

1 An evolutionarily diverged mitochondrial protein controls biofilm growth and virulence in

2 *Candida albicans*

3 Zeinab Mamouei¹, Shakti Singh², Bernard Lemire³, Yiyou Gu², Abdullah Alqarihi², Sunna
4 Nabeela², Dongmei Li⁴, Ashraf Ibrahim^{1,2}, Priya Uppuluri^{1,2*}

5 ¹ David Geffen School of Medicine, University of California, Los Angeles (UCLA), California

³ Department of Biochemistry, University of Alberta, Alberta, Canada

⁴ Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC

11

12

13

14

15

16

17

18

19 Key words: *Candida*, evolution, mitochondria, respiration, biofilm, electron transport chain

20 * Corresponding author: pupuluri@lundquist.org

22 **Abstract:**

23 A forward genetic screening approach identified orf19.2500, as a gene controlling *Candida*
24 *albicans* biofilm dispersal and biofilm detachment. Three-dimensional (3-D) protein modeling and
25 bioinformatics revealed that orf19.2500 is a conserved mitochondrial protein, structurally similar
26 to, but functionally diverged from, the squalene/phytoene synthases family. The *C. albicans*
27 orf19.2500 is distinguished by three evolutionarily acquired stretches of amino acid inserts, absent
28 from all other eukaryotes except a small number of ascomycete fungi. Biochemical assays
29 showed that orf19.2500 is required for the assembly and activity of the NADH ubiquinone
30 oxidoreductase Complex I of the respiratory electron transport chain, and was thereby named
31 *NDU1*. *NDU1* is essential for respiration and growth on alternative carbon sources, important for
32 immune evasion, required for virulence in a mouse model of hematogenously disseminated
33 candidiasis, and for potentiating resistance to antifungal drugs. Our study is the first report on a
34 protein that sets the *Candida*-like fungi phylogenetically apart from all other eukaryotes, based
35 solely on evolutionary “gain” of new amino acid inserts that are also the functional hub of the
36 protein.

37

38 **Introduction:**

39 *C. albicans* biofilms are dynamic communities in which transitions between planktonic and sessile
40 modes of growth occur interchangeably in response to different environmental cues. Biofilms
41 growing on mucosal tissues or indwelling medical devices serve as localized reservoirs of highly
42 drug resistant cells. Cells that disperse from this nidus into the systemic environment cause
43 biofilm-associated disseminated infections (1, 2). Our previous reports have shown that biofilm
44 dispersed cells are predominantly lateral yeast cells released from the hyphal layers of the biofilm
45 (3). Phenotypically, biofilm-dispersed yeast cells have considerably better adherence to, and
46 invasion of human tissues when compared to planktonic cells, and thereby are significantly more
47 virulent than their free-living counterparts (3, 4). Global transcriptomic analysis of dispersed cells
48 corroborated the virulence attributes, revealing expression of adhesins, invasins and secreted
49 aspartyl protease genes, at levels similar to, or even statistically enhanced than parent biofilms
50 (4). Interestingly, it was also found that the dispersed cells are transcriptionally reprogrammed
51 before release, to acquire nutrients such as zinc and amino acids and to metabolize alternative
52 carbon sources, while their biofilm-associated parent cells did not induce high-affinity transporters
53 or gluconeogenetic genes, despite exposure to the same nutritional signals (4). Expression of
54 genes required during starvation such as those encoding transporters, the TCA cycle and
55 glyoxylate cycle components also implies that dispersed lateral yeast cells may have enhanced
56 respiratory capacity over their metabolically dormant hyphal parents.

57 While regulatory networks governing *C. albicans* biofilm formation have been well-defined
58 (5), hardly anything is known about the genes/proteins controlling biofilm dispersal. To date, *C.*
59 *albicans* protein PES1 is the only molecular regulator that has been shown to control production
60 of lateral yeast cells from hyphae, and to induce biofilm dispersal (4, 6). Thus, we embarked on a
61 study to identify additional novel regulators of biofilm dispersal. Considering that dispersed cells

62 are in a developmental phase distinct from the biofilm state, we hypothesized that some regulators
63 may have a role in cellular metabolism or respiration.

64 Here, we report on the discovery of *NDU1*, a gene that encodes a mitochondrial protein
65 required for the assembly and activity of the NADH ubiquinone oxidoreductase Complex I of the
66 respiratory electron transport chain. Studies in *C. albicans* using gene deletion and
67 complementation mutants revealed that *NDU1* is important for lateral yeast production and biofilm
68 dispersal, and absence of *NDU1* triggers early biofilm detachment from its growth substrate. Our
69 results further showed that *NDU1* is essential for respiration and growth on alternative carbon
70 sources, potentiates resistance to antifungal drugs, is important for immune evasion, and full
71 virulence in a mouse model of hematogenously disseminated candidiasis. Importantly, *NDU1*
72 protein has diverged significantly from other eukaryotic orthologues including the human
73 orthologue NDUFAF6 (7); *NDU1* protein harbors stretches of amino acid sequences acquired
74 over evolution, that are uniquely specific only to Candida-like fungi, and can be the target for
75 development of novel therapies.

76

77 **Results**

78 **Loss of orf19.2500 abrogates *C. albicans* biofilm dispersal and induces early biofilm
79 detachment.** To identify potential regulators of biofilm dispersal, we performed forward genetic
80 screening of several libraries of *C. albicans* mutants available through the fungal genetics stock
81 center (FGSC) (Manhattan, KS). The libraries encompassed disruption mutants in *C. albicans*
82 genes encoding transcription factors, kinases, cell wall integrity, and hundreds of other non-
83 essential genes. Biofilms were developed from stationary phase cultures of each mutant on the
84 MBEC Assay® plates (Innovotech, Edmonton, Canada) which enables for high throughput
85 screening of biofilm formation and dispersal (8). Of all the mutant strains that grew robust biofilms,
86 two were isolated for their significant reduction in the frequency of biofilm dispersal. One strain

87 was a mutant of the *C. albicans* major phosphodiesterase gene *PDE2*. The role of *PDE2* in cAMP-
88 mediated control of lateral yeast production from hyphae has been previously published, and
89 hence reduced dispersal from biofilms was expected (9). The other strain with abrogated biofilm
90 dispersal was a mutant with deletions in an uncharacterized gene, orf19.2500.

91 Independent gene-deletion mutants of orf19.2500 (orf19.2500-/-) were constructed using
92 a PCR-based gene disruption approach using small homology regions. In addition, complemented
93 strains were constructed in which both alleles of orf19.2500 were reconstituted into the mutant
94 (orf19.2500+/+). The ability of these mutant strains to develop biofilms were assessed in the 24-
95 well polystyrene plates incubated under static conditions, or under flow of liquid medium on
96 silicone elastomer (SE) material. Supernatant media from the static model, or media flowing over
97 flow biofilms growing on SE were collected and quantified by measuring OD600 or by
98 hemocytometer-based cell counts, respectively. Mutant biofilms displayed an overall 40%-50%
99 decrease in biofilm dispersal compared to the wild-type (WT) or complemented strains in both
100 static or the flow system (**Fig 1A**). Considering biofilm dispersal is a consequence of lateral yeast
101 cells shed by biofilm hyphae in the surrounding media, top-most hyphal cells of flow biofilms were
102 visualized under a microscope. Indeed, orf19.2500-/- hyphae showed a significant reduction in
103 lateral yeast growth, compared to wild-type biofilm hyphae (**Fig 1B**), clarifying the reason for
104 decrease in biofilm dispersal in the mutant.

105 Under static biofilm induction, both orf19.2500-/- and +/+ developed biofilms comparable
106 to wild-type, but only mutant biofilms detached early (16-20 h of growth) (**Fig 1C**). The layer of
107 biofilm formed by the mutant strains either peeled off completely, or broke into pieces upon gentle
108 washing of the biofilms with phosphate buffered saline. The detachment was not due to the
109 inability of the mutant cells to adhere or form a robust biofilm, because orf19.2500-/- displayed
110 comparable adherence to plastic and biofilm growth (data not shown). Similarly, under flow
111 biofilm conditions, both wild-type and orf19.2500 -/- developed robust biofilms; but while the wild-

112 type biofilms were firmly attached to SE after 24 h of growth, mutant biofilms were easily displaced
113 from the surface (**Fig 1D**).

114

115 **Orf19.2500 -/- has a wild-type growth rate and morphology in glucose, but fails to grow on**
116 **alternative carbon sources or in the presence of stressors**

117 The fact that *orf19.2500* -/- was able to make robust biofilms indicated that it may not be deficient
118 in growth or morphogenesis. We performed assays to measure the growth of the mutant in
119 comparison to wild-type and complemented strains, under planktonic conditions. We found that
120 in the first 24 h, the growth curves of *orf19.2500* -/- exactly overlapped with the other two strains,
121 when grown in rich media containing 2% glucose (**Fig 2A**). In fact, the mutant and the wild-type
122 controls displayed comparable growth rate and viability until day 4, after which the mutant cells
123 gradually lost viability at significantly higher rates than the wild-type cells (**Fig S1A**). Visual
124 examination of colonies grown on solid agar media, from 4 day-old cultures showed that the
125 mutant cells were significantly smaller in size compared to wild-type cells, pointing to a defect in
126 respiratory capacity post glucose exhaustion (**Fig S1B**). Microscopic visualization and
127 measurement of hyphal lengths revealed no significant differences in hyphal growth and
128 elongation between wild-type and mutant cells, and correspondingly no defect in their capacity to
129 damage human vascular endothelial cells (**Fig S1C,D**).

130 It is well known that growth of petite sized colony of mutants is limited to fermentable
131 carbon sources (10). As such, *orf19.2500* -/- grew robustly on media with glucose, but displayed
132 severe growth defects on alternative carbon sources such as acetate, ethanol, glycerol (**Fig 2B**).
133 The wild-type, heterozygote or the complemented strain did not exhibit this defect. We probed the
134 extent of growth deficit of the mutant further, in the presence of cell wall and cell membrane
135 stressors. Compared to the wild-type or the *orf19.2500* +/+ complemented strains, *orf19.2500* -/-

136 disruption mutant was significantly more sensitive to growth on calcofluor white, congo red (cell
137 wall stress), and SDS or fluconazole (cell membrane stress) (**Fig 2C**). In fact, on examination by
138 staining with concanavalin A (stains cell surface mannans) or calcofluor white (stains cell wall
139 chitin) followed by flow cytometry, the mutant strain displayed at least 40-50% reduced cell wall
140 mannan or chitin content compared to the wild-type or complemented cells (**Fig S2A**). This
141 deficiency was further corroborated by transmission electron microscopy, which displayed a
142 strikingly thinner mannan layer, and at least 35% decrease in overall cell wall thickness in mutant
143 cells versus the wild-type (**Fig S2B**).

144 To understand why the mutants were susceptible to cell membrane stressors, we
145 investigated the membrane permeability of wild-type and mutant cells, as a measure of membrane
146 integrity. *Orf19.2500*^{-/-} mutant was significantly more permeable to fluorescein diacetate (FDA, a
147 membrane intercalating dye), while wild-type cells completely blocked the membrane penetration
148 of FDA, indicating that the cell membrane of the wild-type was healthier than that of the mutant
149 (**Fig S2C**). As expected, the membrane disrupting antifungal drug fluconazole, which was used
150 as a positive control, showed enhanced uptake of FDA in both wild-type and mutant cells. Since
151 ergosterol is a major component of the *C. albicans* cell membrane (11), we questioned if
152 ergosterol production was impaired in the mutant. Gene expression analysis of select *ERG* genes
153 indicated that the *orf19.2500*^{-/-} had a 2.7-fold increased expression of *ERG20* which is a putative
154 farnesyl pyrophosphate synthase, required for both coenzyme Q and ergosterol biosynthesis.
155 Most other *ERG* genes downstream of *ERG20*, solely important for ergosterol biosynthesis were
156 downregulated >2-3 fold (**Fig S2D**), perhaps signifying the reason for higher membrane
157 permeability and fluconazole susceptibility in the mutant.

158

159 **Orf19.2500 localizes to the mitochondria and plays a key role in functioning of Complex I**
160 **of the mitochondrial electron transport chain (ETC).**

161 In a quest to understand the function of this protein, we endeavored to unravel its cellular location.
162 Attempts to tag one allele of orf19.2500 with a fluorescence tag were not productive due to a faint
163 fluorescence signal, which although visible under the microscope, could not produce clear images
164 for documentation. Because the expression levels of orf19.2500 were low, we constructed a
165 tetracycline regulatable strain, which also harbored an mCherry marker right after the Tet-off
166 promoter (orf19.2500/ORF19.2500-mCherry-tetO). In rich media containing glucose, there was
167 an overexpression of orf19.2500-mCherry, and the protein in the cell fluoresced red. The red
168 fluorescence completely overlapped with a stain that colors the mitochondrial matrix green, to
169 provide an overall yellow colored mitochondrial localization (**Fig 3A**). Thus, the protein localized
170 to the mitochondria in both yeast and hyphae.

171 The fact that orf19.2500 mutant could not grow on alternative carbon sources indicated a
172 respiratory defect likely due to a faulty electron transport chain (12). To test this hypothesis, we
173 carried out Seahorse assays to test the respiratory prowess of the isolated mitochondria of the
174 mutant strain, in the presence of Complex I (CI) substrates (pyruvate + malate) (**Fig 3B**).
175 Compared to the mitochondria from the wild-type or the complemented strain, the orf19.2500-/-
176 mutant mitochondria showed an overall significant decrease in respiratory capacity, measured by
177 a 30% decrease in oxygen consumption rate. This was not the case when a Complex II (CII)
178 substrate (succinate in presence of rotenone) was used; Mitochondria from all three strains
179 displayed equivalently robust CII activity (**Fig S3A**).

180 To further test if CI was impacted in the mutant strain, we performed a Blue native PAGE
181 (BN-PAGE) analysis, in which the five different complexes of the ETC from isolated mitochondria
182 (of each strain respectively), were separated by electrophoresis, and CI activity tested. We
183 determined that CI is reduced by 40 to 50% in orf19.2500-/- compared to the gel density ratios of
184 CI/CIII and CI/CV to wild-type or orf19.2500+/+ cells by ImageJ (**Fig. 3C**). In addition, the *in situ*
185 assay of CI NADH dehydrogenase enzyme activity demonstrated that mutant strain

186 correspondingly had reduced enzyme activity than the wild-type or reconstituted mitochondria
187 (**Fig. 3C**). Quantitative measurement of enzymatic activity independently confirmed a ~30%
188 decrease in CI in the mutant compared to the wild-type strains ($p<0.05$) (**Fig 3D**). Thus, the
189 seahorse assays (**Fig. 3B**), reduced assembled CI and its enzymatic activity (**Fig 3C,D**), support
190 the hypothesis that *orf19.2500* is important for CI activity in *C. albicans*. Based on its role in
191 mitochondrial oxidative phosphorylation and its NADH dehydrogenase activity, *Orf19.2500* was
192 renamed as *NDU1* for NADH dehydrogenase of Complex I.

193 Since CI is the major donor to the proton gradient (13), we posited that a reduction in its
194 activity would affect the mitochondrial membrane potential ($\Delta\psi M$). Wild-type, mutant and
195 complemented strains were grown overnight in YP+2% glucose, and then sub-cultured in media
196 containing either glucose or acetate as a carbon source. After 2 h of growth, cells were treated
197 with JC1, a dye used as an indicator of mitochondrial membrane potential. Compared to wild-type
198 and complemented strains, *NDU1* mutant cells had significantly higher mitochondrial membrane
199 depolarization, as measured by the intercalation of JC1 dye, and the shift in the green FITC
200 fluorescence. However, this reduction in membrane potential was found only under nutritional
201 stress, such as in the presence of the alternative carbon sources of acetate (**Fig S3B**) or sorbitol
202 (data not shown), and not during growth on glucose.

203 CI is responsible for most cellular ROS production in mitochondria (13), and impairment
204 in CI activity often results in oxidative stress. The accumulation of mitochondrial ROS was
205 determined by measuring the superoxide levels with MitoSOX Red dye, which is specifically
206 targeted to mitochondria in live cells. Oxidation of MitoSOX Red reagent by superoxide produces
207 red fluorescence, which is quantified by flow cytometric analysis and correlated with the amount
208 of ROS present in the mitochondria. *NDU1* deletion led to an elevation in the mitochondrial
209 superoxide levels, which upon quantification of flow cytometric data, revealed a greater than 6-

210 fold increase in MitoSOX staining in *NDU1* mutant cells versus the wild-type or complemented
211 strains (**Fig 3E**).

212 ***NDU1* is hyper-susceptible to neutrophil killing and avirulent in a mouse model of
213 hematogenously disseminated candidiasis**

214 Considering that *NDU1* mutants are unable to grow on alternative carbon sources, we
215 hypothesized that they would have difficulty surviving in the nutritionally deprived environment of
216 innate immune cells (14). To test this, we determined the killing ability of these mutant strains by
217 human neutrophils. Within 45 min, neutrophils had engulfed yeast cells of all three strains. By 90-
218 150 min, *C. albicans* wild-type as well as the complemented strain developed germ tubes, and
219 were able to destroy the immune cells (**Fig 4A**). In contrast, the *NDU1* null mutant remained as
220 engulfed yeast cells inside the neutrophils, and by 3 h were eventually killed in significantly (2-
221 fold) higher numbers than wild-type or *NDU1* complemented strains (**Fig 4B**).

222 The inability of *NDU1*-/- to evade the immune system, translated predictably into
223 avirulence in a hematogenously disseminated mouse model. While 100% of the mice succumbed
224 to infection by the wild-type or complemented strains within 21 days, >80% of the mice infected
225 with *NDU1*-/- null mutant survived the infection (**Fig 4C**). This striking defect in survival was
226 corroborated with ~ 0.5-1.0 log reduction in kidney fungal burden of mice infected with the *NDU1*-
227 /- vs. those harvested from mice infected with the wild-type and collected 2 or 5 days post-infection
228 (**Fig 4D**).

229 We also studied the virulence of the generated mutant strain at 10-fold higher infectious
230 dose of 2.5×10^6 cells. Interestingly, while mice infected with wild-type and complemented strains
231 succumbed early to the infection within 7 days, ~80% of mice infected with the *NDU1*-/- mutant
232 survived the infection (**Fig S3C**), thereby mimicking the survival of mice infected with the lower
233 infectious dose (**Fig 4C**).

234 The fact that the mutant strain did not cause virulence could likely be attributed to their
235 early susceptibility to phagocytes, or their defective long-term sustenance in a glucose-
236 impoverished environment *in vivo*. To test this further, we constructed a *C. albicans* strain,
237 wherein one allele of *NDU1* was deleted while the other was placed under a tetracycline-
238 regulatable promotor (*NDU1Δ/NDU1-tetO*). The expression of *NDU1* could be increased or
239 decreased based on the presence or absence of doxycycline (DOX) in the growth milieu. For
240 virulence studies, one set of mice were infected via tail vein with WT, and two other sets with the
241 *NDU1-tetO* strain. Mice were fed with plain water for 24 h after infection, to enable unrestrained
242 dissemination, after which DOX was added (at 24 h after infection) to the drinking water of one
243 set of *NDU1-tetO* infected mice (to deplete expression of *NDU1*) and to the set infected with WT
244 (DOX control). The third set of mice were fed continuously with water without DOX (for
245 overexpression of *NDU1*). As clearly seen in **Fig 4E**, sustained depletion of *NDU1* *in vivo* due to
246 DOX in systemic circulation translated into 100% mouse survival rate, while the WT and
247 overexpression strains demonstrated similar levels of lethality in mice.

248

249 ***NDU1* 3D structure has characteristics of a dehydrosqualene synthase, and is homologous**
250 **to human NDUFAF6**

251 We predicted that the key to identifying *NDU1* protein function lay in unraveling its 3D structure.
252 The *NDU1* sequence was submitted to MitoProt II for analysis (15); a mitochondrial targeting
253 sequence of 15 amino acids was predicted to be removed with high probability (0.9124),
254 suggesting the mature *NDU1* (m*NDU1*) protein begins at Asn16. Structural models for *NDU1*
255 were generated by submitting the m*NDU1* protein sequence to Phyre2 (V 2.0), a protein homology
256 recognition engine that uses profile-profile matching algorithms (16). A model for *NDU1* named
257 c5iysA was generated with 100% confidence by threading the *NDU1* sequence onto chain A of
258 5IYS. 5IYS is the crystal structure of the *Enterococcus hirae* dehydrosqualene synthase in

259 complex with two molecules of the substrate analog, farnesyl thiopyrophosphate (FPS) (**Fig 5A**).
260 An overlay of c5iysA and 5iys has an RMSD of 0.270 Å between 253 pruned atom pairs; an
261 excellent match, especially over the core regions. The two molecules of FPS are bound in a large
262 “pocket” (2087 Å³) in 5iys (**Fig S4A**). The c5iysA model (NDU1 threaded onto 5iys) also has a
263 large pocket as determined by Castp (17) (2332 Å³) (**Fig S4B**). The pocket is larger than that in
264 5IYS but has a somewhat different shape and cannot accommodate the FPS molecules exactly
265 as positioned in 5IYS. Nonetheless, the FPS lipid chains are highly flexible and can likely adapt
266 to the c5iysA pocket. The second model predicted by Phyre2 was c4hd1A, which is modeled on
267 4hd1 which is a squalene synthase from *Alicyclobacillus acidocaldarius* (**Fig S4C**). Overlay of
268 c4hd1A (green) and 4hd1 (purple) yielded an excellent RMSD between 245 pruned atom pairs
269 as 0.262 angstroms. Thus, NDU1 is a predicted squalene/phytoene synthase (pfam: PF00494).

270 We also unraveled that *C. albicans* NDU1 has a human orthologue NDUFAF6, the
271 NADH:ubiquinone oxidoreductase complex assembly factor 6, which shares approximately 22%
272 identity (38% similarity) (**Fig 5B**). Location of specific NDU1 residues (red) with identities to
273 NDUFAF6 (grey) are displayed in a structural schematic in (**Fig S4D**). NDUFAF6 is considered a
274 member of the Isoprenoid_Biosyn_CI superfamily, which generates tens of thousands of
275 isoprenoid metabolites, including sterols, heme, dolichol, carotenoids and ubiquinones.

276

277 ***C. albicans* NDU1 has evolutionarily acquired amino acid inserts unique to CTG clade fungi**
278 Protein sequence alignments and 3D homology modeling between NDU1 and NDUFAF6 further
279 revealed that NDU1 is a longer protein (380 vs. 333 amino acids of NDUFAF6), and it has extra
280 stretches of amino acid inserts, that are depicted as gaps in the human NDUFAF6 sequence (**Fig**
281 **5B**). Specifically, NDU1 has four prominent amino acid inserts that are evolutionarily acquired
282 within its protein sequence (**Fig 5C**). The part of sequence highlighted at the N-terminus is the

283 predicted mitochondrial targeting sequence, which is truncated upon import to the mitochondria,
284 hence is irrelevant to function. The red-boxed inserts 1, 2 and 3 are unique to NDU1. These
285 inserts are not modeled in the c5iysA model from PHYRE2, as they are not present in the 5IYS
286 template. The mNDU1 sequence was submitted for modeling to iTASSER, which employs
287 threading template identification and iterative modeling to model the entire sequence (18). On the
288 iTASSER model, the three inserts lie in loops on the surface of the protein model (**Fig 6A**). In fact,
289 when visualized on a surface model, insert 1 is located at the opening of the NDU1 pocket. The
290 pocket/cavity is formed by long alpha helices packing together, and inserts 2 and 3 were modeled
291 to the bottom of the V-shaped pocket cavity, between those alpha helices (**Fig 6B**). Additionally,
292 the latter two inserts were found close together in 3D space, enough to be in contact with each
293 other.

294 To investigate the phylogenetic distribution of the insertion sequences in orthologous proteins, we
295 performed a Psiblast search using *C. albicans* NDU1 (XP_718518) as query against the RefSeq
296 (release 200; 2020/05/04) database. Putative bacterial and eukaryotic orthologs of NDU1 with
297 evalues < 1e-30 were aligned with MAFFT (19), a multiple sequence alignment software, and a
298 phylogenetic tree was generated using IQ-TREE (20). The tree was used to manually reduce the
299 number of sequences outside the *Saccharomycetales*, while retaining phylogenetic diversity. The
300 final tree contains 102 putative NDU1 orthologs and uses the bacterial orthologs as an outgroup:
301 4 bacterial (red), 5 metazoan (magenta) and 93 fungal orthologs, with branches colored green for
302 Basidiomycota, black for Chytridiomycota and Mucoromycotina, and blue for Ascomycota. Only
303 the *Saccharomycetales* (in particular the CTG-clade yeasts noted with a yellow star) were found
304 to contain all three inserts. This group had longer branches and were well separated from the
305 other groups, indicating greater divergence in the NDU1 sequences over evolution. Interestingly
306 *Saccharomyces cerevisiae* and *Candida glabrata* are not included in the tree because they do
307 not have CI, and hence lack *NDU1* orthologues (**Fig 6C**).

308 To elaborate further, based on the presence or absence of the three insertion sequences, the
309 phylogenetic tree was clearly divided into three groups (**Fig S4E**): group 1 colored blue contained
310 Saccharomycetales and *Candida* like CTG-clade fungi (CTG-clade), group 2 in black which had
311 other fungi, and group 3 colored pink represented sequences from bacteria and eukaryotes.
312 Group 1 had longer branches and were well separated from group 2 and 3 sequences. Also, only
313 group 1 had all three insert sequences. In contrast, group 2 had no insert 1 or insert 2 and had a
314 different insert 3, while group 3 were lacking in all the inserts (**Fig S4E**). Overall, our analyses
315 showed that the *C. albicans* mitochondrial protein NDU1 has structures distinct to CTG-clade
316 proteins, and these inserts may be functionally important for enzymatic activity or protein-protein
317 interactions, distinct for *Candida* spp.

318 **Expression of the human NDUFAF6 does not complement *C. albicans* NDU1 defect, while
319 insert 2 and 3 are the functional hub of NDU1**

320 Since NDU1 was important for immune evasion, drug resistance and virulence in *C. albicans*, we
321 questioned if it would represent a viable target for antifungal drug development. Specifically, we
322 probed the functional diversity of NDU1 compared to its human counterpart NDUFAF6. Hence,
323 we first inspected if heterologous expression of human NDUFAF6 in *C. albicans* could provide a
324 gain of function in the NDU1 mutant strain. The entire codon optimized ORF of NDUFAF6 was
325 expressed constitutively under a tet-regulatable promoter. Importantly, the expressed protein also
326 harbored a GFP-tag. NDUFAF6-GFP localized correctly to the mitochondria of both yeast and
327 hyphae (**Fig 7A**), and Western blotting of *C. albicans* total protein with anti-GFP antibodies yielded
328 the correct size NDUFAF6 protein (~63 kDa; NDUFAF6 38kDa+GFP 25 kDa) (**Fig 7B**). We tested
329 if expression of the human orthologue could revert *C. albicans* NDU1 mutant growth defect on
330 acetate. As expected, the control *NDU*-/ mutant did not grow on acetate, glycerol, sorbitol or
331 ethanol, while strains overexpressing the full length *C. albicans* *NDU1* (tet-regulatable NDU1; OE)
332 grew robustly on the non-fermentable carbon containing media (**Fig 7C**). We also found that

333 human NDUAF6 expression did not restore growth of the mutant on 2% potassium acetate, or
334 other alternative carbon sources such as ethanol, glycerol or sorbitol (**Fig 7C**), indicating that the
335 human protein could not revert the functional defect of NDU1 on non-fermentable carbon sources.
336 To further validate this, we probed if the three insert sequences unique to *C. albicans* NDU1 had
337 a role to play in mitochondrial function determined by growth on non-fermentable carbon sources.
338 As done with the human protein, we expressed the entire ORF of *C. albicans* NDU1 minus the
339 individual inserts, in the *C. albicans* *NDU1* mutant. Similar to the *C. albicans* mutant expressing
340 the human protein, mutants expressing the mutated *C. albicans* NDU1 constructs expressed
341 proteins that localized to the mitochondria, and were expressed at the right size, as evaluated by
342 fluorescence microscopy and Western blots, respectively (data not shown). Interestingly, we
343 found that strains expressing NDU1 with a truncated insert 1 grew as good as the OE strain,
344 indicating that this area was dispensable for protein function. In contrast, mutants with individually
345 truncated insert 2 or 3, maintained the growth defect on alternative carbon sources, highlighting
346 their importance to the function of NDU1 (**Fig 7C**). All strains grew robustly on glucose containing
347 media. As a control, we also randomly truncated two stretches of NDU1 (corresponding to ~30
348 amino acids each) in locations other than the inserts. This construct when expressed in *C.*
349 *albicans* behaved just like insert 1 (data not shown), providing further proof that insert 2 and 3 are
350 likely the prime areas for enzymatic activity, or sites of interaction of NDU1 with other proteins in
351 the mitochondria.

352 **NDU1 is a peripheral membrane protein**

353 Isoprenoid substrates and products are hydrophobic, and predicted to be localized to the
354 membrane. NDU1 was not found to have predicted transmembrane segments (using
355 transmembrane prediction servers such as TMHMM Server v. 2.0 or PRED-TMR of the SwissProt
356 database). We then submitted the iTASSER model to the OPM server (Orientations of Proteins
357 in Membranes), which determines the spatial position of membrane boundaries for integral and

358 peripheral membrane proteins (21). OPM optimizes the free energy of protein transfer (ΔG_{transf})
359 from water to a membrane environment. For peripheral membrane proteins ΔG_{transf} varies between
360 -15 and -1.5 kcal mol⁻¹. OPM strongly suggested that NDU1 is a peripheral membrane protein
361 with optimal energy of -7.6 kcal/mol, and 5 residues of the C-terminal helix (Trp356, Pro369,
362 Met370, Phe373 and Tyr377) were predicted to be membrane embedded (**Fig 7D**). The model
363 also predicted the NDU1 cavity to lie above the mitochondrial membrane (**Fig S4F**).

364

365 **Discussion**

366 Biofilm formation and dispersal are determinants of virulence in *C. albicans*. We used genetic,
367 bioinformatic and biochemical approaches to identify *NDU1*, a gene that encodes a mitochondrial
368 protein that is evolutionarily divergent from other eukaryotic orthologues. *NDU1* affects biofilm
369 dispersal and detachment, helps resist phagocyte killing, and is important for full virulence of *C.*
370 *albicans* in mice. The most compelling phenotype of *NDU1* null mutant is its inability to grow on
371 non-fermentable carbon sources or in advanced stationary growth when glucose is depleted. In
372 *S. cerevisiae* and *C. albicans*, respiration-deficient mitochondrial mutants are unable to grow on
373 non-fermentable carbon sources (22), and form petite colonies because their cell division rates
374 are lower than that of the normal cells (23). Consistent with these observations, and as predicted
375 by the N-terminus mitochondrial targeting sequence (**Fig 5C**), the GFP-tagged *NDU1* localized to
376 the *C. albicans* mitochondria, signifying that it may have functions in cellular respiration.

377 Loss of *NDU1* additionally lead to a striking reduction in *C. albicans* cell wall thickness due
378 to prominent reduction in chitin and cell surface mannan content rendering them hypersusceptible
379 to cell wall perturbing agents. This reduction in cell wall morphology was appreciated only after
380 48 h to 3 days of growth, around the time glucose was exhausted from the growth medium. As
381 has been previously demonstrated by global gene expression profiling and biochemical studies,
382 *C. albicans* cell wall and mannoprotein synthesis requires energy, most of which is provided

383 through oxidative phosphorylation by the mitochondrial electron transport chain (24-27). Perhaps
384 then, it was the defective growth phenotype of this mutant on alternative sources leading to cell
385 wall alterations, which contributed towards the sub-optimal biofilm phenotype. Inner layers of a
386 mature biofilm are nutrient starved and hypoxic (28), and respiration is important for survival of
387 these cells (29). Premature detachment of biofilms formed by the mutant cells could prospectively
388 be the consequence of loss of viability at the bottommost nutritionally disadvantaged layers of the
389 biofilm, coupled with an early loss of adhesion to substrate due to alterations in the cell wall
390 architecture. Analysis of expression levels of genes and proteins involved in viability or adhesion
391 in the innermost cells of the mutant biofilms versus the wild-type biofilms will help understand the
392 role of *NDU1* in maintaining the biofilm. Likewise, we have recently reported that when compared
393 to planktonic or biofilm cells, biofilm-dispersed lateral yeast cells are metabolically rewired,
394 expressing at significantly high levels, genes important for respiration, and nutrient assimilation
395 (4). Thus, loss of *NDU1* leading to reduced biofilm dispersal could be because of deficient
396 respiratory activity, due to which energy required for production of new daughter cells from
397 quiescent biofilm hyphae is lacking.

398 Energy in the cell is generated in the form of ATP, and Crabtree negative organisms such
399 as *C. albicans* rely upon oxidation of substrates via the mitochondrial tricarboxylic acid (TCA)
400 cycle to generate ATP even in the presence of glucose (30, 31). In the classical respiratory
401 pathway, complexes of the electron transport chain (CI, CIII, and CIV) pump H⁺ ions to the
402 intermembrane space. This creates a membrane potential ($\Delta\psi_M$) which is used by the ATP
403 synthase to synthesize ATP (32). Several lines of evidence including using sea horse assays with
404 CI substrates, *in vitro* activity and *in situ* gel analysis, measurement of mitochondrial membrane
405 potential, and measurements of ROS were used to show that the major dysfunction of *NDU1*
406 mutant was due to a defect in CI. A reduction in CI activity is harmful to the cells because it is the
407 hub of all energy provided by oxidative phosphorylation, and is the major ROS-generating unit in

408 the mitochondria (13). Dysfunction of CI destabilizes membrane potential and triggers ROS
409 release, which is often fatal to the cell. *NDU1* null mutant was defective in both maintaining an
410 intact membrane potential, and keeping ROS under check.

411 *NDU1*'s shortcoming in utilizing alternative carbon sources and its disrupted cellular
412 architecture caused mutant cells to be significantly more susceptible to primary human neutrophil
413 cells. Indeed, innate immune cells are nutrient starved, and only those cells capable of growing
414 under respiratory stress can combat these host cells (14). In fact, *NDU1* mutant was strikingly
415 avirulent in mice, with kidney organ burden of at least a log lower than mice infected with the
416 wildtype strains. This defect in virulence *in vivo* was not due to a general growth defect of the
417 mutant because between day 2 and day 5 of infection, the number of infected cells in the target
418 organ, kidneys, increased by 5-fold in both mutant as well as the wild-type strain (**Fig. 4D**). This
419 virulence defect in the mutant was confirmed when *NDU1* expression levels were controlled *in*
420 *vivo* (**Fig. 4E**). It is well known that the integrity and function of mitochondria are essential to the
421 virulence of *C. albicans*. Mutations affecting any one of a number of mitochondrial functions,
422 including mitochondrial ribosome synthesis, mitochondrial transcription or genome maintenance,
423 protein import, or functioning of the electron transport chain (ETC), result in *C. albicans* virulence
424 defect (12, 26, 27, 33, 34).

425 Our results on *NDU1* and its role in the CI-related activity is reminiscent of another well-
426 characterized CI protein in *C. albicans*, *GOA1*. *GOA1* deletion mutants fail to make complex I,
427 resulting in reduced respiration, and multiple deficits on alternative carbon sources, cell wall
428 alterations, enhanced sensitivity to killing by neutrophils, and reduced virulence in a murine model
429 of disseminated disease (25, 32, 35, 36). However, the greatest difference between *NDU1* and
430 *GOA1* is in their differential ability to undergo morphogenesis and form a biofilm. *GOA1* mutants
431 cannot make hyphae or develop a biofilm (35), while *NDU1* is adept at both fronts. This indicates
432 that *NDU1* might have regulatory functions different from *GOA1*. Interestingly, orthologues of

433 GOA1 are restricted to members of the “CTG clade” of fungi, whose members decode CTG
434 codons as serine rather than leucine (35, 37), suggesting that it represents a lineage-specific
435 mitochondrial adaptation. Given that significant differences exist in CI among various lineages,
436 and its important role in the pathobiology of *C. albicans*, an in-depth understanding of CI is
437 warranted.

438 The *C. albicans* CI is believed to consist of 39 proteins, and while several of these proteins
439 are conserved in other eukaryotes, a few such as GOA1 are unique to the CTG clade of which
440 *Candida* species is a part (12, 36). NDU1 however has orthologues in other eukaryotes including
441 humans. All fungal orthologues of NDU1 can be grouped into one clade and are monophyletic,
442 meaning they inherited the gene from the same ancestor. The predicted structure of NDU1 is
443 completely helical with a large central cavity that can accommodate 2 farnesyl pyrophosphate
444 molecules. Three dimensional modeling combined with bioinformatic and phylogenetic analysis
445 revealed that NDU1 belongs to the family of dehydrosqualene synthases. Within this superfamily
446 NDU1 belongs to the family of Trans-Isoprenyl Diphosphate (Pyrophosphate) Synthases
447 (Trans_IPPS; CDD: cd00867) and specifically the head-to-head family (Trans_IPPS_HH; CDD:
448 cd00683) of synthases, that catalyze the condensation of farnesyl or geranylgeranyl diphosphates
449 to form squalene of cholesterol biosynthesis, or phytoene of carotenoid biosynthesis (38). When
450 a phylogenetic tree (adapted from (7)) with 50 Trans_IPPS domains was generated (**Fig S5A**),
451 three monophyletic groups emerged: Cluster 1 proteins are putative NDU1 orthologues in fungi
452 (green) and other eukaryotes and prokaryotes (pink); cluster 2 proteins that are phytoene
453 synthases (PHYS) and squalene synthases (SQS) and cluster 3 which are the prenyl diphosphate
454 synthases called COQ1 (coenzyme Q). The eukaryotic cluster 1 proteins from humans and
455 *drosophila* have been experimentally localized to the mitochondrial inner membrane (39).
456 Likewise, NDU1 is predicted to be a peripheral membrane protein, embedded into the membrane
457 via five amino acid residues of the C-terminus.

458 NDU1 is 22% identical to its human orthologue NDUFAF6, with ~38% overall similarity
459 between the two proteins. The Trans_IPPS_HH proteins typically have two DxxxD motifs involved
460 in substrate binding and the coordination of catalytically important Mg++ ions (40). NDU1,
461 NDUFAF6 and their orthologues do not have these motifs, suggesting the possibility that they
462 have lost the ability to function as squalene/phytoene synthases (7). Besides, humans and other
463 eukaryotes like *Candida* have a different and highly conserved functional squalene/phytoene
464 synthase (ERG9) (41). Thus, the actual function of NDU1-like proteins in eukaryotic mitochondria
465 is unknown. The human orthologue NDUFAF6 has been demonstrated to play an important role
466 in the assembly of complex I through regulation of subunit ND1 biogenesis (39). Future work using
467 docking and molecular dynamics approaches combined with biochemical assays will be needed
468 to understand if the NDU1 cavity can accommodate and bind isoprenoid ligands. The identity of
469 NDU1 substrates and its catalytic activity associated with complex I assembly, is yet to be
470 determined. However, the fact that NDU1 is predicted to be membrane-localized could indicate
471 that it interacts with amphiphilic or hydrophobic ligands, or possess a chaperone-like role in
472 assembling integral membrane subunit proteins of complex I.

473 Despite overall similarities to human NDUFAF6, *C. albicans* NDU1 protein was found to
474 be unique in its amino acid sequence. Compared to NDUFAF6, NDU1 is a significantly longer
475 protein: 380 vs 333 amino acids (**Fig 5B**). The first long gap in NDU1 is part of the mitochondrial
476 presequence; the human presequence is quite a bit longer than the *Candida* one. But the N-
477 termini are removed upon import, so are not relevant to function. Note, however how several gaps
478 have been introduced into the human sequence for the alignment to work because NDU1 is
479 longer. The most compelling part of our study was that NDU1 protein sequence harbors three
480 extra sets of amino acid inserts (**Fig 5C**), which are found only in CTG clade and very closely
481 related fungi and missing from all other eukaryotes. One insert (insert 1) is positioned at the mouth
482 of the cavity, while the other two inserts (insert 2 and 3) are structurally contiguous at the very

483 bottom tip of the cavity (**Fig 6B**). Our gene deletion/complementation studies showed that insert
484 2, and 3, but not 1, are required for the function of NDU1. Because of the lack of insert 2, and 3
485 in the human NDUFAF6 orthologue, an overall low homology between the two proteins, and since
486 NDU1 is required for virulence of *C. albicans*, the *C. albicans* NDU1 represents a highly desirable
487 target for future novel therapeutic development to treat hematogenously disseminated
488 candidiasis.

489 Inferring evolutionary mechanisms from genomic sequences with millions of years of
490 divergence between them is inherently difficult. The idea that domain gains in eukaryotic proteins
491 are directly mediated by gene duplication, followed by gene fusion and recombination may be the
492 most plausible explanation. However, the *Candida* clade of species that are closely related to
493 other Saccharomycotina did not undergo a whole genome duplication event (42). Interestingly,
494 small-scale duplication events did occur in *C. albicans*, and genomic diversity continues to
495 increase during exposure to stress (43-45), thereby facilitating functional diversification and
496 providing greater phenotypic flexibility (46-48). Evolutionary diversity has also resulted in
497 divergence in the post-transcriptional control of several processes in *Candida* spp. Specifically,
498 mitochondrial protein synthesis and import is diverged in these fungi (12, 49, 50). *C. albicans*,
499 which last shared a common ancestor with *S. cerevisiae* at least 300 million years ago contains
500 a complete ETC, while *S. cerevisiae* is devoid of complex I (NADH: ubiquinone oxidoreductase)
501 (51-53).

502 To conclude, our study reveals for the first time that following duplication, certain *C. albicans*
503 genes may have acquired additional gene inserts to bolster protein-protein interactions. This
504 unique evolutionary adaptation could also indicate lineage-specific changes in mitochondrial
505 function, that likely are specific to how *Candida* adapts to nutritional stress. Why this selective
506 acquisition of inserts is apparent only in NDU1 orthologues in the CTG clade fungi, and not in any
507 other eukaryotes is a subject worth investigating. Certainly, sequences in the NDU1 protein that

508 are different from its human orthologue can be harnessed as targets, for small molecule
509 compounds that can dock to it and abrogate function. Severe virulence defects *in vivo* upon
510 mitochondrial dysfunction due to NDU1 deletion suggest that inhibition of this target would be an
511 effective way to combat fungal infections. Indeed, presence of orthologues of NDU1 in the
512 multidrug resistant fungus *C. auris*, and in all other strains of *C. albicans* especially those resistant
513 to antifungal drugs, means that mitochondrial inhibitors have a chance to act as pan-antifungal
514 drugs.

515

516 **Methods**

517 **Strains and culture conditions.** Stock cultures of all strains were stored in 15% glycerol at -
518 80°C. Strains were routinely grown under yeast conditions (media at 30°C) in YPG (1% yeast
519 extract, 2% Bacto peptone, 2% glucose) or under filament-inducing conditions using RPMI
520 medium (Sigma, St. Louis, MO) with MOPS (morpholinepropanesulfonic acid) buffer. For
521 experiments requiring alternative sources for growth, YP was supplemented with either 2% of
522 potassium acetate, sorbitol, glycerol or ethanol.

523 **Gene deletion and rescue of orf9.2500 (NDU1).** To generate orf19.2500 mutant, the orf19.2500
524 was replaced with the deletion cassette containing URA3 gene (54) as a selectable marker gene
525 flanked with fragments corresponding to 500 bp upstream and downstream flanking sequences
526 of the orf19.2500. We added KpnI and Xhol restriction sites to the ends of upstream fragment and
527 NotI and SacII restriction sites to the downstream fragment by PCR for cloning. The deletion
528 cassette was released by KpnI and SacII restriction enzymes and transformed into BWP17 cells
529 (55) followed by spreading the cells on uracil dropout medium. The heterozygous strain was
530 confirmed by PCR and subjected to another round of gene deletion using a deletion cassette
531 containing ARG4 as a selectable marker to prepare null mutant strain.

532 To compliment orf19.2500 mutant, we generated a complimented cassette containing a full length
533 of orf19.2500, the nourseothricin resistance gene as a selectable marker and 500 bp of the
534 terminator region of the orf19.2500 gene using pJK890 (55). The ORF19.2500 sequence was
535 cloned with KpnI and Apal restriction enzymes and the downstream part was cloned with NotI
536 and SacII restriction enzymes into pJK890. The rescue cassette was released by KpnI and SacII
537 restriction enzymes and transformed into the orf19.2500 mutant strain. The cells were spread on
538 YPD containing 200ug/ml nourseothricin as a selection medium. The correct transformants were
539 screened by PCR. To rescue the second allele of the ORF19.200 gene in this heterozygous strain,
540 the nourseothricin resistance gene was looped out from the cells as described previously (6).
541 Further, the cells were subjected to the rescue cassette again to receive the second allele of
542 ORF19.2500 gene. The homozygous strain was confirmed by PCR.

543 **GFP and mCherry tagging combined with regulation of expression.** We overexpressed
544 orf19.2500 under Tetoff promoter and tagged the gene with GFP or mCherry at C-terminal. To do
545 so, first the selective marker URA3 was replaced with ARG4 in pGS1245 (Tetoff-GFP-TetR-
546 URA3) (56), then the full-length sequence of orf19.2500 was integrated into the plasmid via Xhol
547 restriction enzyme. The plasmid was digested with Ascl and transformed into orf19.2500-/ mutant
548 to produce overexpressed strain. To tag the gene with mCherry, the GFP was replaced with
549 mCherry sequence with Xhol and Clal restriction enzymes. A similar approach was used also to
550 overexpress the Tet-O promoter driven GFP-tagged, full length sequence of the human gene
551 NDUFAF6 or the individual NDU1 insertion sequences in *C. albicans* orf19.2500 mutant strain.

552

553 **Growth rate determination.** For cell dilutions spotted onto agar media as previously described
554 (4), saturated overnight cultures were diluted in four to fivefold steps from an OD₆₀₀ of 0.5. The
555 stressors used were YPG agar plus 50 µg/ml calcofluor white, or 10 µg/ml congo red or 0.025%
556 SDS. For growth curves in liquid media, saturated overnight cultures in YPD were washed once

557 in 0.9% NaCl and diluted to an OD₆₀₀ of 0.15 in 150 μ L medium in flat-bottomed 96-well dishes.
558 For growth assays OD₆₀₀ readings were obtained every 60 min in a plate reader, and SDs of three
559 technical replicates were calculated and graphed. For viability counts, *C. albicans* strains were
560 inoculated at a concentration of 1x10⁶ cells/ml in 250 ml YPG medium. Every day up to 15 days,
561 an aliquot of cells were recovered, diluted, counted using a hemocytometer, and plated on YPG
562 agar plates. Colonies were counted, calculated and plotted, representing the viability of the cells
563 over time.

564 **Biofilm growth and dispersal.** Biofilms were grown both under static and flow conditions. For
565 static growth, 1 ml of *C. albicans* cells (1 x 10⁶ cells/ml) was added to the wells of a 24-well
566 microtiter plate and incubated overnight in RPMI, and the biofilms were gently washed two times
567 (57). For enumeration of dispersed cells, static biofilm supernatants were collected after 24 h of
568 growth, and turbidity (OD₆₀₀) measured by a spectrophotometer. For growth under the flow
569 system, biofilms were developed on silicone elastomer material, as previously described (58). At
570 24 h of biofilm growth, media flowing over the biofilms were collected, biofilm-dispersed cells
571 present in the media counted using a hemocytometer, and plotted. Extent of attachment of the
572 biofilm to its substrate was examined but gentle washing of the biofilm in the static model, or
573 teasing the biofilm away from the substrate using a sterile needle. A small aliquot of the biofilm
574 hyphae were also visualized under a phase contrast microscope (40X mag) to appreciate the
575 extent of hyphae to lateral yeast growth.

576

577 **Assessment of phenotypic properties**

578 *Damage to HUVEC:* Human Umbilical Cord Endothelial Cells (HUVEC) were isolated following
579 an established protocol (3). The ability of *C. albicans* to damage human vascular endothelial cells
580 was assessed by the CytoTox-96 assay (Promega, Madison, WI), which measures the release of

581 lactate dehydrogenase (LDH) from dying cells. For these experiments, WT and mutant cells were
582 diluted to various concentrations in HUVEC culture medium and were added to endothelial cells
583 for 16 h incubation times at 37°C in the presence of 5% CO₂. The amount of LDH released from
584 the co-culture system was quantified by spectrophotometry. Uninfected cultures (control 1) and
585 *C. albicans* alone (control 2) incubated under identical conditions were included as negative
586 controls. The total amount of LDH released was estimated by treating control uninfected
587 endothelial cells with 9% Triton X-100 for 1 hr. The LDH released in the presence of *C. albicans*
588 was quantified by using the following formula: [(experimental – control 1 – control 2)/(total – control
589 1)] ×100. The values were expressed as percentages of the total amount of LDH released.

590 *Cell membrane permeability*: *Candida* strains were grown in YPG for 48 h and about 5×10^6 cells
591 were resuspended and washed twice in 1 ml of FDA buffer before supplementing with 50 nm FDA.
592 A 200 μ l volume of cell mixture with or without FDA was added to an optical-bottom 96-well plate.
593 The kinetics of FDA uptake was recorded every 5 min for 30 reads with simultaneous shaking of
594 samples in a plate reader with an excitation and emission wavelengths 485 and 535 nm,
595 respectively. Data represent the fluorescence intensity over time.

596 *Flow cytometry for cell component analysis*: To stain mannan and chitin of the cell
597 wall, *C. albicans* yeast cells grown for 48 h were washed in PBS and incubated in the dark with
598 25 μ g/ml Concanavalin A to stain for α -mannopyranosyl or 5 μ g/ml CFW for chitin for 30 min. The
599 above stained cells were washed, fixed and differences intensity of the staining measured by flow
600 cytometer at ~495/519 nm or 380/475 nm, respectively.

601 *Transmission electron microscopy*. *C. albicans* cells grown for 48 h were washed in PBS and then
602 fixed in 4 ml fixative solution (3% paraformaldehyde, 2.5% glutaraldehyde, pH 7.2) for 24 h at
603 4°C. After post-fixation of samples with 1% phosphotungstic acid for 2 h, they were washed by
604 distilled water, block-stained with uranyl acetate, dehydrated in alcohol, immersed in

605 propylenoxide, and embedded in glycide-ether. Ultrathin sections were observed under a JEOL
606 100CX transmission electron microscope.

607 **Fluconazole susceptibility.** Fluconazole activity was assessed by Epsilometer test strips (Etest
608 strips) (bioMérieux) according to the manufacturer's instructions. A standardized cell suspension
609 (a 0.5 McFarland standard) was used to create a confluent lawn across YPD agar plates prior to
610 Etest strip placement, and the cells were then incubated at 30°C for 48 h.

611 **Neutrophil killing.** After obtaining institutional review board approved consent (The Lundquist
612 protocol # 11672-07), neutrophils were isolated from blood collected from human volunteers using
613 endotoxin-free Ficoll-Paque Plus reagent (Amersham Biosciences). The killing assay was carried
614 out as described previously (59). Briefly, neutrophils were incubated with *C. albicans* yeast cells
615 (neutrophil:fungus ratio, 5:1). Controls contained *C. albicans* without neutrophils. After 150 min,
616 the mixtures were sonicated to disrupt neutrophils and the surviving fungi quantitatively cultured.
617 The percentage of opsonophagocytic killing (OPK) was calculated by dividing the number of
618 colony forming unit (CFU) in the tubes containing neutrophils by the number of CFU in tubes
619 without neutrophils. *C. albicans* phagocytosis by neutrophils were visualized at 90 and 150 min,
620 using a phase contrast microscope (40X mag).

621 **Virulence assays.** Animal studies were approved by the IACUC of The Lundquist Institute at
622 Harbor–UCLA Medical Center, according to the NIH guidelines for animal housing and care. For
623 the *C. albicans* infection *in vivo*, groups of CD1 female mice (6–8 weeks) were injected via lateral
624 tail vein with 200 µl of a suspension containing indicated live *C. albicans* (2.5×10^5 cells or
625 2.5×10^6 cells) in sterile saline. Mice were monitored daily and differences in survival between
626 infected groups were compared by the Log Rank test. Quantitative culturing of kidneys from mice
627 infected with different strains of *Candida* was performed; mice were infected through tail veins,
628 kidneys were harvested 2 and 5 days post infection, homogenized, serially diluted in 0.85% saline,
629 and quantitatively cultured on YPG that contained 50 µg/ml chloramphenicol. Colonies were

630 counted after incubation of the plates at 37°C for 24 to 48 hr, and results were expressed as log
631 CFU per gram of infected organ.

632 Virulence assay under regulated gene expression conditions *in vivo*: Cultures of *C.*
633 *albicans* strains for injection were grown overnight in YPD medium without doxycycline and
634 incubated at 30°C. Cells (2.5×10^5 cells in 200 μ l of pyrogen-free saline solution per mouse) of
635 the *C. albicans* tetO-NDU1/ndu1 strain were delivered by tail vein injection into two groups of
636 mice, each consisting of eight 6-to-8-week-old female CD1 mice, with or without doxycycline in
637 their drinking water (2 mg/ml in 5% sucrose). Cells of the control NDU1/NDU1 strain were injected
638 at the same infecting dose into another group of animals ($n = 8$) with doxycycline in their drinking
639 water. Pathogenicity of wild-type strains not containing any tetracycline-regulatable element is not
640 affected by the presence or absence of doxycycline (60). Mice were monitored daily and
641 differences in survival between infected groups were compared by the Log Rank test.

642 **Mitochondria associated assays.**

643 *Sphaeroplast and mitochondria preparations*: Cells were grown in 250 ml of YPD broth overnight
644 at 30°C, washed once with cold water and once with buffer A (1 M sorbitol, 10 mM MgCl₂, 50 mM
645 Tris-HCl [pH 7.8]), centrifuged (5,000 rpm for 10 min). Cells were suspended in buffer A (50 ml)
646 plus 30 mM dithiothreitol (DTT) for 15 min at 30°C with shaking (100 rpm) and then collected and
647 suspended in buffer A with 1 mM DTT plus 100 mg of Zymolyase 20T (MP Biomedicals) per 10 g
648 of pelleted cells. Shake cultures (100 rpm) were incubated at 30°C for 60 min or until 90% of cells
649 were converted into spheroplasts (as determined by light microscopy). Spheroplasts were washed
650 twice with buffer A. Crude preparations of mitochondria were isolated as previously described
651 (32). Briefly, spheroplasts were suspended in 10 ml of cold buffer B (0.6 M mannitol, 1 mM EDTA,
652 0.5% bovine serum albumin [BSA], 1 mM phenylmethylsulfonyl fluoride [PMSF], 10 mM Tris-HCl
653 [pH, 7.4]) and then broken mechanically using a Dounce homogenizer on an ice bath. Cell debris
654 was removed by low-speed centrifugation (1,000 X g for 10 min). The supernatants containing

655 mitochondria were centrifuged at 10,500 X g for 10 min, and the pellet was washed twice with 20
656 ml of ice-cold buffer C (0.6 M mannitol, 1 mM EDTA, 1% BSA, 10 mM Tris-HCl [pH 7.0]).
657 Mitochondria were suspended in 1 ml of buffer D (0.6 M mannitol, 10 mM Tris-HCl, [pH 7.0]), and
658 the protein content was determined by Bradford method.

659 *Blue native PAGE*: Mitochondrial protein was concentrated by vacuum centrifugation. Ten
660 microliters of BN sample buffer (2X) was mixed with 20 μ l of each sample (60 to 80 μ g of protein)
661 and loaded onto a BN-PAGE gradient gel (4 to 16%) (Invitrogen, Inc.). One ml of 2X BN sample
662 buffer consisted of 1.5 M 6-aminohexanoic acid, 0.05 M bis-Tris (pH 7.0), 65 μ l of 10% DMM, 20
663 μ l of proteinase inhibitor mixture, and 100 μ l of glycerol. Electrophoresis was performed in an X-
664 Cell SureLock mini-cell system (Invitrogen) with 200 ml of cathode buffer in the upper (inner)
665 buffer chamber and 150 ml of anode buffer in the lower (outer) buffer chamber. Electrophoresis
666 was carried out at 4°C and 65 V for 1 h and then raised to 120 V overnight. An in-gel enzyme
667 assay for CRC CI was accomplished as follows: gels were rinsed briefly twice with MilliQ water
668 and equilibrated in 0.1 M Tris-HCl, pH 7.4 (reaction buffer), for 20 min. The gels were then
669 incubated in fresh reaction buffer with 0.2 mM NADH–0.2% nitroblue tetrazolium (NBT) for 1 h.
670 Reactions were stopped by fixing the gels in 45% methanol–10% (vol/vol) acetic acid, and then
671 gels were destained overnight in the same solution. Image processing of gels was done using
672 ImageJ software.

673 *Enzymatic assay of Cl*: Mitochondrial protein was dissolved in 0.8 ml sterile water and incubated
674 for 2 min at 37°C, then mixed with 0.2 ml of a solution containing 50 mM Tris pH 8.0, 5 mg /ml
675 BSA, 0.24 mM KCN, 4 μ M antimycin A and 0.8 mM NADH, the substrate for Cl. The reaction was
676 initiated by introducing an electron acceptor, 50 μ M DB (2,3-dimethoxy-5-methyl-6-n-decyl-1,4
677 benzoquinone). Enzyme activity was followed by a decrease in absorbance of NADH at 340 nm
678 minus that at 380 nm using an extinction coefficient of 5.5 mM $^{-1}$ cm $^{-1}$

679 *ROS measurement*: Intracellular ROS production was detected by staining cells with 5 μ M
680 MitoSOX Red (Life Technologies) in DMSO. Cells from 25-ml cultures grown at 30°C overnight
681 in YPD medium were collected and washed twice with PBS. The pellets were suspended to 1X
682 10^6 cells in 1 ml of PBS and treated with or without MitoSOX Red for 45 min at 30°C in the dark.
683 Cell fluorescence in the presence of DMSO alone was used to verify that background
684 fluorescence was similar per strain. Cells from each MitoSOX-treated sample were collected and
685 washed twice with PBS after staining, and mean fluorescence for ROS was quantified.

686 *Oxygen consumption rate (OCR) assay*: OCR were measured under a Seahorse instrument
687 (Seahorse Bioscience, MA) according to the manufacturer's instructions. Isolated mitochondria
688 from overnight grown WT, mutant and revertant cells were seeded into wells of a poly-d-lysine-
689 coated XF96 spheroid plate containing 100 μ L/well of warm assay medium (Seahorse XF base
690 medium minimal DMEM, supplemented with 3 mM glucose and 0.1% FBS). 25 μ l of mitochondrial
691 suspension, containing three μ g of protein for the succinate condition and pyruvate/malate
692 condition, were added to a Seahorse 96-well plate and centrifuged (2000 g \times 20 min \times 4°C). After
693 centrifugation, 155 μ l assay buffer containing pyruvate (10 mM) in combination with malate (2
694 mM) or succinate (10 mM) and rotenone (2 μ M) (all final concentrations and pH 7.2), were added,
695 and the plate was analyzed at 37°C. Absolute OCR is presented as pmol O₂ consumed/min/ μ g
696 protein. Mitochondrial OCR was determined by subtracting the antimycin A (1 μ M, Sigma) and
697 Rotenone (1 μ M, Sigma)-sensitive OCR from the post-treatment OCR. Basal respiration was
698 calculated in the presence of respiratory substrates (before ADP addition). Percentage inhibition
699 was determined by dividing the post-treatment OCR with the basal mitochondrial OCR (antimycin
700 A and Rotenone corrected) (61).

701 *Mitochondrial membrane potential assay*: The mitochondrial inner membrane potential ($\Delta\psi_m$)
702 was determined by staining with the membrane-permeable lipophilic cationic fluorochrome JC-1
703 (BD Biosciences, NJ). Overnight *C. albicans* cultures were washed, diluted to 1×10^6 cells/ml of

704 PBS, treated with JC-1 (3 μ M final concentration) and incubated at 37°C for 30 min. Cells were
705 washed and resuspended in 1 ml PBS and fluorescence dye accumulation measured using a flow
706 cytometer equipped with a 488 nm argon excitation laser and 525 nm emission, and bandpass
707 filters designed to detect green FITC dye (62).

708

709 **Figure legends**

710 **Figure 1. Extent of biofilm dispersal and attachment.** (Note: Once its localization and function
711 was determined, orf19.2500 was renamed as *NDU1* in later figures). *C. albicans* WT, orf19.2500
712 deletion mutant $-/-$, and revertant $+/+$ were allowed to develop biofilms using RPMI medium, under
713 static and flow models for 24 h at 37°C. Cells released from the static biofilms growing on the
714 pegs of the MBEC device were quantified using a spectrophotometer (OD600), and provided a
715 measure of the extent of biofilm dispersal between the three conditions (black circles) (A). Values
716 are average \pm SEM; indicated p-values are measurements from seven independent replicates of
717 the static biofilm model. Cells dispersed from biofilms grown in the flow model were collected
718 after 24 h, counted using a hemocytometer, and plotted (orange ovals). Again, the p-value
719 between WT and mutant or mutant and WT was <0.01 (not shown). Topmost layer of the biofilms
720 were teased and imaged using a light microscope (40X mag), to visualize the extent of lateral
721 yeast growth from mutant hyphae (arrow), versus the WT (B). Biofilms of the three strains were
722 developed on 96 well microtiter plates under static conditions for 24 h, after which they were
723 gently washed once to examine the robustness of their attachment to the well surface (C). Biofilms
724 of the WT and orf19.2500 mutant were developed overnight on the surface of silicone elastomer
725 under continuous flow of fresh RPMI at 37°C. The biofilms were gently teased away from the
726 substrate to test the sturdiness of their attachment to the SE strips (D)

727 **Figure 2. Pattern of growth on various carbon sources and stressors.** The orf19.2500 $-/-$,
728 WT and revertant strain were grown in 10% YP+2% glucose media, and OD600 of the growth

729 was measured temporally, using a spectrophotometer (A). Different concentrations (5 μ l of 10^5
730 cells/ml to 10^1 cells/ml) of WT, orf19.2500 mutant $-/-$, heterozygote $+/ -$, and revertant strain $+/ +$
731 were spotted on solid YP media containing 2% of glucose, various alternative carbon sources or
732 media containing cell wall/membrane stressors. Differences in extent of growth were visually
733 noted (B,C).

734 **Figure 3. Organelle localization of orf19.2500 and measurement of its defect in respiration**
735 **and mitochondrial complex stability.** Orf19.2500 was engineered under a constitutively
736 expressing tet-promoter, tagged with mCherry. Localization of the orf19.2500 was determined by
737 staining both yeast and hyphal cells with a green fluorescent mitochondrial stain (Mitotracker
738 green), to display the yellow overlap of colors in the mitochondria (A). The XF96 Analyzer was
739 used to measure changes in mitochondrial bioenergetics by measuring the oxygen consumption
740 rate (OCR) in freshly isolated mitochondria of WT, mutant, and revertant strains. One μ g each of
741 ADP, oligomycin, FCCP, and antimycin A and rotenone were added at the indicated points. The
742 maximal respiratory capacity was quantified (B). Values are means \pm SEM. **(p<0.01 mutant vs.
743 WT and revertant; measurements from six independent isolations). BN-PAGE electrophoresis of
744 equal quantities of total mitochondrial proteins of *C. albicans* WT, orf19.2500 $-/-$ and orf19.2500 $+/ +$
745 cells, stained with Coomassie to reveal respiratory complexes CI to CIV (C). The molecular
746 markers indicated to the left are NativeMark (unstained protein standard; Invitrogen). The in-gel
747 enzyme activity of CI in BN-PAGE was assayed within 60 min after incubating the gel in reaction
748 medium (0.1 M Tris-HCL, pH 7.4, 0.2 mM NADH as a substrate, and 0.2% NBT). Specific activity
749 of CI in mitochondria from mutant and complemented strains were quantified and plotted relative
750 to the CI activity in wild-type mitochondria (* = p<0.05) (D). ROS activity in wild-type, mutant and
751 complemented strains were measured by staining the cells with MitoSox red, and measuring
752 fluorescence intensity was measured by flow cytometry and plotted (E).

753

754 **Figure 4. Note: orf19.2500 is referred as NDU1 from this figure on. Susceptibility to neutrophils**
755 **and defective virulence of NDU1 mutant.** Yeast *C. albicans* WT, NDU1-/- and NDU1+/+ cells
756 grown overnight were incubated along with primary human neutrophils (3:1 MOI), for 3 hours, and
757 the extent of phagocytosis was visualized by confocal microscopy at 90 min and 150 min (A). The
758 extent of yeast cell killing by neutrophils was quantified by CFU measurement at 3 h (A). Data are
759 mean \pm SEM from three biological replicates. CD1 outbred mice were infected via tail vein with
760 2.5×10^5 cells of WT, NDU1-/- and NDU1+/+ (10 mice each \times 2 replicates) and the impact of
761 disseminated candidiasis on the overall survival of mice was monitored for 21 days. *P < 0.0001
762 mutant vs. wild-type and revertant, log-rank test (B). Mice were sacrificed on day +2 and +5
763 relative to infection, and their kidneys processed for tissue fungal burden, determined by plating
764 on solid media. Data are median \pm interquartile range. *P < 0.05 mutant versus wild-type,
765 Wilcoxon rank-sum test (C). Survival curves for the different groups of mice (10 animals per group)
766 infected with the *C. albicans* WT isogenic parental strain or with the *C. albicans* tetO-NDU1/ndu1
767 strain in the presence or absence of doxycycline (DOX). Statistically significant differences were
768 measured between the comparison groups of mice (D).

769 **Figure 5. Overlay of template and NDU1 models.** The Phyre2 model of NDU1, c5iysA (blue) is
770 overlaid onto the structure 5iys (tan) with an RMSD of 0.270 Å between 253 atom pairs. Two
771 molecules of the substrate analog, farnesyl thiopyrophosphate (FPS) and three Mg⁺⁺ ions (green)
772 are bound in the 5iys active site cavity. (A). BLAST alignment of *C. albicans* NDU1 with human
773 NDUFAF6. Colored amino acids represent identity, while + indicates positives (B). Protein
774 sequence of NDU1 with the highlighted mitochondrial presequence, and three inserts acquired
775 over evolution, which sets *C. albicans* NDU1 apart from its human orthologue (C).

776 **Figure 6. Location of the three insertion sequences of NDU1 and their phylogenetic**
777 **uniqueness.** The unique insertion sequences of NDU1 were localized on ribbon and on surface
778 representations of the iTASSER model (A). Note how insert 2 (blue) and 3 (green) lie to the bottom

779 of the V-shaped cavity highlighted by dotted lines (B). A maximum likelihood tree of selected
780 eukaryotic and prokaryotic NDU1 orthologs emphasizes the highly restricted distribution of the
781 three insert sequences. This tree has 4 bacterial (red), 5 metazoan (magenta) and 93 fungal
782 orthologs, with branches colored green for Basidiomycota, black for Chytridiomycota and
783 Mucoromycotina, and blue for Ascomycota. Tips belonging to the order *Saccharomycetales* are
784 colored cyan. Bootstrap support values for selected nodes are given. Proteins belonging to the
785 CTG clade of yeasts are noted with a yellow star. All *Saccharomycetales* proteins have insert 2;
786 two are completely missing insert 1 (red circles); 4 are completely missing insert 3 (green circles).

787 **Figure 7. Expression and localization of human NDUFAF6 in *C. albicans*.** Entire ORF of GFP-
788 tagged human NDUFAF6 was expressed in *C. albicans* NDU1 mutant, and found to be localized
789 to mitochondria, as visualized by GFP overlapping with a mitochondrial stain, in both yeast and
790 hyphae (A). Detection of the GFP-tagged human NDUFAF6 protein by Western blotting using an
791 anti-GFP antibody. M=marker, second lane is total protein from NDU1 mutant (negative control),
792 lane 3 is the detected 63 kDa human NDUFAF6-GFP fusion protein (B). *C. albicans* NDU1 mutant
793 expressing NDUFAF6 grows on glucose but not on 2% acetate (B). Individually expressed entire
794 ORF of NDU1 (NDU1 overexpression strain), or NDU1 lacking each insert, in the NDU1 mutant,
795 were screened for their ability to grow on alternative carbon sources. The NDU1 mutant was used
796 as the parent control strain for the experiment (C). OPM server predicts NDU1 is a peripheral
797 membrane protein (plane of blue spheres) and identifies five membrane-embedded amino acids
798 (D).

799 **Figure S1A.** Growth curve of WT vs orf19.2500 mutant over 16 days

800 S1B. Colony size of mutant versus WT after 4 days of growth

801 S1C. Hyphal lengths of WT and mutant compared visually

802 S1D. Damage caused by WT and mutant cells to HUVEC cells measured after 24 h using
803 the chromium release assay

804 **Figure S2A.** Estimation of cell wall mannan and chitin content by staining WT, mutant and
805 revertant with ConA and calcofluor white, respectively, and measured by flow cytometry.

806 S2B. Visualization and measurement of the differences in thickness of the cell wall
807 structure between WT and mutant cells, by transmission electron microscopy.

808 S2C. Quantitation of the extent of cell membrane permeability between WT and
809 orf19.2500 mutant, in the presence and absence of fluconazole

810 S2D. Quantitation of the expression of ergosterol genes in WT and mutant cells

811 **Figure S3A.** Measurement of oxygen consumption rates of mitochondria isolated from WT,
812 mutant and revertant strains, in presence of Complex II substrates succinate+rotenone

813 S3B. Determination on defect in mitochondrial membrane integrity in the WT, mutant and
814 revertant strain, on growth in glucose or acetate

815 S3C. Survival of mice infected with a 10 fold higher infection dose of 2.5×10^6 cells, of WT
816 mutant and revertant cells.

817 **Figure S4A.** Surface display of 2 FPS bound in the large pocket in 5iys from *E. hirae*. Mg⁺⁺ (green
818 spheres), water molecules (red spheres)

819 S4B. Surface display of the pocket of c5iysA model while still showing FPS as they are
820 positioned in 5iys. Note, while the pocket is in a different shape and the substrates cannot bind in
821 the same orientations, the pocket is large enough to accommodate the 2 FPS.

822 S4C. Model predicted by Phyre2 shows c4hd1A (green), which is NDU1 modeled on 4hd1,
823 a squalene synthase from *A. acidocaldarius*

824 S4D. Red highlighting of the identical residues between NDU1 and human NDUFAF6
825 (grey).

826 S4F. Structural model of the interaction of NDU1 with the surface of the membrane

827 **Figure S5A** Phylogeny of NDU1. NDU1 belongs to the Trans_IPPS family. Proteins were aligned
828 using TCOFFEE. Support values for nodes are from MrBayes (upper value) and RAxML (lower
829 value). Putative orthologs of NDU1 form Cluster 1; PHYS (phytoene synthase) and SQS
830 (squalene synthase) homologs form Cluster 2 and COQ1 (coenzyme Q1 synthase, decaprenyl
831 diphosphate synthase) homologs form Cluster 3.

832 S5B. Flow cytometry data of *C. albicans* strains stained with MitoSox Red, an indicator of
833 ROS activity. ROS production in NDU1 mutant overexpressing NDU1 without respective inserts
834 were compared to ROS activity in WT and mutant strains. p<0.01 of the indicated conditions
835 versus WT.

836 **Acknowledgements**

837 We would like to thank Dr. Ana Traven, Professor, Monash University, Melbourne, Australia for
838 her kind contribution on the preliminary assessment and proofreading of this manuscript.

839 **References**

- 840 1. Nobile CJ, Johnson AD. *Candida albicans* Biofilms and Human Disease. *Annu Rev Microbiol*.
841 2015;69:71-92.
- 842 2. Uppuluri P, Lopez-Ribot JL. Go Forth and Colonize: Dispersal from Clinically Important Microbial
843 Biofilms. *PLoS Pathog*. 2016;12(2):e1005397.
- 844 3. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Kohler JR, et al.
845 Dispersion as an important step in the *Candida albicans* biofilm developmental cycle. *PLoS Pathog*.
846 2010;6(3):e1000828.
- 847 4. Uppuluri P, Acosta Zaldívar M, Anderson MZ, Dunn MJ, Berman J, Lopez Ribot JL, et al. *Candida*
848 *albicans* Dispersed Cells Are Developmentally Distinct from Biofilm and Planktonic Cells. *mBio*.
849 2018;9(4):e01338-18.
- 850 5. Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, et al. A recently evolved
851 transcriptional network controls biofilm development in *Candida albicans*. *Cell*. 2012;148(1-2):126-38.

852 6. Shen J, Cowen LE, Griffin AM, Chan L, Kohler JR. The *Candida albicans* pescadillo homolog is
853 required for normal hypha-to-yeast morphogenesis and yeast proliferation. *Proc Natl Acad Sci U S A.*
854 2008;105(52):20918-23.

855 7. Lemire BD. Evolution, structure and membrane association of NDUFAF6, an assembly factor for
856 NADH:ubiquinone oxidoreductase (Complex I). *Mitochondrion.* 2017;35:13-22.

857 8. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new
858 technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. *J Clin Microbiol.*
859 1999;37(6):1771-6.

860 9. Bahn YS, Staab J, Sundstrom P. Increased high-affinity phosphodiesterase PDE2 gene expression
861 in germ tubes counteracts CAP1-dependent synthesis of cyclic AMP, limits hypha production and
862 promotes virulence of *Candida albicans*. *Mol Microbiol.* 2003;50(2):391-409.

863 10. Day M. Yeast petites and small colony variants: for everything there is a season. *Adv Appl*
864 *Microbiol.* 2013;85:1-41.

865 11. Rodrigues ML. The Multifunctional Fungal Ergosterol. *mBio.* 2018;9(5):e01755-18.

866 12. Sun N, Parrish RS, Calderone RA, Fonzi WA. Unique, Diverged, and Conserved Mitochondrial
867 Functions Influencing genus-species" id="named-content-1">*Candida* *albicans* Respiration. *mBio.* 2019;10(3):e00300-19.

868 13. Zhao R-Z, Jiang S, Zhang L, Yu Z-B. Mitochondrial electron transport chain, ROS generation and
869 uncoupling (Review). *Int J Mol Med.* 2019;44(1):3-15.

870 14. Lorenz MC, Fink GR. The glyoxylate cycle is required for fungal virulence. *Nature.*
871 2001;412(6842):83-6.

872 15. Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and
873 their targeting sequences. *Eur J Biochem.* 1996;241(3):779-86.

874 16. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein
875 modeling, prediction and analysis. *Nat Protoc.* 2015;10(6):845-58.

876 17. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface
877 topography of proteins with structural and topographical mapping of functionally annotated residues.
878 *Nucleic Acids Res.* 2006;34(Web Server issue):W116-8.

879 18. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function
880 prediction. *Nat Methods.* 2015;12(1):7-8.

881 19. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements
882 in performance and usability. *Mol Biol Evol.* 2013;30(4):772-80.

883 20. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic
884 algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol.* 2015;32(1):268-74.

885 21. Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL. OPM database and PPM web server:
886 resources for positioning of proteins in membranes. *Nucleic Acids Res.* 2012;40(Database issue):D370-6.

887 22. Ramírez MA, Lorenz MC. Mutations in alternative carbon utilization pathways in *Candida*
888 attenuate virulence and confer pleiotropic phenotypes. *Eukaryotic cell.* 2007;6(2):280-90.

889 23. Hatab MA, Whittaker PA. Isolation and characterization of respiration-deficient mutants from
890 the pathogenic yeast *Candida albicans*. *Antonie Van Leeuwenhoek.* 1992;61(3):207-19.

891 24. Calderone R, Li D, Traven A. System-level impact of mitochondria on fungal virulence: to
892 metabolism and beyond. *FEMS Yeast Res.* 2015;15(4):fov027.

893 25. She X, Calderone R, Kruppa M, Lowman D, Williams D, Zhang L, et al. Cell Wall N-Linked
894 Mannoprotein Biosynthesis Requires Goa1p, a Putative Regulator of Mitochondrial Complex I in *Candida*
895 *albicans*. *PLoS One.* 2016;11(1):e0147175.

896 26. She X, Zhang L, Chen H, Calderone R, Li D. Cell surface changes in the *Candida albicans*
897 mitochondrial mutant goa1Delta are associated with reduced recognition by innate immune cells. *Cell*
898 *Microbiol.* 2013;15(9):1572-84.

900 27. Qu Y, Jelicic B, Pettolino F, Perry A, Lo TL, Hewitt VL, et al. Mitochondrial sorting and assembly
901 machinery subunit Sam37 in *Candida albicans*: insight into the roles of mitochondria in fitness, cell wall
902 integrity, and virulence. *Eukaryot Cell*. 2012;11(4):532-44.

903 28. Fox EP, Cowley ES, Nobile CJ, Hartooni N, Newman DK, Johnson AD. Anaerobic bacteria grow
904 within *Candida albicans* biofilms and induce biofilm formation in suspension cultures. *Current biology* :
905 CB. 2014;24(20):2411-6.

906 29. Morales DK, Grahl N, Okegbe C, Dietrich LEP, Jacobs NJ, Hogan DA. Control of <span
907 class="named-content genus-species" id="named-content-1">*Candida*
908 *albicans* Metabolism and Biofilm Formation by <span class="named-content

909 genus-species" id="named-content-2">*Pseudomonas aeruginosa*
910 Phenazines. *mBio*. 2013;4(1):e00526-12.

911 30. Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, et al. Transcriptional regulation of
912 carbohydrate metabolism in the human pathogen *Candida albicans*. *PLoS Pathog*. 2009;5(10):e1000612.

913 31. Rodaki A, Bohovych IM, Enjalbert B, Young T, Odds FC, Gow NA, et al. Glucose promotes stress
914 resistance in the fungal pathogen *Candida albicans*. *Mol Biol Cell*. 2009;20(22):4845-55.

915 32. Li D, Chen H, Florentino A, Alex D, Sikorski P, Fonzi WA, et al. Enzymatic dysfunction of
916 mitochondrial complex I of the *Candida albicans* goa1 mutant is associated with increased reactive
917 oxidants and cell death. *Eukaryot Cell*. 2011;10(5):672-82.

918 33. Vincent BM, Langlois J-B, Srinivas R, Lancaster AK, Scherz-Shouval R, Whitesell L, et al. A Fungal-
919 Selective Cytochrome bc(1) Inhibitor Impairs Virulence and Prevents the Evolution of Drug Resistance.
920 *Cell Chem Biol*. 2016;23(8):978-91.

921 34. Li S-X, Song Y-J, Zhang Y-S, Wu H-T, Guo H, Zhu K-J, et al. Mitochondrial Complex V α Subunit Is
922 Critical for *Candida albicans* Pathogenicity through Modulating Multiple Virulence Properties. *Front*
923 *Microbiol*. 2017;8:285-.

924 35. Bambach A, Fernandes MP, Ghosh A, Kruppa M, Alex D, Li D, et al. Goa1p of *Candida albicans*
925 localizes to the mitochondria during stress and is required for mitochondrial function and virulence.
926 *Eukaryot Cell*. 2009;8(11):1706-20.

927 36. Li D, She X, Calderone R. Functional diversity of complex I subunits in *Candida albicans*
928 mitochondria. *Curr Genet*. 2016;62(1):87-95.

929 37. Santos MA, Gomes AC, Santos MC, Carreto LC, Moura GR. The genetic code of the fungal CTG
930 clade. *Comptes rendus biologies*. 2011;334(8-9):607-11.

931 38. Pandit J, Danley DE, Schulte GK, Mazzalupo S, Pauly TA, Hayward CM, et al. Crystal structure of
932 human squalene synthase. A key enzyme in cholesterol biosynthesis. *J Biol Chem*. 2000;275(39):30610-
933 7.

934 39. McKenzie M, Tucker EJ, Compton AG, Lazarou M, George C, Thorburn DR, et al. Mutations in the
935 gene encoding C8orf38 block complex I assembly by inhibiting production of the mitochondria-encoded
936 subunit ND1. *Journal of molecular biology*. 2011;414(3):413-26.

937 40. Liu CI, Jeng WY, Chang WJ, Shih MF, Ko TP, Wang AH. Structural insights into the catalytic
938 mechanism of human squalene synthase. *Acta Crystallogr D Biol Crystallogr*. 2014;70(Pt 2):231-41.

939 41. Nakayama H, Izuta M, Nakayama N, Arisawa M, Aoki Y. Depletion of the squalene synthase
940 (ERG9) gene does not impair growth of *Candida glabrata* in mice. *Antimicrob Agents Chemother*.
941 2000;44(9):2411-8.

942 42. Rozpedowska E, Galafassi S, Johansson L, Hagman A, Pikur J, Compagno C. *Candida albicans*--a
943 pre-whole genome duplication yeast--is predominantly aerobic and a poor ethanol producer. *FEMS*
944 *Yeast Res*. 2011;11(3):285-91.

945 43. Bouchonville K, Forche A, Tang KE, Selmecki A, Berman J. Aneuploid chromosomes are highly
946 unstable during DNA transformation of *Candida albicans*. *Eukaryot Cell*. 2009;8(10):1554-66.

947 44. Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ. The parasexual cycle in *Candida*
948 *albicans* provides an alternative pathway to meiosis for the formation of recombinant strains. *PLoS Biol.*
949 2008;6(5):e110.

950 45. Forche A, Abbey D, Pisithkul T, Weinzierl MA, Ringstrom T, Bruck D, et al. Stress alters rates and
951 types of loss of heterozygosity in *Candida albicans*. *mBio*. 2011;2(4):e00129-11.

952 46. Anderson MZ, Baller JA, Dulmage K, Wigen L, Berman J. The three clades of the telomere-
953 associated TLO gene family of *Candida albicans* have different splicing, localization, and expression
954 features. *Eukaryotic cell*. 2012;11(10):1268-75.

955 47. Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, et al. Evolution of
956 pathogenicity and sexual reproduction in eight *Candida* genomes. *Nature*. 2009;459(7247):657-62.

957 48. Dunn MJ, Kinney GM, Washington PM, Berman J, Anderson MZ. Functional diversification
958 accompanies gene family expansion of MED2 homologs in *Candida albicans*. *PLoS genetics*.
959 2018;14(4):e1007326-e.

960 49. Dagley MJ, Gentle IE, Beilharz TH, Pettolino FA, Djordjevic JT, Lo TL, et al. Cell wall integrity is
961 linked to mitochondria and phospholipid homeostasis in *Candida albicans* through the activity of the
962 post-transcriptional regulator Ccr4-Pop2. *Mol Microbiol*. 2011;79(4):968-89.

963 50. Hewitt VL, Heinz E, Shingu-Vazquez M, Qu Y, Jelicic B, Lo TL, et al. A model system for
964 mitochondrial biogenesis reveals evolutionary rewiring of protein import and membrane assembly
965 pathways. *Proc Natl Acad Sci U S A*. 2012;109(49):E3358-66.

966 51. Gabaldón T, Rainey D, Huynen MA. Tracing the evolution of a large protein complex in the
967 eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). *Journal of molecular biology*.
968 2005;348(4):857-70.

969 52. Marcket-Houben M, Marceddu G, Gabaldón T. Phylogenomics of the oxidative phosphorylation in
970 fungi reveals extensive gene duplication followed by functional divergence. *BMC evolutionary biology*.
971 2009;9:295.

972 53. Lavín JL, Oguiza JA, Ramírez L, Pisabarro AG. Comparative genomics of the oxidative
973 phosphorylation system in fungi. *Fungal genetics and biology : FG & B*. 2008;45(9):1248-56.

974 54. Mamouei Z, Zeng G, Wang YM, Wang Y. *Candida albicans* possess a highly versatile and dynamic
975 high-affinity iron transport system important for its commensal-pathogenic lifestyle. *Mol Microbiol*.
976 2017;106(6):986-98.

977 55. Wilson RB, Davis D, Mitchell AP. Rapid hypothesis testing with *Candida albicans* through gene
978 disruption with short homology regions. *J Bacteriol*. 1999;181(6):1868-74.

979 56. Zheng XD, Wang YM, Wang Y. CaSPA2 is important for polarity establishment and maintenance
980 in *Candida albicans*. *Mol Microbiol*. 2003;49(5):1391-405.

981 57. Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Jr., Mowat E, Ramage G, et al. A simple and
982 reproducible 96-well plate-based method for the formation of fungal biofilms and its application to
983 antifungal susceptibility testing. *Nat Protoc*. 2008;3(9):1494-500.

984 58. Uppuluri P, Lopez-Ribot JL. An easy and economical in vitro method for the formation of *Candida*
985 *albicans* biofilms under continuous conditions of flow. *Virulence*. 2010;1(6):483-7.

986 59. Uppuluri P, Singh S, Alqarihi A, Schmidt CS, Hennessey JP, Jr., Yeaman MR, et al. Human Anti-
987 Als3p Antibodies Are Surrogate Markers of NDV-3A Vaccine Efficacy Against Recurrent Vulvovaginal
988 Candidiasis. *Front Immunol*. 2018;9:1349.

989 60. Chaturvedi AK, Lazzell AL, Saville SP, Wormley FL, Jr., Monteagudo C, Lopez-Ribot JL. Validation
990 of the tetracycline regulatable gene expression system for the study of the pathogenesis of infectious
991 disease. *PLoS One*. 2011;6(5):e20449.

992 61. Andersen JV, Jakobsen E, Waagepetersen HS, Aldana BI. Distinct differences in rates of oxygen
993 consumption and ATP synthesis of regionally isolated non-synaptic mouse brain mitochondria. *J*
994 *Neurosci Res*. 2019;97(8):961-74.

995 62. Sivandzade F, Bhalerao A, Cucullo L. Analysis of the Mitochondrial Membrane Potential Using
996 the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. *Bio Protoc.* 2019;9(1).

997

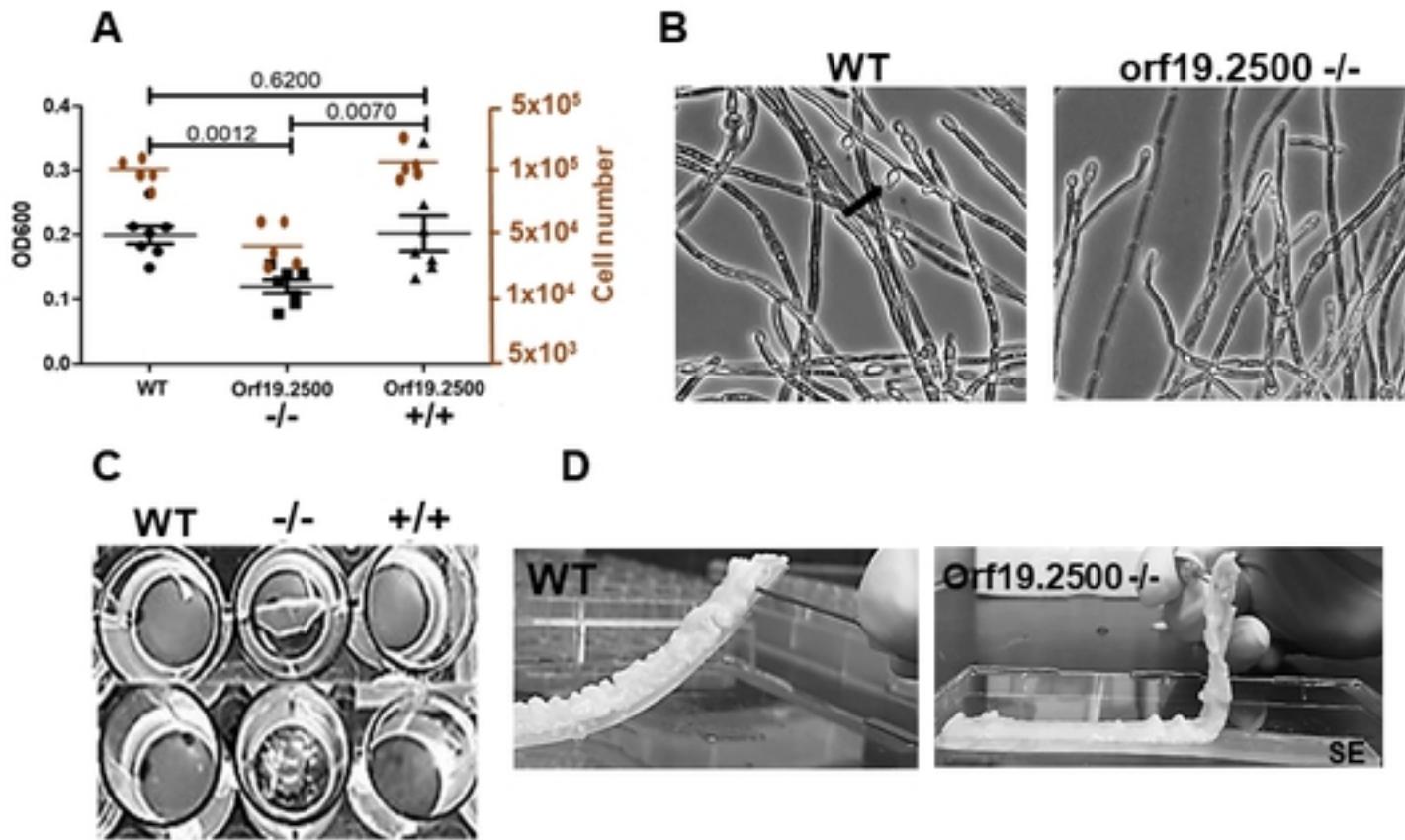


Figure 1

Fig 1

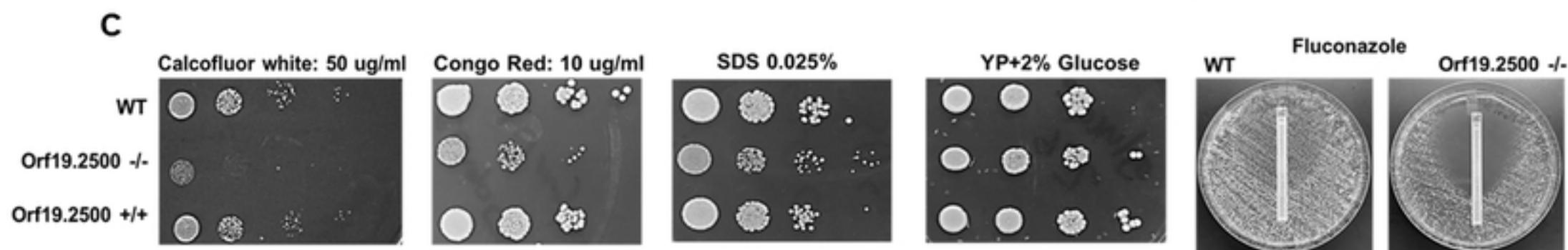
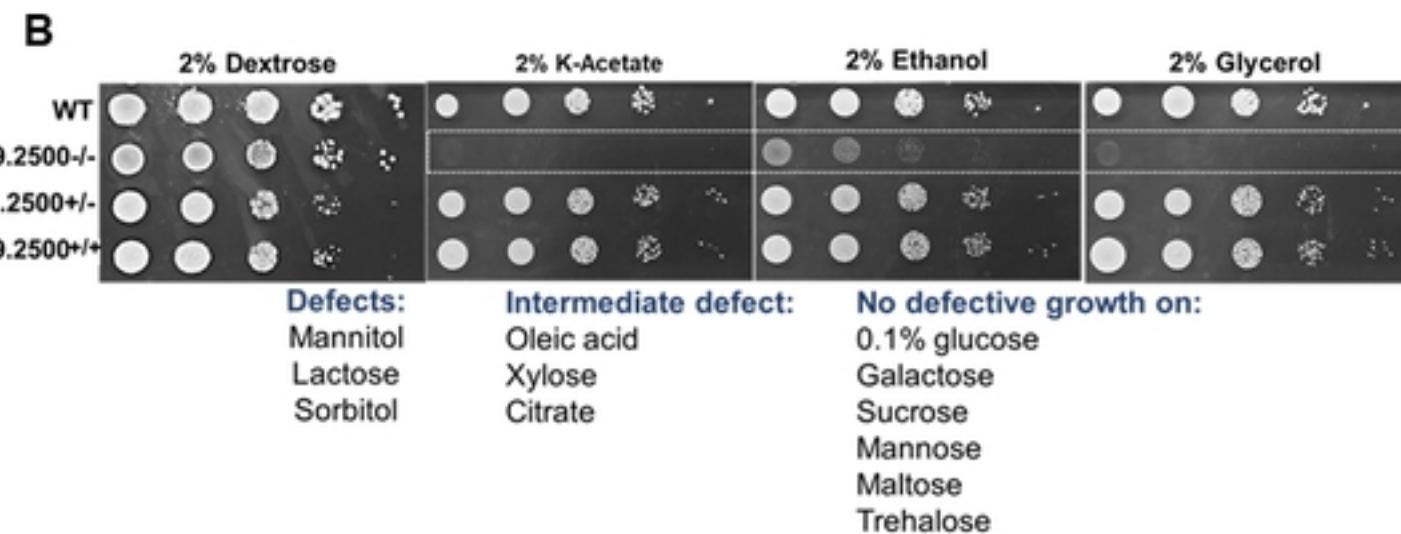
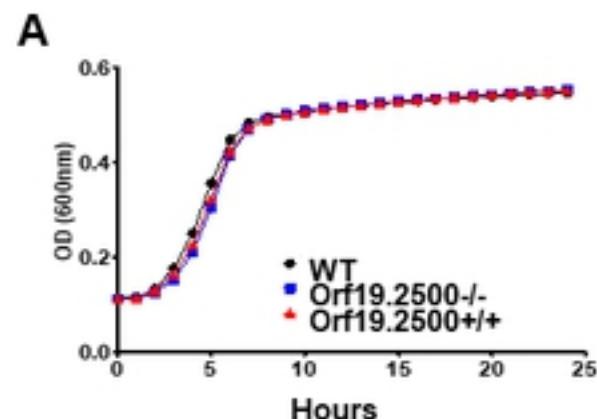
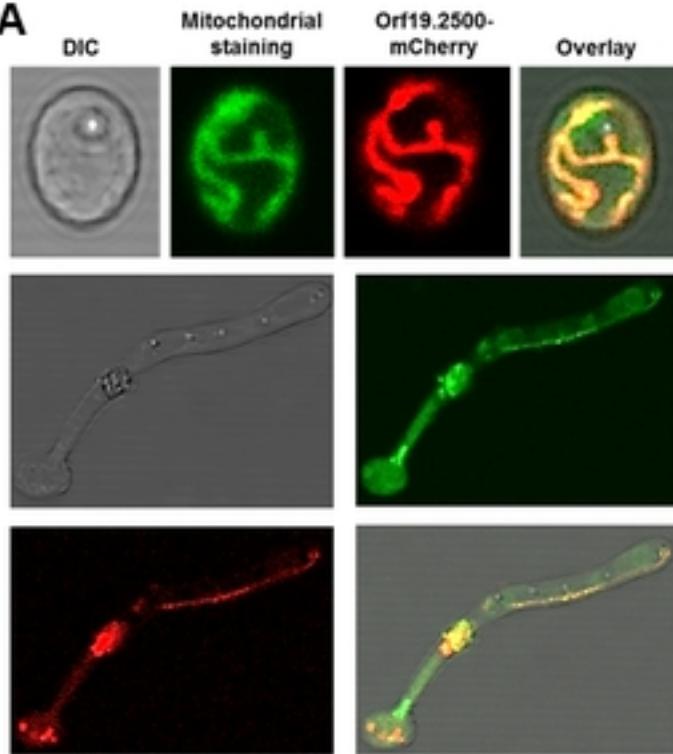
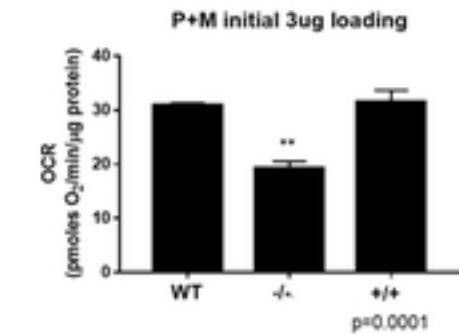
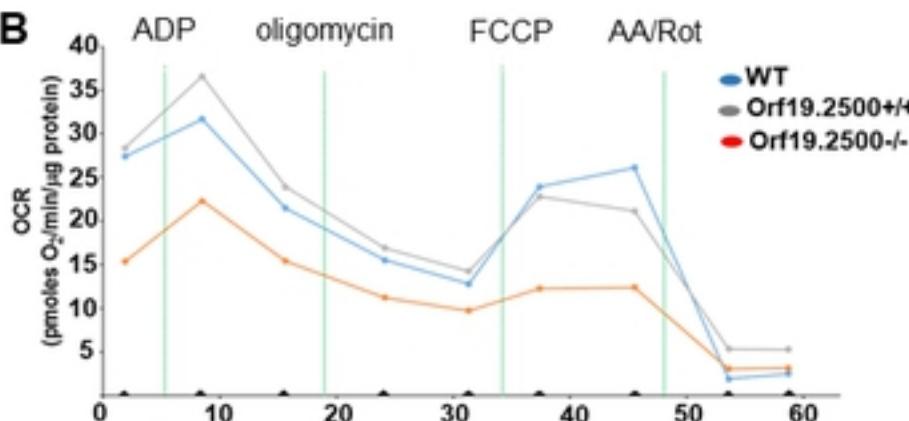
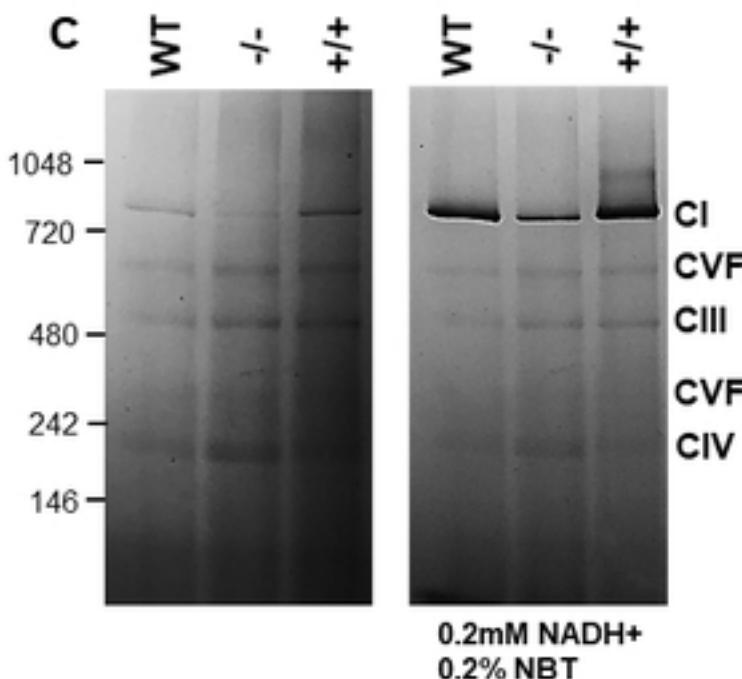
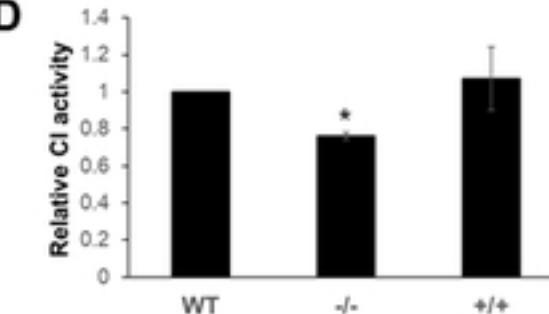
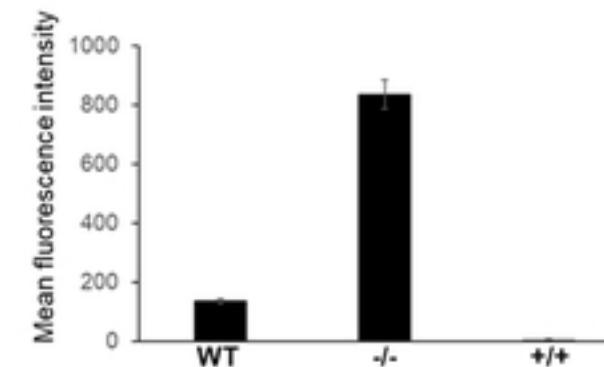










Figure 2

Fig 2

A**B****C****D****E****Figure 3****Fig 3**

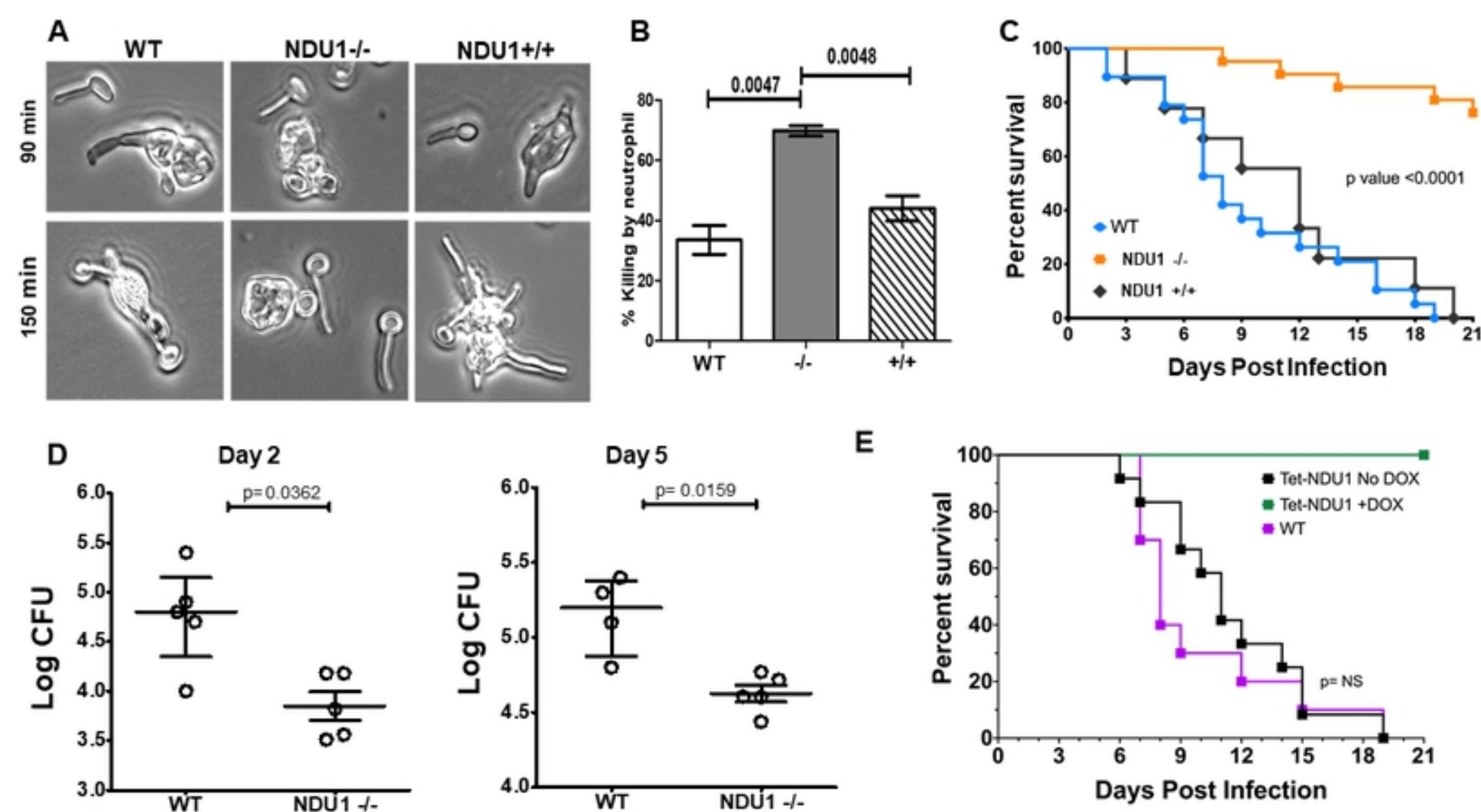
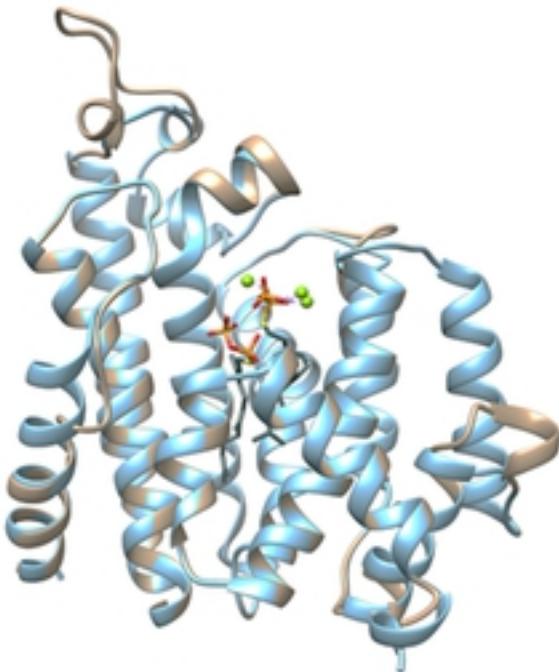



Figure 4

Fig 4

A**B**

Identities 22%; Positives 38%

TootfeeWS alignment of /Users/blemire/Desktop/C_albicans_F6/F6+SQS+PHYS+COQ1+fungal_TOOTFEEL.txt						
File	Edit	Select	View	Annotations	Format	Colour
NP_689629_Homo_sapiens_	1-333	1	MAASAHGSVWGPLRLGIPGLCCRRPLGLYARMRRRLPGPEVSGSVAAS	50		
XP_718518_Candida_albicans_	1-380	1	MITRSR-----HISKRLYSTNYS	17		
NP_689629_Homo_sapiens_	1-333	51	GPGAWGTDHYCLELRKRYEGYLCSSLPAESSSVFAIAFNVELAQV	100		
XP_718518_Candida_albicans_	1-380	18	SAILFNAQENVNQLLESQDRSSYILAQYIPEPVNTYLAIRAFNLEINKI	67		
NP_689629_Homo_sapiens_	1-333	101	KDSVSE-----KIG-----LMRMQFWKKTVEDTCND-----	128		
XP_718518_Candida_albicans_	1-380	68	NEGGSNVQSRRAARASSQMSNTLGVSTADLKFKWSSDLILRVFTEDSRNET	117		
NP_689629_Homo_sapiens_	1-333	129	PPHQPVATELWKAVVER-HLTKRWLMKIVDEPEKNLD-DKAYRNNTKELEN	176		
XP_718518_Candida_albicans_	1-380	118	DLEPIAILLRDGLKHDFTNLNISYFQQFLQTRHFIKNNSSFQTVDNICS	167		
NP_689629_Homo_sapiens_	1-333	177	YAENIQSSLVLTLEILGIKDLHA-----DHAASHIGKA	210		
XP_718518_Candida_albicans_	1-380	168	YGIFSQLNYLTQGLLSPSISPSVIRLLEYSTELQSQMSDIAAHIGQA	217		
NP_689629_Homo_sapiens_	1-333	211	QGIVTCLRATPYHG-SRKVFLPMOTCMLHGVSQDFLFRNQ-----	251		
XP_718518_Candida_albicans_	1-380	218	TAVSSMILGVPFYAQSNQITLPPVQLMTSSGLSQESLLRLFQGHIKDSAE	267		
NP_689629_Homo_sapiens_	1-333	252	---D-KNVRDVITDIAASQAHLLKHA-----	274		
XP_718518_Candida_albicans_	1-380	268	ENQIKEALKNVVYETAITANDHMLTAKSKLEMARQEIKKIVQEQPQQDQLL	317		
NP_689629_Homo_sapiens_	1-333	275	-----SFHITVPVKAFPAFLQTVSLEDFLKIQRVDFDIFHPSLQOKNTL	319		
XP_718518_Candida_albicans_	1-380	318	NKFSKKWRKGIPDSLYVPTMAGIPTSLFLNKLEKCNFDLHFHGRLOKEWR	366		
NP_689629_Homo_sapiens_	1-333	320	LPIL-YLVIQSWIKTY	333		
XP_718518_Candida_albicans_	1-380	367	PMKSFYYYYMLM-	380		

C

Mitochondrial presequence

MITRSRHSKRLYSTNYSAILFNAQENVNQLLESQDRSSYILAQYIPEPV
 RNTYLAIRAFNLEINKINEEGGSNVQSRRAARASSQMSNTLGVSTADLKFKF
 WSDLILRVFTEDSRNETDLGEPIAILLRDGLKHDFTNLNISYFQQFLQTRR
 HFIKNNSSFQTVDNICSYGETFSQLNYLTQGLLSPSISPSVIRLLEYST
 ELSQMSDIAAHIGQATAVSSMILGVPFYAQSRNQITLPPVQLMTSSGLS
 QESLLRLFQGHIKDSAEENQIKEALKNVVYETAITANDHMLTAKSKLEMA
 RQEIKKIVQEQPQQDQLLNKFSKKWRKGIPDSLYVPTMAGIPTSLFLNKLE
 KCNFDLFHGRLOKEWRLPMKSYYYYYMRLM

Insert 1

Insert 2

Insert 3

Figure 5

Fig 5

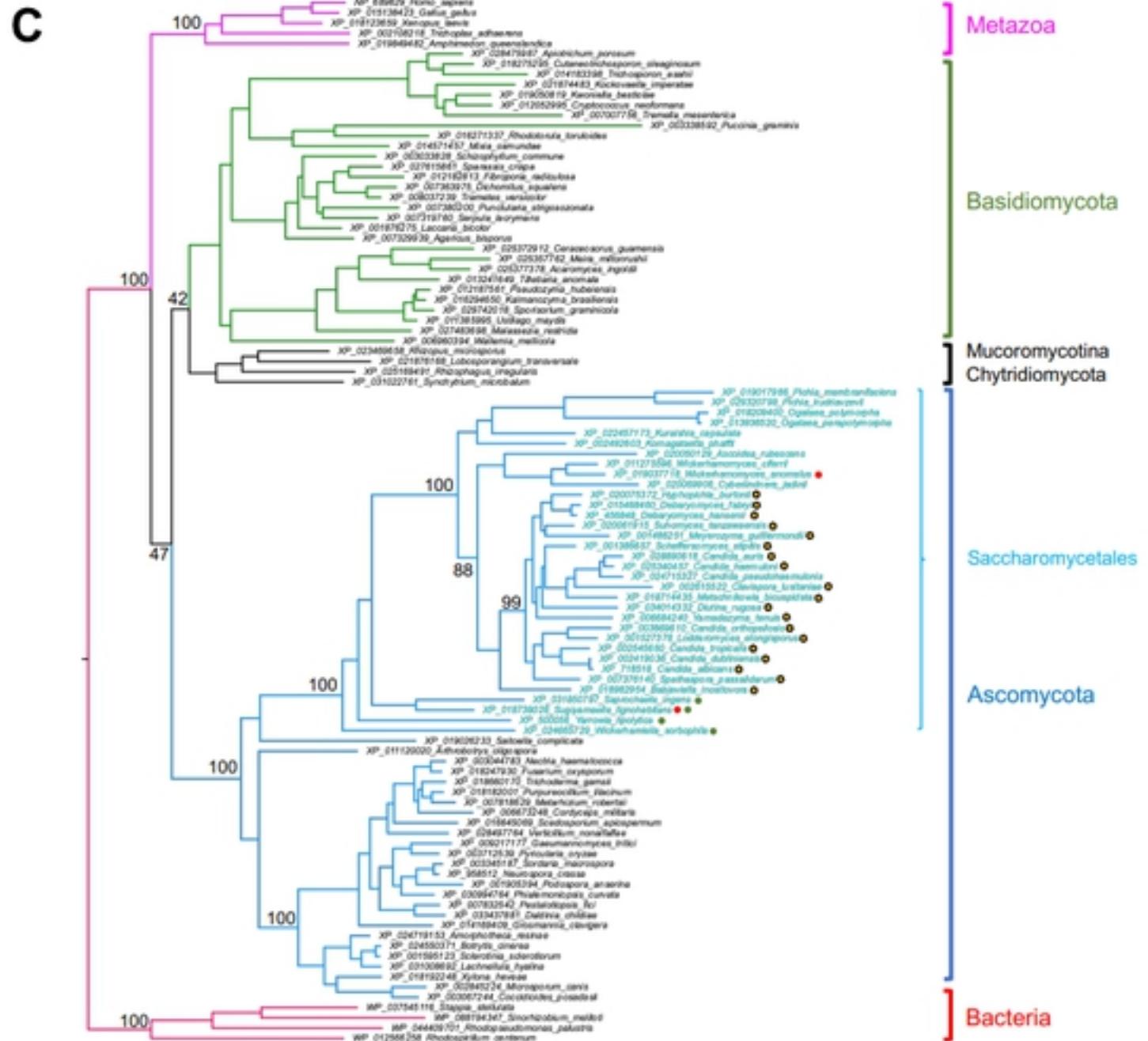
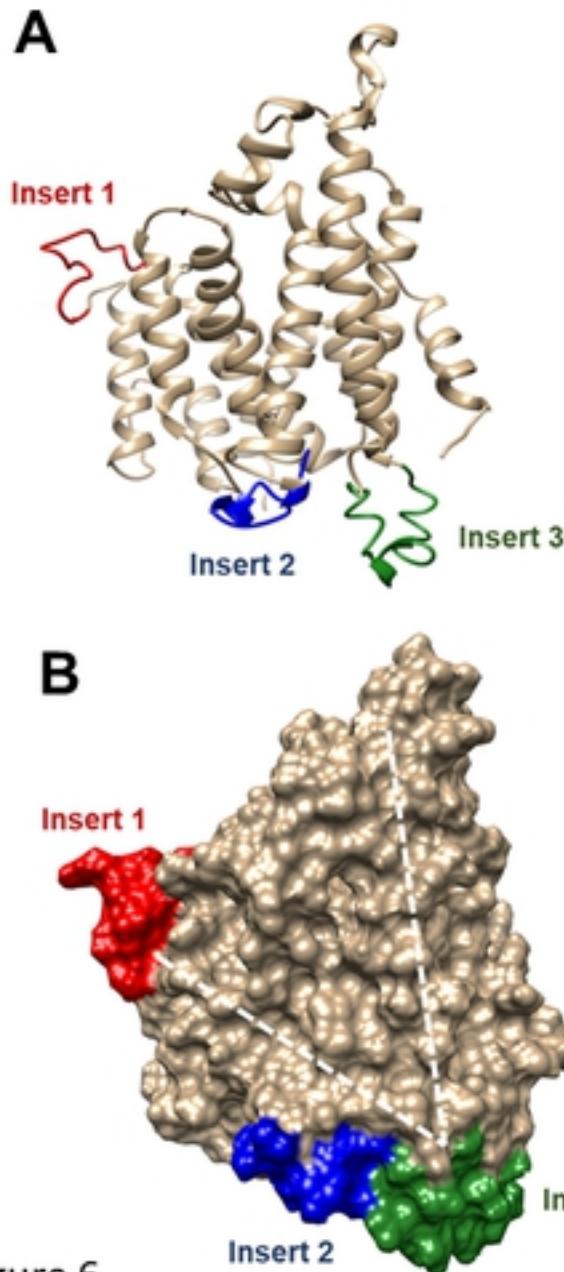



Figure 6

Fig 6

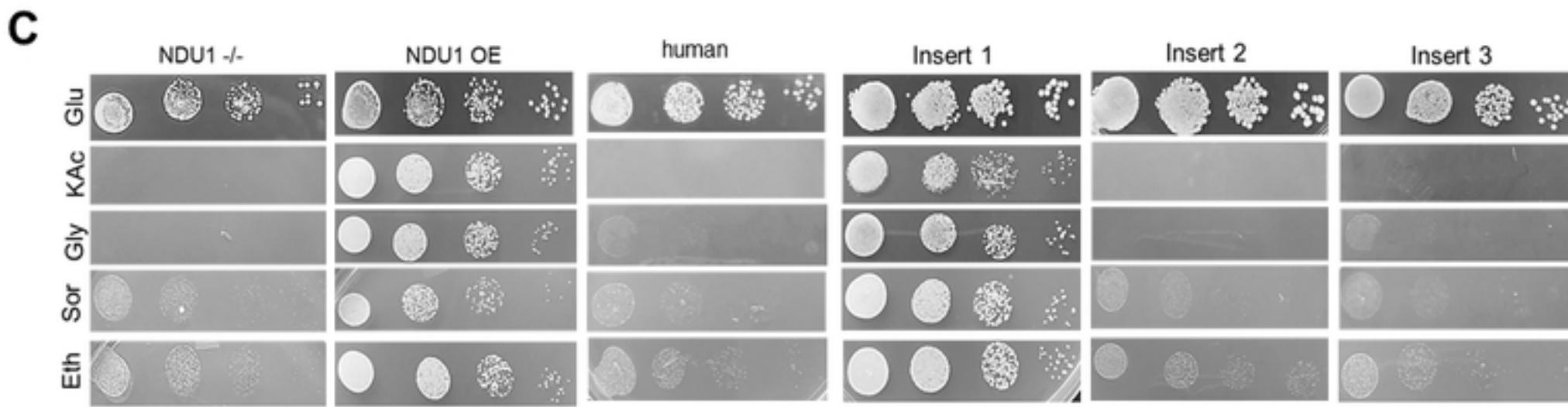
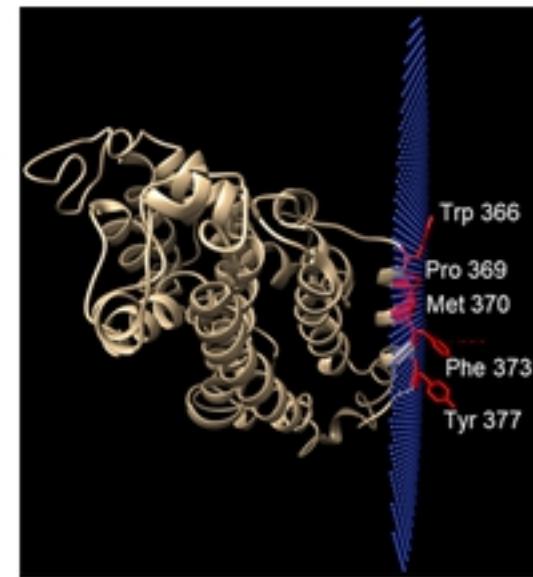
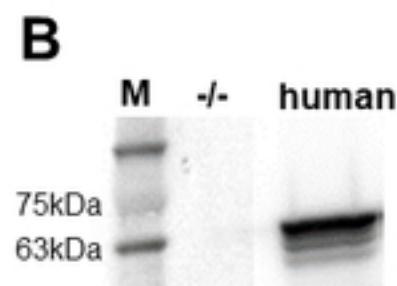
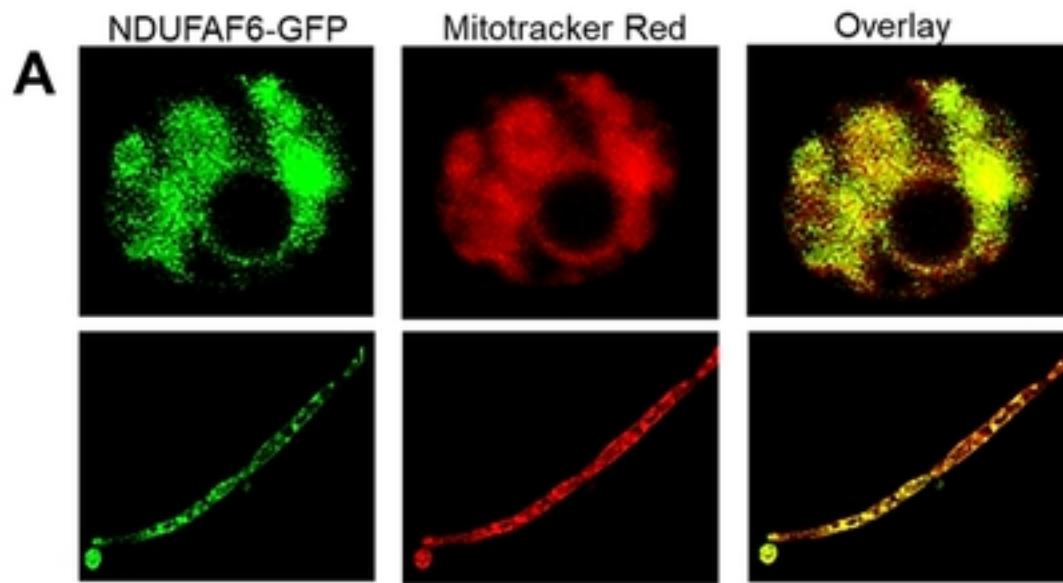





Figure 7

Fig 7