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Abstract

Microglia are the resident immune cells in the brain with the capacity to autonomously
self-renew. Under basal conditions, microglial self-renewal appears to be slow and
stochastic, although microglia have the ability to proliferate very rapidly following
depletion or in response to injury. Because microglial self-renewal has largely been
studied using static tools, the mechanisms and kinetics by which microglia renew and
acquire mature characteristics in the adult brain are not well understood. Using chronic in
vivo two-photon imaging in awake mice and PLX5622 (Colony stimulating factor 1
receptor (CSF1R) inhibitor) to deplete microglia, we set out to understand the dynamic
self-organization and maturation of microglia following depletion in the visual cortex. We
confirm that under basal conditions, cortical microglia show limited turnover and
migration. Following depletion, however, microglial repopulation is remarkably rapid and
is sustained by the dynamic division of the remaining microglia in a manner that is largely
independent of signaling through the P2Y12 receptor. Mathematical modeling of
microglial division demonstrates that the observed division rates can account for the rapid
repopulation observed in vivo. Additionally, newly-born microglia resemble mature
microglia, in terms of their morphology, dynamics and ability to respond to injury, within
days of repopulation. Our work suggests that microglia rapidly self-renew locally, without
the involvement of a special progenitor cell, and that newly born microglia do not
recapitulate a slow developmental maturation but instead quickly take on mature roles in
the nervous system.
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Introduction

Microglia are the resident tissue macrophages of the brain (Crotti and Ransohoff, 2016;
Ginhoux et al., 2010) with a developmental origin that is distinct from other macrophages
(Ginhoux et al., 2010). In mice, microglial progenitor cells derive from the yolk sac and
populate the brain before the blood brain barrier forms (Ginhoux et al., 2010; Kierdorf et
al., 2013), slowly acquiring mature gene expression over a period of two to three weeks
(Bennett et al.,, 2016). In both the rodent and human brain, microglial numbers are
maintained throughout adult life (Fuger et al., 2017; Hashimoto et al., 2013; Reu et al.,
2017), with no further contribution of peripheral cells to the microglial population in the
absence of pathological changes (Ajami et al., 2007; Askew et al., 2017; Bruttger et al.,
2015; Elmore et al., 2015; Mildner et al., 2007). Microglia are uniformly distributed in a
distinct cellular grid throughout the brain parenchyma (Eyo et al., 2018; Hefendehl et al.,
2014; Nimmerjahn et al., 2005) and maintain their territories with slow translocation on a
timescale of days (Eyo et al., 2018).

Microglia are highly dynamic within their territory with extensive processes that
make physical contact with cells in their environment (Bernier et al., 2019; Davalos, 2005;
Nimmerjahn et al., 2005). Under basal conditions, motile microglial processes remodel,
prune, and define neuronal circuits and establish transient physical contacts with
synapses that influence neuronal circuits during early development and adulthood
(Miyamoto, 2016; Paolicelli, 2011; Parkhurst et al., 2013; Schafer, 2010; Sipe et al., 2016;
Tremblay et al., 2010). In addition to their many homeostatic roles in physiological brain
function, these cells are traditionally known as a first line of defense in neuropathology
and participate in responses to injury, infection, and neurological disease. For instance,
chronic microglial activation is associated with a number of neurodegenerative and
neurodevelopmental diseases such as Alzheimer’s Disease, Schizophrenia and Autism
Spectrum Disorder (Bilbo et al., 2018; Kettenmann, 2011; Spittau, 2017).

While microglia are known to be long-lived cells, they do self-renew slowly and
stochastically under unperturbed physiological conditions in the brain (Fuger et al., 2017).
To study microglial self-renewal, recent studies have pharmacologically and genetically
depleted microglia and uncovered a remarkable capacity for rapid repopulation of the
microglial niche without a contribution of infiltrating peripheral monocytes (Ajami et al.,
2007; Elmore et al., 2015). Early studies in fixed sections from mice following depletion
suggested that microglial repopulation is driven by the proliferation of a specific nestin+
progenitor which divides in large proliferative macroclusters from which newly-born
microglia migrate throughout the brain (Bruttger et al., 2015; Elmore et al., 2014). More
recent studies have shown that newly-born microglia transiently express nestin early in
repopulation; however, none of the repopulated microglia derive from nestin progenitors.
Instead this static analysis of microglia in fixed tissue suggested that repopulated
microglia are derived from the microglia that survive depletion in the cortex (<5%) rather
than a specific progenitor population (Huang et al., 2018a; Huang et al., 2018b; Zhan et
al., 2019). Similar to repopulation in the cortex, microglial repopulation in the retina was
shown to be driven by remaining microglia; however, proliferation occurred in the central
retina and these new microglia then migrated to repopulate peripheral areas, suggesting
a specific site of microglial generation in the eye (Huang et al., 2018b; Zhang et al., 2018).
In the retina, repopulated microglia eventually adopted the dynamic profiles of
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endogenous microglia before depletion, with similar morphologies, process dynamics and
responses to focal injury 60 days following initial repopulation (Zhang et al., 2018), and
repopulated cortical microglia also have expression patterns similar to those of
endogenous microglia 30 days after repopulation (Bruttger et al., 2015; Huang et al.,
2018b; Zhan et al.,, 2019). Genomic analysis of newly-born microglia in the cortex,
however, show that new microglia within days of repopulation recapitulate developmental
expression profiles (Elmore et al., 2015; Zhan et al., 2019), suggesting that newly-born
microglia may undergo a stepwise maturation after repopulation that resembles
developmental maturation.

While recent interest in microglia has illuminated many aspects of how microglia
self-renew in the brain, many questions remain unanswered, including the site of
microglial generation, the dynamics and loci of microglial proliferation, and the dynamics
of how microglia acquire their mature characteristics once generated. It is critical to fully
characterize the process of microglial self-renewal to understand how these cells, that
are not generated in the yolk sac, differ from those that enter the brain early in
development. Perturbations in microglial development can induce permanent changes in
the microglial immune response (Bilbo et al., 2018; Knuesel et al., 2014), suggesting that
microglia born in the adult brain, if they also undergo a period of maturation, may be
particularly sensitive to homeostatic disturbance, affecting their function more so than that
of long-lived microglia that originated from the yolk sac. Because microglia are critical to
both physiological and pathological brain function, it is important to understand how these
cells rearrange, renew, and mature as they are replenished in the mature brain.

Microglia are highly dynamic cells and understanding their behavior requires an
equally dynamic approach that allows for monitoring their characteristics chronically over
time in their native milieu. In our study, we aimed to characterize microglial ontogeny and
maturation in the adult visual cortex using time-lapse imaging in vivo in awake young adult
mice after microglial depletion. We show that microglial self-renewal is slow under basal
conditions, with microglia maintaining their territories and showing little movement, loss
or proliferation. In agreement with previous studies, we show that, following depletion,
newly-born microglia rapidly repopulate the brain and acquire equal cell-to-cell spacing
reminiscent of baseline conditions. Self-renewal is driven locally by residual microglia
which have a capacity for fast and continued self-division that allows for rapid
repopulation of the cortex. To determine whether other mechanisms such as migration
from sites outside of the imaging area contributed to the increase in microglia numbers,
we mathematically modeled microglial self-renewal in vivo and showed that the observed
division rates could account for the rapid repopulation. Finally, we also showed that
newly-born microglia very quickly acquire ramified morphologies as well as dynamic
surveillance capabilities in response to focal injury, suggesting that microglial functional
maturation is remarkably rapid in the adult brain and does not recapitulate developmental
profiles. These findings suggest that the microglia landscape following depletion is
restored through a rapid division of remaining microglia, local migration to fill the microglia
niche and a fast acquisition of mature characteristics soon after repopulation.
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Results

In vivo imaging of microglia shows limited migration and turnover with preserved
territories in the physiological brain.

To determine how microglia, self-renew, we first determined how much microglia
movement and turnover occurred with our imaging approach in the absence of
perturbation. To track microglial turnover in vivo under basal conditions, we imaged
microglia daily in the same awake young adult mice using the microglial-labeled
CX3Cr16FP* transgenic mouse line (Jung et al., 2000) and a chronic cranial window
preparation. Because a growing body of literature suggests that microglia behave
differently under anesthesia (Li et al., 2012; Stowell et al., 2019; Sun et al., 2019) we
wanted to capture the dynamics of microglia in the absence of anesthesia to avoid
potentially inducing long-term alteration in microglial movement and turnover during
repopulation. Microglia in the same cortical area could easily be imaged and tracked from
day to day (Figure 1a and Supplementary video 1) without overt changes in microglial
morphology which could indicate immune activation over time. Microglia numbers were
stable over 14 consecutive days, and individual microglia could be re-identified in the
same location daily over this period, suggesting limited local migration and a maintenance
of microglial territories during this time (Figure 1a). Quantitative three-dimensional
nearest neighbor (NN) analysis revealed that microglia generally maintain their own
territories, whereby each microglia soma lies at ~30 um from its nearest neighboring
microglia. This NN distance remained similar on subsequent days and between animals
(Figure 1b, n=3, 16-17 microglia per mouse, 30-40 um stacks). This is consistent with the
classic distribution of microglia under physiological conditions whereby each microglia
had its own region, with little overlap between neighboring territories, and suggests limited
dynamic changes in distribution at baseline.

Microglial distribution over time was assessed with a custom algorithm which
compared the location of microglia in the same field of view over the 14-day imaging
period. To measure microglial movement, we defined a “translocation index”, which was
an average distance between the location of each microglia on day 1 and the location of
the nearest microglia on the n" day (n=3, 16-17 microglia per mouse, 30-40 um stacks).
On average, microglia shifted on the order of 15 um from day to day (Figure 1c), and this
number increased as the two imaging sessions were further apart in time (Figure 1d),
possibly due to tissue distortion over time. In general, most microglia did not move by
more than 10 um in either short (1-2 day), (1-4 day), (1-7 day) and long (1-10 day), (1-12
day), (1-14 day) comparisons. The proportion of microglia that moved more than 30 um
(the territory of a single microglia) was small in both short and long-term comparisons
(Figure 1d-e, n=3, 16-17 microglia per mouse, 30-40 um stacks). Overall, this analysis
suggests that microglia are stable under basal conditions and show limited movement
within their territory from over 14 days.

Microglia rapidly replenish after partial depletion in the visual cortex

Microglial homeostasis is tightly regulated under basal conditions. Therefore, to
explore microglia self-renewal in the visual cortex, we used an established paradigm
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which partially depletes microglia using PLX5622 (PLX), a Colony Stimulating Factor 1
Receptor (CSF1R/c-kit/FIt3) inhibitor (Dagher et al., 2015; Elmore et al., 2014; Najafi et
al., 2018). With introduction of PLX for 7 days, microglia numbers in the visual cortex
decreased by 70% (Figure 2a, b; Supplementary Figure 1) and the 3D NN number
increased to 200 um reflecting the decreased density and therefore increased distance
between remaining microglia (Figure 2c). We did not observe changes in cytokine
production or astrocyte morphology following depletion (Supplementary figures 2 and 3).
The remaining 20-30% of microglia after depletion (7D PLX) and during the early stages
of repopulation (D1) appeared to exhibit altered morphologies with two main groups
represented: one with extensive processes and enlarged somas (yellow arrows) and the
2" with thickened and retracted processes (white arrows) (Figure 2a). Qualitatively, it
appeared both morphological groups of remaining microglia were randomly organized
suggesting that these morphologies were not driven by local cues.

After discontinuing PLX treatment, we imaged microglial restoration daily in the
same mouse to capture the dynamics of this process (Figure 2a). Newly-born microglia
rapidly repopulated the visual cortex and microglia numbers were almost completely
restored after only 3 days of repopulation. In addition, the newly generated microglia
surpassed baseline numbers after 5-7 days of repopulation (Figure 2b). In concert, the
3D NN distance returned to control levels after 3 days of repopulation and remained
relatively stable until 30 days of repopulation, the last time point examined, at which time
the number of microglia were similar to that of control microglia numbers before PLX
treatment (Figure 2c and Supplementary video 2). These results suggest that microglial
proliferation occurs very rapidly over a 24-hour period starting at ~2 days after cessation
of PLX treatment, and that microglia rapidly regain their territories within the visual cortex,
maintaining their equal spacing and numbers after repopulation is complete.

To dissect the underlying mechanisms responsible for our observations of
microglial repopulation, we considered signaling pathways in microglia that are
associated with migration, microglial motility and maturation. While there are a number of
receptors expressed by microglia that respond to changes in their environment, we
focused on the P2Y12 receptor. P2Y12 is highly expressed exclusively in microglia in the
brain (Bennett, 2016; Zhang et al., 2014) and regulates microglial translocation under
physiological conditions in vivo (Eyo et al., 2014; Haynes et al., 2006). PLX treatment in
P2Y12KO/CX3Cr1CFP* mice also caused a depletion of microglia of ~70% (Figure 2d),
with a concomitant increase in 3D NN (Figure 2e). The change in NN distance was not
as profound as in CX3Cr1¢FP* mice, possibly because these animals had, on average,
smaller magnitudes of depletion, although depletion was highly variable across all
animals examined irrespective of genotype (Figure 2f). While microglia repopulated in a
temporal pattern similar to CX3Cr1¢FP* mice after cessation of the inhibitor (Figure 2d, e),
there appeared to be a slight delay in early repopulation (Figure 2g). However, this delay
resolved quickly, and on day 5 and beyond microglial repopulation matched CX3Cr1CGFP/+
controls (Figure 2h, i). This suggests that P2Y12 signaling plays a minor role in the
repopulation dynamics of adult microglia.
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Residual microglia are capable of rapid division to generate new microglia and
repopulate the cortex.

Microglial self-renewal may be driven by local residual microglia that remain
following depletion, although the dynamics of this process are poorly understood. It is
unclear whether specific subpopulations of remaining microglia are responsible for
division or all remaining cells have the capacity to divide; whether repopulation is local or
originates in a specific brain region and is coupled to large scale microglial migration; and
whether repopulating cells do so by single cell division or through an intermediate
multinucleate body gives rise to multiple new microglia. During the repopulation phase,
we observed occasional splitting of an existing microglia into two daughter cells, which
has been reported previously (Fuger et al., 2017; Tay et al., 2017). In these cases, the
appearance of new cells was associated with a characteristic increase and elongation of
the cell soma of the original cell before it divided into two microglia (Figure 3a;
Supplementary video 3). The original microglia often had extensive processes which were
maintained during the division and generation of a new microglia (Figure 3a). Thus, newly
generated microglia frequently had a ramified microglia arbor on the same day that
division was complete. In many cases, we observed that newly born microglia had a long
terminal process extending from one of the new cells (Figure 3a; top left panel inset).
While one microglia cell remained stable within the network of cells and persisted at the
imaged position over time, the other microglia moved away and took up new territory
adjacent to the parent cell (Figure 3a bottom right panel; Supplementary video 3). Both
cells were present in subsequent imaging sessions, indicating that these cells persist and
become integrated in the microglial network.

The characteristic morphologies of microglia in the process of division allowed us
to identify “potential” proliferating cells, which we refer to as doublet somas. We quantified
both the total number of doublets and the percentage of all microglia that were doublets
during our imaging of depletion and repopulation and found that both these measures
were increased in the repopulation phase (Figure 3b, c). While these dividing cells could
contribute to the rapid increase in microglial numbers observed, two pieces of evidence
suggested that other mechanisms may be important. First, in our model of depletion, the
number of doublet cells per field increased around day 3 to day 5 of repopulation but
microglia had largely repopulated the brain by day 3 after cessation of PLX. Second, the
time scale of division was slow (Figure 2b and 3b, c). The percentage of microglia that
were in a doublet state was also low even during peak repopulation, and this level of
doublets in the microglial population was maintained long after microglial repopulation
was complete (Figure 2b and 3b, c). A similar temporal profile of doublet microglia was
observed in P2Y12KO/ CX3Cr1¢ "* mice, again suggesting that P2Y12 signaling did not
play a large role in regulating microglial division (Figure 3d, e). Secondly, the time scale
of division was slow and the same microglia doublet could be observed for many days
before a split was first evident (Figure 3a), with spatial separation of the daughter cells
similarly taking multiple days. Thus, the slow rate of division is unlikely to allow these cells
to completely repopulate the entire brain parenchyma rapidly after the cessation of PLX
treatment.
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Mathematical modeling of microglial repopulation kinetics in the adult visual cortex

To determine whether microglia are capable of more rapid division that could
account for the rapid increase in microglial numbers seen 2-3 days following cessation of
PLX treatment, we imaged awake young adult mice every 4 hours for 24 hours during the
most dynamic time of repopulation (Day 2-Day 3; Figure 4). Unlike what we observed
during once per day imaging sessions (Figure 2 and Figure 3), microglial division could
be remarkably rapid where doublets separated into two daughter cells in as little as 4
hours (Figure 4b). The rates of microglia division were not uniform and some cells divided
slower within 8 or 12 hours or remained in the doublet state for the duration of imaging
(Figure 4a). Notably, in some cases, we observed cells dividing twice (Figure 4c, d). The
first division occurred rapidly, typically within 4 hours and the cells migrated away from
one another. These cells then adopted a doublet morphology and divided again in less
than 8 hours (Figure 4c, d). The rate of microglial division did not appear to be spatially
regulated as microglia in close proximity divided at different times (Figure 4d). Microglial
numbers roughly doubled over this imaging period in the majority of our animals (Figure
4e), and 3D nearest neighbor numbers fell as microglia were generated (Figure 4f). The
number of doublet cells also increased but tended to plateau around 12 hours into the
imaging period (Figure 4g), as did the number of total and primary divisions (Figure 4h).
On the whole, dividing cells represented a subset of cells with a doublet morphology
(Figure 4i) but the majority of cells with this morphology divided by the end of the imaging
period. In fact, 50% of microglia present in the image during the first imaging session
divided after 24 hours and the majority of non-dividing cells had a non-doublet
morphology. Overall, this points to a remarkable capacity of the majority of the remaining
microglia to divide rapidly and suggests that this rapid division may explain the fast
repopulation of the cortex after depletion.

To determine whether local remaining microglia could repopulate the cortex
through rapid division, we created a mathematical model which used the division
dynamics quantified in the 24-hour imaging experiment to determine whether these rapid
divisions could account for the increases in microglial numbers seen when repopulation
was imaged daily (Figure 4j-k and Supplementary Figure 4). The model considered three
parameters: (1) the number of cells in the population on day 2 of the daily imaging
paradigm, (2) the probability that a cell will be eligible for division (we tested using
proportions ranging from 10-100% in increments of 10), and (3) the empirical division
rates of the cells during the peak of repopulation (Figure 4i). The simulation was run
500,000 times. We randomly sampled the number of cells in the population that are
eligible for division from a binomial distribution with probability of success equal to the
proportion of cells eligible for division and set that equal to the initial day. We counted the
number of cells after 24 hours that divided, as well as all the cells in the process of dividing
to account for the total number of cells in the final subtotal. In 4-hour intervals, we
resampled cells from the population of those eligible for division (total number of cells in
circulation minus cells previously selected for division) and corresponding division rates
before concluding after 24 hours have passed. The empirical p-values from the simulation
with a 4 and 8-hour delay between divisions suggest that it is reasonable to believe that
the repopulation we observed from days 2 to 3 in our daily imaging experiments in 11
animals (Figure 2) came purely from local doublet cell division, as long as 50% of cells
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are capable of division (which is the number of dividing cells we observed when imaging
every 4 hours; Figure 4j-k). In fact, in half of the animals imaged, only 10% of cells would
need to be capable of division to repopulate the visual cortex. This data suggests that
local division of remaining microglia is likely responsible for rapid repopulation with newly
born microglia capable of further division and without the need for the migration of newly
generated microglia from a different site of generation.

Newly-born microglia acquire a hyperramified morphology in the later stages of
repopulation

In vivo tracking and mathematical modeling of microglial self-renewal in the adult
visual cortex show that repopulation is largely driven by remaining cells that form doublets
and rapidly divide to repopulate the brain. However, it is still unclear how newly-born
microglia mature in the visual cortex. We observed that doublet cells were ramified during
division, resulting in new cells that also had ramified morphologies soon after they
separated. Because microglial morphology is difficult to quantify in the wide-field imaging
in awake animals, we imaged a subset of microglia during repopulation under anesthesia
at high digital zoom in order to closely quantify the subtle changes in repopulated
microglial morphology (Figure 5a). We then traced individual microglia and used Sholl
analysis to assay the complexity of the arbors (Figure 5b and Supplementary Figure 5).
At the peak of depletion (7 days of PLX), the remaining microglia exhibited a ramified
morphology with extensive processes similar to the basal microglia process ramification
under steady-state conditions (Figure 5b-d). In addition, these microglia have enlarged
somas (Figure 5e). In the early phase of repopulation (day 1 — day 3), the newly-born
microglia appear ramified with secondary processes (Figure 5b-d). After this, a more
complex arbor begins to form (Figure 5b-d), whereby there is an overshoot in the
maximum number of intersections and integrated area under the Sholl curve at 5 days of
repopulation, which correlates with our increase in the number of microglia in our original
repopulation data (Figure 3b and 5c-d). This slight hyperramification is maintained for as
long as we imaged (30 days of repopulation; Figure 5c-d), despite a return to baseline
numbers of microglia (Figure 3b) and a return to a smaller soma size (Figure 5e).
Therefore, newly-born microglia rapidly acquire complex morphologies but exhibit a
chronic hyperramification that distinguishes them from microglia in control conditions.

Newly-born microglia are dynamic and survey the brain

While a handful of previous studies characterized newly-born microglia
repopulation using a static approach, we chose to image microglia in vivo because these
cells are highly motile allowing them to rapidly survey the parenchyma and perform
homeostatic functions in the brain. Given the changes in microglial morphology after
repopulation (Figure 5), we set out to determine if the differences were also reflected in
their dynamics (Figure 6). Motility measurements were carried out under anesthesia as
adrenergic signaling in the awake condition dampens microglial dynamics (Liu et al.,
2019; Stowell et al., 2019; Sun et al., 2019), allowing us to reliably track microglial process
extension and retraction on the order of minutes (Figure 6a-c). PLX treatment led to only
a modest decrease in motility (Figure 6d), as imaged over a one-hour period, suggesting
that the 20-30% of microglia that remain after depletion, not only have full arbors, but are
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motile and can effectively interact with elements in the parenchyma. This decrease in
motility was accompanied by a decrease in instability, which measures the retraction of
stable processes, (Figure 6e) but no change in the stability index, which measures the
stabilization of newly extended processes (Figure 6f). As new microglia were generated
after depletion, microglial motility recovered such that the increase in movement
correlated with the increase in the number of microglia over time. In addition, during the
later stages of repopulation (day 21- day 30), we found no significant difference in basal
microglia process motility and long-term stability as compared to baseline (Figure 6d-f).
Combined with our previous data on microglia repopulation, these data suggest that
repopulation can be divided in two stages: early and late repopulation. As microglia
mature in the later stages of repopulation (day 7 — day 30), they exhibit more complex
arbors suggesting a dysregulation in their morphology. This long-term change in
morphology, however, does not impact microglial motility which resembles basal
microglial states (Figure 6d). Finally, to test whether changes in morphology and
dynamics of new microglia affect microglial surveillance, we assessed microglial process
coverage over one hour (Figure 6g-i). Following 7 days of PLX, the remaining microglia
population survey a much smaller area than observed under basal conditions due to their
reduced numbers. Microglial surveillance recovers at day 3 of repopulation when
microglial numbers return to baseline values and is maintained until day 30 (Figure 6h).
When surveillance was normalized to the original microglial morphology to account for
the loss of microglia with depletion, we found that individual microglia surveilled their
territory in the same manner throughout control, depletion and repopulation conditions
(Figure 6i). Based on these findings, we conclude that newly-born microglia mature within
days of repopulation, acquire complex arbors, and survey the environment effectively.

Newly-born microglia respond robustly to acute focal tissue injury

To determine whether newly-born microglia can carry out their normal pathological
functions, we generated focal laser ablation injuries in the visual cortex using the two-
photon laser microscope and quantified the movement of microglial processes toward the
site of injury over the course of 1 hour using two separate methods (Figure 7 and
Supplementary video 4). First, we developed a custom optic flow-based algorithm to
calculate the directional velocity of microglia processes moving toward the injury site
(Figure 7e-f). Analysis of the average of all vectors moving towards the core showed that
microglia at all stages of depletion and repopulation responded robustly to laser ablation
injury (Figure 7f, g). Both the maximum magnitude and the integrated response (area
under the curve) were similar across conditions (Figure 7g, h). Itis interesting to note that,
under PLX treatment, the remaining microglia, although less motile, sparse and randomly
organized in the cortex, responded robustly to laser ablation injury with only a slight trend
towards a decreased response (Figure 7f, g, h). A similar pattern was observed with
convergence analysis which calculates the number of pixels representing microglia
processes entering a small ring around the core of the injury site (Figure 7i). Similar to
the directional velocity measure, there was no difference in the maximum convergence
at 60 minutes and the area under the curve value at each time point (Figure 7j, k). This
suggests that the newly-born microglia during the early phases of repopulation are
capable of responding robustly to focal laser ablation injury. This is an indication that
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microglia retain the necessary sensors such as P2Y 12 and internal machinery to respond
to injury.

Discussion

In this study, we characterized in detail the dynamics of adult microglia ontogeny and
maturation in the visual cortex of mice. Because microglia behave differently in awake vs.
anesthetized states (Liu et al., 2019; Stowell et al., 2019; Sun et al., 2019), we used an
awake in vivo chronic imaging setup to track microglial repopulation. First, we showed
that microglia maintain their numbers and territories under basal conditions. Next, we
found that microglia can divide rapidly and continuously to repopulate the brain within a
few days after partial depletion with the colony stimulating factor 1 receptor (CSF1R)
inhibitor, PLX, in a manner that is largely independent of signaling through the P2Y12R.
A mathematical model based on the imaged kinetics of division confirmed that the
repopulation was driven by very rapid, local self-renewal by surviving microglia which
transition to a doublet morphology, divide and migrate apart before undergoing the next
cycle of division. Finally, we found that newly-born microglia mature rapidly both
structurally and functionally.

The dynamics of microglial division are heterogeneous

Microglia are thought to be long-lived cells, self-renewing slowly and stochastically
under unperturbed physiological conditions in the brain with an average lifetime of four
years in human cortex (Reu etal., 2017), and 15 months in the mouse (Fuger et al., 2017).
Despite their stability, microglia can rapidly repopulate the brain when their niche has
been depleted (Bruttger et al., 2015; EImore et al., 2015). While this remarkable capacity
for self-renewal has been the subject of intense interest, many questions remain
unanswered, in particular regarding the kinetics of microglia self-renewal. By taking a
chronic in vivo approach coupled with mathematical modeling, we were able to identify
and track novel behaviors of residual and dividing microglia in vivo. Based on the average
cell numbers and the various cell division rates, our simulations of microglia repopulation
support the conclusion that the residual cells that remain after depletion can rapidly divide
to repopulate the visual cortex.

We observed that during the height of repopulation, ~50% of cells adopted a
doublet morphology indicative of an impending division, suggesting that most residual
cells are capable of proliferating. While we also observed these doublet morphologies
after repopulation was complete, the division rates at that time were slow with division
occurring over a period of days, as seen in the non-depleted brain (Fuger et al., 2017),
and inconsistent with rapid repopulation. In contrast, at the height of repopulation, division
could occur very rapidly, with a cell adopting a doublet morphology and undergoing
division within 4 hours. These rapidly dividing cells can undergo a secondary division
within our 24-imaging period. This secondary division could occur in both cells generated
from the first division, suggesting a remarkable capacity for proliferation in residual
microglia.

However, the rates of microglia division were not uniform. While some cells divided
rapidly and repeatedly, others divided slowly within 8 or 12 hours or remained in the
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doublet state for the 24-hour period of imaging. While we cannot discern whether these
differences in division rates are tied to specific subpopulations of microglia, it is well
known that microglia are morphologically and transcriptionally diverse, with high
throughput single-cell transcriptomics identifying distinct subpopulations of microglia with
unique molecular signatures that change with age and in response to insults (Ayata et al.,
2018; Hammond et al., 2019; Li et al., 2019). This heterogeneity in microglia is also seen
across various brain regions (Ayata et al., 2018; Hammond et al., 2019; O'Koren et al.,
2019). Similar heterogeneity in the residual microglial population may play a role in the
dynamics of repopulation, contributing to a heterogeneity in the capacity to divide. For
instance, it has been suggested that the remaining microglia after depletion are a
specialized CSF1R-inhibitor resistant population of Mac2-progenitor-like microglia (Zhan
et., al 2019, BioRXiV). Thus, rapidly dividing cells may correspond to this specialized
population which could carry the bulk of repopulation with slow contribution from other
populations that survive depletion. A similar scenario has been observed in the retina
where microglia repopulate from a distinct source and migrate through the optic nerve to
repopulate the rest of the retina (Huang et al., 2018a). While more detailed studies will be
needed to determine the extent of microglial heterogeneity after PLX treatment,
characterizing the heterogeneity of repopulating microglia may provide new avenues for
understanding the phenotypes of adult-generated vs. yolk sac born microglia.

Newly generated microglia rapidly recapitulate functional features of endogenous
microglia

We show that newly-born microglia acquire mature characteristics such as
baseline motility, surveillance and response to acute laser ablation remarkably quickly. In
fact, dividing doublet microglia have an extensive, motile arbor which is maintained
through the division such that the two resulting cells already have extensive processes
which surveil the environment and can respond to injury. While microglial expression in
the early phase of development appears to recapitulate developmental programs (Zhan
et al., 2019), we did not observe the typical morphologies of developing microglia, or
changes in process dynamics and responses to injury that could indicate a less mature
phenotype. This suggests that if microglia do revert to a developmental program when
they are first generated in the adult brain, this profile does not significantly alter their
physiological functions. Alternately, they may go through an accelerated developmental
program, as expression also matures much faster than the stepwise development of
microglia over a period of weeks in development (Bennett, 2016; Matcovitch-Natan et al.,
2016; Zhan et al., 2019).

While many studies have shown that after 30 days of repopulation, new microglia
largely adopt the gene expression profile of control microglia (Elmore et al., 2015; Zhan
et al., 2019) several observations in our study suggest that adult born microglia may not
be identical to their yolk sac-generated counterparts. We found that after repopulation,
microglial structure was more complex, and that more microglia adopted a doublet-like
morphology with an elongated cell body. Changes in morphology of microglia are
traditionally associated with inflammation, with hypo-ramified reactive microglia being
commonly associated with disease where they secrete pro-inflammatory factors
(Fontainhas et al., 2011; Smith et al., 2019; Streit et al., 1999; Tanaka and Maeda, 1996).
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The hyperramified phenotype of newly-born microglia can be associated with a transient
inflammatory activation but has also been observed in non-pathological, experience-
dependent changes (Sipe et al., 2016; Tremblay et al., 2010). This persistent
hyperramification could therefore be a change elicited by different genetic programs in
the newly born microglia that alter their immune functions. While we did not see any
evidence inflammatory signaling after depletion with PLX (Supplementary Figure 2), it is
also possible that newly born microglia change their morphology in response to changes
in the extracellular environment either due to damage elicited by CSF1R blockade, a
change in neuronal activity or persistent changes in the extracellular milieu.

The presence of a persistent increased number of microglia with elongated,
doublet-like cell bodies, after repopulation, could be indicative of further morphological
alteration of newly born microglia, but it could also suggest an increased capacity for
division as similar doublets have been identified as a main source of dividing cells in other
studies (Tay et al.,, 2017; Zhang et al., 2018). If Mac2+ microglia that remain after
depletion (Zhan et., al 2019, BioRXiV) have increased capacity for division, they may
divide to produce new microglia that are distinct from yolk sac-generated microglia and
rapidly take on mature characteristics, contributing to a different phenotype of adult vs.
yolk-sac born microglia. The Mac2+ cells may remain in the population as persistent
doublet cells primed for division and self-renewal. Thus, while adult born microglia appear
to rapidly take on their mature roles in the brain, their characteristics may differ in subtle
ways from microglia that are generated in the yolk sac and populate the brain in
development.

Newly generated microglia chronological versus biological age

Functional characterization of newly-born microglia may provide valuable clues for
determining treatments for neurodegenerative and neurodevelopmental diseases where
microglia are often thought to be dysregulated (Keren-Shaul et al., 2017; Krasemann et
al., 2017; Perry et al., 2010). It is possible that efficient rejuvenation of old “senescent”
microglia in the diseased brain with new microglia through depletion and repopulation can
generate a new population of microglia with improved functions (Elmore et al., 2018; Rice
et al.,, 2015; Spangenberg et al., 2016). However, it is important to recognize that it
remains unclear whether the chronologically younger newly-born cell is also biologically
younger. In fact, we do not yet understand the biological process of microglia repopulation
and it is not known whether the division of microglia is symmetrical or asymmetrical. To
determine whether a newly divided cell is in fact “rejuvenated”, the “maturity” of that cell
will need to be tested directly. This could be assessed by looking at transcriptional and
epigenetic signatures and comparing to similar studies done in development (Hammond
et al., 2019; Matcovitch-Natan et al., 2016). Newly-born microglia may go through a
stepwise expression program that partly recapitulates development giving them a
younger functional profile, or they may acquire all the epigenetic and cytoplasmic features
of their “aged” parent cell, leading to repopulation but not “rejuvenation” of the microglia
niche (Zhan et al., 2019). This latter option could also explain why the newly-born cells
acquire mature characteristics and functions early on in the repopulation phase.
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Intrinsic and extrinsic mechanisms of microglia repopulation

A combination of exogenous and endogenous signaling mechanisms may contribute
to microglia rapid repopulation and spatial organization. Recent evidence has shed light
onto some of the extracellular signals that shape repopulation, including those that
regulate microglia proliferation such as colony stimulating factor 1 (CSF-1) and interleukin
1 receptor (IL1R), and those that regulate migration such as fractalkine through its
receptor, CX3CR1 (Bruttger et al., 2015; Elmore et al., 2015; Zhang et al., 2018). A
gradient or threshold of these factors may start intracellular cascades in microglia that
trigger division and migration, such as NF-KB signaling which has been shown to be
important for microglia to repopulate fully (Zhan et al., 2019). In addition, we show that
the P2Y12 receptor is not critical to doublet formation, repopulation, or the acquisition of
microglial territories (as reflected by changes in nearest neighbor quantification) in the
visual cortex (Figure 2 and 3), which is surprising given that P2Y 12 modulates microglial
translocation in baseline conditions (Eyo et al., 2018). The progressive distribution of
microglia to achieve tiling during repopulation is most likely maintained by lateral inhibition
mechanisms and homeostatic microglia-specific genes such as Sal1 and Mafb—which
both maintain microglia in a ramified nonclustered state (Buttgereit et al., 2016;
Matcovitch-Natan et al., 2016). Because microglial numbers overshoot their target during
the early stages of repopulation, it is also likely that astrocytes may be recruited to
phagocytose excess newly-born microglia, and these cells may contribute to the
extracellular environment that promotes microglial migration and maturation. Altogether,
an interplay of diverse factors likely contributes to microglia homeostasis following
depletion, which may include endogenous mechanisms at play in specific populations of
microglia, including Mac2+ positive cells, as well as exogenous factors that come from
microglia, neurons and astrocytes and work together to re-establish microglia numbers in
the adult brain.

Concluding remarks

Together our results build on current adult microglia ontogeny research showing
that rejuvenation of adult microglia is driven by stochastic doublet cell division locally
during repopulation, with newly born cells rapidly able to take on their roles in the brain.
In addition, our mathematical modeling supports the idea that division of residual
microglia alone can fill the microglia niche following depletion. While our in vivo tracking
approach illuminates the rapid and heterogeneous dynamics of microglial repopulation,
future studies will be needed to fully understand the mechanisms that lead to the
generation of new microglia and their ability to adopt their mature features. Such studies
will provide a deeper understanding into the important role microglia play in homeostasis
and disease.
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Figure 1: In vivo imaging of microglia shows limited migration and turnover in the
physiological brain. (a) A field of microglia in an awake mouse imaged over 14 consecutive
days. (b) Nearest neighbor quantification in 3D demonstrates the distribution of neighboring
microglial cells over consecutive days. (c) The translocation index, which captured the
average displacement of microglia over time, was ~15um when consecutive imaging sessions
were compared. (d) The translocation index increased when D1 is compared to imaging
carried out later (D2-D14). (e) Microglia translocation between D1-D2, D1-D4, D1-D7, D1-
D10, D1-D12 and D1-D14. On average, the majority of microglia remained within ~10um
away of their original location. The proportion of microglia that moved within their domain (10-
30 pm), (20-30 um) or translocated a further distance (>30 um) stayed relatively constant with
increasing interval between imaging sessions (n=3, 30-40um stacks, 13-17 microglia per
mouse). Scale bar, 50um.
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Figure 2: Microglia rapidly repopulate the visual cortex after partial depletion. (a) A field of
microglia during depletion and repopulation imaged in vivo in the same awake mouse. (b) The number
of microglia (normalized to control) during depletion (PLX) and with repopulation (day 1-day 30). Each
line represents an individual animal (n=11, 100-150 microglia per mouse). (c) 3D nearest neighbor
quantification showed a large increase during depletion and the early stages of repopulation before
returning to control numbers (n=11, 100-150 microglia per mouse). (d) Depletion and repopulation
dynamics were similar in the absence of P2Y12 (n=3-4 animals, 20-150 microglia per mouse). (e) 3D
nearest neighbor analysis shows similar changes in microglial distribution during repopulation in the
absence of P2Y12 (n=3 animals 20-150 microglia per mouse). (f) The ratio of microglia numbers
observed on D7 PLX to control. (g) Repopulation was slightly delayed in P2Y12KO mice as compared
WT, as the change in microglial numbers from depletion (PLX) to day 2 of repopulation was significantly
smaller in the absence of P2Y12. (h) By day 5 of repopulation, the change in microglial numbers had
normalized between WT and P2Y12KO mice. (i) Microglial numbers never fully recovered to control
conditions in either WT or P2Y12KO mice. (f-i, t-test * p<0.05, n=4, 20-150 microglia per mouse). Scale
bar, 50um.
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Figure 3: Microglia self-renewal via residual cells in the visual cortex. (a) Representative in vivo
two photon imaging of microglial division in CX3CR1¢FP* awake mice. Inset is a magnified image of
the dividing doublet microglia, which appears as an elongated cell body at day 1 and divides into two
cells at day 2. The two microglia then migrated away from one another over the subsequent 2 days.
The arrow indicates a cluster of microglia that may represent a multinucleate body but did not generate
new microglia during the imaging period. (b) The number of doublet cells per field increased at day 3 -
day 5 of repopulation (c) Doublets made up close to 40% of the total number of microglia at day 4 of
repopulation. (n=3-4, 50-150 microglia per mouse, 100um stacks). The number (d) and percentage (e)
of microglial doublets over time were similar in P2Y12KO mice as compared to WT (n=3 animals per
group). Scale bar, 50um. Lines represent individual animals.
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Figure 4: Mathematical modeling of microglia repopulation in the visual cortex demonstrate
that cell division can account for the fast repopulation observed in vivo. We imaged
CX3CR1CFP* mice every 4 hours for 24 hours during the peak of repopulation (day 2- day 3). We
observed a range of behaviors of existing microglia: (a) no division (b) rapid division on the time scale
of 4-8 hours once the doublet appeared and (c) secondary division, where newly divided microglia
underwent another division. (d) Microglial divisions are not spatially regulated. Three microglia in the
field of view divided at different times over the course of 24h. (e) The number of microglia during the
24h period increased in 3 of the 4 animals imaged. (f) Microglial 3D nearest neighbor distance
decreased with time as more microglia were added to the population (n=3). (g) The number of
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microglial doublets increased over the 24h period. (h) Rapid divisions made up the larger proportion
of divisions at each imaging time point compared to secondary divisions. (i) The proportion of microglia
in the doublet state grew during this time, but on average doublets made up 20% of the total microglia.
(J-k) Mathematical modeling of microglial repopulation using measured kinetic parameters. Empirical
pvalues from the simulation are plotted for a minimum 4-hour delay (j) and 8-hour delay (k) between
subsequent divisions. (j-k) 11 animals that were imaged daily (Fig. 2-3) were modeled and the
simulation for each of these animals is represented by a line. (e-i) n=4 animals were imaged for
24hours during the peak of repopulation. Scale bar, 50um.
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Figure 5: Newly-born microglia remain in a hyperramified state after repopulation (a) Individual
microglia imaged in mice during control, depletion (7 days of PLX) and repopulation (7 and 30 days).
(b) Sholl profiles summarizing the morphology of microglia during depletion and repopulation. (c)
Microglia have an increased number of maximum intersections in the later time points of repopulation;
note the increased arborization after day 5 (n=3-5 animals per group, 2-4 microglia per mouse,
*p<0.05, **p<0.01, One-way ANOVA, Dunnett post-hoc test). (d) Microglia have a greater AUC (Area
under the curve) in the later stages of repopulation (n=3-5 animals per group, 2-4 microglia per
mouse, *p<0.05, One-way ANOVA, Dunnett post-hoc test). (e) Microglia demonstrated a greater
soma area during the early stages for repopulation (n=5-9 animals per group, n=3-6 microglia per
mouse, **p<0.01, One-way ANOVA, Dunnett post-hoc test). Graphs show mean + s.e.m. Points
represent individual animals. Scale bar, 50um.
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Figure 6: Newly-born microglia are dynamic and survey the brain (a) Example of motility
analysis showing the original microglia image, (b) Thresholded microglia (c) and a visual
representation of microglial motility whereby thresholded imaged from two time points are
combined with magenta representing retraction, green representing extension and white
representing stable pixels. (d) Quantification of the motility index which compared the gain and
loss of pixels across 5-minute intervals. Microglia motility was decreased during depletion but
recovered quickly with repopulation. (e) A similar trend was observed in the instability index which
was calculated as the proportion of stable pixels that became retracted over the total stable pixels
in the first time point. (f) No change in the stability index (the proportion of extended pixels that
became stable divided by the total extended pixels in the first overlay) was observed. (g)
Maximum projection of microglial processes over the hour imaging session to observe
surveillance (control, 7 days of PLX, 7 days of repopulation and 30 days of repopulation). (h)
Microglial surveillance of the parenchyma dropped as microglia were depleted from the brain,
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but recovered quickly during repopulation as soon as microglial numbers reached control levels
(3 day). (i) Graph of surveillance normalized to the extent of microglial coverage in the first time
point. (n=3-14 animals per group, *p<0.05, ****p<0.0001, One-way ANOVA, Dunnett post-hoc
test). Graphs show mean + s.e.m. Points represent individual animals. Scale bar, 50um.
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Figure 7: Newly-born microglia respond robustly to acute laser ablation injury. Example microglial
response to focal laser ablation at t=0 min, t=30min and t=55 min after ablation for control (a), 3 days of
repopulation (b), 7 days of repopulation (c), and 30 days of repopulation (d). (e) Quiver plot of microglial
response. Green arrows correspond to vectors moving towards the core and red arrows correspond to
vectors moving away from the core. (f) Graph showing the average vectors moving towards the core
following focal laser ablation injury. (g-h) There were no statistically significant differences observed in
the maximum directional response, or the integrated area under the curve over time. The dynamics of the
convergence of microglial processes on the injury core (n=12 (control), n=3 (3 days PLX), n=8 (7-8 days),
n=6 (30 days). (i) Graph showing the convergence towards to core following focal laser ablation injury. (j-
k) There was no significant difference in the maximum convergence at 60 minutes, or the convergence
response when assayed using the area under curve of the convergence graphs over time. n=3-12 animals
per group, One-way ANOVA, Dunnett post hoc test. Graphs show mean * s.e.m; ns. Points represent
individual animals. Scale bar, 20um.
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Mathematical Model
Non-dividing doublets

Control

Early stage of
repopulation

Late stage of
repopulation

Graphical Abstract: (a) Microglial dynamics during control condition. Cartoon depiction of the
heterogenous microglia in the visual cortex equally spaced. (b) During the early stages of
repopulation, microglia are irregularly spaced and sparse. (c) During the later stages of
repopulation, the number of microglia and the spatial distribution return to baseline. (d-f) We then
created and ran a mathematical model that sampled the number of microglia, (d) the persistent
doublets, (e) the rapid divisions of microglia and (f) the secondary divisions of microglia during the
peak of repopulation day 2- day 3. The mathematical model suggested that residual microglia can
account for the rapid repopulation we observed in vivo.
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Methods:

Experimental Animals: All animal work was performed according to the approved
guidelines from the University of Rochester, Institutional Animal Care and Use Committee
and conformed to the National Institute of Health (NIH). Animals were housed in a 12-
hour light/12-hour dark cycle with food ad libitum. 3-6-month-old male and female
heterozygous (CX3CR1 ©FP*) GFP reporter mice expressing GFP under control of the
fractalkine receptor (CX3CR1) promoter (Jung et al., 2000) and P2Y12KO/CX3CR1 GFP
mice were used for in vivo live imaging of visual cortex microglia repopulation and
dynamics. All mice were derived from a C57/BI6 background.

Microglia Depletion: Diet (AIN-76A-D1001i, Research Diets, New Jersey, USA)
containing 1200 mg/kg PLX5622 (Plexxikon Inc., Berkeley, CA, USA) was given to mice
as the sole food source for 1-2 weeks to deplete microglia. Control diet with the same
base formula but without the compound was given to the control group (BI6 mice and YFP
mice in Supplementary figure 1 and 2 that are not exposed to PLX) and during the
repopulation phase for 3-4 weeks.

Cranial Window Surgery: Animals were anesthetized using a fentanyl cocktail (i.p.)
during the cranial window implantation surgical procedure. The fentanyl cocktail consisted
of fentanyl (0.05 mg kg'), midazolam (5.0 mg kg™') and dexmedetomidine (0.5 mg kg™').
Body temperature was maintained at 37° C with a heating pad and aseptic technique was
maintained during all surgical procedures. Mice were placed in a stereotaxic frame and
head-fixed for cranial window surgeries. Hair was removed and the skull was exposed
through a scalp incision. A 3mm Biopsy punch (Integra, Plainsboro, NJ, USA) was used
to create a circular score on the skull over V1. A 0.5mm drill bit (FST, Foster City, CA)
was used to then drill through the skull for the craniotomy, tracing the 3mm score. A 5mm
coverslip attached to a 3mm coverslip (Warner Instruments, Harvard Bioscience,
Hamden, CT) by UV glue (Norland Optical Adhesive, Norland Inc, Cranbury, NJ, USA)
was then slowly lowered down into the craniotomy (3mm Side down). The coverslip was
secured with Loctite 404 glue (Henkel Corp, Bridgewater, NJ, USA). A custom headplate
produced by emachine shop (www.emachineshop.com) (designs courtesy of the
Mriganka Sur Lab, MIT) was kept in place with C&B Metabond Dental cement (Parkell
Inc, Brentwood, NY, USA). The dental cement was used to cover exposed skull and keep
the headplate in place. Mice were administered slow-release buprenex by veterinary staff
(s.q. mg kg-1 every 72 hours) and monitored for 72 hours.

Two Photon Microscopy: A custom two-photon laser-scanning microscope was used
for in vivo imaging (Ti: Sapphire, Mai-Tai, Spectraphysics; modified Fluoview confocal
scan head, 20x water immersion objective lens, 0.95 numerical aperture, Olympus,
Center Valley, PA). Excitation for fluorescent imaging was achieved with 100-fs laser
pulses (80MHz) tuned to 920nm for GFP with a power of ~30-40mW measured at the
sample. Fluorescence was detected using a photomultiplier tube in whole-field detection
mode using a 580/180 filter. Images were collected from 20um -300um into the brain. For
repeated imaging, blood vessels were used as gross landmarks and stable microglia were
also used as fine landmarks to reidentify the correct region for imaging. Image analysis
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was done offline using Imaged and Matlab with custom algorithms as described in
(Stowell et al., 2019) and available on request.

Awake Imaging Sessions: During a two-week recovery from cranial window surgeries,
mice were trained and habituated to awake imaging. Mice were head fixed under the
microscope for 10 minutes on the first day and the time spent head fixed was increased
by 5 minutes daily. Habituation sessions were terminated if mice exhibited signs of
discomfort such as excessive movement and vocalization. Training was complete once
mice tolerated 4 consecutive days of head fixation. Imaging session did not exceed 60
minutes daily.

Microglia Migration Analysis: Two-photon XYZ images of microglia were collected. For
analysis, microglia within a volume of 800 X 600 X 100 um (approximately 60 to160 um
from the surface of the brain) were used. The images were processed and aligned using
Fiji imaged. The centroid for each microglia was identified and the x, y and z coordinates
were recorded. Images were aligned over consecutive days using the blood vessels as
gross landmarks. A custom algorithm was created to quantify the distances between
individual microglia and the remaining microglia in the image. The minimum value was
then used as the 3D nearest neighbor value for that microglia and nearest neighbor values
were averaged together for all microglia in a single animal at each time point. Distances
were calculated as shown below:

distances (i, j) = sqrt((xaxis(i)-xaxis(j))* + (yaxis(i)-yaxis(j))* +
(zaxis(i)-zaxis(j))?

i, j corresponds to number of microglia in the matrix used to calculate the NN.

Microglial Translocation: The location of selected microglia from the first time point were
identified and a the XYZ coordinates for the microglia were recorded for the first day. The
3D Nearest neighbor values were calculated as shown above except the location of a
microglia was compared to the location of all microglia at another time point. Usually
translocation was measured relative to Day 1 of imaging or the time point immediately
prior.

Mathematical modeling of microglial repopulation:

We began with three parameters:

(1) Ny, the number of cells in the population on day 2 of the daily imaging
paradigm,

(2) p, a specified probability that a cell will undergo division,
(3) R, the observed division rates in experimental data.

The algorithm was then initialized with the following values. The number of cells chosen
to divide from N, is given by D, and were selected by sampling from a binomial distribution
of size N, with probability p. Each cell selected for division was assigned a division rate
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by generating a sample S, of size D, from R. This process was repeated every 4 hours
over a 24-hour period. We also considered cells to be ineligible for repeated division for
a period of 4 hours after having divided. Using the specified notation and letting i =
1,2,3,4,5,6 and t,, = 4n we can denote the number of microglia in the population during
the i interval by N;, where

NO - Do, lfl == 1
N = i-2 Dj
b Ni—l - Di—l + ZZZ I (S]k = ti—l—j)J ifi > 1.
j=0 k=1

The final number of cells counted in the population were given by the sum total of cells
that have completed division and those that were still undergoing division, expressed by

Nfinal = N6 +z

5 D

J

I(Spe > ts_)).
1

Microglia Morphology: For microglial morphology analysis, 2-4 microglia were selected
per animal in an imaging session. For each microglia selected a z-projection was created
using FIJI. All microglia processes were manually traced, thresholded to generate a
binarized outline of the process arbor, filtered to remove artifacts and analyzed with an
automated Sholl Analysis plugin (provided by the Anirvan Ghosh laboratory, University of
California, San Diego). The maximum number of intersections and the area under the
curve (AUC) of the Sholl profile was analyzed to determine microglia arbor complexity.

Microglia Motility and Surveillance: For motility analysis, XYZT images consisting of
40-um-deep z-stacks were collected every 5 minutes, 12 times for a total of 60 minutes.
Single-image 10 um Z-projections were created for each time point, and lateral motion
artifact was corrected using the StackReg and TurboReg functions
(http://bigwww.epfl.ch/thevenaz/stackreg/). After thresholding and binarizing of the
maximum intensity projections for all time points together, overlays of consecutive time
points (0-5 minutes, 5-10 minutes, etc.) were made so that white pixels represented
stability. A custom Matlab algorithm was used to compare pixels across individual time
points and across consecutive time points to generate a motility index (defined as the
sum of all changed pixels divided by the unchanged pixels). Additional indices were
generated including stability, as the proportion of extension pixels (green) in one overlay
that became stable (white) in the subsequent overlay divided by the total extension
(green) pixels in the first overlay. Conversely, an instability index was calculated as the
proportion of stable (white) pixels in one overlay that became retracted (magenta) in the
subsequent overlay divided by the total stable (white) pixels in the first overlay.

For the surveillance ratio, we z projected all 12 time points and compiled them into
a stack. We then aligned the stacks and modulated the brightness/contrast to ensure that
all processes are visible and background is minimal. The z-projected files were then
thresholded. The thresholding parameters were chosen to capture most of the processes
while minimizing background pixilation. The thresholded time points were used to
calculate the area surveyed (surveillance ratio) by microglia during the 1-h imaging
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session. This was done by calculating the total number of pixels representing microglia
divided by the total pixels in the field of view. The normalized surveillance was calculated
as the number of white pixels present in the 15t time point divided by the total number of
white pixels.

Microglia Soma Area Quantification: 2-10 microglia were selected at random from high
magnification images. Single-image 10 um Z-projections were created for each time point,
and lateral motion artifact was corrected using the StackReg and TurboReg functions
(http://bigwww.epfl.ch/thevenaz/stackreg/). The polygon tool was used to outline the
soma of microglia and the area was calculated in microns (um).

Laser Ablation: Laser ablation injuries were created by running a point scan for 8s at
780nm using ~75mW at the sample. The microglia injury response was imaged by
collecting z-stacks of 50-90 um every 5 minutes. For analysis, Z-projections were all
comprised of 10 um of the stack, encompassing the approximate center of the ablation
core. The file was converted to an AVI and subjected to analysis by a custom MATLAB
script designed to calculate the movement of microglia processes towards the ablation
core. Briefly, for each pixel at each time point the script generates a vector which
estimates the magnitude and direction of motion of the pixel utilizing the Farneback
method for estimating optic flow. For analysis, we only included vectors larger than 5
pixels of motion which were directed towards the ablation core to minimize noise. The
magnitude of all the vectors at each time point was summed and normalized to the total
number of pixels in the image. For the convergence analysis, the number of pixels that
enter the core of the focal injury are summed. We quantified the area under the curve,
and the maximum value of the normalized magnitude over the 1-hour session.

Histology: Whole brains were perfused with 0.1M PBS and fixed overnight with
paraformaldehyde (4%). The tissue was cut on a freezing microtome (Microm; Global
Medical Instrumentation) at 50 um. For immunohistochemistry, sections were rinsed and
endogenous peroxidase activity and nonspecific binding were blocked with a 10% BSA
solution. Sections were then incubated in primary antibody solution to detect microglia
(24h, 4 °C, anti-Iba-1, 1:1,000, Wako 019-19741) followed by secondary antibody solution
(4 h, RT, AlexaFluor 488, 1:500, Invitrogen), mounted and coverslipped. To determine
microglial depletion and repopulation, primary visual cortex sections were imaged on a
Zeiss LSM 510 confocal microscope (Carl Zeiss). For each section, a 10-mm z stack in
the center of the tissue was collected with a z step of 1 ym at x40 magnification. Analysis
was performed offline in ImageJ. Z stacks were smoothed and compressed into a
single z projection. Microglial cell bodies were marked in Imaged using the paintbrush
tool. Results from 4-5 sections per animal were averaged. Density was calculated as the
number of microglia per area in visual cortex for PLX depleted and control groups.

For quantification of astrocytes, tissue was processed for histology as described
above. Sections were incubated in a primary antibody solution (overnight, 4 °C, Anti-Glial
Fibrillary Acidic Protein (GFAP), 1:500, Sigma G3893, clone G-A-5) followed by a
secondary antibody solution (4 h, RT, AlexaFluor 594, 1:500, Invitrogen), mounted and
coverslipped. To determine astrocyte coverage, somatosensory cortex sections were
imaged on a Zeiss LSM 510 confocal microscope (Carl Zeiss). For each section, a 10-
mm z stack in the center of the tissue was collected with a zstep of 1 um at x40
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magnification. Analysis was performed offline in Imaged. The images were thresholded
and the total number of white pixels were then measured. Results from 3-4 sections per
animal were averaged.

Statistics: Statistical comparisons were made between animal and treatment groups
using Prism V1 software (GraphPad, San Diego, CA). No statistical tests were used to
determine sample sizes but our samples sizes are similar to those reported in the field.
All n represents individual animals. For analysis were a number of microglia were selected
and analyzed per animal, all microglia were averaged to generate a single value per
animal. Animals were excluded from analysis if an imaging session could not be
completed in full; otherwise, all completed imaging sessions collected were used. Not all
animals were imaged at all imaging time points. All values reported are the mean + s.e.m.
For all analyses, a=0.05. Two-tailed unpaired or paired t-tests and one-way or two-way
ANOVA with or without repeated measures (ANOVA) with Tukey post hoc comparisons
were used to compare cohorts where appropriate. The data met the assumptions of
normality and equal variances as tested by Prism VI as part of the statistical analyses.

Data Availability: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code Availability: All MATLAB code is available at https://github.com/majewska-lab.
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