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Abstract: Many global environmental agendas, including halting biodiversity loss, reversing land

degradation, and limiting climate change, depend upon retaining forests with high ecological

integrity, yet the scale and degree of forest modification remains poorly quantified and mapped.
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By integrating data on direct and indirect forest pressures and lost forest connectivity, we generate
the first globally-consistent, continuous index of forest condition as determined by degree of
anthropogenic modification, which we term ‘forest health’. Globally, only 17.4 million km? of
forest (40.5%) can be considered in high health (mostly found in Canada, Russia, the Amazon,
Central Africa and New Guinea) and only 27% of this area is found in nationally-designated
protected areas. Of all the world’s forests found within protected areas, only 56% can be
considered in high health. Ambitious policies that prioritize the retention of forest health are now

urgently needed alongside current efforts aimed at restoring the health of forests globally.

MAIN TEXT

Introduction

Deforestation is a major environmental issue (/), but far less attention has been given to the
degree of anthropogenic modification of remaining forests, which diminishes many of the benefits
that these forests provide (2, 3). This is worrying since modification is potentially as significant as
outright forest loss in determining overall environmental outcomes (4). There is increasing
recognition of this issue, for forests and other ecosystems, in synthesis reports by global science
bodies (e.g. 5), and it is now essential that the scientific community develop improved tools and
data to facilitate the consideration of the degree of forest modification in decision-making.
Mapping and monitoring this globally will provide essential information for coordinated global,
national and local policy-making, planning and action, to help nations and other stakeholders
achieve the Sustainable Development Goals (SDGs) and implement other shared commitments
such as the United Nations Convention on Biological Diversity (CBD), Convention to Combat

Desertification (UNCCD), and Framework Convention on Climate Change (UNFCCC).
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Ecosystem integrity is foundational to all three of the Rio Conventions (UNFCCC, UNCCD,
CBD ). As defined by Parrish et al. (6), it is essentially the degree to which a system is free from
anthropogenic modification of its structure, composition and function. Such modification causes
the degradation of many ecosystem benefits, and is often also a precursor to outright deforestation
(7, 8). Forests largely free of significant forest modification (i.e. forests having high ecosystem
integrity), typically provide higher levels of many forest benefits than modified forests of the
same type (9), including; carbon sequestration and storage (/0), healthy watersheds (71),
traditional homelands for imperiled cultures (/2), contribution to local and regional climate
processes (/3), and forest-dependent biodiversity (/4-17). Industrial-scale logging, fragmentation
by infrastructure, farming (including cropping and ranching) and urbanization, as well as less
visible forms of modification such as over-hunting, wood fuel extraction and changed fire or
hydrological regimes (/8, 19), all degrade the degree to which forests still support these benefits,
as well as their long-term resilience to climate change (9). There can be trade-offs however,
between the benefits provided by less-modified forests (e.g., carbon sequestration) and those
production services that require some modification (e.g., timber production). These trade-offs can,
at times, result in disagreement among stakeholders as to which forest benefits are, or should be,

prioritized (20).

In recent years, easily accessible satellite imagery and new analytical approaches have
dramatically improved our ability to map and monitor forest extent globally (2/-23). However,
while progress has been made in developing tools for assessment of global forest losses and gains,
consistent monitoring of the degree of forest modification has proved elusive (24, 25).

Technical challenges include the detection of low intensity and unevenly distributed forest

change, the wide diversity of changes that comprise forest modification, and the fact that many
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changes are concealed by the forest canopy (24). New approaches are emerging on relevant forest
indicators, such as canopy height, canopy cover and fragmentation, and maps of different human
pressures, which are used as proxies for impacts on forests (e.g., 26, 27, 28). Some binary
measures of forest modification, such as Intact Forest Landscapes (29) and wilderness areas (30),
have also been mapped at the global scale and used to inform policy, but do not resolve the degree

of modification within remaining forests, which we aimed to do with this assessment.

Human activities influence the degree of forest modification at multiple spatial scales, including
intense, localized modifications such as road-building and canopy loss, more diffuse forms of
change that are often spatially associated with these localized pressures (e.g. increased
accessibility for hunting and selective logging), and changes in spatial configuration that alter
landscape-level connectivity. Previous studies have quantified several of these aspects
individually (e.g. 26, 27, 28), but there is a need to integrate them to measure and map the overall
degree of modification. Here, we integrate data on highly localized (‘direct”) human pressures, the
associated but more diffuse ‘indirect’ human pressures, and alterations in forest connectivity, to
create an index that we refer to as the “Forest Health Index” (FHI), that describes the degree of
forest modification for 2019. The result is the first globally applicable, continuous-measure map
of forest health, which offers a timely indicator of the status and management needs of Earth’s
remaining forests, as well as a flexible methodological framework (Fig. 1) for measuring changes

in forest health that can be adapted for more detailed analysis at national or subnational scales.

Results

Forest modification caused by human activity is both highly pervasive and highly variable across

the globe (Fig. 2). We found 31.2% of forests worldwide are experiencing some form of direct
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human pressure. Our models also identified indirect pressures and the impacts of lost connectivity
in almost every other forest location (91.2% of forests), albeit sometimes at very low levels.
Diverse, recognizable patterns of forest health can be observed in maps at a range of scales,
depending on the principal forms and general intensity of human activity in an area. Broad
regional trends can be readily observed, for example the overall gradient of decreasing human
impact moving northwards through eastern North America (Fig. 2), and finer patterns of impact
are also clearly evident, down to the scale of individual protected areas, forest concessions,

settlements and roads (Fig. S2).

FHI scores range from 0 (lowest health) to 10 (highest). We discretized this range to define three
broad illustrative categories: low (<6.0); medium (>6.0 and <9.6); and high health (>9.6) (see
Methods). Only 40.5% (17.4 million km?) of forest was classified as having high health (Fig. 3;
Table 1). Moreover, even in this category of high health 36% still showed at least a small degree
of human modification. The remaining 59% (25.6 million km?) of forest was classified as having
low or medium health, including 25.6% (11 million km?) with low health (Fig. 3; Table 1). When
we analyzed across biogeographical realms (defined by 37) not a single biogeographical realm of

the world had more than half of its forests in the high category (Fig. 3; Table 1).

The biogeographical realms with the largest area of forest in high health are in the Paleartic,
particularly northern Russia, and the Neartic, in northern Canada, and Alaska. There are also large
areas of forest in high health in the Neotropics, concentrated in the Amazon region, including
within the Guianas (Fig. 3, Table 1). The Afrotropic realm has significant areas in high health,
particularly within the humid forests of central Africa (e.g., in Republic of Congo and Gabon) and
in some of the surrounding drier woodland belts (e.g., in South Sudan, Angola and Mozambique)

(Fig. 3). In tropical Asia, the largest tracts of forest in high health are in New Guinea. Smaller but
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still very significant tracts of forest in high health are also scattered elsewhere in each of the main
forested regions, including parts of Sumatra, Borneo, Myanmar and other parts of the greater
Mekong subregion, Madagascar, West Africa, Mesoamerica, the Atlantic forests of Brazil,
southern Chile, the Rocky Mountains, northern Assam, the Pacific forests of Colombia, the

Caucasus, and the Russian Far East (Fig. 3).

Concentrations of forest in low health are found in many regions including west and central
Europe, the south-eastern USA, island and mainland South-East Asia west of New Guinea, the
Andes, much of China and India, the Albertine Rift, West Africa, Mesoamerica and the Atlantic
Forests of Brazil (Fig. 3). The overall extent of forests in low health is greatest in the Paleartic
realm, followed by the Neotropics, which are also those biogeographic realms with the largest
forest cover (Table 1). The Indo-Malayan realm has the highest percentage in low health,

followed by the Afrotropics (Fig. 3; Table 1).

These patterns result in variation in forest health scores at a resolution relevant for policy and
management planning, such as at national and sub-national scales. The global average FHI score
for all countries is 5.48 representing generally low forest health, and a quarter of forested
countries have a national average score < 4. National mean scores vary widely, ranging from >9
in Guyana, French Guiana, Gabon, Sudan and South Sudan to <3 in Sierra Leone and many west
European countries (see Fig 4. And Table S5 for full list of countries). Provinces and other sub-
national units vary even more widely, in ways that allow objective comparisons to be made

between locations (see Fig. S2 and Table S6)

Over one-quarter (26.1%) of all forests in high health fall within protected areas, compared to just

13.1% of low and 18.51% of medium health forests, respectively. For all forests that are found
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within nationally designated protected areas (around 20% of all forests globally), we found the
proportions of low, medium and high health forests were 16.8%, 30.3%, and 52.8% respectively
(Table 2). Within the different protected area categories, we typically found that there was more
area within the high health category versus the medium and low except for Category V (protected
landscape/seascape) (Table 2). However, with 47.1% of forests within protected areas having low

to medium health overall, it is clear that forest considered ‘protected’ are already often fairly

modified (Table 2).

Discussion

By providing a transparent and defensible methodological framework, and taking advantage of
global data on forest extent, changes in forest connectivity, and human drivers of forest
modification, our analysis paints a new, sobering picture of the extent of human impacts on the
world’s forests. This analysis enables the changes that degrade many forest values (8§) to be
visualized in a new and compelling way and for policy makers and decision makers to see where
Earth’s remaining forests that are in good condition are. By integrating data on multiple pressures
that are known to modify forests, our analysis is the first to move global quantification beyond the
use of simple categories to a more nuanced depiction of this issue as a continuum, recognising
that not all existing forests are in the same condition. Our analysis reveals that severe and
extensive forest modification has occurred across all biogeographic regions of the world.
Consequently, indices only using forest extent may inadequately capture the true impact of human
activities on forests, and are insensitive to many drivers of forest modification and the resulting

losses of forest benefits.

Page 8 of 54


https://doi.org/10.1101/2020.03.05.978858
http://creativecommons.org/licenses/by-nc-nd/4.0/

)7

8

29

20

J1

)2

23

)4

)5

)6

)7

)8

)9

10

11

12

13

14

15

16

17

18

19

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.978858; this version posted March 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A plan is clearly needed to put in place retention strategies for the remaining forests in high
health, tailored towards the context in each country or jurisdiction and its different forest types
(32, 33), because such areas are known to hold exceptional value. Avoiding modification is a
better strategy than aiming to restore forest condition after it is lost, because restoration is more
costly, risky, and unlikely to lead to full recovery of benefits (5). For the least-modified forests to
be retained they should ideally be mapped using nationally appropriate criteria by the countries
that hold them, formally recognized, prioritized in spatial plans, and placed under effective
management (e.g. protected areas and other effective conservation areas, lands under Indigenous
control etc.). These forests must be protected from industrial development impacts that degrade
them, and sensible public and private sector policy that is effective at relevant scales is needed
(12, 34). Our global assessment reveals where these places are found, and can be refined at more

local scales where better data are available.

Around a third of global forests had already been cleared by 2000 (35), and we show that at least
59% of what remains is in low to medium health, with > 50% falling in these two broad
categories in every biogeographical realm. These levels of human modification result partly from
the large areas affected by diffuse, anthropogenic edge effects and lost connectivity. We also map
a surprising level of more localized direct effects, such as infrastructure and recent forest loss,

which are observed in nearly a third of forests worldwide.

Conservation strategies in these human-dominated forests should focus on securing any remaining
fragments of forests in good condition, proactively protecting those partially modified forests
most vulnerable to further modification (7) and planning where restoration efforts might be most
effective (36-38). In addition, effective management of production forests is needed to sustain

yields without further worsening their ecological integrity (39). More research is required on how
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to prioritize, manage, and restore forests in low to medium health (38, 40), and the FHI presented
here might prove useful for this, for example, by helping prioritize where the best return on

investments are, in combination with other sources of data (417).

Loss of forest health severely compromises many benefits of forests that are central to achieving
many of the Sustainable Development Goals and other societal targets (42, 43). Therefore, nations
must adopt policies and strategies to retain and restore the ecological health of their forests, whilst
ensuring that the solutions are also economically viable, socially equitable, and politically
acceptable within complex and highly diverse local contexts. This is an enormous challenge and
our efforts to map the degree of forest modification are designed both to raise awareness of the
importance of the issue, and to support implementation through target setting, evidence-based

planning, and enhanced monitoring efforts.

Whilst policy targets for halting deforestation are generally precise and ambitious, only vague
targets are typically stipulated around reducing levels of forest modification (9, 44). We urgently
need SMART (specific, measurable, achievable, realistic, and time-bound) goals and targets for
maintaining and restoring forest health that directly feed into higher-level biodiversity, climate,
land degradation, and sustainable development goals (45). These types of targets should be
included within an over-arching target on ecosystems within the post-2020 Global Biodiversity
Framework, which is currently being negotiated among Parties to the CBD (46). This target
should be outcome-focused and address both the extent and the integrity of ecosystems (e.g. using
FHI for forests), in a way that enables quantitative, measurable goals to be set but allows

flexibility for implementation between Parties.
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In addition to broader goals in global frameworks, the retention and restoration of forest health
should also be addressed in nationally-defined goals embodied in, and aligned between,
Nationally Determined Contributions under the UNFCCC, efforts to stop land degradation and
achieve land degradation neutrality under the UNCCD, and National Biodiversity Strategy and
Action Plans under the CBD. Since no single metric can capture all aspects of a nation’s
environmental values, efforts to conserve high levels of forest health should be complemented by
consideration of areas support important values according to other measures (e.g. Key

Biodiversity Areas (47) and notable socio-cultural landscapes).

The overall level and pervasiveness of impacts on Earth’s remaining forests is likely even more
severe than our findings suggest, because some input data layers, despite being the most
comprehensive available, are still incomplete as there are lags between increases in human
pressures and our ability to capture them in spatial datasets (e.g., infrastructure, 48, 49, see also
Fig. SI and text S5). For example, roads and seismic lines used for natural resource exploration
and extraction in British Columbia, Canada, are not yet fully reflected in global geospatial
datasets (Fig. S1; see also 50). Furthermore, because natural fires are such an important part of
the ecology of many forest systems (e.g. boreal forests) and because we cannot consistently
identify anthropogenic fires from natural fires at a global scales (57) we have taken a strongly
conservative approach to fire in our calculations, treating all tree cover loss in 10 km pixels where
fire was the dominant driver (23) as temporary, and not treating such canopy loss as evidence of
direct human pressure. Varying these assumptions where human activity is shown to be causing
permanent tree cover losses, increasing fire return frequencies, or causing fire in previously fire-
free systems would result in lower forest extent and/or lower forest health scores in some regions

than we report.
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We map forest health based on quantifiable processes over the recent past (since 2000). In some
areas, modification that occurred prior to this is not detectable by our methods yet, and may have
influenced the present-day modification of the forest and, in such cases, we may overestimate
forest health (e.g. historical logging). This is another reason why our index should be considered
as conservative, and we therefore recommend that the index be used alongside other lines of
evidence to determine the absolute level of ecological integrity of a given area. Moreover, the
definition of forest in this study is all woody vegetation taller than 5 m, following (22) and hence
includes not only naturally regenerated forests but also tree crops, planted forests, wooded
agroforests and urban tree cover in some cases. Users should be mindful of this when interpreting
the results, especially when observing areas with low health scores. Inspection of the results for
selected countries with reliable plantation maps (52) shows that the great majority of planted
forests have low health scores, because they are invariably associated with dense infrastructure,

frequent canopy replacement and patches of farmland.

We note our measure of forest health does not address past, current and future climate change. As
climate change affects forest condition both directly and indirectly, this is a clear shortfall and
needs research attention. The same is true for invasive species, as there is no globally coherent
data on the range of those invasive species that degrade forest ecosystems, although this issue is
indirectly addressed since the presence of many invasive species which are spatially correlated
with the human pressures that we use as drivers in our model (53). If global data became available
it would also be valuable to incorporate governance effectiveness into our model, because there
are potentially contexts (e.g. well-managed protected areas and community lands, production
forests under ‘sustainable forest management’) where the impacts associated with the human

pressures we base our map on are at least partially ameliorated (39), and enhanced governance is
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also likely to be a significant component of some future strategies to maintain and enhance forest

health.

The framework we present has great potential to be tailored for use at smaller scales, ranging
from regional to national and sub-national scales, and even to individual management units.
Forest definitions and the relative weights of the global parameters we use can be adjusted to fit
local contexts and, in many cases, better local data could be substituted, or additional variables
incorporated. This would increase the precision of the index in representing local realities, and
increase the degree of ownership amongst national and local stakeholders whose decisions are so

important in determining forest management trajectories.

Materials and Methods

To produce our global Forest Health Index (FHI), we combined four sets of spatially explicit
datasets representing: (i) forest extent (22); (i1) direct pressure from high impact, localized human
activities, specifically: infrastructure, agriculture, and recent deforestation (53); (iii) indirect
pressure associated with edge effects (54), and other diffuse processes, (e.g. activities such as
hunting and selective logging) (55) modelled using proximity to direct pressures; and iv)
anthropogenic changes in forest connectivity due to forest loss (56 see Table S1 for data sources).
These datasets were combined to produce an index score for each forest pixel (300m), with the
highest scores reflecting the highest forest health (Fig 1), and applied to forest extent for the start
of 2019. We use globally consistent parameters for all elements (i.e. parameters do not vary

geographically). All calculations were conducted in Google Earth Engine (GEE) (57).
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Forest extent

We derived a global forest extent map for 2019 by subtracting from the Global Tree Cover
product for 2000 (22) annual Tree Cover Loss 2001-2018, except for losses categorized by Curtis
and colleagues (23) as those likely to be temporary in nature (i.e. those due to fire, shifting
cultivation and rotational forestry). We applied a canopy threshold of 20% (based on related
studies e.g. 29, 58) and resampled to 300m resolution and used this resolution as the basis for the

rest of the analysis (see text S1 for further mapping methods).

Direct human pressures

We quantify direct human pressures (P) within a pixel as the weighted sum of impact of
infrastructure (I; representing the combined effect of 41 types of infrastructure weighted by their
estimated general relative impact on forests (Table S3), agriculture (A) weighted by crop intensity
(indicated by irrigation levels), and recent deforestation over the past 18 years (H; excluding

deforestation from fire, see Discussion). Specifically, for pixel i:

Pi = exp(-ili) + exp(-B2Ai) + exp(-B3Hi)

whereby the values of B were selected so that the median of the non-zero values for each
component was 0.75. This use of exponents is a way of scaling variables with non-commensurate
units so that they can be combined numerically, while also ensuring that the measure of direct
pressure is sensitive to change (increase or decrease) in the magnitude of any of the three
components, even at large values of I, A or H. This is an adaptation of the ‘Human Footprint’

methodology (53). See text S3 for further details.
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Proximity (indirect) pressures

Indirect pressures are the diffuse, non-localized effects of a set of processes that includes
microclimate and species interactions relating to the creation of forest edges (59) and a variety of
intermittent or transient anthropogenic pressures such as: selective logging, fuelwood collection,
hunting; spread of fires and invasive species, pollution, and livestock grazing (55, 60, 61). We
modelled the collective, cumulative impacts of these proximity effects through their spatial
association with direct human pressure in nearby pixels, including a decline in effect intensity
according to distance, and a partitioning into stronger short-range and weaker long-range effects.

The indirect pressure (P’) on pixel i from source pixel j is:

P’ij = P;(Wij+Vij)

where w;; is the weighting given to the modification arising from short-range pressure, as a
function of distance from the source pixel, and v;; is the weighting given to the modification

arising from long-range pressures.

Short-range effects include most of the processes listed above, which together potentially affect
most biophysical features of a forest, and predominate over shorter distances. In our model they

decline exponentially, approach zero at 3 km, and are truncated to zero at 5 km (see text S4).

wij=0 [for d;; >5 km)]
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where o is a constant set to ensure that the sum of the weights across all pixels in range is 1.85
(see below), A is a decay constant set to a value of 1 (see (62) and other references in text S4) and

d;; is the Euclidean distance between the centres of pixels i and j expressed in units of km.

Long-range effects include over-harvest of high socio-economic value animals and plants,
changes to migration and ranging patterns, and scattered fire and pollution events. We modelled
long-range effects at a uniform level at all distances below 6 km and they then decline linearly
with distance, conservatively reaching zero at a radius of 12 km (55, 63 and other references in

text §4):

Vij =Y [for d;; <6 km]
vij=v x (12-d;))/6  [for 6 km <d;; <12 km]

vij =0 [for d;; >12 km]

Where v is a constant set to ensure that the sum of the weights across all pixels in range is 0.15

and d;; is the Euclidean distance between the centres of pixels i and j, expressed in kilometres.

The form of the weighting functions for short- and long-range effects and the sum of the weights
(at+y) were specified based on a hypothetical reference scenario where a straight forest edge is
adjacent to a large area with uniform human pressure, and ensuring that in this case total indirect
pressure immediately inside the forest edge is equal to the pressure immediately outside, before
declining with distance. y is set to 0.15 to ensure that the long-range effects conservatively
contribute no more than 5% to the final index in the same scenario, based on expert opinion and
supported e.g. Berzaghi et al. (64) regarding the approximate level of impact on values that would

be affected by severe defaunation and other long-range effects.
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The aggregate effect from indirect pressures (P”) on pixel 7 from all n pixels within range (j=1 to

j=n) is then the sum of these individual, normalized, distance-weighted pressures, i.e.

Loss of forest connectivity

Average connectivity of forest extent around a pixel was quantified using a method adapted from
Beyer et al. (56). The connectivity Ci around pixel i surrounded by n other pixels within the

maximum radius (numbered j=1, 2...n) is given by:

Ci = E[j:Imn] (FjGi,j)

where Fj is the forest extent is a binary variable indicating if forested (1) or not (0) and Gi,j is the
weight assigned to the distance between pixels i and j. Gi,j uses a normalized Gaussian curve,
with o = 20km and distribution truncated to zero at 4c for computational conveniences (see text
S3). The large value of ¢ captures landscape connectivity patterns operating at a broader scale

than processes captured by other data layers. C; ranges from 0 to 1 (C; € [0,1]).

Current Configuration (CC;) of forest extent in pixel i was calculated using the final forest extent
map and compared to the Potential Configuration (PC) of forest extent without extensive human
modification, so that areas with naturally low connectivity, e.g. coasts, are not penalized. PC was

calculated from a modified version of the map of Laestadius ef al. (35) and resampled to 300 m
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18  resolution (see text S2 for details). Using these two measures, we calculated Lost Forest

19 Configuration (LFC) for every pixel as:

21 LFC;= 1 - (CC/PC))

23 Values of CC,/PC; >1 are assigned a value of 1 to ensure that LFC is not sensitive to apparent
24 increases in forest connectivity due to inaccuracy in estimated potential forest extent — low values

25 represent least loss, high values greatest loss (LFC; € [0,1]).

27 Calculating the Forest Health Index

29 The three constituent metrics, LFC, P and P’, all represent increasingly modified conditions the
30 larger their values become. To calculate a health index in which larger values represent less

31 degraded conditions we therefore subtract the sum of those components from a fixed large value
32 (here, 3). Three was selected as our assessment indicates that values of LFC + P + P’ of 3 or more
33 indicate the most severely degraded areas with losses in many forest benefits. The metric is also
34 rescaled to a convenient scale (0-10) by multiplying by an arbitrary constant (10/3). The forest

35 health index for forest pixel i is thus calculated as:

36

37 FHI; = [10/3] * (3- min(3, [Pi+P’i+ LFC/]))

38

39 where FHI; ranges from 0 - 10, areas with no modification detectable using our methods scoring
10 10 and those with the most (that remain classified as forest) scoring 0.

11
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Hllustrative forest health classes

Whilst a key strength of the index is its continuous nature, the results can also be categorized for a
range of purposes. In this paper three illustrative classes were defined, mapped and summarized
to give an overview of broad patterns of modification in the world’s forests. The three categories

were defined as follows.

High Forest Health (scores >9.6) Interiors and natural edges of more or less unmodified
naturally-regenerated forest ecosystems, comprised entirely or almost entirely of native species,
occurring over large areas either as continuous blocks or natural mosaics with non-forest
vegetation; typically little human use other than low intensity recreation or spiritual uses and/or
low intensity extraction of plant and animal products and/or very sparse presence of
infrastructure; key ecosystem functions such as carbon storage, biodiversity and watershed
protection and resilience expected to be very close to natural levels (excluding any effects from
climate change) although some declines possible in the most sensitive elements (e.g. some high

value hunted species).

Medium Forest Health (scores >6.0 but <9.6) Interiors and natural edges of naturally-regenerated
forest ecosystems in blocks smaller than their natural extent but large enough to have some core
areas free from strong anthropogenic edge effects (e.g. set asides within forestry areas,
fragmented protected areas), dominated by native species but substantially modified by humans
through a diversity of processes that could include fragmentation, creation of edges and proximity
to infrastructure, moderate or high levels of extraction of plant and animal products, significant
timber removals, scattered stand-replacement events such as swidden and/or moderate changes to

fire and hydrological regimes; key ecosystem functions such as carbon storage, biodiversity,
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watershed protection and resilience expected to be somewhat below natural levels (excluding any

effects from climate change).

Low Forest Health (score <6.0): Diverse range of heavily modified and often internally
fragmented ecosystems dominated by trees, including (i) naturally regenerated forests, either in
the interior of blocks or at edges, that have experienced multiple strong human pressures, which
may include frequent stand-replacing events, sufficient to greatly simplify the structure and
species composition and possibly result in significant presence of non-native species, (ii) tree
plantations and, (iii) agroforests; in all cases key ecosystem functions such as carbon storage,
biodiversity, watershed protection and resilience expected to be well below natural levels

(excluding any effects from climate change).

The numerical category boundaries were derived by inspecting FHI scores for a wide selection of
example locations whose health according to the category definitions was known to the authors,

see text S6 and Table S4.

Protected areas analysis

Data on protected area location, boundary, and year of inscription were obtained from the
February 2018 World Database on Protected Areas (65). Following similar global studies (e.g.
66), we extracted protected areas from the WDPA database by selecting those areas that have a
status of “designated”, “inscribed”, or “established”, and were not designated as UNESCO Man
and Biosphere Reserves. We included only protected areas with detailed geographic information

in the database, excluding those represented as a point only. To assess health of protected forest,
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we extracted all 300m forest pixels that were at least 50% covered by a formal protected area and

measured the average FHI score.

H2: Supplementary Materials
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Table 1. A summary of the Forest Health Index scores for each biogeographic realm globally,
measuring the mean score, in addition to the area and proportion of realm for each category of

health. Scores are divided into three categories of health: high, medium and low.

Table 2. A summary of the Forest Health Index scores for each type of protected area designation
based on the IUCN Protected Areas categories measuring mean score, in addition to the area and
proportion of realm for each category of health. Scores are divided into three categories of health:

high, medium and low.

Figure 1. The Forest Health Index was constructed based on three main data inputs: 1) direct
pressures (infrastructure, agriculture, tree cover loss), 2) indirect forest pressure (based on

proximity to the direct pressures), and change in forest connectivity.

Figure 2. A global map of Forest Health for 2019. Three regions are highlighted including A)
USA, B) Equatorial Guinea C) Myanmar. For a) shows the edge of Smoky Mountains National
Park in Tennessee b) shows a logging truck passing through some partially degraded forest along
a newly constructed highway in Shan State, ¢) An intact mangrove forest within Reserva Natural
del Estuario del Muni, near the border of Gabon. The star indicates approximately where the

photos were taken (A2, B2 and C2).

Figure 3. The Forest Health Index for 2019 categorized into three broad, illustrative classes and
mapped for across each biogeographic realm (A — G). The size of the pie charts indicates the
relative size of the forests within each realm (A - G), and H shows all the world’s forest

combined.
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Figure 4. The Forest Health Index for 2019 categorized into three broad, illustrative classes for

each major forested country in the world. (A) countries with a forest extent larger than 1 million

km?, and (B) countries with forest extent between 1 million km? and 100,000 km? of forest. The

size of the bar represents the area of a country’s forests.

Table 1

Biogeographic  Total FHI High Medium Low
Realm forest 9.6 -10) (6-9.6) 0-6)

Km? Mean Km? % of Km? % of Km? % of

realm realm realm
Afrotropic 7,362,740  7.34 2450953 333 2,903,483 39.4 2,008,304 273
Australasia 1,711,684 8.05 056,701 384 753,188 44.0 301,796 17.6
Indo-malayan 3,596,249 59 420977 11.7 1,599,049 44.5 1,576,223 43.8
Neotropic 10,271,519 7.81 4,579,406 44.6 3,122,706 30.4 2,569,407  25.0
Oceania 23,389 7.66 5279 22,6 14,331 61.3 3,780 16.2
Palearctic 12,172,668 8 5,571,997 458 3,910,629 32.1 2,690,042  22.1
Nearctic 7,794,117 7.84 3716855 477 2257518  29.0 1,819,744 233
Total 42,932,367 7.76 17,402,170 14,560,903 10,969,294
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Table 2.

Protected Area Total FHI High Medium Low
Category forest (score 9.6 - 10) (score 6 — 9.6) (score 0 - 6)
% of % of % of
Km? Mean Km? protected Km? protected Km?  protected
area area area
Ia (strict nature reserve) 439,082 9.27 304,329 69.31 106,703 24.3 28,049 6.39
Ib (wilderness area) 367,330 9.22 240,453 65.46 102,096 27.79 24,780 6.75
IT (national park) 1,900 9.14 1,223,138 64.38 540,805 28.46 136,056 7.16
111 (natural monument or feature) 113,805 8.49 54,476 47.87 40,021 35.17 19,308 16.97
IV (habitat/species management area) 838,707 8.69 432,828 5161 268,027 3196 137,850  16.44
V (protected landscape/seascape) 840,919 6.4 224,491 26.7 295,769 35.17 320,658 38.13
VI (Protected area with sustainable use of 1,472,278 9.21 1,026,169 69.7 344,617 23.41 101,491 6.89
natural resources)
Not Applicable / Not Assigned / Not Reported 2,613,541 8.29 1,030,430 39.42 906,745 34.69 676,365 25.88
All Protected Areas 8,585,661 8.55 4,536,314  52.83 2,694,784 30.34 1,444,562 16.82
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Supplementary Materials

Text S1. Mapping forest extent

We generated a preliminary base map of global forest extent for the start of 2019 at 30 m
resolution by subtracting annual Tree Cover Loss 2001-2018 (with exceptions noted in the next
paragraph) from the Global Tree Cover 2000 product (22) using a canopy cover threshold of 20%.
This is one of the most widely used tree cover datasets globally, so it has been widely tested in
many settings and its strengths and constraints are well understood. It has many advantages,
including its high resolution, high accuracy, global coverage, annual time series and good
prospects of sustainability in the coming years. The definition of forest in the source dataset is all
woody vegetation taller than 5 m and hence includes naturally regenerated forests as well as tree
crops, planted forests, wooded agroforests and urban tree cover. No globally consistent dataset
was available that allowed natural and planted tree cover to be consistently distinguished in this

study. Therefore, be mindful of the many differences between planted and natural tree cover (e.g.

(67)).

More than 70% of the tree cover loss shown by the Hansen et al. (22) products has been found to
be in 10 km pixels where the dominant loss driver is temporary and so tree cover is expected to
return above the forest definition threshold within a short period (23). It is important to take
account of this issue as treating all such areas as permanent loss would severely under-estimate
current forest cover in many regions. However, no global map of forest cover gain exists for the
study period other than the 2000-2012 gain product from Hansen et al. (22), so we developed an

alternative approach. When removing annual loss shown by the Global Tree Cover Loss product
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cited above we elected not to remove any loss that was in a 10 km pixel categorized by Curtis et
al. (23) as dominated by temporary loss under the categories of fire, shifting cultivation or
rotational forestry. This resulted in the adjusted preliminary forest base map. The balance of
evidence is that the great majority of such areas would have begun to regenerate and hence
qualify as forest by our definition again by 2019 or soon after (23). The anthropogenically
disturbed nature of many of these areas of temporary tree cover loss and recovery is reflected in
scoring within the index, because temporary tree cover loss in the categories of shifting
cultivation or rotational forestry is treated as an indicator of direct pressure. We do not treat tree
cover loss through fire as an indicator of direct human pressure, because fires are often part of
natural processes, especially in the boreal zone. This makes our global index conservative as a
measure of degradation in these zones, because in some locations fires are anthropogenic in

nature.

The adjusted preliminary base map was then resampled to a final base map for 2019 at 300m
resolution using a pyramid-by-mode decision rule, with the resulting pixels simply classified as
forest or non-forest based on a majority rule. The FHI was calculated for every forest pixel but
not for non-forest pixels. GEE performs calculations in WGS84. Supplementary analyses outside

GEE were applied using a Mollweide equal-area projection.

Text S2. Mapping potential forest configuration

Potential connectivity (PC) is calculated from an estimate of the potential extent of the forest zone
taken from Laestadius et al. (35), treating areas below 25% crown cover (this was the nearest
class to the tree cover data of 20%) as non-forest and resampling to 300 m resolution. To

minimize false instances of lost connectivity and ensure measures of forest modification are
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conservative we masked from this data layer areas which we believe to include a significant
proportion of naturally unforested land using selected land-cover categories in ESA ((68); see
Table S1). Because these natural non-forest patches are shown in the Hansen et al. (22) dataset
but not Laestadius et al. (35), not excluding such classes would result in an inflated estimate of
the loss of connectivity and hence the level of degradation. We have elected to remain

conservative in our estimate of modification.

Text S3. Mapping direct human pressure

Several recent analyses have developed composite, multi-criteria indices of human pressure to
provide assessments of ecosystem condition for the USA (69) or globally (26, 70, 71). Thompson
et al. (72) set out a framework specific to forest ecosystems that could indicate modification
through a balanced mix of available pressure and state variables. We adapted the methodology of
Venter et al. (26), informed by the other studies cited, to generate measures of (i) the modification
of forest associated with direct human pressure from infrastructure, agriculture and deforestation
and (ii) the more diffuse modification effects (e.g. edge effects) resulting from proximity to these
focal areas of human activity (‘indirect pressure’). Edge effects resulting entirely from natural
processes are excluded, because they do not represent modification by our definition, although,

like many other natural factors, they do also have a role in determining ecosystem benefits.

Infrastructure

We generated the infrastructure (I’) data layer by rasterizing the OpenStreetMap data (73) from

Feb 2018, using weights for each type of infrastructure as noted in Table S3. The weights were
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derived from authors’ expert opinion and experimentation with weights according to their relative

impact on forest condition.

Agriculture

For agriculture (A’) we made a global binary composite of the croplands datasets produced by the
USGS (Table 1) at 30 m resolution, and weighted each cropped pixel at this resolution by the
likely intensity of cropping using the global irrigation dataset at 1km resolution (Teluguntla et al,
(74)), with values of Irrigation Major = 2, Irrigation Minor = 1.5, Rainfed = 1. The average
cropping intensity (including uncropped areas, which score zero) was then calculated across the

whole of each 300 m pixel of our final basemap.

Deforestation

For deforestation (H’) we made a binary composite of tree cover loss 2001-2018 at 30 m
resolution (22), masked out 30 m pixels already classified as agriculture in the preceding step to
avoid double-counting, and excluded loss predicted by Curtis et al. (23) to be most likely caused
by fires, to give a conservative data layer of recent permanent and temporary tree cover loss
indicative of human activity in the immediate vicinity. We excluded small clusters of 6 or fewer
pixels (0.54 ha) because they may have been natural tree cover loss (e.g. small windthrows) or
classification errors. Each 30 m pixel was then weighted by its year of loss, giving higher weight
to the most recent loss (2001 = 1, 2002 = 2, etc.). The average ‘recentness’ of deforestation
(including areas not deforested, which score zero) was then calculated across the whole of each

300 m pixel of our base map.
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Transformations

The exponential transformations described in the main text were used to convert I’, A’ and H’ to

the variables I, A and H respectively.

Text S4. Modelling indirect human pressure

Each cell also experiences modification as a result of pressures originating from nearby cells that
have signs of direct human pressure, largely through the family of processes known as ‘edge
effects’ (54). Edge effects are partly a result of the changes relating to biophysical factors (such as
humidity, wind, temperature and the increased presence of non-forest species) that accompany the
creation of new edges in formerly continuous forest (as exemplified by the carefully controlled
studies in tropical forests summarized by Laurance ef al. (59)). They also result in part from the
increased pressure associated with human activities within tropical forest near to edges such as
logging (61), anthropogenic fire (60), hunting (55), livestock grazing, pollution, visual and
auditory disturbances, etc. These multiple factors are synergistic and so we model them together,

notwithstanding regional and local variations in the relative intensity of each one.

We model the proximity effect caused by each nearby source cell as a function of (a) the direct
human pressure observed in that source cell and (b) a decline in the intensity of edge effects with
distance from the source cell, based on a review of the literature. We then determine the total
proximity effect on a given cell by summing the individual effects from all source cells within a

certain range.
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Two complementary types of proximity effect are modelled and added together. One relates to the
diverse, strong, relatively short-range edge effects which decay to near zero over a few kilometers
and have the potential to affect most biophysical features of a forest to a greater or lesser extent.
The other relates to weaker, longer-range effects such as over-hunting of high-value animals that
affect fewer biophysical features of a forest (and so have a much smaller maximum effect on
overall integrity) but can nonetheless have detectable effects in locations more than 10 km from

the nearest permanent human presence.

The literature on the spatial influence of short-term effects uses a variety of mathematical
descriptors, in two broad categories — continuous variables and distance belts. As we wish to
model edge effects as a continuous variable we concentrated on studies that have taken a similar

approach, and used distance-belt studies as ancillary data.

Chaplin-Kramer et al. (62) is a good example of a continuous variable approach, estimating
detailed biomass loss curves near tropical forest edges. Because they analyze a key forest
condition variable with a very large pantropical dataset we hypothesize that the exponential
declines in degradation with distance that they find are likely to be a common pattern and so we
use a similar framework for our more general model of degradation. We consider that a model of
exponential decay is also a sufficient approximation to the evidence presented by some authors as
graphs without an associated mathematical model (e.g., (60, 75)) or analyzed using logistic
regression (e.g., (76)). In our model we set the exponential decay constant to be broadly
consistent with these four studies, resulting in degradation at 1 km inside a forest that is
approximately 37% of that at the forest edge, declining to 14% at 2 km and near zero at 3 km. We

truncate the distribution at 5 km to minimize computational demands.
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Distance-belt studies define the width of a belt within which edge effects are considered to occur,
and beyond which forests are considered to be free of edge effect. Belts of 1 km are commonly
used (e.g., (54)) but smaller distances may be used for specific parameters (e.g. 300 m for
biomass reduction near edges in DRC’s primary forests; (27)). Our continuous variable approach
is broadly consistent with these studies, with the majority of our modelled degradation within a 1
km belt and little extending beyond 2 km. While most individual edge effects reported in the
literature penetrate less than 100-300 m (e.g., (59, 77)) most of the effects reported on in these
studies relate to the changed natural factors mentioned in an earlier paragraph, and are likely to be
dwarfed in both intensity and extent by edge effects relating to spillovers of human activity, so
our model emphasizes the spatial distribution of the latter (e.g., (60)). We consider our model to

be conservative.

For the weaker, more widespread long-range effects we use recent large-scale studies of
defaunation, which is one of the key long-range pressures and also acts as a proxy for other
threats including harvest of high value plants (such as eaglewood Aquilaria spp. in tropical Asia),
occasional remote fires, pollution associated with artisanal mining, etc. We adopt a simplified
version of the distribution used by Peres ef al. (55) to model hunting around settlements in the
Amazon, which sets 26=12 km; this is likely conservative compared to evidence for hunting-
related declines in forest elephants in central Africa up to 60 km from roads (63) and the
extensive declines in large-bodied quarry species in remote areas in many regions modelled by

Benitez-Lopez et al. (78).

Text S5. Limitations in data: example with infrastructure data in British Columbia, Canada
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OpenStreetMap (OSM) represents the most detailed publicly available global dataset but is
nonetheless noted to be incomplete, even for one of the most heavily used categories of
infrastructure, paved roads (48). No global assessment is available for the completeness of other
categories in the dataset. One of the key categories for forest health, unpaved roads used for
resource extraction, has been shown to be incomplete over much of insular South-east Asia (49).
In Canada, for example, roads and other linear corridors used to explore, access and extract
natural resources (e.g., logging, oil and gas, and minerals) are sometimes missing. Government
data for the province of British Columbia (available at
https://catalogue.data.gov.bc.ca/dataset/digital-road-atlas-dra-master-partially-attributed-roads)
demonstrates, for example, the larger extent and density of regional roads as compared to OSM

(Fig S1).

Text S6. Classification of Forest Health Index scores

In this paper, three illustrative classes were defined, mapped and summarized to give an overview
of broad patterns of degradation in the world’s forests. Three categories were defined as set out in
the Materials and Methods. To determine the approximate levels of the Forest Health Index
associated with these three categories, example locations were selected in sites that could
unambiguously be assigned to one of the categories using the authors’ personal knowledge. At
each site a single example pixel was selected within a part of the area with relatively uniform
scores. The sample points are summarized in Table S4; they are widely spread across the world to
ensure that the results are not only applicable to a limited region. The scores at these points

suggest the following category boundaries:

e High FHI - 9.6-10
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e Medium FHI - 6-9.6

e LowFHI-0-6

Table S1. The datasets used to develop the Forest Health Index. The factor column indicates the
component of the index the dataset was used in.

Dataset

Factor

Sources

Tree cover and
tree cover loss

Major tree cover
loss driver

Landover and
ocean extent

Potential forest
cover

Natural non-forest
areas within extent
of potential forest
Infrastructure

Cropland

Cropping intensity
(irrigation)

Water surface

Forest extent,
connectivity,
direct and
indirect pressure

Forest extent,
direct and
indirect pressure,
connectivity
Forest extent

Connectivity

Connectivity

Direct and
indirect pressure

Direct and
indirect pressure

Direct and
indirect pressure

Direct and
indirect pressure

Global Forest Cover datasets; Hansen et al. (22); updates to
2018 available on-line from:
http://earthenginepartners.appspot.com/science-2013-global-
forest.

Curtis et al. (23)

Lamarche et al. (79)

Laestadius et al. (35)

ESA-CCI Land Cover dataset; ESA (68)

Open Street Map (selected elements) as of 2018;
OpenStreetMap contributors (73)

GFSAD 2015 Cropland Extent; Gumma et al. (80), Massey et
al. (81), Oliphant et al. (§2), Phalke et al. (83), Teluguntla et
al. (84), Xiong et al. (85) and Zhong et al. (86)

GFSAD 2010 Cropland Mask; Teluguntla et al. (74)

JRC Global Surface Water Occurrence (all classes with >75%
occurrence); Pekel et al. (87)
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significant areas of natural non forest

Legend Class name

code

60 Treecover, broadleaved, deciduous, closed to open, >15%
100 Mosaic tree and shrub (>50%]/ Herbaceous cover (<50%)
120 Shrubland

121 Evergreen shrubland

122 Deciduous shrubland

130 Grassland

140 Lichens and mosses

150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)
152 Sparse shrub (<15%)

180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water
200 Bare areas

201 Consolidated bare areas

202 Unconsolidated bare areas

220 Permanent snow and ice
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Table S3. Weightings used for Open Street Map (OSM) to combine into the Infrastructure data

layer.
OSM Category OSM Subcategory Weighting applied for FPI
Aeroway Apron / Helipad / Runway / Taxiway 8
Hangar / Terminal 4
Aerodrome / Heliport / Spaceport 3
Amenity / Landuse / Fuel station / Gasometer / Petroleum well / Pipeline / Adit / 15
Man-made object Mineshaft / Quarry / Landfill / Sanitary dump station / Wastewater
plant
Chimney 10
Industrial 8
Basin / Covered Reservoir / Pumping station / Water tower / Water 7
well / Water works / Watermill
Silo / Storage tank / Works 6
Aerialway / Beacon / Lighthouse / Breakwater / Dyke / 5
Embankment / Groyne / Pier / Communications tower / Mast /
Observatory / Tower / Telescope
Salt pond 4
Alpine hut / Beach resort / Camp site / Cemetery / Golf course / 3
Marina / Pitch / Village green / Wilderness hut
Barrier City wall / Retaining wall / Wall 5
Ditch / Snow fence / Snow net 3
Hedge 2
Road Motorway / Motorway link / Raceway 15
Trunk / Trunk link 11
Primary / Primary link 9
Secondary / Secondary link 7
Tertiary / Tertiary link 6
Bus guideway / Service 5
Living street / Mini roundabout / Residential / Turning circle / 4
Unclassified / Unknown/ Elevator / Rest area
Escape / Track 3
Bridleway / Cycleway/ Footway / Path / Pedestrian / Steps 2
Military Nuclear explosion site 30
Danger area / Range / Trench 15
Ammunition / Barracks / Bunker / Checkpoint 7
Airfield / Military-owned land / Naval base / Training area 3
Power Plant/generator - coal 20
Plant/generator - oil 15
Plant/generator — gas/ Plant/generator - bio / waste 10
Plant/generator — hydro; nuclear; other / Line, Substation 7
Plant/generator - solar / Heliostat / wind / Windmill 5
Cable 3
Railway Funicular / Preserved / Rail / Monorail / Subway 10
Light rail / Miniature / Narrow gauge/ Tram 7
Station 5
Halt / Platform 4
Abandoned / Disused 2
Waterway Dam / Lock gate 20
Canal 13
Ditch/ Drain / Weir 3
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Table S4. Points assessed to determine category boundaries for classifying the FHI into high,
medium and low classes.

Category | Code | Point description Country Point
Score

High 103 | Interior of Lopé National Park Gabon 10.000
High 106 | Interior of Tai National Park Cote d'lIvoire 10.000
High 108 | Interior of Pacaya-Samiria National Reserve Peru 10.000
High 109 | Interior of Central Suriname Nature Reserve Suriname 10.000
High 116  Interior of Liard River area Canada 10.000
High 101 | Interior of Okapi Faunal Reserve DRC 9.997
High 104 | Interior of Nyungwe National Park Rwanda 9.992
High 111 | Interior of Rio Platano Biosphere Reserve Honduras 9.990
High 102 | Interior of Odzala National Park RoC 9.974
High 117 | Interior of Wells Gray Provincial Park Canada 9.972
High 119 | Interior of @vre Pasvik National Park Norway 9.944
High 115 | Interior of Tasmania Wilderness World Heritage Area Australia 9.918
High 107 | Interior of Marojejy National Park Madagascar 9.910
High 112 | Interior of Khao Yai National Park Thailand 9.908
High 105 | Interior of Niassa Special Reserve Mozambiuque 9.819
High 110 | Interior of Maya Biosphere Reserve Guatemala 9.798
High 114 | Interior of Batang Ai National Park Malaysia 9.756
High 118 | Interior of Quetico Provincial Park Canada 9.750
High 113 | Interior of Sundarbans National Park Bangladesh 9.606
Medium 215 | Interior of Bialowieza National Park Poland 9.086
Medium 208 | Interior of Mabira Central Forest Reserve Uganda 9.067
Medium 211 | Area of selective logging Gabon 8.840
Medium 219 | Near main tourism corridor, Mt Myohyang National Park DPR Korea 8.762
Medium 203 | Interior of Phnom Kulen Wildlife Sanctuary Cambodia 8.710
Medium 210 | Area of selective logging Guyana 8.364
Medium 202 | Interior of Dong Hua Sao National Protected Area Lao PDR 8.078
Medium 212 | Area of selective logging DRC 7.981
Medium 206 | Interior of Manga Forest Reserve Tanzania 7.960
Medium 207 | Near margin of Nyungwe National Park Rwanda 7.938
Medium 204 | South part of Nagarahole National Park India 7.759
Medium 213 | Area of selective logging Cameroon 7.379
Medium 201 | Tat Leuk, Phou Khaokhoay National Protected Area Lao PDR 7.251
Medium 216 | Interior of Loch Garten Nature Reserve UK 7.146
Medium 209 | Area of selective logging Congo 6.734
Medium 217 | Tourism area, Lamington National Park Australia 6.729
Medium 214 | Lowlands of Guanacaste National Park Costa Rica 6.719
Medium 218 | Near margin of Sepilok Forest Reserve Malaysia 6.353
Medium 205 | Interior of Similajau National Park Malaysia 6.130
Low 305 | Dong Nathat Lao PDR 5.638
Low 317 | Foothills of Mt Makiling Philippines 5.395
Low 310 | Suburban woodlot, Dobbs Ferry USA 4.710
Low 309 | Jozani Forest Reserve Tanzania 4.680
Low 316 | Foothills of Mt Canlaon Philippines 4.597
Low 320 | Forest fragment near Paramaribo Suriname 4.566
Low 302 | Central Park, New York USA 3.575
Low 301 | Bagley Wood, Oxford UK 3.525
Low 307 | Boeng Yeak Lom Protected Area Cambodia 3.323
Low 304 | Angkor Thom Cambodia 3.122
Low 315 | Forest in rural complex, Mambasa area DRC 2.689
Low 312 | Woodland in Beaumont area USA 2.581
Low 318  Swidden near Andoung Kraloeng village Cambodia 2.304
Low 319 | Forest mosaic near Kaev Seima village Cambodia 2.187
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Low 303 | Thetford Forest UK 2.082
Low 313 | Woodland in Augusta area USA 0.686
Low 314 | Woodland in Emporia area USA 0.589
Low 311 | River Park, Chicago USA 0.566
Low 306 = Houei Nhang Forest Reserve Lao PDR 0.000
Low 308 | Pugu Forest Reserve Tanzania 0.000
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)1  Table S5. Mean Forest Health Index scores and areas for forest health categories by country.

)2

Country Mean Low hezalth Medium 2health High hezalth Total forezst
FHI (km*) (km?) (km*) area (km?)

Afghanistan 8.85 90 1,475 977 2,542
Albania 6.77 2,426 5,256 122 7,805
Algeria 5.22 7,418 6,044 81 13,543
Andorra 4.45 170 49 0 219
Angola 8.35 105,487 284,054 315,895 705,436
Antigua and Barbuda 4.72 114 92 0 206
Argentina 7.21 98,249 189,966 72,557 360,772
Armenia 5.46 1,894 1,681 3 3,577
Australia 7.22 117,672 239,624 103,852 461,148
Austria 3.55 36,666 12,422 21 49,109
Azerbaijan 6.55 4,820 7,189 1,534 13,543
Bahamas 7.35 741 1,935 399 3,075
Bangladesh 5.45 10,013 7,251 1,947 19,211
Belarus 3.63 77,870 20,847 91 98,808
Belgium 1.36 8,803 297 0 9,099
Belize 6.15 7,004 7,957 2,744 17,705
Benin 5.86 4,724 3,698 1,769 10,191
Bhutan 8.85 1,620 16,769 10,140 28,529
Bolivia 8.47 78,745 280,532 272,007 631,284
Bosnia and 5.99 13,387 17,031 574 30,993
Herzegovina
Botswana 9.13 13 187 372 572
Brazil 7.52 1,374,902 1,354,961 2,338,101 5,067,963
Brunei Darussalam 7.71 1,102 2,842 1,498 5,442
Bulgaria 6.09 18,884 26,325 847 46,057
Burundi 4.5 6,882 3,841 46 10,769
Cabo Verde 6.37 27 38 0 65
Cambodia 6.31 30,143 31,939 16,349 78,431
Cameroon 8 66,191 181,336 119,263 366,789
Canada 8.99 480,206 1,027,386 2,968,268 4,475,860
Central African 9.28 30,161 139,350 379,097 548,608
Republic
Chad 6.18 5,261 6,016 1,910 13,187
Chile 7.37 56,849 41,971 93,537 192,357
China 7.14 533,800 974,431 301,051 1,809,282
Colombia 8.26 150,737 272,442 428,320 851,499
Comoros 7.69 284 1,149 82 1,515
Congo 8.89 24,512 124,215 158,184 306,911
Congo DRC 7.56 533,118 935,508 727,983 2,196,608
Costa Rica 4.65 27,164 12,838 4,164 44,167
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Cote d'Ivoire
Croatia
Cuba
Cyprus
Czechia
Denmark
Dominica
Dominican Republic
Ecuador
Egypt

El Salvador
Equatorial Guinea
Estonia
Ethiopia
Fiji

Finland
France
Gabon
Gambia
Georgia
Germany
Ghana
Greece
Grenada
Guatemala
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
India
Indonesia
Iran

Iraq
Ireland
Israel

Italy
Jamaica
Japan
Jordan
Kazakhstan
Kenya

3.64
4.92
54
7.06
1.71
0.5
1.06
4.19
7.66
0.56
4.05
7.99
3.05
7.16
8.35
5.08
4.52
9.07
4.56
7.79
2.28
4.53
6.6
4.22
3.85
4.9
5.7
9.58
4.01
4.48
2.25
7.09
6.6
7.67
3.59
0.92
4.14
3.65
5.01
5.8
2.79
8.23
4.2

158,010
15,732
22,605

388

32,161

5,756
531
19,890
48,822
4,772
8,837
3,982

24,473

52,652
1,753

144,310
161,987
11,780

181
6,982

122,168
57,519
14,548

221
58,572
81,702
9,274
4,162
7,116
57,899
18,729
117,992
535,370
3,361
104
5,283
170
79,403
5,362
135,783
12
6,068
28,427

41,005
10,522
18,460

1,026
1,611
31
2
9,364
77,585
218
2,947
17,595
4,832
84,430
10,802
83,572
49,496
118,348
85
17,803
11,307
28,901
27,833
86
18,764
54,877
8,702
40,817
2,831
23,802
2,047

254,792

509,018
12,930

9
96
85
26,858
3,249
133,480
0
18,926
13,558
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7,288
379
1,632
18
0
0
0
518
73,492
69
0
5,007
52
44,397
3,594
9,294
74,121
120,852
0
9,784
0
2,160
1,078
0
5,592
2,895
855
147,413
12
3,692
0
54,428
431,973
2,162
0
0
0
25
158
16,005

15,294
4,702

206,303
26,633
42,697

1,432
33,772
5,787
533
29,772
199,900
5,059
11,784
26,585
29,358
181,479
16,148
237,176
285,604
250,979
266
34,570
133,475
88,580
43,459
308
82,928
139,475
18,831
192,391
9,959
85,392
20,776
427211

1,476,361

18,453
113
5,378
255
106,286
8,770
285,268
12
40,288
46,686
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Kosovo

Kyrgyzstan
Laos

Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macedonia
Madagascar
Malawi
Malaysia
Mali
Mauritius
Mexico
Micronesia
Moldova
Mongolia
Montenegro
Morocco
Mozambique
Myanmar
Namibia
Nepal
Netherlands
New Zealand
Nicaragua
Nigeria
North Korea
Norway
Pakistan
Palau

Panama

Papua New Guinea

Paraguay
Peru
Philippines
Poland
Portugal

Romania

5.19
8.86
5.59
2.09
3.76
7.4
4.79
4.85
4.5
1.62
1.12
7.42
4.63
5.74
5.01
7.16
5.46
6.82
7.55
2.2
9.36
6.41
6.74
6.93
7.18
8.43
7.23
0.6
7.12
3.63
6.2
8.02
6.98
7.42
8.09
6.37
8.84
6.39
8.86
591
2.24
8.82
5.95
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2,628
329
92,986
38,164
541
1
51,975
15
59
24,554
1,170
2,034
120,340
12,514
130,825
451
567
193,908
8
3,113
520
2,949
2,260
150,665
129,745
5
13,785
5,250
34,503
65,356
64,621
8,374
39,343
2,090
45
25,420
37,294
78,538
85,793
91,820
101,886
25,966
38,395

1,775
2,819
80,564
2,137
115
4
31,162
2
42
930
0
7,090
66,584
12,167
91,957
996
478
280,445
35
202
11,915
4,778
4,076
189,362
220,188
13
41,992
72
44,155
17,646
65,355
40,156
67,383
7,859
333
21,310
183,415
102,626
190,547
100,831
7,103
553
48,394

47
2,761
19,252

0
459
11,922
2,396
21,499
140
0
121,842
0
0
27,407
82
451
115,379
96,924
17
3,760
0
35334
4,858
24,307
8,410
16,627
1,139
9
14,605
216,355
29,877
509,720
8,393
0
0
607

4,450
5,909
192,801
40,301
656
5
94,163
17
101
25,484
1,170
9,583
198,846
27,078
244,281
1,586
1,045
596,195
43
3,315
39,841
7,809
6,787
455,406
446,857
36
59,538
5,322
113,992
87,860
154,283
56,939
123,352
11,088
387
61,336
437,064
211,041
786,061
201,044
108,989
26,519
87,395
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Russian Federation
Rwanda
Saint Kitts and Nevis

Saint Lucia

Saint Vincent and the
Grenadines

San Marino

Sao Tome and Principe
Senegal

Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Solomon Islands
Somalia

South Africa
South Korea
South Sudan
Spain

Sri Lanka
Sudan
Suriname
Swaziland
Sweden
Switzerland
Syria

Taiwan
Tajikistan
Tanzania
Thailand
Timor-Leste
Togo

Trinidad and Tobago
Tunisia

Turkey
Turkmenistan
Uganda
Ukraine

United Kingdom
United States
Uruguay

9.02
3.85
4.55
6.17
6.95

0.01
6.64
7.11
5.29
10
2.76
1.11
4.34
3.78
7.19
7.16
4.94
6.02
9.45
4.23
5.83
9.8
9.39
421
5.35
3.53
3.64
6.38
8.65
7.13

7.11
5.88
6.62
5.14
6.39
6.31
4.36
33
1.65
6.65
3.61
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739,484
5,665
95
235
91

;
31
847
17,513
0
52,512
170
17,615
11,065
6,871
347
45,489
25,060
5,083
82,770
20,541
1
6,796
5,054
174,415
13,636
841
8,786
34
123,997
86,276
1,783
5,064
1,478
1,354
43,043
5
77,303
89,540
29,149
1,328,079
11,793

2,245,281
2,170
50
316
221

0
140
2,456
14,112
0
11,858
2
8,165
3,791
15,310
1,384
34,968
32,009
59,389
46,013
22,390
72
25,031
2,501
109,779
4,412
282
14,547
137
159,712
89,326
7,008
4,522
2,176
987
68,243
33
36,381
20,183
2,917
1,144,693
3,998

5,137,079
619

162
516
68
640
0
0
0
3,149
46
3,196
888
146,218
133
1,613
495
107,954
14
23,494
10
0
1,453
130
122,812
33,612
47
1,076
418
0
3,516
0
7,507
176
35
658,645
0

8,121,843
8,454
145
551
312

7
171
3,465
32,141
68
65,010
172
25,781
14,856
25,329
1,777
83,653
57,956
210,691
128,916
44,544
569
139,781
7,569
307,687
18,058
1,123
24,786
301
406,521
209,214
8,838
10,662
4,072
2,340
114,801
37
121,190
109,900
32,101
3,131,417
15,791
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Venezuela
Vietnam
Zambia
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6.77
8.82
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5.35
7.5
6.31
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214
734
64,650
82,551
96,969
9,450

227
5,322
170,792
75,353
164,376
14,417

199
4,448
351,112
9,588
110,822
1,644

640
10,504
586,554
167,492
372,167
25,511
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)4 Table S6. Mean Forest Health Index scores for provinces of Democratic Republic of Congo
)5 (DRC), Indonesia and Canada.

26
DRC Indonesia Canada
Province Mean FHI Province Mean FHI Province Mean FHI
Lualaba 8.57 Papua 9.34 Northwest 9.90
Territories
Tshuapa 8.55 West Papua 9.00 Yukon 9.86
Tshopo 8.39 Kalimantan 8.52 Newfoundland 9.66
Utara and Labrador
Bas-Uélé 8.38 Maluku 8.03 Nunavut 9.65
Equateur 8.37 Maluku Utara 7.41 Manitoba 9.58
Haut-Lomami 8.29 Nusa 6.86 Saskatchewan 9.40
Tenggara
Barat
Tanganyika 8.24 Aceh 6.83 Ontario 8.94
Nord-Ubangi 8.19 Nusa 6.80 Québec 8.80
Tenggara
Timur
Haut-Katanga 8.05 Gorontalo 6.60 Alberta 8.46
Kwango 7.83 Sulawesi 6.58 British 8.22
Utara Columbia
Mai-Ndombe 7.58 Sulawesi 6.54 Nova Scotia 6.07
Tengah
Haut-Uélé 7.46 Kalimantan 6.42 New 5.15
Timur Brunswick
Maniema 7.44 Sulawesi Barat 6.31 Prince Edward 2.74
Island
Sankuru 7.34 Sumatera 6.20
Barat
Lomami 7.20 Sulawesi 5.99
Tenggara
Kasai 7.11 Kalimantan 5.84
Tengah
Ituri 6.70 Sulawesi 5.63
Selatan
Mongala 6.23 Banten 4.97
Nord-Kivu 6.22 Bengkulu 4.94
Sud-Kivu 6.20 Sumatera 4.89
Utara
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Kasai-Central 595 Kalimantan 4.87
Barat
Sud-Ubangi 5.93 Kepulauan 4.86
Riau
Kwilu 5.65 Jawa Barat 476
Kinshasa 4.75 Lampung 4.73
Kasai-Oriental 4.13 Jawa Tengah 4.59
Kongo- 3.95 Bali 4.43
Central
Jawa Timur 4.40
Jambi 4.01
Riau 3.92
Kalimantan 3.24
Selatan
Sumatera 2.86
Selatan
Yogyakarta 2.83
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— Open Street Map

Provincial Digital Road Atlas
(British Columbia)

Figure S1. A map overlaying the Open Street Maps data (blue) and provincial government data

(green) for roads and other linear infrastructure associated with resource access.
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Forest Health Index

Low (0) High (10)

Figure S2. A global map of Forest Health for 2019. Highlighted regions show A. A remote road
in Russia, B. Clearcut logging in Canada, C. Selective logging in Borneo, D. Swidden agriculture
in Madagascar, E. Forest fragmentation in Western Australia, F. Remote settlements in the

Brazilian Amazon.
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