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Abstract 

Network neuroscience has catalysed crucial insights into the systems-level 

organisation of the brain, however the lack of a ‘ground truth’ inherently limits 

direct interpretation. In parallel, deep learning approaches have advanced our 

algorithmic understanding of intelligence, however the principles that govern 

learning-induced modifications to network structure remain relatively opaque. 

Here, we combine the benefits of these two approaches to overcome each of their 

inherent weaknesses. Specifically, we train a shallow, feedforward neural network 

to classify handwritten digits and then used a combination of systems 

neuroscience and information theoretic tools to perform ‘virtual brain analytics’1 

on the resultant edge weights and nodal activity patterns. We identified three 

distinct stages: early in learning, training aligned network edges with information-

rich regions of the nodes in up-stream layers of the network, and did so in separate 

stages for inputs to each layer; whereas later in learning, network activity patterns 

reconfigured so as to maximize digit category separation in a low-dimensional 

state space. Our results offer a systems-level perspective of how artificial neural 

networks function – in terms of multi-stage reorganization of edge weights and 

activity patterns so as to most effectively exploit the information content of input 

data during edge-weight training – while simultaneously enriching our 

understanding of the methods used by systems neuroscience. 
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In the human brain, capacities such as cognition, attention, and awareness are 

thought to emerge from the coordinated activity of billions of neurons2. 

Traditional measures typically used to map these functions from neuroimaging 

data were designed to identify ‘activated’, localized regions of the brain that 

characterize a particular cognitive context3. This historical focus on localization has 

led to a number of key insights about neural function, however it has also made it 

more challenging to create links between systems-level neural organization and 

psychological capacities. 

 

A potential means for mapping psychological functions to neural circuitry 

involves the analysis of neuroimaging data from a systems-level perspective4–6. By 

treating neuroimaging datasets as if the data arise from networks of interacting 

parts, systems neuroscientists are able to characterize high-dimensional datasets 

in ways that help to understand how brain networks process information7,8. Across 

multiple spatial9 and temporal10 scales, these approaches have revealed a number 

of systems-level principles of brain function. A salient example is the 

measurement of network modularity, which quantifies the extent to which a 

network is comprised of a relatively weakly inter-connected set of tight-knit sub-

modules. 
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Systems-level organization has demonstrable computational advantages11,12 and 

has been shown to effectively map onto higher-level cognitive functions13,14. 

However, systems-level approaches in human neuroimaging are inherently 

indirect, as we don’t yet have access to ‘ground truth’ neuroimaging datasets that 

directly link structure with function, let alone over the course of interesting 

behavioural changes, such as the learning of mappings between stimulus and 

response. For this reason, although we have ready access to high-quality 

neuroimaging datasets15–17, it remains relatively challenging to infer precisely 

which aspects of brain system organization are revealed in neuroimaging data are 

integral for facilitating behaviour using traditional approaches18.  

 

Linking adaptation of network structure to enhanced task performance is also a 

central issue in the field of machine learning. Although some of the details of 

implementation differ19, neuroscience and machine learning share some 

remarkable similarities. For example, the original neural-network algorithms were 

in part inspired by the anatomy of the cerebral cortex19–21, and in the case of deep, 

layered neural networks, both systems share a common property of distributed 

computation facilitated by complex topological wiring between large numbers of 

(relatively) simple computational units. Over the last few decades, neural 

networks20 have been trained to outperform world experts at complex strategy 
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games, such as Chess and Go22. Although the algorithms that are used to train 

neural network weights are well understood, the manner in which neural 

networks reconfigure in order to facilitate high levels of classification accuracy 

remains relatively opaque3,20,21. It is this process of adapting a complex network of 

interacting components to perform a useful task that has as yet escaped a detailed 

analysis using the established tools of network neuroscience, which themselves 

have been used to quantify structure–function relationships in the brain for over a 

decade. 

 

Whilst the question of how network reconfiguration supports learning is mirrored 

in machine learning and network neuroscience, the different contexts of these 

fields provides a timely opportunity to bring them together synergistically to 

investigate the problem1. First, we can observe that the process of adapting a 

complex network of interacting components to perform a useful task is more 

simply captured and observed in the training of neural networks. Studying this 

process in a machine learning setting offers fine time-scale, full-system 

observations of network structure and activity that are not currently possible in 

neuroscience. In this way, our approach allows us to potentially identify deeper 

synergies between the two fields1,21. For instance, macroscopic human brain 

networks constructed from multi-region interactions in neuroimaging data 
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demonstrate substantial reconfiguration as a function of task performance: early 

in the course of learning, the brain is relatively inter-connected and integrated, but 

this pattern typically gives way to a more refined, segregated architecture as a 

simple motor skill becomes second-nature6,23. Whether this same topological 

change also occurs in ML network remains a critical open question. 

 

In addition, the synthetic nature of ML networks means that we can directly 

interrogate the functional signature of specific elements within ML networks as 

they train. While direct access to neuronal interconnections is not permitted in 

contemporary neuroimaging approaches, we can leverage the nature of neural 

networks to directly observe changes in the distributed patterns of connectivity 

inherent to ML neural networks as they change over the course of learning. In this 

manner, several studies have investigated the extent to which trained neural 

networks attain a modular structure24,25, though have not yet looked at the manner 

in which this develops during the training process, nor using the well-defined 

measures of modularity derived from systems neuroscience. Using this vantage 

point, we can test the hypothesis that the functional capacities of neural networks 

are distributed across the different nodes and connections that define their 

architecture, which is an idea that is inherently challenging to study in biological 

brains. Importantly, the established tools of network neuroscience, which have 
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been used to quantify structure–function relationships in the brain for over a 

decade, are perfectly placed for such analysis26–29. 

 

In this study, we use a network neuroscience approach to understand how 

network reconfiguration supports training within a machine learning setting. This 

combined approach is used to provide a general understanding of the process of 

adapting a complex network of interacting components to perform a useful task, 

which is of paramount theoretical importance to both fields. Specifically, we use 

the tools of systems neuroscience and information theory to analyse a feedforward 

neural network as it learns to classify a set of binary digits (the classic MNIST data 

set). While this approach does not in any way test the boundaries of machine 

learning performance, it does afford a unique opportunity to better interpret the 

outcomes of systems-level analytic approaches on how network reconfiguration 

supports learning. 

 

By tracking the topology of the network over the course of training, we identify 

three distinct phases of topological reconfiguration. Early in learning, training 

reconfigured the edges of the network so that they are strongly aligned with 

information-rich regions of the nodes in up-stream layers of the network, and did 

so in separate stages for inputs to each layer. Later in learning, network activity 
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patterns reconfigured so as to maximize digit category separation in a low-

dimensional state space. These results provide important insights into how 

network reconfiguration supports learning in feed-forward neural networks, 

contributing to the cause of “explainable AI”19–21. This simpler setting also enriches 

our understanding of these methods themselves and aids interpretation of their 

results in a neuroscience setting. Through this approach, we hope to provide a 

clear interpretation of network activity over the course of learning that 

simultaneously informs our understanding of both systems neuroscience and 

machine learning. 

 

Results 

Feed Forward Neural Network Construction and Training 

We applied systems neuroscience and information theoretic methods to analyze 

the structure of a feedforward neural network as it was trained (across 100,000 

epochs with stochastic gradient descent) to rapidly classify a set of ten hand-

written digits (Modified National Institute of Standards and Technology [MNIST] 

dataset30). Although a neural network with a single hidden layer is theoretically 

sufficient for high performance on MNIST30, neural networks with more hidden 

layers provide benefits of both computational and parameter efficiency31. For the 
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sake of simplicity, we chose a relatively basic network in which edge weights and 

nodal activity patterns could be directly related to performance. 

 

With these constraints in mind, we constructed a feedforward network with two 

hidden layers — a 100-node hidden layer (HL1) that received the 28 x 28 input 

(pixel intensities from the MNIST dataset) and a 100-node hidden layer (HL2) that 

received input from HL1 — and a 10-node output layer (Fig. 1A). The edges 

between these layers were given unique labels: the edges connecting the input 

nodes to the first hidden layer were labelled as α edges (dark blue in Fig. 1A); the 

edges connecting the two hidden layers were labelled as 𝛽  edges (orange in 

Fig. 1A); and the edges connecting the second hidden layer to the readout layer 

were labelled as 𝛾  edges (dark green in Fig. 1A). The absolute value of edge 

weights from all three groups increased non-linearly over the course of training. 

 

Figure 1. A feed-forward neural network exhibits three topologically distinct phases of 

reconfiguration throughout learning the MNIST dataset. A) A large (60,000 item) corpus of hand-

drawn digits (28 x 28 pixel array with 256 intensity values per pixel) were vectorized and entered 
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into a generic feed-forward neural network with two hidden layers – a 100-node layer (HL1) that 

received the 28 x 28 input and a 100-node layer (HL2) that received the input from HL1 – and a 10-

node output layer (argmax); B) the edges connecting the input à HL1 (dark blue; α), HL1 à HL2 

(orange; 𝛽) and HL2 à output (dark green; 𝛾) were embedded within an asymmetric weighted 

and signed connectivity matrix; C) classification accuracy showed a non-linear relationship with Q 

(calculated across the whole network): there is an initial learning phase that was independent of 

network modularity (light blue), after which there is a positive linear relationship between 

accuracy and Q (Pearson’s r = 0.981; light green), and finally a sustained drop in Q, as accuracy 

saturates in the later stages of learning (light purple). 

 

The Topological Signature of Feed Forward Neural Network During Training 

Inspired by results from systems neuroscience6,23 and complex systems27,29 linking 

network topology and function, we hypothesized that the topological structure of 

the neural network should reconfigure so as to maximally extract the relevant 

information from the input dataset, and that this reconfiguration should relate to 

the improved performance of the network across the training phrase. To test this 

prediction, we needed a means for translating the edges of the neural network into 

a format that was amenable to network science approaches (i.e., a weighted and 

directed adjacency matrix). To achieve this aim, we created a sparse node x node 

matrix, and then mapped the α (Input-HL1), 𝛽  (HL1-HL2) and 𝛾  (HL2-output) 

edges accordingly, yielding the adjacency matrix shown in Fig. 1B. 
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With the network edge weights framed as a graph, we were next able to apply 

topological analyses from the systems neuroscience literature to the edge weights 

of the feed forward neural network as it was trained to classify the MNIST dataset. 

In particular, we were interested in whether the topology of the neural network 

over the course of learning mirrored patterns observed in the analysis of fMRI 

networks in human participants12. By tracking functional networks derived from 

fMRI data over the course of 10 sessions in which participants learned to map 

visual stimuli to motor responses, it was observed that effective learning was 

associated with an increase in network modularity12, Q, which quantifies the extent 

with which the network can be clustered into tight-knit communities with 

relatively sparse connections between them and is thought to be a key property of 

complex networks12. From this work, we hypothesized that the neural network 

should show a similar shift towards heightened modularity over the course of 

learning the MNIST dataset. 

 

To test this hypothesis, we applied used the Louvain algorithm to estimate Q from 

the neural network graphs at each training epoch. Our results provided partially 

supportive evidence for our hypothesis (Fig. 1C), allowing us to confirm our 

hypothesis in the intermediate stages of learning, but reject the hypothesis for 

early or late stages. Interestingly, we also observed a nonlinear relationship 
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between Q and classification accuracy (Fig. 1C). From the shape of this curve, we 

identified three phases of topological adjustment through the training process 

(labelled as ‘Early’, ‘Middle’, and ‘Late’ in Fig. 1C). Early in the course of training, 

there was a substantial improvement in accuracy without a noticeable change in 

Q (light blue in Fig. 1C). In the Middle phase, we observed an abrupt increase in 

Q (light green in Fig. 1C) that tracked linearly with performance accuracy (r = 

0.981, pPERM < 0.0001, permutation test). Finally, the level of Q began to drop in the 

Late training stage (Fig. 1C; light purple). These results demonstrate that the 

modularity of the neural network varies over the course of training in a way that 

is tightly associated with the classification performance of the network. 

 

Edge weight alterations are concentrated on informative inputs 

The fact that Q didn’t change early in training, despite substantial improvements 

in accuracy, was somewhat surprising. This result was made even more 

compelling by that that that we observed substantial edge-weight alteration 

during the initial phase (Fig. 2A), however with no alteration in the overall 

topology. To better understand this effect, we calculated the variance of changes 

in edge strength across all outgoing edges from input pixels (𝜎 Edge ∆) in the 

Input®HL1 sub-network (α edge; blue in Fig. 1A/B) over the course of the Early 

phase. We found that the α edge weights that changed the most over this phase 
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were located along the main stroke lines in the middle of the image (e.g., the 

outside circle and a diagonal line; Fig. 2A). Similar to the manner in which an eye 

saccades to a salient target32, we hypothesized that the feedforward network was 

reconfiguring early in training so as to align with the most informative regions of 

the input space. 

 

 

Figure 2. Topologically silent alterations in network edges during the Early phase of training. 

A) although network modularity was static in the Early phase, the standard deviation of changes 

in edge strength, 𝜎 Edge ∆, in the first hidden layer of the network did change substantially over 

the course of the Early training phase (first 10 epochs; cf. Fig. 1C); B) Pixel information, IP = 

MI(pixel,class); C) We observed a strong positive correlation between 𝜎 Edge ∆ and IP: r = 0.965. 

 

To test this hypothesis, we binarized the pixel activity across the 60,000 items from 

the training set, with a threshold that varied across each pixel so as to maximize 

the mutual information (MI) that the binarized pixel provides about the class (i.e., 

the digit), and then calculated the information held by each pixel (IP: 
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MI(pixel,class); Fig. 2B). We observed a clear, linear correspondence between IP 

and the edges that reconfigured the most during the Early phase (Fig. 2C; r = 0.965, 

pPERM < 0.0001). This result supported our hypothesis that the network was 

adjusting to concentrate sensitivity to class-discriminative areas of input space, 

which we demonstrate occurs via the reconfiguration of edge weights relating to 

the most class-discriminative areas of the input space. 

 

Topological Segregation During the Middle Phase of Learning 

Outside of the initial phase of learning, we observed a substantial increase in 

network Q that scaled linearly with improvements in classification accuracy 

(Middle Phase II; Fig. 1C, green). To better understand how node-level network 

elements reconfigured during the Middle phase, we computed two metrics for 

each node that quantify how its connections are distributed across network 

modules: (i) module-degree z-score (MZ); and (ii) participation coefficient (PC)33. 

MZ and PC have together been used characterize the cartographic profile of 

complex networks: MZ measures within-module connectivity, and PC measures 

between-module connectivity and thus captures the amount of inter-regional 

integration within the network (see Methods for details; Fig. 2A)33. These measures 

have been previously used in combination with whole-brain human fMRI data to 

demonstrate a relationship between heightened network integration and cognitive 
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function14,34, however the algorithmic utility of integrative topological 

organization is less well understood. Importantly, the calculation of both MZ and 

PC relies on the community assignment estimated from the Louvain algorithm, 

and hence affords a sensitivity to changes in network topology over the course of 

training. 

 

 

Figure 3 – Topological changes in the Middle epoch. A) a cartoon depiction of two topological 

extremes: on the left is a segregated network, with tight-knit communities that are weakly-

interconnected – this network would be characterized by high Q, and would have more nodes with 
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high module degree z-score (MZ) than nodes with high Participation Coefficient (PC); on the right 

is an integrated network, which has stronger connections between nodes in different communities, 

and hence a lower Q, and more nodes with high PC than nodes with high MZ; B) participation 

coefficient (PC) of Input layer nodes at training epoch 30; C) module degree z-score (MZ) of Input 

layer at training epoch 30; D) Digit information, ID = MI(pixelOn,class); E) Pearson’s correlation, r, 

between ID and PC (red) and MZ (blue) across first 30 training epochs. Black lines represent the 

upper and lower bounds (95th and 5th percentiles) of a permuted null dataset (10,000 iterations) and 

coloured bars represent learning phases; F) IH = MI(node,class) for HL1 (blue) and HL2 (orange) 

nodes – note that both subnetworks increase IH during the Middle phase, but that the Late phase 

dissociates the two layers. 

 

Using this cartographic approach33, we were able to translate the edge weights in 

the network into values of PC and MZ for each node of the network for each epoch 

of training. Figures 2B and 2C show the distribution of PC and MZ values for the 

nodes in the Input layer at training epoch 30, which was indicative of the patterns 

in the Middle phase. We first noted that PC and MZ mapped onto different 

locations in the input space, and hence were somewhat inversely correlated across 

all epochs (r = –0.107; p = 3 x 10-89). PC was associated with a relatively ‘patchy’ 

appearance around the main stroke areas, suggestive of a distributed topological 

coverage of the input space, as well as high values on the edges of the input space 

(Fig. 2C). In contrast, high MZ values (which are indicative of local hubs within 

network communities) were located along the main stroke lines, so as to align 
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network hubs with detection or absence of higher order patterns in the input 

stream (Fig. 2D). We hypothesized that these changes were indicative of a 

topological reconfiguration that reorganized the neural network so as to align 

network hubs with key aspects of the input stream. 

 

To test this hypothesis, we related the PC and MZ for each node of the network 

across all epochs of training to the amount of information available in each pixel 

of the input space (Fig. 3D). In order to more precisely relate changes in MZ and 

PC to the manner in which each pixel held information about the digit class, we 

calculated the partial information (i.e., ID: MI(pixelOn,class); as well as its inverse, 

MI(pixelOff,class)) carried by each pixel about the class. In contrast to IP, ID for 

example quantifies how informative each pixel is for tracking multiple different 

digit classes, but only when the pixel is active (pixelOn). High values of ID imply 

that the recruitment of the particular pixel is associated with a reduction in 

uncertainty (i.e., an increase in information) about the digit. As detailed in the 

Methods, IP is inversely correlated to ID and dominated by samples when the pixel 

is inactive; hence we focus on information carried when the pixel is active ID (Fig. 

3D).  
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When relating ID to PC and MZ across training, we observed a significant positive 

correlation between ID and MZ that emerged towards the end of the Middle phase 

(Fig. 2E). Specifically, we observed a double dissociation that emerged over the 

course of learning in the input layer (Fig. 2F), wherein during the Middle phase ID 

was positively correlated with nodal participation coefficient (max r = 0.396, pPERM 

< 0.0001), but negatively correlated with mean module degree z-score (max r = -

0.352, pPERM < 0.0001). In other words, the topology of the neural network 

reconfigured so as to align highly informative active pixels with topologically 

integrated hubs (nodes with higher PC). These pixels are comparatively rarely 

active, but highly informative when this occurs, and the result suggests that this 

requires the network to send information about such events to many downstream 

modules. By contrast, more segregated hubs (nodes with higher MZ) were likely 

to be associated with highly informative inactive pixels, which are also more 

informative on average of digit class. This may indicate that the network is 

reconfiguring so as to organize sets of informative nodes into modules in a way 

that supports the creation of higher order ‘features’ in the next layer. In 

neuroscience, nodes within the same module are typically presumed to process 

similar patterns of information12, suggesting that the topology of the neural 

network studied here may be aligning to detect the presence or absence of low-

dimensional features within the input space. 
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Inter-layer correspondence 

Given that the same gradient descent algorithm used to train the network was 

applied consistently across all layers of the network, we predicted that the same 

principles identified in the input layer should propagate through the network, 

albeit to the abstracted ‘features’ captures by each previous layer. Similar to the 

manner in which a locksmith sequentially opens a bank vault, we hypothesized 

that each layer of the neural network should align with the most informative 

dimensions of its input in turn, such that the information could only be extracted 

from an insulated layer once a more superficial layer was appropriately aligned 

with the most informative aspects of its input stream. To test this hypothesis, we 

investigated how the mutual information MI(node,class) in each node about the 

digit class evolved across training epochs. As shown in Fig. 2F, mean MI within 

both hidden layers 1 (MIHL1) and 2 (MIHL2) increased during the first two epochs, 

but then diverged at the point in learning coinciding with the global decrease in 

modularity, Q (cf. Fig. 1D). Crucially, despite the decrease in MIHL1 there was still 

an increase in MIHL2, suggesting that the Layer 2 nodes are improving their ability 

to combine information available in separate individual Layer 1 nodes to become 
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more informative about the class. This suggests that Layer 1 nodes specialise (and 

therefore hold less information overall, lower MIHL1) in order to support the 

integration of information in deeper layers of the neural network (increased MIHL2). 

 

Validation with the eMNIST dataset 

Thus far, we have demonstrated that neural network edges reconfigured in three 

distinct phases to augment the relationship between input and hidden layer nodes 

and the class-relevant information in the data being fed into the network. To 

determine whether these training principles identified on the MNIST dataset were 

generalizable to other datasets, we trained a new feed-forward neural network 

(identical in architecture to the original network) on the eMNIST dataset52, which 

is similar to MNIST, but uses hand-written letters, as opposed to numbers. 

Although learning was more protracted in the eMNIST dataset (likely due to the 

increased complexity of the alphabet, relative to the set of digits), we were able to 

replicate the changes in network structure across training the MNIST dataset: (i) 

the network shifted from integration to segregation; layers reconfigured in serial; 

and nodal roles (with respect to inferred network modules) were similarly related 

to class-relevant information in individual pixels (Fig. S1). These results suggest 

that the insights obtained from the MNIST analysis may represent general learning 

principles of multilayered neural networks. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2020.09.30.321679doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 21	

 

Late phases were associated with low-dimensional pattern separation 

Next, we investigated whether the manner in which the extent to which the nodal 

topology of the networks trained on the two datasets differed (i.e., whether 

different regions of the input space had higher or lower PC and MZ) was 

proportional to the most informative locations of the inputs space in each dataset 

(∆ID). Specifically, the difference in the pattern of a node’s edges across inferred 

network modules between the eMNIST and MNIST datasets (∆PC) was correlated 

with the difference in image input characteristics between the two datasets (∆ID vs. 

∆PC: r = 0.301, pPERM < 0.0001;	∆ID vs. ∆MZ: r = -0.247, pPERM < 0.0001). This result 

provides further confirmation that neural networks learn by reorganizing their 

nodal topology into a set of phases that act so as to align network edges and 

activity patterns with the most informative pixels within the training set. 

 

We found that pixels demonstrated unique roles across learning with respect to 

the emerging modular architecture of the training neural network, and that these 

roles were shaped by their class-relevant information. As the edge weights were 

reconfigured across training, we observed that outgoing edge strength increases 

for highly informative inputs. As these weights change, they alter the activity of 

each of the nodes in the hidden layers, which ultimately pool their activity via 
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modules to affect the class predictions, which are read out based on the activity of 

the final output layer. So how do the changes in edge weight translate into nodal 

activity? Based on recent empirical electrophysiological35 and fMRI36 studies, we 

hypothesized that the activity patterns would be distributed across the neural 

network in a low-dimensional fashion. Specifically, by way of analogy to the 

notion of manifold untangling in the ventral visual system37, we predicted that 

across training, the high-dimensional initial state of the system (i.e., the random 

weights) would become more low-dimensional as pixel-pixel redundancies were 

discovered through the learning process. 

 

To test this hypothesis, we used dimensionality-reduction38 to analyze the 

‘activity’ of all of the nodes within the neural network, across the different training 

epochs. The primary intuition behind these approaches is that, given the highly 

inter-connected nature of biological systems, reducing the dimensionality of data 

using statistical techniques, such as principal component analysis (PCA), can 

allow investigators to essentially ignore small details in order to track the 

representative activity of the system over time, often revealing key features of its 

organization39. We applied PCA to the nodal activity across all four layers of the 

feedforward network – i.e., the Input, HL1, HL2 and Output nodes – which were 

first standardized and then either concatenated (to calculate the dimensionality of 
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the entire process) or analyzed on an epoch-to-epoch basis (to calculate the effect 

of training; see Methods for details). The concatenated state-space embedding was 

low-dimensional (120/994 components, or 12.2%, explained ~80% of the variance) 

and the pixel-wise loading of each of the top eigenvalues (λs) for the Input layer 

(Fig. 4A) was correlated with both information theoretic measures used in the 

prior analyses (IP – λ1: r = 0.218, p < 0.0001; λ2: r = 0.189, p < 0.0001; λ3 = 0.158, p < 

0.0001; and ID – λ1: r = 0.338, p < 0.0001; λ2: r = 0.123, p < 0.0001; λ3: r = 0.062, p = 

0.080), suggesting a direct correspondence between class-relevant information in 

the input space and the low-dimensional embedding. Crucially, test trials that 

were incorrectly classified (Epoch 10,000, though results were consistent for other 

epochs) were associated with lower absolute loadings on the ten most explanatory 

EVs (EV1-10; Figure S3; FDR p < 0.05). This suggests that alignment with the low-

dimensional space was related to accurate performance. These results are 

tangentially related to recent empirical neuroscientific studies that employed 

dimensionality reduction on electrophysiological35 and fMRI data36 to show that 

learning and cognitive task performance are typically more effective when 

constrained to a low-dimensional embedding space. 
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Figure 4 – Unravelling the manifold: low-dimensional projections of feed-forward neural 

network activity during MNIST training reveal category-specific untangling. A) The first three 

principal components (eigenvalues 1-3: λ1/ λ2/ λ3) of the Input nodes; B) The percentage of variance 

explained by EV1, when the PCA was fit on data from each training epoch separately; C) 3D scatter 

plot of the items from the training set during three different stages: during the Early phase (Epochs 

1–10), the topological embedding of the different digits showed substantial overlap, which is 

reflected in the low between-category distance (i.e., distance between mean of each digit); in the 

Middle phase (Epochs 11–300), the embedding showed a relative expansion in the low-dimensional 

space; and during the Late phase (Epochs 300+), the distance within each category dropped 

dramatically; D) 3D scatter plot of between-category and within-category distance, along with 

training accuracy – note that maximal accuracy is associated with increases in both within- and 

between-category distance. 
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By conducting a PCA on each epoch in turn, we found that training was associated 

with a nonlinear alteration in network dimensionality that aligned with the 

topologically identified phases (Fig. 4B and Movie S1). The network began in a 

relatively high-dimensional configuration, consistent with the random initiation 

of nodal activity. During the Early phase (light blue in Fig. 4B), as the edge weights 

reconfigured to align with IP (Fig. 3D), the dimensionality of the system remained 

relatively high. During the Middle phase (light green in Fig. 3B), there was a sharp 

reduction in dimensionality, however the dimensionality collapse was diminished 

mid-way through the phase. The Late phase (purple in Fig. 3B) was associated 

with a final, albeit mild, reduction in dimensionality. Interestingly, heightened 

levels of training led to a tighter correspondence between nodal topological 

signatures (PC/MZ, calculated at each epoch) and the principal component 

loadings of nodes in the Input layer (Fig. S2), suggesting that the topology of the 

neural network reconfigured over training to better map onto the low-dimensional 

manifold that concentrates class-relevant information in the training dataset.  

 

Previous theoretical work in systems neuroscience has argued that a primary 

computational benefit of the nervous system may be to ‘untangle’ low-

dimensional relationships between different information streams37. Interestingly, 
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the same concept has been used to explain the function of both the visual system37 

and effective decision making40, suggesting that the capacity may reflect a 

relatively domain general property of nervous system organization. There is also 

evidence to suggest that the same concept may underpin the functionality of 

convolutional neural networks trained on naturalistic images26. Based on these 

results, we interrogated our data for the presence of manifold untangling, and 

found that the increase in topologically rich, low-dimensionality was associated 

with a relative ‘untangling’ of the low-dimensional manifold (Fig. 4C): the Middle 

phase was associated with a general expansion in the low-dimensional embedding 

distance Within categories (light green in Fig. 4D), which then allowed the system 

to both expand Between categories and contract within Categories during the Late 

phases of learning (purple in Fig. 4D). This ultimately had the effect of augmenting 

classification accuracy. Indeed, the contraction of the within category embedding 

distance – which takes place first – co-occurs with the drop of MIHL1, with the 

following expansion of Between category distance co-occurring with the increase 

in MIHL2. At the sub-network level, the activity on nodes in HL2 was substantially 

more low-dimensional than HL1 (Fig. S4), further expanding on the notion that 

different computational constraints are imposed on neural networks, depending 

on the depth of network layers. 
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Discussion 

This work demonstrates the benefits of translating neural networks into the 

language of systems neuroscience. We applied topological metrics to the 

weighted, directed adjacency matrix of a simple feedforward neural network 

during its training to quantify how connections are distributed across the network, 

and thus directly tracked changes in network edge strength (Fig. 2), topology (Fig. 

3) and activity (Fig. 4) that coincided with distinct phases of accuracy-related 

change in the configuration of the network. The results of our study both help to 

validate the study of network topology in systems neuroscience, while also 

improving our understanding of how neural networks alter their structure so as 

to better align the topology of the network with the available streams of 

information being fed to the network. 

 

The approaches used in this study were designed to aid in the interpretation of the 

inner workings of the “black box” of the brain, which is a similar issue to that 

recognised today in seeking explanations for the inner workings of deep neural 

networks21. An important open question is whether other distinct network 

architectures, such as recurrent41, convolutional42, echo state43 or generative 

adversarial networks44, will share similar or distinct mechanisms3,20,21. It is also well 

known that the brain contains numerous non-linear mechanisms, including gain 
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modulation45 and circuit-based mechanisms46, that may in turn form the basis of 

distinct topological motifs. Regardless, our work provides evidence that network 

science can provide intuitive explanations for the computational benefits of neural 

network learning, and helps to highlight the growing intersection between 

artificial and biological network analyses47. Taking inspiration from biology, other 

authors have previously suggested that the concept of modularity may be 

explicitly employed to improve the design of deep neural network architecture in 

various ways48,49. Our findings add to this perspective by demonstrating that the 

training of such networks may be implicitly interpretable using these same 

concepts. 

 

What can network neuroscience learn from the results of this experiment? For one, 

our observations provide evidence that the tools of systems neuroscience and 

engineering can indeed be used to understand the function of a complex, high-

dimensional system5,38,39. In addition, there are a number of benefits to analysing 

neural networks that are not readily apparent in neurobiological analyses. For 

instance, in the case of feed-forward neural networks, we know the direct mapping 

between inputs and nodes, whereas in neuroscience, this mapping is challenging 

(e.g., the location of the animal’s gaze can alter the information entering the brain). 

In addition, standard network approaches in neuroscience require a noisy 
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estimation of network edges, whereas the process here allows us to observe the 

edge weights directly. It is our hope that these benefits can be used to improve our 

understanding of the computational benefits of particular systems-level 

organizing principles, which in turn can be brought back to neuroscience to 

accelerate progress in our understanding of the systems-level mechanisms that 

comprise effective neurological function. 

 

In conclusion, we used a systems-level perspective to demonstrate a series of three 

serial phases over the course of network training that relate to manner in which 

the topological configuration of the neural network is aligned with the information 

content provided by the data fed into the network.  
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Methods 

 

Feedforward Neural Network 

A prototypical, four-layer, feed-forward neural network with no non-linearities 

was created with randomized weights (edge strengths: -1 to 1). The input layer 

was designed to take 784 inputs, which themselves were flattened from a 28x28 

greyscale pixel array from the MNIST dataset50. The input layer was fully 

connected to a hidden layer of 100 nodes (HL1), which in turn was fully connected 

to a second hidden layer of 100 nodes (HL2). The second hidden layer was then 

fully connected to a 10-node output layer. The activation function was a standard 

sigmoid for the incoming connections at each hidden layer (exponent = 1), and a 

soft max at the output layer. The maximum value across the nodes of the output 

layer was taken to reflect the ‘response’ of the network. Each result in our study 

was also replicated in a separate eMNIST dataset, which was identical to MNIST, 

but had 26 hand-written letters, as opposed to 10 hand-written digits51. 

 

Training Approach 

The network was trained with backpropagation using a Stochastic Gradient 

Descent optimiser. To aid interpretation, the learnt bias at each neuron was kept 

to zero and no regularisation was used.  The weights and activities were saved as 
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training progressed over the course of a number of epochs (SGD: 100,000). 

Accuracy was defined as the percentage of trials in a held-out, 10,000 trial testing 

set in which the maximum value of the output layer was matched with the test 

category. 

 

Network Construction 

The weighted and signed edges from each asymmetric layer of the neural network 

were concatenated together to create an asymmetric connectivity matrix. Each 

connectivity profile was placed in the upper triangle of the matrix (see Fig. 2). To 

ensure that this step did not adversely affect the topological estimates, each 

experiment was conducted separately on: a) each layer in turn; b) only the upper 

triangle of the connectivity matrix. Similar patterns were observed when we re-

ran each network separately, suggesting that the embedding did not adversely 

affect topological interpretation. 

 

Modularity Maximization 

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT73) 

was used on the neural network edge weights to estimate community structure. 

The Louvain algorithm iteratively maximizes the modularity statistic, Q, for 

different community assignments until the maximum possible score of Q has been 
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obtained (see Equation 1). The modularity of a given network is therefore a 

quantification of the extent to which the network may be subdivided into 

communities with stronger within-module than between-module connections. 

 

  𝑄! =
"
𝓋!
∑ +𝑤$%& − 𝑒$%&/𝛿'"'#$% − "

𝓋!&𝓋$
∑ +𝑤$%( − 𝑒$%(/𝛿'"'#$%         [1] 

 

where v is the total weight of the network (sum of all negative and positive 

connections), wij is the weighted and signed connection between nodes i and j, eij 

is the strength of a connection divided by the total weight of the network, and δMiMj 

is set to 1 when nodes are in the same community and 0 otherwise. ‘+’ and ‘–‘ 

superscripts denote all positive and negative connections, respectively.  

 

For each epoch, we assessed the community assignment for each region 500 times 

and a consensus partition was identified using a fine-tuning algorithm from the 

BCT. We calculated all graph theoretical measures on un-thresholded, weighted 

and signed undirected, asymmetric connectivity matrices73. The stability of the γ 

parameter (which defines the resolution of the community detection algorithm) 

was estimated by iteratively calculating the modularity across a range of γ values 

(0.5-2.5; mean Pearson’s r = 0.859 +- 0.01) on the time-averaged connectivity matrix 

for each subject – across iterations and subjects, a γ value of 1.0 was found to be 
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the least variable, and hence was used for the resultant topological analyses. A 

consensus clustering partition was defined across all epochs using 

consensus_und.m from the BCT. The resultant solution contained 10 clusters that 

each contained nodes that were distributed across multiple layers (i.e., Input, HL1, 

HL2 and Output). 

 

Cartographic Profiling 

Based on time-resolved community assignments, we estimated within-module 

connectivity by calculating the time-resolved module-degree Z-score (MZ; within 

module strength) for each region in our analysis (Equation 2)74, where κiT is the 

strength of the connections of node i to other nodes in its module si at time T, 𝜅̅)"% 

is the average of κ over all the regions in si at time T, and 𝜎*&"%  is the standard 

deviation of κ in si at time T. 

 

        MZ =
*"%(*+&"%
,'&"%

            [2] 

 

The participation coefficient, PC, quantifies the extent to which a node connects 

across all modules (i.e. between-module strength) and has previously been used 

to successfully characterize hubs within brain networks (e.g. see 75). The PC for 

each node was calculated within each temporal window using Equation 3, where 
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κisT is the strength of the positive connections of node i to nodes in module s at time 

T, and κiT is the sum of strengths of all positive connections of nodes i at time T. 

Consistent with previous approaches in neuroscience14,52, negative connections 

were removed prior to calculation. The participation coefficient of a region is 

therefore close to 1 if its connections are uniformly distributed among all the 

modules and 0 if all of its links are within its own module. 

 

    PC = 1 − ∑ 8*"&%
*"%
9
-.(

)/"               [3] 

 

 

Mutual Information 

We calculated three separate Information measures. To calculate the Information 

content within each pixel (IP), we binarized the pixel activity across the 60,000 

items from the training set, with a threshold that varied across each pixel so as to 

maximize the mutual information (MI) that the binarized pixel provides about the 

class, and then calculated the information within each pixel: MI(pixel,class). To 

calculate the Information content within each pixel when the pixel was active (after 

thresholding), we averaged the pointwise MI for each training item, ID = 

log-
0(digit|pixel)
0(digit)

, only over the items where the pixel was on (pixelOn). Note that IP 

and ID were inversely correlated across the 28x28 input dimension (r = -0.560, pPERM 
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< 0.0001), suggesting that the total information from the pixel is dominated by 

samples when the pixel is inactive. To calculate the Information content within 

each hidden layer node (IH), we calculated the mutual information for each node 

(binarized at activity = 0.5) with the digit class. All MI values were computed using 

the open source JIDT software53. 

 

Principal Components Analysis 

Activity values from the test trials from the input, HL1 and HL2 layers from each 

epoch were concatenated to form a multi-epoch time series. The data were 

normalized and then a spatial PCA was performed on the resultant data38. The top 

3 eigenvectors were used to track the data within a low-dimensional embedding 

space (Fig. 3), and the percentage explained variance was tracked across all 

learning epochs. The eigenvectors from the concatenated data were then used to 

estimate the leading eigenvalues across all training epochs. The analysis was also 

re-run with activity patterns in HL1 and HL2 separately (i.e., independent of the 

input layer; Fig. S4). The average value for each exemplar was then used to create 

two distance measures: Between-category distance, which was defined as the 

average between-category Euclidean distance at each epoch; and Within-category 

distance, which was defined as the average within-category Euclidean distance 

within each epoch. 
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Permutation Testing 

We used non-parametric testing to determine statistical significance of the 

relationships identified across our study54. A distribution of 10,000 Pearson’s 

correlations was calculated for each comparison, against which the original 

correlation was compared. Using this approach, the p-value was calculated as the 

proportion of the null distribution that was less extreme than the original 

correlation value. In many instances, the effects we observed were more extreme 

than the null distribution, in which case the p-value was designated as pPERM < 

0.0001. 
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