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Abstract

Organism abundance is a critical parameter in ecology, but its estimation is often challenging.
Approaches utilizing eDNA to indirectly estimate abundance have recently generated substantial
interest. However, preliminary correlations observed between eDNA concentration and
abundance in nature are typically moderate in strength with significant unexplained variation.
Here we apply a novel approach to integrate allometric scaling coefficientsinto models of eDNA
concentration and organism abundance. We hypothesize that eDNA particle production scales
non-linearly with mass, with scaling coefficients < 1. Wild populations often exhibit substantial
variation in individual body size distributions; we therefore predict that the distribution of mass
across individual s within a population will influence population-level eDNA production rates. To
test our hypothesis, we collected standardized body size distribution and mark-recapture
abundance data using whole-lake experiments involving nine populations of brook trout. We
correlated eDNA concentration with three metrics of abundance: density (individuals’ha),
biomass (kg/ha), and allometrically scaled mass (ASM) (3 (individual mass””)/ha). Density and
biomass were both significantly positively correlated with eDNA concentration (adj. R* = 0.59
and 0.63, respectively), but ASM exhibited improved model fit (adj. RZ = 0.78). We also
demonstrate how estimates of ASM derived from eDNA samples in ‘unknown’ systems can be
converted to biomass or density estimates with additional size structure data. Future experiments
should empirically validate allometric scaling coefficients for eDNA production, particularly
where substantial intraspecific size distribution variation exists. Incorporating allometric scaling
may improve predictive models to the extent that eDNA concentration may become a reliable

indicator of abundance in nature.
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Introduction

Developing methods to estimate animal abundance in nature has attracted the attention of
researchers and managers alike for over a century (Schwarz & Seber, 1999). Abundanceisa
fundamental population parameter in ecology, conservation, and natural resource management
(Luikart, Ryman, Tallmon, Schwartz, & Allendorf, 2010), with direct impacts on ecological
interactions (Krebs, 2009), ecosystem functioning (Schaus et a., 2010), population persistence
and adaptability (Jamieson & Allendorf, 2012), as well as ecosystem services/resources (Immell
& Anthony, 2008; Schwarz & Seber, 1999). M ethodol ogies to estimate animal abundance
represent awell-developed field of empirical research in ecology that has progressed remarkably
(Schwarz & Seber, 1999; Seber, 1986). Y et despite this success, the estimation of abundance in
nature is often challenging; obtaining robust estimates in natural populations using traditional
methods can be time-consuming, costly, labor intensive, or even impossible to obtain for some
populations (Luikart et al., 2010; Ovenden et al., 2016; Y ates, Bernos, & Fraser, 2017).

The recent development of novel molecular tools has renewed interest in utilizing genetic
information to indirectly estimate abundance in difficult-to-sample natural populations
(Goldberg, Strickler, & Pilliod, 2015; Luikart et al., 2010). Molecular techniques that quantify
the concentration of environmental DNA (eDNA) particles represent a promising tool, with
recent studies demonstrating support for a correlation between eDNA concentration and
abundance (Pilliod, Goldberg, Arkle, & Waits, 2013; Takahara, Minamoto, Y amanaka, Doi, &
Kawabata, 2012; Thomsen et al., 2012). In addition to monitoring of species of conservation
concern, eDNA represents a potential indirect-but-accurate means to quantify abundance that has
broad implications for species harvesting, invasive species control, and monitoring of key

indicator species used to assess ecosystem health (Barnes & Turner, 2016).
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Laboratory studies have demonstrated a strong correlation between eDNA concentration
and abundance (Eichmiller, Miller, & Sorensen, 2016; Klymus, Richter, Chapman, & Paukert,
2015), exhibiting a mean correlation coefficient of 0.9 (R= 0.81) (Y ates, Fraser, & Derry,
2019). Studiesin nature, however, have generally found weaker correlations than laboratory
studies, with amean correlation coefficient of 0.71-0.75 (R*= 0.51-0.57) (Yates et al., 2019).
Although correlations remain moderately strong in nature, much of the variation in eDNA
particle concentration across environments often remains unexplained. As a result, the extent to
which eDNA could be used to reliably infer abundance in nature remains limited without
significant improvements in modelling or technology.

In nature, organismal abundance istypically quantified by evaluating individual density
(i.e. individuals/unit area) or biomass density (i.e. kg/unit area). While both metrics of abundance
appear to correlate equally well with species-specific eDNA particle concentration in the wild,
processes involved in the production of eDNA particles in natural environments are unlikely to
scale linearly with either biomass or density. Although eDNA production tends to increase with
individual mass (Maruyama, Nakamura, Y amanaka, Kondoh, & Minamoto, 2014), individuals
with alarge biomass often produce fewer eDNA particles than equivalent biomass of smaller
conspecifics (Maruyama et al., 2014; Mizumoto, Urabe, Kanbe, Fukushima, & Araki, 2018;
Takeuchi, lijima, Kakuzen, Watanab, & Y amada, 2019). As such, eDNA particle concentration
would be expected to vary, for example, between environments that contain equal densities of
individuals but with varying biomass. Similarly, environments with equal biomass but varying
densities would also be likely to vary in observed eDNA particle concentration. Wild populations
often exhibit substantial inter-population variation in the distribution of individual biomass

(Donald, Anderson, Mayhood, Anderson, & Correlations, 1980; Guernon, Y ates, Fraser, &
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88  Derry, 2018; Millien et al., 2006; Sebens, 1987), which may in turn scale to affect overall
89  population-level rates of eDNA production (Maruyama et al., 2014) and partially account for the
90 substantial unexplained variation observed between eDNA concentration and traditional metrics
91 of abundance (e.g. density and biomass) in nature (Y ates et al., 2019).
92 Here, we extend models of physiological allometric scaling to organismal eDNA particle
93  production to provide a framework through which differences in density, total biomass, and the
94  distribution of individual biomass can be integrated into models of eDNA production in natural
95 populations. Allometry refersto changes in organisms (e.g. physiological rates, morphology,
96 etc.) that occur in relation to proportional changesin body size (Gittleman, 2011). Excretory
97  processes (urine, fecal matter, etc.) and shedding (from scales, skin, mucous, etc.) are thought to
98 bethetwo major physiological processes that contribute to the production of eDNA particles (Jo,
99  Murakami, Yamamoto, Masuda, & Minamoto, 2019; Stewart, 2019). The metabolic theory of
100 ecology (MTE) provides arobust, empirically validated framework through which allometry in
101  metabolic processes (including excretion) can be modelled (Brown, Gillooly, Allen, Savage, &
102  West, 2004). The MTE posits that metabolic processes scale non-linearly with body size
103  according to the power function:
104 I =lo* M°
105 wherel = metabolic rate, 1= anormalization constant, M = organism body mass, and b= an
106  alometric scaling coefficient (Allegier, Wenger, Rosemond, Schindler, & Layman, 2015; Brown
107 etal., 2004; Vanni & Mclntyre, 2016). The value of b varies depending on the physiological
108  process; metabolic rates typically scale to the power of 0.75 (Brown et al., 2004; Isaac &
109 Carbone, 2010), whereas values for consumptive or excretory rates are often lower (Post,

110  Parkinson, & Johnston, 1999; Vanni & Mclntyre, 2016). Nevertheless, metabolic theory predicts
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111  that larger organisms tend to exhibit disproportionately lower rates (relative to their mass) for
112  metabolically linked processes such as excretion (Allen & Gillooly, 2009; Vanni & Mclntyre,
113  2016). While shedding from mucous, scales, or skin may also be linked to metabolic rates,

114  shedding rates are also likely a function of the surface area of an organism. In many aquatic

115  organisms (particularly fish) the allometric relationship between body mass and surface area
116  follows asimilar mathematical form as metabolic processes; salmonids, for example, exhibit
117  mass-scaling coefficients for surface area between 0.59 and 0.65 (Shea, Fryer, Pert, & Bricknell,
118  2006).

119 Metabolic rates, excretory rates, and surface area (via shedding) are likely to collectively
120 impact eDNA production, yet all follow a similar allometric form. As aresult, we hypothesize
121  that eDNA production can also be modelled as an approximate power function of individual

122  mass and an exponential scaling coefficient with avalue lessthan 1. That is, the rate at which
123  eDNA production increases with body mass will decline (Figure 1a) such that, on a per-gram
124  basis (e.g. mass-specific rate), large individuals will tend to excrete fewer eDNA particles

125 relative to smaller conspecifics (Figure 1b). This hypothesis has important consequences for
126  ecosystem-level processes; the utility of integrating allometric scaling in ecosystem-level models
127  of ecological stoichiometry (Allen & Gillooly, 2009), animal excretion (Vanni & Mclintyre,

128  2016), consumption (Post et al., 1999), and nutrient cycling (Schaus et al., 2010; Schindler &
129 Eby, 1997), for example, has long been acknowledged with broad empirical support. We

130 therefore further hypothesize that, when scaled to the level of an entire population, allometric
131 scalingin eDNA production will also have a substantial effect on overall population-level

132  production of eDNA. We consequently predict that the incorporation of mass scaling coefficients

133  to account for inter-population variation in density, biomass, and the distribution of biomass
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across individuals will improve modelling efforts linking eDNA particle concentration and
abundance across natural ecosystems.

To test our hypothesis, we collected standardized individual biomass data and used
common mark-recapture experiments to enumerate abundance in nine populations of brook trout
(Salvelinus fontinalis) in the Rocky Mountains of Canada while simultaneously collecting eDNA
samples in each lake. Study populations exhibited substantial variation in individual density (63 -
1177 individuals/ha), biomass density (12.6 - 52.4 kg/ha), and mean body size (43.0 - 405.9
g/individual). We applied these data to specifically test two key predictions. i) brook trout eDNA
particle concentration will correlate with traditional metrics of abundance (density and biomass)
across the nine study lakes; and i) incorporating allometric scaling coefficients to estimates of
brook trout abundance (e.g. Y (individual biomass’®)/ha, or “allometrically scaled mass’
(ASM)) will substantially improve models of abundance and eDNA particle concentration.

ASM estimates derived from known eDNA concentrationsin novel systems lacking
abundance data cannot be directly converted to traditional metrics of abundance (e.g. density and
biomass) because multiple density/biomass configurations (e.g. many small fish or a small
number of large fish) can produce equivalent ASM values. However, using areal-world
example, we also demonstrate how ASM estimates derived from known eDNA concentrations
for systems that lack abundance data on atarget species can be converted into traditional

estimates of abundance with additional size structure data.
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153 Materialsand Methods

154  Sudy species and system

155 Nine brook trout populationsintroduced in the early 20™ century to lakes located in

156 Kootenay, Banff, and Y oho national parks (Figure S1) were monitored to determine population
157 sizeand individual biomass distributions. Brook trout represent ideal populationsto study

158 alometry in eDNA production and itsimpact on the relationship between eDNA particle

159  concentration and abundance. Several studies have already demonstrated significant correlations
160  between abundance and eDNA concentration for brook trout in lotic systems (Baldigo, Sporn,
161 George, & Ball, 2017; Wilcox et a., 2016). Brook trout populations also often exhibit substantial
162 variation in size structure (Donald et a., 1980; Guernon et al., 2018), providing the opportunity
163  to study populations that represent a gradient of small-to-large bodied individuals. Additionally,
164  our study populations experience little recreational fishing pressure due to no-take policies

165 implemented within the National Parks.

166

167  Mark-recapture surveys and size structure estimates

168 Mark-recapture studies were conducted in 2018 between May 27" and June 30™, except
169  for Cobb lake where isolated marking events occurred until September 12" (Figure S2). Fish
170  were captured usng a combination of fyke nets, angling, and backpack eectrofishing (Table 1).
171  Large (1 m hoop diameter, 2 cm mesh) and small (0.7 m hoop diameter and 0.8 cm mesh) fyke
172  netswere distributed around the perimeter of lakes with the lead attached to shore and the end of
173  thetrap facing the center of the lake. Nets were checked daily to reduce stressto fish and

174  possible cannibalism. Angling was used to supplement fish capture efforts at sites where fyke

175  catchability was low (predominantly Cobb). Marks were also assigned to fish captured by
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electrofishing the shore and inlets/outlets of lakes with a backpack e ectrofisher (Smith-Root,
Vancouver, Washington, USA)

Captured fish were anesthetized using clove oil and measured for fork length (£ 1mm)
and mass (x 0.1g). Any unmarked fish were gastrically tagged with aBioMark HPT8 pre-loaded
Passive Integrated Transponder (PIT) tag (Boise, Idaho, USA). Only fish greater than or equal to
80 mm were tagged to reduce tagging mortality. The tag number of any recaptured fish was
recorded. All fish were processed in the shade with aerators to avoid unnecessary stress.
Recovered fish were released in the center of the |ake to standardize release location and
promote mixing (e.g. if released near shore, fish may have been recaptured in an adjacent net,
biasing mark recapture data). Marking ceased once recapture ratios approached twenty five
percent for several consecutive days in order to standardize marking efforts across
all populations and to ensure that enough fish were tagged to facilitate census size (N.) estimates
have confidence intervals within 10% to 25% of true values, following general methodologies
reviewed in (Krebs, 2009).

Size structure estimates aimed to obtain a representative snapshot of the size structure of
each population and were conducted between July 27" and September 1%, with the exception of
Cobb where size structure assessments continued to October 12" (Figure S2). Fyke-nets were
deployed in littoral zone areas extending to the centre of the lake and, as aresult, size-structure
assessments may be more biased towards small-medium bodied individuals (who prefer littoral
habitats) (Tiberti et al., 2017). To obtain arelatively unbiased estimate of population size
structure, fish were captured in large and small sinking mixed mesh gillnets with clear
monofilament distributed throughout the lake. Large mixed-mesh gillnets were 15.6 m long, 1.8

m deep and had an equal area of 64-51-89-38-76 mm mesh panels. Small mixed-mesh gillnets

10
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were 12.5 meterslong, 1.8 meters deep, and consisted of an equal area of 32-19-38-13-25 mm
mesh panels. Index nets are widely used in North America for size structure assessments (Bonar,
Hubert, & Willis, 2009; Hubert, Pope, & Dettmers, 2012; Johnson, 1983; Post et al., 1999; Ward,
Askey, Post, Varkey, & Mcallister, 2012) as these attempt to capture a representative size/age
structure of the population (Morgan, 2002). Nets were checked daily and moved to different
locations across the lake if reset in order to capture a representative sample of fishin each lake.
Sampling ceased when approximately five to ten percent of the population was captured, apart
from Cobb lake where si ze structure assessment captured approximately 71% of individuals
(Table 1). Captured fish were euthanized with clove oil, PIT tags were recorded, and length/mass

data were collected as described for the marking period.

Population size estimation

Schnabel population size estimates, which utilize sequential marking/recapture events,
were used to determine the number of fish in alake (Schnabel, 1938). All size structure
assessment removals were pooled together into one final sampling event for the population
estimates which controlled for the removal of marks at large. Note that population estimates only
account for fish greater than the minimum tagging size (80 mm fork Iength). All population
estimates were conducted in R (R Devel opment Core Team, 2017) with the mrClosed function
from the Fisheries Stock Assessment package FSA (Ogle, 2016). Confidence intervals for
Schnabel population estimates followed recommendations from (Seber, 2002) asimplemented in

the FSA package.

11
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Density calculation

To link eDNA particle concentration with fish abundance, three metrics of density were
calculated: (i) individual density (individualg/ha); (ii) biomass density (biomass/ha); (iii) and
allometrically scaled mass (ASM/ha). Individual density was estimated by dividing the
population size estimate by lake size (ha). Biomass density was calculated according to the

following formula:

N,
Yo7 MAsSsa; N
NSA
area (ha.)

biomass per ha =

Where Z?’j{‘ Massgs,; isthe sum of the masses captured in the index net during size structure

assessment, N, isthe number of fish captured in the index nets, N is the estimated population
size. This methodology assumes that the size structure assessment was representative of the
population.

ASM was calculated by replacing the mass measure with mass” " according to the

formula:

N
Sisiimassty) o
NSA
area (ha.)

ASM per ha =

This density metric was included to account for the relative decline in mass-specific eEDNA
production or excretion rates typically observed as individual organismal mass increases
(Maruyama et al., 2014; Takeuchi et a., 2019; Vanni & Mclntyre, 2016). Scaling coefficients
(the value of b) can vary substantially depending on the physiological process, taxonomy or
environment (Allegier et a., 2015; Glazier, 2005). In the absence of data on allometric scalingin

eDNA production, data on allometric scaling in metabolic or excretory rates for the same study

12
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species can represent useful starting points. Data on allometry in excretory rates were
unavailable for brook trout. However, in laboratory experiments (Hartman & Cox, 2008) found
that mass-specific metabolism scaled as a power law of mass with an exponent of -0.265. The
scaling exponent for absolute metabolism would therefore be 1 —0.265 = 0.735, which we used
asthevalue of b in our ASM model.

In difficult to sample populations, estimates of relative abundance are often obtained
using catch-per-unit-effort (CPUE) metrics. As aresult, most previous studies examining eDNA
particle concentration and abundance utilize similar metrics (Yates et al., 2019). To evaluate the
utility of CPUE asa ‘proxy’ metric of abundance in our study system, CPUE for each lake was

guantified as the mean catch per-unit effort of alarge and small index gillnet.

eDNA sample collection

eDNA samples were collected between June 30 and July 13", 2018. Sampling was
equidistantly distributed around each lake and included four littoral and four pelagic samples.
Littoral samples were collected approximately 1-3 m from shore at a depth of least 30 cm but 15
cm above the bottom to avoid the unintentional collection of sediments, which can contain
concentrated eDNA but also inhibit PCR reactions (Turner, Uy, & Everhart, 2015). Surface
pelagic samples were collected from each lake along a vertical line through its center (identified
as the midpoint of itslongest axis); samples were collected along this axis at equidistant intervals
within the first meter of depth (approximately 0.5m). eDNA for most fish species tendsto be
uniformly distributed throughout the water column of deep lakes (Hanfling et al., 2016) and
shallow ponds (Evans et al., 2017). A thermal profile of the lake (e.g. temperature reading every

0.5 musing aY Sl professional series sonde (model 10102030) (Y ellow Springs Inc., Ohio,

13
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USA)) at the deepest point was taken immediately after sample collection. To avoid between-
lake contamination all eDNA samples were collected either from an inflatable kayak that was
decontaminated 48h prior in a 2% regular strength household bleach solution for 15 minutes
(including paddle and life-jacket) or from a canoe assigned to sample a single specific lake.
Water samples were collected using sterile Whirl-Pak™ bags (Uline, Ontario, Canada).

Samples were immediately filtered on the lakeshore using two chlorophyll filtering
manifolds (Wildco, Florida, USA) bleached in a 30% household bleach solution for ten minutes
2-12h prior to collection. All samples were stored in the shade prior to filtration in plastic
washbasi ns bleached with a 30% solution for ten minutes, and all filtering was conducted in the
shade under atarp. Manifolds were transported in a Polar Bear™ backpack cooler (Polar Bear
Coolers, Georgia, USA) whose interior was wiped with a 30% household bleach solution for ten
minutes. Manifold components were stored after bleaching and transported individually in sealed
plastic zippered bagsto limit contamination. Pencils and markers were also wiped with a 30%
bleach solution.

One L of sample water from each site was filtered through a 0.7um-pore glass fibre filter
(GE Headlthcare Life Sciences, Ontario, Canada) using a vacuum hand pump (Soil Maisture,
Cdlifornia, USA); each vacuum pump was decontaminated between lakes by wiping with a 30%
household bleach solution and resting for ten minutes. All littoral samples were filtered on one
manifold and all pelagic samples were filtered on the other. Prior to filtering lake water samples,
1L of distilled water was filtered through each manifold as a negative control. Filters were
handled using two metal forceps bleached in a 30% solution for ten minutes and transported in
individual bags; one forceps was used for littoral samples and another forceps was used for

pelagic samples. After filtering, filters were folded and placed directly in asterile2 ml
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microcentrifuge tube filled with 700ul AL buffer (Qiagen, Maryland, USA) which was then
labelled and individually sealed in a plastic zippered bag and placed in a second cooler that was
decontaminated by wiping with a 30% household bleach solution and resting for ten minutes.
This cooler contained two frozen freezer-gel packs decontaminated in a 30% bleach solution for
ten minutes. If afilter became clogged (i.e. < 1 L of water was filtered) the final volume of water
filtered was recorded and the sample was stored in buffer. Filters were immediately transported
to, and stored in, a-20 [ freezer (wiped with 30% household bleach and soaked for ten minutes)
at Kootenay Crossing. Filters were stored on dry ice for transportation to Montreal (driven

approximately two and a half days) where they were stored in a-80 | freezer.

eDNA extraction and analysis

Each filter was extracted using a Qiagen DNeasy Blood and Tissue ™ kit and
Qiashdredder™ spin column following a modified extraction protocol (see Appendix S1 for
details). Final DNA product was eluted into 130 pl of AE buffer and stored in a clean -20 [J
freezer dedicated to the sole storage of eDNA samples. To avoid contamination between lakes,
extractions were conducted on batches from a single lake with a single extraction blank of 700
pL AL buffer included as an extraction control. Decontamination procedures were identical for
both manifolds, so only a single negative control was extracted per lake. All extractions were
conducted in an extraction room dedicated to the handling of sensitive eDNA samples. This
room receives weekly cleaning with a 10% household bleach solution and is free of PCR
products or high-concentration DNA. All individuals entering the extraction room were required
to wear nitrile gloves, hair nets, shoe covers, and dedicated, clean lab coats. All lab surfaces were

soaked with a 20% household bleach solution for ten minutes before and after extractions. PCR
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Clean Wipes™ (Thermo Scientific, Massachusetts, USA) were also used to decontaminate all
lab surfaces and pipettes prior to and after extracting or handling eDNA samples.

The concentration of brook trout eDNA was quantified using the TagMan minor groove
assay published in (Wilcox et al., 2013), which targets a region of the brook trout cytochrome b
mitochondrial gene. All sampleswere runintriplicate at a 20 pl final reaction volume on a
Stratagene M X 3000P thermal cycler using Environmental Master Mix 2.0 and 5 pl of template
DNA. Forward and reverse primers were included at afinal concentration of 900 nM, with the
probe at afinal concentration of 250 nM. Each replicate was spiked with an internal positive
control to test for inhibition; any replicate that exhibited inhibition (Ct > 1 in theinternal positive
control) was reanalyzed with diluted template DNA at 60% concentration (3 pl template + 2 pl
of ultrapure water); this was sufficient to relieve inhibition in all cases. Standard curve template
DNA was composed of a synthetic Gblock™ gene fragment (IDT, lowa, USA) of the targeted
sequence. A triplicate no template control and triplicate five-point standard curve (1250
copies/ul, 250 copies/pl, 50 copies/pl, 5 copies/pl, 2 copies/ul template concentration) were
included on each 96-well plate. All gPCR reaction reagents were aliquoted into single-use
volumes adequate for a single plate and reactions were prepared in the dedicated eDNA room,
with the exception of the standard curve replicates due to the presence of high concentration
synthetic DNA fragments. Reactions were cycled with aninitial hold at 95 1 for ten minutes
followed by 45 cycles of 30 secondsat 95 [ and 1 min a 60 [1. eDNA particle concentration at
each site was determined by averaging site-specific replicates. Final mean copy number values
were converted (based on total volume of water filtered per sample) to total eEDNA particle

concentration per 1 L of sampled water (copies/L).
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Data Analysis

Mean eDNA particle concentration (copies/L) for each lake was calculated by first
averaging eDNA particle concentrations of the four littoral and four pelagic samplesto obtain
mean littoral eDNA concentration and mean pelagic eDNA concentration. A weighted-mean
eDNA concentration for each lake was calculated by weighing the littoral and pelagic eDNA
concentrations based on the fraction of total |ake area each zone represented. Our study lakes
varied substantially in size (1.7 to 18.5 ha); total pelagic and littoral areas were calculated for
each lake using polygons on Google Earth. In the absence of detailed bathymetry data, the total
area of thelittoral zone (where sunlight can reach the lake bottom to support submerged
macrophyte and benthic primary production (Kalff, 2001)) was calculated by including all lake
surface area up to 20m from the shore, with the remaining area assigned to the pelagic zone. A
distance of 20 m was chosen because, based on personal observation, we estimate that the littoral
zone of the lakes extended an average of approximately 10-15 m from the shore. The
concentration of eDNA near points of high concentration (i.e. high fish density or areas where
fish feed) decreases rapidly, with concentrations dropping rapidly after 5-10 m (Ghosal,
Eichmiller, Witthuhn, & Sorensen, 2018). A littoral zone of 20 m reflects these processes (10-15
m littoral zone + 5-10 m for diffusion). Given these assumptions, the area of the pelagic zone
expressed as afraction of the total area of alake increases with lake size. Therelative
contribution of the littoral and pelagic zones to the overall mean concentration of eDNA per lake
should therefore be increasingly weighted towards the pelagic eDNA concentration as lake
surface areaincreases.

Mean lake eDNA particle concentration (copies/L) was modelled separately as a function

of the three metrics of brook trout density calculated above: individual density (individuals/ha);
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biomass density (kg/ha); and allometrically scaled mass (ASM) (3 (individual mass>®)/ha).
eDNA particle concentration was included as a dependent variable in alinear regression and a
separate model for each abundance metric was fitted to the observed data. Wald F—tests were
used to evaluate the significance of fixed-effect terms, with model log-likelihood values were
values used to compare model fit using the AIC criterion (Akaike, 1974) asin (Lacoursiere-
Roussel, C6té, Leclerc, Bernatchez, & Cadotte, 2016), assuming that models with AAIC > 2
exhibit significantly reduced explanatory power (Burnham & Anderson, 2002). All analyses
were conducted in R (v.3.3.3) (R Development Core Team, 2017). To assess the performance of
CPUE asa‘proxy’ metric of abundance, we also examined the relationship between density and
CPUE, aswell as eDNA particle concentration and CPUE, using linear regression. To assess the
sengitivity of the final resultsto the relative size of the area of the littoral zone, we ran an

additional set of moddls in which we halved the estimated littoral area of each lake.

Estimating density and biomass from predicted allometrically scaled mass: a case study for
population management

Predicting abundance in unknown systems from known eDNA particle concentrations
would require an inversion of the modelling relationship described above: abundance would be
modelled as a function of eDNA particle concentration. Predicted estimates of ASM obtained
from eDNA samples for systems lacking abundance data cannot be directly converted to
traditional metrics of abundance (e.g. individual density or biomass density) because multiple
density/biomass configurations (e.g. many small fish or asmall number of large fish) can

produce equivalent ASM values. However, with additional individual mass distribution data
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375 from standardized size structure data any predicted ASM point-estimates can be converted to
376 traditional metrics. Size structure data could be exponentiated to the power of b (the allometric
377  scaling coefficient) and the resulting scaled mass values nonparametrically bootstrapped until the
378  cumulative sum of the bootstrapped values surpass the predicted ASM. Individual density could
379  then be estimated by totalling the number of bootstrap “samples’ required to surpass the

380 predicted ASM; biomass density could then be estimated by multiplying the predicted density
381 value by the untransformed mean of the size distribution.

382 As a case study, this technique was applied to data collected from Hidden Lake (Banff,
383  Alberta, Canada). The brook trout population of Hidden Lake was targeted as part of rotenone-
384  based removal program by Parks Canada. eDNA samples from Hidden Lake were collected in
385  July 2018 and extracted/analyzed using the same methodol ogy as described above. The

386 estimated “ASM/unit area” of the lake (including 95% prediction intervals) was calculated from
387 thelinear relationship obtained from our nine study lakes. Unfortunately, standardized size

388  structure data were unavailable; rotenone removal efforts began in August 2018 and no brook
389 trout remain in the system. However, prior to the use of rotenone mechanical gill netting efforts
390 were employed during brook trout removal efforts between 2011 and August 2017 (Stitt, pers.
391 comm.). By 2016 netting efforts had removed most large fish from the population, and fish older
392  than age 0+ were between 90-140mm in length (Sullivan, 2017), although it should be noted that
393 standardized size distribution data was unavailable. Of our nine study lakes, fish from Olive lake
394  exhibited the smallest body mass, so size structure data from this lake was utilized as a “ proxy”
395 to calculate an approximate pre-rotenone individual density and biomass density of brook trout

396 inhabiting Hidden Lake in 2018. Bootstrap simulations to quantify individual density and
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biomass density utilizing the Olive size distribution and predicted ASM of Hidden Lake were run

for 1000 iterations. All analyses were performed in R (R Development Core Team, 2017).

Predicting allometric scaling coefficient for eDNA production in brook trout

Allometric scaling coefficients are likely to fall between avalue of 0 and 1; notably, (3.
individual mass®®)/hais equivalent to individual density (fish/ha) and (Yindividual mass*®)/hais
equivalent to biomass density (kg/ha). Although we employed an allometric scaling coefficient
of 0.73 in our model (based on metabolic data from brook trout), the “true”’ allometric scaling
coefficient for eDNA production in our system was unknown. We used our data to predict the
optimal value for the scaling coefficient given the observed eDNA particle concentration and
biomass distribution data observed across our study lakes. To achieve this, we iteratively
generated ASM values from our data using scaling coefficients ranging from 0 to 1 (increasing
by intervals of 0.01) and sequentially modelled eDNA particle concentration data as a function
of each ASM value. AIC values for each model were then used to evaluate model fit. If eDNA
production scales allometrically according to a power function, we predict that the AIC values
across models with scaling coefficients between 0 and 1 will exhibit an approximately upward
parabolic distribution with a minimum best-fit value that corresponds to an “optimal” alometric
scaling coefficient. According to the general rule described in (Burnham & Anderson, 2002),
models within 2 AAIC also exhibit substantial support; we predict that the ‘true’ allometric
scaling coefficient for brook trout eDNA production in nature will fall between the range of
scaling coefficients that produce models within 2 AIC of the ‘best-fit’ scaling coefficient,
although future experiments will be necessary to validate our predictions. To assess the

sengitivity of thisanalysis to the estimated size of the littoral zone, this analysis was repeated for
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419 modelsin which we halved the estimated littoral area of each lake. All analyses were performed

420 inR (R Development Core Team, 2017).

421
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Results
Population size estimates and density

Population size estimates ranged from 145 to 3266 individuals, individual density ranged
from 63 to 1131 fish/ha, biomass density ranged from 12.6 to 52.5 kg/ha, and ASM ranged from
3707 to 18600 ASM/ha (Table 2, see Figure 2 for population size structure). Estimates of catch-
per-unit-effort (CPUE) did not exhibit a significant correlation with individual density (F17 =

0.53, p=0.491, Figure S3).

eDNA concentrations and correlations with density metrics among lakes

Brook trout eDNA was successfully amplified from al samplesin all lakes. No
amplification was observed in any negative controls or extraction blanks. The R? values for
standard curves ranged from 0.984 to 0.995, with an estimated efficiency ranging from 84.2 to
95.1%. Littoral and pelagic eDNA concentrations varied substantially by lake (Table 3). After
weighing for lake zone area, mean eDNA concentrations ranged from 592 copies/L in Cobb to
7805 copies/L in Olive.

Linear models for each density metric demonstrated positive and significant correlations
with eDNA particle concentration (Table 4, Figure 3). Individual density, biomass density, and
ASM accounted for 59%, 63%, and 78% of the variation in observed eDNA particle
concentration (adjusted R?), respectively. AIC valuesindicated that individua density and
biomass density metrics provided roughly equivalent mode fit; however, the ASM metric
provided substantially improved modd fit relative to individual density and biomass density

(AAIC of 5.7 and 4.6, respectively). Trends did not substantially change when littoral area per
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lake was halved (Table S1). CPUE did not exhibit a significant correlation with eDNA particle

concentration (Table 4, Figure $4).

Estimating density and biomass from predicted allometrically scaled mass: a case study for
population management

The eDNA concentration of Hidden Lake littoral and pelagic eDNA samples averaged
2653 and 342 copied/L, respectively, with aweighted mean average eDNA particle concentration
of 847 copied/L (Table 3). Based on alinear model using data from the nine study lakes, Hidden
Lake had an estimated ASM/ha of 4279.6 (Figure 4). After 1000 iterations, the mean number of
individual mass values sampled from the Olive size distribution was 278.4, which represents the
individual density (ind/ha) point-estimate for Hidden Lake; this corresponds to atotal population
size estimate of 3286 individuals. Predicted total biomass was 143.0 kg, with a biomass density
of 12.1 kg/ha. Notably, point estimates of biomass density rank Hidden Lake lower than al nine
study lakes, likely as a result of previous fish removal efforts between 2011 and 2017 in Hidden
Lake. Upper 95% prediction intervals for population size, total biomass, density, and biomass
density were 7629 individuals, 332.0 kg, 646.5 fish/ha, and 28.1 kg/ha, respectively. Dueto the
overall low concentration of eDNA present in the lake, lower 95% prediction intervals

overlapped with zero for all four parameters.

Predicting the allometric scaling coefficient for eDNA production in brook trout

Based on model AIC values, a scaling coefficient of 0.72 best explained patterns of
eDNA particle concentration across the nine study lakes;, models with scaling coefficients
between 0.47 and 0.89 generated AAIC values < 2 (Figure 5). The ‘optimal’ scaling coefficient

appeared to be dightly sensitive to the fraction of the area of each lake assigned to the littoral
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467  zone: when littoral zone area within each lake was halved, a scaling coefficient of 0.63 best
468  explained patterns of eDNA particle concentration (Figure S5). However, credible intervals
469  between the two models substantially overlapped; models with scaling coefficients between 0.28

470 and 0.84 generated AAIC values < 2 when lake littoral area was halved.
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Discussion

Our study provides strong support for the hypothesis that eDNA production scales non-
linearly with mass according to a power function. Incorporating allometric scaling coefficients to
account for the distribution of biomass across individuals substantially improved predictive
models, indicating that the distribution of biomass across individuals within a population may
have an important effect when scaling individual eDNA production rates to the population-level.
Incorporating metabolic scaling coefficients for mass into models of eDNA particle
concentration and organismal abundance may therefore be particularly important in species that
exhibit substantial inter-population variation in size distributions. Our findings contribute to a
broader understanding of the ecology of eDNA production and have important implications for
many eDNA applications. While the focus of this study was on the relationship between eDNA
particle concentration and abundance using qPCR techniques, allometry in species with variable
size structure could, for example, partially account for the variation observed in read numbers
across environments in metabarcoding studies.

This study also reaffirms previous findings that metrics of population abundance
correlate with species-specific eEDNA particle concentration in natural environments (Klobucar,
Rodgers, & Budy, 2017; Nevers et al., 2018; Pilliod et al., 2013; Schmelzle & Kinziger, 2016;
Thomsen et al., 2012). Previous research has demonstrated a moderate correlation between
density and/or biomass and eDNA particle concentration in lotic systems for brook trout
(Baldigo et al., 2017; Wilcox et al., 2016). We found similar relationships within lentic systems,
but also demonstrate that they can be considerably improved by integrating allometric scaling
coefficientsinto estimates of organismal abundance. Notably, in eight of the nine study lakes the

mean concentration of eDNA observed in lentic zone samples was higher compared to pelagic
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zone samples. eDNA particle concentrations generally show a strong correlation with the spatial
digtribution of fish within alake (Ghosal et al., 2018; Hanfling et al., 2016), and our findings
reflect well documented ecological preferences of brook trout, which tend to favor littoral zones
(Magnan & Fitzgerald, 1982; Tiberti et al., 2017). The only lake where this trend was not
observed was Olive, where pelagic and littoral zone eDNA concentrations were similar; thislake
was also the smallest (and shallowest, at 3.5 m maximum depth) lake with the highest individual
density of brook trout, indicating that fish are likely relatively evenly distributed across the lake.
The correlation coefficients we observed between eDNA concentration and all three
metrics of abundance were greater than most previous studies conducted in nature (Yates et al.,
2019). Therelatively strong correlations we observed between our abundance metrics and eDNA
concentration could also be due to the methodology with which we assessed population size. Our
estimates of population size were obtained using mark-recapture studies and unbiased measures
of size-structuring, which provided precise and standardized estimates of individual density,
biomass density, and ASM. However, such estimates are rare in published eDNA/abundance
studies; conducting mark-recapture studies to estimate population size istime consuming and
requires a substantial commitment of labour and resources. To date only a handful of eDNA
studies in nature have specifically enumerated population size (Klobucar et al., 2017; Levi et al.,
2019; Tillotson et al., 2018) rather than proxies for abundance, such as CPUE (Y ateset al.,
2019). CPUE may be appropriate if it exhibits a strong correlation with abundance, but in some
systems CPUE can perform poorly as a proxy for abundance (Hubert et al., 2012; Rose & Kulka,
1999). In our study systems CPUE did not exhibit a significant correlation with individual
density and, as aresult, eEDNA concentration. Some of the substantial unexplained variation in

nature between eDNA concentration and abundance observed in other systems could result from
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reliance on CPUE as a‘proxy’ for abundance, although we acknowledge that for many speciesiit
may often be impractical or impossible to directly estimate population size.

It isimportant to note, however, that our abundance estimates may miss asmall fraction
of the adult population and do not account for juvenile (age 0+) abundance because fish were not
included in the mark-recapture study until they were at least 80mm (to avoid excessive tagging
mortality). Population size estimates therefore represent underestimates of true population census
size. Discrepancies in juvenile abundance/density across lakes could account for some of the
remaining unexplained variation present in our model, particularly since smaller fish would be
expected to exhibit higher mass-specific eDNA production rates. Similarly, temperatureis
known to have a strong effect on metabolic rates (Brown et al., 2004) and eDNA production (Jo
et a., 2019). Notably, bioenergetics models for a closely related species (bull trout, Salvelinus
Confluentus) demonstrate that both the value of the normalization constant (1) as well as the
allometric scaling coefficient (b) can change with temperature (Mesa, Weiland, Christiansen,
Sauter, & Beauchamp, 2013). Temple lake exhibited a substantially lower concentration of
eDNA than expected from its ASM estimate; at 3.5 1, Temple lake was also substantially colder
than the other eight study lakes during eDNA sampling (8.9-17.2 ). Although we lacked the
replication to do so, integrating other important environmental variables (e.g. temperature, pH,
etc.) into models of eEDNA particle concentration across environments could further improve
predictive models.

Despite these caveats, we demonstrate that it is possible to predict estimates of population
abundance with eDNA samples and size structure datain similar ecosystems that lack abundance
data. We predicted traditional metrics of abundance for Hidden Lake based on a hypothetical

assumption that size structure in Hidden Lake closely resembled size structure in another study
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lake (Olive lake). Although predicted density metrics for Hidden Lake based on an ‘proxy’ Olive
Lake size structure distribution were low and exhibited wide upper 95% prediction intervals,
they still provided enough information to facilitate relative comparisons to the nine study lakes,
we can predict with some certainty, for example, that if size structure in Hidden Lake was similar
to that found in Olive, it would have had alower biomass density relative to two of the nine
study lakes (Dog and Olive). Furthermore, 95% prediction intervals represent arelatively
stringent criteria of certainty; 75% or 80% prediction intervals might still represent useful
information to help guide managerial or research decisions, although that would be up to
practitioner discretion.

Most significantly, our results highlight the need for further empirical studies exploring
and validating allometric scaling via power functions as a framework for modelling eDNA
particle production rates. While we demonstrate that incorporating allometric scaling coefficients
substantially improves models predicting abundance and eDNA concentration at the population
level, we have not directly quantified how eDNA production scales allometrically in brook trout
at the level of individual organisms. Nevertheless, recent experiments demonstrate that mass-
specific eDNA production rates tend to decline as individual mass increases (Maruyamaet al.,
2014; Mizumoto et al., 2018; Takeuchi et al., 2019). We found that a scaling coefficient of 0.72
best described patterns of eDNA concentration for our study species across our nine study lakes;
thisvalueis closely aligned with the metabolic scaling coefficient for brook trout from (Hartman
& Cox, 2008). Scaling coefficients between 0.51 and 0.87 produced models with AAIC values <
2; we therefore predict that the ‘true’ allometric scaling coefficient for eDNA production in
brook trout will likely fall within thisinterval, athough we do note that this point estimate was

dightly sensitive to the area of each lake assigned to the littoral zone. If the area assigned to the
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563 littoral zone of each lakeis halved, the value of the ‘optimal’ scaling coefficient is reduced to
564 0.63 (models with AAIC values < 2 range from 0.28-0.84) which is closer to theoretically

565  expected valuesfor excretory/consumptive/shedding allometric scaling coefficients (although
566 notethat credibleintervals for both values substantially overlap). In future studies, detailed

567 bathymetry data would be useful to disentangle these issues. Nevertheless, credible intervals for
568  both models overlapped substantially, indicating that allometric scaling substantially improved
569 explanatory models. To validate our findings, test our subsequent predictions, and disentangle
570 what processes are likely to most strongly affect the value of eDNA scaling coefficients (e.g.
571  metabolism vs excretion/shedding), further experiments are necessary to quantify allometric
572  scaling of eDNA production at the individual level in brook trout.

573 As awell-supported general theory in ecology, experimental designs developed to test
574 MTE hypotheses (e.g. (Allegier et a., 2015; Hartman & Cox, 2008)) can inform future

575  experiments examining the effect of allometry on eDNA production rates. Notably, previous
576  experimentsinvestigating allometric scaling in excretion or metabolic rates quantified rates at the
577 level of individual organisms (Allegier et a., 2015; Hartman & Cox, 2008; Vanni & Mclntyre,
578 2016). Previous laboratory experiments quantifying the effect of biomass on eDNA

579  production/shedding rates typically pooled organismsto create different biomass treatments
580 (Doi, Uchii, Takahara, & Matsuhashi, 2015; Klymus et a., 2015; Lacoursiere-Roussel, Rosabal,
581 & Bernatchez, 2016; Mizumoto et al., 2018; Takahara et a., 2012). At best, such experiments
582  pool organisms from similar size-classes, in which case eDNA production/abundance

583 relationships across ‘treatments only reflect changes in abundance within a specific age- or size-
584 class. Such experimental designs are likely to produce a strong relationship between eDNA

585  concentration and biomass, as has been found in a meta-analytic review (Yates et al., 2019).
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While such studies were necessary to empirically quantify a preliminary correlation between
eDNA particle concentration and metrics of abundance, they might obscure critical differencesin
mass-specific eDNA production rates across size classes that could have important consequences
for population-level rates. Natural populations often exhibit substantial variation in the
digtribution of body size across individuals; the failure to account for allometric scaling in the
relationship between biomass and eDNA production might partialy explain the failureto

trand ate the strong relationships observed in laboratory experiments to nature (Sebens, 1987).
Notably, our eDNA/abundance models utilizing ASM exhibited correlation coefficients
comparable to those typically observed in laboratory environments (Y ates et al., 2019).

It may be possible to investigate allometry in eDNA production by pooling individuals
that are the same size within replicates. However, we would advise against this because
behavioural interactions between fish at high density in confined spaces may impact eDNA
production; some studies have demonstrated that eDNA production per fish increases at high
densities (Id et al., 2019). Brook trout, for example, are known to exhibit aggressive behaviour
towards conspecifics (McNicol, Scherer, & Murkin, 1985), which could increase eDNA particle
concentration at high densities due to increased activity and/or injuries inflicted upon each other.
If size classes exhibit different behaviour at high densties, this could further affect estimates of
allometric scaling. Future studies examining allometric scaling in eDNA production should
therefore incorporate individuals from a gradient of age/si ze classes and quantify organismal
eDNA production at the individual-level, asin (Takeuchi et al., 2019). Notably, the two studies
to examine eDNA production rates at an individual level across age/size classes found that
larger, older individuals exhibited lower mass-specific eDNA production rates (Maruyama et al.,

2014; Takeuchi et al., 2019). Thereisaso a critical need to conduct such experimentsin situ at
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field study sites on wild organisms, asin (Pilliod, Goldberg, Arkle, & Waits, 2014). Laboratory
experiments, while important from a validation perspective, may not reflect natural excretion
processes because study organisms are housed in artificial conditions, fed artificial diets, and are
often subject to fasting regimes (Vanni & Mclntyre, 2016). Furthermore, size-scaling
coefficients for metabolic processes such as nutrient excretion exhibit substantial interspecific
variation and can even include values greater than 1 (Allegier et al., 2015; Vanni & Mclntyre,
2016). Allometric scaling in eDNA production may therefore exhibit similar variability across
species and should be investigated on a case-by-case basis.

Finally, our experiment investigated intraspecific allometry in eDNA production.
Although there is substantial taxonomic variation, multiple studies have demonstrated that it is
possible to extend allometric power-scaling across taxonomic groups for metabolic and/or
excretory processes (Allegier et a., 2015; Vanni & Mclntyre, 2016). M etabarcoding studies
exhibit aweak but positive relationship between read count and organism biomass (Lamb et al.,
2019). If allometric scaling in eDNA production exhibits a similar relationship across taxonomic
groups, the relationship between read count and organism abundance could be strengthened by

integrating allometry.

Conclusions

Our results provide evidence supporting the hypothesis that eDNA production scales
allometrically with organism mass We have demonstrated that the incorporation of additional
(but straightforward to collect) size structure data to integrate key allometric scaling predications
resulted in substantial improvement in models of eDNA concentration across environments. The

bulk of experiments examining eDNA in nature have typically focused on presence/absence
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applications for species detection utilizing metabarcoding technologies (Goldberg et a., 2015),
in which the detection of rare DNA fragments s often prioritized. As aresult, substantial
consideration in the literature has been given to factors that affect eDNA degradation and
dispersion (e.g. (Barnes et al., 2014; Goldberg, Strickler, & Fremier, 2018; Harrison, Sunday, &
Rogers, 2019; Strickler, Fremier, & Goldberg, 2015)), while relatively less attention has focused
on the ecology of eDNA production. Our study demonstrates that the ecology of eDNA
production may represent an understudied yet critically important subject, particularly when
attempting to infer abundance from eDNA concentrations in nature. Future studies on
eDNA/abundance relationships in nature should consider incorporating allometry, particularly
when study species exhibit substantial inter-population variation in size distributions. However,
there is also a need to validate this hypothesis in controlled experimental contexts at the level of
individual organisms. As awell-devel oped ecological theory validated by numerous empirical
studies (Vanni & Mcintyre, 2016), the literature on the M TE represents a robust methodological
foundation that future studies can utilize to explore relationships between a variety of
environmental and ecological factors that might influence organismal production of eDNA. Such
studies could further improve predictive models estimating abundance from eDNA particle
concentration to the extent that, in some circumstances, species-specific eDNA particle
concentration might be areliable ecological indicator of abundance.

Predictive models would need to be calibrated on a system- and species-specific basis.
The extent to which models for a particular species can be extended to different ecosystems or
geographical regions also remains unknown. Future studies employing the methodol ogy
developed herein will likely need to construct models from population size/abundance estimates

combined with standardized size distribution data on an individual species/system basis. These
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studies will also need to collect size distribution data, in addition to eDNA samples, to predict
the density or biomass of organismsin similar ecosystems that lack abundance data. Direct
estimates of allometric scaling coefficients for study species would also likely improve
predictive models, although metabolic or excretory allometric scaling coefficients estimated in
other empirical studies on the same (or closely related) species may represent useful starting
points. In the absence of any other empirical data, the general scaling coefficient predicted by the
MTE (0.75) may also suffice.

Depending on the species studied, obtaining robust population size estimates and
individual size distribution datato calibrate initial models can often be difficult, labour intensive,
and come with a substantial monetary cost. However, the benefits might be substantial — the idea
that future researchers or managers might be able to obtain reasonable estimates of abundance
from eight water samples and a small number of gill net setsis, from an ecologist’s perspective,

exciting.
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909 Data Accessibility Statement:
910 eDNA particle concentration data for each lake will be deposited in the Dryad Digital Repository

911  upon acceptance.
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916 Tables

917 Tablel: Size structure gill net effort and fyking (mark-recapture) effort. SSrefersto size
918  structure assessment, percent SS refers to the proportion of population harvested during size
919  structure assessment.

920
Site SS Percent SS  Mark/Recapture Total Marks
Samples SS CPUE days Applied
Cobb 104 0.72 7 20 24
Mud 84 0.10 42 20 364
Olive 160 0.09 53 21 307
Ross 128 0.09 64 19 571
Temple 165 0.10 41 25 409
Dog 187 0.06 9 30 617
Helen 41 0.07 41 12 172
Margaret 171 0.08 43 23 414
McNair 27 0.13 27 14 118
921
922
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923 Table 2: Density metric estimates for each population. N. = population size, ASM =
924  alometrically scaled mass. 95% confidence intervals for ‘N’ are given in brackets.
Mean eDNA
Individual (copies/L)
Site N Ha Mass(Q) Fish/ha Kg/ha ASM/ha
Cobb 145 (94,237) 23 404.8 63 (41, 103) 25.7 (16.5,41.7) 5663 592.2
Dog 3266 (2715, 4097) 115 184.8 284 (236, 356) 52.5(43.6, 65.8) 13962 5131.1
Helen 557 (420, 755) 25 83.9 225 (168, 302) 18.8(14.1, 25.3) 6187 2445.¢
Margaret 2017 (1638, 2623) 18.0 112.3 112 (91, 146) 12.6(10.2, 16.4) 3707 1240.
McNair 201 (158, 276) 1.7 137.3 121 (93,162) 16.6(12.8,22.3) 4736 3050.¢
Mud 860 (733,1040) 7.2 141.9 119 (102, 144) 17.0(14.4,20.5) 4587 1138.7
Olive 1877 (1459, 2628) 1.7 43.1 1131 (858, 1546) 48.8(37.0, 66.6) 18601 7805.]
Ross 1392 (1211, 1635) 6.6 82.5 211 (183,248) 17.4(15.1,20.4) 5559 917.
Temple 1655 (1369, 2090) 3.3 51.1 509 (415, 633) 26.1(21.2, 32.4) 9587 2076.
925
926
927
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928 Table 3: Lake zone area and corresponding eDNA concentrations (minimum and maximum

Pelagic  Littord Mean Pelagic eDNA Mean Littoral eDNA Weighted Mean

Site area(ha) area(ha) (copies/L) (Copied/L) eDNA (Copied/L)

Cobb 1.0 1.3 253.8 (39.6 - 557.9) 854.6 (35.9 - 2650.4) 592.2
Dog 8.5 3.1 3447.1(683.8-9148.1)  9796.7 (3705.6 - 16839.3) 5131.1
Helen 1.2 1.3 1342.4 (854.3-1586.9)  3514.4 (2083.2 - 5060.5) 2445.9
Margaret 14.4 3.6 791.9 (706.8 - 968.1) 3034.1 (814.3 —5689.7) 1240.4
McNair 0.7 1.0 23954 (22149-24959)  3505.0 (3181.1 - 4886.4) 3050.5
Mud 47 26 399.3 (261.7 - 580.7) 1550.6 (628.3 - 3833.3) 7975
Olive 0.5 1.2 8084.6 (5115.9- 11758.9)  7684.7 (1839.6 - 11829.1) 7805.1
Ross 4.6 2.0 790.5 (439.7 - 1101.9) 1209.8 (3763 - 2576.0) 917.4
Temple 1.6 1.7 1180.1 (854.3-1685.7)  1850.3 (1133.6 - 3887.0) 1530.6
Hidden 11.8 2.6 342.0 (149.3-472.4)  2652.9 (1277.2 —5758.1) 847.2

929  observed eDNA concentrations per lake zone included in parentheses).

930

931
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Table 4: Modél results evaluating the relationship between eDNA particle concentration and
density (fish/ha), biomass (kg/ha), allometrically scaled mass (ASM/ha), and CPUE.

Modedl F-value

P-value Adj.R°

Log Likelihood

Density 12.37(1‘7)
Biomass 14.76(17
ASM 294417
CPUE 1.9217)

0.010
0.006
0.001
0.208

0.59
0.63
0.78
0.10

-77.78
-71.26
-74.95
-81.27

AIC  AAIC
161.6 5.7
160.5 4.6
155.9 -
1685 12.6
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Figure Captions

Figure 1: Conceptual example of allometric scaling in eDNA production rate with individual
mass. Figure a) demonstrates absolute eDNA production rate as mass increases, figure b)
demonstrates mass-specific eDNA production rate (i.e. eEDNA production rate per (g) of mass).
Solid lines reflect an allometric process that scales linearly with body mass (b = 1), dashed lines
correspond to allometric scaling with avalue of b < 1.

Figure 2: Lake size structure distributions (g) obtained from standardized gill net sets for the nine
study lakes.

Figure 3: Correlation between weighted mean lake brook trout eDNA particle concentration and
three metrics of abundance in the nine study lakes: (a) individual density (individuals’ha, R? =
0.59), (b) biomass density (kg/ha, R? = 0.63), and (c) allometrically scaled mass (ASM/ha, R? =
0.78) (n=9). O=Olive, D =Dog, C = Caobb, T = Temple, H = Helen, MD = Mud, MG =
Margaret, MN = McNair, R = Ross.

Figure 4: Predicting allometrically scaled mass (ASM/ha) for Hidden Lake based on eDNA
particle concentration. Black dots represent values for the nine study lakes, gray circle represents
the ASM/ha point estimate for Hidden Lake. Error bars represent 95% prediction intervals (n =
9).

Figure 5: AIC values for models correlating brook trout eDNA and allometrically scaled mass
(ASM), utilizing allometric scaling coefficients ranging from 0.00 (corresponding to individual
density) to 1.0 (corresponding to biomass density). Horizontal black bars and dotted lines denote
range of models with AAIC < 2 relative to the ‘optimal’ scaling coefficient (0.72).

Figure S1: Map of the nine study lakes located in Alberta and British Columbia, Canada.
Figure S2: Timing of sampling activitiesin 2018. S.A. refersto size-structure assessment.

Figure S3: Relationship between catch-per-unit-effort (CPUE) of alarge and small gill net and
individual density (fish/ha) for the nine study lakes (adjusted R? < 0) (n = 9).

Figure $4: Relationship between brook trout eDNA particle concentration and catch-per-unit-
effort (CPUE) of alarge and small gill net for the nine study lakes (R?= 0.10).

Figure S5: AIC values for models correlating brook trout eDNA with littoral lake area halved

and allometrically scaled mass (ASM), utilizing allometric scaling coefficients ranging from 0.00
(corresponding to individual density) to 1.0 (corresponding to biomass density). Horizontal black
bars and dotted lines denote range of models with AAIC < 2 relative to the ‘optimal’ scaling
coefficient (0.72).
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