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Abstract

Developing methodologies in the fields of phenomics and genomic prediction
have the potential to increase the production of crop species by accelerating germplasm
improvement. The integration of these technologies into germplasm improvement and
breeding programs requires evidence that there will be a direct economic benefit to the
program. We determined a basic set of parameters, such as prediction accuracy greater
than 0.3, the ability to genotype over 7 lines for the cost of one phenotypic evaluation,
and heritability levels below 0.4, at which the use of genomic selection would be of
economic benefit in terms of genetic gain and operational costs to the Kansas State
University (KSU) winter wheat breeding program. The breeding program was then
examined to determine whether the parameters benefitting genomic selection were
observed or achievable in a practical sense. Our results show that the KSU winter wheat
breeding program is at a decision point with regards to their primary means of selection.
A few operational changes to increase prediction accuracy would place the program in
the parameter space where genomic selection is expected to outpace the current
phenotypic selection methodology at a parity of the operation cost and would be of

greatest benefit to the program.

Introduction

Technologies are constantly evolving and growing in today’s ever-changing
world. The introduction of new technologies into an essential service and the

development of new crop varieties can be challenging and costly (Moose and Mumm
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2008). New technologies must be carefully evaluated to determine if they provide a
significant enough advantage to adjust proven current practice. There are many
technologies that appeared to have great promise, such as quantitative trait loci (QTL),
and marker-assisted selection (MAS), and yet were not beneficial in a practical sense to
breeding programs at the time (Bernardo 2008). Yet with a growing global population,
erratic environmental conditions, and a finite-amount of arable land, the introduction of
new technologies into our crop development systems is essential. The determination of
which technologies to implement and the most efficient way to do so is a constant
challenge facing plant breeders.

Wheat (Triticum aestivum) is one of the top three field crops planted in the USA,
behind soybeans and corn, with 1.9 billion bushels produced in 2019 (Bond 2020).
Wheat acres and production in the USA have been in a decline since the 1980s as a
result of international competition, changing economic conditions and production
practices. This is despite the increasing demand for wheat due to growing global
populations, which is only expected to increase over the coming century. It is estimated
that a 2% increase in yearly grain yields are required to meet these demands (Bassi et al.
2016). Currently there are no reports of wheat breeding programs achieving this level of
gain, making wheat an important candidate for breeding technologies designed to
accelerate variety development.

Genomic prediction (GP) is one of the new technologies that is showing a great
deal of promise to assist in crop-variety production. GP involves the use of genome-wide

markers to predict the breeding value of individuals in a population (Meuwissen, Hayes,
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and Goddard 2001). This is done by genotyping and phenotyping a training population
which is used to establish a model for the trait of interest. This model is then used to
calculate genomic estimated breeding values (GEBVs) of a population for which only
genotype information is available. GP is already a common technique used in animal
breeding due to the benefit of being able to predict a phenotype without having to
observe the phenotype, for example the milk yield of a bull’s offspring (Hayes et al.
2009; Georges, Charlier, and Hayes 2019).

Plant breeding programs have yet to fully utilize GP for a number of reasons.
Breeding programs have to test the same experimental line in multiple locations due to
the need to select varieties that are stable across environments. This negates some of
the benefit that GP supplies to animal breeding, in which the same genotype cannot be
tested under multiple conditions. The genotype x environment (GxE) variation is often
high in plant breeding populations due in part to the large weather differences
experienced between locations. This significantly decreases the accuracies of most GP
models (Dawson et al. 2013; Heslot et al. 2012). Previous GP models did not account for
GxE interactions which limited inference and selection decisions in plant breeding.
Newer genomic prediction models can now take into account these GxE interactions
and are showing greater accuracy in plant breeding situations (Burguefio et al. 2012;
Pérez-Rodriguez et al. 2017; Montesinos-Lépez et al. 2016).

The accuracy of GP models has shown some improvement when a covariate is
included (Crain et al. 2018; Rutkoski et al. 2016). This has had some success when

including high-throughput phenotyping (HTP) data that is taken throughout the course
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of the growing season. HTP techniques have the ability to measure thousands of
phenotypes accurately in a short period of time. Many of the HTP techniques used in
breeding programs take advantage of new developments in remote sensing, uncrewed
aerial system (UAS), and sensor technology to measure reflectance and temperature
phenotypes. These are all phenotypes that have been shown to be correlated with yield
and as such could be effective secondary targets for high-throughput phenotyping and
indirect selection (Elliott and Regan 1993; Blackmer et al. 1996; Curran et al. 1983).

In addition to the use of correlated traits, the efficiency of GP is also affected by
the stage of the breeding program when it is implemented. Primarily, GP is used to
predict the breeding value which is comprised of the additive genetic variation. The
greatest advantages of GS will be found when the selection candidates still encompass
the most additive genetic variation for the phenotype of interest (Bassi et al. 2016). This
is more likely to occur in earlier stages of a breeding program as it is easily selected for,
while later stages of a breeding have progressed through strong selection and are more
likely to select for other epistatic genetic variation on the performance of the line per se.

Another factor in addition to stage of implementation that has hindered the
adoption of GP in plant breeding programs are the costs and complex logistics
associated with it. The development and establishment of genotyping practices in a
plant breeding program requires an investment in infrastructure and training (Moose
and Mumm 2008). Along with genetic marker costs, the establishment and maintenance

of an adequate training population adds additional costs to the GP protocols. These
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costs may not be offset by the gains that the program could potentially achieve using GP
(Bassi et al. 2016; Jarquin et al. 2017).

In this study we examined the implementation of GP in a wheat breeding
program to specifically examine 1) what parameters/infrastructure is required to
implement GP as a primary selection strategy, and 2) are those parameters being met in

the KSU public breeding program?

Method and Materials

Cost-Benefit Simulation

A simulated breeding program was used to determine the expected genetic gain
when basing selection of material exclusively on observed line performance per se, or
exclusively on prediction of breeding values. The simulation assumes that a breeding
program does not use a combination of phenotypic selection and genomic selection at
the same time. In consultation with the Kansas State Hard Winter Wheat Breeding
Program, referred to as the KSU breeding program from here on, an appropriate range
of cost estimates were determined, as well as sizes of the program as determined by the
number of lines developed and evaluated (Supplementary Table 1). For simplicity
looking at a single stage of selection in the program, the simulated values assume that
the cycle length for each selection scheme is the same and covers the period of the
program before the Advanced Yield Nursery (AYN) stage. It also assumes that the
number of lines that will be selected for the AYN stage are the same regardless of which

selection method is used.
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The cost of line developments was estimated to be between $4-530 per line
which covers the initial cross and formation of an inbred line. This can either be done by
several years of inbreeding or by the formation of double haploid lines. This was applied
as a fixed cost needed to develop the initial population for selection regardless of which

selection method was used.

Phenotypic Selection

The costs of phenotypic observation plots are estimated to be between $12-540
per plot and evaluated within this range at $5 increments. To obtain an accurate
phenotypic measurement, replications of the experimental line need to be planted and
phenotyped. Depending on the structure of the program this may mean several
replications at a single site, or fewer replications at several sites. The maximum number
of experimental breeding lines was calculated as:

Budget

(LineDevelopment + (PhenoCost * rep)) (1)

ExperimentalLines =

where ExperimentalLines is the number of lines that would be advanced to
the phenotyping stage of selection, the Budget is the total monetary budget for that
stage of the breeding program, LineDevelopment is the cost of advancing a single
cross to an inbred experimental line for evaluation, PhenoCost is the total cost to
obtain the phenotype of interest including labor and other miscellaneous operation
costs, and rep is the number of replications of each experimental line that are planted

in field and will require phenotyping.
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The number of experimental breeding lines was used as the population size

when estimating other population parameters.

Genomic Selection
The cost of genotyping a single line for prediction was estimated to be between
$1-510 and evaluated within this range at $S1 increments. The maximum number of

experimental lines that can be genotyped for prediction was calculated as:

Budget
/LineDevelopment + GenoCost (2)

GenotypedLines =

Where GenotypedLines is the number of lines that would be evaluated by
genotyping, the Budget is the total monetary budget for that stage of the breeding
program, LineDevelopment is the cost of advancing a single cross to an inbred
experimental line for evaluation, and GenoCost which is the cost of genotyping a single
line including labor and other operational costs. It is assumed that the genotyping is only
performed once, and that replication is not required.

The number of possible genotyped lines was then used as the population size

when estimating other population parameters.

Simulation Details

The selection methods were compared for every possible combination of
number of experimental lines phenotyped and number of experimental lines genotyped,
based on the ratio between the correlated response to selection, and the response to
selection (Falconer and Mackay 2009).

The expected response to selection for the primary trait was calculated by:
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R = iho, (3)
Where i is the intensity of selection, h is the square-root if the narrow-sense
heritability of the primary trait, and g, is the standard deviation of the additive genetic
variance (Falconer and Mackay 2009).
For this study, the GEBVs are assumed to be the secondary trait that is
correlated to the primary trait, which would be through experimental observation plots.

The correlated response to selection is calculated by:
CR=i*\/h_§*\/h_§,*rg*apy (4)

Where i is the intensity of selection, \/h_,% is the square-root of the narrow-sense
heritability of the response trait, \/h_JZ, is the square-root of the narrow-sense heritability
of the secondary trait, 7, is the additive genetic correlation between the traits, and gy,
is the standard deviation of the phenotypic variation for the secondary trait (Falconer
and Mackay 2009).

A comparison between the indirect response to selection and the expected

response to selection is best demonstrated as (Falconer and Mackay 2009):

; 2
CRy iyTg hy
e o (5)
x ix /hfc

Where iy is the selection intensity on the secondary trait, 7, is the additive

genetic correlation between the primary and secondary trait, +/ hjz, is the square-root of
the narrow-sense heritability of the secondary trait, i, is the selection intensity on the

direct trait, and \/ hZ is the square-root of the narrow-sense heritability of the response

trait.


https://doi.org/10.1101/2020.10.07.330415
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.330415; this version posted November 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

It was assumed that the individual phenotypes were made up of a genetic portion

and an environmental portion. The distribution of each of these portions was assumed to

be a random normal with a mean of 0, and a standard deviation of Vh2 or (1 — h2for
the genotypic and environmental proportions, respectively. A sample the size of the
number of lines that were possibly genotyped was taken from this distribution for each
individual to give the overall phenotypic distribution. This overall phenotypic distribution
was used to determine the intensity of selection (i) in terms of the standard deviation and
the selection differential with the msm package (Jackson 2011).

The narrow sense heritabilities for the response trait and the additive genetic
correlation were set, with testing the ranges of 0 and 1 at increments of 0.1 each. The
narrow-sense heritability of the secondary trait, the genotyping, was assumed to be 0.95.
This is under the assumption that the genotypes are inherited almost exactly as they are
sequenced and that there are only a few genotyping errors. The ratio between the
correlated response and the expected response to selection was plotted against the ratio

between number of experimental lines phenotyped and number of lines genotyped.

Plant Material
The KSU Breeding Program breeds hard red winter wheat for a large area which
contains different mega-environmental conditions. A subset of 5 locations within the
same Kansas mega-environment based on breeder knowledge, Belleville (BEL), Gypsum
(GYP), McPherson (MP), Hutchinson (HUTCH) and Manhattan (MANH), were selected for
analysis in Kansas between 2016 and 2019. This resulted in 1989 experimental lines

being examined over the course of 4 years. These sites contain trials from the
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Preliminary Yield Trials (PYN, primary Fs.;) and the advance yield nursery (AYN, primarily
Fs.g). The planting, harvest dates and trial size are provided in Table 1. These locations,
excluding Manhattan and Hutchinson, are located in farmers’ fields under typical grower
management practices. The PYN and AYN trials were all planted in six-row plots of 1.5m
by 4.5m. The PYN are planted in a modified augmented design with one replicate of the
experimental line per location (Federer and Raghavarao 1975). Plant checks are planted
across whole rows and columns in the trial, and sub-block checks are assigned randomly
within each block. The AYN is made up of lines selected from the PYN trials. The lines are
planted using two replicated o-lattice designs (Patterson and Williams 1976). All 5
locations were planted each year but if a site experienced extreme environmental
variation from the normal climate it was not harvested, providing an unbalanced set of

data.

Phenotyping

Phenotypic information was collected either by combine for grain yield (GRYLD),
by UAS for vegetation indices (VIs), or by hand using the Field Book application (Rife
and Poland 2014) for plant height (PTHT). A DJI Matrice100 (DJI, USA) quadcopter UAS
was equipped with a 5-band multi-spectral RedEdge camera (MicaSense Inc. USA) to
collect plot-level reflectance values for each year, based on the standard protocols
developed by The Wheat Genetics Lab at Kansas State University as laid out in Wang et
al. (2018). The UAS data was collected throughout the course of the growing season,
once every 7-10 days depending on weather conditions. Plant height was collected

manually during the grain ripening stage before harvest. VIs were calculated from the

11
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reflectance values based on the protocols laid out in Wang et al. (2018) and given in

Table 2.

Genotyping

The 1989 lines in the study years were sequenced using genotype-by-sequencing
on an lllumina Hi Seq2000 or Hi Seq2500 (Elshire et al. 2011). Single nucleotide
polymorphisms (SNPs) were called with the Tassel software with the Chinese Spring
wheat assembly v1.0 as a reference (Bradbury et al. 2007; Glaubitz et al. 2014;
International Wheat Genome Sequencing Consortium et al. 2018). The final data set
included 8182 SNPs that were selected for use passed one of three filtering criteria
optimized for the wheat genome by Shrestha et al. (2020) that include Chi-square,
Fisher’s test for independence, and the inbreeding coefficient, as well as having a minor
allele frequency greater than 0.05 and missing less than 20% of the data. Missing SNPs

were imputed with Beagle 5.1 (Browning, Zhou, and Browning 2018).

Data Analysis
The Best Linear Unbiased Predictions (BLUPs) for each line were calculated for
each individual year and for multiple years, including or excluding locations as needed.
Where multiple years and locations are included, such as for GRYLD, the BLUPs were
calculated by:
Yijie = U+ Gi + 5+ Myy + GMyjy + Ry + Peajy + i (6)
where y; k¢ is the phenotypic response variable, u is the fixed overall mean, G; is the

random genotype effect for line i distributed as iid G; ~ N(O, o*iz), S; is the random

12
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effect for year j distributed as iid §; ~ N(0, ajz), M,y is the random effect for location [
within year j distributed as iid M;(;y ~ N(O, a?), GM;jy is the random genotype by
location effect nested within year j distributed as iid GM;;(jy ~ N (0, a3), Ry )y is the
random effect of replication k within location and year distributed as iid

Ryqjy ~ N(O, a?), Py(jy is the random fungal treatment effect t nested within year-
location distributed as iid Py ~ N (O, a?), and &;jkie as the residual effect distributed
as iid & ~ N(0,0%).

When only a single year with multiple locations is included the BLUPs are
calculated by:

Yijiu = #+ Gy + Lj + GLj; + Ryjy + Ty + Eijra (7)
where y;jy; is the phenotypic response variable, u is the fixed overall mean, G; is the
random genotype effect for line i distributed as iid G; ~ N(0, 6?), L; is the random
effect of location j distributed as iid L; ~ N (0, ajz), GL;j is the random effect of
genotype by location distributed as iid GL;; ~ N(0, al-zj), Ry ;) is the random effect of
replication k nested in location j distributed as iid Ry;y ~ N (0, a?), Ty(j) is the random
effect of fungal treatment [ nested within location j distributed as iid T;;) ~ N (0, d2), ,
and &;jy, is the residual effect distributed as iid &;;; ~ N(0, 03).

The broad-sense heritability for all years and multiple year-locations was

calculated as:

2 a3
H = 2 2 (8)
g2y lgxe, de
9" yxl y*lxr
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Where g, is the total genetic variance, o, is the variance contributed by the
location and variety nested within year, g, is the residual environmental variance. As
the data is unbalanced, y is the harmonic mean of the number of years planted, | is the
harmonic mean of the number of locations planted within year, and r is the harmonic
mean of the number of replications per location per year (Holland, Nyquist, and
Cervantes-Martinez 2010).

The broad-sense heritability for individual year AYN and individual year-multiple
location PYN was calculated by:
9§

H? = (9)

2 2
a o
2,-9xe, %e
o5t i +

where aj is the total genetic variance, ngxe is the variance contributed by the
genotype-location combination, and o2 is the residual environmental variance. Similar
to equation 8, [ is the harmonic mean of the number of locations planted and r is the
harmonic mean of the number of replications per location (Holland, Nyquist, and
Cervantes-Martinez 2010).

The VI phenotypes were mainly considered on a year-location-trial basis. As such
the BLUPs for the VI phenotypes for the AYN trials are calculated by:

Yirb = U+ G+ My + Brpy + &y (10)
where y;,.;, is the phenotypic response variable, u is the fixed overall mean, G; is the
random genotypic effect for line i distributed as iid G; ~ N(0, 67), M,. is the random
effect of the replicate r distributed as iid M,. ~ N(0, 6.2), B, (») is the random effect of

the experimental block nested within replicate distributed as iid B, ~ N (0, o), and

14
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&irp is the residual effect distributed as iid &;,4, ~ N(0,0%). The broad-sense heritability
was calculated for each year-location’s AYN that had VI phenotypes by:

2
93

H? = (11)

2
a
O.Z ET:OT‘

where a; is the genetic variance, 62, is the residual environmental variance and r is
the number of replicates.

The BLUPs for the VI phenotypes for the PYN trials are calculated by:

Yip = M+ G +Bp+ e (12)
where y;;, is the phenotypic response variable, u is the fixed overall mean, G; is the
random genotypic effect N(0,62), B, is the random effect of the experimental block

N(0,02), and g;,is the residual effect.

Genome-wide Association Analysis
A principal component (PC) analysis of the genotypic information was conducted
with the pcaMethods package (Stacklies et al. 2007). A genome-wide association
analysis was performed for the VI BLUPs for each year-location-trial using the rrBLUP
package (Endelman 2011). The kinship matrix was calculated using rrBLUP was included
with 4 PCs to account for kinship and population structure respectively (Endelman and
Jannink 2012). A Bonferroni correction was applied with o = 0.05 to determine

significance.
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Genomic Prediction

Genomic prediction was performed with the rrBLUP package and the BGLR
statistical package (Pérez and de los Campos 2014) in the R software environment. The
rrBLUP package performs ridge regression (RR), and the BGLR package was used to
perform a BayesC based prediction and a reproducing kernel Hilbert spaces regression
(RKHS). A cross-validation strategy of 100 replications with 80% of the population in the
training data set and 20% of the population in the predicted data set was used. The
accuracy of the prediction was determined by the correlation between the predicted
and observed values. Across year and location predictions were also performed where
years, year-trial, and year-location combinations that were not included in the training
population are predicted from the remaining data. An example of this would be to use
all years excluding the 2016 season as the training data set and the 2016 season as the
prediction data set, or all years excluding 2016 season except for the 2016-HUTCH data
as the training data set and the remaining three 2016 locations as the prediction data
set.

For the VI data only rrBLUP was used for genomic prediction. The VI were used
as a cofactor when predicting grain yield for that specific year-location-trial combination
as follows:

y=u+Xp+Zu+e (13)
where y is the BLUP for grain yield, i is the overall mean, X is a (n x 1) matrix of the
individual observations of the VI, f is the fixed effects of the VI measurements, Z is an

(n x m) matrix assigning markers to genotypes, u is a (1 x n) array of the random
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effects of the markers and ¢ is the residual error. The same cross-validation procedure
as before was used.

Unless otherwise stated, all analysis took place in the R software environment
using the Tidyverse suite of packages (Core Team 2020; Wickham et al. 2019) and
visualised with ggplot2 (Wickham 2016). The required code can be found at:

https://github.com/megzcalvert/ProgramBreeding

Results

Simulation

To determine the optimal parameters for the operation of the KSU winter wheat
breeding program comparing current phenotypic selection methodology verse genomic
prediction a simulation was created based on economic decisions. We observed that at
low heritabilities of the primary trait, prediction is favored even at low prediction
accuracies (Figure 1). Once the ratio between the correlated response and the expected
response is greater than 1, then selection on the correlated trait is expected to give
greater genetic gain than selection on the primary trait. For the KSU wheat breeding
program a primary focus on genotyping is beneficial in terms of genetic gain when the
narrow-sense heritability of grain yield is below 0.4, approximately 7.5 lines can be
genotyped for every one line that can be phenotyped, and the prediction accuracy of

the genomic prediction models is greater than 0.3.
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Heritability of traits

Heritability was calculated to identify the phenotypic variance that could be
partitioned to the genetic component across the experimental trials. The broad sense
heritabilities for each of the seasons ranged from 0.022 for the AYN to 0.441 for the PYN
in the 2016 season (Figure 2). The broad-sense heritability for the 2019 PYN cannot be
calculated as only one rep was planted at one location (HUTCH).

The VIs show a moderate heritability across the seasons, with the majority being
above 0.5 (Figure 3) The heritabilities are variable across the course of the season and
locations but the same date-location combination shows similarity across the various
Vls, indicating a large influence of ambient conditions of various days within the growing
season on the accuracy of VI measurements.

The correlations between grain yield for a location-season-trial combination and
the VI's for that location-season-trial combination over the course of the season are
given in Figure 4. The correlations ranged between -0.6 in the 2018 PYN at HUTCH for

NDRE, to 0.69 in the 2018 AYN at MP for NDRE.

GWAS
To try and determine if any of the VI had genomic regions associated with a large
effect size, a GWAS was conducted. As population structure is known to have an effect
on GWAS results a PCA of the 1989 experimental lines genotypic data was performed.
The PCA shows no distinct population structure and the plot is bounded by the expected
founder genotypes, Figure 5. There were no major QTLs for grain yield in any year, yet

several of the VIs showed significant associations with regions of the genome. When
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these associations were further examined it was shown that they had an influence on
the VI value but not GRYLD (Supplementary Figure 1). The regions that showed an
association with the VI were often shared between different VI (3/4 in the 2018 season

and 3/3 in the 2018 season, Supplementary Figure 1).

Genomic Prediction

Based on the GWAS, GP was evaluated to predict the highly quantitative trait of
grain yield. All of the tested genomic prediction models produced similar accuracies
(Supplementary Table 2), we therefore focused on rrBLUP models for computational
efficiently for further analysis which will be reported. The genomic prediction accuracies
based on cross-validation range between 0.311 (SD = 0.079) for the 2018 season and
0.469 (SD = 0.105) for the 2017 season (Figure 6, Supplementary Table 2).

When making forward predictions the strongest correlation, -0.164, was
achieved using all seasons excluding the 2017 season as the training population, and the
2017 season as the prediction population (Table 4). When predicting all locations in a
single season except for HUTCH, using the data from other seasons and the data from
HUTCH as the training population, the greatest accuracy achieved was 0.572 (95% ClI
[0.503, 0.634]) for 2019 PYN in MANH and BEL. HUTCH was chosen as the location to
include in the forward predictions as it is the first location that is normally harvested in
Kansas. This would be similar to harvesting one location and then using the predictions
to make selections.

To evaluate a prediction approach using secondary traits, the VI were used as

covariates in the prediction of grain yield. The prediction of grain yield was not
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improved by the addition of a covariate (Figure 7). The prediction of grain yield without
a covariate was performed at the same time for comparison and was comparable to the

best estimate using VI as covariate.

Discussion

Changing global conditions require current food production systems to be
resilient against unexpected events in the face of global population growth. This will
require the development of crop varieties that are adapted to hotter and dryer climates.
The speed at which these varieties are developed will require the adoption of new
technologies that have been proven to show a positive economic investment.

This study examined the validity of using GP and other HTP techniques in the
Kansas State University winter wheat breeding program based on several population
and model parameters, such as heritability of the primary trait, the prediction accuracy
and the selection intensity. These parameters give an indication of whether a new GP
method would provide more genetic gain than traditional phenotypic selection equal

resource expenditures.

Heritability
The heritability of a trait has a significant impact on whether the trait can be
selected for and the possibility for genetic gain of that trait. Traits with a lower
heritability are difficult to select for regardless of which selection method is used.
However, our simulation showed that traits with a low to moderate narrow-sense

heritability (0-0.4) favor the use of GP. For the Kansas State University winter wheat
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breeding program, the overall broad-sense heritability of grain yield is below 0.3. As the
narrow-sense heritability is the always less than the broad-sense heritability, the

heritability favors GP under the operation cost parameters for the program.

Prediction Accuracy

The prediction accuracy for GP when making forward predictions in the breeding
program do not meet the criteria to favor GP unless very large populations are used.
This is a possibility in a breeding program setting as historical grain yield data and
genotypes are available for previous seasons. The experimental lines in these seasons
are likely to be less related to the current lines as the parental lines in the crossing block
are updated which may lower prediction accuracy, however, this is the critical
assessment of prediction accuracy that is needed for implementation in the breeding

program as all selections will be focused on new breeding lines into new year’s.

HTP Prediction Accuracy
Utilizing the VI to increase the prediction accuracy of the GP models requires
more optimization before it is commonly adopted. The VI need to be able to be used
across locations and years for them to really have an impact on the prediction accuracy
of the GP models. This will require either the manual measurement of growth stages to
standardize measurements to growth stage across locations and years, or the use of
another method such as thermal units to account for differences in growth stage in the

training populations and prediction populations. This additional labor makes the use of
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Vls in GP models more costly than utilizing just the GP model. It is an additional factor

that needs to be taken into account before the decision to transition to GP is made.

Conclusion

When all parameters are considered it appears that the Kansas State University
winter wheat breeding program is on the edge of a large decision. The heritability of
grain yield in the breeding program as well as the cost of phenotyping compared to
genotyping favor genomic prediction as the way forward for the breeding program. Yet
the low accuracy of forward predictions favors the use of phenotypic selection. The
forward prediction accuracy can be increased as seen in the 2019 season (Table 4), but
this requires a much larger training population. With a few adjustments to the
experimental design such as allowing for more replicates of the training population, and
changes to the program workflow that allows for the loss of the PYN, genomic
prediction could allow the KSU winter wheat breeding program to make larger genetic

gains.
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Figure 0.1. Simulation results comparing phenotypic selection as a direct trait to selection on the
genotype as a secondary trait.

The narrow-sense heritability of the direct trait is in the panel title and the y-axis is the Correlated
Response / Response of selection for the direct trait. When this ratio is above 1, represented by
the dotted line, selection on the secondary trait is favored. The x-axis is the number of
experimental lines that can be genotyped and predicted for every line that is phenotyped based
on estimated costs. The trend of each prediction accuracy is given by the color of the line.
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Figure 0.2. Broad sense heritabilities for grain yield across 4 years of phenotypic data.

The broad sense heritabilities are presented by season on the x-axis with each trial
type denoted by the character shape. There is no PYN for the 2019 season as it was
only planted in one location with one replication.

28


https://doi.org/10.1101/2020.10.07.330415
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.330415; this version posted November 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

I\TIDVI } I NéTRE I } NI1DVI I
1.00 G
L P Y .
0.75] « ® * o il . a . e ® L . ™ e
0.50 i -
[ ]
0.25 . PR . *
0.00L° . bt
05/09 0524 06/08 05/09 05/24 06708 05/09 05/24 06/08
18 | 18 | 18 |
GNDVI | | NDRE | | NDVI |
1.00
[ ] ) L ]
0.751 » . o o . . . ° = : b ] : [ ]
“r 0.50 . g ‘ . "
0.25{ * "
0.00 ° * .
04/19  05/04 05/19 06/03 04/19 05/04 0519 06/03 04/19 05/04 05/19  06/03
19 | 19 | 19 ]
GNDVI | | NDRE | | NDVI |
1.00 "
0.75 o *e ., ° . ‘e%e ® . . : .'o .... ®
050{® S e e vy
0.25 oo .

0
04/14 04/29 05/14 05/29 06/13 06/28 04/14 04/29 05/14 05/29 06/13 06/28 04/14 04/29 05/14 05/29 06/13 06/28
Date

Figure 0.3. The broad sense heritabilities for the VIs for the AYN trials planted at each
location.

The title of each plot gives the season-VI combination, with the date on which the VI
was taken given by the x-axis, the y-axis is the broad sense heritability, while the color
of the point determines the location. NDVI = Normalized Difference Vegetation Index,
GNDVI = Green Normalized Difference Vegetation Index, and NDRE = Red Edge
Normalized Difference Vegetation Index.
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Figure 0.4. The correlations between grain yield and VI by year-trial combinations.

The title of each plot gives the season-VI combination, with the date on which the VI
was taken given by the x-axis, the y-axis is the Pearson correlation coefficient, while
the color of the point determines the location. NDVI = Normalized Difference
Vegetation Index, GNDVI = Green Normalized Difference Vegetation Index, and NDRE
= Red Edge Normalized Difference Vegetation Index.
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Figure 0.5. Population structure based on genotypic information in the Kansas State
winter wheat breeding program nurseries between the 2016-2019 seasons.

The top panel shows the first two principal components (PC), while the bottom panel
displays the 2nd and 3rd PC. The variance contributed by each PC is given next to the
PC name. Several “founder” lines are highlighted.
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Figure 0.6. Genomic prediction accuracies for grain yield determined by cross-
validation.

The season or seasons used in each analysis are given on the x-axis. The y-axis shows
the range of possible correlations between the predicted phenotype and the observed
phenotype. The color of the point determines if the individual line had been in the
training or testing population of the analysis. 100 cross-validations were performed in
each analysis. The modelTraining results give an indication of the model-fit whereas
the modelTesting results give an indication of the predictive ability of the model. The
AYN and PYN trials are included in the analysis.
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Figure 0.7. Genomic prediction accuracies for PYN grain yield when a Vl is used as a
covariate determined by cross-validation.

The season and VI are given in the strip title and the points are colored by the
location. The GRYLD measurements are those for the prediction of grain yield without
a covariate. The large point is the mean and the error bars give the standard
deviation. NDVI = Normalized Difference Vegetation Index, GNDVI = Green Normalized
Difference Vegetation Index, and NDRE = Red Edge Normalized Difference Vegetation
Index.
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Tables

Table 0.1. Summary of trials planted between the 2016 and 2019 seasons across
locations. A summary is given by season, trial and location with the number of
individual plots, experimental lines, date of planting, date of harvest, the mean grain
yield in t/ha and the standard deviation of the grain yield.

Season Trial Location Plots Lines Planted Harvested Mean SD
2015/2016 AYN  MP 40 75 5.050 0.9
MANH 240 75 3.206 0.651

HUTCH 320 109 4.139 0.92

GYP 40 109 5.739 0.726

PYN  MP 504 439 5113 1.21

MANH 504 379 3.720 0.657

HUTCH 594 516 3.770 0.886

GYP 593 506 5421 0.702

2016/2017 AYN  MP 315 91 10/11/16 20/06/17 5.933  1.00

MANH 320 91 10/18/16 22/06/17 5.822 0.768

HUTCH 168 97 10/12/16 21/06/17 6.242 0.845

BEL 48 36 10/19/16 28/06/17 5.110 0.776

PYN  MP 126 120  10/11/16 20/06/17 4.805 1.015

HUTCH 108 102  10/12/16 21/06/17 6.319 0.925

BEL 8 8 10/19/16 28/06/17 4.5 0.385

2017/2018 AYN  MP 199 90 10/19/17 29/06/18 3.203 0.412
MANH 200 90 10/20/17 23/06/18 2.644 0.402

HUTCH 280 125 10/18/17 28/06/18 3.345 0.489

BEL 280 125 10/17/17 30/06/18 2.561 0.430
GYP 279 125 10/18/17 18/06/18 2.343 0.318
PYN  MP 323 282  10/19/17 29/06/18 3.048 0.490
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MANH 414 366  10/20/17 23/06/18 2.880 0.431

HUTCH 414 366  10/18/17 28/06/18 3.236 0435

BEL 287 251  10/17/17 30/06/18 2.198 0.412
GYP 286 250  10/18/17 18/06/18 1.973 0.278
2018/2019 AYN  MANH 80 40 11/01/18 5.798 0.535

HUTCH 212 99 10/24/18 01/07/19 4.925 0.563
BEL 130 63 10/24/18 17/07/19 4.965 0.897

PYN  HUTCH 504 454 10/24/18 01/07/19 4.623 0.794
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Table 0.2. Summary of vegetation indices used in the KSU breeding program across 5
years. For each index the formula and reference are provided.

Abbr.

GNDVI

NDRE

NDVI

Index Equation
i i NIR — Green

Green Nprmahzed Difference GNDVI =
Vegetation Index NIR + Green
Red Edge Normalized NDRE — NIR — RedEdge
Difference Vegetation Index ~ NIR + RedEdge

i i NIR — Red
Normall'zed Difference NDVI =
Vegetation Index NIR + Red

36

Reference

(Blackmer et al.
1996)

(Elliott and Regan
1993)

(Curran et al. 1983)
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Table 0.3. Genomic Prediction Accuracies as the correlation between BLUPs and
GEBVs. The Pearson correlation coefficients is given with a 95% Cl and the rank
correlation between the GEBVs and the BLUPs.

Training Testing Correlation  95% CI Rank
Population Population Correlation
Excluding 2015/2016 0.09 [-0.004, 0.182] 0.093
2015/2016

Excluding 2015/2016 PYN | 0.078 [-0.026, 0.180] 0.093
2015/2016 PYN

Excluding 2015/2016 MP | 0.024 [-0.08, 0.127] 0.019
2015/2016 MP MANH GYP

MANH GYP

Excluding 2016/2017 -0.164 [-0.336, 0.018] -0.125
2016/2017

Excluding 2016/2017 PYN | -0.055 [-0.249, 0.144] 0.010
2016/2017 PYN

Excluding 2016/2017 MP -0.009 [-0.206, 0.189] 0.059
2016/2017 MP MANH BEL

MANH BEL

Excluding 2017/2018 0.048 [-0.049, 0.145] 0.030
2017/2018

Excluding 2017/2018 PYN | 0.061 [-0.046, 0.165] 0.019
2017/2018 PYN

Excluding 2017/2018 MP | 0.009 [-0.097, 0.114] -0.026
2017/2018 MP MANH BEL

MANH BEL

Excluding 2018/2019 -0.091 [-0.186, 0.005] -0.13
2018/2019

Excluding 2018/2019 PYN | -0.039 [-0.135, 0.058] -0.079
2018/2019 PYN

Excluding 2018/2019 0.572 [0.502, 0.634] 0.537
2018/2019 MANH BEL

MANH BEL
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Figure C.1. Results of GWAS Analysis.

The effect of the significant SNPs identified in the GWAS analysis for the specific
phenotype and grain yield are given in the boxplot below the GWAS results. The
points are colored by chromosome.
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Figure C.1. Results of GWAS Analysis Continued.

The effect of the significant SNPs identified in the GWAS analysis for the specific
phenotype and grain yield are given in the boxplot below the GWAS results. The
points are colored by chromosome.
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Figure C.1. Results of GWAS Analysis Continued.

The effect of the significant SNPs identified in the GWAS analysis for the specific
phenotype and grain yield are given in the boxplot below the GWAS results. The
points are colored by chromosome.
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Figure C.1. Results of GWAS Analysis Continued.

The effect of the significant SNPs identified in the GWAS analysis for the specific
phenotype and grain yield are given in the boxplot below the GWAS results. The
points are colored by chromosome.

42


https://doi.org/10.1101/2020.10.07.330415
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.330415; this version posted November 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table C.1. Summary of simulation costs. The range over which the parameter was

tested as well as the step change for each are given.

Parameter

Line Development
Genotyping Costs
Phenotyping Costs
Phenotyping Replications
Heritability of Primary Trait
Heritability of Correlated Trait
Prediction Accuracy

AYN Selected

Range
$4-40
$1-20
$35-70
6

0-1
0.95
0-1
100

43

Step
S1
s1
S5
N/A
0.1
N/A
0.1
N/A
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Table C.2. Accuracy of different GP models. The average correlation between the
observed and GEBVs for the different genomic prediction models for 100 CV’s is given
with the standard deviation in brackets.

Season Ridge Regression Reproducing Kernel Hilbert BayesC
Space

All 0.3274 (0.0494)  0.3279 (0.0492) 0.3274 (0.0496)
2015/2016 0.4505 (0.0700)  0.4495 (0.0700) 0.4500 (0.0703)
2016/2017 0.4834 (0.1075)  0.4843 (0.1075) 0.4840 (0.1067)
2017/2018 0.2963 (0.0702) 0.2962 (0.0704) 0.2971 (0.0702)
2018/2019 0.3700 (0.0802) 0.3704 (0.0793) 0.3704 (0.0801)
Excluding_2016 0.3197 (0.0516)  0.3201 (0.0518) 0.3201 (0.0526)

Excluding_2017
Excluding_2018
Excluding_2019

0.3342 (0.0551)
0.3619 (0.0533)
0.3682 (0.0610)

0.3345 (0.0551)
0.3634 (0.0539)
0.3683 (0.0611)
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0.3341 (0.0555)
0.3623 (0.0534)
0.3678 (0.0612)
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