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Abstract 
 
Importance: 
Multiple Sclerosis (MS) is a neuro-inflammatory disorder caused by a combination of 
environmental exposures and genetic risk factors. We sought to determine whether genetic 
risk modifies the effect of environmental MS risk factors. 
 
Methods: 
People with MS were identified within UK Biobank using ICD10-coded MS or self-report. 
Associations between environmental risk factors and MS risk were quantified with a case-
control design using multivariable logistic regression. Polygenic risk scores (PRS) were 
derived using the clumping-and-thresholding approach with external weights from the largest 
genome-wide association study of MS. Separate scores were created including (PRSMHC) and 
excluding (PRSNon-MHC) the MHC locus. The best performing PRS were identified in 30% of 
the cohort and validated in the remaining 70%. Interaction between environmental and 
genetic risk factors was quantified using the Attributable Proportion due to interaction (AP) 
and multiplicative interaction.  
 
Results:  
Data were available for 2250 people with MS and 486,000 controls. Childhood obesity, 
earlier age at menarche, and smoking were associated with MS. The optimal PRS were 
strongly associated with MS in the validation cohort (PRSMHC: Nagelkerke’s Pseudo-R2 

0.033, p=3.92x10-111; PRSNon-MHC: Nagelkerke’s Pseudo-R2 0.013, p=3.73x10-43). There was 
strong evidence of interaction between polygenic risk for MS and childhood obesity 
(PRSMHC: AP=0.17, 95% CI 0.06 - 0.25, p=0.004; PRSNon-MHC: AP=0.17, 95% CI 0.06 - 0.27, 
p=0.006). 
  
Conclusions and Relevance: 
This study provides novel evidence for an interaction between childhood obesity and a high 
burden of autosomal genetic risk. These findings may have significant implications for our 
understanding of MS biology and inform targeted prevention strategies.  
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Introduction 
Susceptibility to Multiple Sclerosis (MS) is multifactorial with genetic and environmental 
determinants. 1,2,3. Environmental exposures associated with MS risk include smoking, 
solvent exposure, childhood obesity, vitamin D deficiency, increasing latitude, and infectious 
mononucleosis (IM) 2,3. The largest genome-wide association study (GWAS) of MS risk 
performed by the International Multiple Sclerosis Genetic Consortium (IMSGC) revealed 233 
independent signals which account for ~48% of the estimated heritability of MS1. Attempts to 
model MS risk using polygenic risk scores have had some success4–6, supporting the view 
that MS susceptibility is influenced by common variants across the genome, in addition to the 
contribution from the Major Histocompatibility Complex (MHC).  
 
A large proportion of MS risk remains unexplained despite the well-described genetic 
architecture1. One potential explanation for this ‘missing risk’ may is the presence of gene-
environment interactions, whereby the effect of certain genes or variants may depend on 
exposure to environmental risk factors.  
 
Evidence from Scandinavian and North American cohorts suggests that environmental 
influences on MS risk can be modified by HLA genotype. The deleterious effects of 
childhood obesity, smoking, IM, and solvent exposure on MS risk are potentiated among 
carriers of the HLA DRB1*15 allele and those lacking the protective HLA A*02 genotype7–

10. It is not currently known whether gene-environment interactions in MS extend beyond the 
HLA locus11,12.   
 
In this work, we harnessed the power of UK Biobank to extend our understanding of how 
common genetic variation interacts with environmental factors associated with MS 
development. We achieved this by firstly performing a large case-control study to confirm the 
role of established risk factors in this cohort, and by developing and validating polygenic risk 
scores (PRS) for MS which both included and excluded the MHC. Finally, we used these data 
to look for potential interactions between polygenic risk and environmental factors associated 
with MS.  
 
Methods 
Data sources 
UK Biobank is a longitudinal cohort study described in detail elsewhere13. In brief, 
participants between the ages of 40 and 69 were recruited between 2006 and 2010 from 
across the UK. Participants underwent genotyping, donated body fluid samples, and answered 
a range of questions about lifestyle, environmental and demographic factors. Health records 
were linked to participants using Hospital Episode Statistics. Phenotype data are composed of 
survey data, linked healthcare records, anthropometric measurements, and a variety of other 
biochemical and imaging data (which was not used in this study).  
 
Identification of cases and controls 
Cases were defined by ICD-coded diagnoses (ICD10-G35; ICD9-3409), self-reported MS 
diagnosis, or a GP-coded diagnosis. Age at diagnosis was determined using the first recorded 
MS diagnostic code (see supplementary methods for further details). Controls were 
unmatched UK Biobank participants without a coded diagnosis of MS. Individuals diagnosed 
with MS prior to age 20 were excluded due to concerns around the timing of exposures. 
Participant flow through the study is depicted in supplementary figure 1; diagnostic codes 
used are provided in supplementary data.  
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Genotype data 
Genotyping and quality control protocols are described in detail elsewhere14. Imputed HLA 
alleles were provided by UK Biobank. HLA alleles were imputed to four-digit resolution 
using the HLA*IMP:02 software with a multi-population reference panel (see 
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/HLA_imputation.pdf). We extracted each 
participant’s allelic dosage for the MS risk allele HLA-DRB1*15:01 and the protective allele 
HLA-A*02:01 by thresholding posterior allele probabilities at 0.7 as suggested by UK 
Biobank. These two HLA alleles were used as they have the largest effect sizes across 
multiple studies2. Genetic principal components were supplied by UK Biobank (field ID 
22009).  
 
Definition of exposures 
Exposures were selected if they pertained to early life/adolescence (to mitigate the risk of 
reverse causation), and were previously associated with MS in at least one other 
observational cohort. Selected exposures were captured from baseline data recorded in UKB, 
along with age, ethnicity, sex, birth latitude, and Townsend deprivation index at recruitment 
(supplementary table 1).  
 
We examined the following ten early life/environmental exposures: month of birth, having 
been breastfed as a child, childhood body size at age 10 (CBS10, a proxy for childhood 
obesity), exposure to maternal smoking, age at menarche (females), age at voice breaking 
(males), age at first sexual intercourse, smoking status prior to age 20, birth weight, and 
infectious mononucleosis prior to age 20. Where multiple data points were available for a 
participant, the first recorded reading was used.  
 
Childhood body size was dichotomised and participants were classified as “not overweight” 
if they answered “thinner” or “average”, and “overweight” if they answered “plumper”. 
Smoking status was characterised as “ever” or “never” smoking. Age at menarche was treated 
as a continuous variable and analyses regarding menarche were restricted to women. IM 
status prior to age 20 was defined using the source of first report fields. Participants whose 
IM diagnosis was reported after age 20 were coded as having not had IM. Vitamin D status 
was not included, as vitamin D levels are only available from the initial visit (i.e. at study 
recruitment), which in the majority of cases was subsequent to diagnosis. 
 
Case-control study 
For each risk factor, we built a multivariable logistic regression model modelling MS status 
as the outcome, with age, sex, ethnicity, current deprivation status, and birth latitude as 
potential confounding covariates15. 
 
The strength of evidence for association with MS was determining using the model likelihood 
ratio, comparing the full model to a null model comprising only the confounding covariates. 
Strong evidence for association was defined using a Bonferroni-adjusted p-value threshold to 
maintain an alpha of 0.05 (pthreshold=0.05/10=0.005). Risk factors robustly associated with MS 
at alpha<0.05 were then combined in a multivariable model including the most potent genetic 
risk factors, HLA DRB1*15:01 and HLA A*02:01, to assess whether their effects showed 
evidence of independent association with MS.  
 
Development of polygenic risk scores (PRS) for MS 
A variety of PRS were created using the clumping-and-thresholding approach with external 
weights derived from the IMSGC discovery stage meta-analysis (supplementary methods). 
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We created scores both including the MHC region (PRSMHC) and excluding this region 
(PRSNon-MHC). To validate the PRS, the dataset was divided randomly into a training set 
(30%, nMS=589, ncontrol=112,724) and a testing set (70%, nMS=1237, ncontrol=263,159, 
supplementary figure 1). To determine the optimal PRS, we constructed multivariable logistic 
regression models for each PRS with MS status as the outcome with age, sex, Townsend 
deprivation index, and the first four genetic principal components (PCs) as confounding 
covariates.  
 
PRS performance was evaluated using Nagelkerke’s Pseudo-R2 metric, which is analogous to 
the R2 derived from linear regression models. Nagelkerke’s Pseudo-R2 was calculated 
comparing the full model including the PRS to a null model comprising the confounding 
covariates only. This procedure was repeated for all 64 scores (supplementary table 4). 
Altering the number of PCs adjusted for did not substantially alter the results (supplementary 
figures 5&6). Further validation is described in the supplementary methods.  
 
PRS x Environment interactions 
The optimal PRSMHC and PRSNon-MHC were used to look for evidence of genome-wide gene-
environment interactions using exposures identified as significantly associated with MS in 
the case-control study. All interaction analyses were conducted in the testing set to avoid PRS 
overfitting. Interaction was assessed on the additive and multiplicative scales (supplementary 
methods for full details). Multiplicative interaction was quantified using the interaction term 
beta from logistic models, and additive interaction was quantified using the Attributable 
Proportion due to interaction (AP).  
 
HLA x PRS interactions 
To determine whether non-MHC genetic risk of MS modulates the effects of the most potent 
MHC risk allele, DRB1*15:01, we calculated additive and multiplicative interaction statistics 
using the methods described above, considering both the DRB 1*15:01 genotype (dominant-
coding) and the non-MHC PRS as independent covariates.  
 
Association of PRS with disease measures 
To determine whether the MS-PRS was associated with age at first report and disability 
status, we constructed regression models in the testing set. For age at first MS diagnostic 
code report, values were normalised using the inverse-rank normalisation. Linear regression 
models were constructed, using age, sex, Townsend score, and the first four PCs as 
covariates. Disability status was assessed using the UKB field ‘Attendance/disability/mobility 
allowance’ (field 6146), and recoded this as a binary variable (i.e. participants were coded as 
‘1’ if they claimed any of the blue badge, attendance allowance, or disability living 
allowance, and as ‘0’ if not). Logistic regression models were then constructed using the 
same covariates as above (age, sex, Townsend score, first four genetic PCs).  
 
Ethical approval 
This work was performed using data from UK Biobank (REC approval 11/NW/0382). All 
participants gave informed consent on Biobank registration and are free to withdraw from the 
study at any point, at which point their data are censored and cannot be included in further 
analyses.  
 
Computing 
This research was supported by the High-Performance Cluster computing network hosted by 
Queen Mary, University of London19. Statistical analyses were performed in R version 3.6.1. 
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Extraction of European individuals from the 1000 genomes reference genome was conducted 
using vcftools. Construction of the polygenic risk score, application of the polygenic risk 
score to individuals, and quality control were performed in PLINK 1.9 and PLINK2. All code 
used in this study is available on GitHub (@benjacobs123456). 
 
Results 
Population demographics 
Phenotype and genotype data were available for 488,276 UK Biobank participants 
comprising 2276 people with MS and 486,000 unmatched controls. The median age at first 
MS report was 43.5 (IQR 16.1, supplementary figure 2). Demographic characteristics are 
shown in table 1. Characteristics of individuals with MS were consistent with published 
observational data (72.7% female, 98.1% White British). 
 
Exposures associated with MS in UK Biobank 
There was strong evidence for association between three of the ten risk factors examined and 
MS (PBonf<0.05): higher childhood body size at age 10 (‘plumper than average’ vs ‘thinner 
than average’: OR 1.36, 95% CI 1.20 - 1.55), smoking prior to age 20 (OR 1.21, 95% CI 1.08 
- 1.34), and earlier menarche (OR 0.94, 95% CI 0.91 - 0.97, figure 1, table 1). The effects of 
these three risk factors remained similar in a combined model incorporating HLA 
DRB1*15:01 and HLA A*02:01 genotype (supplementary table 3).  
 
Development and validation of PRS for MS 
The optimal PRSMHC and PRSNon-MHC explained 3.5% and 1.3% of MS risk in the training set 
respectively (figure 2a, supplementary table 4, supplementary figures 5 and 6). Both scores 
were strongly associated with MS in the testing set (PRSMHC: Nagelkerke’s Pseudo-R2 0.033, 
p=3.92x10-111; PRSNon-MHC: Nagelkerke’s Pseudo-R2 0.013, p=3.73x10-43, figure 2, 
supplementary table 5). Both scores were reasonably well-calibrated (figure 3a) with good 
discriminative performance (AUCMHC 0.71, AUCnon-MHC 0.67, AUCnull 0.63; figure 3b). There 
was no evidence of association between the PRSMHC and PRSNon-MHC and age at MS report 
(figure 3c & 3d) or claiming of disability benefits (pMHC=0.44, p Non-MHC=0.96, supplementary 
figure 7). 
 
 
PRS interactions with environmental risk factors and DRB1*15:01 
We found strong evidence of interaction on the additive scale between the PRSMHC and 
PRSNon-MHC and childhood body size (PRSMHC: AP=0.17, 95% CI 0.06 - 0.25, p=0.004; 
PRSNon-MHC: AP=0.17, 95% CI 0.06 - 0.27, p=0.006). We found weaker evidence for 
interaction on this scale between age at menarche and the PRSMHC (AP=-0.05, 95% CI -0.10 - 
0.00, p = 0.033; figure 4a, table 2), but this estimate did not surpass the multiple testing 
threshold (table 2). There was a lack of strong evidence  for other pairwise additive 
interactions (figure 4) or for multiplicative interactions (supplementary figure 8, 
supplementary table 6). There was evidence of additive interaction between the PRSNon-MHC 

and HLA DRB1*15:01 carriage (AP 0.24, 95% CI 0.17 -  0.30, p=0.0002, figure 4b), but no 
evidence of multiplicative interaction (beta 0.060, p=0.30). 
 
 
 
Discussion 
In this study we harnessed the scale and breadth of UK Biobank to study >2000 MS cases 
and >480,000 controls, providing the first evidence that the effect of an established risk factor 
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for MS (childhood obesity) may be potentiated by an individual’s genome-wide genetic risk 
for MS. We show that this effect persists even when the MHC locus is excluded from the 
PRS. By using data from the largest GWAS of MS susceptibility to derive and validate 
polygenic risk scores for MS, both incorporating and excluding the MHC region, we 
demonstrate supportive evidence for a gene-gene interaction. This work shows that the effect 
of DRB1*15:01 on MS susceptibility may be potentiated among individuals with a high 
background genetic risk for MS in this cohort. To our knowledge, our study is the first to 
demonstrate that the polygenic risk of an individual for MS may alter the effect of established 
environmental risk factors on their risk of MS3. These findings are especially interesting in 
the context of evidence from mendelian randomisation studies supporting a causal role for 
childhood obesity in the pathogenesis of MS21,22. 
 
Previous studies of gene-environment interactions in MS have focussed on interactions 
between HLA alleles and environmental risk factors. Specifically, evidence suggests that 
carriage of high-risk HLA haplotypes containing DRB1*15:01 and lacking A*02:01 
enhances the deleterious association of childhood obesity, smoking, Infectious 
Mononucleosis, and solvent exposure with MS risk2,789. The intuitive biological explanation 
for such interactions is that high-risk HLA alleles may promote presentation of epitopes, e.g. 
from cigarette smoke or within adipose tissue, in such a way that mimics myelin peptides and 
triggers CNS-directed autoimmunity. Beyond the MHC, there has been relatively limited 
study of how genetic variation modulates the effect of environmental risk factors for MS11,12, 
probably in large part due to the relatively small number of datasets with sufficient power, 
deep phenotyping, and high-quality genetic data required for such analyses.  
 
In this study we created 64 individual PRS, both including and excluding the MHC locus on 
chromosome 6, which is the strongest single genetic determinant of MS risk and accounts for 
~20% of the SNP heritability of MS in Europeans1. Both the non-MHC and MHC PRS were 
strongly associated with MS risk in both training and testing sets. The non-MHC PRS in this 
study captured a small proportion of overall MS liability, but was robustly associated with 
MS. Previous efforts using PRS from the IMSGC explained up to ~3% of variance5. The 
best-performing non-MHC PRS in this study explained ~1% of MS variance. This 
discrepancy could be explained by several factors, including the relatively low number of 
cases in UK Biobank, the possibility of missed cases, differences in population structure, 
restriction according to self-declared ethnicity with an additional genetic principal 
components analysis, and some SNPs not being available and/or failing QC checks in 
Biobank. Nevertheless, despite low overall variance, the validity of the PRS is underscored 
by the monotonic relationship between PRS and OR of MS, the robust model fit when using 
the PRS to model MS risk, reasonable discriminative capacity, and good calibration.  
 
There are several important caveats to this work. Most importantly, while we are able to 
observe and measure statistical interaction – i.e. deviation from a model whereby the effects 
of genetic and environmental risk factors are combined additively (in the case of the AP) or 
multiplicatively (in the case of multiplicative interaction – statistical interaction does not 
straightforwardly imply biological interaction, nor does it necessarily imply interaction that is 
meaningful in terms of real-life disease prediction or prevention. We were unable to 
demonstrate replication in a truly independent cohort (dividing the cohort into training and 
testing sets does not yield a genuinely independent cohort). Our findings have limited 
generalisability for non-European groups as UK Biobank participants are predominantly 
White. MS diagnosis in this cohort are derived from linked healthcare records or self-report, 
so do not carry the same degree of certainty as criteria-defined MS. Equally, it is conceivable 
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that there are ‘missed’ cases in the dataset, i.e. individuals with MS who do not have a coded 
diagnosis available through linked healthcare records. However, MS prevalence in UK 
Biobank approaches the expected UK prevalence, suggesting that the overwhelming majority 
of individuals with MS are correctly identified.  The UKB cohort is highly selected, and is 
enriched for individuals living near assessment centres, from more affluent socio-economic 
groups than the general population, for White British individuals, and (intentionally) for 
individuals over the age of 40 (the minimum age at recruitment). These factors carry a risk of 
introducing various biases, e.g. through collider bias, which may induce spurious associations 
and destroy true associations. Our findings concerning gene-gene interactions could be 
replicated in ‘genetics-only’ cohorts such as the IMSGC, and we would encourage others to 
attempt to replicate this finding in large GWAS cohorts (with many more cases than the 
~2000 in UKB) so we can ascertain whether it is robust.   
 
The key variables used in this study are retrospective or cross-sectional (e.g. MS diagnosis, 
self-reported body size in childhood, self-reported smoking status). Not only are these subject 
to recall bias, but more importantly our results are not revealing about predicting an 
individual’s risk of developing MS. To demonstrate predictive power, these results need to be 
replicated in a longitudinal cohort. In addition, the metric we focus on, ‘comparative body 
size at age 10’, is clearly not a perfect proxy for childhood obesity. Other limitations to this 
study include the limited overall variance explained by both optimal PRS, the relatively small 
absolute number of people with MS, and the imperfect nature of self-reported phenotypes. 
Furthermore, some exposures known to be strongly associated with MS were either 
unavailable (e.g. vitamin D status prior to diagnosis) or so under-reported as to be unreliable 
(e.g. Infectious Mononucleosis).  
 
Despite these limitations, our study also has some strengths. We use the UK Biobank dataset, 
which provides a unique opportunity to study gene-environment interactions on a large-scale. 
The vast number of controls in UKB adds substantial power. We tune and test the PRS in 
separate samples, which is important to prevent overfitting of the PRS to the data. We use an 
agnostic approach to develop the PRS, using a range of clumping-and-thresholding 
parameters to discover the optimal structure of the PRS, allowing us to discover a significant 
improvement in predictive power from using a large number of variants weakly associated 
with MS over using strictly ‘GWAS-significant’ hits (p<5e-8). These optimal parameters also 
reiterate the polygenic architecture of MS.  
 
We evaluate interactions on both the multiplicative and additive scales, as has become 
standard practice to avoid missing biologically-significant interactions2. We additionally 
evaluate the relationship between the PRS and proxies for clinical characteristics of MS, 
including age at diagnosis and disability status. We evaluated whether the effect of 
DRB1*15:01 is modulated by  polygenic risk, as has been demonstrated for high-effect 
variants in the LDL-R (causing Familial Hypercholesterolaemia) and BRCA (causing breast 
cancer)23, and find evidence in support of this hypothesis. Clearly, this finding is easily 
replicated in the IMSGC cohort and we would urge caution in overinterpreting the finding 
without confirmation in this far larger cohort of cases.  
 
This study thus provides novel evidence that childhood body size interacts with non-HLA 
MS genetic risk. Demonstrating benefit for preventive measures in rare, complex diseases 
like MS is a challenge due to the low population incidence and the small effects of individual 
interventions. Power can be enhanced by enriching for high-risk individuals, and by selecting 
individuals who are likely to experience the greatest benefit from the intervention. As the 
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effect of childhood body size on MS risk appears greater among individuals with a high 
genome-wide genetic risk, trials attempting to demonstrate benefit of targeting childhood 
obesity may benefit from risk-stratifying individuals using this approach. Further efforts are 
required to localise the variants and genes which account for the observed interaction effects, 
which should help to shed further light on the biology of these risk factors and improve 
efforts to individualise MS risk prediction algorithms in the future.  
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Table 1: demographic characteristics of included participants and results from the case-
control study. Continuous variables are presented as mean(SD), categorical variables are 
presented as n(%). Missing data are not tabulated. Proportions are calculated as a proportion 
of individuals with non-missing data for each variable. Column 4 shows odds ratios (ORs) 
and 95% confidence intervals (CIs) for Multiple Sclerosis for each exposure studied. Odds 
ratios represent the output of multivariable logistic regression models incorporating age, sex, 
ethnicity, birth latitude and current deprivation as covariates. Wald test P values represent the 
test of the null hypothesis beta = 0 for each term, whereas likelihood ratio P values represent 
the overall model fit compared to a null model comprising only confounding covariates. P 
values exceeding the Bonferroni multiple testing threshold (alpha=0.05) are shown in bold. 
Reference values for categorical covariates are denoted as ‘REF’. 
 

Trait Controls 
(N=486,000) 

Cases (N=2250) OR (95% 
CI) 

Wald test 
P value 

Likelihood 
ratio P 
value 

Sex 
  

   
Female 263058  (54.13%) 1635  (72.67%)    
Male 222942  (45.87%) 615  (27.33%)    
Age 56.54 (8.09) 55.17 (7.66)    

Birth latitude 
360093.76 
(162174.29) 

361960.6 
(168566.29) 

   

Age 
completed 
full-time 
education 

16.72 (2.33) 16.96 (2.49)    

Townsend 
deprivation 

index 
-1.31 (3.09) -1.38 (3.06)    

Ethnic 
background   

   

White 457927  (94.69%) 2193  ( 98.08 %)    
Non white 25664  ( 5.31 %) 43  ( 1.92 %)    

HLA 
A*02:01 
alleles 

  
   

0 264736  (54.47%) 1431  ( 63.6 %)    
1 186009  (38.27%) 704  ( 31.29 %)    
2 35255  ( 7.25 %) 115  ( 5.11 %)    

HLA 
DRB1*15:01 

alleles 
  

   

0 360423  (74.16%) 1144  ( 50.84 %)    
1 115763  (23.82%) 948  ( 42.13 %)    
2 9814  ( 2.02 %) 158  ( 7.02 %)    

Country of 
birth   

   

UK 446343  (92.09%) 2151  ( 95.81 %)    
Non-UK 38314  ( 7.91 %) 94  ( 4.19 %)    
Age had 19.11 (3.89) 18.72 (3.81) 0.98 (0.97 0.015709 0.013768 
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Trait Controls 
(N=486,000) Cases (N=2250) OR (95% 

CI) 
Wald test 
P value 

Likelihood 
ratio P 
value 

sexual 
intercourse 

to 1) 

Age at 
menarche 12.97 (1.62) 12.8 (1.66) 

0.94 (0.91 
to 0.97) 0.000116 0.00011 

Birth weight 
(Kg) 

3.32 (0.67) 3.28 (0.68) 0.98 (0.9 
to 1.07) 

0.603259 0.603452 

Month of 
birth   

  0.931194 

April 41716  ( 8.58 %) 188  ( 8.36 %) REF REF  

August 40064  ( 8.24 %) 194  ( 8.62 %) 
1.06 (0.86 
to 1.3) 0.610756  

December 39042  ( 8.03 %) 168  ( 7.47 %) 
0.94 (0.76 
to 1.17) 

0.59689  

February 38673  ( 7.96 %) 178  ( 7.91 %) 
0.98 (0.8 
to 1.22) 

0.888063  

January 41051  ( 8.45 %) 175  ( 7.78 %) 0.92 (0.75 
to 1.14) 

0.460529  

July 41190  ( 8.48 %) 190  ( 8.44 %) 
0.97 (0.79 
to 1.2) 

0.812077  

June 40979  ( 8.43 %) 185  ( 8.22 %) 
0.95 (0.77 
to 1.18) 0.666742  

March 43654  ( 8.98 %) 203  ( 9.02 %) 
1.02 (0.83 
to 1.25) 

0.883078  

May 43657  ( 8.98 %) 204  ( 9.07 %) 
0.99 (0.81 
to 1.22) 

0.928091  

November 37124  ( 7.64 %) 178  ( 7.91 %) 
1.03 (0.83 
to 1.27) 0.800849  

October 39247  ( 8.08 %) 201  ( 8.93 %) 1.11 (0.9 
to 1.36) 

0.327942  

September 39603  ( 8.15 %) 186  ( 8.27 %) 
1.04 (0.85 
to 1.29) 

0.681762  

Breastfed as a 
baby     0.731403 

No 
102506  ( 27.61 
%) 

565  ( 30.86 %) REF REF  

Yes 
268781  ( 72.39 
%) 

1266  ( 69.14 %) 
0.98 (0.88 
to 1.09) 

0.731136  

Comparative 
body size 
aged 10 

  
  7.02E-06 

Thinner 158610  ( 42.72 
%) 

609  ( 33.26 %) REF REF  

About 
average 

241759  ( 65.11 
%) 

1162  ( 63.46 %) 
1.19 (1.08 
to 1.32) 

0.000697  

Plumper 75366  ( 20.3 %) 438  ( 23.92 %) 
1.36 (1.2 
to 1.55) 

2.21E-06  
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Trait Controls 
(N=486,000) Cases (N=2250) OR (95% 

CI) 
Wald test 
P value 

Likelihood 
ratio P 
value 

Exposed to 
maternal 
smoking 

  
  0.329681 

No 
296291  ( 70.73 
%) 

1368  ( 70.55 %) REF REF  

Yes 
122618  ( 29.27 
%) 571  ( 29.45 %) 

0.95 (0.86 
to 1.05) 0.331253  

Relative age 
at 

voicebreaking 
(males only) 

  
  0.132642 

About 
average age 

182848  ( 89.71 
%) 

504  ( 87.96 %) REF REF  

Younger than 
average 

8924  ( 4.38 %) 35  ( 6.11 %) 1.44 (1.02 
to 2.03) 

0.038506  

Older than 
average 

12043  ( 5.91 %) 34  ( 5.93 %) 
0.95 (0.66 
to 1.37) 

0.776222  

Smoking 
status prior to 

age 20 
  

  0.000915 

No 
394188  ( 81.11 
%) 

1796  ( 79.82 %) REF REF  

Yes 91812  ( 18.89 %) 454  ( 20.18 %) 1.21 (1.08 
to 1.34) 

0.000737  

IM status 
  

  0.061221 

No 
484758  ( 99.75 
%) 

2235  ( 99.33 %) REF REF  

Yes 1238  ( 0.25 %) 15  ( 0.67 %) 
1.82 (1.03 
to 3.22) 

0.040175  

 
 
 
 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.03.01.971739doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.01.971739
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Attributable Propotion (AP) due to interaction, 95% CIs and two-sided p values for 
each of the PRS x E interactions examined. CIs represent the 2.5th and 97.5th centile from 
10,000 bootstrap replicates. Two-sided p values represent absolute p values with a continuity 
correction, i.e. for a positive AP, the p value is given as:  (number of iterations < 0 + 1)/(total 
number of iterations+1)*2 
Interaction AP Lower CI Upper CI P value 
MHC PRS x Childhood body 
size 0.167074 0.062196 0.254741 0.0042 
Non-MHC PRS x Childhood 
body size 0.173705 0.055642 0.27455 0.005599 
MHC PRS x Smoking 0.0768 -0.05055 0.177474 0.214179 
Non-MHC PRS x Smoking 0.122975 -0.00556 0.228431 0.058794 
MHC PRS x Age at menarche -0.05206 -0.0968 -0.00478 0.033197 
Non-MHC PRS x Age at 
menarche 0.021061 -0.04119 0.111064 0.551145 
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Figure and table legends 
Figures 
Figure 1: odds ratios and 95% confidence intervals for the association of each exposure with 
MS. ORs and CIs are from the output of a multivariable logistic regression with the following 
covariates: age, sex, ethnicity, birth latitude, current deprivation status, and the exposure in 
question. For menarche (females only) and voice-breaking (males-only), sex was not 
included as a covariate.  
 
Figure 2: A: Nagelkerke’s pseudo- R2 metric for each of the individual PRS used. The R2 was 
calculated by comparing the model fit (age, sex, Townsend deprivation index, the first 4 
genetic PCs, and PRS) vs the null model (age, sex, Townsend deprivation index, and the first 
4 genetic PCs). A variety of p value thresholds and clumping parameters were used to create 
different PRS. Note that the clumping R2 refers to the linkage disequilibrium threshold within 
which variants were ‘clumped’, and is a different quantity from the Nagelkerke pseudo- R2. 
PRS are shown both including and excluding the MHC region. B: odds ratios and 95% 
confidence intervals for MS for individuals in each PRS decile (reference: lowest decile). 
ORs were calculated from logistic regression models with the following covariates: age, sex, 
first 4 genetic PCs, and PRS. C: histogram showing PRS distributions among MS cases and 
controls.  
 
Figure 3: A: Calibration plot showing absolute MS disease probabilities within each PRS 
decile (of the non-MHC PRS). Other lines represent the mean fitted disease probabilities for 
models incorporating the MHC PRS, the non-MHC PRS, and null covariates only (age, sex, 
deprivation, genetic PCs). B: Receiver Operating Characteristic (ROC) curves demonstrating 
the discriminative performance (i.e. ability to distinguish MS cases from controls) of the null 
model, MHC PRS, and non-MHC PRS. C&D: scatter plots showing no relationship between 
PRS (MHC and non-MHC respectively) and normalised age at MS report. 
 
Figure 4: A: Forest plot demonstrating Attributable Proportion due to interaction (AP) and 
95% CIs for interactions between environmental exposures and genetic risk factors for MS. If 
there is no interaction, the AP is 0. AP > 1 indicates positive interaction (combined effects 
exceed the sum of the individual effects), and vice-versa. CIs are derived from taking the 
2.5th and 97.5th percentiles of 10000 bootstrap replicates. B: forest plot demonstrating odds 
ratios and 95% CIs for participants in the top and bottom PRS deciles, i.e. the highest and 
lowest 10% of polygenic risk scores. The outcome in each case is MS status, and the 
exposures of interest are childhood body size, age at menarche, smoking prior to age 20, and 
carriage of the HLA DRB1*15:01 allele. ORs are from the output of logistic regression 
model of the form MS risk ~ Age + Sex + first 4 genetic PCs. Models were built separately 
for individuals with the highest 10% of genetic risk scores and the lowest 10% of genetic risk 
scores (‘top’ and ‘bottom’ decile respectively).  
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