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Only 40% of the world’s forests are in good health 1 
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Abstract: Many global environmental agendas, including halting biodiversity loss, reversing land 45 

degradation, and limiting climate change, depend upon retaining forests with high ecological 46 

integrity, yet the scale and degree of forest modification remains poorly quantified and mapped. 47 
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By integrating data on direct and indirect forest pressures and lost forest connectivity, we generate 48 

the first globally-consistent, continuous index of forest condition as determined by degree of 49 

anthropogenic modification, which we term ‘forest health’. Globally, only 17.4 million km2 of 50 

forest (40.5%) can be considered in high health (mostly found in Canada, Russia, the Amazon, 51 

Central Africa and New Guinea) and only 27% of this area is found in nationally-designated 52 

protected areas. Of all the world’s forests found within protected areas, only 56% can be 53 

considered in high health. Ambitious policies that prioritize the retention of forest health are now 54 

urgently needed alongside current efforts aimed at restoring the health of forests globally. 55 

 56 

MAIN TEXT 57 

 58 

Introduction 59 

 60 

Deforestation is a major environmental issue (1), but far less attention has been given to the 61 

degree of anthropogenic modification of remaining forests, which diminishes many of the benefits 62 

that these forests provide (2, 3). This is worrying since modification is potentially as significant as 63 

outright forest loss in determining overall environmental outcomes (4). There is increasing 64 

recognition of this issue, for forests and other ecosystems, in synthesis reports by global science 65 

bodies (e.g. 5), and it is now essential that the scientific community develop improved tools and 66 

data to facilitate the consideration of the degree of forest modification in decision-making. 67 

Mapping and monitoring this globally will provide essential information for coordinated global, 68 

national and local policy-making, planning and action, to help nations and other stakeholders 69 

achieve the Sustainable Development Goals (SDGs) and implement other shared commitments 70 

such as the United Nations Convention on Biological Diversity (CBD), Convention to Combat 71 

Desertification (UNCCD), and Framework Convention on Climate Change (UNFCCC).  72 
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 73 

Ecosystem integrity is foundational to all three of the Rio Conventions (UNFCCC, UNCCD, 74 

CBD ). As defined by Parrish et al. (6), it is essentially the degree to which a system is free from 75 

anthropogenic modification of its structure, composition and function. Such modification causes 76 

the degradation of many ecosystem benefits, and is often also a precursor to outright deforestation 77 

(7, 8). Forests largely free of significant forest modification (i.e. forests having high ecosystem 78 

integrity), typically provide higher levels of many forest benefits than modified forests of the 79 

same type (9), including; carbon sequestration and storage (10), healthy watersheds (11), 80 

traditional homelands for imperiled cultures (12), contribution to local and regional climate 81 

processes (13), and forest-dependent biodiversity (14-17). Industrial-scale logging, fragmentation 82 

by infrastructure, farming (including cropping and ranching) and urbanization, as well as less 83 

visible forms of modification such as over-hunting, wood fuel extraction and changed fire or 84 

hydrological regimes (18, 19), all degrade the degree to which forests still support these benefits, 85 

as well as their long-term resilience to climate change (9). There can be trade-offs however, 86 

between the benefits provided by less-modified forests (e.g., carbon sequestration) and those 87 

production services that require some modification (e.g., timber production). These trade-offs can, 88 

at times, result in disagreement among stakeholders as to which forest benefits are, or should be, 89 

prioritized (20). 90 

 91 

In recent years, easily accessible satellite imagery and new analytical approaches have 92 

dramatically improved our ability to map and monitor forest extent globally (21-23). However, 93 

while progress has been made in developing tools for assessment of global forest losses and gains, 94 

consistent monitoring of the degree of forest modification has proved elusive (24, 25). 95 

Technical challenges include the detection of low intensity and unevenly distributed forest 96 

change, the wide diversity of changes that comprise forest modification, and the fact that many 97 
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changes are concealed by the forest canopy (24). New approaches are emerging on relevant forest 98 

indicators, such as canopy height, canopy cover and fragmentation, and maps of different human 99 

pressures, which are used as proxies for impacts on forests (e.g., 26, 27, 28). Some binary 100 

measures of forest modification, such as Intact Forest Landscapes (29) and wilderness areas (30), 101 

have also been mapped at the global scale and used to inform policy, but do not resolve the degree 102 

of modification within remaining forests, which we aimed to do with this assessment.  103 

 104 

Human activities influence the degree of forest modification at multiple spatial scales, including 105 

intense, localized modifications such as road-building and canopy loss, more diffuse forms of 106 

change that are often spatially associated with these localized pressures (e.g. increased 107 

accessibility for hunting and selective logging), and changes in spatial configuration that alter 108 

landscape-level connectivity. Previous studies have quantified several of these aspects 109 

individually (e.g. 26, 27, 28), but there is a need to integrate them to measure and map the overall 110 

degree of modification. Here, we integrate data on highly localized (‘direct’) human pressures, the 111 

associated but more diffuse ‘indirect’ human pressures, and alterations in forest connectivity, to 112 

create an index that we refer to as the “Forest Health Index” (FHI), that describes the degree of 113 

forest modification for 2019. The result is the first globally applicable, continuous-measure map 114 

of forest health, which offers a timely indicator of the status and management needs of Earth’s 115 

remaining forests, as well as a flexible methodological framework (Fig. 1) for measuring changes 116 

in forest health that can be adapted for more detailed analysis at national or subnational scales. 117 

 118 

Results  119 

 120 

Forest modification caused by human activity is both highly pervasive and highly variable across 121 

the globe (Fig. 2). We found 31.2% of forests worldwide are experiencing some form of direct 122 
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human pressure. Our models also identified indirect pressures and the impacts of lost connectivity 123 

in almost every other forest location (91.2% of forests), albeit sometimes at very low levels. 124 

Diverse, recognizable patterns of forest health can be observed in maps at a range of scales, 125 

depending on the principal forms and general intensity of human activity in an area. Broad 126 

regional trends can be readily observed, for example the overall gradient of decreasing human 127 

impact moving northwards through eastern North America (Fig. 2), and finer patterns of impact 128 

are also clearly evident, down to the scale of individual protected areas, forest concessions, 129 

settlements and roads (Fig. S2).  130 

 131 

FHI scores range from 0 (lowest health) to 10 (highest). We discretized this range to define three 132 

broad illustrative categories: low (≤6.0); medium (>6.0 and <9.6); and high health (≥9.6) (see 133 

Methods).  Only 40.5% (17.4 million km2) of forest was classified as having high health (Fig. 3; 134 

Table 1). Moreover, even in this category of high health 36% still showed at least a small degree 135 

of human modification. The remaining 59% (25.6 million km2) of forest was classified as having 136 

low or medium health, including 25.6% (11 million km2) with low health (Fig. 3; Table 1). When 137 

we analyzed across biogeographical realms (defined by 31) not a single biogeographical realm of 138 

the world had more than half of its forests in the high category (Fig. 3; Table 1).  139 

 140 

The biogeographical realms with the largest area of forest in high health are in the Paleartic, 141 

particularly northern Russia, and the Neartic, in northern Canada, and Alaska. There are also large 142 

areas of forest in high health in the Neotropics, concentrated in the Amazon region, including 143 

within the Guianas (Fig. 3, Table 1). The Afrotropic realm has significant areas in high health, 144 

particularly within the humid forests of central Africa (e.g., in Republic of Congo and Gabon) and 145 

in some of the surrounding drier woodland belts (e.g., in South Sudan, Angola and Mozambique) 146 

(Fig. 3). In tropical Asia, the largest tracts of forest in high health are in New Guinea. Smaller but 147 
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still very significant tracts of forest in high health are also scattered elsewhere in each of the main 148 

forested regions, including parts of Sumatra, Borneo, Myanmar and other parts of the greater 149 

Mekong subregion, Madagascar, West Africa, Mesoamerica, the Atlantic forests of Brazil, 150 

southern Chile, the Rocky Mountains, northern Assam, the Pacific forests of Colombia, the 151 

Caucasus, and the Russian Far East (Fig. 3).  152 

 153 

Concentrations of forest in low health are found in many regions including west and central 154 

Europe, the south-eastern USA, island and mainland South-East Asia west of New Guinea, the 155 

Andes, much of China and India, the Albertine Rift, West Africa, Mesoamerica and the Atlantic 156 

Forests of Brazil (Fig. 3). The overall extent of forests in low health is greatest in the Paleartic 157 

realm, followed by the Neotropics, which are also those biogeographic realms with the largest 158 

forest cover (Table 1). The Indo-Malayan realm has the highest percentage in low health, 159 

followed by the Afrotropics (Fig. 3; Table 1).  160 

 161 

These patterns result in variation in forest health scores at a resolution relevant for policy and 162 

management planning, such as at national and sub-national scales. The global average FHI score 163 

for all countries is 5.48 representing generally low forest health, and a quarter of forested 164 

countries have a national average score < 4. National mean scores vary widely, ranging from >9 165 

in Guyana, French Guiana, Gabon, Sudan and South Sudan to <3 in Sierra Leone and many west 166 

European countries (see Fig 4. And Table S5 for full list of countries). Provinces and other sub-167 

national units vary even more widely, in ways that allow objective comparisons to be made 168 

between locations (see Fig. S2 and Table S6)  169 

 170 

Over one-quarter (26.1%) of all forests in high health fall within protected areas, compared to just 171 

13.1% of low and 18.51% of medium health forests, respectively. For all forests that are found 172 
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within nationally designated protected areas (around 20% of all forests globally), we found the 173 

proportions of low, medium and high health forests were 16.8%, 30.3%, and 52.8% respectively 174 

(Table 2). Within the different protected area categories, we typically found that there was more 175 

area within the high health category versus the medium and low except for Category V (protected 176 

landscape/seascape) (Table 2). However, with 47.1% of forests within protected areas having low 177 

to medium health overall, it is clear that forest considered ‘protected’ are already often fairly 178 

modified (Table 2).  179 

 180 

Discussion 181 

  182 

By providing a transparent and defensible methodological framework, and taking advantage of 183 

global data on forest extent, changes in forest connectivity, and human drivers of forest 184 

modification, our analysis paints a new, sobering picture of the extent of human impacts on the 185 

world’s forests. This analysis enables the changes that degrade many forest values (8) to be 186 

visualized in a new and compelling way and for policy makers and decision makers to see where 187 

Earth’s remaining forests that are in good condition are. By integrating data on multiple pressures 188 

that are known to modify forests, our analysis is the first to move global quantification beyond the 189 

use of simple categories to a more nuanced depiction of this issue as a continuum, recognising 190 

that not all existing forests are in the same condition. Our analysis reveals that severe and 191 

extensive forest modification has occurred across all biogeographic regions of the world. 192 

Consequently, indices only using forest extent may inadequately capture the true impact of human 193 

activities on forests, and are insensitive to many drivers of forest modification and the resulting 194 

losses of forest benefits. 195 

 196 
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A plan is clearly needed to put in place retention strategies for the remaining forests in high 197 

health, tailored towards the context in each country or jurisdiction and its different forest types 198 

(32, 33), because such areas are known to hold exceptional value. Avoiding modification is a 199 

better strategy than aiming to restore forest condition after it is lost, because restoration is more 200 

costly, risky, and unlikely to lead to full recovery of benefits (5). For the least-modified forests to 201 

be retained they should ideally be mapped using nationally appropriate criteria by the countries 202 

that hold them, formally recognized, prioritized in spatial plans, and placed under effective 203 

management (e.g. protected areas and other effective conservation areas, lands under Indigenous 204 

control etc.). These forests must be protected from industrial development impacts that degrade 205 

them, and sensible public and private sector policy that is effective at relevant scales is needed  206 

(12, 34). Our global assessment reveals where these places are found, and can be refined at more 207 

local scales where better data are available. 208 

 209 

Around a third of global forests had already been cleared by 2000 (35), and we show that at least 210 

59% of what remains is in low to medium health, with > 50% falling in these two broad 211 

categories in every biogeographical realm. These levels of human modification result partly from 212 

the large areas affected by diffuse, anthropogenic edge effects and lost connectivity.  We also map 213 

a surprising level of more localized direct effects, such as infrastructure and recent forest loss, 214 

which are observed in nearly a third of forests worldwide.  215 

 216 

Conservation strategies in these human-dominated forests should focus on securing any remaining 217 

fragments of forests in good condition, proactively protecting those partially modified forests 218 

most vulnerable to further modification (7) and planning where restoration efforts might be most 219 

effective (36-38).  In addition, effective management of production forests is needed to sustain 220 

yields without further worsening their ecological integrity (39). More research is required on how 221 
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to prioritize, manage, and restore forests in low to medium health (38, 40), and the FHI presented 222 

here might prove useful for this, for example, by helping prioritize where the best return on 223 

investments are, in combination with other sources of data (41).  224 

 225 

Loss of forest health severely compromises many benefits of forests that are central to achieving 226 

many of the Sustainable Development Goals and other societal targets (42, 43). Therefore, nations 227 

must adopt policies and strategies to retain and restore the ecological health of their forests, whilst 228 

ensuring that the solutions are also economically viable, socially equitable, and politically 229 

acceptable within complex and highly diverse local contexts. This is an enormous challenge and 230 

our efforts to map the degree of forest modification are designed both to raise awareness of the 231 

importance of the issue, and to support implementation through target setting, evidence-based 232 

planning, and enhanced monitoring efforts. 233 

 234 

Whilst policy targets for halting deforestation are generally precise and ambitious, only vague 235 

targets are typically stipulated around reducing levels of forest modification (9, 44). We urgently 236 

need SMART (specific, measurable, achievable, realistic, and time-bound) goals and targets for 237 

maintaining and restoring forest health that directly feed into higher-level biodiversity, climate, 238 

land degradation, and sustainable development goals (45). These types of targets should be 239 

included within an over-arching target on ecosystems within the post-2020 Global Biodiversity 240 

Framework, which is currently being negotiated among Parties to the CBD (46). This target 241 

should be outcome-focused and address both the extent and the integrity of ecosystems (e.g. using 242 

FHI for forests), in a way that enables quantitative, measurable goals to be set but allows 243 

flexibility for implementation between Parties.   244 

 245 
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In addition to broader goals in global frameworks, the retention and restoration of forest health 246 

should also be addressed in nationally-defined goals embodied in, and aligned between, 247 

Nationally Determined Contributions under the UNFCCC, efforts to stop land degradation and 248 

achieve land degradation neutrality under the UNCCD, and National Biodiversity Strategy and 249 

Action Plans under the CBD. Since no single metric can capture all aspects of a nation’s 250 

environmental values, efforts to conserve high levels of forest health should be complemented by 251 

consideration of areas support important values according to other measures (e.g. Key 252 

Biodiversity Areas (47) and notable socio-cultural landscapes). 253 

 254 

The overall level and pervasiveness of impacts on Earth’s remaining forests is likely even more 255 

severe than our findings suggest, because some input data layers, despite being the most 256 

comprehensive available, are still incomplete as there are lags between increases in human 257 

pressures and our ability to capture them in spatial datasets (e.g., infrastructure, 48, 49, see also 258 

Fig. S1 and text S5). For example, roads and seismic lines used for natural resource exploration 259 

and extraction in British Columbia, Canada, are not yet fully reflected in global geospatial 260 

datasets (Fig. S1; see also 50).  Furthermore, because natural fires are such an important part of 261 

the ecology of many forest systems (e.g. boreal forests) and because we cannot consistently 262 

identify anthropogenic fires from natural fires at a global scales (51) we have taken a strongly 263 

conservative approach to fire in our calculations, treating all tree cover loss in 10 km pixels where 264 

fire was the dominant driver (23) as temporary, and not treating such canopy loss as evidence of 265 

direct human pressure. Varying these assumptions where human activity is shown to be causing 266 

permanent tree cover losses, increasing fire return frequencies, or causing fire in previously fire-267 

free systems would result in lower forest extent and/or lower forest health scores in some regions 268 

than we report.  269 

 270 
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We map forest health based on quantifiable processes over the recent past (since 2000). In some 271 

areas, modification that occurred prior to this is not detectable by our methods yet, and may have 272 

influenced the present-day modification of the forest and, in such cases, we may overestimate 273 

forest health (e.g. historical logging). This is another reason why our index should be considered 274 

as conservative, and we therefore recommend that the index be used alongside other lines of 275 

evidence to determine the absolute level of ecological integrity of a given area. Moreover, the 276 

definition of forest in this study is all woody vegetation taller than 5 m, following (22) and hence 277 

includes not only naturally regenerated forests but also tree crops, planted forests, wooded 278 

agroforests and urban tree cover in some cases. Users should be mindful of this when interpreting 279 

the results, especially when observing areas with low health scores. Inspection of the results for 280 

selected countries with reliable plantation maps (52) shows that the great majority of planted 281 

forests have low health scores, because they are invariably associated with dense infrastructure, 282 

frequent canopy replacement and patches of farmland.  283 

 284 

We note our measure of forest health does not address past, current and future climate change. As 285 

climate change affects forest condition both directly and indirectly, this is a clear shortfall and 286 

needs research attention. The same is true for invasive species, as there is no globally coherent 287 

data on the range of those invasive species that degrade forest ecosystems, although this issue is 288 

indirectly addressed since the presence of many invasive species which are spatially correlated 289 

with the human pressures that we use as drivers in our model (53). If global data became available 290 

it would also be valuable to incorporate governance effectiveness into our model, because there 291 

are potentially contexts (e.g. well-managed protected areas and community lands, production 292 

forests under ‘sustainable forest management’) where the impacts associated with the human 293 

pressures we base our map on are at least partially ameliorated (39), and enhanced governance is 294 
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also likely to be a significant component of some future strategies to maintain and enhance forest 295 

health.   296 

 297 

The framework we present has great potential to be tailored for use at smaller scales, ranging 298 

from regional to national and sub-national scales, and even to individual management units. 299 

Forest definitions and the relative weights of the global parameters we use can be adjusted to fit 300 

local contexts and, in many cases, better local data could be substituted, or additional variables 301 

incorporated. This would increase the precision of the index in representing local realities, and 302 

increase the degree of ownership amongst national and local stakeholders whose decisions are so 303 

important in determining forest management trajectories. 304 

 305 

Materials and Methods 306 

 307 

To produce our global Forest Health Index (FHI), we combined four sets of spatially explicit 308 

datasets representing: (i) forest extent (22); (ii) direct pressure from high impact, localized human 309 

activities, specifically: infrastructure, agriculture, and recent deforestation (53); (iii) indirect 310 

pressure associated with edge effects (54), and other diffuse processes, (e.g. activities such as 311 

hunting and selective logging) (55) modelled using proximity to direct pressures; and iv) 312 

anthropogenic changes in forest connectivity due to forest loss (56 see Table S1 for data sources). 313 

These datasets were combined to produce an index score for each forest pixel (300m), with the 314 

highest scores reflecting the highest forest health (Fig 1), and applied to forest extent for the start 315 

of 2019. We use globally consistent parameters for all elements (i.e. parameters do not vary 316 

geographically). All calculations were conducted in Google Earth Engine (GEE) (57).  317 

 318 
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Forest extent 319 

 320 

We derived a global forest extent map for 2019 by subtracting from the Global Tree Cover 321 

product for 2000 (22) annual Tree Cover Loss 2001-2018, except for losses categorized by Curtis 322 

and colleagues (23) as those likely to be temporary in nature (i.e. those due to fire, shifting 323 

cultivation and rotational forestry). We applied a canopy threshold of 20% (based on related 324 

studies e.g. 29, 58) and resampled to 300m resolution and used this resolution as the basis for the 325 

rest of the analysis (see text S1 for further mapping methods).  326 

 327 

Direct human pressures 328 

 329 

We quantify direct human pressures (P) within a pixel as the weighted sum of impact of 330 

infrastructure (I; representing the combined effect of 41 types of infrastructure weighted by their 331 

estimated general relative impact on forests (Table S3), agriculture (A) weighted by crop intensity 332 

(indicated by irrigation levels), and recent deforestation over the past 18 years (H; excluding 333 

deforestation from fire, see Discussion). Specifically, for pixel i: 334 

 335 

Pi = exp(-β1Ii) + exp(-β2Ai) + exp(-β3Hi) 336 

 337 

whereby the values of β were selected so that the median of the non-zero values for each 338 

component was 0.75. This use of exponents is a way of scaling variables with non-commensurate 339 

units so that they can be combined numerically, while also ensuring that the measure of direct 340 

pressure is sensitive to change (increase or decrease) in the magnitude of any of the three 341 

components, even at large values of I, A or H. This is an adaptation of the ‘Human Footprint’ 342 

methodology (53). See text S3 for further details. 343 
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 344 

Proximity (indirect) pressures 345 

 346 

Indirect pressures are the diffuse, non-localized effects of a set of processes that includes 347 

microclimate and species interactions relating to the creation of forest edges (59) and a variety of 348 

intermittent or transient anthropogenic pressures such as: selective logging, fuelwood collection, 349 

hunting; spread of fires and invasive species, pollution, and livestock grazing (55, 60, 61).  We 350 

modelled the collective, cumulative impacts of these proximity effects through their spatial 351 

association with direct human pressure in nearby pixels, including a decline in effect intensity 352 

according to distance, and a partitioning into stronger short-range and weaker long-range effects. 353 

The indirect pressure (P’) on pixel i from source pixel j is:  354 

 355 

P’i,j  = Pj (wi,j + vi,j) 356 

 357 

where wi,j is the weighting given to the modification arising from short-range pressure, as a 358 

function of distance from the source pixel, and vi,j is the weighting given to the modification 359 

arising from long-range pressures. 360 

 361 

Short-range effects include most of the processes listed above, which together potentially affect 362 

most biophysical features of a forest, and predominate over shorter distances. In our model they 363 

decline exponentially, approach zero at 3 km, and are truncated to zero at 5 km (see text S4). 364 

 365 

wi,j = α exp (-λ ´ di,j)  [for di,j ≤5 km] 366 

wi,j = 0    [for di,j >5 km] 367 

 368 
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where α is a constant set to ensure that the sum of the weights across all pixels in range is 1.85 369 

(see below), λ is a decay constant set to a value of 1 (see (62) and other references in text S4) and 370 

di,j is the Euclidean distance between the centres of pixels i and j expressed in units of km.  371 

 372 

Long-range effects include over-harvest of high socio-economic value animals and plants, 373 

changes to migration and ranging patterns, and scattered fire and pollution events. We modelled 374 

long-range effects at a uniform level at all distances below 6 km and they then decline linearly 375 

with distance, conservatively reaching zero at a radius of 12 km (55, 63 and other references in 376 

text S4): 377 

 378 

vi,j = γ    [for di,j ≤6 km] 379 

vi,j = γ ´ (12-di,j)/6  [for 6 km < di,j ≤12 km] 380 

vi,j = 0   [for di,j >12 km] 381 

 382 

Where γ is a constant set to ensure that the sum of the weights across all pixels in range is 0.15 383 

and di,j is the Euclidean distance between the centres of pixels i and j, expressed in kilometres.  384 

 385 

The form of the weighting functions for short- and long-range effects and the sum of the weights 386 

(α+γ) were specified  based on a hypothetical reference scenario where a straight forest edge is 387 

adjacent to a large area with uniform human pressure, and ensuring that in this case total indirect 388 

pressure immediately inside the forest edge is equal to the pressure immediately outside, before 389 

declining with distance. γ is set to 0.15 to ensure that the long-range effects conservatively 390 

contribute no more than 5% to the final index in the same scenario, based on expert opinion and 391 

supported e.g. Berzaghi et al. (64) regarding the approximate level of impact on values that would 392 

be affected by severe defaunation and other long-range effects. 393 
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 394 

The aggregate effect from indirect pressures (P’) on pixel i from all n pixels within range (j=1 to 395 

j=n) is then the sum of these individual, normalized, distance-weighted pressures, i.e. 396 

 397 

P’i  = S[j=1….n] P’i,j 398 

 399 

Loss of forest connectivity 400 

 401 

Average connectivity of forest extent around a pixel was quantified using a method adapted from 402 

Beyer et al. (56). The connectivity Ci around pixel i surrounded by n other pixels within the 403 

maximum radius (numbered j=1, 2…n) is given by: 404 

 405 

Ci = S[j=1…n] (FjGi,j)  406 

 407 

where Fj is the forest extent is a binary variable indicating if forested (1) or not (0) and Gi,j is the 408 

weight assigned to the distance between pixels i and j. Gi,j uses a normalized Gaussian curve, 409 

with s = 20km  and distribution truncated to zero at 4s for computational conveniences (see text 410 

S3). The large value of s captures landscape connectivity patterns operating at a broader scale 411 

than processes captured by other data layers. Ci ranges from 0 to 1 (Ci	∈ [0,1]). 412 

 413 

Current Configuration (CCi) of forest extent in pixel i was calculated using the final forest extent 414 

map and compared to the Potential Configuration (PC) of forest extent without extensive human 415 

modification, so that areas with naturally low connectivity, e.g. coasts, are not penalized. PC was 416 

calculated from a modified version of the map of Laestadius et al. (35) and resampled to 300 m 417 
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resolution (see text S2 for details). Using these two measures, we calculated Lost Forest 418 

Configuration (LFC)  for every pixel as: 419 

 420 

LFCi =  1 - (CCi/PCi)   421 

 422 

Values of CCi/PCi  >1 are assigned a value of 1 to ensure that LFC is not sensitive to apparent 423 

increases in forest connectivity due to inaccuracy in estimated potential forest extent – low values 424 

represent least loss, high values greatest loss (LFCi	∈ [0,1]). 425 

 426 

Calculating the Forest Health Index 427 

 428 

The three constituent metrics, LFC, P and P’, all represent increasingly modified conditions the 429 

larger their values become. To calculate a health index in which larger values represent less 430 

degraded conditions we therefore subtract the sum of those components from a fixed large value 431 

(here, 3). Three was selected as our assessment indicates that values of LFC + P + P’ of 3 or more 432 

indicate the most severely degraded areas with losses in many forest benefits. The metric is also 433 

rescaled to a convenient scale (0-10) by multiplying by an arbitrary constant (10/3). The forest 434 

health index for forest pixel i is thus calculated as:  435 

 436 

FHIi = [10/3] * (3- min(3, [Pi+P’i+ LFCi])) 437 

 438 

where FHIi  ranges from 0 - 10, areas with no modification detectable using our methods scoring 439 

10 and those with the most (that remain classified as forest) scoring 0.  440 

 441 
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Illustrative forest health classes  442 

 443 

Whilst a key strength of the index is its continuous nature, the results can also be categorized for a 444 

range of purposes. In this paper three illustrative classes were defined, mapped and summarized 445 

to give an overview of broad patterns of modification in the world’s forests. The three categories 446 

were defined as follows.  447 

 448 

High Forest Health (scores ≥9.6) Interiors and natural edges of more or less unmodified 449 

naturally-regenerated forest ecosystems, comprised entirely or almost entirely of native species, 450 

occurring over large areas either as continuous blocks or natural mosaics with non-forest 451 

vegetation; typically little human use other than low intensity recreation or spiritual uses and/or 452 

low intensity extraction of plant and animal products and/or very sparse presence of 453 

infrastructure; key ecosystem functions such as carbon storage, biodiversity and watershed 454 

protection and resilience expected to be very close to natural levels (excluding any effects from 455 

climate change) although some declines possible in the most sensitive elements (e.g. some high 456 

value hunted species). 457 

 458 

Medium Forest Health (scores >6.0 but <9.6) Interiors and natural edges of naturally-regenerated 459 

forest ecosystems in blocks smaller than their natural extent but large enough to have some core 460 

areas free from strong anthropogenic edge effects (e.g. set asides within forestry areas, 461 

fragmented protected areas), dominated by native species but substantially modified by humans 462 

through a diversity of processes that could include fragmentation, creation of edges and proximity 463 

to infrastructure, moderate or high levels of extraction of plant and animal products, significant 464 

timber removals, scattered stand-replacement events such as swidden and/or moderate changes to 465 

fire and hydrological regimes; key ecosystem functions such as carbon storage, biodiversity, 466 
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watershed protection and resilience expected to be somewhat below natural levels (excluding any 467 

effects from climate change). 468 

 469 

Low Forest Health (score ≤6.0): Diverse range of heavily modified and often internally 470 

fragmented ecosystems dominated by trees, including (i) naturally regenerated forests, either in 471 

the interior of blocks or at edges, that have experienced multiple strong human pressures, which 472 

may include frequent stand-replacing events, sufficient to greatly simplify the structure and 473 

species composition and possibly result in significant presence of non-native species, (ii) tree 474 

plantations and, (iii) agroforests; in all cases key ecosystem functions such as carbon storage, 475 

biodiversity, watershed protection and resilience expected to be well below natural levels 476 

(excluding any effects from climate change).  477 

 478 

The numerical category boundaries were derived by inspecting FHI scores for a wide selection of 479 

example locations whose health according to the category definitions was known to the authors, 480 

see text S6 and Table S4.  481 

 482 

Protected areas analysis 483 

 484 

Data on protected area location, boundary, and year of inscription were obtained from the 485 

February 2018 World Database on Protected Areas (65). Following similar global studies (e.g. 486 

66), we extracted protected areas from the WDPA database by selecting those areas that have a 487 

status of “designated”, “inscribed”, or “established”, and were not designated as UNESCO Man 488 

and Biosphere Reserves. We included only protected areas with detailed geographic information 489 

in the database, excluding those represented as a point only. To assess health of protected forest, 490 
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we extracted all 300m forest pixels that were at least 50% covered by a formal protected area and 491 

measured the average FHI score.   492 

 493 
 494 
H2: Supplementary Materials 495 

 496 
 497 
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Table 1. A summary of the Forest Health Index scores for each biogeographic realm globally, 711 

measuring the mean score, in addition to the area and proportion of realm for each category of 712 

health. Scores are divided into three categories of health: high, medium and low. 713 

 714 

Table 2. A summary of the Forest Health Index scores for each type of protected area designation 715 

based on the IUCN Protected Areas categories measuring mean score, in addition  to the area and 716 

proportion of realm for each category of health. Scores are divided into three categories of health: 717 

high, medium and low. 718 

 719 

Figure 1. The Forest Health Index was constructed based on three main data inputs: 1) direct 720 

pressures (infrastructure, agriculture, tree cover loss), 2) indirect forest pressure (based on 721 

proximity to the direct pressures), and change in forest connectivity. 722 

 723 

Figure 2. A global map of Forest Health for 2019. Three regions are highlighted including A) 724 

USA, B) Equatorial Guinea C) Myanmar. For a) shows the edge of Smoky Mountains National 725 

Park in Tennessee b) shows a logging truck passing through some partially degraded forest along 726 

a newly constructed highway in Shan State, c) An intact mangrove forest within Reserva Natural 727 

del Estuario del Muni, near the border of Gabon. The star indicates approximately where the 728 

photos were taken (A2, B2 and C2). 729 

 730 

Figure 3. The Forest Health Index for 2019 categorized into three broad, illustrative classes and 731 

mapped for across each biogeographic realm (A – G). The size of the pie charts indicates the 732 

relative size of the forests within each realm (A - G), and H shows all the world’s forest 733 

combined. 734 

 735 
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Figure 4. The Forest Health Index for 2019 categorized into three broad, illustrative classes for 736 

each major forested country in the world. (A) countries with a forest extent larger than 1 million 737 

km2, and (B) countries with forest extent between 1 million km2 and 100,000 km2 of forest. The 738 

size of the bar represents the area of a country’s forests.  739 

 740 

 741 

 742 
Table 1 743 
 744 

Biogeographic  
Realm 

Total 
forest  FHI High  

(9.6 - 10)   
Medium  
(6 – 9.6) 

 Low  
 (0 - 6) 

  Km2 Mean Km2 % of 
realm Km2 % of 

realm 

 
Km2 % of 

realm 

Afrotropic 7,362,740  7.34 2,450,953 33.3 2,903,483 39.4  2,008,304  27.3 

Australasia 1,711,684  8.05 656,701 38.4 753,188 44.0  301,796  17.6 

Indo-malayan 3,596,249  5.9 420,977 11.7 1,599,049 44.5  1,576,223  43.8 

Neotropic 10,271,519  7.81 4,579,406 44.6 3,122,706 30.4   2,569,407  25.0 

Oceania 23,389  7.66 5,279 22.6 14,331 61.3   3,780  16.2 

Palearctic 12,172,668  8 5,571,997 45.8 3,910,629 32.1   2,690,042  22.1 

Nearctic 7,794,117  7.84 3,716,855 47.7 2,257,518 29.0   1,819,744  23.3 

Total 42,932,367 7.76 17,402,170  14,560,903   10,969,294  

  745 
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Table 2. 746 
  747 
 748 

749 

Protected Area  
Category 

Total 
forest FHI High 

(score 9.6 - 10)   
Medium 

(score 6 – 9.6) 
Low 

 (score 0 - 6) 

 Km2 Mean Km2 
% of 

protected 
area 

Km2 
% of 

protected 
area 

Km2 
% of 

protected 
area 

Ia (strict nature reserve) 439,082 9.27 304,329 69.31 106,703 24.3 28,049 6.39 

Ib (wilderness area) 367,330 9.22 240,453 65.46 102,096 27.79 24,780 6.75 

II (national park) 1,900 9.14 1,223,138 64.38 540,805 28.46 136,056 7.16 

III (natural monument or feature) 113,805 8.49 54,476 47.87 40,021 35.17 19,308 16.97 

IV (habitat/species management area) 838,707 8.69 432,828 51.61 268,027 31.96 137,850 16.44 

V (protected landscape/seascape) 840,919 6.4 224,491 26.7 295,769 35.17 320,658 38.13 
VI (Protected area with sustainable use of 
natural resources) 

1,472,278 9.21 1,026,169 69.7 344,617 23.41 101,491 6.89 

Not Applicable / Not Assigned / Not Reported 2,613,541 8.29 1,030,430 39.42 906,745 34.69 676,365 25.88 

All Protected Areas 8,585,661 8.55 4,536,314 52.83 2,694,784 30.34  1,444,562  16.82 
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Fig 1  750 
 751 

 752 
  753 
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Fig 2  754 

 755 
  756 
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Fig 3  757 
 758 

 759 
  760 
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Fig 4. 761 
 762 

  763 
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 764 
 765 

Supplementary Materials 766 

 767 

Text S1. Mapping forest extent  768 

 769 

We generated a preliminary base map of global forest extent for the start of 2019 at 30 m 770 

resolution by subtracting annual Tree Cover Loss 2001-2018 (with exceptions noted in the next 771 

paragraph) from the Global Tree Cover 2000 product (22) using a canopy cover threshold of 20%. 772 

This is one of the most widely used tree cover datasets globally, so it has been widely tested in 773 

many settings and its strengths and constraints are well understood. It has many advantages, 774 

including its high resolution, high accuracy, global coverage, annual time series and good 775 

prospects of sustainability in the coming years. The definition of forest in the source dataset is all 776 

woody vegetation taller than 5 m and hence includes naturally regenerated forests as well as tree 777 

crops, planted forests, wooded agroforests and urban tree cover. No globally consistent dataset 778 

was available that allowed natural and planted tree cover to be consistently distinguished in this 779 

study. Therefore, be mindful of the many differences between planted and natural tree cover (e.g. 780 

(67)). 781 

 782 

More than 70% of the tree cover loss shown by the Hansen et al. (22) products has been found to 783 

be in 10 km pixels where the dominant loss driver is temporary and so tree cover is expected to 784 

return above the forest definition threshold within a short period (23). It is important to take 785 

account of this issue as treating all such areas as permanent loss would severely under-estimate 786 

current forest cover in many regions. However, no global map of forest cover gain exists for the 787 

study period other than the 2000-2012 gain product from Hansen et al. (22), so we developed an 788 

alternative approach. When removing annual loss shown by the Global Tree Cover Loss product 789 
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cited above we elected not to remove any loss that was in a 10 km pixel categorized by Curtis et 790 

al. (23) as dominated by temporary loss under the categories of fire, shifting cultivation or 791 

rotational forestry. This resulted in the adjusted preliminary forest base map. The balance of 792 

evidence is that the great majority of such areas would have begun to regenerate and hence 793 

qualify as forest by our definition again by 2019 or soon after (23). The anthropogenically 794 

disturbed nature of many of these areas of temporary tree cover loss and recovery is reflected in 795 

scoring within the index, because temporary tree cover loss in the categories of shifting 796 

cultivation or rotational forestry is treated as an indicator of direct pressure. We do not treat tree 797 

cover loss through fire as an indicator of direct human pressure, because fires are often part of 798 

natural processes, especially in the boreal zone. This makes our global index conservative as a 799 

measure of degradation in these zones, because in some locations fires are anthropogenic in 800 

nature.    801 

 802 

The adjusted preliminary base map was then resampled to a final base map for 2019 at 300m 803 

resolution using a pyramid-by-mode decision rule, with the resulting pixels simply classified as 804 

forest or non-forest based on a majority rule. The FHI was calculated for every forest pixel but 805 

not for non-forest pixels. GEE performs calculations in WGS84. Supplementary analyses outside 806 

GEE were applied using a Mollweide equal-area projection.  807 

 808 

Text S2. Mapping potential forest configuration  809 

 810 

Potential connectivity (PC) is calculated from an estimate of the potential extent of the forest zone 811 

taken from Laestadius et al. (35), treating areas below 25% crown cover (this was the nearest 812 

class to the tree cover data of 20%) as non-forest and resampling to 300 m resolution. To 813 

minimize false instances of lost connectivity and ensure measures of forest modification are 814 
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conservative we masked from this data layer areas which we believe to include a significant 815 

proportion of naturally unforested land using selected land-cover categories in ESA ((68); see 816 

Table S1). Because these natural non-forest patches are shown in the Hansen et al. (22) dataset 817 

but not Laestadius et al. (35), not excluding such classes would result in an inflated estimate of 818 

the loss of connectivity and hence the level of degradation. We have elected to remain 819 

conservative in our estimate of modification. 820 

 821 

Text S3. Mapping direct human pressure 822 

 823 

Several recent analyses have developed composite, multi-criteria indices of human pressure to 824 

provide assessments of ecosystem condition for the USA (69) or globally (26, 70, 71). Thompson 825 

et al. (72) set out a framework specific to forest ecosystems that could indicate modification 826 

through a balanced mix of available pressure and state variables. We adapted the methodology of 827 

Venter et al. (26), informed by the other studies cited, to generate measures of (i) the modification 828 

of forest associated with direct human pressure from infrastructure, agriculture and deforestation 829 

and (ii) the more diffuse modification effects (e.g. edge effects) resulting from proximity to these 830 

focal areas of human activity (‘indirect pressure’). Edge effects resulting entirely from natural 831 

processes are excluded, because they do not represent modification by our definition, although, 832 

like many other natural factors, they do also have a role in determining ecosystem benefits. 833 

 834 

Infrastructure 835 

 836 

We generated the infrastructure (I’) data layer by rasterizing the OpenStreetMap data (73) from 837 

Feb 2018, using weights for each type of infrastructure as noted in Table S3. The weights were 838 
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derived from authors’ expert opinion and experimentation with weights according to their relative 839 

impact on forest condition.   840 

 841 

Agriculture 842 

 843 

For agriculture (A’) we made a global binary composite of the croplands datasets produced by the 844 

USGS (Table 1) at 30 m resolution, and weighted each cropped pixel at this resolution by the 845 

likely intensity of cropping using the global irrigation dataset at 1km resolution (Teluguntla et al, 846 

(74)), with values of Irrigation Major = 2, Irrigation Minor = 1.5,  Rainfed = 1. The average 847 

cropping intensity (including uncropped areas, which score zero) was then calculated across the 848 

whole of each 300 m pixel of our final basemap. 849 

 850 

Deforestation 851 

 852 

For deforestation (H’) we made a binary composite of tree cover loss 2001-2018 at 30 m 853 

resolution (22), masked out 30 m pixels already classified as agriculture in the preceding step to 854 

avoid double-counting, and excluded loss predicted by Curtis et al. (23) to be most likely caused 855 

by fires, to give a conservative data layer of recent permanent and temporary tree cover loss 856 

indicative of human activity in the immediate vicinity. We excluded small clusters of 6 or fewer 857 

pixels (0.54 ha) because they may have been natural tree cover loss (e.g. small windthrows) or 858 

classification errors. Each 30 m pixel was then weighted by its year of loss, giving higher weight 859 

to the most recent loss (2001 = 1, 2002 = 2, etc.). The average ‘recentness’ of deforestation 860 

(including areas not deforested, which score zero) was then calculated across the whole of each 861 

300 m pixel of our base map. 862 

 863 
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Transformations 864 

 865 

The exponential transformations described in the main text were used to convert I’, A’ and H’ to 866 

the variables I, A and H respectively. 867 

 868 

Text S4. Modelling indirect human pressure 869 

 870 

Each cell also experiences modification as a result of pressures originating from nearby cells that 871 

have signs of direct human pressure, largely through the family of processes known as ‘edge 872 

effects’ (54). Edge effects are partly a result of the changes relating to biophysical factors (such as 873 

humidity, wind, temperature and the increased presence of non-forest species) that accompany the 874 

creation of new edges in formerly continuous forest (as exemplified by the carefully controlled 875 

studies in tropical forests summarized by Laurance et al. (59)). They also result in part from the 876 

increased pressure associated with human activities within tropical forest near to edges such as 877 

logging (61), anthropogenic fire (60), hunting (55), livestock grazing, pollution, visual and 878 

auditory disturbances, etc. These multiple factors are synergistic and so we model them together, 879 

notwithstanding regional and local variations in the relative intensity of each one. 880 

 881 

We model the proximity effect caused by each nearby source cell as a function of (a) the direct 882 

human pressure observed in that source cell and (b) a decline in the intensity of edge effects with 883 

distance from the source cell, based on a review of the literature. We then determine the total 884 

proximity effect on a given cell by summing the individual effects from all source cells within a 885 

certain range. 886 

 887 
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Two complementary types of proximity effect are modelled and added together. One relates to the 888 

diverse, strong, relatively short-range edge effects which decay to near zero over a few kilometers 889 

and have the potential to affect most biophysical features of a forest to a greater or lesser extent. 890 

The other relates to weaker, longer-range effects such as over-hunting of high-value animals that 891 

affect fewer biophysical features of a forest (and so have a much smaller maximum effect on 892 

overall integrity) but can nonetheless have detectable effects in locations more than 10 km from 893 

the nearest permanent human presence.  894 

 895 

The literature on the spatial influence of short-term effects uses a variety of mathematical 896 

descriptors, in two broad categories – continuous variables and distance belts. As we wish to 897 

model edge effects as a continuous variable we concentrated on studies that have taken a similar 898 

approach, and used distance-belt studies as ancillary data. 899 

 900 

Chaplin-Kramer et al. (62) is a good example of a continuous variable approach, estimating 901 

detailed biomass loss curves near tropical forest edges. Because they analyze a key forest 902 

condition variable with a very large pantropical dataset we hypothesize that the exponential 903 

declines in degradation with distance that they find are likely to be a common pattern and so we 904 

use a similar framework for our more general model of degradation. We consider that a model of 905 

exponential decay is also a sufficient approximation to the evidence presented by some authors as 906 

graphs without an associated mathematical model (e.g., (60, 75)) or analyzed using logistic 907 

regression (e.g., (76)). In our model we set the exponential decay constant to be broadly 908 

consistent with these four studies, resulting in degradation at 1 km inside a forest that is 909 

approximately 37% of that at the forest edge, declining to 14% at 2 km and near zero at 3 km. We 910 

truncate the distribution at 5 km to minimize computational demands. 911 

 912 
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Distance-belt studies define the width of a belt within which edge effects are considered to occur, 913 

and beyond which forests are considered to be free of edge effect. Belts of 1 km are commonly 914 

used (e.g., (54)) but smaller distances may be used for specific parameters (e.g. 300 m for 915 

biomass reduction near edges in DRC’s primary forests; (27)). Our continuous variable approach 916 

is broadly consistent with these studies, with the majority of our modelled degradation within a 1 917 

km belt and little extending beyond 2 km. While most individual edge effects reported in the 918 

literature penetrate less than 100-300 m (e.g., (59, 77)) most of the effects reported on in these 919 

studies relate to the changed natural factors mentioned in an earlier paragraph, and are likely to be 920 

dwarfed in both intensity and extent by edge effects relating to spillovers of human activity, so 921 

our model emphasizes the spatial distribution of the latter (e.g., (60)). We consider our model to 922 

be conservative. 923 

 924 

For the weaker, more widespread long-range effects we use recent large-scale studies of 925 

defaunation, which is one of the key long-range pressures and also acts as a proxy for other 926 

threats including harvest of high value plants (such as eaglewood Aquilaria spp. in tropical Asia), 927 

occasional remote fires, pollution associated with artisanal mining, etc. We adopt a simplified 928 

version of the distribution used by Peres et al. (55) to model hunting around settlements in the 929 

Amazon, which sets 2σ=12 km; this is likely conservative compared to evidence for hunting-930 

related declines in forest elephants in central Africa up to 60 km from roads (63) and the 931 

extensive declines in large-bodied quarry species in remote areas in many regions modelled by 932 

Benitez-Lopez et al. (78).  933 

 934 

Text S5. Limitations in data: example with infrastructure data in British Columbia, Canada 935 

 936 
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OpenStreetMap (OSM) represents the most detailed publicly available global dataset but is 937 

nonetheless noted to be incomplete, even for one of the most heavily used categories of 938 

infrastructure, paved roads (48). No global assessment is available for the completeness of other 939 

categories in the dataset. One of the key categories for forest health, unpaved roads used for 940 

resource extraction, has been shown to be incomplete over much of insular South-east Asia (49). 941 

In Canada, for example, roads and other linear corridors used to explore, access and extract 942 

natural resources (e.g., logging, oil and gas, and minerals) are sometimes missing. Government 943 

data for the province of British Columbia (available at  944 

https://catalogue.data.gov.bc.ca/dataset/digital-road-atlas-dra-master-partially-attributed-roads) 945 

demonstrates, for example, the larger extent and density of regional roads as compared to OSM 946 

(Fig S1).  947 

 948 

Text S6. Classification of Forest Health Index scores 949 

 950 

In this paper, three illustrative classes were defined, mapped and summarized to give an overview 951 

of broad patterns of degradation in the world’s forests. Three categories were defined as set out in 952 

the Materials and Methods. To determine the approximate levels of the Forest Health Index 953 

associated with these three categories, example locations were selected in sites that could 954 

unambiguously be assigned to one of the categories using the authors’ personal knowledge. At 955 

each site a single example pixel was selected within a part of the area with relatively uniform 956 

scores. The sample points are summarized in Table S4; they are widely spread across the world to 957 

ensure that the results are not only applicable to a limited region. The scores at these points 958 

suggest the following category boundaries: 959 

 960 

• High FHI – 9.6-10 961 
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• Medium FHI – 6-9.6 962 

• Low FHI – 0-6  963 

 964 

 965 

Table S1. The datasets used to develop the Forest Health Index. The factor column indicates the 966 
component of the index the dataset was used in. 967 
 968 
 969 
Dataset Factor Sources 
Tree cover and 
tree cover loss  

Forest extent, 
connectivity, 
direct and 
indirect pressure 

Global Forest Cover datasets; Hansen et al. (22); updates to 
2018 available on-line from: 
http://earthenginepartners.appspot.com/science-2013-global-
forest.  

Major tree cover 
loss driver 

Forest extent, 
direct and 
indirect pressure, 
connectivity 

Curtis et al. (23) 

Landover and 
ocean extent 

Forest extent Lamarche et al. (79) 

Potential forest 
cover 

Connectivity Laestadius et al. (35) 

Natural non-forest 
areas within extent 
of potential forest 

Connectivity ESA-CCI Land Cover dataset; ESA (68) 

Infrastructure Direct and 
indirect pressure 

Open Street Map (selected elements) as of 2018; 
OpenStreetMap contributors (73)  

Cropland Direct and 
indirect pressure 

GFSAD 2015 Cropland Extent; Gumma et al. (80), Massey et 
al. (81), Oliphant et al. (82), Phalke et al. (83), Teluguntla et 
al. (84), Xiong et al. (85) and Zhong et al. (86) 

Cropping intensity 
(irrigation) 

Direct and 
indirect pressure 

GFSAD 2010 Cropland Mask;  Teluguntla et al. (74) 

Water surface  Direct and 
indirect pressure 

JRC Global Surface Water Occurrence (all classes with >75% 
occurrence); Pekel et al. (87) 

 970 
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Table S2. Classes in ESA-CCI dataset excluded from our potential forest cover layer because 972 
they overlap extensively with potential forest cover mapped by Laestadius et al. (35) but contain 973 
significant areas of natural non forest 974 
 975 
 976 
Legend 
code 

Class name 

60 Treecover, broadleaved, deciduous, closed to open, >15% 

100 Mosaic tree and shrub (>50%]/ Herbaceous cover (<50%) 

120 Shrubland 

121 Evergreen shrubland 

122 Deciduous shrubland 

130 Grassland 

140 Lichens and mosses 

150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 

152 Sparse shrub (<15%) 

180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water 

200 Bare areas 

201 Consolidated bare areas 

202 Unconsolidated bare areas 

220 Permanent snow and ice 

 977 
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Table S3. Weightings used for Open Street Map (OSM) to combine into the Infrastructure data 979 
layer. 980 
 981 
 982 

OSM Category OSM Subcategory Weighting applied for FPI 
Aeroway Apron / Helipad / Runway / Taxiway 8 
 Hangar / Terminal 4 
 Aerodrome / Heliport / Spaceport 3 
Amenity / Landuse / 
Man-made object 

Fuel station / Gasometer / Petroleum well / Pipeline / Adit / 
Mineshaft / Quarry / Landfill / Sanitary dump station / Wastewater 
plant 

15 

 Chimney 10 
 Industrial 8 
 Basin / Covered Reservoir / Pumping station / Water tower / Water 

well / Water works / Watermill 
7 

 Silo / Storage tank / Works 6 
 Aerialway / Beacon / Lighthouse / Breakwater / Dyke / 

Embankment / Groyne / Pier / Communications tower / Mast / 
Observatory / Tower / Telescope 

5 

 Salt pond 4 
 Alpine hut / Beach resort / Camp site / Cemetery / Golf course / 

Marina / Pitch / Village green / Wilderness hut 
3 

Barrier City wall / Retaining wall / Wall 5 
 Ditch / Snow fence / Snow net 3 
 Hedge 2 
Road Motorway / Motorway link / Raceway 15 
 Trunk / Trunk link 11 
 Primary / Primary link 9 
 Secondary / Secondary link 7 
 Tertiary / Tertiary link 6 
 Bus guideway / Service 5 
 Living street / Mini roundabout / Residential / Turning circle / 

Unclassified / Unknown/ Elevator / Rest area 
4 

 Escape / Track 3 
 Bridleway / Cycleway/ Footway / Path / Pedestrian / Steps 2 
Military Nuclear explosion site 30 
 Danger area / Range / Trench 15 
 Ammunition / Barracks / Bunker / Checkpoint 7 
 Airfield / Military-owned land / Naval base / Training area 3 
Power Plant/generator - coal 20 
 Plant/generator - oil 15 
 Plant/generator – gas/ Plant/generator - bio / waste 10 
 Plant/generator – hydro; nuclear; other / Line, Substation 7 
 Plant/generator - solar / Heliostat / wind / Windmill 5 
 Cable 3 
Railway Funicular / Preserved / Rail / Monorail / Subway 10 
 Light rail / Miniature / Narrow gauge/ Tram 7 
 Station 5 
 Halt / Platform 4 
 Abandoned / Disused 2 
Waterway Dam / Lock gate 20 
 Canal 13 
 Ditch/ Drain / Weir 3 

 983 
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Table S4. Points assessed to determine category boundaries for classifying the FHI into high, 985 
medium and low classes. 986 
 987 
 988 

Category Code Point description Country Point 
Score 

High 103 Interior of Lopé National Park Gabon 10.000 
High 106 Interior of Taï National Park Cote d'Ivoire 10.000 
High 108 Interior of Pacaya-Samiria National Reserve Peru 10.000 
High 109 Interior of Central Suriname Nature Reserve Suriname 10.000 
High 116 Interior of Liard River area Canada 10.000 
High 101 Interior of Okapi Faunal Reserve DRC 9.997 
High 104 Interior of Nyungwe National Park Rwanda 9.992 
High 111 Interior of Rio Platano Biosphere Reserve Honduras 9.990 
High 102 Interior of Odzala National Park RoC 9.974 
High 117 Interior of Wells Gray Provincial Park Canada 9.972 
High 119 Interior of Øvre Pasvik National Park Norway 9.944 
High 115 Interior of Tasmania Wilderness World Heritage Area Australia 9.918 
High 107 Interior of Marojejy National Park Madagascar 9.910 
High 112 Interior of Khao Yai National Park Thailand 9.908 
High 105 Interior of Niassa Special Reserve Mozambiuque 9.819 
High 110 Interior of Maya Biosphere Reserve Guatemala 9.798 
High 114 Interior of Batang Ai National Park Malaysia 9.756 
High 118 Interior of Quetico Provincial Park Canada 9.750 
High 113 Interior of Sundarbans National Park Bangladesh 9.606 
Medium 215 Interior of Bialowieża National Park Poland 9.086 
Medium 208 Interior of Mabira Central Forest Reserve Uganda 9.067 
Medium 211 Area of selective logging Gabon 8.840 
Medium 219 Near main tourism corridor, Mt Myohyang National Park DPR Korea 8.762 
Medium 203 Interior of Phnom Kulen Wildlife Sanctuary Cambodia 8.710 
Medium 210 Area of selective logging Guyana 8.364 
Medium 202 Interior of Dong Hua Sao National Protected Area Lao PDR 8.078 
Medium 212 Area of selective logging DRC 7.981 
Medium 206 Interior of Manga Forest Reserve Tanzania 7.960 
Medium 207 Near margin of Nyungwe National Park Rwanda 7.938 
Medium 204 South part of Nagarahole National Park India 7.759 
Medium 213 Area of selective logging Cameroon 7.379 
Medium 201 Tat Leuk, Phou Khaokhoay National Protected Area Lao PDR 7.251 
Medium 216 Interior of Loch Garten Nature Reserve UK 7.146 
Medium 209 Area of selective logging Congo 6.734 
Medium 217 Tourism area, Lamington National Park Australia 6.729 
Medium 214 Lowlands of Guanacaste National Park Costa Rica 6.719 
Medium 218 Near margin of Sepilok Forest Reserve Malaysia 6.353 
Medium 205 Interior of Similajau National Park Malaysia 6.130 
Low 305 Dong Nathat Lao PDR 5.638 
Low 317 Foothills of Mt Makiling Philippines 5.395 
Low 310 Suburban woodlot, Dobbs Ferry USA 4.710 
Low 309 Jozani Forest Reserve Tanzania 4.680 
Low 316 Foothills of Mt Canlaon Philippines 4.597 
Low 320 Forest fragment near Paramaribo Suriname 4.566 
Low 302 Central Park, New York USA 3.575 
Low 301 Bagley Wood, Oxford UK 3.525 
Low 307 Boeng Yeak Lom Protected Area Cambodia 3.323 
Low 304 Angkor Thom Cambodia 3.122 
Low 315 Forest in rural complex, Mambasa area DRC 2.689 
Low 312 Woodland in Beaumont area USA 2.581 
Low 318 Swidden near Andoung Kraloeng village Cambodia 2.304 
Low 319 Forest mosaic near Kaev Seima village Cambodia 2.187 
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Low 303 Thetford Forest UK 2.082 
Low 313 Woodland in Augusta area USA 0.686 
Low 314 Woodland in Emporia area USA 0.589 
Low 311 River Park, Chicago USA 0.566 
Low 306 Houei Nhang Forest Reserve Lao PDR 0.000 
Low 308 Pugu Forest Reserve Tanzania 0.000 

 989 
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Table S5. Mean Forest Health Index scores and areas for forest health categories by country. 991 

 992 

Country Mean 
FHI 

Low health 
(km2) 

Medium health 
(km2) 

High health 
(km2) 

Total forest 
area (km2) 

Afghanistan 8.85 90 1,475 977 2,542 

Albania 6.77 2,426 5,256 122 7,805 

Algeria 5.22 7,418 6,044 81 13,543 

Andorra 4.45 170 49 0 219 

Angola 8.35 105,487 284,054 315,895 705,436 

Antigua and Barbuda 4.72 114 92 0 206 

Argentina 7.21 98,249 189,966 72,557 360,772 

Armenia 5.46 1,894 1,681 3 3,577 

Australia 7.22 117,672 239,624 103,852 461,148 

Austria 3.55 36,666 12,422 21 49,109 

Azerbaijan 6.55 4,820 7,189 1,534 13,543 

Bahamas 7.35 741 1,935 399 3,075 

Bangladesh 5.45 10,013 7,251 1,947 19,211 

Belarus 3.63 77,870 20,847 91 98,808 

Belgium 1.36 8,803 297 0 9,099 

Belize 6.15 7,004 7,957 2,744 17,705 

Benin 5.86 4,724 3,698 1,769 10,191 

Bhutan 8.85 1,620 16,769 10,140 28,529 

Bolivia 8.47 78,745 280,532 272,007 631,284 

Bosnia and 
Herzegovina 

5.99 13,387 17,031 574 30,993 

Botswana 9.13 13 187 372 572 

Brazil 7.52 1,374,902 1,354,961 2,338,101 5,067,963 

Brunei Darussalam 7.71 1,102 2,842 1,498 5,442 

Bulgaria 6.09 18,884 26,325 847 46,057 

Burundi 4.5 6,882 3,841 46 10,769 

Cabo Verde 6.37 27 38 0 65 

Cambodia 6.31 30,143 31,939 16,349 78,431 

Cameroon 8 66,191 181,336 119,263 366,789 

Canada 8.99 480,206 1,027,386 2,968,268 4,475,860 

Central African 
Republic 

9.28 30,161 139,350 379,097 548,608 

Chad 6.18 5,261 6,016 1,910 13,187 

Chile 7.37 56,849 41,971 93,537 192,357 

China 7.14 533,800 974,431 301,051 1,809,282 

Colombia 8.26 150,737 272,442 428,320 851,499 

Comoros 7.69 284 1,149 82 1,515 

Congo 8.89 24,512 124,215 158,184 306,911 

Congo DRC 7.56 533,118 935,508 727,983 2,196,608 

Costa Rica 4.65 27,164 12,838 4,164 44,167 
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Cote d'Ivoire 3.64 158,010 41,005 7,288 206,303 

Croatia 4.92 15,732 10,522 379 26,633 

Cuba 5.4 22,605 18,460 1,632 42,697 

Cyprus 7.06 388 1,026 18 1,432 

Czechia 1.71 32,161 1,611 0 33,772 

Denmark 0.5 5,756 31 0 5,787 

Dominica 1.06 531 2 0 533 

Dominican Republic 4.19 19,890 9,364 518 29,772 

Ecuador 7.66 48,822 77,585 73,492 199,900 

Egypt 0.56 4,772 218 69 5,059 

El Salvador 4.05 8,837 2,947 0 11,784 

Equatorial Guinea 7.99 3,982 17,595 5,007 26,585 

Estonia 3.05 24,473 4,832 52 29,358 

Ethiopia 7.16 52,652 84,430 44,397 181,479 

Fiji 8.35 1,753 10,802 3,594 16,148 

Finland 5.08 144,310 83,572 9,294 237,176 

France 4.52 161,987 49,496 74,121 285,604 

Gabon 9.07 11,780 118,348 120,852 250,979 

Gambia 4.56 181 85 0 266 

Georgia 7.79 6,982 17,803 9,784 34,570 

Germany 2.28 122,168 11,307 0 133,475 

Ghana 4.53 57,519 28,901 2,160 88,580 

Greece 6.6 14,548 27,833 1,078 43,459 

Grenada 4.22 221 86 0 308 

Guatemala 3.85 58,572 18,764 5,592 82,928 

Guinea 4.9 81,702 54,877 2,895 139,475 

Guinea-Bissau 5.7 9,274 8,702 855 18,831 

Guyana 9.58 4,162 40,817 147,413 192,391 

Haiti 4.01 7,116 2,831 12 9,959 

Honduras 4.48 57,899 23,802 3,692 85,392 

Hungary 2.25 18,729 2,047 0 20,776 

India 7.09 117,992 254,792 54,428 427,211 

Indonesia 6.6 535,370 509,018 431,973 1,476,361 

Iran 7.67 3,361 12,930 2,162 18,453 

Iraq 3.59 104 9 0 113 

Ireland 0.92 5,283 96 0 5,378 

Israel 4.14 170 85 0 255 

Italy 3.65 79,403 26,858 25 106,286 

Jamaica 5.01 5,362 3,249 158 8,770 

Japan 5.8 135,783 133,480 16,005 285,268 

Jordan 2.79 12 0 0 12 

Kazakhstan 8.23 6,068 18,926 15,294 40,288 

Kenya 4.2 28,427 13,558 4,702 46,686 
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Kosovo 5.19 2,628 1,775 47 4,450 

Kyrgyzstan 8.86 329 2,819 2,761 5,909 

Laos 5.59 92,986 80,564 19,252 192,801 

Latvia 2.09 38,164 2,137 0 40,301 

Lebanon 3.76 541 115 0 656 

Lesotho 7.4 1 4 0 5 

Liberia 4.79 51,975 31,162 11,025 94,163 

Libya 4.85 15 2 0 17 

Liechtenstein 4.5 59 42 0 101 

Lithuania 1.62 24,554 930 0 25,484 

Luxembourg 1.12 1,170 0 0 1,170 

Macedonia 7.42 2,034 7,090 459 9,583 

Madagascar 4.63 120,340 66,584 11,922 198,846 

Malawi 5.74 12,514 12,167 2,396 27,078 

Malaysia 5.01 130,825 91,957 21,499 244,281 

Mali 7.16 451 996 140 1,586 

Mauritius 5.46 567 478 0 1,045 

Mexico 6.82 193,908 280,445 121,842 596,195 

Micronesia 7.55 8 35 0 43 

Moldova 2.2 3,113 202 0 3,315 

Mongolia 9.36 520 11,915 27,407 39,841 

Montenegro 6.41 2,949 4,778 82 7,809 

Morocco 6.74 2,260 4,076 451 6,787 

Mozambique 6.93 150,665 189,362 115,379 455,406 

Myanmar 7.18 129,745 220,188 96,924 446,857 

Namibia 8.43 5 13 17 36 

Nepal 7.23 13,785 41,992 3,760 59,538 

Netherlands 0.6 5,250 72 0 5,322 

New Zealand 7.12 34,503 44,155 35,334 113,992 

Nicaragua 3.63 65,356 17,646 4,858 87,860 

Nigeria 6.2 64,621 65,355 24,307 154,283 

North Korea 8.02 8,374 40,156 8,410 56,939 

Norway 6.98 39,343 67,383 16,627 123,352 

Pakistan 7.42 2,090 7,859 1,139 11,088 

Palau 8.09 45 333 9 387 

Panama 6.37 25,420 21,310 14,605 61,336 

Papua New Guinea 8.84 37,294 183,415 216,355 437,064 

Paraguay 6.39 78,538 102,626 29,877 211,041 

Peru 8.86 85,793 190,547 509,720 786,061 

Philippines 5.91 91,820 100,831 8,393 201,044 

Poland 2.24 101,886 7,103 0 108,989 

Portugal 8.82 25,966 553 0 26,519 

Romania 5.95 38,395 48,394 607 87,395 
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Russian Federation 9.02 739,484 2,245,281 5,137,079 8,121,843 

Rwanda 3.85 5,665 2,170 619 8,454 

Saint Kitts and Nevis 4.55 95 50 0 145 

Saint Lucia 6.17 235 316 0 551 

Saint Vincent and the 
Grenadines 

6.95 91 221 0 312 

San Marino 0.01 7 0 0 7 

Sao Tome and Principe 6.64 31 140 0 171 

Senegal 7.11 847 2,456 162 3,465 

Serbia 5.29 17,513 14,112 516 32,141 

Seychelles 10 0 0 68 68 

Sierra Leone 2.76 52,512 11,858 640 65,010 

Singapore 1.11 170 2 0 172 

Slovakia 4.34 17,615 8,165 0 25,781 

Slovenia 3.78 11,065 3,791 0 14,856 

Solomon Islands 7.19 6,871 15,310 3,149 25,329 

Somalia 7.16 347 1,384 46 1,777 

South Africa 4.94 45,489 34,968 3,196 83,653 

South Korea 6.02 25,060 32,009 888 57,956 

South Sudan 9.45 5,083 59,389 146,218 210,691 

Spain 4.23 82,770 46,013 133 128,916 

Sri Lanka 5.83 20,541 22,390 1,613 44,544 

Sudan 9.8 1 72 495 569 

Suriname 9.39 6,796 25,031 107,954 139,781 

Swaziland 4.21 5,054 2,501 14 7,569 

Sweden 5.35 174,415 109,779 23,494 307,687 

Switzerland 3.53 13,636 4,412 10 18,058 

Syria 3.64 841 282 0 1,123 

Taiwan 6.38 8,786 14,547 1,453 24,786 

Tajikistan 8.65 34 137 130 301 

Tanzania 7.13 123,997 159,712 122,812 406,521 

Thailand 6 86,276 89,326 33,612 209,214 

Timor-Leste 7.11 1,783 7,008 47 8,838 

Togo 5.88 5,064 4,522 1,076 10,662 

Trinidad and Tobago 6.62 1,478 2,176 418 4,072 

Tunisia 5.14 1,354 987 0 2,340 

Turkey 6.39 43,043 68,243 3,516 114,801 

Turkmenistan 6.31 5 33 0 37 

Uganda 4.36 77,303 36,381 7,507 121,190 

Ukraine 3.3 89,540 20,183 176 109,900 

United Kingdom 1.65 29,149 2,917 35 32,101 

United States 6.65 1,328,079 1,144,693 658,645 3,131,417 

Uruguay 3.61 11,793 3,998 0 15,791 
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Uzbekistan 6.77 214 227 199 640 

Vanuatu 8.82 734 5,322 4,448 10,504 

Venezuela 8.78 64,650 170,792 351,112 586,554 

Vietnam 5.35 82,551 75,353 9,588 167,492 

Zambia 7.5 96,969 164,376 110,822 372,167 

Zimbabwe 6.31 9,450 14,417 1,644 25,511 
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Table S6. Mean Forest Health Index scores for provinces of Democratic Republic of Congo 994 
(DRC), Indonesia and Canada.  995 

 996 

DRC Indonesia Canada 

Province Mean FHI Province Mean FHI Province Mean FHI 

Lualaba 8.57 Papua 9.34 Northwest 
Territories 

9.90 

Tshuapa 8.55 West Papua 9.00 Yukon 9.86 

Tshopo 8.39 Kalimantan 
Utara 

8.52 Newfoundland 
and Labrador 

9.66 

Bas-Uélé 8.38 Maluku 8.03 Nunavut 9.65 

Équateur 8.37 Maluku Utara 7.41 Manitoba 9.58 

Haut-Lomami 8.29 Nusa 
Tenggara 
Barat 

6.86 Saskatchewan 9.40 

Tanganyika 8.24 Aceh 6.83 Ontario 8.94 

Nord-Ubangi 8.19 Nusa 
Tenggara 
Timur 

6.80 Québec 8.80 

Haut-Katanga 8.05 Gorontalo 6.60 Alberta 8.46 

Kwango 7.83 Sulawesi 
Utara 

6.58 British 
Columbia 

8.22 

Maï-Ndombe 7.58 Sulawesi 
Tengah 

6.54 Nova Scotia 6.07 

Haut-Uélé 7.46 Kalimantan 
Timur 

6.42 New 
Brunswick 

5.15 

Maniema 7.44 Sulawesi Barat 6.31 Prince Edward 
Island 

2.74 

Sankuru 7.34 Sumatera 
Barat 

6.20   

Lomami 7.20 Sulawesi 
Tenggara 

5.99   

Kasaï 7.11 Kalimantan 
Tengah 

5.84   

Ituri 6.70 Sulawesi 
Selatan 

5.63   

Mongala 6.23 Banten 4.97   

Nord-Kivu 6.22 Bengkulu 4.94   

Sud-Kivu 6.20 Sumatera 
Utara 

4.89   
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Kasaï-Central 5.95 Kalimantan 
Barat 

4.87   

Sud-Ubangi 5.93 Kepulauan 
Riau 

4.86   

Kwilu 5.65 Jawa Barat 4.76   

Kinshasa 4.75 Lampung 4.73   

Kasaï-Oriental 4.13 Jawa Tengah 4.59   

Kongo-
Central 

3.95 Bali 4.43   

  Jawa Timur 4.40   

  Jambi 4.01   

  Riau 3.92   

  Kalimantan 
Selatan 

3.24   

  Sumatera 
Selatan 

2.86   

  Yogyakarta 2.83   
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 998 
 999 

Figure S1. A map overlaying the Open Street Maps data (blue) and provincial government data 1000 

(green) for roads and other linear infrastructure associated with resource access.  1001 

  1002 
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 1004 

Figure S2. A global map of Forest Health for 2019. Highlighted regions show A. A remote road 1005 

in Russia, B. Clearcut logging in Canada, C. Selective logging in Borneo, D. Swidden agriculture 1006 

in Madagascar, E. Forest fragmentation in Western Australia, F. Remote settlements in the 1007 

Brazilian Amazon.  1008 
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