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Abstract

Cancer is caused by a variety of pathways, involving numerous types of enzymes, among them
three enzymes: Cyclin dependent kinase-2 (CDK-2), Human topoisomerase Ilo. and Vascular
Endothelial Growth Factor Receptor-2 (VEGFR-2) are three most common enzymes that are
involved in the cancer development. Although many chemical drugs are available in the market,
plant sources are known to contain a wide variety of agents that are known to possess anticancer
activity. In this experiment, total thirty compounds were analysed against the mentioned enzymes
using different tools of bioinformatics and in silico biology like molecular docking study,
druglikeness property experiment, ADME/T test, PASS prediction and P450 site of metabolism
prediction as well as DFT calculations to determine three best ligands that have the capability to
inhibit the mentioned enzymes. Form the experiment, Epigallocatechin gallate was found to be the
best ligand to inhibit CDK-2, Daidzein showed best inhibitory activities towards Human
topoisomerase ITo. and Quercetin was predicted to be the best agent against VEGFR-2. They were
also predicted to be quite safe and effective agents to treat cancer. However, more in vivo and in

vitro analysis are required to confirm their safety and efficacy in this regard.
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1. Introduction

Cancer is defined as the uncontrolled proliferation and abnormal spread of the body’s specific
cells. According to WHO, cancer was responsible for 13% of world deaths accounted in 2005.
Moreover, projections have shown that cause-specific years of life lost (YLL) rate due to cancer
would increase in 2005, 2015 and 2030. Millions of species of plants, animals, marine organisms
and microorganisms act as attractive sources for new therapeutic candidate compounds. However,
the development of novel agents from natural sources face many obstacles that are not usually met
when one deals with synthetic compounds. Moreover, there may be difficulties with identification,
isolation, assessing and obtaining the appropriate amounts of the active compound in the sample.
(1, 2) The search for anti-cancer compounds from plant sources started in earnest in the 1950s with
the discovery and development of the various natural compounds like vinca alkaloids, vinblastine,
vincristine and cytotoxic podophyllotoxins. In the recent years, new technologies have been
developed by the scientists to enhance natural product drug discovery in an industrial manner.
Indeed, several new anticancer agents of natural origin have been introduced to the market recently
and there is a promising pipeline of natural products in cancer-related clinical trials (3, 4, 5, 6).
Future advances in the directed biosynthesis of small molecules will improve the ability of the
scientists to control the shape and topology of various small molecules and thus creating new anti-
cancer compounds that will interact specifically with biological targets. In the future, plants
(300,000-500,000 such species) will continue to be a vital and valuable resource for anticancer
drug discovery. More than 60 compounds from different plant sources are currently in the pipeline
as potential anticancer agents (7, 8, 9, 10). Many chemical and synthetic drugs are already available
for treating cancers i.e. alvocidib, lenvatinib and daunorubicin etc. These chemical drugs have

many adverse effects like sepsis, diarrhea, stomach and bladder pain, hair loss, paralysis, joint pain
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etc. However, plant phytochemicals are considered as safe in this regard since they generally don’t
possess any adverse effect to the human health in appropriate doses (11, 12, 13, 14). Therefore,
using alternatives from plants can have great potential for cancer treatment. Table 01 lists the

potential phytochemicals used in the experiment.
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Table 01. List of the plant derived anti-cancer agents that work via CDK-2, human topoisomerase
Ila and VEGFR-2 pathways. NA; Not available.

SI. No. Name of the PubChem CID 1C50 Value References
Compounds
Cyclin Dependent Kinase-2 (CDK-2)
01 Geraniol 637566 20 M (15, 16)
02 Epigallocatechin gallate 65064 2164 +20.4 M (17, 18)
03 Indirubin 10177 7.5 uM (19, 20, 21)
04 Fisetin 5281614 52 uM (22, 23, 24)
05 Apigenin 5280443 2143 uM (22, 25)
06 Luteolin 5280445 0.258 £ 0.015 nM (22, 26, 27)
07 Kaempferol 5280863 20 uM (22, 28, 29)
08 Chrysin 5281607 49.2+0.6 uM (22, 30, 31)
09 Elenoside 10458570 NA (32)
10 Genistein 5280961 30-50 uM (22, 33, 34)
Human topoisomerase lia,
11 Amentoflavone 5281600 26 £1.1 uyM (35)
12 Cryptolepine 82143 0.3 pg/mL (36, 37)
13 Neocryptolepine 390526 12.7+1.3uM (38, 39)
14 Bakuchicin 3083848 404 uM (40)
15 Lunacridine 442920 0.6 mM (41)
16 Daidzein 5281708 20 pg/ml (42, 43)
17 Camptothecin 24360) 10.3 uM (34, 45)
18 Salvicine 10359290 18.66 mM (46, 47)
19 Sauchinone 11725801 29 uM (48)
20 Nectandrin B 156517 12 uM (48)
Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2)
21 Ellagic acid 5281855 5uM (49, 50)
22 Dioscin 119245) 7.36 uM (51, 52)
23 12-Deoxyphorbol 13- 322885) ~38 pg/mL (53, 54)
palmitate

24 Melatonin 896 501+0.1mM (55, 56)
25 Pristimerin 159516 16 uM (57, 58)
26 a-santalol 11085337 ~12.34 uM (59
27 Plumbagin 10205) >5mM (60)
28 Decursin 442126 >2.5 mM (61, 62, 63)
29 Decursinol 442127 >2.5 mM (61, 63, 64)
30 Quercetin 5280343 31.04 £3.14 pg/ml (65, 66, 67)

1.1. Role of Cyclin Dependent Kinase-2 (CDK-2) in cyclin/CDK Pathway and Its

Involvement in Cancer
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Cyclin/CDK pathway is one of the major cell cycle regulatory pathways, involving the cyclin-
dependent kinases (CDKs), Retinoblastoma (Rb) tumor suppressor family and a family of
transcription factors known as E2F. All these components of the pathway are essential for the
passage of cells through the G1 to the S phase of the cell cycle. The CDK proteins are
serine/threonine Kkinase that phosphorylate and thus inactivate the Rb protein. In the resting state
of cell, Rb inhibits the activity of E2F protein forming a complex with it. The cyclin proteins can
be of D type (cylcin D) and E type (cyclin E). Upon activation by the growth promoting signals or
several mitogens, the cyclin D is found to form complex with CKD-4 and CKD-6. However, the
cyclin E is found to be associated with CKD-2, when it is activated by active E2F. The cyclin D-
CDK-4/6 and cyclin E-CDK-2 complexes phosphorylate and thereby inactivate the Rb protein.
This inactivation causes the release of bound E2F transcription factor from the Rb protein. The
released E2F later takes part in cell cycle progression. Moreover, E2F also promotes the activation
of Cyclin E-CDK-2 complex, which in turn phosphorylates Rb protein and activate E2F
transcription factor by feedback loop. Many inhibitors of the CDK proteins also takes part to
regulate the cell cycle properly. The inhibitors repress the CDK proteins when there is no need for
the cells to divide (68, 69, 70, 71, 72, 73, 74). The inhibitors are proteins from inhibitors of CDK-
4 (INK4) and cyclin-dependent kinase inhibitor (CKI) families. CDK-4/6 is inhibited by p15/16
inhibitors and CDK-2 is inhibited by p21/p27 inhibitors. However, any type of mutation in the
CDK genes causing hyperactivity or any type of mutation in the inhibitory genes, may lead to the
uncontrolled proliferation of the cells, which can lead to different forms of cancers (75). For this
reason, the targeting and inhibition of CDK-2 is a potential strategy for anticancer drug

development (76) (Figure 01).
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Figure 01. The cyclin/CDK signalling pathway. Upon activated by mitogen signal, the cyclin D-
CDK-4/6 complex is activated and cause the inactivation of Rb by phosphorylation and thus
release the active E2F, which takes part in cell cycle progression. However, E2F activates cyclin
E-CDK-2 complex, which phosphorylates the Rb protein and activates the E2F in a feedback loop.
P15/p16 inhibitors repress cyclin D-CDK-4/6 complex and p21/p27 inhibit cyclin E-CDK-2. Anti-
CDK-2 agents inhibit the CDK-2 protein, thus can help in cancer treatment.
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1.2. The DNA Topoisomerase Ila Pathway and Its Involvement in Cancer

Due to the supercoiled structure of the DNA molecules, it is necessary to unwind the double
stranded DNA before replication, transcription, recombination and other processes. DNA
topoisomerases are the enzymes that functions in unwinding, cutting, shuffling and relegating the
DNA double helix structure. The human genome encodes six topoisomerases that are grouped into
three types: type lo, type Ip and type Ila. DNA topoisomerase Ilo is one the necessary
topoisomerases that function in various cellular functions. However, it is a genotoxic enzyme
which can lead to cancer development. When DNA topoisomerase Il cuts the double stranded
DNA, it may remain covalently attached to the broken end of the DNA. This reaction intermediate
is known as the cleavage complex. If the amount of the cleavage complex in the cell falls too much,
the cells are not able to divide into daughter cells due to mitotic failure, which results in the death
of the cells. Moreover, if the amount of the cleavage complex increases too much, the temporary
cleavage complex structures can become permanent double stranded breaks in the DNA. These
double stranded breaks are caused by the faulty DNA tracking system which then initiate the faulty
recombination and repair pathways of DNA, leading to cancer (Figure 02). For this reason, DNA

topoisomerase Ila is a potential target for anti-cancer drug development (77, 78, 79, 80, 81).
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Figure 02. The DNA topoisomerase Il A pathway in cancer development. Upon the cleavage of
the target DNA, the topoisomerase can remain bound to the cleaved ends of the DNA fragments
and form cleavage complexes. If the concentration of cleavage complexes falls too much, then this
may lead to cell death due to the mitotic failure. Moreover, if the concentration rises too much,
abnormal translocations and mutagenesis may occur, which lead to cancer development. Anti-
topoisomerase agents aid in cancer treatment by inhibiting the activity of DNA topoisomerase Ila.
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1.3. The Role of Vascular Endothelial Growth Factor Receptor- 2 (VEGFR-2) in

Angiogenesis Pathway and Its Involvement in Cancer

Angiogenesis is the process of generating new capillary blood vessels (82). It plays important
functions in organ development and differentiation during embryogenesis as well as wound
healing and reproductive functions. However, angiogenesis is also responsible for a number of
disorders including tumor formation, cancers, rheumatoid arthritis etc. Vascular Endothelial
Growth Factor (VEGF) plays key role in angiogenesis process. VEGF protein has many isoforms
and all of the isoforms mediate their effects by specific receptors known as VEGF receptors
(VEGFRs). VEGFRs are receptor tyrosine kinases (RTKSs) and there are three main isoforms:
VEGFR-1, VEGFR-2, VEGFR-3. The expression of VEGF proteins are found to be dramatically
increased in cancers like lung, thyroid, breast, ovary, kidney, uterine cancers etc. (83, 84). Since
VEGF mediates its effects by binding to specific receptors (like VEGFR-2), inhibiting the actions
of the receptors is thought to be a therapeutic target for cancer treatment (85). When VEGF protein
binds with VEGFR-2, the VEGFR-2 becomes activated which then activates phosphatidylinositol
3-kinase (PI13K). PI3K further activates phosphoinositide-3-kinase (PIP3), which in turn activates
the Akt/PKB (protein kinase B) signaling pathway. This pathway contributes to endothelial cell
survival by activating proteins, like BAD (Bcl-2 associated death promoter) and caspase proteins.
Moreover, the Akt/PKB signaling pathway can activate the endothelial nitric-oxide synthase
(eNOS), which is responsible for vascular permeability. Both the endothelial cell survival and
vascular permeability mechanisms contribute to the angiogenesis process. The binding of VEGF
to VEGFR-2 can sometimes activate MAP kinase (mitogen activated protein kinase) pathway
which is responsible for the proliferation of endothelial cells. In this pathway, activated VEGFR-

2 activates phospholipase c-y (PLC-y). The PLC-y then activates the protein kinase C (PKC). PKC
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further activates the proteins of MAP kinase pathway: RAF1, MEK, ERK, sequentially. This MAP
kinase pathway causes the endothelial cell proliferation, which also contributes to the angiogenesis
process (Figure 03) (86, 87, 88). Since VEGFR-2 is involved in angiogenesis process in cancer

development, inhibition of VEGFR-2 is considered as therapeutic approach to treat cancer.

Three approved drugs were used as positive controls in this study: alvocidib (inhibits CDK-2),

daunorubicin (inhibits human topoisomerase lio) and lenvatinib (inhibits VEGFR-2) (32, 89, 90).
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Figure 03. The angiogenesis pathway. The VEGF protein binds with VEGFR-2 and activates the
receptor. The VEGFR-2 activates PI3K, which activates PIP3 and thus activating the Akt/PKB
signaling pathway. This pathway contributes to endothelial cell survival by activating BAD and
caspase proteins. Moreover, the Akt/PKB signaling pathway can activate eNOS, which is
responsible for vascular permeability. Both the endothelial cell survival and vascular permeability
mechanisms contribute to the angiogenesis process. Binding of VEGF to VEGFR-2 can sometimes
activate MAP kinase pathway which is responsible for the proliferation of endothelial cells. The
activated VEGFR-2 activates PLC-y. The PLC-y further activates PKC. PKC further activates
RAF1, MEK, ERK, sequentially. This MAP kinase pathway causes the endothelial cell
proliferation, which also contributes to the angiogenesis process. VEGFR-2 inhibitors inhibits
VEGFR-2, thus aid in cancer treatment.

12


https://doi.org/10.1101/2020.01.10.901660
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.10.901660; this version posted March 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2. Materials and methods

10 ligands (total) for each of the target molecule i.e., CDK-2, human topoisomerase Ila and
VEGFR-2, were selected from literature that have already been proven to have inhibitory effects
on the respective target molecule. Their 1C50 values were collected by reviewing literatures
discussing their anticancer potentiality. On sequential docking experiment one best ligand
molecule was selected as the best inhibitor of respective target. Then their different drug like

parameters were analysed in different experiments.

2.1. Protein Preparation and Ramachandran plot generation

Three dimensional structures of Cyclin-dependent kinase-2 (3EZV), Human topoisomerase I
(1zXM) and Vascular Endothelial Growth Factor Receptor-2 (20H4) were downloaded
(sequentially) in PDB format from protein data bank (www.rcsb.org). The proteins were then
prepared and refined using the Protein Preparation Wizard in Maestro Schrddinger Suite 2018-4
(91). Bond orders were assigned and hydrogen molecules were added to heavy atoms as well as
all the waters were deleted and the side chains were adjusted using Prime (92). Finally, the
structure was optimized and then minimized using force field OPLS_2005. Minimization was done
setting the maximum heavy atom RMSD (root-mean-square-deviation) to 30 A and any remaining
water less than 3 H- bonds to non-water was again deleted during the minimization step. After
successful minimization, the proteins were used to generate Ramachandran plots for each of the

protein by Maestro Schrodinger Suite 2018-4, keeping all the parameters as default.

2.2. Ligand Preparation

Three dimensional structures of 30 selected ligand molecules as well as controls were downloaded
(sequentially) from PubChem database (www.pubchem.ncbi.nlm.nih.gov). These structures were

13
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then prepared using the LigPrep function of Maestro Schrodinger Suite (93). Minimized 3D
structures of ligands were generated using Epik2.2 and within pH 7.0 +/- 2.0 (94). Minimization

was again carried out using OPLS_2005 force field which generated 32 possible stereoisomers.

2.3. Receptor Grid Generation

Grid usually confines the active site to shortened specific area of the receptor protein for the ligand
to dock specifically. In Glide, a grid was generated using default Van der Waals radius scaling
factor 1.0 and charge cutoff 0.25 which was then subjected to OPLS_2005 force field. A cubic box
was generated around the active site (reference ligand active site). Then the grid box volume was

adjusted to 15x15x15 for docking test.

2.4. Glide Standard Precision (SP) Ligand Docking, Prime MM-GBSA Calculation and

Induced Fit Docking

SP adaptable glide docking was carried out using Glide in Maestro Schrodinger Suite (95). The
Van der Waals radius scaling factor and charge cutoff were set to 0.80 and 0.15 respectively for
all the ligand molecules. Final score was assigned according to the pose of docked ligand within

the active site of the receptor.

This technique utilizes the docked complex and uses an implicit solvent which then assigns more
accurate scoring function and improves the overall free binding affinity score upon the
reprocessing of the complex. It combines OPLS molecular mechanics energies (Emm), surface
generalized born solvation model for polar solvation (Gsgg), and a nonpolar salvation term (Gnp)
for total free energy (AGuing) calculation. The total free energy of binding was calculated by the

following equation:
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AGyind = Geomplex — (Gprotein — Giigand), Where, G= Emm + Gses + Gne (96).

Nine anticancer agents were selected on the basis of best MM-GBSA scores.

At this stage the docking parameters of our compounds under investigation was compared with 3
controls name with respective receptors.

To carry out the IFD of the nine selected ligand molecules, again OPLS_2005 force field was
applied after generating grid around the co-crystallized ligand of the receptor and this time the best
five ligands were docked rigidly. Receptor and Ligand Van Der Waals screening was set at 0.70
and 0.50 respectively, residues within 2 A were refined to generate 2 best possible posses with
extra precision. Best performing ligand was from each enzyme category was selected according to
the IFD score and XPgscore. The 3D representations of the best pose interactions between the

ligands and their respective receptors were obtained using Discovery Studio Visualizer (97).

2.5. Ligand Based Drug Likeness Property and ADME/Toxicity Prediction

The drug likeness properties of the three selected ligand molecules were analyzed using
SWISSADME server (http://www.swissadme.ch/) (98). The ADME/T for each of the ligand
molecules was carried out using online based Servers, admetSAR
(http://Immd.ecust.edu.cn/admetsar2/) and ADMETIab (http://admet.scbhdd.com/) to predict their
various pharmacokinetic and pharmacodynamic properties (99, 100). The absorption, distribution
and metabolism properties were determined by both admetSAR server and excretion and toxicity
properties were determined by ADMET]Iab server. The numeric and categorical values of the
results given by ADMETIab server were changed into qualitative values according to the
explanation and interpretation described in the ADMETIlab server

(http://admet.schdd.com/home/interpretation/) for the convenience of interpretation.
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2.6. PASS (Prediction of Activity Spectra for Substances) and P450 Site of Metabolism

(SOM) prediction

The PASS (Prediction of Activity Spectra for Substances) prediction of the three best selected
ligands were conducted by using PASS-Way2Drug server
(http://mwww.pharmaexpert.ru/passonline/) by using canonical SMILES from PubChem server
(https://pubchem.ncbi.nim.nih.gov/) (101). To carry out PASS prediction, Pa (probability "to be
active™) was kept greater than 70%, since the P, > 70% threshold gives highly reliable prediction
(102). Inthe PASS prediction study, both the possible biological activities and the possible adverse
effects of the selected ligands were predicted. The P450 Site of Metabolism (SOM) of the three
best selected ligand molecules were determined by online tool, RS-WebPredictor 1.0
(http://reccr.chem.rpi.edu/Software/RS-WebPredictor/) (103). The LD50 and Toxicity class was

predicted using ProTox-11 server (http://tox.charite.de/protox_I1/) (104).

2.7. DFT Calculations

Minimized ligand structures obtained from LigPrep were used for DFT calculation using the
Jaguar panel of Maestro Schrodinger Suite using Becke’s three-parameter exchange potential and
Lee-Yang-Parr correlation functional (B3LYP) theory with 6-31G* basis set (105, 106, 107).
Quantum chemical properties such as surface properties (MO, density, potential) and Multipole
moments were calculated along with HOMO (Highest Occupied Molecular Orbital) and LUMO
(Lowest Unoccupied Molecular Orbital) energy. Then the global frontier orbital was analyzed and
hardness () and softness (S) of selected molecules were calculated using the following equation
as per Parr and Pearson interpretation and Koopmans theorem (108, 109). The DFT calculation

was done for the 3 best ligand molecules.
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n = (HOMOE-LUMOE)/2, S = 1/
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3. Results
3.1. Ramachandran Plot and Molecular Docking Analysis

After preparing the proteins, the Ramachandran plot for each of the receptor proteins was
generated. In the plot, the orange regions represent “favored" regions, the yellow regions represent
"allowed" regions and the white regions represent "disallowed" regions (110). CDK-2 protein
generated Ramachandran plot with almost all of the amino acids in the “favored” region and no
amino acids in the “disallowed region”. Human topoisomerase II generated Ramachandran plot
with 15 amino acids in the “disallowed region”. It also had majority of the amino acids in the
“favored” region. VEGFR-2 generated Ramachandran plot with only 4 amino acids in the

“disallowed” region and most of the amino acids in the “favored” region (Figure 04).
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Figure 04. Ramachandran plot analysis of 1. CDK-2, 2. Human topoisomerase Il, 3. VEGFR-2.

Glycine and proline are represented as triangles and squares and all other amino acids are
represented as spheres.
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All the selected ligand molecules were docked successfully with their respective receptor proteins.
The ligand molecules that had the lowest binding energy were considered the best ligand molecules
in inhibiting their respective receptors since lower binding energy (docking score) corresponds to
higher binding affinity (111). In the MM-GBSA study, the most negative AGsing Score (the lowest
score) is considered as the best AGging Score (112). IFD study is carried out to understand the
accurate binding mode and to ensure the accuracy of active site geometry. The lowest values of
IFD score and XP Gscore are considered as the best values (113, 114, 115, 116). Nine ligands:
Geraniol, Epigallocatechin gallate and Indirubin (inhibit CDK-2), Daidzein, Camptothecin and
Salvicine (inhibit human topoisomerase Il) and Quercetin, Decursinol and Plumbagin (inhibit
VEGFR-2), were initially selected based on the lower free binding energy and MM-GBSA study
since they were reported to show comparable binding energy with respective controls (Table 02).
Then these molecules were subjected to IFD study. Epigallocatechin gallate, Daidzein and
Quercetin were considered as the three best ligand molecules from the IFD study among the nine
initially selected ligands. The 3D representations as well as interaction of different amino acids

with Epigallocatechin gallate, Daidzein and Quercetin are illustrated in Figure 05.

Now, these 3 best ligands (one from each of the receptor category) were used to in next phases of

this experiment to analyze their drug potentials.

3.1.1. Binding Mode of Best Ligands with Respective Targets

Epigallocatechin gallate docked with CDK-2 with an IFD score of -594.995 Kcal/mol and XP
Gscore of -8.816 Kcal/mol. It formed six conventional hydrogen bonds with Lysine 89, Leucine

298, Histidine 84, Glutamic acid 08, Leucine 134 and Glutamine 131 (x2) at 1.82 A, 1.53 A, 2.13
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A 155 A, 453 A, 1.69 A and 2.45 A distance apart respectively within the binding pocket of
CDK-2. Moreover, it also formed one non-conventional hydrogen bond with Histidine 84.
Epigallocatechin gallate was also reported to form multiple hydrophobic interactions i.e., Pi-Alkyl
with Isoleucine 10 and Leucine 34 amino acid residues within the binding cleft of CDK-2 (Table

03).

Daidzein docked with Topoisomerase Ila with an IFD score of — 730. 514 Kcal/mol and XP Gscore
of -8.152 Kcal/mol. It formed four conventional hydrogen bonds with Asparagine 120, Asparagine
91, Threonine 147 and Lysine 168 at 1.82 A, 1.76 A, 2.96 A, 1.71 A and 2.65 A distance apart
respectively within the binding cleft of CDK-2. Daidzein was also reported to form multiple
hydrophobic interactions i.e., Pi-Alkyl with Isoleucine 125 (x2) and Alanine 167 amino acid

residues within the binding pocket of Human topoisomerase Ila (Table 03).

Quercetin docked with VEGFR-2 with an IFD score of -675.939 Kcal/ mol and XP Gscore of -
12.030 Kcal/mol. It formed six conventional hydrogen bonds with Glutamic acid 883, Glutamic
acid 915, Phenylalanine 916, Cysteine 1043, Aspartic acid 1044 and LEucine 838, at 2.69 A, 2.12
A 1.79 A 576 A, 2.80 A and 1.72 A distance apart respectively within the binding cleft of CDK-
2. It also formed a non-conventional hydrogen bond with Phenylalanine 916 at 2.51 A distance. It
was also reported to form multiple hydrophobic interactions i.e., Pi-Alkyl with Leucine 838,
Valine 914 and many other amino acid residues within the binding pocket of VEGFR-2 (Table

03).
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receptors.
No Name of ligand Name of receptor Docking score/ Glide energy MM-GBSA
(PubChem CID) (PDB ID) binding energy (Kcal/mol) (AGsing Score
(Kcal/mol) Kcal/mol)
Control- Alvocidib CDK-2 (PDB ID: -5.144 -42.707 -71.530
1 3EZV)
01 Geraniol -7.341 -48.430 -59.370
02 Epigallocatechin -7.123 -60.544 -66. 420
gallate
03 Indirubin -8.410 -33.776 -53.960
04 Fisetin -6.017 -42.105 -37.819
05 Apigenin -5.836 -36.499 -44.342
06 Luteolin -4.954 -38.551 -32.109
07 Kaempferol -4.046 -39.418 -38.334
08 Chrysin -5.893 -34.446 -46.700
09 Elenoside -7.036 -46.435 -35.451
10 Genistein -5.501 -37.710 -31.310
Control-2 Daunorubicin Human -5.469 -39.191 -40.326
11 Amentoflavone topoisomerase I -3.524 -32.638 -36.549
: (PDB ID: 1ZXM)
12 Cryptolepine -5.802 -40.963 -22.341
13 Neocryptolepine -4.977 -39.058 -37.330
14 Bakuchicin -5.638 -37.756 -40.004
15 Lunacridine -5.413 -42.872 -21.934
16 Daidzein -7.855 -42.546 -55.980
17 Camptothecin -7.630 -48.500 -40.223
18 Salvicine -6.969 -42.072 -44.550
19 Sauchinone -6.266 -42.390 -34.449
20 Nectandrin B -6.173 -43.608 -32.870
Control-3 Lenvatinib VEGFR-2 (PDB -9.745 -61.045 -70.240
21 Ellagic acid ID: 20H4) -5.039 -44.384 -46.776
22 Dioscin -4.524 -33.341 -32.200
23 12-Deoxyphorbol 13- -6.471 -47.617 -32.239
palmitate
24 Melatonin -6.996 -36.512 -46.450
25 Pristimerin -6.179 -37.520 -33.984
26 a-santalol -6.494 -33.456 -41.230
27 Plumbagin -7.848 -40.639 -48.910
28 Decursin -6.307 -38.690 -21.430
29 Decursinol -8.960 -49.149 -59.710
30 Quercetin -10.441 -54.972 -64.420
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Table 03. The results of docking studies between the three best ligands and their respective
receptors, along with their interaction with different types of amino acids and the bonds formed
between the ligands and the amino acids.

23


https://doi.org/10.1101/2020.01.10.901660
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.10.901660; this version posted March 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Name of the XP Gscore IFD score Interacting Bond distance Interaction category Type of interaction
ligand (with (Kcal/mol) (Kcal/mol) amino acids in A
respective
receptor)
Epigallocatechin -8.816 -594.995 Lysine 89 1.82 Hydrogen bond Conventional
gallate (cyclin-
dependent Leucine 298 1.53 Hydrogen bond Conventional
kinase-2) Histidine 84 2.13 Hydrogen bond Conventional
2.88 Hydrogen bond Carbon
Glutamic acid 08 1.53 Hydrogen bond Conventional
Isoleucine 10 4.84 Hydrophobic bond Pi-Alkyl
5.18 Hydrophobic bond Pi-Alkyl
Leucine 134 4.53 Hydrophobic bond Pi-Alkyl
Glutamine 131 1.69 Hydrogen bond Conventional
2.45 Hydrogen bond Conventional
Dadizein -8.152 -730.514 Asparagine 120 1.76 Hydrogen bond Conventional
topg?s%m?ase Threonine 215 2.46 Hydrogen bond Carbon
1) Isoleucine 125 4.79 Hydrophobic bond Pi-Alkyl
5.32 Hydrophobic bond Pi-Alkyl
Asparagine 91 2.96 Hydrogen bond Conventional
Alanine 167 4.88 Hydrophobic bond Pi-Alkyl
Phenylalanine 142 5.59 Hydrophobic bond Pi-Pi T-shaped
Threonine 147 1.70 Hydrogen bond Conventional
Lysine 168 2.65 Hydrogen bond Conventional
Isoleucine 141 4.68 Hydrophobic bond Pi-Alkyl
Quercetin -12.030 -675.939 Glutamic acid 883 2.69 Hydrogen bond Conventional
E(rYde:)St%LgIail;I Lysine 866 5.30 Hydrophobic bond Pi-Alkyl
Growth Factor Valine 914 4.81 Hydrophobic bond Pi-Alkyl
Receptor-2) Glutamic acid 915 2.12 Hydrogen bond Conventional
Phenylalanine 916 251 Hydrogen bond Carbon
1.79 Hydrogen bond Conventional
Cysteine 917 2.39 Hydrogen bond Conventional
Leucine 1033 5.32 Hydrophobic bond Pi-Alkyl
4.63 Hydrophobic bond Pi-Alkyl
Cysteine 1043 5.76 Miscellaneous Pi-Sulfur
Aspartic acid 1044 2.80 Hydrogen bond Conventional
Phenylalanine 5.17 Hydrophobic bond Pi-Pi stacked
Alai?r15864 4.05 Hydrophobic bond Pi-Alkyl
4.95 Hydrophobic bond Pi-Alkyl
Valine 846 4.49 Hydrophobic bond Pi-Alkyl
5.34 Hydrophobic bond Pi-Alkyl
Leucine 838 1.72 Hydrogen bond Conventional
291 Hydrophobic bond Pi-Sigma
4.93 Hydrophobic bond Pi-Alkyl
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Figure 05. Best possible poses (left) and 2D interactions (right) between ligand and receptor
molecules.
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3.2. Drug-likeness Properties

Among the three ligand molecules, only Epigallocatechin gallate violated the Lipinski’s rule of
five (2 violations: number of hydrogen bond donors and acceptors). However, it showed the
highest topological polar surface area (TPSA) value of 197.37 A2 (Table 04). Daidzein was shown
to have highest LogP value and again Epigallocatechin Gallate showed highest molar refractivity.
Daidzein and Quercetin each was reported to have 1 rotatable bond and Epigallocatechin gallate

was predicted with 4 bonds.
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Table 04. The drug-likeness properties of the best three ligands.

Drug Likeness Properties Rules Epigallocatechin gallate Daidzein Quercetin
Lipinski’s rule of five - No (2 violations) Yes Yes
Molecular weight <500 458.37 g/mol 254.24 g/mol 302.24 g/mol
Concensus Log Pow <5 101 2.24 1.23
Num. H-bond acceptors <10 11 4 7
Num. H-bond donors <5 8 2 5
No of rotatable bonds <10 4 1 1
Molar Refractivity 40-130 112.06 71.97 78.03
TPSA (A?) - 197.37 70.67 131.36
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3.3 ADME/T Tests

The results of ADME/T test with probability scores are summarized in Table 05. In the absorption
section, only daidzein showed positive Caco-2 permeability and all the three selected ligands were
HIA positive. In the distribution section, all the molecules showed high capability to bind with
plasma protein (PPB), however, all of them were not blood brain barrier permeable (BBB). In the
metabolism section, only Epigallocatechin gallate was not inhibitory to CYP450 1A2 and
quercetin was the only inhibitor of CYP450 3A4. None of the ligands were substrate for CYP450
2C9 and CYP450 2D6 and CYP450 2D6 had no predicted inhibitor. In the excretion section,
Epigallocatechin gallate, Daidzein and Quercetin showed half-life of 1.7, 1.5 and 0.2 h,
respectively. Only Epigallocatechin gallate showed hERG blocking capability, however, it didn’t
show any human hepatotoxic activity (H-HT negative). Only daidzein showed negative result in

the Ames mutagenicity test. However, all of them were DILI positive.
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Table 05. The ADME/T test results of the best three ligand molecules.

ADMET Class Properties Epigallocatechin gallate Daidzein Quercetin
(Probability Score) (Probability Score) (Probability Score)
Absorption Caco-2 permeability Negative ( 0.9372) Positive (0.931) Negative (0.6417)
Pgp-inhibitor Negative (0.5518) Negative (0.916) Negative (0.9191)
Pgp-substrate Negative (0.8848) Negative (0.936) Negative (0.8360)
HIA (Human Intestinal Positive (0.9942) Positive (0.989) Positive (0.9833)
Absorption)
Distribution PPB (Plasma Protein Binding) High, 100% High, 83.1% High, 117.06%
BBB (Blood-Brain Barrier) Negative (0.5464) Negative (0.781) Negative (0.463)
Metabolism CYP450 1A2 inhibition Negative (0.805) Positive (0.910) Positive (0.910)
CYP450 3A4 inhibition Negative (0.766) Negative (0.626) Positive (0.695)
CYP450 3A4 substrate Positive (0.567) Negative (0.526) Positive (0.556)
CYP450 2C9 inhibition Negative (0.836) Positive (0.975) Negative (0.582)
CYP450 2C9 substrate Negative (1.000) Negative (0.820) Negative (1.000)
CYP450 2C19 inhibition Negative (0.808) Positive (0.899) Negative (0.902)
CYP450 2D6 inhibition Negative (0.955) Negative (0.919) Negative (0.928)
CYP450 2D6 substrate Negative (0.721) Negative (0.800) Negative (0.855)
Subcellular localization Mitochondria Mitochondria Mitochondria
Excretion Tz (h) 1.7 15 0.2
Toxicity hERG (hERG Blockers) Blocker (0.812) Non-blocker (0.394) Non-blocker (0.371)

H-HT (Human Hepatotoxicity)

Negative (0.240)

Positive (0.784)

Positive (0.558)

Ames (Ames Mutagenicity)

Positive (0.560)

Negative (0.184)

Positive (0.740)

DILI (Drug Induced Liver Injury)

Positive (0.848)

Positive (0.948)

Positive (0.900)
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3.4. PASS and P450 Site of Metabolism Prediction

The predicted LD50 value for epigallocatechin gallate, daidzein and quercetin were 1000 mg/kg,
2430 mg/kg and 159 mg/kg, respectively. The prediction of activity spectra for substances (PASS
prediction) was for the three selected ligands to identify 20 intended biological activities and 5
adverse & toxic effects. The PASS prediction results of all the three selected ligands are listed in
Table 06 and Table 07. The possible sites of metabolism by CYPs 1A2, 2A6, 2B6, 2C19, 2C8,
2C9, 2D6, 2E1 and 3A4 of Epigallocatechin gallate, Daidzein and Quercetin were determined
(Table 08). The possible sites of metabolism by the isoforms are indicated by circles on the

chemical structure of the molecule (117).
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Table 06. The PASS prediction results showing the biological activities of the best three ligand

molecules.
Sl no Biological activities Epigallocatechin gallate Daidzein Quercetin
Predicted LD50: 1000 mg/kg Predicted LD50: 2430 Predicted LD50: 159 mg/kg
mg/kg

Toxicity class: 4 Toxicity class: 5 Toxicity class: 3

Pa Pi Pa Pi Pa Pi
01 Antioxidant 0.814 0.003 - - 0.872 0.003

02 Reductant 0.944 0.002 - - - -
03 Anticarcinogenic 0.841 0.004 - - 0.757 0.007
04 Antimutagenic - - 0.836 0.003 0.940 0.001

05 Chemopreventive 0.860 0.003 - - - -
06 Membrane integrity agonist 0.962 0.003 0.887 0.0014 0.973 0.002
07 Hepatoprotectant - - - - 0.706 0.007

08 Mucomembranous protector 0.950 0.003 - - - -
09 TP53 expression enhancer 0.937 0.004 0.771 0.014 0.844 0.008

10 Lipid peroxidase inhibitor 0.946 0.002 - - - -
11 HIF1A expression inhibitor - - - - 0.969 0.002

12 APOAL expression enhancer 0.856 0.003 - - - -

13 Free radical scavenger 0.934 0.001 - - - -
14 Peroxidase inhibitor 0.759 0.007 - - 0.962 0.001

15 Oxidoreductase inhibitor - - - - - -
16 CYP1A1 inhibitor - - 0.756 0.002 0.909 0.001
17 CYP1A2 inhibitor - - - - 0.909 0.003

18 Antiviral 0.771 0.003 - - - -
19 Cardioprotectant - - - - 0.833 0.003
20 Vasoprotector - - 0.721 0.009 0.824 0.004
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Table 07. The PASS prediction results showing the adverse and toxic effects of the best three

ligand molecules.

Sl no Adverse & toxic Epigallocatechin gallate Daidzein Quercetin
effects

Pa Pi Pa Pi Pa Pi
01 Inflammation 0.811 0.014 - - - B
02 Toxic, vascular 0.804 0.017 - - 0.797 0.018
03 Twitching - - - - - -
04 Shivering - - 0.783 0.044 0.766 0.052
05 Reproductive i i - - R -

dysfunction
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Table 08. The P450 site of metabolism prediction of the best three ligand molecules.

Epigallocatechin gallate | Daidzein Quercetin
Names of
P450
isoenzymes
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2D6

2E1

3A4
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3.6. Analysis of Frontier’s Orbitals

In the analysis of Frontier’s orbitals, the DFT calculations and HOMO-LUMO studies were
conducted. The results of the DFT calculations are listed in Table 09. In these studies,
Epigallocatechin gallate showed the lowest gap energy of 0.070 eV as well as the lowest dipole
moment of 1.840 debye. On the other hand, quercetin generated the highest gap energy of 0.167
eV and the highest dipole moment of 5.289 debye. The order of gap energies and dipole moments

of these three compounds were, epigallocatechin gallate < daidzein < quercetin (Figure 06).
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Table 09. The results of the DFT calculations of the selected best three ligands.

Compound name HOMO LUMO Gap (eV) Hardness (n) Softness (S) Dipole
energy (eV) energy (eV) (eV) (eV) moment
(Debye)
Epigallocatechin 0.050 0.120 0.070 0.035 28.571 1.840
gallate
Daidzein -0.040 0.040 0.080 0.040 25.000 3.790
Quercetin -0.212 -0.045 0.167 0.084 11.904 5.289
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HOMO LUMO

Figure 06. The HOMO and LUMO occupation; 1. Epigallocatechin gallate, 2. Daidzein and 3.

Quercetin.
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4. Discussion

Molecular docking is an effective strategy in computer aided drug designing which works on
specific algorithm and assigns affinity score depending on the poses od ligand inside the binding
pocket of a target. Lowest docking score reflects highest affinity meaning that the complex remains

more time in contact (118, 119).

In this study a total of 30 ligands targeting three macromolecules involved in cancer development
were screened with the aid of molecular docking which generated comparable docking score as
with positive controls (Table 02). At the initial step their quality was exemplified with the help of
Ramachandran plot where they were predicted to perform well. Primarily, three ligands were
selected for each receptor which were then subjected to IFD. Finally, Epigallocatechin gallate,
Daidzein and Quercetin were selected as the best inhibitors of CDK-2, Human topoisomerase lia.
and VEGFR-2, respectively. Hydrogen and hydrophobic interactions are important for
strengthening the receptor-ligand interactions (120). Selected best three ligands along with total
ligands were predicted to form multiple hydrogen and hydrophobic interactions with the target

molecules (Table 02 and Table 03).

Estimation of the drug likeness properties facilitates the drug discovery and development process.
Drug permeability through the biological barrier is influenced by the molecular weight and TPSA.
The higher the molecular weight and TPSA, the lower the permeability of the drug molecule is
and vice versa. Lipophilicity (expressed as LogP) affects the absorption of the drug molecule in
the body and higher LogP associates with lower absorption. The number of hydrogen bond donors
and acceptors beyond the acceptable range also affects the capability of a drug molecule to cross
the cell membrane. The number of rotatable bonds also affects the druglikeness properties and the
acceptable range is less than 10. Moreover, the Lipinski’s rule of five demonstrates that a
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successful drug molecule should have properties within the acceptable range of the five Lipinski’s
rules (121, 122; Sarkar et al., 2019). Daidzein and Quercetin were reported to obey standard rule,
whereas, Epigallocatechin gallate was reported to violate the rule which might subject it to further

modification (Table 04).

The main purpose of conducting ADME/T tests is to determine the pharmacological and
pharmacodynamic properties of a candidate drug molecule within a biological system. Therefore,
it is a crucial determinant of the success of a drug discovery expenditure. BBB is the most
important factor for those drugs that target primarily the brain cells. P-glycoprotein in the cell
membrane aids in transporting many drugs, therefore, its inhibition affects the drug transport. The
permeability of Caco-2 cell line indicates that the drug is easily absorbed in the intestine. Orally
absorbed drugs travel through the blood circulation and deposit back to liver and are degraded by
group of enzymes of Cytochrome P450 family and excreted as bile or urine. Therefore, inhibition
of any of these enzymes of these enzymes affects the biodegradation of the drug molecule (123,
124). Moreover, if a compound is found to be substrate for one or more CYP450 enzyme or
enzymes, then that compound is metabolized by the respective CYP450 enzyme or enzymes (125).
A drug’s proficiency and pharmacodynamics are depended on the degree of its binding with the
plasma protein. A drug can cross the cell layers or diffuse easily if it binds to the plasma proteins
less efficiently and vice versa (126). Human intestinal absorption (HIA) is a crucial process for the
orally administered drugs (127, 128, 129). Moreover, the half-life of a drug describes that the
greater the half-life, the longer it would stay in the body and the greater its potentiality (130, 131,
132). HERG is a K* channel found in the heart muscle and blocking the hERG signaling can lead
to the cardiac arrhythmia (133, 134). Human hepatotoxicity (H-HT) involves any type of injury to

the liver that may lead to organ failure and death (135, 136). Ames test is a mutagenicity assay that
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is used to detect the potential mutagenic chemicals (137). Drug induced liver injury (DILI) is the
injury to the liver that are caused by administration of drugs. DILI is one of the causes that causes
the acute liver failure (138). The results of ADME/T test are listed in Table 05. All of the three

ligands were predicted to perform similar and sound in the ADME/T test.

Prediction of Activity Spectra for Substances or PASS prediction is a process that is used to
estimate the possible profile of biological activities associated with drug-like molecules. Two
parameters are used for the PASS prediction: Pa and Pi. The Pa is the probability of a compound
“to be active” and Pi is the probability of a compound “to be inactive” and their values can range
from zero to one (101). If the value of Pa is greater than 0.7, then the probability of exhibiting the
activity of a substance in an experiment is higher (139). PASS was predicted for Epigallocatechin
gallate, Daidzein and Quercetin. Both Epigallocatechin gallate and Quercetin showed similar

performances with 12 biological activities and 2 toxic effects (Table 06 and Table 07).

ProTox-I1 server estimates the toxicity of a chemical compound and classifies the compound into
a toxicity class ranging from 1 to 6. The server classifies the compound according to the Globally
Harmonized System of Classification and Labelling of Chemicals (GHS). According to the
Globally Harmonized System of Classification and Labelling of Chemicals (GHS), since
Epigallocactechin gallate had predicted toxicity class was of 4, it would be harmful if swallowed.
With the predicted toxicity class of 5, Daidzein might be harmful if swallowed. And Quercetin,

with its predicted toxicity class was 3, it was predicted to be toxic if swallowed (104, 140).

The Cytochrome P450 (Cyp450) is a superfamily of enzymes that comprises of 57 isoforms of
P450 enzymes. These enzymes are heme-containing enzymes. They catalyze the phase-I

metabolism of almost 90% of the marketed drugs and convert the lipophilic drugs to more polar
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compounds. Among the 57 isoforms, nine most prevalent isoforms are: CYPs 1A2, 2A6, 2B6,
2C19, 2C8, 2C9, 2D6, 2E1 and 3A4 (141, 142). All three best selected ligands showed multiple
SOM s for these nine isoforms of P450, which indicates that they might be metabolized well by the

body.

Frontier orbitals study or DFT calculation is an essential method of determining the
pharmacological properties of various small molecules. HOMO and LUMO help to study and
understand the chemical reactivity and kinetic stability of small molecules. The term ‘HOMO’
directs to the regions on a small molecule which may donate electrons during a complex formation
and the term ‘LUMO’ indicates the regions on a small molecule that may receive electrons from
the electron donor(s). The difference in HOMO and LUMO energy is known as gap energy that
corresponds to the electronic excitation energy. The compound that has the greater orbital gap
energy, tends to be energetically unfavourable to undergo a chemical reaction and vice versa (107,
143, 144, 145, 146, 148). All of the ligands were reported to have significant energy gap indicating

their possibility to undergo a chemical reaction (Table 09 and Figure 06).

Finally, all the best performed ligands were analyzed in different post-screening study and they’re
predicted to perform sound. Overall, this study recommends Epigallocatechin gallate, Daidzein
and Quercetin as the best inhibitors of CDK-2, Human topoisomerase lio. and VEGFR-2,
respectively among all selected ligands which could be potential natural plant-derived compounds
to treat cancer. However, other compounds could also be investigated as they were also showed
convincing docking scores (Table 02). Further in vivo and in vitro experiments might be required

to strengthen the findings of this study.
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5. Conclusion

In the experiment, 30 anti-cancer agents were selected to analyse against three enzymes, CDK-2,
human topoisomerase lla and VEGFR-2, of three different pathways that lead to cancer
development. 10 ligands were studied for each of the enzyme group using different approaches
used in computer-aided drug designing. Upon continuous computational experimentation,
Epigallocatechin gallate, Daidzein and Quercetin were predicted to the best inhibitors of CDK-2,
Human topoisomerase Ila and VEGFR-2 respectively. Then their drug potentiality was checked
in different post-screening studies where they were also predicted to perform quite similar and
sound. However, the authors suggest more in vivo and in vitro researches to be performed on these
agents as well as the other remaining agents to finally confirm their potentiality, safety and

efficacy.
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