ASM metric 441 

provided substantially improved model fit relative to individual density and biomass density 442 

(ΔAIC of 5.7 and 4.6, respectively).  Trends did not substantially change when littoral area per 443 
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lake was halved (Table S1). CPUE did not exhibit a significant correlation with eDNA particle 444 

concentration (Table 4, Figure S4).  445 

Estimating density and biomass from predicted allometrically scaled mass: a case study for 446 

population management 447 

 The eDNA concentration of Hidden Lake littoral and pelagic eDNA samples averaged 448 

2653 and 342 copies/L, respectively, with a weighted mean average eDNA particle concentration 449 

of 847 copies/L (Table 3). Based on a linear model using data from the nine study lakes, Hidden 450 

Lake had an estimated ASM/ha of 4279.6 (Figure 4). After 1000 iterations, the mean number of 451 

individual mass values sampled from the Olive size distribution was 278.4, which represents the 452 

individual density (ind/ha) point-estimate for Hidden Lake; this corresponds to a total population 453 

size estimate of 3286 individuals. Predicted total biomass was 143.0 kg, with a biomass density 454 

of 12.1 kg/ha. Notably, point estimates of biomass density rank Hidden Lake lower than all nine 455 

study lakes, likely as a result of previous fish removal efforts between 2011 and 2017 in Hidden 456 

Lake. Upper 95% prediction intervals for population size, total biomass, density, and biomass 457 

density were 7629 individuals, 332.0 kg, 646.5 fish/ha, and 28.1 kg/ha, respectively. Due to the 458 

overall low concentration of eDNA present in the lake, lower 95% prediction intervals 459 

overlapped with zero for all four parameters. 460 

 461 

Predicting the allometric scaling coefficient for eDNA production in brook trout 462 

 Based on model AIC values, a scaling coefficient of 0.72 best explained patterns of 463 

eDNA particle concentration across the nine study lakes; models with scaling coefficients 464 

between 0.47 and 0.89 generated ΔAIC values < 2 (Figure 5). The ‘optimal’ scaling coefficient 465 

appeared to be slightly sensitive to the fraction of the area of each lake assigned to the littoral 466 
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zone: when littoral zone area within each lake was halved, a scaling coefficient of 0.63 best 467 

explained patterns of eDNA particle concentration (Figure S5). However, credible intervals 468 

between the two models substantially overlapped; models with scaling coefficients between 0.28 469 

and 0.84 generated ΔAIC values < 2 when lake littoral area was halved.   470 
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Discussion 471 

 Our study provides strong support for the hypothesis that eDNA production scales non-472 

linearly with mass according to a power function. Incorporating allometric scaling coefficients to 473 

account for the distribution of biomass across individuals substantially improved predictive 474 

models, indicating that the distribution of biomass across individuals within a population may 475 

have an important effect when scaling individual eDNA production rates to the population-level. 476 

Incorporating metabolic scaling coefficients for mass into models of eDNA particle 477 

concentration and organismal abundance may therefore be particularly important in species that 478 

exhibit substantial inter-population variation in size distributions. Our findings contribute to a 479 

broader understanding of the ecology of eDNA production and have important implications for 480 

many eDNA applications. While the focus of this study was on the relationship between eDNA 481 

particle concentration and abundance using qPCR techniques, allometry in species with variable 482 

size structure could, for example, partially account for the variation observed in read numbers 483 

across environments in metabarcoding studies. 484 

 This study also reaffirms previous findings that metrics of population abundance 485 

correlate with species-specific eDNA particle concentration in natural environments (Klobucar, 486 

Rodgers, & Budy, 2017; Nevers et al., 2018; Pilliod et al., 2013; Schmelzle & Kinziger, 2016; 487 

Thomsen et al., 2012). Previous research has demonstrated a moderate correlation between 488 

density and/or biomass and eDNA particle concentration in lotic systems for brook trout 489 

(Baldigo et al., 2017; Wilcox et al., 2016). We found similar relationships within lentic systems, 490 

but also demonstrate that they can be considerably improved by integrating allometric scaling 491 

coefficients into estimates of organismal abundance. Notably, in eight of the nine study lakes the 492 

mean concentration of eDNA observed in lentic zone samples was higher compared to pelagic 493 
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zone samples. eDNA particle concentrations generally show a strong correlation with the spatial 494 

distribution of fish within a lake (Ghosal et al., 2018; Hanfling et al., 2016), and our findings 495 

reflect well documented ecological preferences of brook trout, which tend to favor littoral zones 496 

(Magnan & Fitzgerald, 1982; Tiberti et al., 2017). The only lake where this trend was not 497 

observed was Olive, where pelagic and littoral zone eDNA concentrations were similar; this lake 498 

was also the smallest (and shallowest, at 3.5 m maximum depth) lake with the highest individual 499 

density of brook trout, indicating that fish are likely relatively evenly distributed across the lake. 500 

 The correlation coefficients we observed between eDNA concentration and all three 501 

metrics of abundance were greater than most previous studies conducted in nature (Yates et al., 502 

2019). The relatively strong correlations we observed between our abundance metrics and eDNA 503 

concentration could also be due to the methodology with which we assessed population size. Our 504 

estimates of population size were obtained using mark-recapture studies and unbiased measures 505 

of size-structuring, which provided precise and standardized estimates of individual density, 506 

biomass density, and ASM. However, such estimates are rare in published eDNA/abundance 507 

studies; conducting mark-recapture studies to estimate population size is time consuming and 508 

requires a substantial commitment of labour and resources. To date only a handful of eDNA 509 

studies in nature have specifically enumerated population size (Klobucar et al., 2017; Levi et al., 510 

2019; Tillotson et al., 2018) rather than proxies for abundance, such as CPUE (Yates et al., 511 

2019). CPUE may be appropriate if it exhibits a strong correlation with abundance, but in some 512 

systems CPUE can perform poorly as a proxy for abundance (Hubert et al., 2012; Rose & Kulka, 513 

1999). In our study systems CPUE did not exhibit a significant correlation with individual 514 

density and, as a result, eDNA concentration. Some of the substantial unexplained variation in 515 

nature between eDNA concentration and abundance observed in other systems could result from 516 
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reliance on CPUE as a ‘proxy’ for abundance, although we acknowledge that for many species it 517 

may often be impractical or impossible to directly estimate population size.  518 

 It is important to note, however, that our abundance estimates may miss a small fraction 519 

of the adult population and do not account for juvenile (age 0+) abundance because fish were not 520 

included in the mark-recapture study until they were at least 80mm (to avoid excessive tagging 521 

mortality). Population size estimates therefore represent underestimates of true population census 522 

size. Discrepancies in juvenile abundance/density across lakes could account for some of the 523 

remaining unexplained variation present in our model, particularly since smaller fish would be 524 

expected to exhibit higher mass-specific eDNA production rates. Similarly, temperature is 525 

known to have a strong effect on metabolic rates (Brown et al., 2004) and eDNA production (Jo 526 

et al., 2019). Notably, bioenergetics models for a closely related species (bull trout, Salvelinus 527 

Confluentus) demonstrate that both the value of the normalization constant (I0) as well as  the 528 

allometric scaling coefficient (b) can change with temperature (Mesa, Weiland, Christiansen, 529 

Sauter, & Beauchamp, 2013). Temple lake exhibited a substantially lower concentration of 530 

eDNA than expected from its ASM estimate; at 3.5 �, Temple lake was also substantially colder 531 

than the other eight study lakes during eDNA sampling (8.9-17.2 �). Although we lacked the 532 

replication to do so, integrating other important environmental variables (e.g. temperature, pH, 533 

etc.) into models of eDNA particle concentration across environments could further improve 534 

predictive models.  535 

 Despite these caveats, we demonstrate that it is possible to predict estimates of population 536 

abundance with eDNA samples and size structure data in similar ecosystems that lack abundance 537 

data. We predicted traditional metrics of abundance for Hidden Lake based on a hypothetical 538 

assumption that size structure in Hidden Lake closely resembled size structure in another study 539 
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lake (Olive lake). Although predicted density metrics for Hidden Lake based on an ‘proxy’ Olive 540 

Lake size structure distribution were low and exhibited wide upper 95% prediction intervals, 541 

they still provided enough information to facilitate relative comparisons to the nine study lakes; 542 

we can predict with some certainty, for example, that if size structure in Hidden Lake was similar 543 

to that found in Olive, it would have had a lower biomass density relative to two of the nine 544 

study lakes (Dog and Olive). Furthermore, 95% prediction intervals represent a relatively 545 

stringent criteria of certainty; 75% or 80% prediction intervals might still represent useful 546 

information to help guide managerial or research decisions, although that would be up to 547 

practitioner discretion.  548 

 Most significantly, our results highlight the need for further empirical studies exploring 549 

and validating allometric scaling via power functions as a framework for modelling eDNA 550 

particle production rates. While we demonstrate that incorporating allometric scaling coefficients 551 

substantially improves models predicting abundance and eDNA concentration at the population 552 

level, we have not directly quantified how eDNA production scales allometrically in brook trout 553 

at the level of individual organisms. Nevertheless, recent experiments demonstrate that mass-554 

specific eDNA production rates tend to decline as individual mass increases (Maruyama et al., 555 

2014; Mizumoto et al., 2018; Takeuchi et al., 2019). We found that a scaling coefficient of 0.72 556 

best described patterns of eDNA concentration for our study species across our nine study lakes; 557 

this value is closely aligned with the metabolic scaling coefficient for brook trout from (Hartman 558 

& Cox, 2008). Scaling coefficients between 0.51 and 0.87 produced models with ΔAIC values < 559 

2; we therefore predict that the ‘true’ allometric scaling coefficient for eDNA production in 560 

brook trout will likely fall within this interval, although we do note that this point estimate was 561 

slightly sensitive to the area of each lake assigned to the littoral zone. If the area assigned to the 562 
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littoral zone of each lake is halved, the value of the ‘optimal’ scaling coefficient is reduced to 563 

0.63 (models with ΔAIC values < 2 range from 0.28-0.84) which is closer to theoretically 564 

expected values for excretory/consumptive/shedding allometric scaling coefficients (although 565 

note that credible intervals for both values substantially overlap). In future studies, detailed 566 

bathymetry data would be useful to disentangle these issues. Nevertheless, credible intervals for 567 

both models overlapped substantially, indicating that allometric scaling substantially improved 568 

explanatory models. To validate our findings, test our subsequent predictions, and disentangle 569 

what processes are likely to most strongly affect the value of eDNA scaling coefficients (e.g. 570 

metabolism vs excretion/shedding), further experiments are necessary to quantify allometric 571 

scaling of eDNA production at the individual level in brook trout.  572 

 As a well-supported general theory in ecology, experimental designs developed to test 573 

MTE hypotheses (e.g. (Allegier et al., 2015; Hartman & Cox, 2008)) can inform future 574 

experiments examining the effect of allometry on eDNA production rates. Notably, previous 575 

experiments investigating allometric scaling in excretion or metabolic rates quantified rates at the 576 

level of individual organisms (Allegier et al., 2015; Hartman & Cox, 2008; Vanni & McIntyre, 577 

2016). Previous laboratory experiments quantifying the effect of biomass on eDNA 578 

production/shedding rates typically pooled organisms to create different biomass treatments 579 

(Doi, Uchii, Takahara, & Matsuhashi, 2015; Klymus et al., 2015; Lacoursière-Roussel, Rosabal, 580 

& Bernatchez, 2016; Mizumoto et al., 2018; Takahara et al., 2012). At best, such experiments 581 

pool organisms from similar size-classes, in which case eDNA production/abundance 582 

relationships across ‘treatments’ only reflect changes in abundance within a specific age- or size-583 

class. Such experimental designs are likely to produce a strong relationship between eDNA 584 

concentration and biomass, as has been found in a meta-analytic review (Yates et al., 2019). 585 
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While such studies were necessary to empirically quantify a preliminary correlation between 586 

eDNA particle concentration and metrics of abundance, they might obscure critical differences in 587 

mass-specific eDNA production rates across size classes that could have important consequences 588 

for population-level rates. Natural populations often exhibit substantial variation in the 589 

distribution of body size across individuals; the failure to account for allometric scaling in the 590 

relationship between biomass and eDNA production might partially explain the failure to 591 

translate the strong relationships observed in laboratory experiments to nature (Sebens, 1987). 592 

Notably, our eDNA/abundance models utilizing ASM exhibited correlation coefficients 593 

comparable to those typically observed in laboratory environments (Yates et al., 2019). 594 

 It may be possible to investigate allometry in eDNA production by pooling individuals 595 

that are the same size within replicates. However, we would advise against this because 596 

behavioural interactions between fish at high density in confined spaces may impact eDNA 597 

production; some studies have demonstrated that eDNA production per fish increases at high 598 

densities (Id et al., 2019). Brook trout, for example, are known to exhibit aggressive behaviour 599 

towards conspecifics (McNicol, Scherer, & Murkin, 1985), which could increase eDNA particle 600 

concentration at high densities due to increased activity and/or injuries inflicted upon each other. 601 

If size classes exhibit different behaviour at high densities, this could further affect estimates of 602 

allometric scaling. Future studies examining allometric scaling in eDNA production should 603 

therefore incorporate individuals from a gradient of age/size classes and quantify organismal 604 

eDNA production at the individual-level, as in (Takeuchi et al., 2019). Notably, the two studies 605 

to examine eDNA production rates at an individual level across age/size classes found that 606 

larger, older individuals exhibited lower mass-specific eDNA production rates (Maruyama et al., 607 

2014; Takeuchi et al., 2019). There is also a critical need to conduct such experiments in situ at 608 
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field study sites on wild organisms, as in (Pilliod, Goldberg, Arkle, & Waits, 2014). Laboratory 609 

experiments, while important from a validation perspective, may not reflect natural excretion 610 

processes because study organisms are housed in artificial conditions, fed artificial diets, and are 611 

often subject to fasting regimes (Vanni & McIntyre, 2016). Furthermore, size-scaling 612 

coefficients for metabolic processes such as nutrient excretion exhibit substantial interspecific 613 

variation and can even include values greater than 1 (Allegier et al., 2015; Vanni & McIntyre, 614 

2016). Allometric scaling in eDNA production may therefore exhibit similar variability across 615 

species and should be investigated on a case-by-case basis. 616 

 Finally, our experiment investigated intraspecific allometry in eDNA production. 617 

Although there is substantial taxonomic variation, multiple studies have demonstrated that it is 618 

possible to extend allometric power-scaling across taxonomic groups for metabolic and/or 619 

excretory processes (Allegier et al., 2015; Vanni & McIntyre, 2016). Metabarcoding studies 620 

exhibit a weak but positive relationship between read count and organism biomass (Lamb et al., 621 

2019). If allometric scaling in eDNA production exhibits a similar relationship across taxonomic 622 

groups, the relationship between read count and organism abundance could be strengthened by 623 

integrating allometry.  624 

 625 

Conclusions 626 

 Our results provide evidence supporting the hypothesis that eDNA production scales 627 

allometrically with organism mass We have demonstrated that the incorporation of additional 628 

(but straightforward to collect) size structure data to integrate key allometric scaling predications 629 

resulted in substantial improvement in models of eDNA concentration across environments. The 630 

bulk of experiments examining eDNA in nature have typically focused on presence/absence 631 
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applications for species detection utilizing metabarcoding technologies (Goldberg et al., 2015), 632 

in which the detection of rare DNA fragments is often prioritized. As a result, substantial 633 

consideration in the literature has been given to factors that affect eDNA degradation and 634 

dispersion (e.g. (Barnes et al., 2014; Goldberg, Strickler, & Fremier, 2018; Harrison, Sunday, & 635 

Rogers, 2019; Strickler, Fremier, & Goldberg, 2015)), while relatively less attention has focused 636 

on the ecology of eDNA production. Our study demonstrates that the ecology of eDNA 637 

production may represent an understudied yet critically important subject, particularly when 638 

attempting to infer abundance from eDNA concentrations in nature. Future studies on 639 

eDNA/abundance relationships in nature should consider incorporating allometry, particularly 640 

when study species exhibit substantial inter-population variation in size distributions. However, 641 

there is also a need to validate this hypothesis in controlled experimental contexts at the level of 642 

individual organisms. As a well-developed ecological theory validated by numerous empirical 643 

studies (Vanni & McIntyre, 2016), the literature on the MTE represents a robust methodological 644 

foundation that future studies can utilize to explore relationships between a variety of 645 

environmental and ecological factors that might influence organismal production of eDNA. Such 646 

studies could further improve predictive models estimating abundance from eDNA particle 647 

concentration to the extent that, in some circumstances, species-specific eDNA particle 648 

concentration might be a reliable ecological indicator of abundance.  649 

 Predictive models would need to be calibrated on a system- and species-specific basis.  650 

The extent to which models for a particular species can be extended to different ecosystems or 651 

geographical regions also remains unknown. Future studies employing the methodology 652 

developed herein will likely need to construct models from population size/abundance estimates 653 

combined with standardized size distribution data on an individual species/system basis. These 654 
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studies will also need to collect size distribution data, in addition to eDNA samples, to predict 655 

the density or biomass of organisms in similar ecosystems that lack abundance data. Direct 656 

estimates of allometric scaling coefficients for study species would also likely improve 657 

predictive models, although metabolic or excretory allometric scaling coefficients estimated in 658 

other empirical studies on the same (or closely related) species may represent useful starting 659 

points. In the absence of any other empirical data, the general scaling coefficient predicted by the 660 

MTE (0.75) may also suffice.  661 

 Depending on the species studied, obtaining robust population size estimates and 662 

individual size distribution data to calibrate initial models can often be difficult, labour intensive, 663 

and come with a substantial monetary cost. However, the benefits might be substantial – the idea 664 

that future researchers or managers might be able to obtain reasonable estimates of abundance 665 

from eight water samples and a small number of gill net sets is, from an ecologist’s perspective, 666 

exciting.667 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.01.18.908251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.908251
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

Acknowledgements:  668 

We would like to thank Brent Brookes, Jacob Farkas, Tom Ridgeon, Natalie Dupont, Thaïs 669 

Bernos, Laura Bogaard, Haley Tunna, Ben Kelley, Mélia Lagacé, and Mathilde Tissier for their 670 

assistance conducting the mark-recapture experiments and collecting eDNA samples and Joanne 671 

Littlefair for her help in the laboratory. We would also like to thank Taylor Wilcox for his advice 672 

on working with the qPCR primer/probe set, as well as the associate editor and three anonymous 673 

reviewers whose comments greatly improved the manuscript. This research was funded by a 674 

Fonds de recherche du Québec - Nature et technologies (FRQNT) team grant (AMD, MEC, DJF) 675 

and a Natural Sciences and Engineering Research Council of Canada (NSERC) strategic project 676 

grant (DJF, JP, AMD). DMG was funded by the NSERC Strategic Project Grant awarded to DJF 677 

and co-applicants. MCY was funded by an NSERC EcoLac post�doctoral scholarship and 678 

FRQNT post-doctoral scholarship.  679 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.01.18.908251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.908251
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

References 680 
 681 
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on 682 

Automatic Control, 19, 716–723. 683 

Allegier, J. E., Wenger, S. J., Rosemond, A. D., Schindler, D. E., & Layman, C. A. (2015). 684 
Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web. 685 
PNAS, 112 (20). doi:10.1073/pnas.1420819112 686 

Allen, A. P., & Gillooly, J. F. (2009). Towards an integration of ecological stoichiometry and the 687 
metabolic theory of ecology to better understand nutrient cycling. Ecology Letters, 12, 369–688 
384. doi:10.1111/j.1461-0248.2009.01302.x 689 

Baldigo, B. P., Sporn, L. A., George, S. D., & Ball, J. A. (2017). Efficacy of environmental DNA 690 
to detect and quantify brook trout populations in headwater streams of the Adirondack 691 
Mountains, New York. Transactions of the American Fisheries Society, 146(1), 99–111. 692 

Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for 693 
conservation genetics. Conservation Genetics, 17(1), 1–17. doi:10.1007/s10592-015-0775-4 694 

Barnes, M. A., Turner, C. R., Jerde, C. L., Renshaw, M. A., Chadderton, W. L., & Lodge, D. M. 695 
(2014). Environmental Conditions Influence eDNA Persistence in Aquatic Systems. 696 
Environmental Science and Technology, 48, 1819–1827. doi:10.1021/es404734p 697 

Bonar, S. A., Hubert, W. A., & Willis, D. W. (2009). Standard methods for sampling North 698 
American freshwater fishes. Bethesda, Maryland: American Fisheries Society. 699 

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. ., & West, G. B. (2004). Toward a 700 
metabolic theory of ecology. Ecology, 85(7), 1771–1789. 701 

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Inference: A Practical 702 
Information-Theoretic Approach (2nd ed.). New York: Springer-Verlag. 703 

Doi, H., Uchii, K., Takahara, T., & Matsuhashi, S. (2015). Use of Droplet Digital PCR for 704 
Estimation of Fish Abundance and Biomass in Environmental DNA Surveys. PLoS ONE, 705 
1–11. doi:10.1371/journal.pone.0122763 706 

Donald, D. B., Anderson, R. S., Mayhood, D. W., Anderson, R. S., & Correlations, D. W. M. 707 
(1980). Correlations Between Brook Trout Growth and Environmental Variables for 708 
Mountain Lakes in Alberta. Transactions of the American Fisheries Society, 109(October), 709 
603–610. doi:10.1577/1548-8659(1980)109<603 710 

Eichmiller, J. J., Miller, L. M., & Sorensen, P. W. (2016). Optimizing techniques to capture and 711 
extract environmental DNA for detection and quantification of fish. Molecular Ecology 712 
Resources, 16, 56–68. doi:10.1111/1755-0998.12421 713 

Evans, N. T., Li, Y., Renshaw, M. A., Olds, B. P., Deiner, K., Turner, C. R., … Pfrender, M. E. 714 
(2017). Fish community assessment with eDNA metabarcoding: effects of sampling design 715 
and bioinformatic filtering. CJFAS, (January), 1362–1374. 716 

Ghosal, R., Eichmiller, J. J., Witthuhn, B. A., & Sorensen, P. W. (2018). Attracting Common 717 
Carp to a bait site with food reveals strong positive relationships between fish density, 718 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.01.18.908251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.908251
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

feeding activity, environmental DNA, and sex pheromone release that could be used in 719 
invasive fish management. Ecology and Evolution, 8(March), 6714–6727. 720 
doi:10.1002/ece3.4169 721 

Gittleman, J. (2011). Allometry. In Encyclopædia Britannica (Online). Encyclopædia Britannica, 722 
inc. Retrieved from https://www.britannica.com/science/allometry 723 

Glazier, D. S. (2005). Beyond the ‘3/4-power law’: variation in the intra- and interspecific 724 
scaling of metabolic rate in animals. Biological Reviews, 80, 611–662. 725 
doi:10.1017/S1464793105006834 726 

Goldberg, C. S., Strickler, K. M., & Fremier, A. K. (2018). Degradation and dispersion limit 727 
environmental DNA detection of rare amphibians in wetlands: Increasing efficacy of 728 
sampling designs. Science of the Total Environment, 633, 695–703. 729 
doi:10.1016/j.scitotenv.2018.02.295 730 

Goldberg, C. S., Strickler, K. M., & Pilliod, D. S. (2015). Moving environmental DNA methods 731 
from concept to practice for monitoring aquatic macroorganisms. Biological Conservation, 732 
183, 1–3. doi:10.1016/j.biocon.2014.11.040 733 

Guernon, S., Yates, M. C., Fraser, D. J., & Derry, A. M. (2018). The co-evolution of adult body 734 
mass and excretion rate between genetically size-divergent brook trout populations. CJFAS, 735 
Online. doi:http://dx.doi.org/10.1007/s00787-010-0141-5 736 

Hanfling, B., Handley, L. L., Read, D. S., Hahn, C., Li, J., Nichols, P., … Winfield, I. J. (2016). 737 
Environmental DNA metabarcoding of lake fish communities reflects long-term data from 738 
established survey methods. Molecular Ecology, 25, 3101–3119. doi:10.1111/mec.13660 739 

Harrison, J. B., Sunday, J. M., & Rogers, S. M. (2019). Predicting the fate of eDNA in the 740 
environment and implications for studying biodiversity. Proceedings of the Royal Society B, 741 
286. 742 

Hartman, K. J., & Cox, M. (2008). Refinement and Testing of a Brook Trout Bioenergetics 743 
Model. Transactions of the American Fisheries Society, 137(June 2014), 357–363. 744 
doi:10.1577/T05-243.1 745 

Hubert, W. ., Pope, K. L., & Dettmers, J. M. (2012). Passive Capture Techniques. In A. V. Zale, 746 
D. L. Parrish, & T. . Sutton (Eds.), Fisheries Techniques (3rd ed.). Bethesda, Maryland: 747 
American Fisheries Society. 748 

Id, Y. M., Wong, M. K., Kanbe, T., Araki, H., Kashiwabara, T., Ijichi, M., … Hyodo, S. (2019). 749 
Spatiotemporal distribution of juvenile chum salmon in Otsuchi Bay, Iwate, Japan, inferred 750 
from environmental DNA. PLoS ONE, 1–22. Retrieved from 751 
https://doi.org/10.1371/journal.pone.0222052 September 752 

Immell, D., & Anthony, R. G. (2008). Estimation of Black Bear Abundance Using a Discrete 753 
DNA Sampling Device. The Journal of Wildlife Management, 72(1), 324–330. 754 
doi:10.2193/2006-297 755 

Isaac, N. J. ., & Carbone, C. (2010). Why are metabolic scaling exponents so controversial? 756 
Quantifying variance and testing hypotheses. Ecology Letters, 13, 728–735. 757 
doi:10.1111/j.1461-0248.2010.01461.x 758 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.01.18.908251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.908251
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

Jamieson, I. G., & Allendorf, F. W. (2012). How does the 50/500 rule apply to MVPs? Trends in 759 
Ecology and Evolution, 27(10), 580–584. doi:10.1016/j.tree.2012.07.001 760 

Jo, T., Murakami, H., Yamamoto, S., Masuda, R., & Minamoto, T. (2019). Effect of water 761 
temperature and fish biomass on environmental DNA shedding, degradation, and size 762 
distribution. Ecology and Evolution, (September 2018), 1–12. doi:10.1002/ece3.4802 763 

Johnson, L. (1983). Homeostatic Characteristics of Single Species Fish Stocks in Arctic Lakes. 764 
Canadian Journal of Fisheries and Aquatic Sciences, 40(96393), 987–1024. 765 

Kalff. (2001). Limnology: Inland water ecosystems (1st ed.). Upper Saddle River, NJ: Prentice 766 
Hall. 767 

Klobucar, S. L., Rodgers, T. W., & Budy, P. (2017). At the forefront: evidence of the 768 
applicability of using environmental DNA to quantify the abundance of fish populations in 769 
natural lentic waters with additional sampling considerations. Canadian Journal of 770 
Fisheries and Aquatic Sciences, 74, 2030–2034. 771 

Klymus, K. E., Richter, C. A., Chapman, D. C., & Paukert, C. (2015). Quantification of eDNA 772 
shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp 773 
Hypophthalmichthys molitrix. Biological Conservation, 183, 77–84. 774 
doi:10.1016/j.biocon.2014.11.020 775 

Krebs, C. J. (2009). Ecology: The experimental analysis of distribution and abundance. (6th ed.). 776 
San Francisco, CA: Pearson Benjamin Cummings. 777 

Lacoursière-Roussel, A., Côté, G., Leclerc, V., Bernatchez, L., & Cadotte, M. (2016). 778 
Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. 779 
Journal of Applied Ecology, 53(4), 1148–1157. doi:10.1111/1365-2664.12598 780 

Lacoursière-Roussel, A., Rosabal, M., & Bernatchez, L. (2016). Estimating fish abundance and 781 
biomass from eDNA concentrations: variability among capture methods and environmental 782 
conditions. Molecular Ecology Resources, 16, 1401–1414. doi:10.1111/1755-0998.12522 783 

Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G., & Taylor, M. I. (2019). How 784 
quantitative is metabarcoding: A meta� analytical approach. Molecular Ecology, (May 785 
2018), 420–430. doi:10.1111/mec.14920 786 

Levi, T., Allen, J. M., Bell, D., Joyce, J., Russell, J. R., David, A., … Yu, D. W. (2019). 787 
Environmental DNA for the enumeration and management of Pacific salmon. Molecular 788 
Ecology Resources, 19, 597–608. 789 

Luikart, G., Ryman, N., Tallmon, D. A., Schwartz, M. K., & Allendorf, F. W. (2010). Estimation 790 
of census and effective population sizes: The increasing usefulness of DNA-based 791 
approaches. Conservation Genetics, 11(2), 355–373. doi:10.1007/s10592-010-0050-7 792 

Magnan, P., & Fitzgerald, G. J. (1982). Resource partitioning between brook trout (Salvelinus 793 
fontinalis Mitchill) and creek chub (Semotilus atromaculatus Mitchill) in selected 794 
oligotrophic lakes of southern Quebec. Canadian Journal of Zoology, 60, 1612–1619. 795 

Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M., & Minamoto, T. (2014). The release 796 
rate of environmental DNA from juvenile and adult fish. PLoS ONE, 9(12), 1–13. 797 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.01.18.908251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.908251
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

doi:10.1371/journal.pone.0114639 798 

McNicol, R. E., Scherer, E., & Murkin, E. J. (1985). Quantitative field investigations of feeding 799 
and territorial behaviour of young- of-the-year brook charr, Salvelinus fontinalis. 800 
Environmental Biology of Fishes, 12(3), 219–229. 801 

Mesa, M. G., Weiland, L. K., Christiansen, H. E., Sauter, S. T., & Beauchamp, D. A. (2013). 802 
Development and Evaluation of a Bioenergetics Model for Bull Trout. Transactions of the 803 
American Fisheries Society, (November 2014), 37–41. doi:10.1080/00028487.2012.720628 804 

Millien, V., Lyons, K., Olson, L., Smith, F. A., Wilson, A. B., & Yom-Tov, Y. (2006). Ecotypic 805 
variation in the context of global climate change: revisiting the rules. Ecology Letters, 9, 806 
853–869. doi:10.1111/j.1461-0248.2006.00928.x 807 

Mizumoto, H., Urabe, H., Kanbe, T., Fukushima, M., & Araki, H. (2018). Establishing an 808 
environmental DNA method to detect and estimate the biomass of Sakhalin taimen, a 809 
critically endangered Asian salmonid. Limnology, 19, 219–227. doi:10.1007/s10201-017-810 
0535-x 811 

Morgan, G. E. (2002). Manual of instructions - fall walleye index netting (FWIN). Retrieved 812 
from https://www.ontario.ca/page/fall-walleye-index-netting-instructions#section-8 813 

Nevers, M. B., Byappanahalli, M. N., Morris, C. C., Shively, D., Przybyla-kelly, K., Spoljaric, 814 
A. M., … Roseman, E. F. (2018). Environmental DNA (eDNA): A tool for quantifying the 815 
abundant but elusive round goby (Neogobius melanostomus). PloS One, 1–22. 816 
doi:10.5066/F7GH9H6F.Funding 817 

Ogle, D. H. (2016). Introductory Fisheries Analyses with R (1st ed.). Boca Raton: CRC Press. 818 

Ovenden, J. R., Blower, D. C., Dudgeon, C. L., Jones, A. T., Buckworth, R. C., Leigh, G. M., … 819 
Bennett, M. B. (2016). Can genetic estimates of population size contribute to fisheries stock 820 
assessements? Journal of Fish Biology, 1–14. doi:10.1111/jfb.13129 821 

Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013). Estimating occupancy and 822 
abundance of stream amphibians using environmental DNA from filtered water samples. 823 
Canadian Journal of Fisheries and Aquatic Sciences, 1130(January), 1123–1130. 824 

Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2014). Factors Influencing Detection 825 
of eDNA from a Stream-dwelling Amphibian Authors. Molecular Ecology Resources, 1, 826 
109–116. doi:10.1111/1755-0998.12159 827 

Post, J. R., Parkinson, E. A., & Johnston, N. T. (1999). Density-dependent processes in structures 828 
fish populations: interaction strengths in whole-lake experiments. Ecological Monographs, 829 
69(2), 155–175. 830 

R Development Core Team. (2017). R: a language and environment for statistical computing. R 831 
Foundation for Statistical Computing Vienna Austria, 0, {ISBN} 3-900051-07-0. 832 
doi:10.1038/sj.hdy.6800737 833 

Rose, G. A., & Kulka, D. W. (1999). Hyperaggregation of fish and fisheries: how catch-per-unit-834 
effort increased as the northern cod (Gadus morhua) declined. Canadian Journal of 835 
Fisheries and Aquatic Sciences, 56, 118–127. 836 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.01.18.908251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.908251
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

Schaus, M. H., Godwin, W., Battoe, L., Coveney, M., Lowe, E., Roth, R., … Zimmerman, A. 837 
(2010). Impact of the removal of gizzard shad (Dorosoma cepedianum) on nutrient cycles in 838 
Lake Apopka, Florida. Freshwater Biology, 55, 2401–2413. doi:10.1111/j.1365-839 
2427.2010.02440.x 840 

Schindler, D. E., & Eby, L. A. (1997). Stoichiometry of fishes and their prey: implications for 841 
nutrient recycling. Ecology, 78(6), 1816–1831. 842 

Schmelzle, M. C., & Kinziger, A. P. (2016). Using occupancy modelling to compare 843 
environmental DNA to traditional field methods for regional-scale monitoring of an 844 
endangered aquatic species. Molecular Ecology Resources, 16, 895–908. doi:10.1111/1755-845 
0998.12501 846 

Schnabel, Z. E. (1938). The Estimation of the Total Fish Population of a Lake. The American 847 
Mathematical Monthly, 46, 348–352. doi:10.1080/00029890.1938.11990818 848 

Schwarz, C. J., & Seber, G. A. F. (1999). A review of estimating animal abundance III. 849 
Statistical Science, 14, 1–126. 850 

Sebens, K. P. (1987). The ecology of indeterminate growth in animals. Annual Review of 851 
Ecology and Systematics, 18, 371–407. 852 

Seber, G. A. F. (1986). A Review of Estimating Animal Abundance. Biometrics, 42(2), 267–292. 853 

Seber, G. A. F. (2002). The Estimation of Animal Abundance and Related Parameters (2nd ed.). 854 
New Jersey: Blackburn Publishing. 855 

Shea, B. O., Fryer, R. J., Pert, C. C., & Bricknell, I. R. (2006). Determination of the surface area 856 
of a fish. Journal of Fish Diseases, 29, 437–440. 857 

Stewart, K. A. (2019). Understanding the effects of biotic and abiotic factors on sources of 858 
aquatic environmental DNA Understanding the effects of biotic and abiotic factors. 859 
Biodiversity and Conservation, (February). doi:10.1007/s10531-019-01709-8 860 

Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B , 861 
temperature , and pH on eDNA degradation in aquatic microcosms. Biological 862 
Conservation, 183, 85–92. doi:10.1016/j.biocon.2014.11.038 863 

Sullivan, S. (2017). Saving wild trout: Upper Corral Creek and Hidden Lake brook trout 864 
removal and Westslope Cutthroat trout reintroduction - Banff National Park, Parks Canada 865 
Draft Report. 866 

Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. (2012). Estimation of Fish 867 
Biomass Using Environmental DNA. PLoS ONE, 7(4), 3–10. 868 
doi:10.1371/journal.pone.0035868 869 

Takeuchi, A., Iijima, T., Kakuzen, W., Watanab, S., & Yamada, Y. (2019). Release of eDNA by 870 
different life history stages and during spawning activities of laboratory-reared Japanese 871 
eels for interpretation of oceanic survey data. Scientific Reports, 9(April), 1–9. 872 
doi:10.1038/s41598-019-42641-9 873 

Thomsen, P. F., Kielgast, J. O. S., Iversen, L. L., Wiuf, C., Rasmussen, M., Thomas, M., … 874 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.01.18.908251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.908251
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

Willerslev, E. (2012). Monitoring endangered freshwater biodiversity using environmental 875 
DNA. Molecular Ecology, 21, 2565–2573. doi:10.1111/j.1365-294X.2011.05418.x 876 

Tiberti, R., Nelli, L., Brighenti, S., Iacobuzio, R., Rolla, M., Nelli, L., … Spatial, M. R. (2017). 877 
Spatial distribution of introduced brook trout Salvelinus fontinalis (Salmonidae) within 878 
alpine lakes: evidences from a fish eradication campaign. The European Zoological 879 
Journal, 84(1), 73–88. doi:10.1080/11250003.2016.1274436 880 

Tillotson, M. D., Kelly, R. P., Duda, J., Hoy, M., Kralj, J., & Quinn, T. P. (2018). Concentrations 881 
of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and 882 
temporal scales. Biological Conservation, 220(February), 1–11. 883 
doi:10.1016/j.biocon.2018.01.030 884 

Turner, C. R., Uy, K. L., & Everhart, R. C. (2015). Fish environmental DNA is more 885 
concentrated in aquatic sediments than surface water. Biological Conservation, 183, 93–886 
102. doi:10.1016/j.biocon.2014.11.017 887 

Vanni, M. J., & McIntyre, P. B. (2016). Predicting nutrient excretion of aquatic animals with 888 
metabolic ecology and ecological stoichiometry: A global synthesis. Ecology, 97(12), 889 
3460–3471. doi:10.1002/ecy.1582 890 

Ward, H. G. M., Askey, P. J., Post, J. R., Varkey, D. A., & Mcallister, M. K. (2012). Basin 891 
characteristics and temperature improve abundance estimates from standard index netting of 892 
rainbow trout (Oncorhynchus mykiss) in small lakes. Fisheries Research, 131–133, 52–59. 893 
doi:10.1016/j.fishres.2012.07.011 894 

Wilcox, T. M., Mckelvey, K. S., Young, M. K., Jane, S. F., Lowe, W. H., Whiteley, A. R., & 895 
Schwartz, M. K. (2013). Robust Detection of Rare Species Using Environmental DNA: The 896 
Importance of Primer Specificity. PLoS ONE, 8(3). doi:10.1371/journal.pone.0059520 897 

Wilcox, T. M., Mckelvey, K. S., Young, M. K., Sepulveda, A. J., Shepard, B. B., Jane, S. F., … 898 
Schwartz, M. K. (2016). Understanding environmental DNA detection probabilities�: A 899 
case study using a stream-dwelling char Salvelinus fontinalis. Biological Conservation, 194, 900 
209–216. doi:10.1016/j.biocon.2015.12.023 901 

Yates, M. C., Bernos, T. A., & Fraser, D. J. (2017). A critical assessment of estimating census 902 
population size from genetic population size (or vice versa) in three fishes. Evolutionary 903 
Applications, 10(9). doi:10.1111/eva.12496 904 

Yates, M. C., Fraser, D. J., & Derry, A. M. (2019). Meta�analysis supports further refinement of 905 
eDNA for monitoring aquatic species�specific abundance in nature. Environmental DNA, 906 
1(January), 5–13. doi:10.1002/edn3.7 907 

908 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.01.18.908251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.908251
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

Data Accessibility Statement:  909 

eDNA particle concentration data for each lake will be deposited in the Dryad Digital Repository 910 

upon acceptance.911 
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Tables 916 

Table 1: Size structure gill net effort and fyking (mark-recapture) effort. SS refers to size 917 
structure assessment, percent SS refers to the proportion of population harvested during size 918 
structure assessment. 919 
 920 

Site SS 
Samples 

Percent 
SS 

SS 
CPUE 

Mark/Recapture 
days 

Total Marks 
Applied 

Cobb 104 0.72 7 20 24 
Mud 84 0.10 42 20 364 
Olive 160 0.09 53 21 307 
Ross 128 0.09 64 19 571 

Temple 165 0.10 41 25 409 
Dog 187 0.06 94 30 617 

Helen 41 0.07 41 12 172 
Margaret 171 0.08 43 23 414 
McNair 27 0.13 27 14 118 

  921 

  922 
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Table 2: Density metric estimates for each population. Nc = population size, ASM = 923 
allometrically scaled mass. 95% confidence intervals for ‘N’ are given in brackets. 924 

 925 
 926 

  927 

Site Nc Ha 

Mean 
Individual 
Mass (g) Fish/ha Kg/ha ASM/ha 

eDNA 
(copies/L) 

Cobb 145 (94, 237) 2.3 404.8 63 (41, 103) 25.7 (16.5, 41.7) 5663 592.2
Dog 3266 (2715, 4097) 11.5 184.8 284 (236, 356) 52.5 (43.6, 65.8) 13962 5131.1
Helen 557 (420, 755) 2.5 83.9 225 (168, 302) 18.8 (14.1, 25.3) 6187 2445.9
Margaret 2017 (1638, 2623) 18.0 112.3 112 (91, 146) 12.6 (10.2, 16.4) 3707 1240.4
McNair 201 (158, 276) 1.7 137.3 121 (93, 162)  16.6 (12.8, 22.3) 4736 3050.5
Mud 860 (733, 1040) 7.2 141.9 119 (102, 144) 17.0 (14.4, 20.5) 4587 1138.7
Olive 1877 (1459, 2628) 1.7 43.1 1131 (858, 1546) 48.8 (37.0, 66.6) 18601 7805.1
Ross 1392 (1211, 1635) 6.6 82.5 211 (183, 248) 17.4 (15.1, 20.4) 5559 917.4
Temple 1655 (1369, 2090) 3.3 51.1 509 (415, 633) 26.1 (21.2, 32.4) 9587 2076.5
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Table 3: Lake zone area and corresponding eDNA concentrations (minimum and maximum 928 

observed eDNA concentrations per lake zone included in parentheses). 929 

 930 

  931 

Site 
Pelagic 
area (ha) 

Littoral 
area (ha) 

Mean Pelagic eDNA 
(copies/L) 

Mean Littoral eDNA 
(Copies/L) 

Weighted Mean 
eDNA (Copies/L) 

Cobb 1.0 1.3 253.8 (39.6 - 557.9) 854.6 (35.9 - 2650.4) 592.2 
Dog 8.5 3.1 3447.1 (683.8 - 9148.1) 9796.7 (3705.6 - 16839.3) 5131.1 
Helen 1.2 1.3 1342.4 (854.3 - 1586.9) 3514.4 (2083.2 - 5060.5) 2445.9 
Margaret 14.4 3.6 791.9 (706.8 - 968.1) 3034.1 (814.3 – 5689.7) 1240.4 
McNair 0.7 1.0 2395.4 (2214.9 - 2495.9) 3505.0 (3181.1 - 4886.4) 3050.5 
Mud 4.7 2.6 399.3 (261.7 - 580.7) 1550.6 (628.3 - 3833.3) 797.5 
Olive 0.5 1.2 8084.6 (5115.9 - 11758.9) 7684.7 (1839.6 - 11829.1) 7805.1 
Ross 4.6 2.0 790.5 (439.7 - 1101.9) 1209.8 (3763 - 2576.0) 917.4 
Temple 1.6 1.7 1180.1 (854.3 - 1685.7) 1850.3 (1133.6 - 3887.0) 1530.6 
Hidden 11.8 2.6 342.0 (149.3 - 472.4) 2652.9 (1277.2 – 5758.1) 847.2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.01.18.908251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.908251
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 
 

Table 4: Model results evaluating the relationship between eDNA particle concentration and 932 
density (fish/ha), biomass (kg/ha), allometrically scaled mass (ASM/ha), and CPUE. 933 
 934 
Model F-value P-value Adj. R2 Log Likelihood AIC ΔAIC 
Density 12.37(1,7) 0.010 0.59 -77.78 161.6 5.7 
Biomass 14.76(1,7) 0.006 0.63 -77.26 160.5 4.6 
ASM 29.4(1,7) 0.001 0.78 -74.95 155.9 - 
CPUE 1.92(1,7) 0.208 0.10 -81.27 168.5 12.6 
 935 

  936 
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Figure Captions 937 
 938 
Figure 1: Conceptual example of allometric scaling in eDNA production rate with individual 939 
mass. Figure a) demonstrates absolute eDNA production rate as mass increases, figure b) 940 
demonstrates mass-specific eDNA production rate (i.e. eDNA production rate per (g) of mass). 941 
Solid lines reflect an allometric process that scales linearly with body mass (b = 1), dashed lines 942 
correspond to allometric scaling with a value of b < 1. 943 
 944 
Figure 2: Lake size structure distributions (g) obtained from standardized gill net sets for the nine 945 
study lakes. 946 
 947 
Figure 3: Correlation between weighted mean lake brook trout eDNA particle concentration and 948 
three metrics of abundance in the nine study lakes: (a) individual density (individuals/ha, R2 = 949 
0.59), (b) biomass density (kg/ha, R2 = 0.63), and (c) allometrically scaled mass (ASM/ha, R2 = 950 
0.78) (n = 9). O = Olive, D = Dog, C = Cobb, T = Temple, H = Helen, MD = Mud, MG = 951 
Margaret, MN = McNair, R = Ross. 952 
 953 
Figure 4: Predicting allometrically scaled mass (ASM/ha) for Hidden Lake based on eDNA 954 
particle concentration. Black dots represent values for the nine study lakes, gray circle represents 955 
the ASM/ha point estimate for Hidden Lake. Error bars represent 95% prediction intervals (n = 956 
9). 957 
 958 
Figure 5: AIC values for models correlating brook trout eDNA and allometrically scaled mass 959 
(ASM), utilizing allometric scaling coefficients ranging from 0.00 (corresponding to individual 960 
density) to 1.0 (corresponding to biomass density). Horizontal black bars and dotted lines denote 961 
range of models with ΔAIC < 2 relative to the ‘optimal’ scaling coefficient (0.72). 962 
 963 
Figure S1: Map of the nine study lakes located in Alberta and British Columbia, Canada. 964 
 965 
Figure S2: Timing of sampling activities in 2018. S.A. refers to size-structure assessment. 966 
 967 
Figure S3: Relationship between catch-per-unit-effort (CPUE) of a large and small gill net and 968 
individual density (fish/ha) for the nine study lakes (adjusted R2 < 0) (n = 9). 969 
 970 
Figure S4: Relationship between brook trout eDNA particle concentration and catch-per-unit-971 
effort (CPUE) of a large and small gill net for the nine study lakes (R2 = 0.10). 972 
 973 
Figure S5: AIC values for models correlating brook trout eDNA with littoral lake area halved 974 
and allometrically scaled mass (ASM), utilizing allometric scaling coefficients ranging from 0.00 975 
(corresponding to individual density) to 1.0 (corresponding to biomass density). Horizontal black 976 
bars and dotted lines denote range of models with ΔAIC < 2 relative to the ‘optimal’ scaling 977 
coefficient (0.72). 978 
 979 
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