

Mediterranean Diet Reduces Monocyte Inflammatory Gene Expression and Influences Social Behavior in Nonhuman Primates

Authors: Corbin S.C. Johnson¹, Carol A. Shively², Kristofer T. Michalson², Amanda J. Lea^{3,4},
Ryne J. DeBo², Timothy D. Howard⁵, Gregory A. Hawkins⁵, Susan E. Appt², Yongmei Liu⁶,
Charles E. McCall⁷, David Herrington⁸, Thomas C. Register^{2†*}, Noah Snyder-Mackler^{1,9-13†*}

Affiliations:

¹Department of Psychology, University of Washington, Seattle, WA 98195 (CSCJ, NSM).

²Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101 (TCR, CAS, KTM, RJB, SEA).

³Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
(AII)

⁴Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544

(AJL).

⁶Division of Cardiology, Duke University School of Medicine (YL).

⁷Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101 (CEM).

⁸Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101 (DH).

⁹Center for Studies in Demography and Ecology, University of Washington, Seattle, WA 98195 (NSM).

24 ¹⁰Department of Biology, University of Washington, Seattle, WA 98195 (NSM).

25 ¹¹Washington National Primate Research Center, University of Washington, Seattle, WA 98195
26 (NSM).

27 ¹²School of Life Sciences, Arizona State University, Tempe, AZ 85287 (NSM).

28 ¹³Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85287 (NSM).

29 [†]Authors contributed equally

30 *Correspondence: Thomas C. Register (register@wakehealth.edu) and Noah Snyder-Mackler
31 (nsnyderm@asu.edu).

32

33 **Abstract:** Western diet consumption is associated with inflammation, cardiometabolic disease,
34 and mortality in humans, while Mediterranean diet consumption confers protective effects. One
35 likely pathway for this association is through environmentally induced changes in monocyte
36 function, yet the underlying mechanisms remain elusive. We conducted the first randomized,
37 long-term diet manipulation in a non-human primate model to determine whether Western- or
38 Mediterranean-like diets alter monocyte polarization and health. Monocyte gene expression
39 profiles differed markedly between the two diet groups, with significant differences in over 40%
40 of expressed genes. The Western diet induced a more proinflammatory monocyte phenotype
41 overall and upregulated specific monocyte polarization genes. Diet also disrupted the
42 coexpression of numerous gene pairs, including small RNAs and transcription factors associated
43 with metabolism and adiposity in humans. Diet altered affiliative and anxiety-associated
44 behaviors and mediation analysis showed that the diet-altered behaviors contributed significantly
45 (~50% of the effect of diet on gene expression) to 25% of the differentially expressed genes,
46 suggesting that diet effects on central mechanisms also modulate monocyte gene expression.
47 Together, these results identify both behavioral and molecular mechanisms underlying the health
48 benefits of a Mediterranean diet regimen.

49

50 **Significance Statement:** Some of our largest public health burdens are driven by dietary
51 changes associated with industrialization, but we still know very little about the molecular
52 mechanisms underlying this link. Characteristic "Western diets" have been associated with
53 increased risk for diseases related to chronic inflammation, while Mediterranean diets have anti-
54 inflammatory benefits. Here, we identify causal effects of diet on inflammatory gene expression
55 where consumption of the Mediterranean diet reduced inflammatory gene expression in
56 monocytes. Additionally, our diet manipulation induced behavioral changes associated with
57 anxiety and social integration, where Mediterranean-fed animals exhibited more positive
58 affiliative behaviors and reduced anxiety. These behaviors were associated with 25% of the diet-
59 affected genes, suggesting an important behavioral route through which diet can impact immune
60 function.

61 [Main Text]

62 **Introduction**

63 Modern human diets profoundly impact our health and survival, and vary across geography,
64 cultures, and socioeconomic strata. In general, the Western diet derives most of its protein and
65 fat from animal sources, and is high in simple sugars and saturated and n-6 fatty acids. These
66 constituents can arouse the sympathetic nervous system, increase oxidative stress, and elevate
67 levels of inflammatory markers^{1–6}, and are thus associated with increased risk for metabolic
68 syndrome⁷, type II diabetes⁸, cardiovascular disease^{7,9}, autoimmune disorders¹⁰, depression¹¹,
69 and increased mortality¹². By contrast, Mediterranean diets are richer in protein and fat from
70 vegetable sources, raw fruits and vegetables, and are higher in monounsaturated and n-3 fatty
71 acids. These latter components have been associated with an anti-inflammatory phenotype¹³,
72 reduced incidence of chronic disease, and increased longevity^{14–17}. Despite these associations,
73 the casual nature of these links and mechanisms through which these diets induce their effects
74 remain largely unknown.

75

76 To date, attempts to understand how Western versus Mediterranean diets affect health through
77 changes in immune phenotypes have relied on (i) correlational analyses of self-reported diet in
78 humans, (ii) limited and short-term dietary interventions in humans, or (iii) experimental
79 manipulations of single nutrients in animal models^{18–22}. Approaches (i) and (ii) are limited in
80 their ability to address causality^{23,24}, and approach (iii) cannot address the potentially important
81 synergistic effects of multiple nutrients. Further, few studies have probed the molecular
82 mechanisms through which diet can alter immune function–data that are critical for
83 understanding the immunological consequences of diet and identifying targets of future therapies

84 and interventions.

85

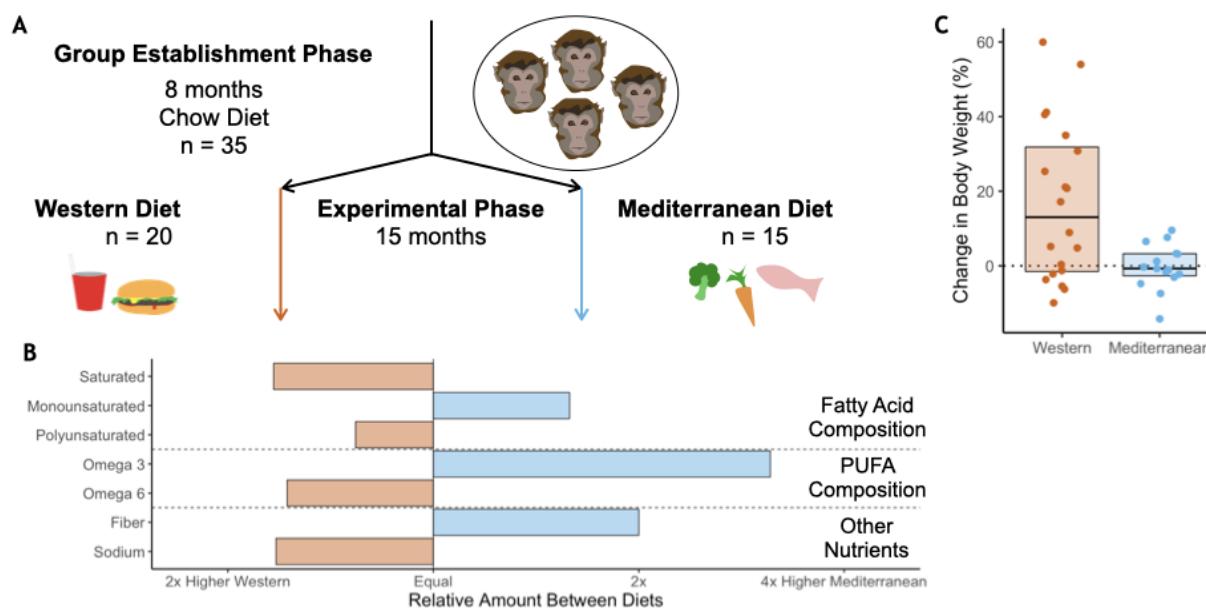
86 Circulating monocytes are likely to play a key role in modulating the effects of diet and other
87 factors on health^{3-6,25}. Monocytes are important mediators of inflammation, sensitive to local and
88 systemic factors such as diet and stress, and may provide a key nexus for understanding stress
89 effects as well as novel targets for therapies. Monocytes and monocyte-derived macrophages are
90 innate immune cells that vary phenotypically along a spectrum which ranges broadly from
91 proinflammatory (M1-like) to regulatory/reparative (M2-like). An appropriate balance of
92 monocyte phenotypes is essential for a healthy immune system. Classically-activated “M1”
93 monocytes respond to proinflammatory cytokines such as tumor necrosis factor (TNF)- α and
94 interferon (IFN)- γ by becoming macrophages which propagate the inflammatory response to
95 infection²⁶. In contrast, M2 activated monocytes mobilize tissue repair processes and release
96 anti-inflammatory cytokines in response to interleukin (IL)-4, IL-13, and transforming growth
97 factor (TGF)- β ²⁶. Diet may alter disease propensity by reprogramming the balance between these
98 proinflammatory and anti-inflammatory monocyte subsets, but this hypothesis remains to be
99 tested²⁵.

100

101 In addition to altering the regulation of immune cells directly, diet may affect inflammatory
102 phenotypes indirectly by altering social behaviors, which are known to shape gene expression
103 programs in immune cells. In particular, multiple sources of social adversity, such as low social
104 status and poor social integration, have been shown to increase the expression of inflammatory
105 genes in primary white blood cells in humans and other animals²⁷⁻³². Given that some food
106 constituents can directly alter social behaviors themselves³³⁻³⁷, it is therefore possible that diet

107 effects on immune cell regulation may, to some degree, be mediated by changes in social
108 environmental conditions. However, because no detailed studies of diet, social behavior, and
109 immune cell phenotypes have been conducted, it remains unclear how these factors are linked
110 and how they ultimately scale up to affect health.

111
112 To address these gaps, we conducted a whole-diet manipulation to directly compare the effects
113 of Mediterranean and Western diets on behavior, monocyte gene expression, and physiological
114 outcomes related to metabolic health in nonhuman primates. By implementing a randomized
115 preclinical trial design, we were able to identify causal effects of realistic complex diet patterns.
116 After 15 months of dietary manipulation, cardio-metabolic phenotypes were significantly worse
117 and proinflammatory gene expression was significantly higher in animals fed a Western diet
118 relative to a Mediterranean diet. Diet also affected monocyte polarization, altered gene co-
119 expression patterns, and influenced behavior. Western-fed monkeys became more socially
120 isolated and exhibited more anxiety-associated behaviors, and these behavioral changes mediated
121 some of the effects of diet on monocyte gene expression. These behavioral effects imply that the
122 diet altered monocyte gene expression in part via the central nervous system. Together, these
123 results suggest both direct and behaviorally-mediated effects of diet on monocyte polarization
124 may contribute to chronic inflammatory diseases, and identify potential mechanisms by which
125 Mediterranean-like diets may lead to health benefits.


126

127 **Results**

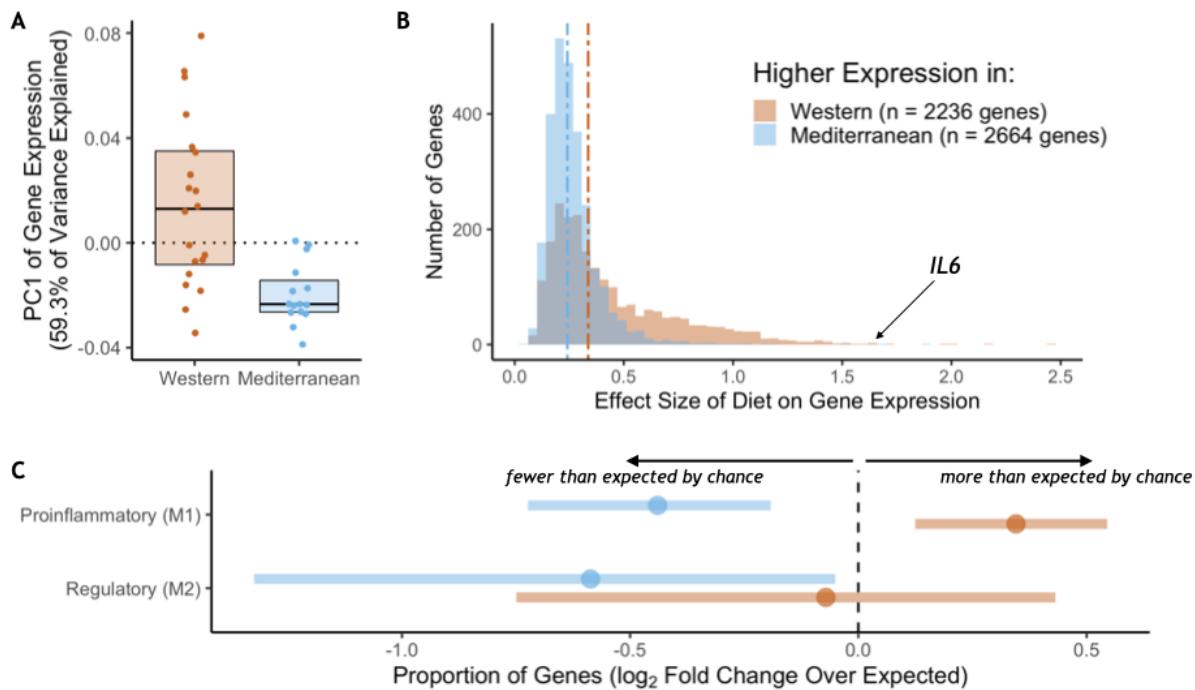
128 *Diet induced alterations in health indices*

129 Adult female cynomolgus macaques were fed either a Western-like (hereafter, “Western”) or a

130 Mediterranean-like (hereafter, “Mediterranean”) diet for 15 months (the equivalent of ~4 years in
131 a human lifespan; Fig. 1A). The experimental diets were nutritionally matched with respect to
132 caloric content of macronutrients and formulated to model human diet patterns, as previously
133 described³⁸. Protein and fat were derived primarily from animal sources in the Western diet and
134 plant sources in the Mediterranean diet. Consequently, the two diets differed in their composition
135 of key micronutrients, including fatty acids, polyunsaturated fatty acid ratios, fiber, and sodium
136 (Fig. 1B; see methods and Table S1 for a detailed comparison). As previously reported, Western
137 diet significantly increased body weight, caloric intake, body fat, insulin resistance, and
138 hepatosteatosis relative to the Mediterranean diet³⁸ (Fig. 1C).
139

Figure 1. Experimental design and diet effects on body weight. A) Monkeys were housed in groups of 3-4 animals (n = 35 monkeys) and fed standard monkey chow diet for 8 months before being fed experimental diets. Behavioral data were collected during the last 6 weeks of the baseline phase and the during months 1-14 of the experimental phase. Body weight measurements reported are from 5 months prior to, and 14 months after the start of the experimental phase. Monocytes were isolated from blood collected 15 months after the start of the

experimental phase. **B)** Experimental diets were isocaloric with respect to macronutrients, but differed in food sources and relative amounts of micronutrients. Orange bars indicate nutrients with higher concentration in the Western diet formulation, while blue bars indicate higher levels of a given nutrient in the Mediterranean diet. See Table S1 for diet compositions. **C)** Percent change in body weight from baseline after 14 months on the diet ($t_{(23,0)} = 3.02, p = 0.0023$).


140

141 *Diet induced major shifts in monocyte gene expression*

142 To test how diet affected the phenotypes of circulating monocytes, we used RNA sequencing to
143 measure genome-wide gene expression of purified CD14+ monocytes after 15 months on the
144 experimental diets. Diet had a strong effect on monocyte gene expression: the first principal
145 component of gene expression, which explained 59.2% variance, was significantly associated
146 with diet ($t_{(25,1)} = 4.41, p = 1.7 \times 10^{-4}$; Fig. 2A), and 40% of the 12,240 expressed genes (Table
147 S2A) were significantly differentially expressed between the two diets ($n = 4,900$ genes, FDR <
148 0.05; Table S2B). The number of diet-responsive genes was roughly balanced between those that
149 were more highly expressed in monkeys fed the Mediterranean diet ($n = 2,664$; hereafter
150 “Mediterranean genes”) and those that were more highly expressed in monkeys fed the Western
151 diet ($n = 2,236$; hereafter “Western genes”). While balanced in direction, the distributions of
152 effect sizes in these two sets of genes differed significantly (one sided Kolmogorov-Smirnov test,
153 $D = 0.33, p = 5.2 \times 10^{-112}$) and the effect size of diet on Western genes was, on average, 1.6-fold
154 larger than on Mediterranean genes (Mann-Whitney $U = 4.1 \times 10^6, p = 6.1 \times 10^{-117}$; Fig. 2B).
155 Thus, the strongest effects are seen in genes that are either activated by a Western diet or
156 suppressed by a Mediterranean diet.

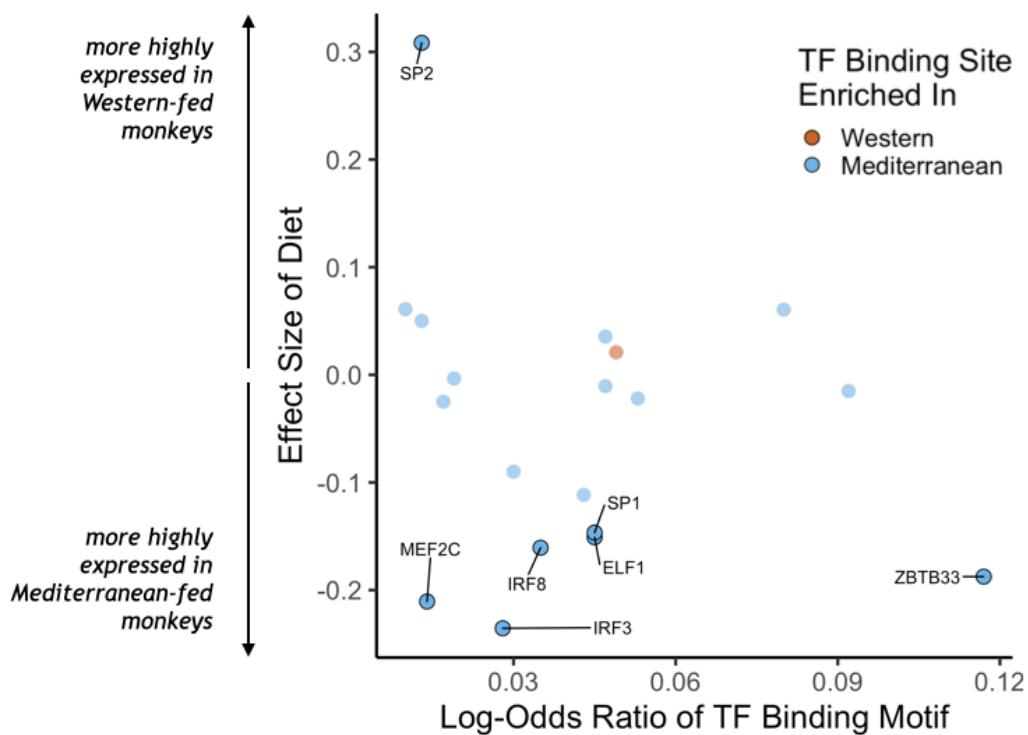
157

158

Figure 2. Diet effects on monocyte gene expression. **A)** Diet significantly predicts the first principal component of gene expression (59.3% variance explained, $t_{(25.0)} = 4.41, p = 1.72 \times 10^{-4}$). **B)** The average effect size of diet on Western genes was 1.6-fold larger than the effect size of diet on Mediterranean genes (Mann-Whitney $U = 4.1 \times 10^6, p = 6.1 \times 10^{-117}$). **C)** Log₂ fold enrichment of proinflammatory (top) and regulatory (bottom) genes in Western genes (orange) and Mediterranean genes (blue). Western genes contained more M1 genes than expected by chance, indicating that the Western diet induced a shift towards a proinflammatory monocyte phenotype. Western genes were enriched for proinflammatory (M1-like) genes (fold-enrichment = 1.27, 95% CI = 1.09, 1.46), while Mediterranean genes were depleted of these same M1-like genes (fold-enrichment = 0.74, 95% CI = 0.61, 0.88). Regulatory (M2-like) genes were also under-represented in Mediterranean genes (fold-enrichment = 0.67, 95% CI = 0.40, 0.97), but not in Western genes (fold-enrichment = 0.95, 95% CI = 0.60, 1.35).

159

160 Monocytes in animals fed the Western diet had higher expression of a number of well-known
 161 inflammatory-related genes, including interleukin-6 ($\beta_{\text{diet}} = 1.66, \text{FDR} = 8.9 \times 10^{-3}$; Fig. 2B),
 162 interleukin-1 α ($\beta_{\text{diet}} = 1.22, \text{FDR} = 0.03$; Table S2B), and two subunits of the NF- κ B protein

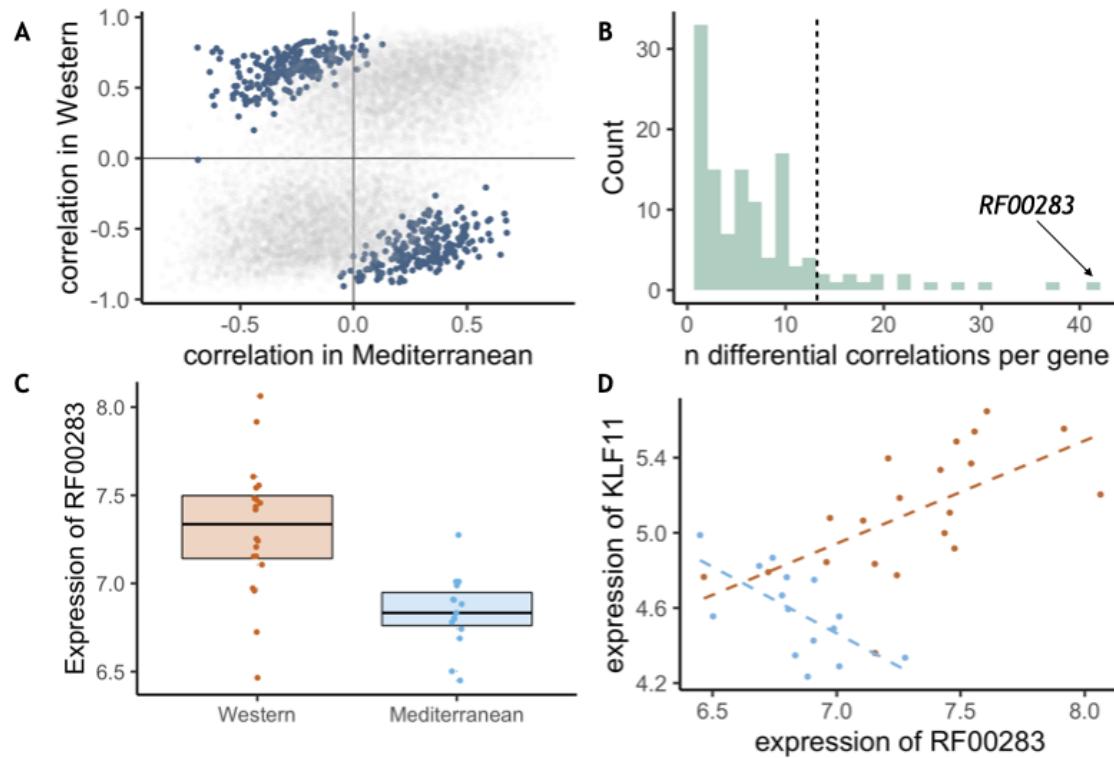

163 ($NFKB1 \beta_{\text{diet}} = 0.30$, FDR = 0.017; $NFKB2 \beta_{\text{diet}} = 0.42$, FDR = 0.012; Table S2B). Western genes
164 were significantly more likely to be involved in replication and metabolic cellular processes,
165 including response to growth factor (GO:0070848, weighted Fisher's Exact Test (FET) $p =$
166 4.6×10^{-3}) and response to insulin (GO:0032868, weighted FET $p = 4.0 \times 10^{-4}$; Table S3A),
167 suggesting that the Western diet also reprogrammed oxidative metabolic aspects of monocyte
168 gene regulation. Conversely, Mediterranean diet monocyte expression patterns indicated
169 enhanced oxidation-reduction processes (GO:0055114, weighted FET $p = 6.0 \times 10^{-3}$; Table S3B),
170 a critical function in muting proinflammatory monocytes.

171
172 We next conducted a more targeted analysis of monocyte polarization by focusing on genes that
173 were previously reported to be differentially expressed between induced proinflammatory (M1)
174 and regulatory (M2) monocyte polarization³⁹ (see Table S2C for polarization categories).
175 Western genes were enriched in M1-associated genes ($n = 162$ genes, fold-enrichment = 1.27,
176 $95\% CI = 1.09 - 1.46$; Fig. 2C), but not M2-associated genes ($n = 24$ genes, fold-enrichment =
177 0.95, $95\% CI = 0.60 - 1.35$). Conversely, both M1-associated genes ($n = 112$ genes, fold-
178 enrichment = 0.74, $95\% CI = 0.61 - 0.88$) and M2-associated genes ($n = 20$ genes, fold-
179 enrichment = 0.67, $95\% CI = 0.40 - 0.97$) were underrepresented among Mediterranean genes.
180 Together, these observations indicate that a Western diet induces a more proinflammatory (M1-
181 like) phenotype.

182
183 Next, to identify putative upstream gene regulatory mechanisms, we examined whether diet-
184 induced changes in gene expression were associated with *cis*-regulatory transcription factor
185 binding sites. We identified 34 distinct transcription factor-binding motifs enriched within 2

186 kilobases of the transcription start sites of Mediterranean genes and one that was enriched near
187 the transcription start sites of Western genes (FDR < 0.05; Fig. 3, Table S4). Diet significantly
188 altered expression of the genes encoding for seven of these 35 transcription factors, including
189 IRF3, IRF8, MEF2C, and SP1, which drive monocyte fate and polarization in response to
190 extracellular signals⁴⁰⁻⁴⁴. Thus, some of the diet-associated changes in monocyte gene regulation
191 may be mediated by changes in the expression and *cis*-regulatory binding of key transcription
192 factors.

193


Figure 3. Transcription factor (TF) binding motifs correlated with diet effects on gene expression. The log-odds ratio of TF binding motif enrichment in Western genes (orange) or Mediterranean genes (blue) are depicted on the x-axis. The y-axis shows the effect size of diet on the expression of the gene that encodes for the TF. Only TFs with binding motifs significantly enriched in either gene set and that were detectably expressed in our samples are shown, with those significantly effected by diet outlined and labeled.

194

195 *Diet alters gene co-expression patterns*

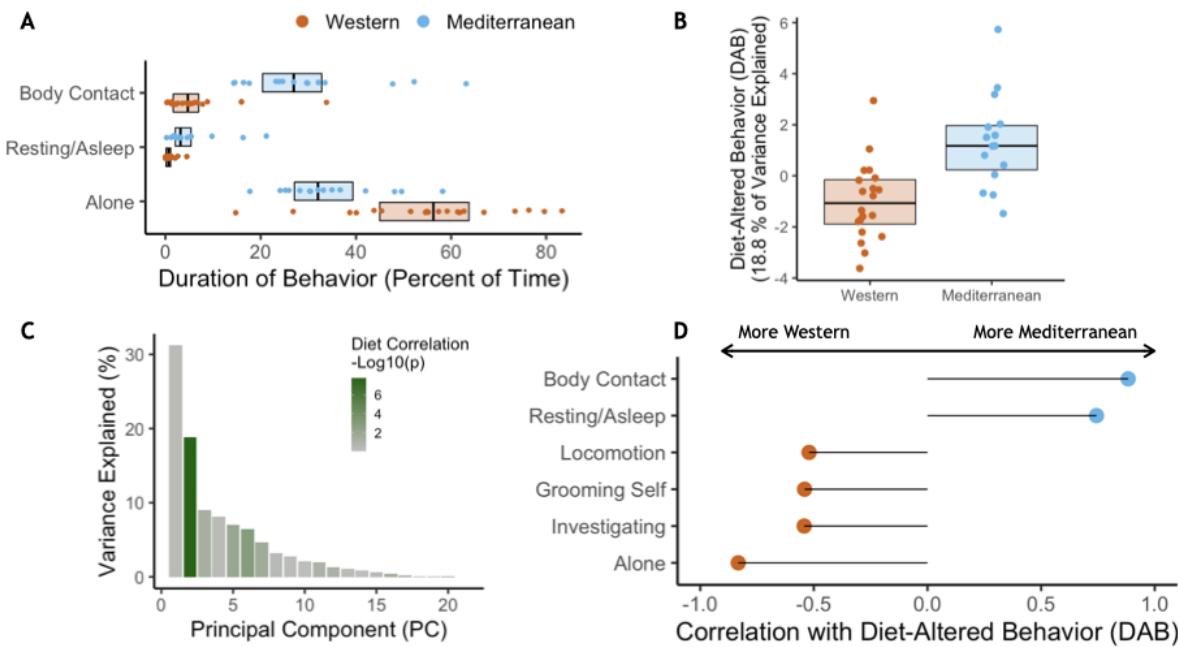
196 Next we asked whether diet altered the magnitude or direction of pairwise gene expression
197 correlations among the most strongly diet-affected genes, as such effects could reveal key gene
198 regulatory networks that are altered by diet, that may themselves be regulated by key upstream
199 targets^{45,46}. Drawing on a newly developed approach, “correlation by individual level product”
200 (CILP)⁴⁷, we identified 445 gene pairs that exhibited significant changes (FDR < 20%) in their
201 correlation between the Mediterranean- and Western-fed monkeys (Table S5A; Fig. 4A). The
202 majority (97%) of these gene pairs exhibited positive associations in one diet and negative
203 associations in the other, suggesting that diet can completely reverse the co-expression
204 relationship between two genes (Figure 4A). We further identified 16 “hub” genes that exhibited
205 differential correlations with partner genes more so than expected by chance (Fig. 4B, Table
206 S5B). These hub genes were enriched for genes encoding transcription factors (OR = 7.40, FET
207 $p = 7.0 \times 10^{-3}$), including SOX4 (essential for normal insulin secretion and glucose tolerance)
208 and NR4A2 (involved in lipid, carbohydrate, and energy metabolism^{48,49}), suggesting immune
209 and metabolic reprogramming by the diet manipulation. Interestingly, the hub gene involved in
210 the greatest number of differentially-correlated gene pairs was *RF00283*, aka *SCARNA18*, a non-
211 coding RNA that has been associated with BMI, HDL cholesterol, and aging in human genome-
212 wide association studies⁵⁰⁻⁵³ (Fig. 4B-D), identifying it as a key regulatory RNA that is altered
213 by diet and has a cascading effect on other genes and pathways.

214

Figure 4. Diet affects monocyte gene co-expression. **A)** The Pearson correlation between each pair of genes within each of the experimental diets. Gene pairs that are significantly differently correlated between diets are highlighted in blue ($n = 445$ significant pairs, FDR < 20%). **B)** Of the genes involved in significant pairs, some were paired with more genes than expected by chance ($n = 16$ “hub” genes; dotted black line is the maximum number of significant pairs expected by chance). The strongest hub gene was the non-coding RNA *RF00283*. **C)** Residual normalized expression of *RF00283* is significantly greater in Western- than Mediterranean-fed monkeys ($\beta_{\text{diet}} = 0.507$, FDR = 2.3×10^{-6}). **D)** Example of a differential correlation involving *RF00283*. Residual normalized expression of *RF00283* is plotted against expression of *KLF11*, a differentially-expressed transcription factor that regulates insulin and has been associated with type II diabetes in humans⁵⁴. The two genes were more highly expressed in Western monocytes, and were positively correlated with one another in Western-fed monkeys ($r = 0.61$, $p < 0.005$) and negatively correlated in Mediterranean-fed monkeys ($r = -0.63$, $p < 0.01$).

215

216 *Diet altered social behavior*


217 There were no differences in behavior during the baseline phase (all $p > 0.1$; Fig. S1A, B). While
218 on the experimental diets, monkeys fed the Mediterranean diet spent significantly more time in
219 body contact (Mann-Whitney $U = 280$, Holm-Bonferroni adjusted p (p_{HB}) = 1.2×10^{-5}) and
220 resting ($U = 267$, $p_{HB} = 1.6 \times 10^{-3}$), while those fed the Western diet spent significantly more
221 time alone ($U = 48$, $p_{HB} = 4.7 \times 10^{-3}$; Fig. 5A). All other measured behaviors did not pass our
222 stringent p-value threshold after multiple hypothesis testing correction (Fig. S1C,D), although
223 two additional behaviors differed at an uncorrected p-value < 0.05 (percent of time attentive and
224 rate grooming self). Therefore, to increase our ability to identify diet-affected suites of behaviors,
225 we leveraged the fact that many behaviors co-occurred (Fig. S2) by conducting a principal
226 component analysis^{55,56}. Behaviors associated with dominance interactions—including
227 aggression, submission, and being groomed—all loaded heavily onto the first principal
228 component, which explained 32.2% of the overall variance in behavior and did not differ
229 between diets (Welch-Satterthwaite $t_{(30.3)} = 0.323$, $p = 0.75$; Fig. S3, Table S6A). The first
230 principal component was significantly correlated with dominance rank (Fig. S4, Note S1).

231

232 The second principal component, which explained 18.8% of the variance in behavior, differed
233 significantly between the two diets ($t_{(26.8)} = -4.02$, $p = 4.2 \times 10^{-4}$; Fig. 5B), and thus represented a
234 composite of diet-altered behaviors (hereafter, DAB). No other principal component was
235 significantly correlated with diet and thus PC2 captures the primary behavioral component
236 causally affected by diet (Fig. 5C, Table S6B). PC2 captured a number of anxiety and social
237 behaviors (Fig. S5, Table S6A). Specifically, body contact is indicative of social integration and
238 was positively correlated with PC2 loading (hereafter, DAB score), which was higher in
239 Mediterranean fed animals. Conversely, behaviors related to social isolation and anxiety⁵⁷⁻⁶²

240 (e.g., percent of time alone, rate of grooming self, rate of scratching) were associated with lower
241 DAB scores, and hence more prevalent in animals fed the Western diet (Fig. 5C). Thus, PC2
242 captured a measure of social integration associated with consuming a Mediterranean-like diet,
243 and social isolation and anxiety associated with consuming a Western-like diet.

244

Figure 5. Diet alters behavioral phenotype. **A)** Three behaviors were significantly different between the two diet groups. Monkeys fed the Mediterranean diet spent more time in body contact ($p_{HB} = 1.2 \times 10^{-5}$) and resting ($p_{HB} = 1.6 \times 10^{-3}$) than Western-fed monkeys. Monkeys eating the Western diet spent more time alone than Mediterranean-fed monkeys ($p_{HB} = 4.7 \times 10^{-3}$). **B)** Composite measures of diet-altered behavior (DAB scores) were significantly higher in Mediterranean diet compared to Western diet animals ($t_{(32.0)} = 5.30, p = 8.2 \times 10^{-6}$). **C)** Principal component 2 (PC2) explained 18.8% of the variance in behavior and was the only PC significantly correlated with diet (see Table S6B for correlation between diet and other PCs). **D)** Six of the 21 behaviors observed are significantly correlated with DAB score (Benjamini-Hochberg adjusted $p < 0.05$). Here, significant correlations with DAB score in which behaviors are more frequent in Mediterranean diet or Western diet

monkeys are indicated with blue or orange points, respectively.

245

246

247 *Diet-altered behaviors mediate expression of 25% of differentially expressed monocyte genes*

248 Given the strong effects of diet on both behavior and monocyte gene expression, we tested if the

249 effect of diet on monocyte gene expression was mediated by the diet-induced changes in

250 behavior. Of the 4,900 diet-affected genes, 29% were also significantly associated with DAB

251 score in a univariate model ($n = 1,418$, FDR < 0.05). Of these, DAB score significantly mediated

252 the effect of diet on the expression of 1220 genes (25% of all diet-associated genes, $p < 0.05$;

253 Fig. 6A). DAB score mediation accounted for significantly more of the effect of diet in DAB-

254 mediated Western genes ($\mu = 51.1\%$, $\delta = 12.4\%$), than DAB-mediated Mediterranean genes ($\mu =$

255 44.2% , $\delta = 10.0\%$; Mann-Whitney $U = 2.4 \times 10^5$, $p = 7.5 \times 10^{-23}$; Fig. 6B). These DAB-

256 mediated genes were also significantly more likely to be Western genes than Mediterranean

257 genes ($n = 741$ Western genes, 61%, two-sided binomial test $p = 6.3 \times 10^{-14}$), and were enriched

258 in regulation of inflammatory response (GO:0050727, weighted FET $p = 2.9 \times 10^{-3}$; Table S7A-

259 C). Together, this shows that the effect of diet on monocyte gene regulation may partially be due

260 to diet-induced changes in key social behaviors.

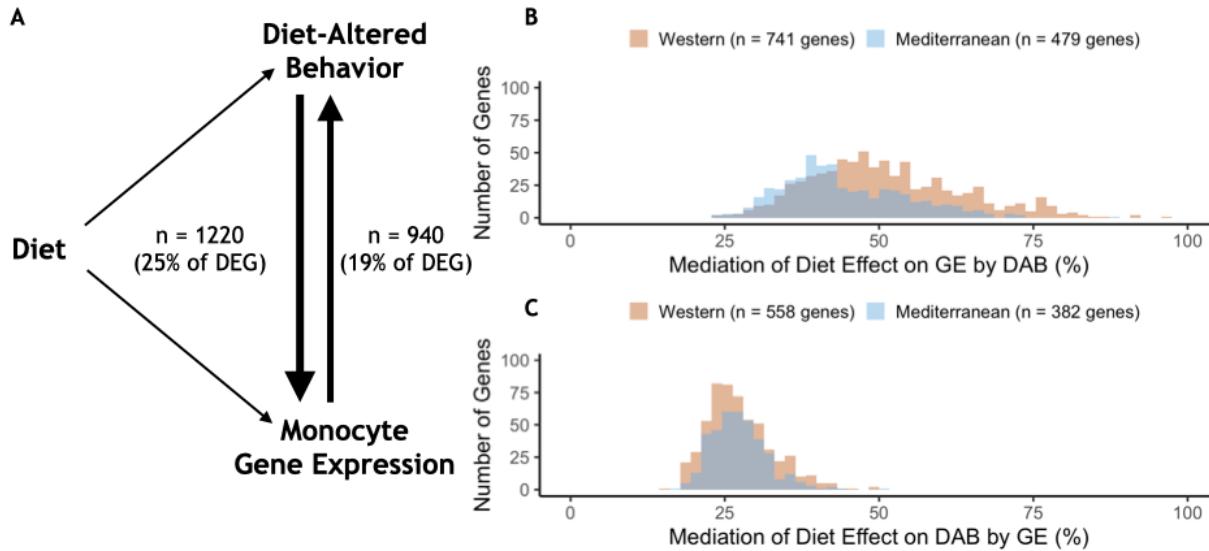
261

262 In support of this mediation effect, we compared expression of a well-studied set of social

263 adversity-responsive genes known as the “conserved transcriptional response to adversity”

264 (CTRA)²⁸ in the Western- and Mediterranean-fed animals in our study. Animals fed a Western

265 diet exhibited significantly higher expression of pro-inflammatory genes included in the CTRA


266 (Mann-Whitney $U = 222$, $p = 0.016$) and lower expression of antiviral- and antibody-related

267 CTRA genes (Mann-Whitney $U = 82$, $p = 0.023$; Table S2C, Fig. S6).

268

269 We also tested the hypothesis that diet could alter behavior through its changes on peripheral
270 immune cell gene expression. We tested this in the 28% of genes for which monocyte gene
271 expression significant predicted DAB in a univariate model ($n = 1,353$, FDR < 0.05), and found
272 that gene expression significantly mediated the effect of diet on DAB score in 940 genes (19% of
273 all diet-associated genes, $p < 0.05$; Fig. 6A). Almost all of these genes (99.5%; 936/940) were
274 significantly mediated by diet-induced changes in DAB. As with DAB score mediating gene
275 expression, the genes that mediated the effect of diet on DAB score were more likely to be
276 Western genes than Mediterranean genes ($n = 558$ Western genes, 59%, two-sided binomial test
277 $p = 1.0 \times 10^{-8}$). Unlike DAB score mediating the effect of diet on gene expression, the portion of
278 the effect of diet that was accounted for by gene expression did not vary between Western ($\mu =$
279 27.5% , $\delta = 5.4\%$) and Mediterranean genes ($\mu = 27.3\%$, $\delta = 4.6\%$; Mann-Whitney $U = 1.1 \times$
280 10^5 , $p = 0.75$; Fig. 6B).

281

Figure 6. Behavior partially mediates the effect of diet on gene expression for 25% of diet-associated genes.

A) Diet-altered behavior (DAB) mediated the effect of diet on gene expression for 25% ($n = 1220$) of genes for which diet had an effect (DEG). For 19% of differentially expressed genes (DEG), gene expression mediated the effect of diet on DAB score. **B)** DAB score mediated 24-97% of the effect of diet on gene expression in 1220 genes ($n = 741$ Western genes, orange; $n = 479$ Mediterranean genes, blue). DAB score mediated a greater number of Western genes than Mediterranean genes ($p = 6.3 \times 10^{-14}$) and accounted for a greater portion of the effect size of diet ($p = 7.5 \times 10^{-23}$) in Western genes. **C)** In gene-by-gene models of DAB score as a function of diet + gene expression, gene expression mediated 15-51% of the effect of diet on DAB in 940 genes ($n = 558$ Western genes; $n = 382$ Mediterranean genes). Gene expression mediated a greater number of Western genes than Mediterranean genes ($p = 1.0 \times 10^{-8}$), although expression of these genes did not account for more of the effect of diet on DAB score than Mediterranean genes (Mann-Whitney $U = 1.1 \times 10^5$, $p = 0.75$).

282

283 *Western diet induces mosaic response*

284 Western diet induced substantial variation in multiple phenotypes, including body weight, gene
285 expression, and behavior; consistent with previous studies demonstrating that some individuals
286 may be more resistant (or susceptible) to the effects of a Western diet⁶³, presumably due to
287 genetic variation or past environmental exposures. However, we were unable to identify any

288 consistencies in individual responsiveness across the phenotypes (Fig. S7). For instance,
289 monkeys that exhibited a strong gene regulatory response to the Western diet did not exhibit a
290 large increase in body weight or a strong negative DAB score (all $p > 0.2$). Furthermore, change
291 in body weight did not significantly predict the expression of any genes at an FDR < 20%.
292 Western diet fed individuals thus exhibited a mosaic response to diet across multiple phenotypes,
293 presumably involving interactions between diet, environment, and the genome.

294

295 **Discussion**

296 This study shows, for the first time, that a whole-diet manipulation exerted profound effects on
297 monocyte function and social behavior in a primate. Forty percent of expressed genes were
298 differentially expressed between monkeys fed Western or Mediterranean diets, indicating that
299 diet dramatically altered monocyte programming. Relative to Western group monocytes,
300 Mediterranean group monocytes exhibited reduced proinflammatory gene expression and
301 regulatory gene expression. Our findings recapitulate and extend previous studies, such as a
302 randomized human cross-over trial that demonstrated that peripheral blood monocytes from
303 elderly individuals consuming a Mediterranean like diet enriched in olive oil had reduced
304 proinflammatory gene expression relative to diets more enriched in saturated fat (butter)⁶⁴.
305 Beyond mean differences in gene expression levels, we also identified differences in gene co-
306 expression and enrichment of transcription factor binding motifs, suggesting that diet exerts a
307 strong effect on gene regulatory networks.

308

309 We identified enrichment of binding motifs for numerous transcription factors that appear to be
310 involved in diet-regulated gene expression. Of note, members of the E26 transformation-specific

311 (ETS), specificity protein (Sp)/Krüppel-like family (KLF), myocyte-specific enhancer factor
312 (MEF), and interferon-regulatory factor (IRF) families of transcription factors, which have all
313 been linked to myeloid differentiation^{40–43}, were overrepresented in regulatory regions of genes
314 with higher expression in the Mediterranean diet group (“Mediterranean genes”). IRF-1 and IRF-8
315 are linked to M1 monocyte polarization, while IRF-3 is associated with M2 polarization, and all
316 three transcription factors had binding motifs enriched in Mediterranean genes. The sole
317 transcription factor with binding sites enriched in Western diet-associated genes, ATF2, is a key
318 mediator of inflammatory pathways and diseases, including response to bacterial endotoxin,
319 atherosclerosis, and obesity^{65–67}. Interestingly, Western genes were enriched for activation of the
320 MAPKK pathway, which lies upstream of ATF2⁶⁸, supporting its putative role in monocyte gene
321 regulation. Transcription factors were also overrepresented in the pairs of differentially co-
322 expressed genes, indicating that diet may be altering the networks through which inflammatory
323 genes are regulated. Broadly, this suggests that the two experimental diets differentially affect
324 transcriptional networks involved in monocyte differentiation and polarization. It is also worth
325 noting that the M1/M2 paradigm of monocyte polarization is a simplification of the more
326 complex heterogeneity of monocytes.^{69,70} For example, there are at least 3 classes of monocytes
327 in the circulation, classical, intermediate, and non-classical, which individually have different
328 phenotypes. We did not assess proportions of these or try to isolate individual monocyte subsets
329 in the current study, thus the patterns of gene expression observed could represent altered
330 proportions of these subsets and well as shifts in monocyte polarization within subsets^{71,72}.

331

332 Diet induced changes in behavior, as monkeys consuming the Western diet exhibited more
333 behaviors related to anxiety and social isolation, a phenotype remarkably similar to that observed

334 in juvenile Japanese macaques born to mothers consuming a high-fat Western diet⁷³. In that
335 study, offspring behavior was associated with maternal levels of macrophage-derived chemokine
336 (MDC), which showed higher expression in Western-diet fed animals in our study ($\beta_{diet} = 0.243$,
337 FDR = 0.059). Our findings suggest that a Western diet may also exert similar behavioral effects
338 in adulthood.

339

340 We observed that for a subset (25%) of genes, the diet-altered behavior (DAB) score mediated
341 the effect of diet on monocyte gene expression. This observation suggest involvement of
342 mechanistic pathways in which diet first impacts the brain, which in turn impacts monocyte
343 function. Monocytes have been shown to be responsive to social isolation²⁹ and anxiety²⁸. Social
344 isolation and anxiety, produced by Western diet consumption, may be accompanied by increased
345 sympathetic outflow and increased hypothalamic-pituitary adrenal production of cortisol, both of
346 which modulate monocyte intracellular processes governing inflammatory molecule
347 production⁷⁴⁻⁷⁶. Supporting the involvement of these systems, we previously reported that the
348 Western diet group had increased sympathetic activity, and increased cortisol concentrations⁷⁷.
349 Therefore, it is possible that a Western diet contributes to inflammation by producing a more
350 socially isolated or anxious animal with increased sympathetic and hypothalamic pituitary
351 adrenal activity, which in turn alters monocyte function. Higher expression of genes in the
352 conserved transcriptional response to adversity support this pathway^{28,29}.

353

354 There are numerous pathways through which diet may affect behavior. Diet may induce changes
355 in the central nervous system by altering gut microbiota which alters vagal input to the brain⁷⁸.
356 We previously showed in these NHPs that diet had a strong effect on the gut microbiome⁷⁹, and

357 that compared to the Mediterranean group, Western diet NHPs had lower parasympathetic
358 (vagal) activity at the time the monocyte transcriptome was assessed⁷⁷. Taken together these
359 observations suggest that diet-induced changes in vagal tone in the gut-brain axis may be one
360 pathway through which diet impacted brain function, potentially affecting behavior.

361

362 We also observed that for some genes (19%), diet-induced changes in monocyte gene expression
363 significantly mediated the effect of diet on behavior (DAB). This observation suggests
364 underlying mechanisms which first impact peripheral monocyte function, which in turn impacts
365 brain function. Western diet may disrupt the blood-brain barrier, increasing infiltration of
366 Western-diet induced cytokines, chemokines, and myeloid cells from the periphery^{80,81}. Once in
367 the brain these molecules can alter BDNF production, neurotransmitter systems, and
368 hypothalamic-pituitary-adrenal function⁸⁰. Western diet induced inflammatory molecules also
369 may effect the brain through direct effects on the afferent vagus nerve⁸², activation of glial
370 cells⁸³, and alter neuronal membrane lipid composition affecting neurotransmission⁸⁴, whereas a
371 Mediterranean diet may have direct anti-inflammatory actions by increasing n-3 fatty acids in the
372 brain⁸⁵. These results support both mediation pathways, suggesting that multiple mechanistic
373 pathways contributed to these observations.

374

375 The behavioral analysis also showed that the first principal component described dominance-
376 related behaviors. While the dominance component accounted for the largest proportion of the
377 variance in behavior, it was notably unaffected by the diet manipulation. From a socio-biological
378 perspective this suggests that dominance-related behavior is resistant to perturbation, which is
379 consistent with known stability of dominance hierarchies in female cynomolgus monkeys³³. The

380 second principal component that captured affiliation, anxiety, and social isolation was
381 significantly affected by the two diets, suggesting that these behaviors are susceptible to dietary
382 interventions.

383

384 In summary, we found that diet significantly alters behavior and monocyte polarization. The
385 Western diet promoted a proinflammatory monocyte phenotype relative to a Mediterranean diet,
386 which supports the role of monocyte polarization in diet-associated chronic inflammatory
387 diseases. Thus, avoiding a Western-style diet and/or consuming a Mediterranean-style diet could
388 be beneficial in preventing or treating chronic inflammation and disease. The majority of the
389 effects of diet are presumably mediated through direct or combined actions of
390 saturated/polyunsaturated fats, n-6:n-3 ratios, pro- and anti-antioxidant characteristics, and other
391 unique features of the protein, carbohydrate, and fat constituents in the two diets. Monocyte
392 reprogramming was also partially mediated by the diet-induced changes in behavior, although
393 the mechanisms by which this occurred are unknown. Ongoing and future work will address
394 interactions between social behavior (e.g., social status) and diet to further understand how
395 environmental stressors may impact inflammation in the periphery and in the central nervous
396 system.

397

398 **Materials and Methods**

399 *Subjects*

400 Forty-three adult (age: mean = 9.0, range = 8.2-10.4 years, estimated by dentition), female
401 cynomolgus macaques (*Macaca fascicularis*), were obtained (Shin Nippon Biomedical
402 Laboratories, USA SRC, Alice, TX) and housed at the Wake Forest School of Medicine Primate

403 Center (Winston-Salem, NC) as previously described³⁸. Briefly, the monkeys were socially
404 housed in groups of 3-4 and consumed standard monkey chow (Table S1) during an eight-month
405 baseline phase, after which pens were assigned to receive either the Western (5 groups, $n = 21$)
406 or Mediterranean (6 groups, $n = 22$) diet, balanced on pretreatment characteristics that reflected
407 overall health, including body weight, body mass index, and plasma triglyceride concentrations
408 (³⁸; Fig. 1A). Two monkeys did not tolerate the experimental diet, and were switched to standard
409 monkey chow, three animals died during the course of the study, and three samples were
410 removed for insufficient CD14 purification (see “Removal of Batch Effects” below), resulting in
411 a final sample size of 35 animals (Western $n = 20$, Mediterranean $n = 15$). All animal
412 manipulations were performed according to the guidelines of state and federal laws, the US
413 Department of Health and Human Services, and the Animal Care and Use Committee of Wake
414 Forest School of Medicine.

415

416 *Experimental Diets*

417 Experimental diets (Table S1) were formulated to be isocaloric with respect to protein, fat, and
418 carbohydrates, and identical in cholesterol content (~ 320mg / 2000 kilocalories (Cals)/day) as
419 previously described³⁸. The Western diet was formulated to be similar to that consumed by
420 American women age 40-49 as reported by the US Dept. Agriculture, with protein and fat
421 derived mainly from animal sources. The Western diet was relatively high in saturated fat and
422 sodium, and low in monounsaturated fat and n-3 fatty acids. The Mediterranean diet was
423 formulated to mimic key aspects of the traditional Mediterranean diet, with an n-6:n-3 fatty acid
424 ratio similar to a traditional hunter-gatherer type diet^{12,86,87}. Protein and fats were derived mainly
425 from plant sources, fish and dairy, and monounsaturated fatty acids were relatively high.

426 Mediterranean diet contained more complex carbohydrates and fiber, and less sodium and
427 refined sugars than Western diet. Key ingredients included English walnut powder and extra-
428 virgin olive oil which were the primary components provided to participants in the PREDIMED
429 study, a landmark dietary intervention study that illustrated the role of the Mediterranean diet in
430 cardiovascular disease prevention⁸⁸.

431

432 *Behavioral Characterization*

433 Behavioral data were collected weekly during two 10-minute focal observations, randomly
434 ordered and balanced for time of day, for 6 weeks during the baseline phase (2 hours/monkey
435 total) and for 14 months during the experimental phase (17.7 hours/monkey total). Behaviors
436 were collected as previously described⁸⁹, and combined into summary behaviors (e.g.,
437 “aggression” was a combination of all total, noncontact, contact aggressive events). No
438 significant differences in behavioral variables were observed between the diet groups which
439 consuming the baseline standard monkey chow diet. In order to quantify the overall impact of
440 diet on behavior, we conducted a principal component analysis using the R package *FactoMineR*
441⁹⁰.

442

443 *Blood Sample Collection*

444 The monkeys were trained to run out of their social groups on voice command. Blood was drawn
445 via venipuncture within 9 minutes of entering the building,. Blood was collected into EDTA-
446 containing tubes, mixed with an equal amount of PBS without calcium or magnesium, and
447 overlaid on a 90% Ficoll-Paque Plus/10% PBS solution in LeucoSep tubes followed by
448 centrifugation at 800 x g for 20 min. Isolated PBMCs were then immediately used for the

449 collection of CD14+ monocytes by positive selection using a Miltenyi bead-based protocol
450 following manufacturer's instructions (Miltenyi Biotec, Bergisch Gladbach, Germany). After
451 assessing cell viability and numbers, CD14+ monocytes were stored in 85% FBS, 15% DMSO
452 sterile freezing media at -80°C and transferred to liquid nitrogen for storage until RNA
453 extraction.

454

455 *RNA extraction and sequencing*

456 RNA was extracted from monocytes using the AllPrep DNA/RNA Mini Kit (Qiagen, Inc.,
457 Hilden, Germany), and quantified using a NanoDrop spectrophotometer and Agilent 2100
458 Bioanalyzer with RNA 6000 Nano chips (Agilent Technology, Inc., Santa Clara, CA). RNA
459 libraries were prepared for sequencing by the Cancer Genomics Shared Resource (Wake Forest
460 School of Medicine, Winston-Salem, NC) using the TruSeq-stranded total RNA kit (Illumina),
461 which includes a ribosomal depletion step. The RNA-seq libraries were then sequenced using
462 single-end 76-bp reads on an Illumina NextSeq 500 to an average read depth of 34.5 million
463 reads per sample (range 25.9 – 41.6 million reads). Reads were mapped to the *Macaca*
464 *fascicularis* reference genome (Macaca_fascicularis_5.0, v 93, Ensembl)^{91,92} using HiSat2⁹³ and
465 then converted to a sample-by-gene read count matrix using featureCounts⁹⁴ (median = 38.0%;
466 range 24.5 - 50.4% of reads mapped to exons).

467

468 *Read Count Normalization and Removal of Batch Effects*

469 First, we removed genes with low expression (median reads per kilobase per million reads
470 mapped < 1), which resulted in 12,240 genes for downstream analyses. We normalized read
471 counts using the *voom* function of the R package *limma*⁹⁵. While investigating monocyte purity,

472 three samples differed in CD3 gene expression from the rest by several orders of magnitude. We
473 concluded that these samples were contaminated with CD3+ cells (i.e., inefficient CD14
474 purification, see Fig. S8) and excluded them from all analyses, leaving a final sample size of 35
475 monkeys ($n = 20$ fed the Western diet, $n = 15$ Mediterranean diet). To control for batch effects
476 related to RNA quality and monocyte purity, we calculated the residual gene expression from a
477 model of normalized gene expression as a function of CD14 expression, CD3 expression, RNA
478 integrity, and RNA concentration. These residual gene expression values were used for all
479 subsequent analyses.

480

481 *Modeling Effect of Diet on Gene Expression*

482 In order to determine which genes were significantly affected by diet, we modeled the residual
483 expression of each gene as a function of diet using a linear mixed effects model controlling for
484 relatedness among monkeys using the R package *EMMREML*⁹⁶. Relatedness was estimated using
485 the ngsRelate program⁹⁷ with SNP genotypes inferred from the RNA-seq reads using bcftools
486 mpileup⁹⁸. We calculated an empirical false discovery rate (FDR) for each gene using a
487 permutation-based approach³⁰. Genes that passed a threshold of $FDR < 0.05$ were considered
488 differentially expressed between the two diets. To examine global patterns of variation in gene
489 expression, we conducted principal component analysis on the correlation matrix of normalized
490 residual gene expression using the *prcomp* function in R.

491

492 *Enrichment analyses*

493 Gene ontology (GO) enrichment analyses were conducted using Fisher's Exact Tests and the
494 *weight01* algorithm to test for enrichment implemented in the R package *topGO*⁹⁹. For a more

495 targeted analysis of M1 and M2 specific genes, we identified a set of differentially expressed
496 genes in our data set that were previously found to be involved in monocyte polarization³⁹ (638
497 proinflammatory and 138 regulatory), which we used to explore monocyte polarization in the
498 current study. We calculated the proportion of genes more highly expressed in the
499 Mediterranean- and Western-fed animals in each polarization category and tested for
500 significance using a permutation test ($n = 100,000$ permutations).

501

502 *Transcription Factor Binding Site Analysis*

503 We tested for enrichment of transcription factor binding motifs within 2 kb (upstream or
504 downstream) of the transcription start sites of differentially expressed “Western genes” or
505 “Mediterranean genes” (FDR < 0.05) using the program HOMER¹⁰⁰ and equivalent regions
506 around the transcription start sites of all genes expressed in these data as the background set for
507 enrichment testing. We searched for known vertebrate transcription factor binding motifs and
508 report the TF motifs passing a threshold of FDR < 0.05.

509

510 *Gene-gene co-expression analysis*

511 In addition to testing whether diet led to mean differences in gene expression between Western
512 and Mediterranean animals, we also tested whether diet impacted the correlation structure among
513 expressed genes (i.e., gene co-expression). Specifically, we used ‘correlation by individual level
514 product’ (CILP)⁴⁷, to test whether diet affected the magnitude or direction of pairwise gene
515 expression correlations among the top 140 most differentially expressed genes ($n = 9730$ gene-
516 gene pairs tested, equivalent to $140C_2$). To test whether a given pair of genes was differentially
517 co-expressed as a function of diet, we first obtained a vector of products for each gene pair by

518 multiplying the normalized gene expression values for two genes together. Normalization was
519 performed by scaling expression values to mean 0 and unit variance within Mediterranean and
520 Western subsets of the data respectively, to ensure that distributional differences between sample
521 groups did not bias our results, following previously described procedures⁴⁷. Each of these
522 vectors of products were used as the outcome variable in a linear mixed effects model
523 implemented in the R package *EMMREML*⁹⁶, which included a fixed effect of diet and a random
524 effect to control for genetic relatedness. To assess significance, we extracted the p-value
525 associated with the diet effect for all 9730 gene pairs. We then repeated each linear mixed effects
526 model 100 times after permuting diet, extracted the p-value associated with the diet effect, and
527 used these values to calculate an empirical FDR distribution³⁰.

528
529 Using this approach, we identified 445 gene pairs that were significantly differentially co-
530 expressed as a function of diet at a 20% empirical FDR. Next, we performed two follow up
531 analyses to understand their biological import. First, we tested for the existence of ‘hub genes’,
532 defined as genes that displayed differential co-expression to their tested partner genes more so
533 than expected by chance. To define the null distribution for identifying hub genes, we randomly
534 sampled 445 gene pairs from the set of all 9730 tested gene pairs 1000 times and calculated the
535 number of partners a focal gene had in each sample; we considered a gene to be a significant
536 ‘hub gene’ if it fell outside the 95th percentile of this distribution, which was equivalent to a focal
537 gene that displayed significant differential co-expression with 13 or more of its tested partner
538 genes. Second, we asked whether the set of ‘hub genes’ we identified were enriched for
539 transcription factors, relative to the background set of all 140 genes tested for differential co-
540 expression. We performed this analysis because many of the proposed mechanisms to generate

541 large scale changes in gene co-expression patterns involve changes in transcription factor
542 function or activity^{45,46}. To implement the enrichment analysis, we used the TRRUST database
543 of known mammalian transcription factors for annotation¹⁰¹ paired with hypergeometric tests.

544

545 *Mediation*

546 To explore relationships between DAB score and differential gene expression, we conducted
547 mediation analyses using a bootstrapping approach involving 10,000 bootstrap iterations of two
548 models: (Model 1) the expression of each gene as a function of diet, and (Model 2) the
549 expression of each gene as a function of diet and DAB score¹⁰². For each bootstrap iteration, we
550 then calculated the mediation effect (i.e., the indirect effect) of DAB score as the difference
551 between the effect size of diet in Model 1 (β_{diet}) and Model 2 (β'_{diet}). We considered there to be a
552 mediation effect when the 90% confidence interval for the indirect effect ($\beta_{diet}-\beta'_{diet}$) did not
553 include zero.

554

555 A similar method was used to calculate the mediation of gene expression on DAB, testing the
556 difference between the effect size of diet in two models: (Model 3) DAB as a function of diet,
557 and (Model 4) DAB as a function of diet and the expression of each gene.

558

559 **Supplementary Materials**

560 Fig. S1. Diet manipulation altered behavior.

561 Fig. S2. Behaviors exhibit significant correlations with one another.

562 Fig. S3. Correlation of observed behaviors with PC1.

563 Fig. S4. The first PC of all behavioral data captures dominance rank.

564 Fig. S5. Correlation of observed behaviors with diet-altered behavior measure (DAB; PC2).

565 Fig. S6. Expression of genes in the conserved transcriptional response to adversity (CTRA²⁸)

566 indicate inflammatory effects of a Western diet that parallel the effects of social adversity.

567 Fig. S7. Greater phenotypic variability in Western diet fed monkeys does not show consistency

568 in individual responsiveness across phenotypes.

569 Fig. S8. Quality control of cell purity by CD14 and CD3 expression levels: three samples were

570 excluded due to lower CD14 and high CD3 – possible T cell contamination.

571 Fig. S9. RNA Integrity was correlated with both uncorrected gene expression and relative rank.

572 Table S1. Nutritional Contents of Human and Nonhuman Primate Diets

573 Table S2. Effects of Diet on Gene Expression

574 Table S3A. Biological Processes Enriched in Western Genes Compared to Other Measured

575 Genes

576 Table S3B. Biological Processes Enriched in Mediterranean Genes Compared to Other Measured

577 Genes

578 Table S4. Transcription Factor Binding Site Motif Enrichment

579 Table S5A. Gene Pair Correlations Across and Within Diet Groups

580 Table S5B. Differentially Correlated Genes

581 Table S6A. Behavior Loadings onto Principal Components 1 and 2 and Correlation with Diet

582 and Rank

583 Table S6B. Behavior Principal Components and Correlation with Diet

584 Table S7A. Biological Processes Enriched in Behavior-Mediated Differentially-Expressed Genes

585 (DEG)

586 Table S7B. Biological Processes Enriched in Behavior-Mediated Western Genes

587 Table S7C. Biological Processes Enriched in Behavior-Mediated Mediterranean Genes

588 Note S1. Regarding rank and RNA integrity (RIN).

589

590 **References**

- 591 1. Giugliano, D., Ceriello, A. & Esposito, K. The effects of diet on inflammation: emphasis on
592 the metabolic syndrome. *J. Am. Coll. Cardiol.* **48**, 677–685 (2006).
- 593 2. Lopez-Garcia, E. *et al.* Major dietary patterns are related to plasma concentrations of
594 markers of inflammation and endothelial dysfunction. *Am. J. Clin. Nutr.* **80**, 1029–1035
595 (2004).
- 596 3. Drescher, H. K. *et al.* The Influence of Different Fat Sources on Steatohepatitis and Fibrosis
597 Development in the Western Diet Mouse Model of Non-alcoholic Steatohepatitis (NASH).
598 *Front. Physiol.* **10**, (2019).
- 599 4. Holt, E. M. *et al.* Fruit and vegetable consumption and its relation to markers of
600 inflammation and oxidative stress in adolescents. *J. Am. Diet. Assoc.* **109**, 414–421 (2009).
- 601 5. Nanri, A., Moore, M. A. & Kono, S. Impact of C-reactive protein on disease risk and its
602 relation to dietary factors. *Asian Pac. J. Cancer Prev. APJCP* **8**, 167–177 (2007).
- 603 6. Nettleton, J. A. *et al.* Dietary patterns are associated with biochemical markers of
604 inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis
605 (MESA). *Am. J. Clin. Nutr.* **83**, 1369–1379 (2006).
- 606 7. Drake, I., Sonestedt, E., Ericson, U., Wallström, P. & Orho-Melander, M. A Western dietary
607 pattern is prospectively associated with cardio-metabolic traits and incidence of the
608 metabolic syndrome. *Br. J. Nutr.* **119**, 1168–1176 (2018).

609 8. Smyth, S. & Heron, A. Diabetes and obesity: the twin epidemics. *Nat. Med.* **12**, 75–80
610 (2006).

611 9. Smil, V. Coronary Heart Disease, Diet, and Western Mortality. *Popul. Dev. Rev.* **15**, 399
612 (1989).

613 10. Manzel, A. *et al.* Role of ‘Western diet’ in inflammatory autoimmune diseases. *Curr. Allergy*
614 *Asthma Rep.* **14**, 404 (2014).

615 11. Jacka, F. N. *et al.* Association of Western and traditional diets with depression and anxiety in
616 women. *Am. J. Psychiatry* **167**, 305–311 (2010).

617 12. Cordain, L. *et al.* Origins and evolution of the Western diet: health implications for the 21st
618 century. *Am. J. Clin. Nutr.* **81**, 341–354 (2005).

619 13. O’Keefe, J. H., Gheewala, N. M. & O’Keefe, J. O. Dietary strategies for improving post-
620 prandial glucose, lipids, inflammation, and cardiovascular health. *J. Am. Coll. Cardiol.* **51**,
621 249–255 (2008).

622 14. Farchi, G., Fidanza, F., Mariotti, S. & Menotti, A. Is diet an independent risk factor for
623 mortality? 20 year mortality in the Italian rural cohorts of the Seven Countries Study. *Eur. J.*
624 *Clin. Nutr.* **48**, 19–29 (1994).

625 15. Osler, M. & Schroll, M. Diet and mortality in a cohort of elderly people in a north European
626 community. *Int. J. Epidemiol.* **26**, 155–159 (1997).

627 16. Romagnolo, D. F. & Selmin, O. I. Mediterranean Diet and Prevention of Chronic Diseases.
628 *Nutr. Today* **52**, 208–222 (2017).

629 17. Trichopoulou, A. *et al.* Diet and overall survival in elderly people. *BMJ* **311**, 1457–1460
630 (1995).

631 18. Hu, F. B. Dietary pattern analysis: a new direction in nutritional epidemiology. *Curr. Opin.*
632 *Lipidol.* **13**, 3–9 (2002).

633 19. Whelton, P. K. *et al.* The Effects of Nonpharmacologic Interventions on Blood Pressure of
634 Persons With High Normal Levels: Results of the Trials of Hypertension Prevention, Phase
635 I. *JAMA* **267**, 1213–1220 (1992).

636 20. Kimmig, L. M. & Karalis, D. G. Do Omega-3 Polyunsaturated Fatty Acids Prevent
637 Cardiovascular Disease? A Review of the Randomized Clinical Trials. *Lipid Insights* **6**,
638 LPI.S10846 (2013).

639 21. Ohlow, M. J., Sohre, S., Granold, M., Schreckenberger, M. & Moosmann, B. Why Have
640 Clinical Trials of Antioxidants to Prevent Neurodegeneration Failed? - A Cellular
641 Investigation of Novel Phenothiazine-Type Antioxidants Reveals Competing Objectives for
642 Pharmaceutical Neuroprotection. *Pharm. Res.* **34**, 378–393 (2017).

643 22. Steinhubl, S. R. Why Have Antioxidants Failed in Clinical Trials? *Am. J. Cardiol.* **101**, S14–
644 S19 (2008).

645 23. Stice, E. & Durant, S. Elevated objectively measured but not self-reported energy intake
646 predicts future weight gain in adolescents. *Appetite* **81**, 84–88 (2014).

647 24. Suchanek, P., Poledne, R. & Hubacek, J. A. Dietary intake reports fidelity--fact or fiction?
648 *Neuro Endocrinol. Lett.* **32 Suppl 2**, 29–31 (2011).

649 25. Devêvre, E. F. *et al.* Profiling of the Three Circulating Monocyte Subpopulations in Human
650 Obesity. *J. Immunol.* **194**, 3917–3923 (2015).

651 26. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. *Nat.*
652 *Rev. Immunol.* **8**, 958–969 (2008).

653 27. Cole, S. W. Social regulation of human gene expression: mechanisms and implications for
654 public health. *Am. J. Public Health* **103 Suppl 1**, S84-92 (2013).

655 28. Cole, S. W. *et al.* Loneliness, eudaimonia, and the human conserved transcriptional response
656 to adversity. *Psychoneuroendocrinology* **62**, 11–17 (2015).

657 29. Cole, S. W. The Conserved Transcriptional Response to Adversity. *Curr. Opin. Behav. Sci.*
658 **28**, 31–37 (2019).

659 30. Snyder-Mackler, N. *et al.* Social status alters immune regulation and response to infection in
660 macaques. *Science* **354**, 1041–1045 (2016).

661 31. Snyder-Mackler, N. & Lea, A. J. Functional genomic insights into the environmental
662 determinants of mammalian fitness. *Curr. Opin. Genet. Dev.* **53**, 105–112 (2018).

663 32. Tung, J. & Gilad, Y. Social environmental effects on gene regulation. *Cell. Mol. Life Sci.*
664 *CMLS* **70**, 4323–4339 (2013).

665 33. Kaplan, J. R., Manuck, S. B. & Shively, C. The effects of fat and cholesterol on social
666 behavior in monkeys.: *Psychosom. Med.* **53**, 634–642 (1991).

667 34. Warden, C. H. & Fisler, J. S. Comparisons of Diets Used in Animal Models of High-Fat
668 Feeding. *Cell Metab.* **7**, 277 (2008).

669 35. Kougias, D. G. *et al.* Effects of Perinatal Exposure to Phthalates and a High-Fat Diet on
670 Maternal Behavior and Pup Development and Social Play. *Endocrinology* **159**, 1088–1105
671 (2018).

672 36. Hollis, F., Mitchell, E. S., Canto, C., Wang, D. & Sandi, C. Medium chain triglyceride diet
673 reduces anxiety-like behaviors and enhances social competitiveness in rats.
674 *Neuropharmacology* **138**, 245–256 (2018).

675 37. Kasprowska-Liśkiewicz, D. *et al.* The ketogenic diet affects the social behavior of young
676 male rats. *Physiol. Behav.* **179**, 168–177 (2017).

677 38. Shively, C. A. *et al.* Mediterranean versus Western Diet Effects on Caloric Intake, Obesity,
678 Metabolism, and Hepatosteatosis in Nonhuman Primates. *Obes. Silver Spring Md* **27**, 777–
679 784 (2019).

680 39. Schmidl, C. *et al.* Transcription and enhancer profiling in human monocyte subsets. *Blood*
681 **123**, e90-99 (2014).

682 40. Schuler, A. *et al.* The MADS transcription factor Mef2c is a pivotal modulator of myeloid
683 cell fate. *Blood* **111**, 4532–4541 (2008).

684 41. Scott, E., Simon, M., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in
685 the development of multiple hematopoietic lineages. *Science* **265**, 1573–1577 (1994).

686 42. Zhang, D. E. *et al.* Sp1 is a critical factor for the monocytic specific expression of human
687 CD14. *J. Biol. Chem.* **269**, 11425–11434 (1994).

688 43. Chistiakov, D. A., Myasoedova, V. A., Revin, V. V., Orekhov, A. N. & Bobryshev, Y. V.
689 The impact of interferon-regulatory factors to macrophage differentiation and polarization
690 into M1 and M2. *Immunobiology* **223**, 101–111 (2018).

691 44. Günthner, R. & Anders, H.-J. Interferon-Regulatory Factors Determine Macrophage
692 Phenotype Polarization. *Mediators Inflamm.* **2013**, 1–8 (2013).

693 45. de la Fuente, A. From ‘differential expression’ to ‘differential networking’ - identification of
694 dysfunctional regulatory networks in diseases. *Trends Genet. TIG* **26**, 326–333 (2010).

695 46. Gaiteri, C., Ding, Y., French, B., Tseng, G. C. & Sibille, E. Beyond modules and hubs: the
696 potential of gene coexpression networks for investigating molecular mechanisms of complex
697 brain disorders: Beyond modules and hubs. *Genes Brain Behav.* **13**, 13–24 (2014).

698 47. Lea, A. *et al.* Genetic and environmental perturbations lead to regulatory decoherence. *eLife*
699 **8**, (2019).

700 48. Goldsworthy, M. *et al.* Role of the Transcription Factor Sox4 in Insulin Secretion and
701 Impaired Glucose Tolerance. *Diabetes* **57**, 2234–2244 (2008).

702 49. Pearen, M. A. & Muscat, G. E. O. Minireview: Nuclear Hormone Receptor 4A Signaling:
703 Implications for Metabolic Disease. *Mol. Endocrinol.* **24**, 1891–1903 (2010).

704 50. Davis, J. P. *et al.* Common, low-frequency, and rare genetic variants associated with
705 lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM study.
706 *PLOS Genet.* **13**, e1007079 (2017).

707 51. Kanai, M. *et al.* Genetic analysis of quantitative traits in the Japanese population links cell
708 types to complex human diseases. *Nat. Genet.* **50**, 390–400 (2018).

709 52. Tachmazidou, I. *et al.* Whole-Genome Sequencing Coupled to Imputation Discovers Genetic
710 Signals for Anthropometric Traits. *Am. J. Hum. Genet.* **100**, 865–884 (2017).

711 53. Dluzen, D. F. *et al.* Extracellular RNA profiles with human age. *Aging Cell* **17**, e12785
712 (2018).

713 54. Neve, B. *et al.* Role of transcription factor KLF11 and its diabetes-associated gene variants
714 in pancreatic beta cell function. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 4807–4812 (2005).

715 55. Benito, X., Fritz, S. C., Steinitz-Kannan, M., Vélez, M. I. & McGlue, M. M. Lake
716 regionalization and diatom metacommunity structuring in tropical South America. *Ecol.*
717 *Evol.* **8**, 7865–7878 (2018).

718 56. Seltmann, M. W., Helle, S., Adams, M. J., Mar, K. U. & Lahdenperä, M. Evaluating the
719 personality structure of semi-captive Asian elephants living in their natural habitat. *R. Soc.*
720 *Open Sci.* **5**, 172026 (2018).

721 57. Shively, C. A., Register, T. C., Appt, S. E. & Clarkson, T. B. Effects of long-term sertraline
722 treatment and depression on coronary artery atherosclerosis in premenopausal female
723 primates. *Psychosom. Med.* **77**, 267–278 (2015).

724 58. Maestripieri, D., Schino, G., Aureli, F. & Troisi, A. A modest proposal: displacement
725 activities as an indicator of emotions in primates. *Anim. Behav.* **44**, 967–979 (1992).

726 59. Troisi, A. *et al.* Affect regulation in alexithymia: an ethological study of displacement
727 behavior during psychiatric interviews. *J. Nerv. Ment. Dis.* **188**, 13–18 (2000).

728 60. Troisi, A. Displacement activities as a behavioral measure of stress in nonhuman primates
729 and human subjects. *Stress Amst. Neth.* **5**, 47–54 (2002).

730 61. Schino, G., Perretta, G., Taglioni, A. M., Monaco, V. & Troisi, A. Primate displacement
731 activities as an ethopharmacological model of anxiety. *Anxiety* **2**, 186–191 (1996).

732 62. Coleman, K., Robertson, N. D. & Bethea, C. L. Long-term ovariectomy alters social and
733 anxious behaviors in semi-free ranging Japanese macaques. *Behav. Brain Res.* **225**, 317–327
734 (2011).

735 63. Shively, C. A., Register, T. C. & Clarkson, T. B. Social Stress, Visceral Obesity, and
736 Coronary Artery Atherosclerosis in Female Primates. *Obesity* **17**, 1513–1520 (2009).

737 64. Camargo, A. *et al.* Expression of proinflammatory, proatherogenic genes is reduced by the
738 Mediterranean diet in elderly people. *Br. J. Nutr.* **108**, 500–508 (2012).

739 65. Fledderus, J. O. *et al.* Prolonged shear stress and KLF2 suppress constitutive
740 proinflammatory transcription through inhibition of ATF2. *Blood* **109**, 4249–4257 (2007).

741 66. Miyata, Y., Fukuhara, A., Otsuki, M. & Shimomura, I. Expression of Activating
742 Transcription Factor 2 in Inflammatory Macrophages in Obese Adipose Tissue. *Obesity*
743 (2012) doi:10.1038/oby.2012.154.

744 67. Reimold, A. M., Kim, J., Finberg, R. & Glimcher, L. H. Decreased immediate inflammatory
745 gene induction in activating transcription factor-2 mutant mice. *Int. Immunol.* **13**, 241–248
746 (2001).

747 68. Herlaar, E. & Brown, Z. p38 MAPK signalling cascades in inflammatory disease. *Mol. Med.*
748 *Today* **5**, 439–447 (1999).

749 69. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for
750 reassessment. *F1000Prime Rep.* **6**, (2014).

751 70. Nahrendorf, M. & Swirski, F. K. Abandoning M1/M2 for a Network Model of Macrophage
752 Function. *Circ. Res.* **119**, 414–417 (2016).

753 71. Wolf, S. A., Boddeke, H. W. G. M. & Kettenmann, H. Microglia in Physiology and Disease.
754 *Annu. Rev. Physiol.* **79**, 619–643 (2017).

755 72. Michalson, K. T. *et al.* Monocyte Polarization is Altered by Total-Body Irradiation in Male
756 Rhesus Macaques: Implications for Delayed Effects of Acute Radiation Exposure. *Radiat.*
757 *Res.* **192**, 121–134 (2019).

758 73. Thompson, J. R. *et al.* Maternal Diet, Metabolic State, and Inflammatory Response Exert
759 Unique and Long-Lasting Influences on Offspring Behavior in Non-Human Primates. *Front.*
760 *Endocrinol.* **9**, (2018).

761 74. Cacioppo, J. T., Cacioppo, S., Capitanio, J. P. & Cole, S. W. The neuroendocrinology of
762 social isolation. *Annu. Rev. Psychol.* **66**, 733–767 (2015).

763 75. Holwerda, S. W. *et al.* Relative burst amplitude of muscle sympathetic nerve activity is an
764 indicator of altered sympathetic outflow in chronic anxiety. *J. Neurophysiol.* **120**, 11–22
765 (2018).

766 76. Juruena, M. F., Eror, F., Cleare, A. J. & Young, A. H. The Role of Early Life Stress in HPA
767 Axis and Anxiety. *Adv. Exp. Med. Biol.* **1191**, 141–153 (2020).

768 77. Shively, C. A. *et al.* Mediterranean diet, stress resilience, and aging in nonhuman primates.
769 *Neurobiol. Stress* **13**, 100254 (2020).

770 78. Bonaz, B., Bazin, T. & Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-
771 Brain Axis. *Front. Neurosci.* **12**, (2018).

772 79. Nagpal, R. *et al.* Gut Microbiome Composition in Non-human Primates Consuming a
773 Western or Mediterranean Diet. *Front. Nutr.* **5**, 28 (2018).

774 80. Raison, C. L., Capuron, L. & Miller, A. H. Cytokines sing the blues: inflammation and the
775 pathogenesis of depression. *Trends Immunol.* **27**, 24–31 (2006).

776 81. Yang, H. *et al.* Transcriptome profiling of brain myeloid cells revealed activation of Itgal,
777 Trem1, and Spp1 in western diet-induced obesity. *J. Neuroinflammation* **16**, (2019).

778 82. Maier, S. F. & Watkins, L. R. Cytokines for psychologists: Implications of bidirectional
779 immune-to-brain communication for understanding behavior, mood, and cognition. *Psychol.*
780 *Rev.* **105**, 83–107 (1998).

781 83. Graham, L. C. *et al.* Chronic consumption of a western diet induces robust glial activation in
782 aging mice and in a mouse model of Alzheimer’s disease. *Sci. Rep.* **6**, (2016).

783 84. Du, J. *et al.* The Role of Nutrients in Protecting Mitochondrial Function and
784 Neurotransmitter Signaling: Implications for the Treatment of Depression, PTSD, and
785 Suicidal Behaviors. *Crit. Rev. Food Sci. Nutr.* **56**, 2560–2578 (2016).

786 85. Layé, S., Nadjar, A., Joffre, C. & Bazinet, R. P. Anti-Inflammatory Effects of Omega-3 Fatty
787 Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. *Pharmacol.*
788 *Rev.* **70**, 12–38 (2018).

789 86. Bédard, A., Riverin, M., Dodin, S., Corneau, L. & Lemieux, S. Sex differences in the impact
790 of the Mediterranean diet on cardiovascular risk profile. *Br. J. Nutr.* **108**, 1428–1434 (2012).

791 87. Kafatos, A., Verhagen, H., Moschandreas, J., Apostolaki, I. & Van Westerop, J. J.
792 Mediterranean diet of Crete: foods and nutrient content. *J. Am. Diet. Assoc.* **100**, 1487–1493
793 (2000).

794 88. Estruch, R. *et al.* Retraction and Republication: Primary Prevention of Cardiovascular
795 Disease with a Mediterranean Diet. *N Engl J Med* 2013;368:1279-90. *N. Engl. J. Med.* **378**,
796 2441–2442 (2018).

797 89. Shively, C. A. Social subordination stress, behavior, and central monoaminergic function in
798 female cynomolgus monkeys. *Biol. Psychiatry* **44**, 882–891 (1998).

799 90. Lê, S., Josse, J. & Husson, F. **FactoMineR** : An *R* Package for Multivariate Analysis. *J. Stat.*
800 *Softw.* **25**, (2008).

801 91. Kersey, P. J. *et al.* Ensembl Genomes 2018: an integrated omics infrastructure for non-
802 vertebrate species. *Nucleic Acids Res.* **46**, D802–D808 (2018).

803 92. Kinsella, R. J. *et al.* Ensembl BioMarts: a hub for data retrieval across taxonomic space.
804 *Database J. Biol. Databases Curation* **2011**, bar030 (2011).

805 93. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory
806 requirements. *Nat. Methods* **12**, 357–360 (2015).

807 94. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for
808 assigning sequence reads to genomic features. *Bioinforma. Oxf. Engl.* **30**, 923–930 (2014).

809 95. Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing and
810 microarray studies. *Nucleic Acids Res.* **43**, e47 (2015).

811 96. Akdemir, D. & Godfrey, O. U. *EMMREML: Fitting Mixed Models with Known Covariance*
812 *Structures*. (2015).

813 97. Hanghøj, K., Moltke, I., Andersen, P. A., Manica, A. & Korneliussen, T. S. Fast and accurate
814 relatedness estimation from high-throughput sequencing data in the presence of inbreeding.
815 *GigaScience* **8**, (2019).

816 98. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinforma. Oxf. Engl.* **25**,
817 2078–2079 (2009).

818 99. Alexa, A. & Rahnenfuhrer, J. *topGO: Enrichment Analysis for Gene Ontology*. (2019).

819 100. Heinz, S. *et al.* Simple combinations of lineage-determining transcription factors prime cis-
820 regulatory elements required for macrophage and B cell identities. *Mol. Cell* **38**, 576–589
821 (2010).

822 101. Han, H. *et al.* TRRUST v2: an expanded reference database of human and mouse
823 transcriptional regulatory interactions. *Nucleic Acids Res.* **46**, D380–D386 (2018).

824 102. Preacher, K. J. & Hayes, A. F. SPSS and SAS procedures for estimating indirect effects in
825 simple mediation models. *Behav. Res. Methods Instrum. Comput. J. Psychon. Soc. Inc* **36**,
826 717–731 (2004).

827

828

829 **Acknowledgments:** We thank Beth Uberseder, Maryanne Post, JD Bottoms, Edison Floyd,
830 Jason Lucas, Joshua Long, Diane Wood, and Sherri Samples for technical support. We thank
831 Nicholas Lozier, Tiffany Pan, Marina Watowich, and Jenny Tung for their helpful feedback on
832 previous versions of this manuscript.

833

834 **Funding:** This work was funded by R01HL087103 (CAS), R01HL122393 (TCR),
835 U24DK097748 (TCR) from NIH and intramural funding from the Department of Pathology,
836 Wake Forest School of Medicine (CAS). NSM was supported by R00AG051764 and
837 R01AG060931 from NIH, and AJL was supported by a postdoctoral fellowship from the Helen
838 Whitney Foundation. The Wake Forest Comprehensive Cancer Center Cancer Genomics
839 Shared Resource is supported by P30CA012197 and by a NIH Shared Instrumentation Grant
840 S10OD023409 to GAH.

841

842 **Author Contributions:** Conceptualization, C.A.S. and T.C.R.; Methodology, C.A.S., T.C.R.,
843 N.S.-M., and C.S.C.J.; Formal Analysis – C.A.S., T.C.R., N.S.-M., A.J.L., and C.S.C.J;
844 Investigation, M.E., A.N.V., N.A.V., S.C.P., and S.Y.W.; Writing – Original Draft, C.A.S.,
845 T.C.R., N.S.-M., and C.S.C.J.; Writing – Review & Editing, all authors; Visualization – N.S.-M.,
846 A.J.L., and C.S.C.J; Funding Acquisition, C.A.S. and T.C.R.; Supervision, C.A.S., T.C.R., and
847 N.S.-M.

848

849 **Competing Interests:** The authors declare no competing interests.

850

851 **Data Availability**

852 All data and code used to complete these analyses can be found at
853 https://github.com/cscjohns/diet_behavior_immunity. The raw data can be accessed from the
854 gene expression omnibus repository from accession # GSE144314.