bioRxiv preprint doi: https://doi.org/10.1101/2020.03.01.971739; this version posted November 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Title: Gene-environment interactionsin Multiple Sclerosis: a UK Biobank study

Authors: Benjamin Meir Jacobs (BM BCh)"?, Alastair Noyce (PhD) 2, Jonathan Bestwick
(PhD)*, Daniel Belete (MBBS) 4, Gavin Giovannoni (PhD)*?, Ruth Dobson (PhD)*?
Affiliations: 1: Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts
and Queen Mary University of London. 2: Royal London Hospital, Barts Health NHS Trust.
Corresponding author: Ruth Dobson, Preventive Neurology Unit, Wolfson Institute of
Preventive  Medicine, Bats and Queen Mary University of  London,
ruth.dobson@gmul.ac.uk.

Abstract word count: 272
Manuscript word count: 3233


https://doi.org/10.1101/2020.03.01.971739
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.01.971739; this version posted November 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Acknowledgements and data availability

We would like to thank the relevant consortia for making their data available. MS GWAS
data were taken from the M S Chip discovery summary statistics. IMSGC summary statistics
are available viarequest on the website:_https://nettskjema.no/answer/imsgc-data-access.html.
We would like to thank the Queen Mary University High Performance Computing team for
their help with computing resources. We would like to thank the participants and researchers
involved in UK Biobank, who have created an exceptiona resource. UK Biobank data are
available on request through their website. Code used in this paper is available on Github
(@benjacobs123456).



https://doi.org/10.1101/2020.03.01.971739
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.01.971739; this version posted November 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Importance:

Multiple Sclerosis (MS) is a neuro-inflammatory disorder caused by a combination of
environmental exposures and genetic risk factors. We sought to determine whether genetic
risk modifies the effect of environmental M S risk factors.

Methods:

People with MS were identified within UK Biobank using ICD10-coded MS or self-report.
Associations between environmental risk factors and MS risk were quantified with a case-
control design using multivariable logistic regression. Polygenic risk scores (PRS) were
derived using the clumping-and-thresholding approach with external weights from the largest
genome-wide association study of MS. Separate scores were created including (PRSuxc) and
excluding (PRSyon-mHc) the MHC locus. The best performing PRS were identified in 30% of
the cohort and validated in the remaining 70%. Interaction between environmental and
genetic risk factors was quantified using the Attributable Proportion due to interaction (AP)
and multiplicative interaction.

Results:

Data were available for 2250 people with MS and 486,000 controls. Childhood obesity,
earlier age at menarche, and smoking were associated with MS. The optimal PRS were
strongly associated with MS in the validation cohort (PRSwnc: Nagelkerke's Pseudo-R?
0.033, p=3.92x10""" PRSwonmnc: Nagelkerke's Pseudo-R? 0.013, p=3.73x10™). There was
strong evidence of interaction between polygenic risk for MS and childhood obesity
(PRSwHc: AP=0.17, 95% CI 0.06 - 0.25, p=0.004; PRSyon-mHc: AP=0.17, 95% Cl 0.06 - 0.27,
p=0.006).

Conclusions and Relevance:

This study provides novel evidence for an interaction between childhood obesity and a high
burden of autosomal genetic risk. These findings may have significant implications for our
understanding of MS biology and inform targeted prevention strategies.
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I ntroduction

Susceptibility to Multiple Sclerosis (MS) is multifactorial with genetic and environmental
determinants. 23, Environmental exposures associated with MS risk include smoking,
solvent exposure, childhood obesity, vitamin D deficiency, increasing latitude, and infectious
mononucleosis (IM) 22, The largest genome-wide association study (GWAS) of MS risk
performed by the International Multiple Sclerosis Genetic Consortium (IMSGC) reveaed 233
independent signals which account for ~48% of the estimated heritability of MS!. Attempts to
model MS risk using polygenic risk scores have had some success™, supporting the view
that M S susceptibility is influenced by common variants across the genome, in addition to the
contribution from the Major Histocompatibility Complex (MHC).

A large proportion of MS risk remains unexplained despite the well-described genetic
architecture®. One potential explanation for this ‘missing risk’ may is the presence of gene-
environment interactions, whereby the effect of certain genes or variants may depend on
exposure to environmental risk factors.

Evidence from Scandinavian and North American cohorts suggests that environmental
influences on MS risk can be modified by HLA genotype. The deleterious effects of
childhood obesity, smoking, IM, and solvent exposure on MS risk are potentiated among
carriers of the HLA DRB1*15 allele and those lacking the protective HLA A*02 genotype”™

L 1t is not currently known whether gene-environment interactions in MS extend beyond the
HLA locus™*.

In this work, we harnessed the power of UK Biobank to extend our understanding of how
common genetic variation interacts with environmental factors associated with MS
development. We achieved this by firstly performing a large case-control study to confirm the
role of established risk factors in this cohort, and by developing and validating polygenic risk
scores (PRS) for MS which both included and excluded the MHC. Finally, we used these data
to look for potential interactions between polygenic risk and environmental factors associated
with MS.

Methods

Data sources

UK Biobank is a longitudina cohort study described in detail elsewhere®. In brief,
participants between the ages of 40 and 69 were recruited between 2006 and 2010 from
across the UK. Participants underwent genotyping, donated body fluid samples, and answered
arange of questions about lifestyle, environmental and demographic factors. Health records
were linked to participants using Hospital Episode Statistics. Phenotype data are composed of
survey data, linked healthcare records, anthropometric measurements, and a variety of other
biochemical and imaging data (which was not used in this study).

Identification of cases and controls

Cases were defined by ICD-coded diagnoses (ICD10-G35; ICD9-3409), self-reported MS
diagnosis, or a GP-coded diagnosis. Age at diagnosis was determined using the first recorded
MS diagnostic code (see supplementary methods for further details). Controls were
unmatched UK Biobank participants without a coded diagnosis of MS. Individuals diagnosed
with MS prior to age 20 were excluded due to concerns around the timing of exposures.
Participant flow through the study is depicted in supplementary figure 1; diagnostic codes
used are provided in supplementary data.
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Genotype data

Genotyping and quality control protocols are described in detail elsewhere™. Imputed HLA
alleles were provided by UK Biobank. HLA alleles were imputed to four-digit resolution
using the HLA*IMP:.02 software with a multi-population reference panel (see
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/HLA _imputation.pdf). We extracted each
participant’s allelic dosage for the MSrisk allele HLA-DRB1*15:01 and the protective allele
HLA-A*02:01 by thresholding posterior allele probabilities at 0.7 as suggested by UK
Biobank. These two HLA alleles were used as they have the largest effect sizes across
multiple studies®. Genetic principal components were supplied by UK Biobank (field 1D
22009).

Definition of exposures
Exposures were selected if they pertained to early life/adolescence (to mitigate the risk of
reverse causation), and were previously associated with MS in at least one other
observational cohort. Selected exposures were captured from baseline data recorded in UKB,
along with age, ethnicity, sex, birth latitude, and Townsend deprivation index at recruitment
(supplementary table 1).

We examined the following ten early lifelfenvironmental exposures: month of birth, having
been breastfed as a child, childhood body size at age 10 (CBS,o, a proxy for childhood
obesity), exposure to maternal smoking, age at menarche (females), age at voice breaking
(males), age at first sexual intercourse, smoking status prior to age 20, birth weight, and
infectious mononucleosis prior to age 20. Where multiple data points were available for a
participant, the first recorded reading was used.

Childhood body size was dichotomised and participants were classified as “not overweight”
if they answered “thinner” or “average”, and “overweight” if they answered “plumper”.
Smoking status was characterised as “ever” or “never” smoking. Age at menarche was treated
as a continuous variable and anayses regarding menarche were restricted to women. IM
status prior to age 20 was defined using the source of first report fields. Participants whose
IM diagnosis was reported after age 20 were coded as having not had IM. Vitamin D status
was not included, as vitamin D levels are only available from the initial visit (i.e. a study
recruitment), which in the majority of cases was subsegquent to diagnosis.

Case-control study

For each risk factor, we built a multivariable logistic regression model modelling MS status
as the outcome, with age, sex, ethnicity, current deprivation status, and birth latitude as
potential confounding covariates™.

The strength of evidence for association with MS was determining using the model likelihood
ratio, comparing the full model to a null model comprising only the confounding covariates.
Strong evidence for association was defined using a Bonferroni-adjusted p-value threshold to
maintain an alpha of 0.05 (Piresnold=0.05/10=0.005). Risk factors robustly associated with MS
at alpha<0.05 were then combined in a multivariable model including the most potent genetic
risk factors, HLA DRB1*15:01 and HLA A*02:01, to assess whether their effects showed
evidence of independent association with M S.

Deve opment of polygenic risk scores (PRS) for MS
A variety of PRS were created using the clumping-and-thresholding approach with external
weights derived from the IMSGC discovery stage meta-analysis (supplementary methods).
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We created scores both including the MHC region (PRSunc) and excluding this region
(PRS\on-mHc). To validate the PRS, the dataset was divided randomly into a training set
(30%, nNus=589, Nconro=112,724) and a testing set (70%, Nus=1237, Neonro=263,159,
supplementary figure 1). To determine the optimal PRS, we constructed multivariable logistic
regression models for each PRS with MS status as the outcome with age, sex, Townsend
deprivation index, and the first four genetic principal components (PCs) as confounding
covariates.

PRS performance was evaluated using Nagelkerke's Pseudo-R? metric, which is analogous to
the R? derived from linear regression models. Nagelkerke's Pseudo-R® was calculated
comparing the full model including the PRS to a null model comprising the confounding
covariates only. This procedure was repeated for all 64 scores (supplementary table 4).
Altering the number of PCs adjusted for did not substantially alter the results (supplementary
figures 5& 6). Further validation is described in the supplementary methods.

PRS x Environment interactions

The optimal PRSync and PRSyo-mHc Were used to look for evidence of genome-wide gene-
environment interactions using exposures identified as significantly associated with MS in
the case-control study. All interaction analyses were conducted in the testing set to avoid PRS
overfitting. Interaction was assessed on the additive and multiplicative scales (supplementary
methods for full details). Multiplicative interaction was quantified using the interaction term
beta from logistic models, and additive interaction was quantified using the Attributable
Proportion due to interaction (AP).

HLA x PRSinteractions

To determine whether non-MHC genetic risk of MS modulates the effects of the most potent
MHC risk alele, DRB1*15:01, we cdculated additive and multiplicative interaction statistics
using the methods described above, considering both the DRB 1*15:01 genotype (dominant-
coding) and the non-MHC PRS as independent covariates.

Association of PRSwith disease measures

To determine whether the MS-PRS was associated with age at first report and disability
status, we constructed regression models in the testing set. For age at first MS diagnostic
code report, values were normalised using the inverse-rank normalisation. Linear regression
models were constructed, using age, sex, Townsend score, and the first four PCs as
covariates. Disability status was assessed using the UKB field ‘ Attendance/disability/mobility
alowance' (field 6146), and recoded this as a binary variable (i.e. participants were coded as
‘1 if they clamed any of the blue badge, attendance allowance, or disability living
alowance, and as ‘0" if not). Logistic regresson models were then constructed using the
same covariates as above (age, sex, Townsend score, first four genetic PCs).

Ethical approval

This work was performed using data from UK Biobank (REC approval 11/NW/0382). All
participants gave informed consent on Biobank registration and are free to withdraw from the
study at any point, at which point their data are censored and cannot be included in further
analyses.

Computing
This research was supported by the High-Performance Cluster computing network hosted by
Queen Mary, University of London®. Statistical analyses were performed in R version 3.6.1.
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Extraction of European individuals from the 1000 genomes reference genome was conducted
using vcftools. Construction of the polygenic risk score, application of the polygenic risk
score to individuals, and quality control were performed in PLINK 1.9 and PLINK2. All code
used in this study is available on GitHub (@benjacobs123456).

Results

Population demographics

Phenotype and genotype data were available for 488,276 UK Biobank participants
comprising 2276 people with MS and 486,000 unmatched controls. The median age at first
MS report was 43.5 (IQR 16.1, supplementary figure 2). Demographic characteristics are
shown in table 1. Characteristics of individuals with MS were consistent with published
observational data (72.7% female, 98.1% White British).

Exposur es associated with MSin UK Biobank

There was strong evidence for association between three of the ten risk factors examined and
MS (Pgont<0.05): higher childhood body size at age 10 (‘plumper than average’ vs ‘thinner
than average’: OR 1.36, 95% CI 1.20 - 1.55), smoking prior to age 20 (OR 1.21, 95% CI 1.08
- 1.34), and earlier menarche (OR 0.94, 95% CI 0.91 - 0.97, figure 1, table 1). The effects of
these three risk factors remained similar in a combined model incorporating HLA
DRB1*15:01 and HLA A*02:01 genotype (supplementary table 3).

Devel opment and validation of PRS for MS

The optimal PRSy1c and PRSyon-mnc explained 3.5% and 1.3% of MSrisk in the training set
respectively (figure 2a, supplementary table 4, supplementary figures 5 and 6). Both scores
were strongly associated with MS in the testing set (PRSwhc: Nagelkerke's Pseudo-R? 0.033,
p=3.92x10"""  PRSyonmnc: Nagelkerke's Pseudo-R? 0.013, p=3.73x10*, figure 2,
supplementary table 5). Both scores were reasonably well-calibrated (figure 3a) with good
discriminative performance (AUCwuc 0.71, AUCon-muc 0.67, AUC, 0.63; figure 3b). There
was no evidence of association between the PRSync and PRSyon-mic and age at M S report
(figure 3c & 3d) or claiming of disability benefits (pmnc=0.44, P Nnon-mHc=0.96, supplementary
figure 7).

PRSinteractions with environmental risk factors and DRB1* 15:01

We found strong evidence of interaction on the additive scale between the PRSync and
PRS\onmuc and childhood body size (PRSywc: AP=0.17, 95% CI 0.06 - 0.25, p=0.004;
PRSvonmHc: AP=0.17, 95% CI 0.06 - 0.27, p=0.006). We found weaker evidence for
interaction on this scale between age at menarche and the PRSync (AP=-0.05, 95% CI -0.10 -
0.00, p = 0.033; figure 4a, table 2), but this estimate did not surpass the multiple testing
threshold (table 2). There was a lack of strong evidence for other pairwise additive
interactions (figure 4) or for multiplicative interactions (supplementary figure 8,
supplementary table 6). There was evidence of additive interaction between the PRSyon-mHc
and HLA DRB1*15:01 carriage (AP 0.24, 95% CI 0.17 - 0.30, p=0.0002, figure 4b), but no
evidence of multiplicative interaction (beta 0.060, p=0.30).

Discussion
In this study we harnessed the scale and breadth of UK Biobank to study >2000 M S cases
and >480,000 controls, providing the first evidence that the effect of an established risk factor
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for MS (childhood obesity) may be potentiated by an individual’s genome-wide genetic risk
for MS. We show that this effect persists even when the MHC locus is excluded from the
PRS. By using data from the largest GWAS of MS susceptibility to derive and validate
polygenic risk scores for MS, both incorporating and excluding the MHC region, we
demonstrate supportive evidence for a gene-gene interaction. This work shows that the effect
of DRB1*15:01 on MS susceptibility may be potentiated among individuals with a high
background genetic risk for MS in this cohort. To our knowledge, our study is the first to
demonstrate that the polygenic risk of an individual for MS may alter the effect of established
environmental risk factors on their risk of MS®. These findings are especially interesting in
the context of evidence from mendelian randomisation studies supporting a causal role for
childhood obesity in the pathogenesis of MS%2,

Previous studies of gene-environment interactions in MS have focussed on interactions
between HLA aleles and environmenta risk factors. Specifically, evidence suggests that
carriage of high-risk HLA haplotypes containing DRB1*15:01 and lacking A*02:01
enhances the deleterious association of childhood obesity, smoking, Infectious
Mononucleosis, and solvent exposure with MS risk:™, The intuitive biological explanation
for such interactions is that high-risk HLA alleles may promote presentation of epitopes, e.g.
from cigarette smoke or within adipose tissue, in such away that mimics myelin peptides and
triggers CNS-directed autoimmunity. Beyond the MHC, there has been relatively limited
study of how genetic variation modulates the effect of environmental risk factors for MS?22,
probably in large part due to the relatively small number of datasets with sufficient power,
deep phenotyping, and high-quality genetic data required for such analyses.

In this study we created 64 individual PRS, both including and excluding the MHC locus on
chromosome 6, which is the strongest single genetic determinant of M S risk and accounts for
~20% of the SNP heritability of MS in Europeans'. Both the non-MHC and MHC PRS were
strongly associated with MSrisk in both training and testing sets. The non-MHC PRSin this
study captured a small proportion of overall MS liability, but was robustly associated with
MS. Previous efforts using PRS from the IMSGC explained up to ~3% of variance®. The
best-performing non-MHC PRS in this study explained ~1% of MS variance. This
discrepancy could be explained by several factors, including the relatively low number of
cases in UK Biobank, the possibility of missed cases, differences in population structure,
restriction according to self-declared ethnicity with an additional genetic principal
components analysis, and some SNPs not being available and/or failing QC checks in
Biobank. Nevertheless, despite low overal variance, the validity of the PRS is underscored
by the monotonic relationship between PRS and OR of M S, the robust model fit when using
the PRS to model M S risk, reasonable discriminative capacity, and good calibration.

There are several important caveats to this work. Maost importantly, while we are able to
observe and measure statistical interaction — i.e. deviation from a model whereby the effects
of genetic and environmental risk factors are combined additively (in the case of the AP) or
multiplicatively (in the case of multiplicative interaction — statistical interaction does not
straightforwardly imply biological interaction, nor does it necessarily imply interaction that is
meaningful in terms of rea-life disease prediction or prevention. We were unable to
demonstrate replication in a truly independent cohort (dividing the cohort into training and
testing sets does not yield a genuinely independent cohort). Our findings have limited
generalisability for non-European groups as UK Biobank participants are predominantly
White. MS diagnosis in this cohort are derived from linked healthcare records or self-report,
so do not carry the same degree of certainty as criteria-defined M S. Equally, it is conceivable
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that there are ‘missed’ cases in the dataset, i.e. individuals with MS who do not have a coded
diagnosis available through linked healthcare records. However, MS prevalence in UK
Biobank approaches the expected UK prevalence, suggesting that the overwhelming majority
of individuals with MS are correctly identified. The UKB cohort is highly selected, and is
enriched for individuals living near assessment centres, from more affluent socio-economic
groups than the general population, for White British individuals, and (intentionally) for
individuals over the age of 40 (the minimum age at recruitment). These factors carry arisk of
introducing various biases, e.g. through collider bias, which may induce spurious associ ations
and destroy true associations. Our findings concerning gene-gene interactions could be
replicated in ‘genetics-only’ cohorts such as the IMSGC, and we would encourage others to
attempt to replicate this finding in large GWAS cohorts (with many more cases than the
~2000 in UKB) so we can ascertain whether it is robust.

The key variables used in this study are retrospective or cross-sectional (e.g. MS diagnosis,
self-reported body size in childhood, self-reported smoking status). Not only are these subject
to recall bias, but more importantly our results are not revealing about predicting an
individual’srisk of developing MS. To demonstrate predictive power, these results need to be
replicated in a longitudinal cohort. In addition, the metric we focus on, ‘comparative body
size at age 10', is clearly not a perfect proxy for childhood obesity. Other limitations to this
study include the limited overall variance explained by both optimal PRS, the relatively small
absolute number of people with MS, and the imperfect nature of self-reported phenotypes.
Furthermore, some exposures known to be strongly associated with MS were either
unavailable (e.g. vitamin D status prior to diagnaosis) or so under-reported as to be unreliable
(e.g. Infectious Mononucleosis).

Despite these limitations, our study also has some strengths. We use the UK Biobank dataset,
which provides a unigque opportunity to study gene-environment interactions on a large-scale.
The vast number of controls in UKB adds substantial power. We tune and test the PRS in
separate samples, which is important to prevent overfitting of the PRS to the data. We use an
agnostic approach to develop the PRS, using a range of clumping-and-thresholding
parameters to discover the optimal structure of the PRS, allowing us to discover a significant
improvement in predictive power from using a large number of variants weakly associated
with MS over using strictly ‘GWAS-significant’ hits (p<5e-8). These optimal parameters also
reiterate the polygenic architecture of MS.

We evaluate interactions on both the multiplicative and additive scales, as has become
standard practice to avoid missing biologically-significant interactions?. We additionally
evaluate the relationship between the PRS and proxies for clinical characteristics of MS,
including age at diagnosis and disability status. We evaluated whether the effect of
DRB1*15:01 is modulated by polygenic risk, as has been demonstrated for high-effect
variants in the LDL-R (causing Familial Hypercholesterolaemia) and BRCA (causing breast
cancer)®, and find evidence in support of this hypothesis. Clearly, this finding is easily
replicated in the IMSGC cohort and we would urge caution in overinterpreting the finding
without confirmation in this far larger cohort of cases.

This study thus provides novel evidence that childhood body size interacts with non-HLA
MS genetic risk. Demonstrating benefit for preventive measures in rare, complex diseases
like MS is a challenge due to the low population incidence and the small effects of individual
interventions. Power can be enhanced by enriching for high-risk individuals, and by selecting
individuals who are likely to experience the greatest benefit from the intervention. As the
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effect of childhood body size on MS risk appears greater among individuals with a high
genome-wide genetic risk, trials attempting to demonstrate benefit of targeting childhood
obesity may benefit from risk-stratifying individuals using this approach. Further efforts are
required to localise the variants and genes which account for the observed interaction effects,
which should help to shed further light on the biology of these risk factors and improve
efforts to individualise MS risk prediction algorithms in the future.
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Table 1: demographic characteristics of included participants and results from the case-
control study. Continuous variables are presented as mean(SD), categorical variables are
presented as n(%). Missing data are not tabulated. Proportions are calculated as a proportion
of individuals with non-missing data for each variable. Column 4 shows odds ratios (ORs)
and 95% confidence intervals (CIs) for Multiple Sclerosis for each exposure studied. Odds
ratios represent the output of multivariable logistic regression models incorporating age, sex,
ethnicity, birth latitude and current deprivation as covariates. Wald test P values represent the
test of the null hypothesis beta = 0 for each term, wheress likelihood ratio P values represent

the overall model fit compared to a null model comprising only confounding covariates. P
values exceeding the Bonferroni multiple testing threshold (alpha=0.05) are shown in bold.

Reference values for categorical covariates are denoted as ‘ REF .

0 Likelihood
Trait (chj’géggo) Cases (N=2250) ORC(?)M V‘;,a\'/‘gjtuft ratio P
value
Sex
Female |263058 (54.13%) | 1635 (72.67%)
Male  |222942 (45.87%) |615 (27.33%)
Age 56.54 (8.09) 55.17 (7.66)
. . 360093.76 361960.6
Birth latitude | 1517 2g) (168566.29)
Age
completed
T — 16.72 (2.33) 16.96 (2.49)
education
Townsend
deprivation |-1.31 (3.09) -1.38 (3.06)
index
Ethnic
background
White 457927 (94.69%) | 2193 (98.08 %)
Non white [25664 (5.31%) |43 (1.92 %)
HLA
A*02:01
aleles
0 264736 (54.47%) (1431 (63.6 %)
1 186009 (38.27%) | 704 ( 31.29 %)
2 35255 (7.25%) |115 (5.11 %)
HLA
DRB1*15:01
aleles
0 360423 (74.16%) | 1144 (50.84 %)
1 115763 (23.82%) (948 (42.13 %)
2 9814 (2.02%) |158 (7.02 %)
Country of
birth
UK 446343 (92.09%) | 2151 ( 95.81 %)
Non-UK [38314 (7.91%) |94 (4.19 %)
Agehad 19.11 (3.89) 18.72 (3.81) 0.98 (0.97 [0.015709 | 0.013768
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Likelihood
. Controls _ OR (95% | Wald test )
Trait (N=486,000) Cases (N=2250) ch P value r\?;llﬁg
sexua to1)
intercourse
Age at 0.94 (0.91
Aged 11207 (162) 12.8 (1.66) o007 0000116 000011
Birth weight 0.98 (0.9
g (332 06) 3.28(0.68) o7 0608250 0603452
Month of
ol 0.931194
April  |41716 (858%) |188 (836%) |REF  |REF
August | 40064 (8.24%) |194 (8.62 %) tlc')ofé;)'% 0.610756
December 39042 (8.03%) |168 ( 7.47 %) ?69141(%76 0.59689
February |38673 (7.96%) |178 (7.91%) ?69182(%8 0.888063
January  |41051 (845%) |175 (7.78 %) ?69121(2j75 0.460529
Jly 41190 (848%) (190 (8.44%) |2 2(;)'79 0.812077
Jne  |40979 (843%) |185 (8.22%) ?6951(3)'77 0.666742
March 43654 (8.98%) |203 (9.02%) tlaolzz(g).ss 0.883078
May  |43657 (898%) |204 (9.07%) ?(;952(%81 0.928091
November |37124 (7.64%) |178 (7.91%) 360132(%83 0.800849
October 39247 (8.08%) |201 (8.93%) tlélllgfg)'g 0.327942
September 39603 (8.15%) |186 (827 %) tléofz(ngS 0.681762
Breastfed asa
— 0.731403
No (}/00)2506 (2761 565 (3086%) |REF  |REF
268781 (72.39 0.98 (0.88
Yes o0 1266 (60.14%) |\ " oo 0731136
Comparative
body size 7.02E-06
aged 10
Thinner (}/05)8610 (4272 609 (3326%) |REF | REF
About | 241759 (65.11 T 119(1.08
e |98 1162 (63.46%) |10’ |0.000697
Plumper 75366 (203%) |438 (23.92%) |02 1551F 06

to 1.55)
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Likelihood
0,
Trait (Nciirger%loso) Cases (N=2250) ORC(|9)5/° V\Iéa\llglhft ratioP
e value
Exposed to
maternal 0.329681
smoking
No 3/09)6291 (7073 11368 (70.55 %) |REF REF
Yes (}/5)2618 (2927 1571 (20.45 %) ?69155%'86 0.331253
Relative age
at
voicebreaking Seren
(males only)
About (182848 (8971 g0y (570609 |REF -
average age | %)
Youngerthan |goos (4389 |35 (6.11%) | = (19210 038506
average t0 2.03)
Older than . : 0.95 (0.66
o 12043 (59199 |34 (593%) | °P 0776222
Smoking
status prior to 0.000915
age 20
No 3/34188 (8LIL 11796 (79.82%) |REF REF
Yes 91812 (18.89%) |454 (20.18 %) 36211?%08 0.000737
IM status 0.061221
No 334758 (975 19935 (9933%) |REF |REF
Yes 1238 (025%) |15 (067%) | =82.(103 6040175

t0 3.22)
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Table 2: Attributable Propotion (AP) due to interaction, 95% Cls and two-sided p values for
each of the PRS x E interactions examined. Cls represent the 2.5" and 97.5" centile from
10,000 bootstrap replicates. Two-sided p values represent absolute p values with a continuity
correction, i.e. for apositive AP, the p valueis given as: (number of iterations < 0 + 1)/(total
number of iterationst+1)*2

Interaction AP Lower CI | Upper CI | Pvaue

MHC PRS x Childhood body

size 0.167074 | 0.062196 | 0.254741 0.0042
Non-MHC PRS x Childhood

body size 0.173705 | 0.055642 | 0.27455 0.005599
MHC PRS x Smoking 0.0768 | -0.05055 0.177474 0.214179
Non-MHC PRS x Smoking 0.122975 | -0.00556 | 0.228431 0.058794
MHC PRS x Age at menarche | -0.05206 -0.0968 | -0.00478 0.033197
Non-MHC PRSx Age at

menarche 0.021061 ' -0.04119  0.111064 0.551145
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Figure and tablelegends

Figures

Figure 1: odds ratios and 95% confidence intervals for the association of each exposure with
MS. ORs and Cls are from the output of a multivariable logistic regression with the following
covariates: age, sex, ethnicity, birth latitude, current deprivation status, and the exposure in
guestion. For menarche (females only) and voice-breaking (males-only), sex was not
included as a covariate.

Figure 2: A: Nagelkerke' s pseudo- R* metric for each of theindividual PRS used. The R*was
calculated by comparing the model fit (age, sex, Townsend deprivation index, the first 4
genetic PCs, and PRS) vs the null model (age, sex, Townsend deprivation index, and the first
4 genetic PCs). A variety of p value thresholds and clumping parameters were used to create
different PRS. Note that the clumping R refers to the linkage disequilibrium threshold within
which variants were ‘clumped’, and is a different quantity from the Nagelkerke pseudo- R
PRS are shown both including and excluding the MHC region. B: odds ratios and 95%
confidence intervals for MS for individuals in each PRS decile (reference: lowest decile).
ORs were calculated from logistic regression models with the following covariates: age, sex,
first 4 genetic PCs, and PRS. C: histogram showing PRS distributions among M S cases and
controls.

Figure 3: A: Calibration plot showing absolute M S disease probabilities within each PRS
decile (of the non-MHC PRS). Other lines represent the mean fitted disease probabilities for
models incorporating the MHC PRS, the non-MHC PRS, and null covariates only (age, sex,
deprivation, genetic PCs). B: Receiver Operating Characteristic (ROC) curves demonstrating
the discriminative performance (i.e. ability to distinguish M S cases from controls) of the null
model, MHC PRS, and non-MHC PRS. C&D: scatter plots showing no relationship between
PRS (MHC and non-MHC respectively) and normalised age at M S report.

Figure 4: A: Forest plot demonstrating Attributable Proportion due to interaction (AP) and
95% Cls for interactions between environmental exposures and genetic risk factors for MS. If
thereisno interaction, the APis 0. AP > 1 indicates positive interaction (combined effects
exceed the sum of theindividual effects), and vice-versa. Cls are derived from taking the
2.5" and 97.5™ percentiles of 10000 bootstrap replicates. B: forest plot demonstrating odds
ratios and 95% Cls for participants in the top and bottom PRS deciles, i.e. the highest and
lowest 10% of polygenic risk scores. The outcomein each case is M S status, and the
exposures of interest are childhood body size, age at menarche, smoking prior to age 20, and
carriage of the HLA DRB1*15:01 allele. ORs are from the output of logistic regression
model of the form MSrisk ~ Age + Sex + first 4 genetic PCs. Models were built separately
for individuals with the highest 10% of genetic risk scores and the lowest 10% of genetic risk
scores (‘top’ and ‘bottom’ decile respectively).
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