

1 **The 20-hydroxyecdysone agonist, halofenozide, promotes anti-**
2 ***Plasmodium* immunity in *Anopheles gambiae* via the ecdysone**
3 **receptor**

4 Rebekah A. Reynolds¹, Hyeogsun Kwon¹, Thiago Luiz Alves e Silva², Janet Olivas², Joel
5 Vega-Rodriguez², and Ryan C. Smith^{1*}

6
7 ¹Department of Entomology, Iowa State University, Ames, Iowa, USA.

8 ²Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious
9 Diseases, National Institutes of Health, Rockville, Maryland, USA.

10
11 *Corresponding author: smithr@iastate.edu

12 **Abstract**

13 Mosquito physiology and immunity are integral determinants of malaria vector
14 competence. This includes the principal role of hormonal signaling in *Anopheles gambiae*
15 initiated shortly after blood-feeding, which stimulates immune induction and promotes
16 vitellogenesis through the function of 20-hydroxyecdysone (20E). Previous studies
17 demonstrated that manipulating 20E signaling through the direct injection of 20E or the
18 application of a 20E agonist can significantly impact *Plasmodium* infection outcomes,
19 reducing oocyst numbers and the potential for malaria transmission. In support of these
20 findings, we demonstrate that a 20E agonist, halofenozide, is able to induce anti-
21 *Plasmodium* immune responses that limit *Plasmodium* ookinetes. We demonstrate that
22 halofenozide requires the function of ultraspiracle (USP), a component of the canonical
23 heterodimeric ecdysone receptor, to induce malaria parasite killing responses. Additional
24 experiments suggest that the effects of halofenozide treatment are temporal, such that its
25 application only limits malaria parasites when applied prior to infection. Unlike 20E,
26 halofenozide does not influence cellular immune function or AMP production. Together,
27 our results further demonstrate the potential of targeting 20E signaling pathways to
28 reduce malaria parasite infection in the mosquito vector and provide new insight into the
29 mechanisms of halofenozide-mediated immune activation that differ from 20E.

30 **Introduction**

31 Malaria kills over 400,000 people each year, with the majority of deaths in children under
32 the age of five ¹. Transmission requires an *Anopheles* mosquito to acquire and transmit
33 *Plasmodium* parasites through the act of blood-feeding, a behavior that evolved in
34 mosquitoes to acquire nutrient-rich blood for egg development ². Strategies to interrupt
35 mosquito blood-feeding, and subsequent parasite transmission, are an essential step in
36 reducing disease transmission. The use of long-lasting insecticide treated bed nets
37 (LLITNs) and indoor residual spraying (IRS) were integral in reducing malaria deaths by
38 approximately 50 percent over the last 20 years ^{1,3,4}. These preventative measures have
39 proven effective in Africa, where over 90 percent of the malaria cases occur globally, yet
40 progress in the remaining regions of the world have plateaued in recent years ¹. Moreover,
41 the increasing prevalence of insecticide and drug resistance now threaten a global
42 resurgence in malaria cases ¹, therefore requiring new approaches to combat malaria
43 transmission.

44 In order to be transmitted, malaria parasites must survive several bottlenecks in their
45 mosquito host, where parasite numbers at the oocyst stage are arguably the lowest in the
46 malaria life cycle ⁵. These bottlenecks are mediated in part by blood-meal derived factors,
47 the mosquito microbiota, and components of the innate immune system that ultimately
48 determine vector competence and vectorial capacity ⁵. Therefore, targeting components
49 of mosquito physiology and/or immunity can serve as excellent targets for malaria control
50 strategies to interrupt *Plasmodium* development in the mosquito host.

51 Previous studies have demonstrated that the steroid hormone 20-hydroxyecdysone (20E)
52 is essential for multiple aspects of mosquito physiology; such as development, mating,
53 reproduction, and immunity ⁶⁻⁹. This includes the demonstration that 20E injection
54 promotes *An. gambiae* cellular immunity and reduces both *E. coli* and *P. berghei* survival
55 in the mosquito host ⁸. 20E agonists, which were initially developed as insecticides to
56 reduce larval populations, have shown promise for use on adult *An. gambiae* mosquitoes
57 ¹⁰. Methoxyfenozide (DBH) reduced mosquito lifespan, decreased fecundity, and
58 significantly lowered the prevalence of *P. falciparum* parasite infection in the mosquito
59 host ¹⁰. However, the mechanisms by which 20E agonists prime anti-*Plasmodium*

60 immunity remain unexplored.

61 Here, we examine the 20E agonist, halofenozide, to better understand the mechanisms
62 of anti-*Plasmodium* immunity stimulated by the direct application to the mosquito cuticle.
63 In agreement with previous work on another 20E agonist ¹⁰, we demonstrate that
64 halofenozide significantly reduces *P. berghei* parasite numbers when applied to
65 mosquitoes prior to infection. Furthermore, we demonstrate that halofenozide treatment
66 influences the success of *Plasmodium* ookinete invasion and requires the function of
67 *ultraspiracle* (USP) as part of the heterodimeric ecdysone receptor (USP/EcR). When
68 compared to earlier studies of 20E immune induction ⁸, we find that halofenozide and 20E
69 differentially influence mosquito cellular immunity. These findings are supported by a
70 recent study in *Drosophila*, which demonstrate differences in the physiological effects
71 between 20E, a steroid hormone, and chromafenozide, a non-steroidal agonist ¹². In
72 summary, our study provides new detail into the mechanisms by which 20E agonists
73 promote mosquito immunity and limit *Plasmodium* parasite survival.

74 **Results**

75 **Halofenozide application reduces *P. berghei* survival and infection prevalence**

76 Previous studies have demonstrated the ability of 20E and the 20E agonist, DBH, to
77 induce mosquito responses that limit malaria parasite infection in *An. gambiae* ^{8,10}. While
78 recent evidence provides insight into the effects of 20E immune induction ⁸, the manner
79 in which 20E agonists influence mosquito immunity have not been previously examined.
80 To explore this question, we performed experiments with halofenozide, a similar 20E
81 agonist, and examined its influence on malaria parasite infection. Halofenozide was
82 topically applied to adult female mosquitoes without significant effect on mosquito survival
83 (Figure S1) and challenged with *P. berghei* ~24hrs post-application. Compared to control
84 (acetone-treated) mosquitoes, halofenozide treatment with either 0.25 µg/µL or 0.5 µg/µL
85 significantly reduced the intensity of *P. berghei* oocysts eight days post infection (Figure
86 1A). Moreover, halofenozide reduced the prevalence of infection from 85% in control
87 mosquitoes to <50% in halofenozide-treated mosquitoes (Figure 1B). Given the low
88 mortality rate and the strong anti-*Plasmodium* effect, the remainder of the halofenozide
89 experiments were conducted using the 0.5 µg/µL concentration.

90 **Halofenozide promotes the killing of *P. berghei* ookinetes**

91 To better determine how and when halofenozide limits parasite numbers, we examined
92 the effects of halofenozide application on distinct stages of malaria parasite infection.
93 When oocyst numbers were examined two days post-*P. berghei* infection, halofenozide-
94 treated mosquitoes displayed a significant reduction in early oocyst survival (Figure 2A),
95 suggesting that halofenozide application may promote ookinete killing. To further validate
96 this point and determine if halofenozide application also influenced other stages of
97 parasite development, halofenozide applications were performed approximately 24 hours
98 post-*P. berghei* infection. Halofenozide treatment did not influence parasite survival when
99 applied after an established *P. berghei* infection (Figure 2B), suggesting that the effects
100 of halofenozide treatment are only effective against *Plasmodium* ookinetes when applied
101 prior to infection.

102 To determine if halofenozide had an inhibitory effect on ookinete development or viability,
103 we performed *in vitro* *P. berghei* ookinete cultures in the presence of 0.5 µg/µl of
104 halofenozide. Treatment with halofenozide did not change the morphology or the number
105 of ookinetes when compared to acetone controls (Figure 3A), supporting that
106 halofenozide does not influence *Plasmodium* sexual stage development. Moreover, both
107 control- and halofenozide-treated ookinetes were able to glide normally in Matrigel motility
108 assays (Movie S1 and S2), suggesting that halofenozide treatment did not influence
109 ookinete viability *in vitro*. Similar experiments were also performed *in vivo*, where
110 *Plasmodium* sexual development was evaluated in the mosquito blood bolus 18 h after
111 *P. berghei* infection. Fluorescent mCherry parasites were evaluated by morphology in
112 control- and halofenozide-treated mosquitoes, displaying no differences in sexual stage
113 development between treatments (Figure 3B). These data provide strong support that the
114 reduced parasite numbers associated with halofenozide treatment are not the result of
115 direct interactions on *Plasmodium* parasites.

116 Since the mosquito gut microbiota are also major determinants of mosquito vector
117 competence ^{13,14}, we examined the potential that halofenozide could impact the
118 microbiota. Levels of 16s rRNA expression, which serves as a proxy to assess bacteria
119 numbers ^{15,16}, were not significantly altered following halofenozide application (Figure

120 S2A). Moreover, halofenozide had no impact on bacterial growth *in vitro* (Figure S2B),
121 arguing that the anti-*Plasmodium* effects of halofenozide application do not involve
122 alterations to the mosquito microbiota.

123 Additional experiments ookinete midgut invasion demonstrate that the number of live
124 ookinetes (based on mCherry fluorescence) is significantly reduced following
125 halofenozide treatment (Figure 3C). This suggests that the reduced numbers of early
126 oocysts following halofenozide treatment (Figure 2A) are mediated by a yet undescribed
127 mechanism of mosquito anti-*Plasmodium* immunity that limits the success of ookinete
128 invasion. This also explains why halofenozide treatment after an established infection
129 (Figure 2B; post-ookinete invasion) had no effect on parasite survival.

130 **Halofenozide requires USP to stimulate immune priming**

131 To confirm the known function of halofenozide acting through the canonical 20E receptor
132 ¹⁷, we examined the expression of *vitellogenin* and *cathepsin B*, genes responsive to 20E
133 signaling ^{18,19}. Halofenozide application significantly increased the expression of
134 *vitellogenin* (Figure 4A; Figure S3) and *cathepsin B* (Figure 4B; Figure S3) to comparable
135 levels as the injection of 20E (Figures 4A and 4B), supporting that halofenozide activates
136 canonical 20E signaling. To determine if the heterodimeric ecdysone receptor comprised
137 of the ecdysone receptor (EcR) and ultraspiracle (USP) is critical for the induction of anti-
138 *Plasmodium* immunity following halofenozide treatment, we used RNAi to examine the
139 role of the respective components in halofenozide immune activation (Figure S4). In RNAi
140 experiments, the injection of dsRNA targeting the heterodimeric receptor had no effect on
141 *EcR*, yet significantly depleted levels of *USP* (Figure S4). As a result, efforts to ascertain
142 the function of the ecdysone receptor were evaluated with *USP*-silencing. In control,
143 *dsGFP*-silenced mosquitoes, halofenozide application prior to *P. berghei* challenge
144 resulted in a significant reduction in parasite numbers (Figure 4C), similar to previous
145 results (Figures 1 and 2). However, the topical application of halofenozide in the *dsUSP*-
146 silenced background (Figure S4) did not influence *P. berghei* survival (Figure 4C).
147 Together, this suggests that halofenozide activation of anti-*Plasmodium* immunity
148 requires the function of canonical 20E signaling through the heterodimeric ecdysone
149 receptor (EcR/USP).

150 **Mechanisms of halofenozide immune induction are distinct from 20E**

151 We previously examined the influence of 20E on cellular immunity and the effects of 20E
152 priming that limit malaria parasite infection ⁸. Similarly, we wanted to determine if
153 halofenozide application promotes similar changes to 20E in gene expression, cellular
154 immunity, and anti-microbial defense. To compare gene expression, we examined the
155 expression of *cecropin 1* (*CEC 1*) and *cecropin 3* (*CEC 3*), which previously were
156 significantly up-regulated in response to 20E injection in naïve mosquitoes ⁸. However,
157 halofenozide did not stimulate the expression of *CEC1* or *CEC3* (Figure 5A and 5B),
158 suggesting that halofenozide initiates a different transcriptional repertoire than that of 20E
159 ⁸. This led us to question whether halofenozide application primed cellular immunity
160 similar to 20E in naïve mosquitoes ⁸. Contrary to previous work with 20E, halofenozide
161 treatment did not influence the phagocytic activity of mosquito immune cells (Figure 5C).
162 Together, these results suggest that the mechanisms of halofenozide immune induction
163 are distinct from that of 20E in limiting malaria parasites.

164 **Discussion**

165 To date, the most effective malaria control strategies target the mosquito host by reducing
166 mosquito habitats, preventing transmission through the use of bed nets, or by killing adult
167 mosquitoes through the use of insecticides ²⁰. However, due to increasing insecticide
168 resistance in many malaria-endemic regions of the world, it is critical to develop new
169 methods or improve on existing tools to interrupt malaria transmission. This includes the
170 use of commonly used insecticides to manipulate mosquito host physiology, influencing
171 fitness or rendering them less likely to acquire and transmit mosquito-borne pathogens.
172 Childs *et al.* demonstrated that the application of a 20E agonist, DBH, negatively
173 influenced mosquito survival, reproduction, and reduced *P. falciparum* survival in the
174 mosquito host ¹⁰, supporting that 20E agonists have the potential to improve existing
175 malaria control strategies ^{10,21}. This is further supported by recent studies demonstrating
176 that 20E confers anti-*Plasmodium* immunity ⁸, yet prior to our presented work herein, the
177 manner in which 20E agonists influence *Plasmodium* survival have remained unknown.
178 In agreement with previous work with DBH ¹⁰, we found the topical application of
179 halofenozide, a similar 20E agonist, significantly impaired *P. berghei* oocyst survival and

180 reduced infection prevalence. Additionally, we provide new details into the temporal
181 effects of halofenozide immune activation, demonstrating that the anti-*Plasmodium*
182 properties of halofenozide treatment only function to reduce *Plasmodium* numbers when
183 applied prior to malaria parasite challenge. Therefore, if 20E agonists such as
184 halofenozide are integrated into bed nets or employed by indoor residual spraying (IRS)
185 as previously proposed^{10,21}, mosquitoes must come into contact prior to taking an
186 infectious blood meal to influence parasite survival. However, further studies are required
187 to determine if other 20E agonists, such as DBH, share similar mechanisms of limiting
188 malaria parasites.

189 Several lines of evidence suggest that halofenozide application promotes “early-phase”
190 components of anti-*Plasmodium* immunity that influence the success of ookinete invasion
191^{5,16,22}. This includes the reduction in the number of invading ookinetes, as well as early
192 oocyst number. These data are further supported by our results demonstrating that
193 halofenozide application ~24h post-infection, and after ookinete invasion, did not
194 influence malaria parasite survival. As a result, halofenozide (and potentially other 20E
195 agonists) may influence complement function^{23–25}, or a yet undescribed mechanism to
196 limit *Plasmodium* ookinete survival. However, further experiments are required to define
197 the direct mechanisms by which halofenozide promotes malaria parasite killing.

198 The integral role of USP in conferring the effects of halofenozide application provide
199 strong support that halofenozide activates ecdysone signaling, which is in agreement with
200 previous evidence that 20E agonists competitively bind to the EcR/USP heterodimer²⁶.
201 Although we were unable to knock-down *EcR*, *EcR* alone is incapable of high affinity
202 binding to 20E to promote the activation of downstream 20E-regulated genes²⁷. This is
203 further supported by the activation of *Vg* and *cathepsin B*, two highly responsive 20E-
204 regulated genes^{19,28}, following halofenozide application at comparable levels to the
205 injection of 20E. Therefore, our data support that halofenozide-mediated immune
206 induction occurs through the heterodimeric ecdysone receptor.

207 Previous work has identified the downstream targets of 20E signaling in *An. gambiae*, as
208 well as demonstrated the influence of 20E on cellular immunity and anti-pathogen

209 defense responses that limit bacterial and parasite survival ⁸. Since halofenozide
210 functions through the canonical 20E receptor, we originally hypothesized that
211 halofenozide and 20E would similarly influence mosquito physiology and immunity ⁸.
212 While both 20E and halofenozide stimulate *Vg* and *cathepsin B*, halofenozide application
213 does not stimulate immune gene expression or cellular immunity similar to 20E ⁸.
214 Together, these results suggest that halofenozide and 20E work through similar, yet
215 distinct mechanisms to influence mosquito physiology and promote anti-*Plasmodium*
216 immunity. This may potentially be explained by differences between steroid hormones
217 such as 20E and their non-steroidal agonist to enter target cells and stimulate cellular
218 function ²⁹. In support of this hypothesis, previous work in *Drosophila* demonstrates that
219 20E and chromafenozide, a nonsteroidal 20E agonist, differentially enter cells to stimulate
220 cell function ¹². 20E requires the ecdysone importer (*Ecl*) to gain cell entry, while
221 chromafenozide can stimulate cellular responses independent of *Ecl* ¹². Based on these
222 notable differences between steroid hormones and non-steroidal agonists, additional
223 studies are required to further delineate the mechanisms of 20E and halofenozide
224 immune induction in the mosquito host.

225 In summary, we demonstrate that the 20E agonist, halofenozide, is an effective tool to
226 promote physiological responses that reduce the prevalence and intensity of malaria
227 parasite infection, similar to previous studies with the 20E agonist DBH ¹⁰. Moreover, we
228 define the temporal requirements of halofenozide application, where *Plasmodium*
229 infection intensity is limited only in mosquitoes treated pre-infection, consistent with a role
230 in halofenozide mediating physiological responses that limit the success of ookinete
231 invasion. We demonstrate that halofenozide requires the function of USP, implicating
232 ecdysone signaling in mediating the physiological responses that limit *Plasmodium*
233 infection. However, through comparative analysis of gene expression and cellular
234 immune function, we establish that halofenozide application produces physiological
235 responses not directly comparable to the effects of 20E ⁸. From these data, we provide
236 new fundamental insight into the mechanisms of halofenozide immune induction to better
237 understand 20E agonist function. Together, the evidence presented here and in previous
238 studies ^{10,21} suggest that 20E agonists could be an effective tool to help reduce the
239 transmission of malaria.

240 **Methods**

241 **Ethics statement**

242 The protocols and procedures used in this study were approved by the Animal Care and
243 Use Committee at Iowa State University (IACUC-18-228). All experiments were
244 performed in accordance with the relevant guidelines and regulations of the approved
245 study.

246 **Mosquito rearing and *Plasmodium* infections**

247 *An. gambiae* (G3 strain) were maintained at 27°C and 80% relative humidity, with a 14/10-
248 hour light/dark cycle. Larvae were maintained on a ground fish food diet (Tetramin).
249 Pupae were isolated using a pupal separator (John W. Hock Company) and placed in
250 containers of ~50 mosquitoes where they were allowed to eclose in mixed populations of
251 male and female mosquitoes. Adult mosquitoes were maintained on a 10% sucrose
252 solution.

253 For mosquito infections with *P. berghei*, a mCherry *P. berghei* strain³⁰ was passaged into
254 female Swiss Webster mice as previously described^{8,16,31,32}. After the confirmation of an
255 active infection by the presence of exflagellation, mice were anesthetized and placed on
256 mosquito cages for feeding. Infected mosquitoes were sorted and then maintained at
257 19°C. Mosquito midguts were dissected eight days post-infection in 1x PBS, and oocyst
258 numbers were measured by fluorescence using a Nikon Eclipse 50i microscope.

259 **Halofenozide topical application on adult mosquitoes**

260 For topical applications with halofenozide (Chem Services Inc.), a stock solution of
261 40µg/µL was prepared using 0.04 grams of halofenozide in 1 mL of 100% acetone. Prior
262 to application, working concentration were prepared by diluting the stock solution 1:79 or
263 1:159 in 100% acetone to achieve respective working concentrations of 0.5 µg/µL and
264 0.25µg/µL. Adult female *An. gambiae* (3-5 days post eclosion) were topically applied with
265 0.2µL of either 100% acetone (control) or halofenozide (0.25 µg/µL and 0.5µg/µL) in
266 100% acetone. Applications were performed on individual mosquitoes using a repeating
267 syringe dispenser (PB600-1 Hamilton syringe with a 10-microliter syringe). Surviving
268 mosquitoes were challenged (*E. coli* or *P. berghei*) 24 hours post-topical application or

269 were used to collect samples for RNA isolation to determine the effects of halofenozide
270 treatment on gene expression.

271 **Gene expression analysis**

272 Total RNA was isolated from whole mosquitoes (~10 mosquitoes) using TRIzol (Thermo
273 Fisher Scientific) according to the manufacturer's protocol. RNA samples were quantified
274 using a Nanodrop spectrophotometer (Thermo Fisher Scientific) and ~2 μ g of total RNA
275 was used as a template for cDNA synthesis using the RevertAid First Strand cDNA
276 Synthesis kit (Thermo Fisher). Gene expression was measured by qRT-PCR using gene-
277 specific primers (Table S1) and PowerSYBR Green (Invitrogen). Samples were run in
278 triplicate and normalized to an S7 reference gene and quantified using the $2^{-\Delta\Delta CT}$ method
279 as previously³³.

280 **dsRNA synthesis and gene-silencing**

281 T7 primers for GFP and *ultraspiracle* (USP) were used to amplify cDNA prepared from
282 whole *An. gambiae* mosquitoes and cloned into a pJET1.2 vector using a CloneJET PCR
283 Cloning Kit (Thermo Fisher). The resulting plasmids were used as a template for
284 amplification using the corresponding T7 primers (Table S2). PCR products were purified
285 using the DNA Clean and Concentrator kit (Zymo Research) and used as a template for
286 dsRNA synthesis as previously described^{8,31}. The resulting dsRNA was resuspended in
287 RNase-free water to a concentration of 3 μ g/uL. For gene-silencing experiments, 69nL of
288 dsRNA was injected per mosquito and evaluated by qRT-PCR to establish gene-
289 knockdowns at 1-5 days post-injection. Time points with the highest efficiency of gene-
290 silencing were chosen for downstream experiments.

291 **Phagocytosis Assays**

292 Phagocytosis assays were performed *in vivo* as previously described^{8,32} using red
293 fluorescent FluoSpheres (1 μ m Molecular Probes) at a 1:10 dilution in 1x PBS. Following
294 injection, mosquitoes were allowed to recover for two hours at 19°C, then perfused onto
295 a multi-test slide. To visualize hemocytes, cells were stained using a 1:500 dilution of
296 FITC-labeled wheat germ agglutinin (WGA; Sigma) in 1x PBS, while nuclei were stained
297 with ProLong Gold anti-fade reagent with DAPI (Invitrogen). Hemocytes were identified

298 by the presence of WGA and DAPI signals, with the number of cells containing beads by
299 the total number of cells to calculate the percent phagocytosis. The phagocytic index was
300 calculated by counting the total number of beads per cell (this is summed for all of the
301 cells) dividing by the number of phagocytic cells. Approximately 200 cells were counted
302 per mosquito sample.

303 **Evaluation of halofenozide impacts on bacteria**

304 The potential impacts of halofenozide on the mosquito microbiota were evaluated using
305 both *in vivo* and *in vitro* experiments. For *in vivo* experiments, we analyzed the relative
306 quantification of 16s rRNA expression ^{15,16} as a proxy for mosquito microbiota titers
307 between acetone (control) and halofenozide (0.5 μ g/ μ L) treatments. cDNA was prepared
308 from whole mosquitoes receiving topical applications as described above, with 16s rRNA
309 expression examined by qRT-PCR using universal 16S bacterial primers listed in Table
310 S1. For *in vitro* experiments, *E. coli* was cultured in Luria Bertani (LB) broth over night at
311 37°C, then used to seed a bacterial suspension (OD₆₀₀=0.4) in 2 ml of LB broth. To
312 determine the potential impacts of halofenozide on bacterial growth, 2 μ l of either
313 halofenozide (0.25 μ g/ μ l and 0.5 μ g/ μ l) or 100% acetone were added to bacterial
314 suspensions and continually cultured at 37°C with shaking at 210 rpm. Bacterial cultures
315 were measured by optical density (OD) at 600 nM every 2 h up to 6 h post-challenge to
316 monitor bacterial growth.

317 **Mosquito ookinete invasion assay**

318 The influence of halofenozide on *Plasmodium* sexual development and ookinete invasion
319 was examined *in vivo* as previously described ³⁴. Mosquitoes were topically treated with
320 acetone and halofenozide (0.5 μ g/ μ l) as described above, then challenged with *P. berghei*
321 infection. At 18 h post infection, mosquito midguts were dissected dissociating the blood
322 bolus and midgut. For each mosquito, the proportion of each parasite developmental
323 stage (zygote or ookinete) was determined by counting approximately 50 parasites from
324 random chosen fields. In addition, the number of live ookinetes (as determined by
325 mCherry fluorescence of the transgenic *P. berghei* strain) was determined for each of the
326 dissociated midgut samples to assess parasite invasion.

327 **Ookinete culture**

328 *In vitro* culture of *P. berghei* ookinetes were performed as previously described³⁵. Briefly,
329 mice were injected i.p. with 200 μ L of 10 mg/mL phenylhydrazine/1 \times PBS (Sigma). Three
330 days later, mice were infected i.p. with 10^8 *P. berghei*-GFP iRBCs. Three days later, the
331 *P. berghei* gametocyte-enriched blood was collected by cardiac puncture and cultured in
332 25 ml flasks with ookinete culture medium containing 0.5 μ g/ μ l of halofenozide in 100%
333 acetone (1:1000 dilution) or an equal volume of 100% acetone, for 24 h at 19 °C with
334 gentle agitation. Parasites were fixed with 4% w/v paraformaldehyde and stained with an
335 anti-Pbs21 antibody³⁶. Pbs21-positive cells including gametes and zygotes (round
336 forms), retorts and ookinetes were counted under a fluorescence microscope.

337 **Ookinete motility assays**

338 *P. berghei*-GFP ookinetes cultured in the presence of 0.5 μ g/ μ l of halofenozide in 100%
339 acetone (1:1000 dilution) or an equal volume of 100% acetone were mixed with an equal
340 volume of Geltrex LDEV-Free Reduced Growth Factor Basement Membrane Matrix
341 (Thermo Fisher Scientific). The mixture was applied onto a glass slide, then covered with
342 a round coverslip and incubated at room temperature for 5 min to allow the matrix to
343 solidify. Ookinete motility was immediately monitored for 15 min at room temperature with
344 frames taken every 15 s on an Axio Imager M2 fluorescence microscope using a 20x
345 objective and an Axiocam 506 mono camera (Zeiss). Videos were acquired and
346 processed using the Zen 2.5 Software (Zeiss).

347 **Acknowledgments**

348 We would like to acknowledge David Hall for his efforts in mosquito rearing. This work
349 was supported by a National Science Foundation Graduate Research Fellowship
350 Program under Grant No. 1744592 (R.A.R), the NIH Distinguished Scholars Program and
351 the Intramural Research Program of the Division of Intramural Research AI001250-01,
352 NIAID, National Institutes of Health (J. V-R.), and by support from the Agricultural
353 Experiment Station at Iowa State University to (R.C.S.).

354 **References**

- 355 1. World Health Organization. *World Malaria Report 2019*. Geneva. (2019).
- 356 2. Clements, A. *The biology of mosquitoes: Development, Nutrition and Reproduction*
357 (Chapman and Hall, 1992).
- 358 3. Fernandes, J. N., Moise, I. K., Maranto, G. L. & Beier, J. C. Revamping mosquito-
359 borne disease control to tackle future threats. *Trends Parasitol.* **34**, 359–368
360 (2018).
- 361 4. Slutsker, L. & Kachur, S. P. It is time to rethink tactics in the fight against malaria.
362 *Malar. J.* **12**, 1–2 (2013).
- 363 5. Smith, R. C., Vega-Rodríguez, J. & Jacobs-Lorena, M. The *Plasmodium* bottleneck:
364 malaria parasite losses in the mosquito vector. *Mem. Inst. Oswaldo Cruz* **109**, 644–
365 661 (2014).
- 366 6. Pondeville, E., Maria, A., Jacques, J.-C., Bourgouin, C. & Dauphin-Villemant, C.
367 *Anopheles gambiae* males produce and transfer the vitellogenic steroid hormone
368 20-hydroxyecdysone to females during mating. *Proc. Natl. Acad. Sci.* **105**, 19631–
369 19636 (2008).
- 370 7. Deitsch, K. W., Chen, J. S. & Raikhel, A. S. Indirect control of yolk protein genes by
371 20-hydroxyecdysone in the fat body of the mosquito, *Aedes aegypti*. *Insect*
372 *Biochem. Mol. Biol.* **25**, 449–454 (1995).
- 373 8. Reynolds, R. A., Kwon, H. & Smith, R. C. 20-Hydroxyecdysone primes innate
374 immune responses that limit bacterial and malarial parasite survival in *Anopheles*
375 *gambiae*. *mSphere* **5**, e00983-19 (2020).
- 376 9. Baldini, F. *et al.* The interaction between a sexually transferred steroid hormone
377 and a female protein regulates oogenesis in the malaria mosquito *Anopheles*
378 *gambiae*. *PLoS Biol.* **11**, e1001695 (2013).
- 379 10. Childs, L. M. *et al.* Disrupting mosquito reproduction and parasite development for
380 malaria control. *PLoS Pathog.* **12**, e1006060 (2016).
- 381 11. Paton, D. G. *et al.* Exposing *Anopheles* mosquitoes to antimalarials blocks
382 *Plasmodium* parasite transmission. *Nature* **567**, 239–243 (2019).
- 383 12. Okamoto, N. *et al.* A membrane transporter is required for steroid hormone uptake
384 in *Drosophila*. *Dev. Cell* 1–12 (2018).

385 13. Dong, Y., Manfredini, F. & Dimopoulos, G. Implication of the mosquito midgut
386 microbiota in the defense against malaria parasites. *PLoS Pathog.* **5**, e1000423
387 (2009).

388 14. Cirimotich, C. M. *et al.* Natural microbe-mediated refractoriness to *Plasmodium*
389 infection in *Anopheles gambiae*. *Science* **332**, 855–858 (2011).

390 15. Blumberg, B. J., Trop, S., Das, S. & Dimopoulos, G. Bacteria- and IMD Pathway-
391 independent immune defenses against *Plasmodium falciparum* in *Anopheles*
392 *gambiae*. *PLoS One* **8**, 1–12 (2013).

393 16. Smith, R. C., Barillas-Mury, C. & Jacobs-Lorena, M. Hemocyte differentiation
394 mediates the mosquito late-phase immune response against *Plasmodium* in
395 *Anopheles gambiae*. *Proc. Natl. Acad. Sci.* **112**, E3412-20 (2015).

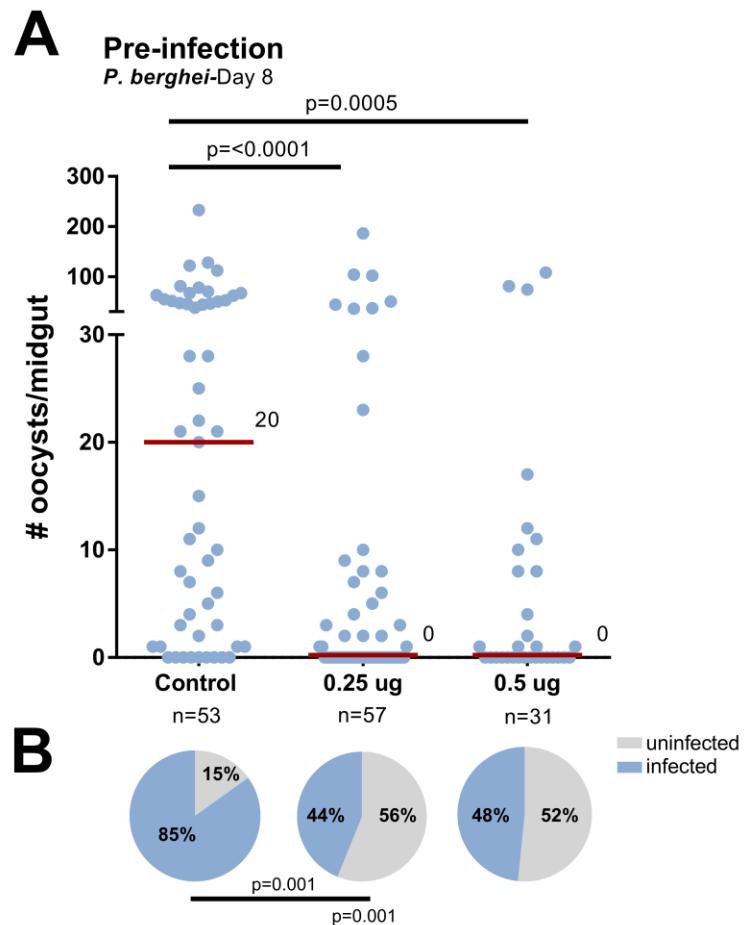
396 17. Retnakaran, A., Krell, P., Feng, Q. & Arif, B. Ecdysone agonists: Mechanism and
397 importance in controlling insect pests of agriculture and forestry. *Arch. Insect
398 Biochem. Physiol.* **54**, 187–199 (2003).

399 18. Upton, L. M., Povelones, M. & Christophides, G. K. *Anopheles gambiae* blood
400 feeding initiates an anticipatory defense response to *Plasmodium berghei*. *J. Innate
401 Immun.* **7**, 74–86 (2015).

402 19. Roy, S. *et al.* Regulation of gene expression patterns in mosquito reproduction.
403 *PLoS Genet.* **11**, e1005450 (2015).

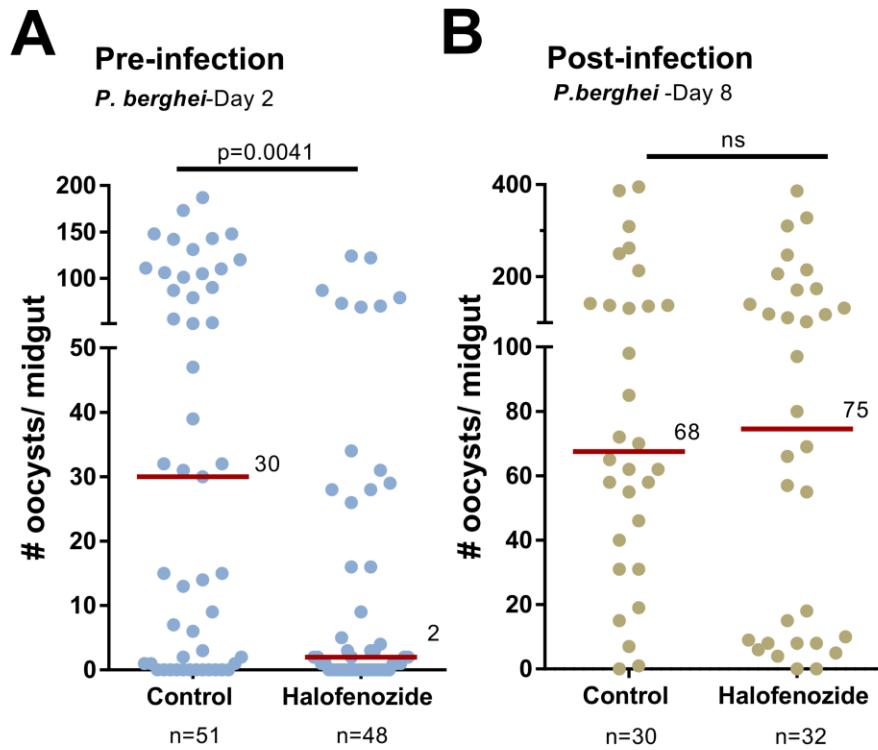
404 20. Bhatt, S. *et al.* The effect of malaria control on *Plasmodium falciparum* in Africa
405 between 2000 and 2015. *Nature* **526**, 207–211 (2015).

406 21. Brown, F., Paton, D. G., Catteruccia, F., Ranson, H. & Ingham, V. A. A steroid
407 hormone agonist reduces female fitness in insecticide-resistant *Anopheles*
408 populations. *Insect Biochem. Mol. Biol.* **121**, 103372 (2020).

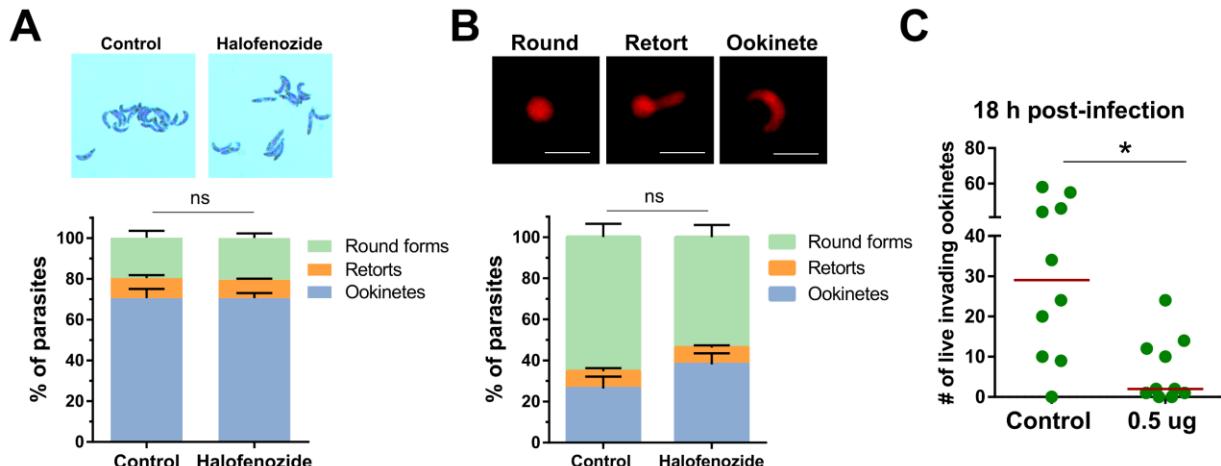

409 22. Smith, R. C. & Barillas-Mury, C. *Plasmodium* oocysts: Overlooked targets of
410 mosquito immunity. *Trends Parasitol.* **32**, 979–990 (2016).

411 23. Fraiture, M. *et al.* Two mosquito LRR proteins function as complement control
412 factors in the TEP1-mediated killing of *Plasmodium*. *Cell Host Microbe* **5**, 273–284
413 (2009).

414 24. Povelones, M., Waterhouse, R. M., Kafatos, F. C. & Christophides, G. K. Leucine-
415 rich repeat protein complex activates mosquito complement in defense against



447 **Figures**


448

449 **Figure 1. Halofenozide priming reduces *P. berghei* survival and infection**
450 **prevalence. (A)** 100% acetone (control) or halofenozide dissolved in 100% acetone (0.25
451 $\mu\text{g}/\mu\text{L}$ and $0.5 \mu\text{g}/\mu\text{L}$) were applied to *Anopheles gambiae* adult females 24 hours prior to
452 challenge with a *P. berghei*-infected blood meal. Eight days post-infection, oocyst
453 numbers were examined from dissected midguts. The red bar delineates the median
454 number of oocysts from pooled data from three independent experiments. Data were
455 analyzed by Kruskal-Wallis with a Dunn's post-test using GraphPad Prism 6.0. n= the
456 number of mosquitoes examined for each condition. **(B)** The prevalence of infection (%
457 infected/total) is depicted for mosquitoes under each treatment and examined by χ^2
458 analysis to determine significance.

459

460 **Figure 2. Temporal effects of halofenozyde application on *Plasmodium* infection.**
461 The effects of halofenozyde application were more closely examined to determine the
462 influence of pre- **(A)** and post-infection **(B)** application on malaria parasite infection. **(A)**
463 After priming with halofenozyde (0.5 μ g/ μ L), *P. berghei* oocyst numbers were examined
464 two days post-infection. The significant influence of halofenozyde on early oocyst numbers
465 suggests that priming limits the success of ookinete invasion. This is supported by
466 experiments where halofenozyde (0.5 μ g/ μ L) was applied ~24 hours post-*P. berghei*
467 infection **(B)** to assess whether halofenozyde impacts parasite survival if applied at a later
468 time point. No differences in oocyst numbers were detected when oocyst number were
469 evaluated eight days post-infection. The red bar delineates the median number of oocysts
470 from pooled data from three independent experiments. Data were analyzed by Mann-
471 Whitney analysis using GraphPad Prism 6.0. n= the number of mosquitoes examined for
472 each condition.

474 **Figure 3. Halofenozide does not influence *Plasmodium* sexual development, but**

475 **limits the success of ookinete invasion.** The potential effects of halofenozide treatment

476 on *Plasmodium* sexual development were examined through *in vitro* (A) and *in vivo* (B)

477 experiments. When halofenozide was added to *P. berghei* ookinete cultures, ookinetes

478 developed normally when examined by morphology (giemsa-stained images) with no

479 differences in round forms, retorts, or ookinete numbers (A). Similar experiments were

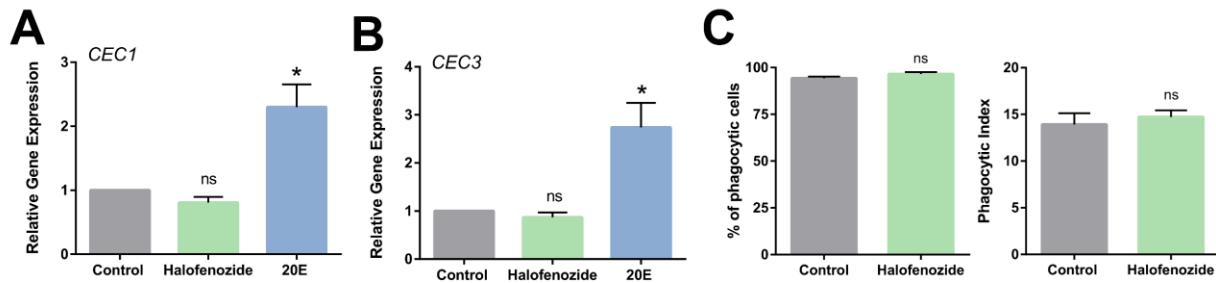
480 performed *in vivo*, in which the percentage of round, retort, and ookinetes were identified

481 by morphology in mCherry parasites using fluorescence (B). For both A and B, data were

482 collected from two independent experiments and were analyzed using a two-way ANOVA

483 with a Sidak's multiple comparison test. No significant differences were identified between

484 treatments. ns, non-significant. (C) The number of live ookinetes (based on mCherry


485 fluorescence) were examined in mosquito midguts samples 18h post-infection. Statistical

486 significance was determined using Mann-Whitney analysis.

487

488 **Figure 4. Halofenozide stimulates ecdysone signaling and requires ultraspirelce**
489 **(USP) to confer anti-*Plasmodium* immune priming.** The effects of halofenozide (0.5
490 $\mu\text{g}/\mu\text{L}$), application on mosquito gene expression were evaluated on two downstream
491 components of ecdysone signaling, *vitellogenin* (A) and *cathepsin B* (B), and compared
492 to 20E as a positive control. Statistical significance was determined by Mann-Whitney
493 analysis (**, $P < 0.01$; ns, not significant) from three or more independent biological
494 samples. (C) To determine the involvement of the heterodimeric EcR/USP receptor in
495 mediating the effects of halofenozide priming, we examined *USP* function by RNAi in *GFP*
496 (control)- or *USP*-silenced mosquitoes. Two days post dsRNA injection, we topically
497 applied acetone (-, control) or halofenozide (+, 0.5 $\mu\text{g}/\mu\text{L}$) and challenged mosquitoes
498 with *P. berghei* ~24 hours post-halofenozide topical application. Oocyst numbers were
499 evaluated eight days for parasite development. The red bar delineates the median
500 number of oocysts from pooled data from three independent experiments. Data were
501 analyzed by Mann-Whitney analysis using GraphPad Prism 6.0. n= the number of
502 mosquitoes examined for each condition.

503

504 **Figure 5. Halofenozide does not influence AMP production or cellular immunity.**

505 The effects of halofenozide topical application and 20E injection were compared by
506 examining their respective influence on gene expression using the 20E-responsive anti-
507 microbial peptides (AMPs), cecropin 1 (CEC1) **(A)** and cecropin 3 (CEC3) **(B)**. Statistical
508 significance was determined by Mann-Whitney analysis (*, $P<0.05$) from three or more
509 independent biological samples. The influence of halofenozide was also examined on the
510 phagocytic activity of mosquito immune cells, evaluating the percentage of phagocytic
511 cells and the phagocytic index (number of beads per cell) **(C)**. Data was analyzed by
512 Mann-Whitney analysis using GraphPad Prism 6.0 to determine significance. ns, not
513 significant.