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Abstract

Network neuroscience has catalysed crucial insights into the systems-level
organisation of the brain, however the lack of a ‘ground truth” inherently limits
direct interpretation. In parallel, deep learning approaches have advanced our
algorithmic understanding of intelligence, however the principles that govern
learning-induced modifications to network structure remain relatively opaque.
Here, we combine the benefits of these two approaches to overcome each of their
inherent weaknesses. Specifically, we train a shallow, feedforward neural network
to classify handwritten digits and then used a combination of systems
neuroscience and information theoretic tools to perform ‘virtual brain analytics’!
on the resultant edge weights and nodal activity patterns. We identified three
distinct stages: early in learning, training aligned network edges with information-
rich regions of the nodes in up-stream layers of the network, and did so in separate
stages for inputs to each layer; whereas later in learning, network activity patterns
reconfigured so as to maximize digit category separation in a low-dimensional
state space. Our results offer a systems-level perspective of how artificial neural
networks function — in terms of multi-stage reorganization of edge weights and
activity patterns so as to most effectively exploit the information content of input
data during edge-weight training - while simultaneously enriching our

understanding of the methods used by systems neuroscience.
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In the human brain, capacities such as cognition, attention, and awareness are
thought to emerge from the coordinated activity of billions of neurons
Traditional measures typically used to map these functions from neuroimaging
data were designed to identify ‘activated’, localized regions of the brain that
characterize a particular cognitive context®. This historical focus on localization has
led to a number of key insights about neural function, however it has also made it

more challenging to create links between systems-level neural organization and

psychological capacities.

A potential means for mapping psychological functions to neural circuitry
involves the analysis of neuroimaging data from a systems-level perspective*®. By
treating neuroimaging datasets as if the data arise from networks of interacting
parts, systems neuroscientists are able to characterize high-dimensional datasets
in ways that help to understand how brain networks process information”®. Across
multiple spatial’ and temporal'® scales, these approaches have revealed a number
of systems-level principles of brain function. A salient example is the
measurement of network modularity, which quantifies the extent to which a
network is comprised of a relatively weakly inter-connected set of tight-knit sub-

modules.
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Systems-level organization has demonstrable computational advantages''?> and
has been shown to effectively map onto higher-level cognitive functions'.
However, systems-level approaches in human neuroimaging are inherently
indirect, as we don’t yet have access to ‘ground truth’ neuroimaging datasets that
directly link structure with function, let alone over the course of interesting
behavioural changes, such as the learning of mappings between stimulus and
response. For this reason, although we have ready access to high-quality
neuroimaging datasets'>", it remains relatively challenging to infer precisely

which aspects of brain system organization are revealed in neuroimaging data are

integral for facilitating behaviour using traditional approaches'®.

Linking adaptation of network structure to enhanced task performance is also a
central issue in the field of machine learning. Although some of the details of
implementation differ', neuroscience and machine learning share some
remarkable similarities. For example, the original neural-network algorithms were
in part inspired by the anatomy of the cerebral cortex’?!, and in the case of deep,
layered neural networks, both systems share a common property of distributed
computation facilitated by complex topological wiring between large numbers of
(relatively) simple computational units. Over the last few decades, neural

networks® have been trained to outperform world experts at complex strategy
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games, such as Chess and Go?. Although the algorithms that are used to train
neural network weights are well understood, the manner in which neural
networks reconfigure in order to facilitate high levels of classification accuracy
remains relatively opaque®*2!. It is this process of adapting a complex network of
interacting components to perform a useful task that has as yet escaped a detailed
analysis using the established tools of network neuroscience, which themselves

have been used to quantify structure—function relationships in the brain for over a

decade.

Whilst the question of how network reconfiguration supports learning is mirrored
in machine learning and network neuroscience, the different contexts of these
fields provides a timely opportunity to bring them together synergistically to
investigate the problem!. First, we can observe that the process of adapting a
complex network of interacting components to perform a useful task is more
simply captured and observed in the training of neural networks. Studying this
process in a machine learning setting offers fine time-scale, full-system
observations of network structure and activity that are not currently possible in
neuroscience. In this way, our approach allows us to potentially identify deeper
synergies between the two fields'?. For instance, macroscopic human brain

networks constructed from multi-region interactions in neuroimaging data
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demonstrate substantial reconfiguration as a function of task performance: early
in the course of learning, the brain is relatively inter-connected and integrated, but
this pattern typically gives way to a more refined, segregated architecture as a

simple motor skill becomes second-nature®?. Whether this same topological

change also occurs in ML network remains a critical open question.

In addition, the synthetic nature of ML networks means that we can directly
interrogate the functional signature of specific elements within ML networks as
they train. While direct access to neuronal interconnections is not permitted in
contemporary neuroimaging approaches, we can leverage the nature of neural
networks to directly observe changes in the distributed patterns of connectivity
inherent to ML neural networks as they change over the course of learning. In this
manner, several studies have investigated the extent to which trained neural
networks attain a modular structure*?, though have not yet looked at the manner
in which this develops during the training process, nor using the well-defined
measures of modularity derived from systems neuroscience. Using this vantage
point, we can test the hypothesis that the functional capacities of neural networks
are distributed across the different nodes and connections that define their
architecture, which is an idea that is inherently challenging to study in biological

brains. Importantly, the established tools of network neuroscience, which have
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been used to quantify structure—function relationships in the brain for over a

decade, are perfectly placed for such analysis®*?.

In this study, we use a network neuroscience approach to understand how
network reconfiguration supports training within a machine learning setting. This
combined approach is used to provide a general understanding of the process of
adapting a complex network of interacting components to perform a useful task,
which is of paramount theoretical importance to both fields. Specifically, we use
the tools of systems neuroscience and information theory to analyse a feedforward
neural network as it learns to classify a set of binary digits (the classic MNIST data
set). While this approach does not in any way test the boundaries of machine
learning performance, it does afford a unique opportunity to better interpret the
outcomes of systems-level analytic approaches on how network reconfiguration

supports learning.

By tracking the topology of the network over the course of training, we identify
three distinct phases of topological reconfiguration. Early in learning, training
reconfigured the edges of the network so that they are strongly aligned with
information-rich regions of the nodes in up-stream layers of the network, and did

so in separate stages for inputs to each layer. Later in learning, network activity
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patterns reconfigured so as to maximize digit category separation in a low-
dimensional state space. These results provide important insights into how
network reconfiguration supports learning in feed-forward neural networks,
contributing to the cause of “explainable AI”"-?!. This simpler setting also enriches
our understanding of these methods themselves and aids interpretation of their
results in a neuroscience setting. Through this approach, we hope to provide a
clear interpretation of network activity over the course of learning that

simultaneously informs our understanding of both systems neuroscience and

machine learning.

Results

Feed Forward Neural Network Construction and Training

We applied systems neuroscience and information theoretic methods to analyze
the structure of a feedforward neural network as it was trained (across 100,000
epochs with stochastic gradient descent) to rapidly classify a set of ten hand-
written digits (Modified National Institute of Standards and Technology [MNIST]
dataset®). Although a neural network with a single hidden layer is theoretically
sufficient for high performance on MNIST®, neural networks with more hidden

layers provide benefits of both computational and parameter efficiency®. For the


https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321679; this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sake of simplicity, we chose a relatively basic network in which edge weights and

nodal activity patterns could be directly related to performance.

With these constraints in mind, we constructed a feedforward network with two
hidden layers — a 100-node hidden layer (HL1) that received the 28 x 28 input
(pixel intensities from the MNIST dataset) and a 100-node hidden layer (HL2) that
received input from HL1 — and a 10-node output layer (Fig. 1A). The edges
between these layers were given unique labels: the edges connecting the input
nodes to the first hidden layer were labelled as a edges (dark blue in Fig. 1A); the
edges connecting the two hidden layers were labelled as  edges (orange in
Fig. 1A); and the edges connecting the second hidden layer to the readout layer
were labelled as y edges (dark green in Fig. 1A). The absolute value of edge

weights from all three groups increased non-linearly over the course of training.
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Figure 1. A feed-forward neural network exhibits three topologically distinct phases of
reconfiguration throughout learning the MNIST dataset. A) A large (60,000 item) corpus of hand-

drawn digits (28 x 28 pixel array with 256 intensity values per pixel) were vectorized and entered
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into a generic feed-forward neural network with two hidden layers — a 100-node layer (HL1) that
received the 28 x 28 input and a 100-node layer (HL2) that received the input from HL1 — and a 10-
node output layer (argmax); B) the edges connecting the input > HL1 (dark blue; o), HL1 - HL2
(orange; B) and HL2 - output (dark green; y) were embedded within an asymmetric weighted
and signed connectivity matrix; C) classification accuracy showed a non-linear relationship with Q
(calculated across the whole network): there is an initial learning phase that was independent of
network modularity (light blue), after which there is a positive linear relationship between
accuracy and Q (Pearson’s r = 0.981; light green), and finally a sustained drop in Q, as accuracy

saturates in the later stages of learning (light purple).

The Topological Signature of Feed Forward Neural Network During Training

Inspired by results from systems neuroscience®? and complex systems®-* linking
network topology and function, we hypothesized that the topological structure of
the neural network should reconfigure so as to maximally extract the relevant
information from the input dataset, and that this reconfiguration should relate to
the improved performance of the network across the training phrase. To test this
prediction, we needed a means for translating the edges of the neural network into
a format that was amenable to network science approaches (i.e., a weighted and
directed adjacency matrix). To achieve this aim, we created a sparse node x node
matrix, and then mapped the a (Input-HL1), f (HL1-HL2) and y (HL2-output)

edges accordingly, yielding the adjacency matrix shown in Fig. 1B.
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With the network edge weights framed as a graph, we were next able to apply
topological analyses from the systems neuroscience literature to the edge weights
of the feed forward neural network as it was trained to classify the MNIST dataset.
In particular, we were interested in whether the topology of the neural network
over the course of learning mirrored patterns observed in the analysis of fMRI
networks in human participants'?. By tracking functional networks derived from
fMRI data over the course of 10 sessions in which participants learned to map
visual stimuli to motor responses, it was observed that effective learning was
associated with an increase in network modularity'?, Q, which quantifies the extent
with which the network can be clustered into tight-knit communities with
relatively sparse connections between them and is thought to be a key property of
complex networks!?. From this work, we hypothesized that the neural network

should show a similar shift towards heightened modularity over the course of

learning the MNIST dataset.

To test this hypothesis, we applied used the Louvain algorithm to estimate Q from
the neural network graphs at each training epoch. Our results provided partially
supportive evidence for our hypothesis (Fig. 1C), allowing us to confirm our
hypothesis in the intermediate stages of learning, but reject the hypothesis for

early or late stages. Interestingly, we also observed a nonlinear relationship

11
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between Q and classification accuracy (Fig. 1C). From the shape of this curve, we
identified three phases of topological adjustment through the training process
(labelled as “Early’, ‘Middle’, and ‘Late” in Fig. 1C). Early in the course of training,
there was a substantial improvement in accuracy without a noticeable change in
Q (light blue in Fig. 1C). In the Middle phase, we observed an abrupt increase in
Q (light green in Fig. 1C) that tracked linearly with performance accuracy (r =
0.981, prerv < 0.0001, permutation test). Finally, the level of Q began to drop in the
Late training stage (Fig. 1C; light purple). These results demonstrate that the

modularity of the neural network varies over the course of training in a way that

is tightly associated with the classification performance of the network.

Edge weight alterations are concentrated on informative inputs

The fact that Q didn’t change early in training, despite substantial improvements
in accuracy, was somewhat surprising. This result was made even more
compelling by that that that we observed substantial edge-weight alteration
during the initial phase (Fig. 2A), however with no alteration in the overall
topology. To better understand this effect, we calculated the variance of changes
in edge strength across all outgoing edges from input pixels (¢ Edge A) in the
Input—>HL1 sub-network (a edge; blue in Fig. 1A/B) over the course of the Early

phase. We found that the a edge weights that changed the most over this phase

12
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were located along the main stroke lines in the middle of the image (e.g., the
outside circle and a diagonal line; Fig. 2A). Similar to the manner in which an eye
saccades to a salient target®?, we hypothesized that the feedforward network was

reconfiguring early in training so as to align with the most informative regions of

the input space.

0.002 0.32

0.001

Figure 2. Topologically silent alterations in network edges during the Early phase of training.
A) although network modularity was static in the Early phase, the standard deviation of changes
in edge strength, o Edge A, in the first hidden layer of the network did change substantially over
the course of the Early training phase (first 10 epochs; cf. Fig. 1C); B) Pixel information, Ir =

Ml(pixel,class); C) We observed a strong positive correlation between o Edge A and Ir: v = 0.965.

To test this hypothesis, we binarized the pixel activity across the 60,000 items from
the training set, with a threshold that varied across each pixel so as to maximize
the mutual information (MI) that the binarized pixel provides about the class (i.e.,

the digit), and then calculated the information held by each pixel (Ir:

13
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MI(pixel,class); Fig. 2B). We observed a clear, linear correspondence between Ir
and the edges that reconfigured the most during the Early phase (Fig. 2C; r=0.965,
prerm < 0.0001). This result supported our hypothesis that the network was
adjusting to concentrate sensitivity to class-discriminative areas of input space,

which we demonstrate occurs via the reconfiguration of edge weights relating to

the most class-discriminative areas of the input space.

Topological Segregation During the Middle Phase of Learning

Outside of the initial phase of learning, we observed a substantial increase in
network Q that scaled linearly with improvements in classification accuracy
(Middle Phase II; Fig. 1C, green). To better understand how node-level network
elements reconfigured during the Middle phase, we computed two metrics for
each node that quantify how its connections are distributed across network
modules: (i) module-degree z-score (MZ); and (ii) participation coefficient (PC)®.
MZ and PC have together been used characterize the cartographic profile of
complex networks: MZ measures within-module connectivity, and PC measures
between-module connectivity and thus captures the amount of inter-regional
integration within the network (see Methods for details; Fig. 2A)%. These measures
have been previously used in combination with whole-brain human fMRI data to

demonstrate a relationship between heightened network integration and cognitive

14
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function*?**, however

the algorithmic utility of integrative

topological

organization is less well understood. Importantly, the calculation of both MZ and

PC relies on the community assignment estimated from the Louvain algorithm,

and hence affords a sensitivity to changes in network topology over the course of

training.
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Figure 3 — Topological changes in the Middle epoch. A) a cartoon depiction of two topological

extremes: on the left is a segregated network, with tight-knit communities that are weakly-

interconnected — this network would be characterized by high Q, and would have more nodes with
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high module degree z-score (MZ) than nodes with high Participation Coefficient (PC); on the right
is an integrated network, which has stronger connections between nodes in different communities,
and hence a lower Q, and more nodes with high PC than nodes with high MZ; B) participation
coefficient (PC) of Input layer nodes at training epoch 30; C) module degree z-score (MZ) of Input
layer at training epoch 30; D) Digit information, Io = MI(pixelons,class); E) Pearson’s correlation, 7,
between Ip and PC (red) and MZ (blue) across first 30 training epochs. Black lines represent the
upper and lower bounds (95t and 5t percentiles) of a permuted null dataset (10,000 iterations) and
coloured bars represent learning phases; F) In= MI(node,class) for HL1 (blue) and HL2 (orange)
nodes — note that both subnetworks increase I during the Middle phase, but that the Late phase

dissociates the two layers.

Using this cartographic approach?®, we were able to translate the edge weights in
the network into values of PC and MZ for each node of the network for each epoch
of training. Figures 2B and 2C show the distribution of PC and MZ values for the
nodes in the Input layer at training epoch 30, which was indicative of the patterns
in the Middle phase. We first noted that PC and MZ mapped onto different
locations in the input space, and hence were somewhat inversely correlated across
all epochs (r = -0.107; p = 3 x 10%). PC was associated with a relatively ‘patchy’
appearance around the main stroke areas, suggestive of a distributed topological
coverage of the input space, as well as high values on the edges of the input space
(Fig. 2C). In contrast, high MZ values (which are indicative of local hubs within

network communities) were located along the main stroke lines, so as to align
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network hubs with detection or absence of higher order patterns in the input
stream (Fig. 2D). We hypothesized that these changes were indicative of a

topological reconfiguration that reorganized the neural network so as to align

network hubs with key aspects of the input stream.

To test this hypothesis, we related the PC and MZ for each node of the network
across all epochs of training to the amount of information available in each pixel
of the input space (Fig. 3D). In order to more precisely relate changes in MZ and
PC to the manner in which each pixel held information about the digit class, we
calculated the partial information (i.e., In: MI(pixelon,class); as well as its inverse,
MI(pixelos,class)) carried by each pixel about the class. In contrast to Ir, Ip for
example quantifies how informative each pixel is for tracking multiple different
digit classes, but only when the pixel is active (pixelon). High values of Ip imply
that the recruitment of the particular pixel is associated with a reduction in
uncertainty (i.e.,, an increase in information) about the digit. As detailed in the
Methods, Ir is inversely correlated to Ip and dominated by samples when the pixel
is inactive; hence we focus on information carried when the pixel is active Io (Fig.

3D).
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When relating Ip to PC and MZ across training, we observed a significant positive
correlation between Ip and MZ that emerged towards the end of the Middle phase
(Fig. 2E). Specifically, we observed a double dissociation that emerged over the
course of learning in the input layer (Fig. 2F), wherein during the Middle phase Ip
was positively correlated with nodal participation coefficient (max r = 0.396, prerm
< 0.0001), but negatively correlated with mean module degree z-score (max r = -
0.352, prerm < 0.0001). In other words, the topology of the neural network
reconfigured so as to align highly informative active pixels with topologically
integrated hubs (nodes with higher PC). These pixels are comparatively rarely
active, but highly informative when this occurs, and the result suggests that this
requires the network to send information about such events to many downstream
modules. By contrast, more segregated hubs (nodes with higher MZ) were likely
to be associated with highly informative inactive pixels, which are also more
informative on average of digit class. This may indicate that the network is
reconfiguring so as to organize sets of informative nodes into modules in a way
that supports the creation of higher order ‘features’ in the next layer. In
neuroscience, nodes within the same module are typically presumed to process
similar patterns of information'?, suggesting that the topology of the neural
network studied here may be aligning to detect the presence or absence of low-

dimensional features within the input space.
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Inter-layer correspondence

Given that the same gradient descent algorithm used to train the network was
applied consistently across all layers of the network, we predicted that the same
principles identified in the input layer should propagate through the network,
albeit to the abstracted ‘features’ captures by each previous layer. Similar to the
manner in which a locksmith sequentially opens a bank vault, we hypothesized
that each layer of the neural network should align with the most informative
dimensions of its input in turn, such that the information could only be extracted
from an insulated layer once a more superficial layer was appropriately aligned
with the most informative aspects of its input stream. To test this hypothesis, we
investigated how the mutual information MI(node,class) in each node about the
digit class evolved across training epochs. As shown in Fig. 2F, mean MI within
both hidden layers 1 (MIxi1) and 2 (Mlui2) increased during the first two epochs,
but then diverged at the point in learning coinciding with the global decrease in
modularity, Q (cf. Fig. 1D). Crucially, despite the decrease in MIx.: there was still
an increase in Mlui2, suggesting that the Layer 2 nodes are improving their ability

to combine information available in separate individual Layer 1 nodes to become
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more informative about the class. This suggests that Layer 1 nodes specialise (and

therefore hold less information overall, lower Mluu1) in order to support the

integration of information in deeper layers of the neural network (increased Mlr2).

Validation with the eMNIST dataset

Thus far, we have demonstrated that neural network edges reconfigured in three
distinct phases to augment the relationship between input and hidden layer nodes
and the class-relevant information in the data being fed into the network. To
determine whether these training principles identified on the MNIST dataset were
generalizable to other datasets, we trained a new feed-forward neural network
(identical in architecture to the original network) on the eMNIST dataset™, which
is similar to MNIST, but uses hand-written letters, as opposed to numbers.
Although learning was more protracted in the eMNIST dataset (likely due to the
increased complexity of the alphabet, relative to the set of digits), we were able to
replicate the changes in network structure across training the MNIST dataset: (i)
the network shifted from integration to segregation; layers reconfigured in serial;
and nodal roles (with respect to inferred network modules) were similarly related
to class-relevant information in individual pixels (Fig. S1). These results suggest
that the insights obtained from the MNIST analysis may represent general learning

principles of multilayered neural networks.
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Late phases were associated with low-dimensional pattern separation

Next, we investigated whether the manner in which the extent to which the nodal
topology of the networks trained on the two datasets differed (i.e., whether
different regions of the input space had higher or lower PC and MZ) was
proportional to the most informative locations of the inputs space in each dataset
(Alp). Specifically, the difference in the pattern of a node’s edges across inferred
network modules between the eMNIST and MNIST datasets (APC) was correlated
with the difference in image input characteristics between the two datasets (Alb vs.
APC: r = 0.301, prerm < 0.0001; Alp vs. AMZ: r = -0.247, prerv < 0.0001). This result
provides further confirmation that neural networks learn by reorganizing their
nodal topology into a set of phases that act so as to align network edges and

activity patterns with the most informative pixels within the training set.

We found that pixels demonstrated unique roles across learning with respect to
the emerging modular architecture of the training neural network, and that these
roles were shaped by their class-relevant information. As the edge weights were
reconfigured across training, we observed that outgoing edge strength increases
for highly informative inputs. As these weights change, they alter the activity of

each of the nodes in the hidden layers, which ultimately pool their activity via
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modules to affect the class predictions, which are read out based on the activity of
the final output layer. So how do the changes in edge weight translate into nodal
activity? Based on recent empirical electrophysiological® and fMRI* studies, we
hypothesized that the activity patterns would be distributed across the neural
network in a low-dimensional fashion. Specifically, by way of analogy to the
notion of manifold untangling in the ventral visual system”, we predicted that
across training, the high-dimensional initial state of the system (i.e., the random

weights) would become more low-dimensional as pixel-pixel redundancies were

discovered through the learning process.

To test this hypothesis, we used dimensionality-reduction® to analyze the
‘activity’ of all of the nodes within the neural network, across the different training
epochs. The primary intuition behind these approaches is that, given the highly
inter-connected nature of biological systems, reducing the dimensionality of data
using statistical techniques, such as principal component analysis (PCA), can
allow investigators to essentially ignore small details in order to track the
representative activity of the system over time, often revealing key features of its
organization®*. We applied PCA to the nodal activity across all four layers of the
feedforward network —i.e., the Input, HL1, HL2 and Output nodes — which were

first standardized and then either concatenated (to calculate the dimensionality of
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the entire process) or analyzed on an epoch-to-epoch basis (to calculate the effect
of training; see Methods for details). The concatenated state-space embedding was
low-dimensional (120/994 components, or 12.2%, explained ~80% of the variance)
and the pixel-wise loading of each of the top eigenvalues (As) for the Input layer
(Fig. 4A) was correlated with both information theoretic measures used in the
prior analyses (Ir — A1: ¥ = 0.218, p < 0.0001; A2: r = 0.189, p < 0.0001; A3z = 0.158, p <
0.0001; and Ip — Ai: r = 0.338, p < 0.0001; A2 r = 0.123, p < 0.0001; As: r = 0.062, p =
0.080), suggesting a direct correspondence between class-relevant information in
the input space and the low-dimensional embedding. Crucially, test trials that
were incorrectly classified (Epoch 10,000, though results were consistent for other
epochs) were associated with lower absolute loadings on the ten most explanatory
EVs (EVia0; Figure S3; FDR p < 0.05). This suggests that alignment with the low-
dimensional space was related to accurate performance. These results are
tangentially related to recent empirical neuroscientific studies that employed
dimensionality reduction on electrophysiological®® and fMRI data*® to show that

learning and cognitive task performance are typically more effective when

constrained to a low-dimensional embedding space.
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Figure 4 — Unravelling the manifold: low-dimensional projections of feed-forward neural
network activity during MNIST training reveal category-specific untangling. A) The first three
principal components (eigenvalues 1-3: A1/ A2/ As) of the Input nodes; B) The percentage of variance
explained by EV1, when the PCA was fit on data from each training epoch separately; C) 3D scatter
plot of the items from the training set during three different stages: during the Early phase (Epochs
1-10), the topological embedding of the different digits showed substantial overlap, which is
reflected in the low between-category distance (i.e., distance between mean of each digit); in the
Middle phase (Epochs 11-300), the embedding showed a relative expansion in the low-dimensional
space; and during the Late phase (Epochs 300+), the distance within each category dropped
dramatically; D) 3D scatter plot of between-category and within-category distance, along with
training accuracy — note that maximal accuracy is associated with increases in both within- and

between-category distance.
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By conducting a PCA on each epoch in turn, we found that training was associated
with a nonlinear alteration in network dimensionality that aligned with the
topologically identified phases (Fig. 4B and Movie S1). The network began in a
relatively high-dimensional configuration, consistent with the random initiation
of nodal activity. During the Early phase (light blue in Fig. 4B), as the edge weights
reconfigured to align with Ir (Fig. 3D), the dimensionality of the system remained
relatively high. During the Middle phase (light green in Fig. 3B), there was a sharp
reduction in dimensionality, however the dimensionality collapse was diminished
mid-way through the phase. The Late phase (purple in Fig. 3B) was associated
with a final, albeit mild, reduction in dimensionality. Interestingly, heightened
levels of training led to a tighter correspondence between nodal topological
signatures (PC/MZ, calculated at each epoch) and the principal component
loadings of nodes in the Input layer (Fig. S2), suggesting that the topology of the
neural network reconfigured over training to better map onto the low-dimensional

manifold that concentrates class-relevant information in the training dataset.

Previous theoretical work in systems neuroscience has argued that a primary
computational benefit of the nervous system may be to ‘untangle’ low-

dimensional relationships between different information streams®. Interestingly,
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the same concept has been used to explain the function of both the visual system?
and effective decision making®, suggesting that the capacity may reflect a
relatively domain general property of nervous system organization. There is also
evidence to suggest that the same concept may underpin the functionality of
convolutional neural networks trained on naturalistic images?. Based on these
results, we interrogated our data for the presence of manifold untangling, and
found that the increase in topologically rich, low-dimensionality was associated
with a relative ‘untangling’ of the low-dimensional manifold (Fig. 4C): the Middle
phase was associated with a general expansion in the low-dimensional embedding
distance Within categories (light green in Fig. 4D), which then allowed the system
to both expand Between categories and contract within Categories during the Late
phases of learning (purple in Fig. 4D). This ultimately had the effect of augmenting
classification accuracy. Indeed, the contraction of the within category embedding
distance — which takes place first — co-occurs with the drop of Mlui;, with the
following expansion of Between category distance co-occurring with the increase
in Mlhe2. At the sub-network level, the activity on nodes in HL2 was substantially
more low-dimensional than HL1 (Fig. S4), further expanding on the notion that
different computational constraints are imposed on neural networks, depending

on the depth of network layers.
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Discussion

This work demonstrates the benefits of translating neural networks into the
language of systems neuroscience. We applied topological metrics to the
weighted, directed adjacency matrix of a simple feedforward neural network
during its training to quantify how connections are distributed across the network,
and thus directly tracked changes in network edge strength (Fig. 2), topology (Fig.
3) and activity (Fig. 4) that coincided with distinct phases of accuracy-related
change in the configuration of the network. The results of our study both help to
validate the study of network topology in systems neuroscience, while also
improving our understanding of how neural networks alter their structure so as

to better align the topology of the network with the available streams of

information being fed to the network.

The approaches used in this study were designed to aid in the interpretation of the
inner workings of the “black box” of the brain, which is a similar issue to that
recognised today in seeking explanations for the inner workings of deep neural
networks?. An important open question is whether other distinct network
architectures, such as recurrent!, convolutional?’, echo state*® or generative
adversarial networks*, will share similar or distinct mechanisms®2°2!, It is also well

known that the brain contains numerous non-linear mechanisms, including gain
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modulation® and circuit-based mechanisms*, that may in turn form the basis of
distinct topological motifs. Regardless, our work provides evidence that network
science can provide intuitive explanations for the computational benefits of neural
network learning, and helps to highlight the growing intersection between
artificial and biological network analyses*. Taking inspiration from biology, other
authors have previously suggested that the concept of modularity may be
explicitly employed to improve the design of deep neural network architecture in
various ways*#. Our findings add to this perspective by demonstrating that the

training of such networks may be implicitly interpretable using these same

concepts.

What can network neuroscience learn from the results of this experiment? For one,
our observations provide evidence that the tools of systems neuroscience and
engineering can indeed be used to understand the function of a complex, high-
dimensional system>%%. In addition, there are a number of benefits to analysing
neural networks that are not readily apparent in neurobiological analyses. For
instance, in the case of feed-forward neural networks, we know the direct mapping
between inputs and nodes, whereas in neuroscience, this mapping is challenging
(e.g., the location of the animal’s gaze can alter the information entering the brain).

In addition, standard network approaches in neuroscience require a noisy
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estimation of network edges, whereas the process here allows us to observe the
edge weights directly. It is our hope that these benefits can be used to improve our
understanding of the computational benefits of particular systems-level
organizing principles, which in turn can be brought back to neuroscience to

accelerate progress in our understanding of the systems-level mechanisms that

comprise effective neurological function.

In conclusion, we used a systems-level perspective to demonstrate a series of three
serial phases over the course of network training that relate to manner in which
the topological configuration of the neural network is aligned with the information

content provided by the data fed into the network.
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Methods

Feedforward Neural Network

A prototypical, four-layer, feed-forward neural network with no non-linearities
was created with randomized weights (edge strengths: -1 to 1). The input layer
was designed to take 784 inputs, which themselves were flattened from a 28x28
greyscale pixel array from the MNIST dataset®. The input layer was fully
connected to a hidden layer of 100 nodes (HL1), which in turn was fully connected
to a second hidden layer of 100 nodes (HL2). The second hidden layer was then
fully connected to a 10-node output layer. The activation function was a standard
sigmoid for the incoming connections at each hidden layer (exponent = 1), and a
soft max at the output layer. The maximum value across the nodes of the output
layer was taken to reflect the ‘response” of the network. Each result in our study
was also replicated in a separate eMNIST dataset, which was identical to MNIST,

but had 26 hand-written letters, as opposed to 10 hand-written digits®'.

Training Approach
The network was trained with backpropagation using a Stochastic Gradient
Descent optimiser. To aid interpretation, the learnt bias at each neuron was kept

to zero and no regularisation was used. The weights and activities were saved as

30


https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321679; this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
training progressed over the course of a number of epochs (SGD: 100,000).
Accuracy was defined as the percentage of trials in a held-out, 10,000 trial testing

set in which the maximum value of the output layer was matched with the test

category.

Network Construction

The weighted and signed edges from each asymmetric layer of the neural network
were concatenated together to create an asymmetric connectivity matrix. Each
connectivity profile was placed in the upper triangle of the matrix (see Fig. 2). To
ensure that this step did not adversely affect the topological estimates, each
experiment was conducted separately on: a) each layer in turn; b) only the upper
triangle of the connectivity matrix. Similar patterns were observed when we re-
ran each network separately, suggesting that the embedding did not adversely

affect topological interpretation.

Modularity Maximization

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT?)
was used on the neural network edge weights to estimate community structure.
The Louvain algorithm iteratively maximizes the modularity statistic, Q, for

different community assignments until the maximum possible score of Q has been
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obtained (see Equation 1). The modularity of a given network is therefore a

quantification of the extent to which the network may be subdivided into

communities with stronger within-module than between-module connections.

1 1 - —
Qr = FZU(W;; - 95)5Mi1v1]- - mZu(wi,- - eij)aMiMj [1]
where v is the total weight of the network (sum of all negative and positive
connections), wi is the weighted and signed connection between nodes i and j, e;
is the strength of a connection divided by the total weight of the network, and dmim;
is set to 1 when nodes are in the same community and 0 otherwise. ‘+" and ‘-

superscripts denote all positive and negative connections, respectively.

For each epoch, we assessed the community assignment for each region 500 times
and a consensus partition was identified using a fine-tuning algorithm from the
BCT. We calculated all graph theoretical measures on un-thresholded, weighted
and signed undirected, asymmetric connectivity matrices”™. The stability of the y
parameter (which defines the resolution of the community detection algorithm)
was estimated by iteratively calculating the modularity across a range of y values
(0.5-2.5; mean Pearson’s r = 0.859 +- 0.01) on the time-averaged connectivity matrix

for each subject — across iterations and subjects, a y value of 1.0 was found to be

32


https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321679; this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
the least variable, and hence was used for the resultant topological analyses. A
consensus clustering partition was defined across all epochs using
consensus_und.m from the BCT. The resultant solution contained 10 clusters that

each contained nodes that were distributed across multiple layers (i.e., Input, HL;,

HL: and Output).

Cartographic Profiling

Based on time-resolved community assignments, we estimated within-module
connectivity by calculating the time-resolved module-degree Z-score (MZ; within
module strength) for each region in our analysis (Equation 2)”, where xir is the
strength of the connections of node i to other nodes in its module s at time T, &,

is the average of k over all the regions in s: at time T, and Oy, 18 the standard
i

deviation of k in si at time T.

MZ — KiT_KSiT [2]

sy
The participation coefficient, PC, quantifies the extent to which a node connects
across all modules (i.e. between-module strength) and has previously been used
to successfully characterize hubs within brain networks (e.g. see 7). The PC for

each node was calculated within each temporal window using Equation 3, where
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Kist is the strength of the positive connections of node i to nodes in module s at time
T, and xir is the sum of strengths of all positive connections of nodes i at time T.
Consistent with previous approaches in neuroscience!*®, negative connections
were removed prior to calculation. The participation coefficient of a region is

therefore close to 1 if its connections are uniformly distributed among all the

modules and 0 if all of its links are within its own module.

pc =1y, (ur)’ 3]

KiT

Mutual Information

We calculated three separate Information measures. To calculate the Information
content within each pixel (Ir), we binarized the pixel activity across the 60,000
items from the training set, with a threshold that varied across each pixel so as to
maximize the mutual information (MI) that the binarized pixel provides about the
class, and then calculated the information within each pixel: MI(pixel,class). To
calculate the Information content within each pixel when the pixel was active (after
thresholding), we averaged the pointwise MI for each training item, Ip =

p(digit|pixel) . . .
log, yTI— only over the items where the pixel was on (pixelon). Note that Ir

and Ip were inversely correlated across the 28x28 input dimension (r =-0.560, prerm
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< 0.0001), suggesting that the total information from the pixel is dominated by
samples when the pixel is inactive. To calculate the Information content within
each hidden layer node (In), we calculated the mutual information for each node

(binarized at activity = 0.5) with the digit class. All MI values were computed using

the open source JIDT software.

Principal Components Analysis

Activity values from the test trials from the input, HL1 and HL2 layers from each
epoch were concatenated to form a multi-epoch time series. The data were
normalized and then a spatial PCA was performed on the resultant data. The top
3 eigenvectors were used to track the data within a low-dimensional embedding
space (Fig. 3), and the percentage explained variance was tracked across all
learning epochs. The eigenvectors from the concatenated data were then used to
estimate the leading eigenvalues across all training epochs. The analysis was also
re-run with activity patterns in HL1 and HL2 separately (i.e., independent of the
input layer; Fig. S4). The average value for each exemplar was then used to create
two distance measures: Between-category distance, which was defined as the
average between-category Euclidean distance at each epoch; and Within-category
distance, which was defined as the average within-category Euclidean distance

within each epoch.
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Permutation Testing

We used non-parametric testing to determine statistical significance of the
relationships identified across our study®. A distribution of 10,000 Pearson’s
correlations was calculated for each comparison, against which the original
correlation was compared. Using this approach, the p-value was calculated as the
proportion of the null distribution that was less extreme than the original
correlation value. In many instances, the effects we observed were more extreme
than the null distribution, in which case the p-value was designated as prerm <

0.0001.

36


https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321679; this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

1. Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M. Neuroscience-Inspired
Artificial Intelligence. Neuron 95, 245-258 (2017).

2. Shine, J. M. The thalamus integrates the macrosystems of the brain to facilitate
complex, adaptive brain network dynamics. Progress in Neurobiology 101951 (2020)
doi:10.1016/j.pneurobio.2020.101951.

3. Hasson, U., Nastase, S. A. & Goldstein, A. Direct Fit to Nature: An Evolutionary
Perspective on Biological and Artificial Neural Networks. Neuron 105, 416-434
(2020).

4. Margulies, D. S. et al. Situating the default-mode network along a principal gradient
of macroscale cortical organization. Proceedings of the National Academy of
Sciences of the United States of America 113, 12574—-12579 (2016).

5. Shine, J. M. et al. Human cognition involves the dynamic integration of neural
activity and neuromodulatory systems. Nat Neurosci 22, 289—-296 (2019).

6. Bassett, D. S., Yang, M., Wymbs, N. F. & Grafton, S. T. Learning-induced autonomy
of sensorimotor systems. Nature Neuroscience 18, 744—751 (2015).

7. Wibral, M., Lizier, J. T. & Priesemann, V. Bits from brains for biologically inspired
computing. Frontiers in Robotics and AI 2,5 (2015).

8. Hamrick, J. & Mohamed, S. Levels of Analysis for Machine Learning.
arXiv:2004.05107 [cs, stat] (2020).

9. Favre-Bulle, I. A., Vanwalleghem, G., Taylor, M. A., Rubinsztein-Dunlop, H. &
Scott, E. K. Cellular-Resolution Imaging of Vestibular Processing across the Larval

Zebratish Brain. Current biology : CB 28, 3711-3722.e3 (2018).

37


https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321679; this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

10. Kitzbichler, M. G., Smith, M. L., Christensen, S. R. & Bullmore, E. Broadband
Criticality of Human Brain Network Synchronization. PLoS Comput Biol 5,
€1000314 (2009).

11. Ellefsen, K. O., Mouret, J.-B. & Clune, J. Neural Modularity Helps Organisms
Evolve to Learn New Skills without Forgetting Old Skills. PLoS Comput Biol 11,
€1004128 (2015).

12. Sporns, O. & Betzel, R. F. Modular Brain Networks. Annual review of psychology
67, annurev-psych-122414-033634 (2015).

13. Betzel, R. F., Fukushima, M., He, Y., Zuo, X. N. & Sporns, O. Dynamic fluctuations
coincide with periods of high and low modularity in resting-state functional brain
networks. Neurolmage 127, 287-297 (2016).

14. Shine, J. M. et al. The Dynamics of Functional Brain Networks: Integrated Network
States during Cognitive Task Performance. Neuron 92, 544-554 (2016).

15. Hawrylycz, M. J. ef al. An anatomically comprehensive atlas of the adult human
brain transcriptome. Nature 489, 391-399 (2012).

16. Markram, H. et al. Reconstruction and Simulation of Neocortical Microcircuitry. Cell
163, 456492 (2015).

17. Phillips, J. W. et al. A repeated molecular architecture across thalamic pathways.
Nature Neuroscience 22, 1925-1935 (2019).

18. Jonas, E. & Kording, K. P. Could a Neuroscientist Understand a Microprocessor?

PLoS Comput Biol 13, 1005268 (2017).

38


https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321679; this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

19.

20.

21.

22.

23.

24.

25.

26.

27.

available under aCC-BY-NC-ND 4.0 International license.

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G.
Backpropagation and the brain. Nat Rev Neurosci (2020) doi:10.1038/s41583-020-
0277-3.

Sejnowski, T. J. The unreasonable effectiveness of deep learning in artificial
intelligence. Proc Natl Acad Sci USA 201907373 (2020)
doi:10.1073/pnas.1907373117.

Richards, B. A. ef al. A deep learning framework for neuroscience. Nat Neurosci 22,
1761-1770 (2019).

Silver, D. et al. Mastering the game of Go with deep neural networks and tree search.
Nature 529, 484-489 (2016).

Mohr, H. ef al. Integration and segregation of large-scale brain networks during
short-term task automatization. Nature communications 7, 13217 (2016).

Csordas, R., van Steenkiste, S. & Schmidhuber, J. Are Neural Nets Modular?
Inspecting Functional Modularity Through Differentiable Weight Masks.
arXiv:2010.02066 [cs] (2021).

Ballard DH. Modular learning in neural networks. A4A41-87 Proceedings 1, 279-284
(1987).

Cohen, U., Chung, S., Lee, D. D. & Sompolinsky, H. Separability and geometry of
object manifolds in deep neural networks. Nat Commun 11, 746 (2020).
Shwartz-Ziv, R. & Tishby, N. Opening the Black Box of Deep Neural Networks via

Information. arXiv:1703.00810 [cs] (2017).

39


https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321679; this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

available under aCC-BY-NC-ND 4.0 International license.

Flesch, T., Balaguer, J., Dekker, R., Nili, H. & Summerfield, C. Comparing continual
task learning in minds and machines. Proc Natl Acad Sci USA 115, E10313-E10322
(2018).

Sussillo, D. Neural circuits as computational dynamical systems. Current Opinion in
Neurobiology 25, 156-163 (2014).

Leshno, M., Lin, V. Ya., Pinkus, A. & Schocken, S. Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural
Networks 6, 861-867 (1993).

Mhaskar, H., Liao, Q. & Poggio, T. Learning Functions: When Is Deep Better Than
Shallow. arXiv:1603.00988 [cs] (2016).

Friston, K., Adams, R. A., Perrinet, L. & Breakspear, M. Perceptions as Hypotheses:
Saccades as Experiments. Front. Psychology 3, (2012).

Guimera, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic
networks. Nature 433, 895-900 (2005).

Bertolero, M. A., Yeo, B. T. T. & D’Esposito, M. The modular and integrative
functional architecture of the human brain. Proceedings of the National Academy of
Sciences of the United States of America 201510619 (2015).

Sadtler, P. T. ef al. Neural constraints on learning. Nature 512, 423-426 (2014).
Shine, J. M. et al. The Low-Dimensional Neural Architecture of Cognitive
Complexity Is Related to Activity in Medial Thalamic Nuclei. Neuron 104, 849-
855.e3 (2019).

DiCarlo, J. J. & Cox, D. D. Untangling invariant object recognition. Trends in

Cognitive Sciences 11, 333-341 (2007).

40


https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321679; this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

available under aCC-BY-NC-ND 4.0 International license.

Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural
recordings. Nature Neuroscience 17, 1500-1509 (2014).

Kato, S. ef al. Global brain dynamics embed the motor command sequence of
Caenorhabditis elegans. Cell 163, 656—669 (2015).

Yoo, S. B. M. & Hayden, B. Y. Economic Choice as an Untangling of Options into
Actions. Neuron 99, 434-447 (2018).

Mastrogiuseppe, F. & Ostojic, S. Linking Connectivity, Dynamics, and Computations
in Low-Rank Recurrent Neural Networks. Neuron 99, 609-623.€29 (2018).

Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural
responses in higher visual cortex. Proceedings of the National Academy of Sciences
of the United States of America 111, 8619-8624 (2014).

Gallicchio, C. & Scardapane, S. Deep Randomized Neural Networks.
arXiv:2002.12287 [cs, stat] (2020).

Goodfellow, 1. J. et al. Generative Adversarial Networks. arXiv:1406.2661 [cs, stat]
(2014).

Salinas, E. & Sejnowski, T. J. Book Review: Gain Modulation in the Central Nervous
System: Where Behavior, Neurophysiology, and Computation Meet. Neuroscientist
7, 430-440 (2001).

Freeman, W. J. Nonlinear gain mediating cortical stimulus-response relations.
Biological cybernetics 33, 237-247 (1979).

Zador, A. M. A critique of pure learning and what artificial neural networks can learn

from animal brains. Nat Commun 10, 3770 (2019).

41


https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321679; this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

48.

49.

50.

51.

52.

53.

54.

available under aCC-BY-NC-ND 4.0 International license.

Jo,J., Verma, V. & Bengio, Y. Modularity Matters: Learning Invariant Relational
Reasoning Tasks. arXiv:1806.06765 [cs, g-bio, stat] (2018).

Kirsch, L., Kunze, J. & Barber, D. Modular Networks: Learning to Decompose
Neural Computation. arXiv:1811.05249 [cs, stat] (2018).

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278-2324 (1998).

Cohen, G., Afshar, S., Tapson, J. & van Schaik, A. EMNIST: an extension of MNIST
to handwritten letters. arXiv:1702.05373 [cs] (2017).

Bertolero, M. A., Yeo, B. T. T. & D’Esposito, M. The diverse club. Nature
communications 8, 1277 (2017).

Lizier, J. T. JIDT: An Information-Theoretic Toolkit for Studying the Dynamics of
Complex Systems. Front. Robot. AI 1, (2014).

Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional

neuroimaging: a primer with examples. Human brain mapping 15, 1-25 (2002).

42


https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/

