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Abstract

We introduce a hybrid two-dimensional multiscale model of angiogenesis, the process by which endothelial cells (ECs)
migrate from a pre-existing vascular bed in response to local environmental cues and cell-cell interactions, to create
a new vascular network. Recent experimental studies have highlighted a central role of cell rearrangements in the
formation of angiogenic networks. Our model accounts for this phenomenon via the heterogeneous response of ECs to
their microenvironment. These cell rearrangements, in turn, dynamically remodel the local environment. The model
reproduces characteristic features of angiogenic sprouting that include branching, chemotactic sensitivity, the brush
border effect, and cell mixing. These properties, rather than being hardwired into the model, emerge naturally from
the gene expression patterns of individual cells. After calibrating and validating our model against experimental data,
we use it to predict how the structure of the vascular network changes as the baseline gene expression levels of the
VEGF-Delta-Notch pathway, and the composition of the extracellular environment, vary. In order to investigate the
impact of cell rearrangements on the vascular network structure, we introduce the mixing measure, a scalar metric
that quantifies cell mixing as the vascular network grows. We calculate the mixing measure for the simulated vascular
networks generated by ECs of different lineages (wild type cells and mutant cells with impaired expression of a specific
receptor). Our results show that the time evolution of the mixing measure is directly correlated to the generic features
of the vascular branching pattern, thus, supporting the hypothesis that cell rearrangements play an essential role
in sprouting angiogenesis. Furthermore, we predict that lower cell rearrangement leads to an imbalance between
branching and sprout elongation. Since the computation of this statistic requires only individual cell trajectories, it
can be computed for networks generated in biological experiments, making it a potential biomarker for pathological
angiogenesis.

Author summary

Angiogenesis, the process by which new blood vessels are formed by sprouting from the pre-existing vascular bed,
plays a key role in both physiological and pathological processes, including tumour growth. The structure of a growing
vascular network is determined by the coordinated behaviour of endothelial cells in response to various signalling
cues. Recent experimental studies have highlighted the importance of cell rearrangements as a driver for sprout
elongation. However, the functional role of this phenomenon remains unclear. We formulate a new multiscale model of
angiogenesis which, by accounting explicitly for the complex dynamics of endothelial cells within growing angiogenic
sprouts, is able to produce generic features of angiogenic structures (branching, chemotactic sensitivity, cell mixing,
etc.) as emergent properties of its dynamics. We validate our model against experimental data and then use it to
quantify the phenomenon of cell mixing in vascular networks generated by endothelial cells of different lineages. Our
results show that there is a direct correlation between the time evolution of cell mixing in a growing vascular network
and its branching structure, thus paving the way for understanding the functional role of cell rearrangements in
angiogenesis.
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Introduction

Angiogenesis, the process by which new blood vessels are generated from a pre-existing vascular network, has been
extensively investigated in recent years [1–10]. However, understanding of the complex behaviour of endothelial cells
(ECs) during angiogenesis remains incomplete. ECs adjust their gene expression profiles in response to a variety
of extracellular cues, such as the structure and composition of the extracellular matrix (ECM), angiogenic factors
such as vascular endothelial growth factor (VEGF), and changes in cell-cell interactions. Broadly, the extracellular
stimuli act upon the VEGF-Delta-Notch signalling pathway, which drives ECs to acquire either a tip or stalk cell
phenotype [11,12]. Tip cells, with elevated expression of Delta ligand, VEGF receptor 2 (VEGFR2) and decreased
expression of Notch receptor, are more active than their stalk cell counterparts [13]; they extend filopodia, release
matrix metalloproteinases (MMPs) that degrade the ECM and, together with the pericytes that they recruit, secrete
basal lamina components that stabilise growing vessels. By contrast, stalk cells, characterised by low expression of
Delta and VEGFR2, and high Notch, migrate along the paths explored by tip cells, and proliferate to replenish the
elongating sprout. EC phenotypes are not static and strongly depend on the local microenvironment (signalling cues,
interactions with other ECs, among others) [2, 7]. Furthermore, ECs within sprouts exchange their relative positions
via a phenomenon called cell mixing [2, 7]. Every time a cell rearrangement takes place, the cells’ microenvironment
changes. This, in turn, leads to recurrent (re)establishment of phenotypes and variations in gene expression within
the phenotype. As a consequence, a dynamic coupling between cell phenotypes and rearrangements is established.
The functional role of cell mixing, and how it is affected by variations in the gene expression patterns of ECs, are
unclear, although it is acknowledged that cell rearrangements greatly influence the pattern of the vascular network
and its functionality [1, 7, 14,15].

Angiogenic sprouting has been extensively studied from a theoretical modelling perspective in numerous physiolog-
ical and pathological contexts, including tumour growth [10,16–33]. Many models [18–20,22,24–28,32] fall within
the so-called snail-trail paradigm [31]. In this approach, EC phenotype acquisition is assumed to be irreversible;
a subset of cells, associated with the tip phenotype and situated at the leading edge of growing sprouts, responds
chemotactically to gradients of signalling cues such as VEGF. The rest of the cells are assumed to be stalk cells
which passively follow cells at the leading edge of the sprouts. Cell rearrangements are neglected and properties
such as branching are hardwired via ad hoc rules, where the probability of branching depends on environmental
factors [18–20,24, 25, 28]. Furthermore, in the majority of models, chemotactic behaviour is coded into the model via
an explicit bias of the migration probabilities towards regions of higher VEGF concentration [18–20, 24–28]. As a
result, these models are unable to explain how variations in subcellular signalling, which determine cell phenotype,
modify the structure of the growing network, or how specific mutations might lead to pathological networks. A more
extensive review on the mathematical and computational models of angiogenesis can be found in [34–36].

Several recent computational models have started to address these issues [3, 37]. For example, Bentley et al. [3]
studied the mechanisms underlying cell rearrangement behaviour during angiogenic sprouting. Using computational
modelling and experimentation, they identified the Notch/VEGFR-regulated dynamics of EC adhesion as a key
driver of EC rearrangements. Furthermore, simulation and quantitative image analysis indicated that abnormal
phenotype synchronisation exists under pathologically high VEGF conditions, in retinopathy and tumour vessels [3].
However, due to the computational intensity of the model, only small scale simulations (a single vessel with 10 ECs)
were performed. Boas and Merks [37] have also studied EC rearrangement within small vascular networks. They
investigated how a cell at the leading position in a sprout can be overtaken by another cell, a phenomenon called cell
overtaking. Their simulation results, obtained using the cellular Potts framework, suggest that cell overtaking occurs
in an unregulated fashion, due to the stochastic motion of ECs. Moreover, their findings suggest that the role of the
VEGF-Delta-Notch pathway in cell overtaking is not to select a cell with the highest expression of Delta ligand and
VEGFR2, corresponding to the tip phenotype, that will shuffle up towards the sprout tip. Rather, cell overtaking
is proposed to ensure that a cell that ends up occupying the leading position in a vessel, due to its spontaneous
migration backward and forward within the sprout, acquires the tip phenotype. In their model, time-dependent
ordinary differential equations (ODEs) are used to simulate the dynamics of subcellular signalling pathways within
each cell. Cells are assigned a discrete phenotype, tip or stalk, and variations in their gene expression levels that
might influence the behaviour of the cell were neglected.

Cell rearrangements have been proposed to be the main driver for early sprouting angiogenesis [1–3,7]. In particular,
reduced cell mixing leads to formation of pathological networks characterised by superimposed aberrant layers of
vessels [1]. In order to characterise this phenomenon in a quantitative manner and determine its influence on the
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growth of vascular networks, we introduce a multiscale mathematical model of early angiogenesis (i.e. on a time
scale of hours where cell birth/death are negligible). The model accounts for individual cell gene expression patterns
associated with the VEGF-Delta-Notch signalling pathway that define two distinct cell phenotypes. Gene expression
patterns are dynamically updated upon cell migration and in response to fluctuations in the cell microenvironment.
Since cell behaviour has been shown to be heterogeneous and vary significantly depending on phenotype, cell-ECM
interactions (ECM proteolysis, ECM remodelling, alignment of ECM fibrils) are assumed to be phenotype-dependent.
In turn, the ECM configuration directly influences EC polarity and migration, thus changing the local environment of
cells and providing coupling between the subcellular, cellular and tissue scales of the model.

One of our main results is that the model is capable of reproducing the typical behaviour of ECs; branching,
chemotactic sensitivity and cell mixing are emergent properties of the model (instead of being hardwired into it) that
arise as a result of cell-ECM interactions involving cells with dynamic subcellular gene expression. By calibrating and
validating our model against experimental data, we can investigate the role that abnormal subcellular signalling has
on cell-matrix interactions, cell rearrangements and the general structure of the growing vascular network. Notably,
we show how externally imposed changes in the extracellular environment (ECM density, VEGF concentration, VEGF
gradient) and mutations in gene expression of ECs can alter the branching pattern of growing sprouts.

To quantify cell mixing within the vascular network, we introduce a mixing measure. This scalar metric is
calculated for cells that are immediate neighbours at a given time moment, characterising how far they spread within
the vascular network migrating during a fixed time interval. Our results suggest that in a formed network, temporal
evolution of the mixing measure reaches a steady state that depends on the relative proportion of EC tip and stalk
phenotypes. However, during the early stages of network formation the time evolution of the mixing measure varies
as the extracellular environment and cells’ expression levels of genes such as VEGFR1 and VEGFR2 change. In
particular, we show that networks created by mutant cells with impaired gene expression of VEGF receptors exhibit a
delayed mixing compared to the networks formed by wild type cells with unaltered gene expression. The networks
formed by these mutants demonstrate an imbalance between effective sprout elongation and branching. Therefore, our
results confirm the crucial role of cell rearrangements in the formation of functional vascular networks in sprouting
angiogenesis [1, 7].

The remainder of this paper is organised as follows. In the Experimental motivation section, we summarise
the setups and results of several experimental studies which motivated the formulation of our multiscale model. The
Materials and methods section contains a summary of the relevant biological information, a description of our
multiscale model and metrics used to analyse vascular network evolution. In the Results section we compare our
simulation results with data from Arima et al. [2] and Shamloo & Heilshorn [38]. These data were extracted from in
vitro experiments, and enable us to define a set of basal parameter values for our model. Further model validation is
performed against experimental results involving mutant cells, with modified expression of VEGF receptors, carried
out by Jakobsson et al. [7]. Finally, we present results on EC mixing quantification and show how they relate to the
different branching patterns of the growing vascular networks. We conclude by drawing together our findings and
outlining possible avenues for future work in the Discussion section.

Experimental motivation

The model we develop is motivated by in vitro experiments in which an aortic ring assay was embedded into a collagen
matrix with a uniform VEGF concentration (0, 5 or 50 ng/ml) [2, 8]. Computational analysis of dynamic images,
collected using time-lapse microscopy, revealed complex dynamical cell rearrangements within growing sprouts, a
phenomenon termed cell mixing. The authors concluded that over short periods of time (e.g. 22.4 h averaged over
all experiments in [2]) cell rearrangements are the main driver of sprout elongation. Interestingly, successful sprout
growth was seen in a uniform distribution of VEGF across the substrate – sprout elongation velocity was observed to
vary as the concentration of the external VEGF was changed, but no VEGF gradient was necessary for coordinated
migration of ECs.

Dynamic cell rearrangements within elongating sprouts are a direct consequence of cells continuously updating
their phenotype (i.e. adapting their gene expression pattern, depending on their environment [1, 3, 7]). Jakobsson
et al. [7] identified the VEGF-Delta-Notch signalling pathway as the key pathway controlling this phenomenon.
Using mutant cells heterozygous for VEGFR1 (VEGFR1+/-) and VEGFR2 (VEGFR2+/-) with halved (compared to
wild-type (WT) cells) gene expression of the corresponding VEGF receptor, they investigated how differential levels
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of VEGF receptors affect the probability that a WT or mutant EC will occupy the leading position in a growing
sprout. Embryoid bodies (three-dimensional spherical aggregates of cells) derived from WT cells mixed with one of
the populations of mutant cells (50% and 50%) were indistinguishable from those formed by WT cells only, however,
the contribution of each cell line to the leading position differed. In particular, VEGFR1+/- (VEGFR2+/-) cells
demonstrated enhanced (reduced) competition for the leading cell position. The role of the VEGF-Delta-Notch
signalling pathway in establishing competitive advantage was reinforced by experiments with the DAPT inhibitor,
which abolishes Notch signalling in all EC lineages. Treatment with DAPT, although leading to hypersprouting,
restored balance in competition for the leading cell position. Motivated by these results and our interest in studying
cell rearrangements, we account for the VEGF-Delta-Notch signalling pathway of individual cells in our model.

The coordinated migration of ECs is a result of cell-ECM interactions [39–43]. Specifically, cell migration depends
on the EC ability to degrade ECM proteins via proteolysis in order to form ECM-free vascular guidance tunnels for
effective sprout elongation. This was confirmed by experimental results performed by Shamloo et al. [38]. Therein,
ECs were cultured within a microfluidic device with a maintained gradient of VEGF concentration and the response
of ECs to variations in ECM components, specifically collagen, was considered. Their results showed that there is a
“sweet spot” of collagen density for the formation of angiogenic sprouts. In low collagen densities, ECs migrate freely
into the ECM without forming sprouts; at intermediate concentrations, structures resembling angiogenic sprouts form;
at high collagen densities, ECs are unable to migrate into the matrix significantly and form thick short protrusions.
These experimental results motivated us to include cell-ECM interactions in our model.

Most in vitro experiments are performed on flat substrates in which the depth of the substrate can be considered
negligible compared to its length and width [2,8,38,40]. Thus, we formulate our model in a two-dimensional framework.

Materials and methods

Biological summary

Angiogenic sprouting is initiated when an active cytokine, such as VEGF, reaches the existing vasculature and
activates quiescent ECs. Active ECs express proteases that degrade the basement membrane (BM) so that EC
extravasation and migration can occur [44,45]. In vivo and in vitro, coordinated migration is guided by local chemical
and mechanical cues [42, 46, 47]. While VEGF-activated ECs at the front of the vascular network explore new space
and anastomose, to form branching patterns, previously created vascular sprouts mature, form lumens and, with the
help of murine cells (pericytes and smooth muscle cells), stabilise [48]. In our mathematical model, we focus on EC
migration, and its regulation by local environmental (mechanical and chemical) cues. Due to the short time scales
considered in the model, processes such as proliferation, vessel maturation and lumen formation are neglected.

VEGF-induced actin polymerisation and focal adhesion assembly result in substantial cytoskeletal remodelling
as required for cell migration [49]. This includes actin remodelling to form filopodia and lamellipodia, stress fibre
formation, and focal adhesion turnover [41]. A crucial consequence of such remodelling is that ECs acquire front-
to-rear polarity which coincides with the direction of their migration [50]. Membrane protrusions, such as filopodia
and lamellipodia, increase the cell surface area at the leading edge. More VEGF receptors and integrins, which
bind to ECM components, become activated at the cell front to further reinforce the cytoskeleton remodelling and
polarisation [51]. This mechanism is known as taxis (e.g. chemotaxis, haptotaxis) and allows ECs to sense extracellular
cues and migrate towards them. The cells’ chemotactic sensitivity leads to the so-called brush-border effect which is
characterised by increased rates of branching and higher EC densities closer to the source of the VEGF stimulus
which can be sensed by cells and biases their migration towards higher VEGF concentrations.

Whilst interactions with ECM components play a central role in EC polarisation and movement, EC migration, in
turn, reorganises and remodels the ECM [45]. Prior to assembly of the basement membrane of the newly formed
vessels, the ECM microenvironment consists mostly of collagen I and elastin fibers. Activated ECs secrete matrix
type 1 metalloproteinases (MT1-MMPs) that degrade the ECM [44,46,52]. This process generates ECM-free tunnels
into which the sprouts can elongate [52]. As sprouts grow, they assemble a basement membrane which contains,
among other things, fibrous components (collagen IV, fibronectin and various laminins [44]) that are secreted by the
ECs and whose function is to promote cell-cell and cell-ECM contact and to limit EC migration [46].

Further matrix reorganisation occurs in response to the mechanical forces generated by migrating cells as they
realign the collagen fibrils of the ECM. Several experiments have shown that cells with extended filopodia and
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lamellipodia form focal adhesions with the ECM components and realign them by pulling in the direction parallel to
their motion [39,40,51,53]. They also move the fibrils from the local neighbourhood closer to their surfaces. As a result,
collagen fibrils accumulate and align along the direction of sprout elongation. Since cell-followers form focal adhesions
with these aligned fibrils they automatically polarize and migrate in the direction of sprout elongation [42,46, 47]. In
this way sprout integrity is maintained and the coordinated motion of ECs emerges.

The default phenotype of an EC that has been activated by VEGF is a “tip” cell [12,13]. Tip cells are characterised
by exploratory behaviour and low proliferative activity. Thus, although the ECM regulates EC behaviour to a great
extent [45], if all cells were to move at the same time in an exploratory fashion, sprout integrity would be lost. In
non-pathological angiogenesis, typical vascular network morphology is obtained when EC proliferation and migration
(i.e. the exploration of space by active ECs in response to signalling cues) are properly balanced. This balance is
mediated by the Delta-Notch signalling pathway, which provides ECs with a contact-dependent cross-talk mechanism
by which they can acquire a “stalk” cell phenotype [12,13]; stalk cells are characterised by reduced migratory and
higher proliferative activities. In this way, cell-cell communication allows cells to adjust their gene expression patterns
(and, hence, phenotype) and to coordinate their behaviour [54]. The processes influenced by cell phenotype in our
model are illustrated in Fig 1(A). The ratio between the number of tip and stalk cells during sprouting plays a key
role in the integrity of the developing vascular network and its functionality. This was confirmed by experiments in
which Notch activity was inhibited or completely blocked. This caused all cells to adopt a tip cell phenotype and led
to pathological network formation [7].

Mathematical modelling of random cell migration

Stochastic approaches have been successfully used to mathematically model systems with random, heterogeneous
behaviour, including spatially extended systems [27,55–64]. We model cell migration at the cellular scale stochastically
to account for random cell motility, cell mixing, and branching dynamics. Such an approach allows us to compare our
model with in vitro experiments which, as with any biological system, are noisy.

Within the context of spatially extended systems, a stochastic model can be formulated as an individual-based,
or a compartment-based, model. In the former approach, the Brownian dynamics of each individual agent (cells,
molecules, etc.) are simulated, which becomes computationally expensive as the number of agents increases. The
latter is more numerically efficient for the purpose of simulating small vascular networks containing at most hundreds
of cells. In this method the domain is partitioned into non-overlapping compartments, or voxels so that the position
of each agent is known up to the voxel size. Agents within the same voxel are considered indistinguishable and
reactions between them occur independently of those in other compartments. Movement of agents between the voxels
is modelled as a continuous time random walk (RW). This is also known as the Reaction Diffusion Master Equation
(RDME) approach.

A weakness of the RDME approach is that it does not converge to its individual-based Brownian dynamics in
dimensions greater than one for compartments with size less than a lower bound (of the order of the reaction radius
in the Smoluchowski interpretation) [65]. The RDME breaks down as the voxel size tends to zero because the waiting
time for multi-molecular reactions becomes infinite. One strategy to address this problem, the so-called convergent
RDME (cRDME), is an approximation of Doi’s model for the binary reactions of the form A + B → C proposed
in [66]. In the cRDME, agents from different voxels may interact via multi-molecular reactions provided they lie
within a predefined interaction radius. In this way the artefact of vanishing reaction rates as voxel size tends to zero
is avoided.

We formulate the cellular scale of our model using the cRDME approach. We introduce an interaction radius, Rc,
within which cells are assumed to interact. This approach also fits naturally with the VEGF-Delta-Notch driven cell
cross-talk that we incorporate at the subcellular scale of our multi-scale model (see below).

For the numerical implementation of the cRDME we use the Next Subvolume (NSV) method [67], which
is a computationally efficient implementation of the standard Stochastic Simulation Algorithm [68] to simulate
RDME/cRDME.

Summary of the multiscale model

The model we develop is a two-dimensional stochastic multiscale model of migration-driven sprouting angiogenesis.
Its structure is shown in Fig 1(B). Briefly, the model operates on three distinct spatial scales:

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.06.16.154369doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.154369
http://creativecommons.org/licenses/by/4.0/


Fig 1. Schematic summary of our model. (A) The gene expression profile of each cell (and, hence, its
phenotype) is accounted for at the subcellular scale of our model. It influences such processes as I. cell polarity and
branching, II. overtaking, III. extracellular matrix (ECM) proteolysis, IV. basement membrane (BM) assembly and V.
ECM realignment. The cartoons on the left illustrate each process, whereas the text-boxes on the right provide brief
descriptions of how they are influenced by tip and stalk cells. (B) The structure of our multiscale model. The
diagram illustrates the processes that act at each spacial scale. Arrows illustrate coupling between the scales.
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• The subcellular scale defines the gene expression pattern of individual cells. Since ECs contain a finite number
of proteins, some level of noise is always present in the system. Thus, we implement a stochastic model of the
VEGF-Delta-Notch signalling pathway to describe the temporal dynamics of the number of ligands/receptors for
each cell. This pathway is known to produce bistable behaviour. Cells exhibit either high Delta and VEGFR2
and low Notch levels (the tip phenotype) or low Delta and VEGFR2 and high Notch levels (the stalk phenotype).
Stochasticity allows random transitions between these phenotypes in regions of bistability, behaviour which
cannot be achieved in a deterministic model.

• The cellular scale accounts for cell migration. It is formulated as a variant of an on-lattice persistent random
walk (PRW) of ECs.

• The tissue scale keeps track of the local ECM environment of the cells. Local ODEs track the evolution of
the concentrations of the existing ECM and BM components, whereas ECM fibril alignment driven by EC
movement is updated using a phenomenological model.

An illustration of the model geometry can be found in Fig 2.

Fig 2. Model geometry. (A) To account for cell migration in the framework of a PRW, we cover the domain,

D ⊂ R2, by a uniform lattice L = {vk :
⋃NI

k=1 vk ⊃ D} of non-overlapping hexagonal voxels, vk, of width h (or

hexagon edge, a, h =
√

3a). We denote by I = {k = (kx, ky)T : vk ∈ L} the set of 2D indices, with cardinal,
|I| = NI . The coordinates of the centre of voxel vk are denoted by qk = (qxk , q

y
k)T . We assume that there is a

constant supply of ECs to the domain, coming from the vascular plexus. These ECs enter the domain at fixed
boundary voxels, defined as a set, IV P (coloured in green). (B) A detailed illustration of an individual voxel, vi.
s = h−1(qj − qi) denotes a normalised vector of the migration direction between neighbouring voxels, vi and vj .
There are at most 6 possible migration directions for each hexagonal voxel. Each migration direction, s, can be
characterised by an equivalent angle interval [φsmin, φ

s
max].

In general, an EC has an arbitrary shape which depends on its cell-cell and cell-matrix focal adhesions. In our
model we do not keep track of the exact cell shape and assume that cell position is known up to the position of
its nucleus. Thus, when referring to a cell position, we refer to the position of its nucleus and assume that the
cell has some arbitrary shape centred on the voxel containing its nucleus (see Fig 3(A)). A consequence of this
approach is that, since cells can extend membrane protrusions and interact with distinct cells beyond their first
neighbours, interactions between cells in our model are non-local. We introduce two interaction radii, Rs and Rc, for
the subcellular and cellular scales, respectively, and assume that a cell can interact with any neighbouring cell partially
overlapped by a circular neighbourhood of these interaction radii (see Fig 3(A)). In particular, at the subcellular scale
trans-binding between a Delta ligand on one cell and a Notch receptor on another can occur if the distance between
their cell centres is less than the interaction radius, Rs. Thus, the total amount of ligand/receptor (belonging to a
neighbour/neighbours) to which a cell is exposed is proportional to the surface area of the overlap region between the
circular neighbourhood and the neighbouring voxel/voxels (not necessarily first neighbours). A similar modelling
technique is employed at the cellular scale with the interaction radius, Rc, which we use to account for cell-cell
adhesion. These radii are not necessarily equal (although they are of the same order of magnitude) since different
types of interactions are considered at each scale.
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Fig 3. (Caption on the next page.)
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Fig 3. (Previous page.) Illustrations for the subcellular scale of the model. (A) Since we track the position
of cells only up to the positions of their nuclei, interactions are assumed to be non-local within some interaction
radius. The subcellular and cellular scale interaction radii are denoted by Rs and Rc, respectively. (B) Illustration of
values of the weight coefficients, αij (see Eq (5)). (C) Schematic illustration of the VEGF-Delta-Notch signalling
pathway. NICD stands for Notch intracellular domain, VEGFR2 for VEGF Receptor 2 and VEGFR2* for activated,
i.e. bound to VEGF, VEGFR2. In this case, the local environment of Cell 2 is Cell 1, and Dext and Next correspond,
respectively, to the Delta and Notch concentrations in Cell 1 (and vice versa). Circled numbers correspond to the
kinetic reactions listed in (D). (D) Kinetic reactions used for the VEGF-Delta-Notch pathway. HS(var) indicates
that the transition rate of gene expression of a protein is transcriptionally regulated by the signalling variable, var.
Here, HS(·) is the shifted Hill function (see caption of Table 2). Simple arrows indicate reactions with constant rates.
See Table 1 for description of the model variables. (E) Bifurcation diagram of Notch concentration, N , as a function
of external Delta ligand, Dext, corresponding to the system of equations Eq (1). Full lines denote stable steady states;
dashed lines – unstable steady state; yellow filled dots – saddle-node bifurcation points. (F) Phenotype diagram as a
function of external Delta, Dext, and external VEGF, V , corresponding to the system of equations Eq (1). (G) In
simulations, the local environment of a cell (Delta and Notch levels in a neighbourhood of the cell, Dext and Next
(Eq (6))) dynamically changes with time due to cell migration. This leads to phenotype switches.

We perform our numerical simulations over time periods that are commensurate with the duration of in vitro
experiments (hours) and for which proliferation is negligible [2,7, 54]. For these reasons the model focuses only on
the coordinated migration of ECs and assumes that proliferation occurs only at the vascular plexus [54], the initial
vascular bed. This effect is implemented by introducing ECs into the domain at a specific set of boundary voxels,
IV P (see Fig 2(A)).

Since the experimental data we use for model calibration and validation were extracted from experiments carried
out with constant VEGF concentration supplied externally, we assume that the distribution of VEGF is maintained
at a (prescribed) constant value at all times.

Interested readers will find more detail on model formulation later in this section and in S1 Text.
We list the variables of our multi-scale model in Table 1.

Subcellular scale. VEGF-Delta-Notch model of phenotype selection.

At the subcellular scale we account for the VEGF-Delta-Notch signalling pathway which determines the gene expression
pattern (phenotype) of each EC (see Fig 3(C)). This pathway mediates inter-cellular cross-talk and typically produces
alternating patterns of tip and stalk cell phenotypes within growing sprouts [11]. In our model, the pathway is
simulated via a bistable stochastic system which accounts for intrinsic noise and, in particular, noise-induced random
transitions between the stable steady states of the system (phenotypes) [69–72]. We posit that such phenotypic
switches are essential for understanding the complex dynamics of ECs within growing sprouts [2]. Our subcellular
model is based on previous work [73–76]. Following [75,76], we combine the lateral inhibition model of the Delta-Notch
signalling pathway introduced in [73,74] with the VEGF signalling pathway. The Delta-Notch model accounts for
cis-inhibition when a Delta ligand and Notch receptor from the same cell inhibit each others’ activity. We include this
interaction since cis-inhibition has been shown to substantially speed up phenotype specification [77].

Individual cell system. The kinetic reactions acting on individual cells system are illustrated in Fig 3(D). We
account for trans-activation of Notch receptor (production of an NICD) when it trans-binds to a Delta ligand belonging

to a neighbouring cell, Dext (reaction 1a ). If a Delta ligand trans-binds to a Notch receptor on a neighbouring cell,

Next, it is either endocytotically recycled or degraded (reaction 1b ). In this reaction, we assume that the active
Notch signal is produced in the neighbouring cell, the dynamics of which are irrelevant for the cell of interest. Once
cleaved from the Notch receptor, active Notch signal, NICD, is translocated to the cell nucleus where it down-regulates
gene expression of VEGFR2 (reaction 2 ) and up-regulates gene expression of the Notch receptor (reaction 3 ).
Degradation of NICD is accounted for in reaction 7 . Cis-inhibition is accounted for in reaction 4 in which mutual
inhibition is assumed for a Delta ligand and a Notch receptor interacting within the same cell. External VEGF, V ,
can bind to and activate a VEGFR2 (reaction 5 ). This leads to up-regulation of Delta production (reaction 6 ).
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Variable Description

S
u
b
c
e
ll
u
la
r

sc
a
le

N = (N1, ... , NNI
) The distribution of Notch receptor among voxels. If there is no cell nucleus in a voxel vi,

i.e. Ei = 0, then Ni = 0.
D = (D1, ... , DNI

) The distribution of Delta ligand among voxels. If there is no cell nucleus in a voxel vi, i.e.
Ei = 0, then Di = 0.

I = (I1, ... , INI
) The distribution of Notch intracellular domain (NICD) among voxels. If there is no cell

nucleus in a voxel vi, i.e. Ei = 0, then Ii = 0.
R2 = (R21, ... , R2NI

) The distribution of VEGFR2 receptor among voxels. If there is no cell nucleus in a voxel
vi, i.e. Ei = 0, then R2i = 0.

R2∗ =
(
R2∗1, ... , R2∗NI

)
The distribution of activated VEGFR2 receptor (VEGFR2 bound to extracellular VEGF)
among voxels. If there is no cell nucleus in a voxel vi, i.e. Ei = 0, then R2∗i = 0.

C
e
ll
u
la
r

sc
a
le

E = (E1, ... , ENI
) The distribution of EC nuclei among voxels. Ei = 1 if a cell nucleus is present in the voxel

vi, Ei = 0, otherwise. At most one cell nucleus is allowed per voxel.
EN =

(
EN1 , ... , E

N
NI

)
The neighbourhood nucleus distribution. This variable is completely defined by the

configuration of E. Each ENi =
∑

j 6=i φijEj∑
j 6=i φij

, where φij =
|vj∩BRc (i)|
|vj | ∈ [0, 1], BRc

(i) is a

circular neighbourhood of interaction radius, Rc, centred in the voxel vI , and | · | denotes
area.

T
is
su

e
sc
a
le

c = (c1, ... , cNI
) The ECM density, consisting mostly of collagen I and elastin fibers. It is degraded by cells

via a process termed ECM proteolysis (Fig 1(A)III.). We assume 0 ≤ ci ≤ cmax for all
i ∈ I, where cmax > 0 is a parameter characterising the maximum density of the ECM.

m = (m1, ... ,mNI
) The concentration of basal lamina components (collagen IV, fibronectin and various

laminins) newly deposited by cells that are used for BM assembly (Fig 1(A)IV.). We
assume 0 ≤ mi ≤ 1 for all i ∈ I; mi = 0 if no BM components have been deposited yet,
whereas mi = 1 if a BM has been assembled around the sprout segment situated in voxel
vi.

l = (l1, ... , lNI
) The orientation landscape (OL) variable representing the alignment of ECM fibrils

(Fig 1(A)V.) within the voxel. For a hexagonal lattice li = {lsi }s∈S for all possible
jumping directions s ∈ S = {r, ur, ul, l, dl, dr} (r - right, ur - upward-right, ul - upward-
left, l - left, dl - downward-left, dr - downward-right), s ∈ R2 (see Fig 2). An example of
possible orientation landscape configurations is shown in Fig 5(A).

Table 1. The description of the model variables. The variables in the table are organised by spatial scales. Subcellular
variables, used to simulate the VEGF-Delta-Notch signalling pathway, define the gene expression pattern of individual cells
(their phenotypes). Cellular scale variables define the occupancy of the lattice by ECs. Tissue scale variables define the
composition and structure of the ECM. Bold letters denote vector variables specifying variable configuration for the whole
lattice; normal font letters correspond to the variables associated with a particular voxel, the index of which is specified by a
subscript.

Reaction 7 corresponds to degradation of NICD.
An essential feature of our subcellular model is that it exhibits bistability. To demonstrate this, we derived

the mean-field limit equations associated with the kinetic reactions shown in Fig 3(D) (see Eq (1) in Table 2) and
performed a numerical bifurcation analysis (see S1 Table for a list of the parameter values). The results presented in
Fig 3(E) show how the steady state value of the Notch concentration, N , changes as the concentration of external
Delta ligand, Dext, varies. For small (large) values of Dext, the system supports a unique steady-state corresponding
to the tip (stalk) phenotype. For intermediate values of Dext, the system is bistable: both phenotypes coexist. The
combined effect of the external VEGF, V , and Dext on the system is shown in Fig 3(F). We see that varying V
does not alter the qualitative behaviour shown in Fig 3(E), although the size of the bistable region decreases as V
decreases.

The stable states of the subcellular system are characterised by distinct gene expression patterns (for example, low
(high) Notch level, N , corresponds to tip (stalk) phenotype, see Fig 3(E)). Thus, one variable suffices in order to
effectively define the phenotypes. We use Delta level, D, as a proxy variable in the following way
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Individual cell system (1) Multicellular system (2)

dN

dt
= bNH

S(I; I0, λI,N , nN )− γN − ktDextN − kcND,

dD

dt
= bDH

S(R2∗;R2∗0, λR2∗,D, nD)− γD − ηktNextD − kcND,

dI

dt
= ktDextN − γe I,

dR2

dt
= bR2H

S(I; I0, λI,R2, nR2)− γR2− kv V R2,

dR2∗

dt
= kv V R2− γeR2∗,

Dext, Next are constant input parameters.

dNi

dt
= bNH

S(Ii; I0, λI,N , nN )− γNi − ktNiDi − kcNiDi,

dDi

dt
= bDH

S(R2∗i ;R2
∗
0, λR2∗,D, nD)− γDi − ηktDiNi − kcNiDi,

dIi
dt

= ktNiDi − γeIi,

dR2i
dt

= bR2H
S(Ii; I0, λI,R2, nR2)− γR2i − kvR2iV,

dR2∗i
dt

= kvR2iV − γeR2∗i ,

Dext, Next are given by (6), i ∈ I.

Table 2. Mean-field equations associated with the stochastic system of the VEGF-Delta-Notch signalling
pathway for the individual cell system (left column) and the multicellular system (right column). Here HS(·)
is the so-called shifted Hill function [78]. Its functional form is given by HS(X) = HS (X;X0, λX,Y , nY ) =

1+λX,Y (X/X0)
nY

1+(X/X0)
nY ,

where X0, λX,Y and nY are positive parameters (see S1 Text for more details). Description and values of parameters can be
found in S1 Table.

tip phenotype: D ≥ bD,
stalk phenotype: otherwise,

(3)

where bD is baseline gene expression of Delta ligand in ECs (see S1 Table).

Multicellular system. In order to account for cell-cell cross-talk via the VEGF-Delta-Notch pathway, we extend
the individual cell system (see Fig 3(D)) to a multicellular environment by specifying for each cell the external (i.e.
belonging to neighbouring cells) amount of Delta and Notch to which it is exposed. As mentioned above, since cell
positions in our model are only known up to the position of their nuclei, we assume non-local interactions between
cells within a reaction radius, Rs. Thus, we define the local environment of a cell whose nucleus is situated in voxel vi
as the set of voxels with a non-zero overlap region with a circular neighbourhood of radius Rs centred at voxel vi,
BRs

(i),

H(i) := {vj : vj ∩ BRs(i) 6= ∅, j 6= i, j ∈ I}. (4)

The weights, αij , assigned to each voxel vj ∈ H(i), (see Fig 3(B)) are defined as follows

αij =
|vj ∩ BRs

(i)|
|vj |

, i, j ∈ I, (5)

where | · | denotes 2D area.
The external Delta (Notch) concentration, Dext (Next), for a cell situated in a voxel vi is defined as follows:

Dext = Di =
∑

vj ∈ H(i)

αijDj ,

Next = Ni =
∑

vj ∈ H(i)

αijNj ,
(6)

where Dj (Nj) denotes the Delta (Notch) concentration in voxel vj .
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Therefore, our multicellular stochastic system at the subcellular scale consists of the same kinetic reactions as in
Fig 3(D) formulated for each voxel vi, i ∈ I with Dext, Next given by (6). It is important to note that, in simulations
of angiogenic sprouting, the quantities Dext and Next dynamically change due to cell migration, thus leading to
phenotype re-establishment (see Fig 3(G)).

When simulated within a two-dimensional domain, our multicellular system produces an alternating pattern of
tip/stalk phenotypes. As the reaction radius, Rs, changes the system dynamics do not change but the proportion of
tip and stalk cells does. To illustrate this, we ran simulations of the stochastic multicellular system for a 10×12 regular
monolayer of cells for different values of the interaction radius, Rs (see S1 Fig). These simulations revealed that the
distance between tip cells increases (i.e. the proportion of tip cells decreases) as Rs increases. We also investigated
how phenotype patterning changes within a monolayer as cis-inhibition intensity varies (see Supplementary material,
S1 Text). For low values of the cis-inhibition parameter, κc, typical chessboard tip-stalk pattern is produced; as κc
increases, ECs with tip phenotype can become adjacent to each other, thus increasing the time to patterning, since
the lateral inhibition is weakened (see SM-Fig 5 in S1 Text).

The mean-field equations associated with the multicellular stochastic system are given by Eq (2) in Table 2.
More detail on the derivation and analysis of the subcellular model can be found in Supplementary material, S1

Text.

Cellular scale. Persistent random walk and cell overtaking.

At the cellular scale we account for EC migration and overtaking. In more detail, we consider a compartment-based
model of a persistent random walk (PRW) [79], in which transition rates depend on the phenotypic state of individual
cells and their interactions with ECM components.

We denote by s = h−1(qj − qi) ∈ S the migration direction, as a unit vector pointing from qi towards qj , the
centres of neighbouring voxels vi and vj , respectively (see Fig 2(B)). In order to formulate the PRW of ECs, we
introduce, ω(i→ j), to denote the probability that a cell moves from voxel vi to a neighbouring voxel vj (i.e. along
the direction s) where

ω(i→ j) = D̃ω Ei S (ci)F
(
ENi
)
ρij(Di)

[∫ 2π

0

Ws(φ)fvM (φ|µ, κ)dφ

]
.

diffusion
coefficient

cell
occupancy

ECM
density

cell-cell
adhesion

overtaking
probability

cell polarity

(7)

We explain below each of the terms that appears in Eq (7) (see also Fig 4 for a graphical illustration and Table 1
for a description of the model variables).

Diffusion coefficient. Transition rates in the framework of a PRW must be appropriately scaled with the size of a
voxel (depending on the particular lattice used to discretise the domain). For a uniform hexagonal lattice, L, the

diffusion coefficient of the transition ω(i→ j) is scaled as D̃ω = Dω/h2 [80]. Here h [µm] is the width of a hexagonal

voxel (see Fig 2) and Dω

[
µm2

min

]
is the macroscale diffusion coefficient for the ECs.

Cell occupancy. If a cell nucleus is present in voxel vi, then Ei = 1 (at most one cell nucleus is allowed per voxel).
If the voxel vi is empty, then Ei = 0 and ω(i→ j) = 0.

ECM density. The function S(ci) accounts for the effect of the local ECM density, ci, on cell motility. In general,
S(·) is a decreasing function of its argument. We assume further that ECs cannot move if the ECM concentration
exceeds a threshold value, cmax (S(ci) = 0 for ci ≥ cmax). In our simulations we fix

S(ci) =

{
1− ci

cmax
if 0 ≤ ci < cmax

0, otherwise.
(8)
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Fig 4. A cartoon illustrating cell migration. Migration transition rate (Eq (7)) is illustrated for a cell coloured
in green. Its nucleus is marked with a green star. The motility of this cell depends on the ECM density, ci, in the
voxel where its nucleus is situated (accounted for by the S(·) function (Eq (8)). The green cell forms cell-cell
adhesions with other cells coloured in red. In this work, we assume a circular neighbourhood for cell-cell interactions
within the so-called interaction radius, Rc, for the cellular scale (here it is drawn to have the same value as in our
simulations, Rc = 1.5h, where h is the voxel width). This allows cells to interact beyond their immediate neighbours
as, for example, the cell with the nucleus marked by a red star and the focal green cell. Other geometries (e.g.
elliptical neighbourhood aligned with cell polarity vector) are unlikely to alter the model behaviour significantly since,
in sprouting structures, lateral regions of the circular neighbourhood, which would be ignored by an elliptic
neighbourhood, are typically empty. Cell-cell adhesion is accounted for by the neighbourhood function, F (·), Eq (9).
The individual cell polarity, φ, is sampled from the von Mises distribution (Eq (12)) with the mean value given by the
mean polarization direction, ~p (calculated as a function of local ECM fibril alignment, li, Eq (13)). The distribution
spread, κ, is assumed to depend on the focal cell phenotype and the concentration of the BM components, Eq (14).

Cell-cell adhesion. The effect of cell-cell adhesion on cell migration is incorporated via the so-called neighbourhood
function, F (ENi ). Its argument, ENi , represents the number of ECs in a cell’s local neighbourhood (red-coloured cells
in Fig 4). The functional form of the neighbourhood function was chosen in order to phenomenologically capture the
way in which EC behaviour depends on the cell-cell contacts (see Fig 5(E)). In biological experiments, it was shown
that when a cell loses contact with its neighbours (laser ablation experiments in [8]) it halts until the following cells
reach it. This is captured by the increasing part of F (ENi ); when the number of neighbours around a cell is below the
first threshold, EF1, the probability of cell movement decreases rapidly to zero, thus the migration transition (Eq (7))
goes to 0 as well. Similarly, when there are many ECs in a cell’s neighbourhood, its movement slows down. This is
accounted for by the decreasing part of F (ENi ) when the number of neighbouring cells exceeds the second threshold
value, EF2, cell movement is slowed down and eventually halts in regions of high cell density.

F
(
ENi
)

=

(
1

1 + exp
(
−sF1(ENi − EF1)

) +
1

1 + exp
(
sF2(ENi − EF2)

) − 1

)+

, (9)

where (x)+ = max(0, x), and the parameters EF1, EF2, sF1 and sF2 characterise the shape of the curve.

Overtaking probability. This term accounts for cell overtaking and excluded volumes. A jump occurs with
overtaking probability, ρij(Di) = 1, if the target voxel, vj , is empty (Ej = 0). Otherwise, the cells in voxels vi
and vj switch their positions with probability ρij(Di) = pswitch(Di). We consider this probability to be phenotype
dependent. In particular, we assume that tip cells (see Eq (3)) are more motile because their filopodia are stronger
(see Fig 1(A)II.). Thus, the switching probability, pswitch(Di), is assumed to be an increasing function of the Delta
level, Di, of the migrating cell

ρij(Di) =

{
1, if Ej = 0,

pswitch(Di), otherwise.
(10)
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Fig 5. Series of sketches illustrating the components of the cellular scale persistent random walk.
(A) An example of the orientation landscape, l, configurations for a hexagonal lattice. 1. All fibrils are aligned in the
upward-right direction; this would be an example of a strongly aligned part of the ECM. 2. Half of the fibrils are
aligned to the right, half in the upward-right direction. This would correspond to a branching point. 3. As in 2. but
with some additional fibrils aligned in the left direction. (B) The window function, W s(φ), (Eq (15)) has been
defined as an indicator function over an angle interval corresponding to each possible migration direction s ∈ S
(lattice-dependent). The diagram illustrates these intervals for a hexagonal lattice. (C) Illustration of the probability
distribution function of the von Mises distribution, fvM (x|µ, κ), centred at µ = 0 for different fixed κ (Eq (12)). (D)
Illustration of the κ function as a function of local Delta ligand level, Di, and concentration of BM components, mi,
(Eq (14) with K = 13.6, km = 2.2 and kD = 0.0002) . (E) An example of the neighbourhood function, F (ENi )
(Eq (9), with EF1 = 0.15, EF2 = 0.6, sF1 = 30, sF2 = 10). (F) A sketch showing how the switching probability,
pswitch(Di), changes with the level of Delta in voxel vi, Di (Eq (10) with pmax = 0.26, sp = 0.0015, Dp=1500).
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where pswitch(Di) =
pmax

1 + exp(−sp(Di −Dp))
, (11)

the parameters sp and Dp characterise, respectively, the slope and position of the sigmoid, and pmax denotes its
maximum value (see Fig 5(F)).

Cell polarity. Prior to migration, cells develop a polarity which depends on their local environment. Following
[81, 82], we consider the local cell polarity, φ, (see Fig 4) to be a random quantity sampled from the von Mises
distribution. The probability density function (pdf) of the von Mises distribution reads

fvM (φ|µ, κ) =
exp (κ cos(φ− µ))

2πI0(κ)
. (12)

Its shape is characterised by two parameters: the mean value, µ, and the distribution spread, κ (see Fig 5(C) for a
sketch of this pdf for different values of κ). I0 is the modified Bessel function of the first kind of order 0.

In the context of EC migration, we view µ as the mean polarisation angle, and κ as cell exploratoriness. We
integrate ECM structure and composition and cell phenotype into our cell migration model by assuming that µ and
κ depend on these quantities. In particular, we assume that the mean polarisation angle, µ, depends on the ECM
fibril alignment which is represented in our model by the orientation landscape variable, li (see Table 1). From a
biological point of view, this is substantiated by experimental observations of cells forming focal adhesions with ECM
fibrils and, consequently, aligning along them [43]. We introduce the mean polarisation direction vector, ~p ∈ R2, and
compute µ as its principle argument (see Fig 4)

~p =

( ∑
dir∈S

Ha,n(ldiri )dirx,
∑
dir∈S

Ha,n(ldiri )diry

)T
,

µ = Arg(~p).

(13)

In Eq (13) the summation is taken over all possible directions for movement, dir = (dirx, diry)
T ∈ S (in a

hexagonal lattice there are at most 6 possible directions, see Fig 5(A)). The Hill function, Ha,n(·), is used to reflect
the natural saturation limit to alignment and deformation of the ECM fibrils, with a and n being fixed positive
parameters. Details about how fibril orientation (orientation landscape, li) is calculated are given below.

Cell exploratoriness, κ ≥ 0, is directly related to the EC phenotype (see Fig 1(A)I.). If κ ≈ 0, then the effect
of polarity on migration is weak, and cells can explore many directions (this behaviour is typical of exploratory
tip cells, see Eq (3)). By contrast, when κ � 1, the von Mises pdf is concentrated around µ (this behaviour is
characteristic of stalk cells, see Eq (3)). To account for such phenotype-dependent behaviour, we assume κ to be a
monotonic decreasing function of Di, the Delta level of the migrating cell. Similarly, increased concentration of the
BM components deposited by ECs (see Fig 1(A)IV.) reduces the exploratory capability of both tip and stalk cells. We
therefore propose κ to be an increasing function of the local concentration of the BM components, mi. Combining
these effects, we arrive at the following functional form for κ = κ(Di,mi):

κ = κ(Di,mi) = K exp(kmmi − kDDi). (14)

Here K, km, kD are positive parameters (see Fig 5(D) for a sketch of κ(Di,mi)).
Since our model of cell migration is formulated on a lattice, transition rates of type ω(i→ j) (jumps from vi into vj ,

in the direction s ∈ S) are associated with an angle interval [φsmin, φ
s
max] (see Fig 2(B)). This corresponds to the angle

between the vectors connecting the centre of the voxel vi with the endpoints of the voxel edge shared by vi and vj . For
example, in a hexagonal lattice, the right direction, r ∈ S, is associated with an interval [φrmin, φ

r
max] = [−π/6, π/6].

Therefore, we restrict the von Mises pdf, fvM (·), in Eq (7) to this interval by multiplying it by a corresponding
indicator function, W s(φ),

W s(φ) =

{
1, if φ+ 2πk ∈ [φsmin, φ

s
max], k ∈ Z,

0, otherwise.
(15)
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This function is 2π-periodic due to the fact that its argument is an angle. We refer to W s(φ) as the window function
(see Fig 5(B)).

Tissue scale. Modelling cell environment: ECM structure and composition.

We account for the alignment of ECM fibrils, l, density of the ECM, c, and concentration of the basal lamina
components, m (see Table 1) in the following way.

Local alignment of the ECM fibrils, l, serves as a scaffold for the orientated migration of ECs [43]. Thus, we refer
to l as the orientation landscape. Traction forces exerted by migrating ECs realign the ECM fibrils, so that they move
closer to the growing sprouts. Furthermore, since tip cells have more filopodia than stalk cells, they exert a greater
influence on the orientation landscape [39] (see Fig 1(A)V.). We account for phenotype-dependent ECM realignment
by assuming active stretching and accumulation of the fibrils upon cell movement between the voxels i→ j (in the
direction s ∈ S), i.e. when a transition of type ω(i→ j) occurs,

lsi = lsi + ∆lDi,

lsj = lsj + ∆lDi.
(16)

Here, the parameter ∆l > 0, which quantifies the linear response of ECM fibrils to cell migration, depends on the
substrate stiffness.

Besides active stretching induced by cell locomotion, we also consider passive relaxation of the orientation landscape.
We assume that relaxation follows a simple elastic model so that the orientation landscape decays exponentially at a
constant rate, ηl

lsi (t+ τ) = lsi (t) exp(−ηl τ), (17)

where τ is the waiting time of the occurred migration transition and the update is done for all voxels i ∈ I and all
directions s ∈ S.

The time evolution of the ECM density, c, and BM components, m, is modelled via local ODEs. We assume
phenotype-dependent ECM proteolysis induced by ECs (see Fig 1(A)III.). Since tip cells exhibit higher proteolytic
activity than stalk cells [83,84], we assume that the ECM at voxel vi is degraded at rate ηc(Di), which is an increasing
function of its argument

dci
dt

=

{
−ηc (Di) , if ci > 0,

0, otherwise;
(18)

ηc(Di) =
ηmax

1 + exp (−sc(Di −Dc))
. (19)

Here, in order to account for the natural saturation in EC proteolytic ability, we assume a sigmoidal functional form
for ηc(Di) with positive parameters Dc and sc (which correspond to the threshold level of Delta for initiation of ECM
proteolysis and sharpness of EC response, respectively) and maximum value ηmax.

Similarly, BM assembly (i.e. deposition of basal lamina components), is assumed to be phenotype-dependent (see
Fig 1(A)IV.). Tip cells are known to secrete BM components and to recruit and activate pericytes which secrete
basal lamina components around the sprout [83,84]. Thus we assume that the rate of secretion of BM components,
γm(Di), is an increasing function of Di

dmi

dt
=

{
γm(Di), if mi < 1.0,

0, otherwise.
(20)

γm(Di) =
γmax

1 + exp (−sm(Di −Dm))
, (21)

where, again, a sigmoidal functional form is assumed for γm(Di) with positive parameters Dm and sm (which
correspond to the threshold level of Delta for initiation of BM assembly and sharpness of EC response, respectively)
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and maximum value γmax. Here we assume the decay of BM components is negligible on the timescale of our
simulations.

Description of quantitative metrics

In order to calibrate and compare our simulation results to experimental data (see [2, 8]), we computed a number of
metrics defined below.

Displacement The displacement statistic is associated with the average distance travelled by a cell in 15 minutes [8].

Orientation The orientation statistic measures the average persistence of cells as they move. It is computed as the
average (over ECs in all performed realisations) quantity of ratios of the length of a smoothed trajectory to the actual
trajectory travelled by a single cell during simulation [2].

Directionality This metric measures the average proportions of cells moving in the direction of sprout elongation
(anterograde), cells moving in the direction opposite to sprout elongation (retrograde), and cells that do not move
during 20 minutes (still) [2].

Tip cell proportion This metric is computed as the ratio of cells characterised by tip phenotype (see Eq (3)) to
the total number of cells in the system at a given time point.

Mixing measure This metric is motivated by the experimental observation that the trajectories of individual ECs,
which initially form clusters with their immediate neighbours (see Fig 6 for an illustration), at later times diverge so
that cells can find themselves at distant regions of the angiogenic vascular network [2,8]. This metric is introduced to
quantify the cell rearrangements. Cell rearrangements are a key driver of sprout elongation during the early stages of
vasculature formation and, as such, are directly related to network growth patterns. Later in this work, we will show
how the mixing measure varies for different patterns of vascular network formation.

Fig 6. An illustration of the mixing measure. Two cells, labelled by ι1 and ι2, are located at the positions
corresponding to the set Icluster at time t. We track their trajectories in the simulated vascular network (dashed
black lines) during time tm. The mixing measure is defined as the difference between the distances between these
cells at times t and t+ tm, d(ι1, ι2, t) and d(ι1, ι2, t+ tm), respectively, normalised by the number of cells considered
and the maximum distance it is possible to travel in the simulated network. The distance function is defined as a
distance within the simulated network (see S1 Text for details).
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Briefly, during simulations, we assign a label to each EC, ι, and record its position in the system at time t,
p(ι, t) ∈ I. We specify a set of voxels that form a cluster of nearest neighbours in the lattice, Icluster. At the end of
the simulation, using recorded cell trajectories, we compute how far away (in a pair-wise fashion) cells that were
situated at the voxels in Icluster at time t have moved away from each other during time interval of duration tm.
Normalising this quantity by the cardinal of Icluster, | Icluster |, and the maximum possible travel distance in the
system, dmax, we obtain the mixing measure at time t, M(t), defined as

M(t) =
1

| Icluster | dmax

∑
ι1, ι2 such that

p(ι1,t)=i, p(ι2,t)=j

i,j∈Icluster, i 6=j

(
d(ι1, ι2, t+ tm)− d(ι1, ι2, t)

)
. (22)

Here d(ι1, ι2, t) is the distance between cells with labels, ι1 and ι2, at time t. It is computed as a distance in a
manifold of the simulated vascular network (see Fig 6). This is due to the fact that ECs do not migrate randomly but
rather within ECM-free vascular guidance tunnels of the generated vascular network.

The distance, dmax, in Eq (22), is the maximum distance in the simulated vascular network, defined as follows

dmax = max
ι1, ι2

d(ι1, ι2, Tmax), (23)

where Tmax is the final simulation time.
Detailed descriptions of all the metrics and computational algorithms that we used are given in S1 Text.

Results

Emergent qualitative features: branching and VEGF sensitivity

Our model exhibits two characteristic features of functional angiogenic structures, namely, branching and chemotactic
behaviour. A novel aspect of our multiscale model is that these features are emergent properties of its dynamics
rather than being hardwired into the model.

Specifically, branching is a direct consequence of the phenotype-dependent polarity of individual cells. When a
stalk cell within a sprout undergoes a phenotype switch and assumes a tip identity, its exploratoriness, increases
(i.e. its exploratoriness, κ, decreases). This enables the cell to develop a polarity angle that departs from the mean
elongation direction of the sprout, µ. As a consequence, a new branch forms. In our model, new branches are typically
initiated by cells exhibiting the tip cell phenotype (see S1 Movie). This behaviour is characteristic of ECs observed in
biological experiments [7, 9]. Figs 7-8 illustrate the branching phenomenon and stabilisation of the network structure
(due to accumulation of BM components deposited by ECs) in single realisations of numerical simulations of the
model for uniform VEGF distribution at concentrations of 5 and 50 ng/ml (see also S4 Movie and S1 Movie). Note
that in all our simulations “gaps” within sprouts can arise since we track the positions of cell nuclei and do not
account for their true spatial extent.

Chemotactic sensitivity in our model is a direct consequence of cell interactions with the ECM. In biological
experiments, proteolytic activity of cells was observed to increase as expression levels of Delta rise [83,84]. In our
model, increased levels of extracellular VEGF, V , up-regulate subcellular levels of Delta. As a result, an EC’s ability
to degrade the ECM and invade it at a faster rate is enhanced where VEGF levels are high. This can be seen by
comparing networks generated at different uniform VEGF concentrations (see Figs 7-8). The network generated at
VEGF=5 ng/ml is small (Fig 7(B), leftmost plot), and the vascular guidance tunnels created via proteolysis (middle
plot) are not fully formed. By contrast, the simulated network for VEGF=50 ng/ml (Fig 8(B), leftmost plot) has
a greater spatial extent, since collagen-free vascular tunnels (Fig 8(B), middle plot) facilitate cell migration within
them, increasing sprouting and cell persistence (see ECM density term in Eq (7)).

Our model also exhibits the brush-border phenomenon [11,85]. We performed a numerical simulation experiment
of sprouting initialised from an initial vessel placed in a matrix with linearly increasing VEGF gradient. Fig 9 shows
the evolution of the network at different times. The brush-border effect is evident at later times and characterised by
increased cell numbers and branches in the top regions of the domain where VEGF levels are high.
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Fig 9. Sprouting in static VEGF gradient. Snapshots at different times of a vascular network growing in linear
VEGF gradient increasing from VEGF = 0 ng/ml to VEGF = 5 ng/ml. (A) Time = 0 mins, initial setup. (B) Time
= 400 mins, new branches appear from the initial sprout mostly in the upper half of the domain (higher VEGF
concentration). ECs with lower positions have lower Delta level. (C) Time = 800 mins, the effect of the VEGF
gradient can be seen clearly. (D) Time = 1250 mins, the final configuration of the simulated V-shaped (opening
towards higher VEGF concentrations) network. Bar code shows the level of Delta, D. Numerical simulation was
performed using Setup 2 from S4 Table and final simulation time, Tmax = 2.5. Parameter values are listed in S1
Table and S2 Table for subcellular and cellular/tissue scales, respectively.

Model calibration

Having established that our model exhibits the essential features of branching and chemotactic behaviour observed in
experiments, we next compared our simulations with experimental results from [2, 8, 38]. This enabled us to estimate
baseline parameter values for processes at the cellular and tissue scales (estimated values of parameters associated
with processes acting at the subcellular scale are taken from previous works, see S1 Table).
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We ran 100 model simulations for uniform VEGF concentrations of 0, 5 and 50 ng/ml (Setup 1, see S4 Table,
with final simulation time, Tmax = 2.5, equivalent to 1250 mins, i.e. ≈ 20.8 h) and computed three metrics, namely,
displacement, orientation and directionality (see Materials and methods for definitions) as was done in [2, 8].
Although no systematic sensitivity analysis has been performed, the results presented in Fig 10 show that our
simulations reproduce general trends of angiogenic sprouting reported in [2,8]. Specifically, regarding the displacement
statistic (Fig 10(A)), agreement is very good, except for the inconsistency at displacement = 0 µm, i.e. cells that did
not move during the considered time interval (15 minutes). This inconsistency arises because we do not include the
vascular bed from which cells migrate (we account for it via as a boundary condition; see Fig 2(A) and S1 Appendix).
By contrast, in [8], cell displacements from the embedded aortic ring assay were included in the sample (these ECs are
mostly quiescent). Similarly, results regarding the orientation statistic (Fig 10(B)-(C)) are in good agreement with
the experimental results. In particular, in our model ECs are more oriented, i.e. more persistent, in higher VEGF
concentrations, which is a feature also observed in [2]. Concerning the directionality statistic (Fig 10(D)-(F)), we
note that when VEGF=0 ng/ml the numbers of anterograde and retrograde cells in the experiments [2] (Fig 10(F))
and numerical simulations (Fig 10(E)) are approximately equal. In this scenario, ECM proteolysis is slow and cell
migration is mostly constrained to existing sprouts. Thus, any anterograde movement is an overtaking event in
which the overtaken cell has to perform a retrograde displacement. As the VEGF concentration increases, ECM
proteolysis (see Eqs (18)-(19)) increases and more cells at the leading edge of sprouts can invade the surrounding
ECM, elongating the sprouts. This leads to an increase in the ratio of anterograde to retrograde moving cells with
the VEGF concentration.

Further evidence of agreement with experimental data is found by performing numerical simulations imitating
the experimental setup of [38]. We performed simulations of sprouting from a cell bead embedded into the ECM
(see Setup 3 from S4 Table) with varying collagen density (which corresponds to the initial ECM concentration,
cmax, in our model) and a static linear VEGF gradient. Results from single realisations of different values of cmax are
presented in Fig 11 (see also S2 Movie). These results show that in our model cells migrate freely with no preferred
direction for low cmax values, typical angiogenic morphology for intermediate values of cmax, and poorly elongating
sprouts for higher values of cmax. These findings are consistent with the experimental observations reported in [38].
Furthermore, we note that the “sweet spot” of ECM concentration is related to EC ability to form typical angiogenic
sprouting structures rather than to their ability to invade the ECM which decreases as the ECM concentration, cmax,
increases (see Fig 11).

We note that the results presented in this section were generated using a fixed set of parameter values, except for
the concentration of VEGF, V , and the concentration of collagen, cmax. Henceforth, we use these values as baseline
parameter values (see S2 Table).

Further model validation

In this section we validate our model by comparing its predictions with experimental results detailing the behaviour of
certain VEGF receptor mutant cells (VEGFR2+/- and VEGFR1+/- mutants with halved gene expressions of VEGFR2
and VEGFR1, respectively), studied by Jakobsson et al. in [7] and described in Table A in S1 Appendix.

In order to ascertain whether our model can quantitatively reproduce competition between cells of different lineages
(wild type (WT) and mutant cells) for the position of the leading cell in a sprout, we designed a series of numerical
experiments which mimic the biological experiments reported in [7]. We start by simulating of EC competition within
linear sprouts that are devoid of collagen matrix (Setup 4 in S4 Table), to ensure proteolysis-free random shuffling
of cells within the sprout. We randomly initialise the sprout with cells of two chosen types with probability 50% (50%
of WT cells and 50% of a specific mutant cell type) (see Fig 12, left column). Cells are then allowed to shuffle within
the sprout, overtaking each other. For each realisation we record the total amount of time for which WT and mutant
cells occupy the position of the leading cell.

As a control, we ran simulations in which two identical cell lines with parameters corresponding to WT lineage
were mixed in a 1:1 ratio. As expected, the contribution of each WT cell to the leading cell position was approximately
50% (see Table 3).

We then performed competition simulations in which WT cells were mixed with the different mutant cell lines in
a 1:1 ratio (i.e. mixing 50% of WT cells with 50% of mutant cells). We repeated these numerical experiments in
the presence of DAPT inhibitor which abolishes Notch signalling. The results of individual realisations presented
in Fig 12 (see also S3 Movie), illustrate features of the different competition scenarios. For the WT:VEGFR2+/-
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Fig 10. Statistics extracted from simulations of our model. (A) Histograms of cell displacements during a
15 minute time period for (1.) VEGF = 0 ng/ml, (2.) VEGF = 5 ng/ml and (3.) VEGF = 50 ng/ml. Black
histograms correspond to the experimental data taken from the Supplementary Material of [8], red lines correspond
to displacement curves for each VEGF concentration extracted from our model simulations. (B) A cartoon
illustrating the orientation statistic, which is defined as a ratio between the net trajectory and the actual trajectory
of a cell during simulation. (C) Box plots of the orientation statistic extracted from model simulations with VEGF =
0, 5, 50 ng/ml. Red crosses indicate box plot outliers. Orientation statistics obtained from experimental data from [2]
are shown by blue stars on each box plot. (D) A cartoon illustrating the directionality statistic. (E) The
directionality statistics for model simulations with VEGF = 0, 5, 50 ng/ml. (F) The directionality statistics
extracted from experimental data in [2]. Numerical simulations were performed using Setup 1 from S4 Table and
Tmax = 2.5. Parameter values are listed in S1 Table and S2 Table for subcellular and cellular/tissue scales,
respectively. All statistics were computed for 100 realisations.
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Fig 11. Cell migration from a cell bead in substrates of different collagen density. Final configurations
of simulated vascular networks at time Tmax = 1.0 (corresponding to 500 minutes) of individual simulations used in
reproducing the results of the polarisation experiment in [38]. Maximum collagen density (A) cmax = 0.1, (B)
cmax = 1.0, (C) cmax = 1.7, (D) cmax = 3.0. The VEGF linear gradient starts with 0 ng/ml at y = 0 and increases
up to 5 ng/ml at y = 125 µm. Central bead initial and basement membrane conditions, IBM = Iinit, are outlined by
a black thick line on each plot. Colour bars indicate Delta ligand concentration. Numerical simulations were
performed using Setup 3 from S4 Table. Parameter values are listed in S1 Table and S2 Table for subcellular and
cellular/tissue scales, respectively. For a movie of the numerical simulation, see S2 Movie.

scenario (see Fig 12(A)) when the mutant cells compete with WT cells, they almost never acquire the tip phenotype.
Consequently, they are rapidly overtaken by WT cells and accumulate far from the leading edge of the sprout (outlined
in cyan on each plot). The leading cell positions are thus occupied predominately by WT cells. By contrast, in the
WT:VEGFR1+/- scenario (Fig 12(B)), mutant cells acquire the tip phenotype more often than WT cells, and thus
contribute more significantly to the leading cell position. Treatment with DAPT forces all ECs (WT, VEGFR2+/-

and VEGFR1+/-) to acquire the tip cell phenotype (which is the default when Notch signalling is abolished [12,13]).
Consequently, in these cases both treated mutants have a 50% likelihood of occupancy of the leading position
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Fig 12. Initial and final configurations of single realisations of cells shuffling within a linear sprout
when two given cell lines are mixed 1:1 (50% to 50%). Left column corresponds to the initial (random, 1:1)
distribution of cells, right column - to the final one. The colour bar for Delta level of the WT goes from red colour
(stalk cell) to green (tip cell), whereas for the mutant cells the bar goes from purple colour (stalk cell) to yellow (tip
cell). (A) 50% of WT cells mixed with 50% of VEGFR2+/- mutant cells, no DAPT treatment. (B) 50% of WT cells
mixed with 50% of VEGFR1+/- mutant cells, no DAPT treatment. (C) 50% of WT cells mixed with 50% of
VEGFR2+/- mutant cells, both DAPT-treated. (D) 50% of WT cells mixed with 50% of VEGFR1+/- mutant cells,
both DAPT-treated. Voxels corresponding to the leading edge of a sprout are outlined by thick cyan lines on each
plot. Numerical simulations were performed using Setup 4 from S4 Table. Parameter values are listed in S1 Table
and S2 Table for subcellular and cellular/tissue scales, respectively, except for the changed parameters for the mutant
cells listed in Table A in S1 Appendix. Final simulation time, Tmax = 50.0. For a movie of the numerical simulations,
see S3 Movie.

(Figs 12(C)-12(D)).
We have also collected statistics from 100 realisations for each scenario and compared the results to the quantitative

estimates provided in [7]. The results reported in Table 3 show that the contribution of WT cells to the leading cell
position in each scenario is in good agreement with experimental values from [7]. In our simulations, VEGFR2+/-
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Experiment Position 1 Position 2 Ref. value [7]
WT:WT 51.1± 16.4% 53.3± 20.6% 45.8%
WT:VEGFR2+/- 93.6± 7.1% 90.4± 14.8% 87.0%
WT:VEGFR1+/- 19.5± 9.8% 20.5± 17.8% 30.0%
WT:VEGFR2+/- +DAPT 51.5± 13.7% 52.9± 17.8% 47.0%
WT:VEGFR1+/- +DAPT 50.3± 14.3% 47.6± 16.7% 40.6%

Table 3. Contribution of WT cells to the leading cell position when mixed 1:1 (50% : 50%) with
another type of cell (equivalent WT or specified mutant). Since as an initial setup of simulations we
considered a sprout of width 2 (two voxels), there are two equivalent leading positions (Position 1 and Position 2)
(outlined on each plot by cyan lines in Fig 12). The results are reported as mean value ± standard deviation for
samples obtained from 100 realizations for each experimental scenario. Numerical setup is as specified in Fig 12.

cells are less likely to stay at the leading position than WT cells: they occupy the leading position approximately 7%
of the time. By contrast, VEGFR1+/- cells occupy the leading cell position approximately 78% of the time. DAPT
restored the balance between the cells of different lineages so that they were on average equally mixed. Since the
only parameters that we have modified are those used to mimic mutant cell gene expression and DAPT inhibition of
Notch signalling (see Table A in S1 Appendix) our model provides possible explanation for overtaking dynamics of
ECs in angiogenesis.

Sensitivity analysis

To ascertain how variation in the baseline parameter values of our model affects the behaviour of the system, we
have performed an extensive sensitivity analysis. Since the subcellular VEGF-Delta-Notch model has already been
calibrated and validated independently [76], we have focused our analysis on the cellular and tissue scale parameters
(see S2 Table). Briefly, we have performed our analysis by fixing all the parameters except one at their baseline values,
and then vary the focal parameter by ±0.1%, ±5%, ±10%, ±15%, and ±20%. This procedure is repeated for each of
the tissue and cellular scale parameters. In order to quantify the impact of the variation of each parameter on both
EC behaviour and network structure we have measured the following quantities:

• anterograde cell proportion (directionality metric);

• orientation;

• displacements;

• number of branching points per 100 µm2 of vascular network area;

• number of vessel segments;

• vessel segment lengths.

Each of these metrics has been measured over 100 realisations of the multiscale system. For a full account of the
details, see Supplementary material, S1 Text.

The results of our sensitivity analysis are summarised in Fig 13 and S2 Fig. Our analysis shows that system
behaviour is robust to variations in most of the model parameters considered. This is indicated by the central cluster
in Fig 13 and S2 Fig, highlighted in magenta, which represents those scenarios that exhibit very small deviations
from the baseline behaviour. By contrast, variations of a small number of parameters produce significant deviation
from the baseline behaviour (see Table 4, Fig 13 and S2 Fig).

Specifically, we observe that an increase in Dm and a decrease in both Dc and K induce excessive branching, with
shorter average vessel length (see Fig 13, hyper-branching region highlighted in brown). By contrast, a decrease in
Dm and an increase in both Dc and K induce less branched networks, with longer average vessel length (see Fig 13,
hypo-branching region highlighted in grey). These results are in agreement with well-known features of tumour
vasculature, where the tumour microenvironment inhibits vessel stabilisation; specifically, it hinders the formation of
the basal membrane in tumour vasculature, yielding aberrant, excessively branched, networks [86]. This phenomenon
can be realised by increasing Dm. Furthermore, proteolysis is also up-regulated during tumour-induced angiogenesis
due to secretion of MMPs by cancer cells. Proteolysis reduces the resistance experienced by the ECs as they migrate
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Fig 13. (Caption on the next page.)
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Fig 13. Sensitivity analysis: branching vs. vessel elongation. The results of the sensitivity analysis are
represented as scatter plots of the mean number of branching points per 100 µm2 of vascular network area vs. mean
vessel segment length, with colouring indicating mean (A) cell number; (B) vascular network area; (C) anterograde
cell proportion; (D) orientation and (E) displacements. On these plots, dashed magenta lines indicate the point
corresponding to the default parameter values (see S2 Table); magenta highlights the region of the main point
clustering. The grey-coloured outlier region corresponds to vascular networks with few branching points and long
vessel segments (hypo-branching), whereas the brown outlier region is characterised by short vessel segments and
greater number of branching points (hyper-branching). Variations of the parameters that push the system towards
one of the outlier regions are indicated on each plot. Panel (F) provides a general summary of these results.
Simulation setup as in Setup 1, S3 Table, with Tmax = 2.5. The results are averaged over 100 realisations for each
scenario. The subcellular parameters are fixed at their default values in all experiments (see S1 Table).

Par. Description Ref.
equation

Metrics
affected

Effect

Dc Threshold of level of Delta for
initiation of ECM proteolysis

Eq (19) All Hyper-branching: Dc ↓;
hypo-branching: Dc ↑

Dm Threshold of level of Delta for
initiation of BM assembly

Eq (21) All Hypo-branching: Dm ↓;
hyper-branching: Dm ↑

K Cell exploratoriness, i.e. controls
the variance of the von Mises dis-
tribution

Eq (14) All Hyper-branching: K ↓;
hypo-branching: K ↑

EF1 Threshold of the level of cell-cell
contact necessary for cell move-
ment initiation

Eq (9) Orientation,
directionality

Hyper-branching: EF1 ↓

EF2 Threshold of the inhibitory effect
of crowding on cell movement

Eq (9) Orientation,
directionality

Hypo-branching: EF2 ↓

Table 4. Sensitivity analysis: parameters producing significant deviation in system behaviour from
the baseline scenario. ↓ stands for decrease of the focal parameter, ↑ - increase of the focal parameter.

towards the tumour [86]. This effect can be accounted for phenomenologically by a reduction in Dc. Increased
stimulation with growth factors that can also bind to VEGF receptors (as in pathological angiogenesis [86,87]) can
reduce the response of the ECs to chemotactic stimuli, due to high occupancy of receptors all over the cell membrane,
thus shifting cell behaviour to chemokinesis (non-directional cell migration) [88,89]. In our model, this transition is
controlled by the cell exploratoriness, κ (see Eq (14)): for high values of κ (i.e. higher values of K) cell migration
is directed along the sprout elongation vector, whereas for small values of κ (i.e. smaller values of K) cells exhibit
exploratory behaviour corresponding to chemokinesis.

Our model thus predicts that changes in Dc, Dm and K are likely to occur in tumour-induced angiogenesis. This
prediction is supported by current knowledge regarding the effects of the presence of a tumour in the microenvironment
[86–88].

Model predictions: network structure and cell mixing

We also simulated the growth of vascular networks formed by a single mutant cell line (VEGFR2+/- or VEGFR1+/-)
in the presence/absence of DAPT and compared our findings with the results from Jakobsson et al. who observed that
in the absence of DAPT mutant cells mix with WT cells to form normal networks [7]. By contrast, the addition of
DAPT leads to unstructured growth [7]. This is consistent with our simulation results (see S3 Fig-S6 Fig). Specifically,
simulations with VEGFR2+/- mutant cells in the absence of DAPT (see S3 Fig and S4 Movie) suggest that the rate
of network growth of VEGFR2+/- is slower than for their WT counterparts (see Figs 7-8 and S7 Fig). Since Delta
levels in VEGFR2+/- cells are lower than in WT cells, they are less able to degrade and invade ECM, and deposit
BM components than WT cells. This results in slower sprout elongation and increased branching (see S7 Fig). By
contrast, VEGFR1+/- mutant cells possess higher levels of Delta and thus degrade the ECM more efficiently and
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invade the matrix more quickly than the WT cells (see S5 Fig and S4 Movie). Likewise, since the rate of segregation
of BM components, γm, increases with Delta (Eq (21)), VEGFR1+/- cells are more persistent than WT cells. As a
result, VEGFR1+/- ECs form less branched networks, with longer sprouts (see S7 Fig). Regarding networks grown
with DAPT, since DAPT treatment abolishes all Notch signalling, all cells in the simulations with DAPT acquire the
tip cell phenotype (S5 Fig-S6 Fig), which produces unstructured growth.

Since a cells’ ability to compete for the leading position, or, equivalently, cell shuffling, is altered in mutant cells,
we sought to understand how cell rearrangements influence the structure of a growing vascular network. To quantify
cell rearrangements, we introduce a metric, which we refer to as mixing measure, M(t) (see Eq (22)). In Fig 14(A),
we plot the dynamics of the mixing measure, M(t), obtained by averaging over 100 WT simulations. As the vascular
network grows and new sprouts form (see Fig 14(C)), M(t) increases over time.

Fig 14. Temporal evolution of mixing measure, tip cell proportion and branching structure in a
simulated vascular network formed by WT cells. (A) The mixing measure, M(t), as a function of time (the
mean value is indicated by a thick line and standard deviation is shown by a colour band). The results are averaged
over 100 realisations. (B) Evolution of tip cell proportion as a function of time. The results are averaged over 100
realisations. (C) Snapshots from a single realization of our model simulating a vascular network formed by WT cells
at 300, 600 and 1000 minutes. Colour bar indicates the level of Delta. The numerical simulation setup used is Setup
1 from S4 Table with final simulation time Tmax = 2.5. VEGF distribution was fixed uniformly at 5 ng/ml.
Parameter values are listed in S1 Table and S2 Table for subcellular and cellular/tissue scales, respectively.

The time evolution of the mixing measure varies for different cell lines. For VEGFR2+/- mutant cells it increases
more slowly (Fig 15(A)), than for the WT cells (Fig 14(A)). VEGFR2+/- mixing arises more from branching than
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sprout elongation (see Fig 15(C)). A similar trend is seen for the VEGFR1+/- cells (compared to WT cells) (Fig 15(A)).
However, contrary to VEGFR2+/-, this is due to high migration persistence of VEGFR1+/- ECs (see Fig 15(D)).
A slower increase in the mixing measure for mutant cells correlates with slower stabilisation of tip cell proportion
around its steady state in vascular networks formed by mutant cells (see Fig 14(B) and Fig 15(B) for WT and mutant
cells, respectively). This supports our hypothesis that cell shuffling is directly related to the phenotypic specifications
of ECs. Thus, we note that the cell rearrangement phenomenon is not a cell-autonomous decision but rather a result
of contact-dependent EC crosstalk, which leads to EC phenotype specification.

In all cases, regardless of the cell type and VEGF concentration, the mixing measure increases towards a steady
state value (see S8 Fig, left panels). Furthermore, the steady state value of the mixing measure is independent of
cell type (M(t) ≈ 0.385 as t→∞, see S9 Fig). This is a result of the fact that, as the vascular network reaches a
sufficient size, cells perform proteolysis-free random shuffling within the manifold of the developed sprouts [52]. The
rate of this proteolysis-free random shuffling does not depend on the cell line but rather on the tip-to-stalk ratio in
the vasculature, which evolves to a steady state regardless of cell type and VEGF concentration (see S8 Fig, right
panels). We conclude that the temporal evolution of the mixing measure characterises the resulting network structure
to a larger degree than its steady state.

Discussion and conclusions

Angiogenic sprouting has been extensively investigated from both experimental [1–9] and theoretical [16–33] perspec-
tives. Integrating the variety of approaches and results from all these fields has allowed researchers to disentangle
to a great extent mechanisms of complex EC behaviour such as coordinated EC migration [3, 7, 14] and EC-ECM
interactions [33]. Nonetheless, as new experimental results emerge, biological assumptions of mathematical and
computational models must be revisited, the models validated with new experimental data and used to test new
hypotheses and generate predictions. As such, this multidisciplinary effort becomes a potential tool in designing
biological experiments (e.g. for identifying new drug targets [90, 91], finding new mechanisms for abnormal cell
behaviour [92], etc.).

Recently, it has become clear that cell rearrangements play a key role in driving vascular network growth in
angiogenesis [1, 2, 7]. Defects in cell rearrangements lead to anastomosis failure and smaller vascular networks
characterised by superimposed aberrant layers [1]. However, the functional role of this phenomenon remains to be
explained [1,2,7]. Quantifying cell rearrangements and relating them to vascular patterning for ECs with varying
gene expression patterns could be a starting point for understanding the functionality of cell mixing in angiogenesis.

In this work, we developed a multiscale model which integrates individual cell gene expression, EC migration and
interaction with the local ECM environment. Our model exhibits characteristic EC behaviour, such as branching and
chemotactic sensitivity, as emergent properties instead of being encoded via ad hoc rules (as has been traditionally
done in the literature). The vascular networks generated by our model are capable of reproducing the general traits
of sprouting angiogenesis: the networks exhibit branching patterns (see Figs 7-8), sprout elongation is enhanced
in higher VEGF stimulation (see Fig 8) and the brush-border effect can be observed in networks grown in VEGF
gradients (see Fig 9). Our simulation results are in good quantitative agreement with the characteristic trends of
angiogenesis observed in experiments [2, 7, 8, 38] (see Figs 10-11, Table 3).

We then used our model to quantify the phenomenon of cell rearrangement. We defined and introduced a mixing
measure, M(t) (see Fig 6), for networks formed by WT cells and VEGFR2+/- and VEGFR1+/- mutant cells with
impaired gene expression of VEGFR2 and VEGFR1, respectively, used in [7] (see Figs 14-15).

In all cases, in agreement with experimental observations, the mixing measure increases over time, although the
specific details of its temporal evolution vary for different cell lines (see S8 Fig). In particular, for mutant cells, we
find that mixing is lower due to either poor sprout elongation (VEGFR2+/- lineage, see Fig 15 (A), (C) and S7 Fig)
or elevated cell persistency (VEGFR1+/- lineage, see Fig 15(A), (D) and S7 Fig). WT cells form more functional
networks, in the sense of more effective coverage of the domain (and thus future delivery of oxygen/nutrients). This is
achieved by a balance between branching and sprout elongation which increases the mixing measure for WT cells.
We thus showed that the time evolution of the mixing measure is directly correlated to the generic features of the
vascular pattern. This result supports the claim that shuffling and cell mixing are essential for network formation and
structure.

We also observe that the mixing measure reaches a steady state (see S9 Fig). We hypothesise that this is directly
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Fig 15. Temporal evolution of mixing measure, tip cell proportion and branching structure in
simulated vascular network formed by VEGFR2+/-and VEGFR1+/- mutant cells. (A) The mixing
measure, M(t), as a function of time (the mean value is indicated by a thick line and standard deviation is shown by
a band of the corresponding colour). The results are averaged over 100 realisations. (B) Evolution of tip cell
proportion as a function of time. The results are averaged over 100 realisations. (C) Snapshots from a single
realization of our model simulating a vascular network formed by VEGFR2+/- mutant cells at 300, 600 and 1000
minutes. Colour bar indicates the level of Delta. (D) Snapshots from a single realization of our model simulating a
vascular network formed by VEGFR1+/- mutant cells at 300, 600 and 1000 minutes. Colour bar indicates the level of
Delta. The numerical simulation setup used is Setup 1 from S4 Table with final simulation time Tmax = 2.5. VEGF
distribution was fixed uniformly at 5 ng/ml. Parameter values are listed in S1 Table and S2 Table for subcellular and
cellular/tissue scales, respectively, except of those changed for mutant cells (see Table A in S1 Appendix).
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related to the proportion of tip cells in the network since they are the main driver of cell overtaking. This is
substantiated by our results that, while the gene expression of VEGFR1+/- and VEGFR2+/- mutant cells exhibits
variations, the steady state of the tip cell proportion is the same for all cell lineages (see S8 Fig, right column). Thus,
although the branching pattern and effective sprout elongation vary for mutant cells, they generate adequate vascular
networks in our simulations (see S3 Fig-S4 Fig). We suggest that pathological network formation is directly related to
the imbalance in the tip cell proportion (for example, treatment with DAPT, which abolishes Notch signalling and
forces all ECs to acquire tip phenotype, leads to hyper-sprouting [7], see S5 Fig-S6 Fig). Analysing this proportion
and what triggers its change might help to understand better what leads to malformations in sprouting angiogenesis.
Furthermore, the results of our sensitivity analysis suggest that variations in the parameters that control ECM
remodelling (ECM proteolysis and BM assembly) and cell exploratoriness significantly modify vascular network
structure (see Fig 13 and S2 Fig). This is in agreement with experimental evidence of aberrant vessels with excessive
branching in tumour-induced angiogenesis [86–88].

We calibrated and validated our model against in vitro experiments carried out over a time scale on which cell
proliferation and cell death are negligible (only ≈ 5% of cells were undergoing mitosis in the observed time of ≈ 22.4
hours [2]). Whilst cell turnover is neglected in the present study, it will need to be incorporated in any future
study that simulates larger vascular networks. To do so, we must first reduce the computational complexity of the
model since, in its current implementation, the runtime of a single simulation is up to several hours (computational
complexity increases with the number of cells in the system). One way to achieve this is to coarse-grain the subcellular
model to a two-state (tip and stalk cell) Markovian system, omitting the dynamics of the intermediate variables [93].
We expect such an approach to reduce the computational complexity of the subcellular model, thus allowing us to run
larger scale simulations. We also plan to scale up the model in order to obtain a continuum PDE limit description of
it [81, 94–96]. This will further reduce the computational complexity of the simulations. Furthermore, a continuum
PDE description of the model will allow us to perform a more systematic model calibration and sensitivity analysis of
the model parameters.

To conclude, the model we have developed, with naturally emerging branching and EC chemotactic sensitivity
to VEGF, allows us to investigate how changes in intracellular signalling and local cell environment influence cell
mixing dynamics and to study the impact cell mixing has on the overall network structure. To our knowledge, it is
the first attempt to quantify the cell mixing phenomenon in a theoretical model of angiogenesis. Since only individual
cell trajectories are required for the computation of this statistic, it can also be extracted from experimental data.
This, together with our predictions that cell mixing intensity is directly related to the vascular network structure,
makes the mixing measure a potential marker for pathological angiogenesis. Furthermore, although we used a specific
formulation for our subcellular model, the same modelling approach can be applied to a more/less detailed system
(e.g. recent works [97, 98]) as long as it reproduces typical phenotype patterning of cells within the vasculature.
This flexibility allows us to use our model to test various experimental hypotheses or make predictions, for example,
regarding pathological network formation.
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Supporting information

S1 Appendix. Computational simulations. The appendix provides details on setups of our numerical simula-
tions and brief discussion on their computational implementation.

S1 Fig. Examples of steady state patterns of the VEGFR-Delta-Notch subcellular model for different
interaction radii. Final steady state patterns established during single stochastic simulations of the system described
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by the kinetic reactions outlined in Fig 3(D) for a uniform hexagonal lattice of 10× 12 voxels. (A) Rs = 1.0h, (B)
Rs = 2.0h, (C) Rs = 3.0h and the rest of the parameter values as in S1 Table.

S2 Fig. Sensitivity analysis: orientation vs. anterograde cell proportion. We performed simulations of
our model by varying one of the parameters of the cellular and tissue scales at a time by a fixed per cent and keeping
default values for the rest of the parameters (as in S2 Table). Each parameter was varied by ±0.1%, ±1%, ±5%,
±10%, ±15% and ±20%. For each numerical experiment, several quantitative metrics were computed. The results are
represented as scatter plots of mean cell trajectory orientation vs. mean anterograde cell proportion with colouring
indicating mean (A) cell number; (B) vascular network area; (C) vessel segment length; (D) number of branching
points per 100 µm2 of vascular network area and (E) displacements. On these plots, dashed magenta lines indicate
the point corresponding to the default parameter values; magenta highlights the region of the main point clustering.
The grey-coloured outlier region corresponds to vascular networks with less persistent, twisted vessels, whereas the
brown outlier region is characterised by longer straight vessel segments. Variations of the parameters that push the
system towards one of the outlier regions are indicated on each plot. Panel (F) provides a general summary of these
results. Simulation setup as in Setup 1, S3 Table, with Tmax = 2.5. The results are averaged over 100 realisations.
The subcellular parameters were fixed at their default values in all experiments (see S1 Table).

S3 Fig. Individual simulations of vascular networks generated by VEGFR2+/- mutant cells. Final
configurations of simulated vascular networks of VEGFR2+/- mutant cells growing in uniform concentration of VEGF
= 5 ng/ml, plot (A), and VEGF = 50 ng/ml, plot (B). The leftmost panels show the amount of Delta, D. Higher
values (green colour) correspond to tip cell phenotype, low values (red colour) – to stalk. On these plots arrows
correspond to the orientation landscape configuration, l. The central panels indicate the final concentration of the
ECM, c. The rightmost panels – final distribution of the mean polarity angle, µ, variable. Numerical simulations
were performed using Setup 1 from S4 Table and Tmax = 2.5. Parameter values are listed in S1 Table and S2 Table
for subcellular and cellular/tissue scales, respectively, except of those changed for VEGFR2+/- mutant cells (see
Table A in S1 Appendix).

S4 Fig. Individual simulations of vascular networks generated by VEGFR1+/- mutant cells. Final
configurations of simulated vascular networks of VEGFR1+/- mutant cells growing in uniform concentration of VEGF
= 5 ng/ml, plot (A), and VEGF = 50 ng/ml, plot (B). The leftmost panels show the amount of Delta, D. Higher
values (green colour) correspond to tip cell phenotype, low values (red colour) – to stalk. On these plots arrows
correspond to the orientation landscape configuration, l. The central panels indicate the final concentration of the
ECM, c. The rightmost panels – final distribution of the mean polarity angle, µ, variable. Numerical simulations
were performed using Setup 1 from S4 Table and Tmax = 2.5. Parameter values are listed in S1 Table and S2 Table
for subcellular and cellular/tissue scales, respectively, except of those changed for VEGFR1+/- mutant cells (see
Table A in S1 Appendix).

S5 Fig. Individual simulations of vascular networks generated by VEGFR2+/- mutant cells treated
with DAPT. Final configurations of simulated vascular networks of VEGFR2+/- mutant cells treated with DAPT
growing in uniform concentration of VEGF = 5 ng/ml, plot (A), and VEGF = 50 ng/ml, plot (B). The leftmost
panels show the amount of Delta, D. Higher values (green colour) correspond to tip cell phenotype, low values (red
colour) – to stalk. On these plots arrows correspond to the orientation landscape configuration, l. The central panels
indicate the final concentration of the ECM, c. The rightmost panels – final distribution of the mean polarity angle,
µ, variable. Numerical simulations were performed using Setup 1 from S4 Table and Tmax = 2.5. Parameter values
are listed in S1 Table and S2 Table for subcellular and cellular/tissue scales, respectively, except of those changed for
VEGFR2+/- mutant cells and DAPT treatment (see Table A in S1 Appendix).

S6 Fig. Individual simulations of vascular networks generated by VEGFR1+/- mutant cells treated
with DAPT. Final configurations of simulated vascular networks of VEGFR1+/- mutant cells treated with DAPT
growing in uniform concentration of VEGF = 5 ng/ml, plot (A), and VEGF = 50 ng/ml, plot (B). The leftmost
panels show the amount of Delta, D. Higher values (green colour) correspond to tip cell phenotype, low values (red
colour) – to stalk. On these plots arrows correspond to the orientation landscape configuration, l. The central panels
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indicate the final concentration of the ECM, c. The rightmost panels – final distribution of the mean polarity angle,
µ, variable. Numerical simulations were performed using Setup 1 from S4 Table and Tmax = 2.5. Parameter values
are listed in S1 Table and S2 Table for subcellular and cellular/tissue scales, respectively, except of those changed for
VEGFR1+/- mutant cells and DAPT treatment (see Table A in S1 Appendix).

S7 Fig. Quantification of vascular network structure for WT and mutant cells at VEGF = 5 and 50
ng/ml. (A) Number of vessel segments. (B) Vessel segment length (µm). (C) Vascular network area (µm2) at the
end of the numerical simulation. (D) Number of branching points per 100 µm2 of vascular network area. Details
of definitions of these metrics can be found in Supplementary material, S1 Text. In each boxplot, the central line
indicates the median, and the horizontal edges of the box represent the 25th and 75th percentiles (for the bottom
and top edges, respectively). The outliers are indicated by red cross symbols. Numerical simulation setup used
is Setup 1 from S4 Table with final simulation time Tmax = 2.5. Parameter values are listed in S1 Table and S2
Table for subcellular and cellular/tissue scales, respectively, except of those changed for mutant cells (see Table A in
S1 Appendix). Results are averaged over 100 realisations for each experimental scenario.

S8 Fig. Temporal evolution of mixing measure and tip cell proportion in simulated vascular networks.
Left column plots show the mixing measure, M(t), as a function of time (the mean value is indicated by a thick line
and standard deviation is shown by a band with corresponding colour). Right column plots demonstrate the evolution
of tip cell proportion. Simulations were done for networks formed by (A) WT cells; (B) VEGFR2+/- mutant cells;
and (C) VEGFR1+/- mutant cells. Numerical simulation setup used is Setup 1 from S4 Table with final simulation
time Tmax = 2.5. Parameter values are listed in S1 Table and S2 Table for subcellular and cellular/tissue scales,
respectively, except of those changed for mutant cells (see Table A in S1 Appendix). Results are averaged over 100
realisations for each experimental scenario.

S9 Fig. Mixing measure steady state for VEGF = 0 ng/ml. Plots of mixing measure, M(t), as a function
of time for WT, VEGFR2+/- and VEGFR1+/- mutant cells for VEGF=0 ng/ml (the mean value is indicated by a
thick line and standard deviation is shown by a band of the corresponding colour). At this concentration of external
VEGF, there is no effective sprout elongation, thus cells perform proteolysis-free random shuffling within already
existing sprouts [52]. This leads to a steady state of the mixing measure for all cell lineages. Mean values are 0.39,
0.39 and 0.38 for WT, VEGFR2+/- and VEGFR1+/- cells, respectively. Numerical simulations were performed using
Setup 1 from S4 Table and Tmax = 2.5. Parameter values are listed in S1 Table and S2 Table for subcellular and
cellular/tissue scales, respectively, except of those changed for mutant cells (see Table A in S1 Appendix).

S1 Table. Baseline parameter values for the VEGF-Delta-Notch subcellular model. Description and
reference values used in simulations of the subcellular VEGF-Delta-Notch signalling.

S2 Table. Parameter values of the cellular and tissue scales used in our simulations.

S3 Table. Initial conditions for numerical simulations. Here I is the set of all voxels; S is the set of all
possible migration directions. DUnif[a, b] is a discrete uniform distribution over all integer numbers lying within the
interval [a, b]; Unif[a, b] is the uniform distribution on the interval [a, b]. Baseline gene expression parameters for
the VEGF-Delta-Notch signalling are listed in S1 Table. ∆init = 1.0 for all numerical simulations (this value, as,
in general, for the value of the OL variable, is non-dimensional). The fluctuation parameter, ξ, is set to 0.1 in all
numerical simulations. The exact values for cinit and minit are given for each numerical experiment in S4 Table, as
well as the set of initial cell positions, Iinit. For the description of model variables see Table 1 in the main text.

S4 Table. Setups of simulation experiments. For each setup of numerical simulation we specify the lattice
dimensions, Nx

I and Ny
I ; the set of indices corresponding to the vascular plexus, IV P ; the initial cell nuclei positions,

Iinit; the initial polarisation direction, sinit; the initial ECM and BM concentrations, cinit and minit, respectively;
the VEGF distribution over the lattice, V ; and cell line used in simulations.
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S1 Movie. An example of an individual vascular network generated by wild type ECs during simula-
tion of our model with uniform VEGF = 50 ng/ml. The leftmost panel shows the concentration of Delta, D.
The colour bar indicates level of Delta, D, (green colour corresponds to tip cells, red – to stalk cells). Arrows indicate
the configuration of the orientation landscape, l. The central panel indicates the concentration of the ECM, c. The
rightmost panel – the polarity angle, µ, variable. A circular colour bar indicates the value of µ. The simulation was
performed using Setup 1 from S4 Table with final simulation time, Tmax = 2.5. Parameter values are listed in s S1
Table and S2 Table for subcellular and cellular/tissue scales, respectively.

S2 Movie. Cell migration from a cell bead in substrates of different collagen density. Single realisations
of angiogenic sprouting from a cell bead in substrates of different collagen densities (reproducing the results of the
polarisation experiment in [38]). Maximum collagen density (A) cmax = 0.1, (B) cmax = 1.0, (C) cmax = 1.7, (D)
cmax = 3.0. The VEGF linear gradient starts with 0 ng/ml at y = 0 and increases up to 5 ng/ml at y = 125 µm.
Central bead initial and basement membrane conditions, IBM = Iinit, are outlined by a black thick line on each
plot. Colour bars indicate the level of Delta ligand. The simulations were performed using Setup 3 from S4 Table.
Parameter values are listed in s S1 Table and S2 Table for subcellular and cellular/tissue scales, respectively.

S3 Movie. Single realisations of cells shuffling within a linear sprout when two given cell lines are
mixed 1:1 (50% to 50%). The cell lines used in each realization are indicated in the titles. In the top row, no
treatment with DAPT inhibitor was applied to cells; in the bottom row, all ECs were treated with DAPT. The
leading edge corresponds to two rightmost voxels of each sprout. The colour bar for Delta level of the WT goes from
red colour (stalk cell) to green (tip cell), whereas for the mutant cells the bar goes from purple colour (stalk cell) to
yellow (tip cell). The simulations were performed using Setup 4 from S4 Table. Parameter values are listed in s S1
Table and S2 Table for subcellular and cellular/tissue scales, respectively, except for the changed parameters for the
mutant cells listed in Table A in S1 Appendix. Final simulation time, Tmax = 50.0.

S4 Movie. Examples of an individual vascular networks generated by wild type and mutant (VEGFR2+/-

and VEGFR1+/-) ECs during simulation of our model with uniform VEGF = 5 ng/ml. The cell line is
indicated in the title of each panel. The colour bar indicates level of Delta, D, (green colour corresponds to tip cells,
red – to stalk cells). Arrows indicate the configuration of the orientation landscape, l. Numerical simulation was
performed using Setup 1 from S4 Table with final simulation time, Tmax = 2.5. Parameter values are listed in s S1
Table and S2 Table for subcellular and cellular/tissue scales, respectively, except for the changed parameters for the
mutant cells listed in Table A in S1 Appendix.

S1 Text. Supplementary material. The file contains a more detailed description of the subcellular VEGF-Delta-
Notch model, metric definitions and algorithms for their implementation, further specifications on simulation of our
model and sensitivity analysis of model parameters.
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S1 Appendix. Computational simulations

Model geometry All simulations were performed on a rectangular lattice, L = {vi, i = (ix, iy)T , ix = 1,..., Nx
I , iy =

1,..., Ny
I }, where vi stands for voxel indexed by i, and i denotes the position of the voxel vi within the lattice, L. The

total voxel number NI = Nx
I N

y
I . Nx

I and Ny
I vary for each type of numerical experiment described in S4 Table. The

non-dimensional voxel width, h = 0.04, corresponds to 5 µm (see S1 Text for details).

Summary of the simulation algorithm A pseudocode of the algorithm used for simulating our multiscale model
is given in S1 Text. In brief, after initialisation, initial phenotypes are prescribed by using the multicellular system of
the subcellular kinetic reactions of the VEGF-Delta-Notch pathway for each present cell via the Next Subvolume
(NSV) method [67] for some fixed final time. This distribution of phenotypes serves as an input to the cellular scale
where migration transition rates, ω(i → j) (see Eq (7)), are calculated. The waiting time for each transition to
occur is generated from a Poisson distribution with the intensity given by the corresponding transition rate, and
the transition with the smallest waiting time fires, i.e. a cell migration event takes place. The simulation time is
incremented by the time step of the fired transition. This is one iteration of the NSV method for the cellular scale.
Since cell movement affects the orientation of the ECM fibrils, the orientation landscape variable, l, is updated (see
Eq (16)). To finish the iteration step, fibril relaxation takes place (see Eq (17)), and ECM and BM component
concentrations, c and m, respectively, are updated for the whole domain for the time step of the fired migration
transition (see Eq (18) and Eq (20), respectively). The cell migration event changes the local neighbourhood of some
cells. Consequently, re-establishment of cell phenotypes is simulated at the subcellular scale, starting a new iteration
of the simulation algorithm. The final time for the simulation of the subcellular scale at each iteration is taken as
the waiting time of the last fired transition at the cellular scale (except for the initial phenotype prescription). The
algorithm is run until the final simulation time, Tmax, is reached at the cellular scale (specified for each numerical
experiment). The details of the correspondence between real and simulation times are given in S1 Text.

Model parameters The parameter values used at the subcellular scale are listed in S1 Table. These values were
used in all simulation experiments except those performed with mutant cells (for details, see below). Parameter values
for the cellular and tissue scales are given in S2 Table.

Boundary conditions Let IB denote the set of voxels of L situated on its boundary, i.e.

IB = {(1, iy)T , iy = 1,..., Ny
I } ∪ {(N

x
I , iy)T , iy = 1,..., Ny

I } ∪ {(ix, 1)T , ix = 1,..., Nx
I } ∪ {(ix, N

y
I )T , ix = 1,..., Nx

I }.

As mentioned before, we assume that our simulations take place on a time scale such that cell proliferation is
negligible and sprout elongation is driven by cell migration from the initial vascular plexus (imitating an underlying
vascular bed in in vivo or a cell implant in in vitro experiments). This is implemented as a Dirichlet boundary
condition for the nucleus distribution variable, E, for the set of voxels corresponding to the position of the vascular
plexus, IV P ,

Ei = 1 ∀i ∈ IV P , ∀t ≥ 0.

The set IV P for each numerical experiment is listed in S4 Table. When a cell migrates from a voxel belonging to
IV P , a new cell is put in this voxel with the baseline expression of the subcellular scale variables (its phenotype is
established according to its environment in the following simulation of the subcellular model).

For the voxels on the boundary, a no-flux boundary condition is assumed for cells: migration transitions to leave
the domain are set to zero, ω(i→ exit L) = 0, for i ∈ IB .

Since we assume that cells cannot leave the domain, we set the orientation landscape variable components pointing
outside L to zero. Mathematically, let ne denote an external normal to L, then

lsi = 0, ∀i ∈ IB and ∀s ∈ S s.t. (s, ne) = 1.

Here (·, ·) is the scalar product.
The rest of the variables, namely, the variables of the subcellular scale, ECM and BM components, c and m,

respectively, do not require any specific boundary conditions.
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Initial conditions Let Iinit denote the voxel indices of the initial cell positions, i.e. Ei = 1 for i ∈ Iinit and Ei = 0,
otherwise, at time t = 0. Given this set of indices, the variables are initialised as shown in S3 Table.

Setups We performed several types of simulation experiments. For each type we specify the lattice dimensions,
Nx
I and Ny

I , the set of indices corresponding to the vascular plexus, IV P , the initial cell nucleus positions, Iinit, the
initial polarisation direction, sinit, the initial ECM and BM concentrations, cinit and minit, respectively, and the
distribution of VEGF, V . The details are given in S4 Table.

Simulations with mutant cells Some of the simulation experiments were performed with mutant cells with
modified gene expression of VEGFR1 and VEGFR2, with the aim of imitating the behaviour of those used in
experiments reported in [7]. To do so, we modify some of the parameters of the subcellular VEGF-Delta-Notch
signalling. The details are given below in Table A.

Name [7] Shortened
name

Description Change in
parameters

VEGFR2+/egfp VEGFR2+/- Mutant cells heterozygous for VEGF Receptor 2 having
half of the amount of VEGFR2 compared with the WT
cells.

b+R2 = 0.5bR2

VEGFR2+/egfp-DAPT VEGFR2+/--
DAPT

VEGFR2+/- mutant cells additionally exposed to
DAPT, a γ-secretase inhibitor abolishing the Notch
signalling.

b+R2 = 0.5bR2,
I = 0

VEGFR1+/lacz VEGFR1+/- Mutant cells heterozygous for VEGF Receptor 1 having
half of the amount of VEGFR1 compared with the WT
cells.

k+v = 2kv

VEGFR1+/lacz-DAPT VEGFR1+/--
DAPT

VEGFR1+/- mutant cells additionally exposed to
DAPT, a γ-secretase inhibitor abolishing the Notch
signalling.

k+v = 2kv,
I = 0

WT-DAPT WT-DAPT Wild-type (WT) cells treated with DAPT, a γ-secretase
inhibitor abolishing the Notch signalling.

I = 0

Table A. Description of mutant cells treated/untreated with DAPT (γ-secretase inhibitor) used in
simulations. Changed parameters for mutant cells have + in their superscript position, compared to the wild-type
(WT) cell parameters with no such superscripts.

In particular, VEGFR2+/- mutant cells have down-regulated (by ≈50%, single allele mutants) gene expression of
VEGFR2, thus we set its baseline expression to half of that for the WT (see Table A). VEGFR1+/- mutant cells
are characterised by halved gene expression of VEGFR1. VEGFR1 is known to be a sink receptor for VEGF: it has
higher affinity for binding VEGF but low kinase activity. Hence, it competes with VEGFR2 for binding to VEGF
but it has a minor role in signal transmission. Because of this, we have not considered it in our subcellular model of
phenotype selection, and we need to account for the VEGFR1+/- mutant in an effective way. Specifically, we assume
that down-regulation of VEGFR1 can be accounted for by a higher affinity of VEGFR2 for binding to VEGF. We set
k+v = 2kv as shown in Table A. Furthermore, in some of the experiments by Jakobsson et al. [7], cells were treated
with a potent γ-secretase inhibitor, DAPT, which completely abolishes Notch signalling (see Fig 3i in [7]). γ-secretase
is a protease that carries out the second cleavage releasing the active NICD. Therefore, when exposed to DAPT, the
Notch receptor and its ligand should have the same dynamics as without DAPT, only NICD is not being produced.
To introduce DAPT into our simulations, we set I = 0 for all cells in the simulation (both WT and mutant), leaving
all other parameters unchanged (see Table A).
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S1 Fig. Examples of steady state patterns of the VEGFR-Delta-Notch subcellular model for
different interaction radii. Final steady state patterns established during single stochastic simulations of the
system described by the kinetic reactions outlined in Fig 3(D) for a uniform hexagonal lattice of 10× 12 voxels. (A)
Rs = 1.0h, (B) Rs = 2.0h, (C) Rs = 3.0h and the rest of the parameter values as in S1 Table.
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S2 Fig. Sensitivity analysis: orientation vs. anterograde cell proportion. We performed simulations of
our model varying one of the parameters of the cellular and tissue scales at a time by a fixed per cent and keeping
default values for the rest of the parameters (as in S2 Table). Each parameter was varied by ±0.1%, ±1%, ±5%,
±10%, ±15% and ±20%. For each numerical experiment, several quantitative metrics were computed. The results are
represented as scatter plots of mean cell trajectory orientation vs. mean anterograde cell proportion with colouring
indicating mean (A) cell number; (B) vascular network area; (C) vessel segment length; (D) number of branching
points per 100 µm2 of vascular network area and (E) displacements. On these plots, dashed magenta lines indicate
the point corresponding to the default parameter values; magenta region highlights the region of the main point
clustering. The grey-coloured outlier region corresponds to vascular networks with less persistent, twisted vessels,
whereas the brown outlier region is characterised by longer straight vessel segments. Variations of the parameters
that push the system towards one of the outlier regions are indicated on each plot. The panel (F) provides a general
summary of these results. Simulation setup as in Setup 1, S3 Table, with Tmax = 2.5. The results are averaged over
100 realisations. The subcellular parameters were fixed at their default values in all experiments (see S1 Table).
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S3 Fig. Individual simulations of vascular networks generated by VEGFR2+/- mutant cells. Final
configurations of simulated vascular networks of VEGFR2+/- mutant cells growing in uniform concentration of VEGF
= 5 ng/ml, plot (A), and VEGF = 50 ng/ml, plot (B). The leftmost panels show the amount of Delta, D. Higher
values (green colour) correspond to tip cell phenotype, low values (red colour) – to stalk. On these plots arrows
correspond to the orientation landscape configuration, l. The central panels indicate the final concentration of the
ECM, c. The rightmost panels – final distribution of the mean polarity angle, µ, variable. Numerical simulations
were performed using Setup 1 from S4 Table and Tmax = 2.5. Parameter values are listed in S1 Table and S2 Table
for subcellular and cellular/tissue scales, respectively, except of those changed for VEGFR2+/- mutant cells (see
Table A in S1 Appendix).
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S4 Fig. Individual simulations of vascular networks generated by VEGFR1+/- mutant cells. Final
configurations of simulated vascular networks of VEGFR1+/- mutant cells growing in uniform concentration of VEGF
= 5 ng/ml, plot (A), and VEGF = 50 ng/ml, plot (B). The leftmost panels show the amount of Delta, D. Higher
values (green colour) correspond to tip cell phenotype, low values (red colour) – to stalk. On these plots arrows
correspond to the orientation landscape configuration, l. The central panels indicate the final concentration of the
ECM, c. The rightmost panels – final distribution of the mean polarity angle, µ, variable. Numerical simulations
were performed using Setup 1 from S4 Table and Tmax = 2.5. Parameter values are listed in S1 Table and S2 Table
for subcellular and cellular/tissue scales, respectively, except of those changed for VEGFR1+/- mutant cells (see
Table A in S1 Appendix).
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S5 Fig. Individual simulations of vascular networks generated by VEGFR2+/- mutant cells treated
with DAPT. Final configurations of simulated vascular networks of VEGFR2+/- mutant cells treated with DAPT
growing in uniform concentration of VEGF = 5 ng/ml, plot (A), and VEGF = 50 ng/ml, plot (B). The leftmost
panels show the amount of Delta, D. Higher values (green colour) correspond to tip cell phenotype, low values (red
colour) – to stalk. On these plots arrows correspond to the orientation landscape configuration, l. The central panels
indicate the final concentration of the ECM, c. The rightmost panels – final distribution of the mean polarity angle,
µ, variable. Numerical simulations were performed using Setup 1 from S4 Table and Tmax = 2.5. Parameter values
are listed in S1 Table and S2 Table for subcellular and cellular/tissue scales, respectively, except of those changed for
VEGFR2+/- mutant cells and DAPT treatment (see Table A in S1 Appendix).
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S6 Fig. Individual simulations of vascular networks generated by VEGFR1+/- mutant cells treated
with DAPT. Final configurations of simulated vascular networks of VEGFR1+/- mutant cells treated with DAPT
growing in uniform concentration of VEGF = 5 ng/ml, plot (A), and VEGF = 50 ng/ml, plot (B). The leftmost
panels show the amount of Delta, D. Higher values (green colour) correspond to tip cell phenotype, low values (red
colour) – to stalk. On these plots arrows correspond to the orientation landscape configuration, l. The central panels
indicate the final concentration of the ECM, c. The rightmost panels – final distribution of the mean polarity angle,
µ, variable. Numerical simulations were performed using Setup 1 from S4 Table and Tmax = 2.5. Parameter values
are listed in S1 Table and S2 Table for subcellular and cellular/tissue scales, respectively, except of those changed for
VEGFR1+/- mutant cells and DAPT treatment (see Table A in S1 Appendix).
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S8 Fig. Temporal evolutions of mixing measure and tip cell proportion in simulated vascular
networks. Left column plots show the mixing measure, M(t), as a function of time (the mean value is indicated by
a thick line and standard deviation is shown by a band of the corresponding colour). Right column plots demonstrate
the evolution of tip cell proportion. Simulations were done for networks formed by (A) WT cells; (B) VEGFR2+/-

mutant cells; and (C) VEGFR1+/- mutant cells. Numerical simulation setup used is Setup 1 from S4 Table with
final simulation time Tmax = 2.5. Parameter values are listed in S1 Table and S2 Table for subcellular and
cellular/tissue scales, respectively, except of those changed for mutant cells (see Table A in S1 Appendix). Results are
averaged over 100 realisations for each experimental scenario.
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S9 Fig. Mixing measure steady state for VEGF = 0 ng/ml. Plots of mixing measure, M(t), as a function
of time for WT, VEGFR2+/- and VEGFR1+/- mutant cells for VEGF=0 ng/ml (the mean value is indicated by a
thick line and standard deviation is shown by a band of the corresponding colour). At this concentration of external
VEGF, there is no effective sprout elongation, thus cells perform proteolysis-free random shuffling within already
existing sprouts [52]. This leads to steady state of the mixing measure for all cell lineages. Mean values are 0.39, 0.39
and 0.38 for WT, VEGFR2+/- and VEGFR1+/- cells, respectively. Numerical simulations were performed using
Setup 1 from S4 Table and Tmax = 2.5. Parameter values are listed in S1 Table and S2 Table for subcellular and
cellular/tissue scales, respectively, except of those changed for mutant cells (see Table A in S1 Appendix).
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Para-
meter

Units Description Value used in simulations Ref.

Rs µm Interaction radius. 15 estim., [9, 39]

bN molec · time−1 Baseline Notch receptor expression. 500 [75,76]

bD molec · time−1 Baseline Delta ligand expression. 800 [75,76]

bR2 molec · time−1 Baseline VEGFR2 expression. 800 [76]

I0 molec Activation threshold for NICD. 100 [76]

R2∗0 molec Activation threshold for activated VEGFR2. 200 [76]

λI,N dimensionless Weight factor characterising fold change of the
production rate of Notch receptor depending
on the NICD concentration.

4.0 [75,76]

λaR2,D dimensionless Weight factor characterising fold change of the
production rate of Delta ligand depending on
the activated VEGFR2 concentration.

2.0 [76]

λI,R2 dimensionless Weight factor characterising fold change of the
production rate of VEGFR2 depending on the
NICD concentration.

0.0 [76]

nN dimensionless Cooperativity parameter for Hill function for
NICD-dependent Notch up-regulation.

2 [74]

nD dimensionless Cooperativity parameter for Hill function
for activated VEGF-dependent Delta up-
regulation.

1 [74]

nR2 dimensionless Cooperativity parameter for Hill function for
NICD-dependent VEGFR2 repression.

1 [74]

V molec External VEGF. 2500 (Fig 3(E)); 0 − 2500
(Fig 3(F)); {0, 2500, 25000}
(in the rest of the simulations)

[75,76]

Dext molec External Delta ligand. 0 − 3000 (Fig 3(E)-(F)); cal-
culated from adjacent cells (in
the rest of the simulations)

[75,76]

Next molec External Notch receptor. 1000 (Fig 3(E)-(F)); calcu-
lated from adjacent cells (in
the rest of the simulations)

[75,76]

kt molec−1 · time−1 Trans-binding rate for Notch receptor and
Delta ligand.

5.0e− 5 [74]

kc molec−1 · time−1 Cis-interaction rate for Notch receptor and
Delta ligand.

6.0e− 4 [74]

kv molec−1 · time−1 Binding rate for VEGFR2 and external VEGF. 5.0e− 5 [76]

η dimensionless Endocytic regulation of Notch signalling. 0.5 estim., [99]

γ time−1 Degradation rate of proteins. 0.1 [76]

γe time−1 Degradation rate of activated receptors. 0.5 [76]

S1 Table. Baseline parameter values for the VEGF-Delta-Notch subcellular model. Description and reference
values used in simulations of the subcellular VEGF-Delta-Notch signalling.
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Parameter Value Parameter Value Parameter Value Parameter Value

Rc 1.5h Dω 1.0 cmax 1.0 ∆l 0.01
EF1 0.25 EF2 0.7 sF1 35.0 sF2 10.0
pmax 0.26 sp 0.0015 Dp 1500 a 7.0

n 2 K 20.0 km 2.6 kD 0.0002
ηl 0.1 ηmax 12.5 sc 0.003 Dc 4200

γmax 17.0 sm 0.003 Dm 4200

S2 Table. Parameter values of the cellular and tissue scales used in our simulations.
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Variable Indexes Description

Ei = 1 i ∈ Iinit
Initial distribution of cell nuclei.

Ei = 0 i ∈ I \ Iinit
Ni = Unif[(1− ξ)bN , (1 + ξ)bN ]

i ∈ Iinit
Cells are initialised with ligand/receptor numbers corresponding
to their baseline gene expression with a correction for random
fluctuations included via the parameter ξ. At the voxels where
there is no cell nucleus, subcellular variables are initialised with
the value zero.

Di = DUnif[(1− ξ)bD, (1 + ξ)bD]

Ii = DUnif[(1− ξ)I0, (1 + ξ)I0]

R2i = DUnif[(1− ξ)bR2, (1 + ξ)bR2]

R2∗i = DUnif[(1−ξ)R2∗0, (1+ξ)R2∗0]

Ni = Di = Ii = R2i = R2∗i = 0 i ∈ I \ Iinit

lsinit
i = 2∆init i ∈ Iinit

The alignment of ECM fibrils for voxels where cells were initially
placed in the direction sinit ∈ S.

lsi = Unif[0,∆init] i ∈ I \ Iinit,
∀s ∈ S

The alignment of ECM fibrils for the rest of the voxels is
initialised with a small random value in a given range, [0,∆init],
imitating random orientation of fibrils prior to their realignment
due to cell migration.

lsi = Unif[0,∆init] i ∈ Iinit,
∀s 6= sinit ∈ S

ci = cinit i ∈ Iinit The ECM concentration at the voxels with cells is equal to
cinit ∈ [0, cmax] (specified for each numerical experiment). For
other voxels, the ECM is assumed to be unchanged, thus equal to
the maximum ECM concentration, cmax.

ci = cmax i ∈ I \ Iinit

mi = minit i ∈ Iinit The concentration of BM components at the voxels with cells is
equal to minit ∈ [0, 1] (specified for each numerical experiment).
For other voxels, no BM components have been deposited, thus
the concentration is set to zero.

mi = 0 i ∈ I \ Iinit

S3 Table. Initial conditions for numerical simulations. Here I is the set of all voxels; S is the set of all possible
migration directions. DUnif[a, b] is a discrete uniform distribution over all integer numbers lying within the interval [a, b];
Unif[a, b] is the uniform distribution on the interval [a, b]. Baseline gene expression parameters for the VEGF-Delta-Notch
signalling are listed in S1 Table. ∆init = 1.0 for all numerical simulations (this value, as, in general, for the value of the OL
variable, is non-dimensional). The fluctuation parameter, ξ, is set to 0.1 in all numerical simulations. The exact values for
cinit and minit are given for each numerical experiment in S4 Table, as well as the set of initial cell positions, Iinit. For the
description of model variables see Table 1 in the main text.
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I = 25, Ny
I = 29 For WT cells: Fig 7, 8, 10,

13, 14, S7 Fig, S8 Fig, S9
Fig. For mutant cells:
Fig 15, S3 Fig, S4 Fig, S5
Fig, S6 Fig, S7 Fig, S8
Fig, S9 Fig.

Iinit = {i = (ix, iy)T : ix = 1, 2, iy = 14, 15}

IV P = {i = (1, iy)T : iy = 14, 15}

sinit = r

cinit = 0.0, minit = 1.0

V ∈ {0, 2500, 25000}, uniform distribution over the lattice, which correspond to 0, 5
and 50 ng/ml VEGF concentration, respectively. The exact value specified in the text.

Simulations with this setup are performed with WT and mutant cells (see S1 Table
and Table A, respectively).
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Nx
I = 25, Ny

I = 29 Fig 9

Iinit = {i = (ix, iy)T : ix = 12, 13, iy = 1,..., 29}

IV P = Iinit
sinit - not specified

cinit = cmax, minit = 0.0

V (ix, iy) = 2500
iy
Ny

I
. This corresponds to a VEGF gradient linearly increasing from 0

to 5 ng/ml along the y-axis.

Simulations with this setup are performed with WT cells (see S1 Table).
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Nx
I = 25, Ny

I = 29 Fig 11

Iinit = {i = (ix, iy)T : (ix − 13)2 + (iy − 9)2 ≤ 5, i ∈ I}

IV P = Iinit
sinit - not specified

cinit = cmax, minit = 0.0

V (ix, iy) = 2500
iy
Ny

I
. This corresponds to a VEGF gradient linearly increasing from 0

to 5 ng/ml along the y-axis.

Simulations with this setup are performed with WT cells (see S1 Table).
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Nx
I = 25, Ny

I = 2 Fig 12, Table 3

Iinit = {i = (ix, iy)T : ix = 1,..., 25, iy = 1, 2}

IV P = Iinit
sinit = r

cinit = 0.0, minit = 1.0

V = 15000, corresponding to a constant uniform distribution of VEGF at the concen-
tration 30 ng/ml (used in [7]).

Simulations with this setup are performed with mutant cells (see Table A in S1 Ap-
pendix).

S4 Table. Setups of simulation experiments. For each setup of numerical simulation we specify the lattice dimensions,
Nx
I and Ny

I ; the set of indices corresponding to the vascular plexus, IV P ; the initial cell nuclei positions, Iinit; the initial
polarisation direction, sinit; the initial ECM and BM concentrations, cinit and minit, respectively; the VEGF distribution
over the lattice, V ; and cell line used in simulations.
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