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Abstract

Metabolism and its component reactions are complex, each with variable inputs, outputs, and
modifiers. The harmony between these factors consequently determines the health and stability of a
cell or an organism. Perturbations to any reaction or set of reactions can have rippling downstream
effects, which can be challenging to trace across the total reaction network, particularly when the
effects occur between complex interconnected pathways. Researchers have primarily utilized
reductionist approaches to understand metabolic reaction systems; however, these simplistic
methods often limit the scope of the analysis. Even systems-centric omics approaches can be limited
when only a handful of high magnitude signals in the data are prioritized for interpretation. To
address these challenges, we developed Metaboverse, an interactive tool for the exploration and
automated extraction of potential regulatory events, patterns, and trends from multi-omic data within
the context of the metabolic network and other reaction networks. This framework will be
foundational in increasing our ability to holistically understand static, temporal, and multi-condition
metabolic events and perturbations as well as gene-metabolite intra-cooperativity. Metaboverse is
freely available under a GPL-3.0 license at https://github.com/Metaboverse/.

Introduction

Metabolism is a complex network of reactions and interactions between genes, enzymes, protein
complexes, and metabolites [1]. To understand these complex components, researchers frequently
adopt reductionist approaches to tease apart the characteristics and mechanics of these processes
and determine how they fit into the larger picture of biology and disease. Such approaches are a vital
component in the scientific process, but a reductionist approach may miss many essential properties
of metabolism. For example, in differential gene expression analysis, researchers rely on thresholds of
magnitude and statistical significance to prioritize genes for follow-up study. However, this can
inadvertently limit the scope of study of metabolism when, in fact, metabolism is a highly
interconnected system where distal components and their modulation can have coordinated or
rippling effects across the network [2,3]. Biological perturbations involve complex, cooperative
effects, many of which may seem negligible in isolation. The current approach is analogous to telling
the story of Little Red Riding Hood by reading only the 20 most frequent words. Indeed, doing so
efficiently highlights keywords like “wolf” and “little red riding hood,” but also prevents a coherent
story from being told. This approach makes it difficult for someone who has never heard the story of
Little Red Riding Hood to comprehend the plot and especially the higher-level interpretations of the
story.

Several computational tools have risen to prominence over the past decade to try to resolve these
issues in data contextualization. We will highlight four such representative and popular tools for their
respective properties, though many more exist [4]. First is MetaboAnalyst, which relies heavily on set
enrichment methods for the analysis of data, or examining the belongingness of sets of significantly
changed analytes (i.e., metabolite, protein, or gene measurements), for extracting interesting
information. Network visualization is available, but it focuses primarily on interaction networks, and
its ability to extract regulatory information is limited, particularly in an automated fashion [5,6].
Second is Cytoscape, which serves as a general go-to platform for representing biological or other
networks. One strength of Cytoscape is the ability to design apps or plug-ins to conduct customized
analyses; however, comprehensive and metabolism-specific regulatory identification methods are
unavailable [7]. One plug-in for Cytoscape that focuses on metabolic data is MetScape, but again, this
tool is generally limited to pathway enrichment, correlation networks, and data visualization and does
not integrate approaches to identify regulatory mechanisms within the data [8,9,10]. MetExplore
focuses on the curation of networks and is particularly useful for collaborative annotation of emerging
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models of organisms with incomplete metabolic network curations. It additionally can layer
experimental data on the network for visualization [11,12]. A companion tool to MetExplore is
MetExploreViz, which enables interactive and flexible visualization of omics data on metabolic
networks [13]. Reactome, which our tool uses for the curation of biological networks, also offers
analytical tools for user data, but again relies on set enrichment or manual methods for identifying
patterns. While all have their respective utility, there is a pressing need for tools that integrate these
features and automate pattern and trend detection across metabolic networks to extract regulatory
and other features from data [14,15,16]. This need is particularly pronounced in common cases
where experimental data have sparse coverage of the metabolic network, a common situation in
current metabolomics datasets. To address these limitations in metabolic data analysis,
contextualization, and interpretation, we created Metaboverse, a cross-platform, interactive
application to aid users in exploring and interpreting their model's metabolic story and generating
new hypotheses from the available information (Figure 1).

Metabolic Network Multi-omics Metaboverse

LIl

RNA-seq

Proteomics 2 ‘\

Metabolomics

Figure 1: Metaboverse conceptual overview. lllustration summarizing the usage of Metaboverse to model biological
data on the reaction network to rapidly identify regulatory patterns. Traditionally, when scientists perform an omics
experiment, they tend to focus on a few features that are differentially regulated. Metaboverse allows a user to input
multiple omics data types, which it layers upon the metabolic network. Metaboverse then uses this integrated model to
identify patterns of putative regulatory potential within the data. The user can also dynamically explore metabolic
pathways and other network representations.

To provide a robust platform for the exploration of single or multi-omic metabolic data in two-
condition, multi-condition, and time-course contexts, we developed several computational features to
address the aims discussed above. We developed a pattern search engine for the rapid and
automated identification of different patterns and trends in omics data on the metabolic network.
Metaboverse allows for the interactive exploration of specific reactions or reaction entities with on-
the-fly pattern search analysis. The user can explore canonical pathways of interest and look for other
interesting patterns and trends within these pathways. Perturbations in the abundance or behavior of
a particular metabolic component can lead to downstream gene expression changes and other
phenotypic modulations in a biological system. Users can therefore select a given component and
explore the upstream and downstream reaction neighbors across the total reaction network. In
addition, users can also use a drop-down menu to select any component and immediately view its
reaction neighborhood. We also include an interactive perturbation exploration module, which
displays all the perturbed reactions from the selected super-pathway. Finally, we tackle the challenge
of sparsity, particularly in metabolomics datasets. We implement a reaction collapsing feature that
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can help the user identify more inconspicuous patterns across multiple reactions within the total
reaction network.

To validate the features and methods available in Metaboverse, we analyzed a variety of datasets to
provide representative vignettes that highlight the reliability of Metaboverse for extracting canonical
features, and its power for identifying novel features and patterns and generate new hypotheses. We
expect that Metaboverse will become a foundational tool in the analytical toolkit and augment the
user’s ability to more holistically explore and contextualize metabolic reaction networks.

Results

Metaboverse is a dynamic, user-friendly tool for the exploration of high-throughput
biological data in organism-specific pathways

Overview

We designed Metaboverse as a lightweight, self-contained, cross-platform app for the dynamic
exploration of high-throughput biological data. The pathway curations are derived from Reactome
[17], coupled with additional metabolite synonym cross-referencing and mapping from the ChEBI [ 18]
and Human Metabolome (HMDB) [19] databases. As of the time of writing, Metaboverse is capable of
analyzing data for over 90 species. A user begins by providing the desired output location for a new
data model and specifying the organism of interest. If the user has previously curated data onto a
reaction network for the selected organism of interest, they can alternatively provide this
intermediate file. Next, the user provides the relevant transcriptomic, proteomic, and/or metabolomic
datasets to layer onto the global reaction network of their organism of interest. Input data types can
be extended to any dataset that uses the relevant mapping IDs; for example, one could provide
ribosome profiling translation efficiency values mapped to the appropriate gene IDs for analysis upon
the network. For each omics type, the user provides fold change and statistical values for each
measurement. For example, if a user-provided data for a two-condition comparison transcriptomics
dataset, these values would consist of Iogz(fold change) values between the experimental and control
conditions, and the appropriate statistical values. As transcriptomics count data follows a negative
binomial distribution, the appropriately adjusted p-values based on multiple hypothesis testing for
this distribution should be used [20]. For other omics types, these multiple hypothesis testing
methods will vary based on the data distribution and other conventions. During the data input step,
the user will also specify a few experimental parameters for consideration during downstream
analysis and visualization. For example, users with gene expression data can choose to “broadcast”
their measured gene values to the protein nodes where the appropriate protein values are missing.
Following these user inputs, the organism'’s network is curated and the data is overlaid upon the
network. A database file for the dataset is output for future analysis (see Figure 2).
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Figure 2: Metaboverse software overview. An illustration outlining the data input, processing, and exploration steps
of the Metaboverse package. The user provides the name of the organism of interest from a drop-down menu along
with an output location. The user then has the option to provide transcriptomics, proteomics, and/or metabolomics
datasets. These datasets can be single- or multi-condition or time-course experiments. Data is formatted as follows: row
names are the measured entity names or IDs, the first column is log,(fold change) or other measurement values, and
the second column is statistical measurements. For time-course and multi-condition datasets, this pattern is repeated
for each subsequent sample. During this step, the user can also provide sample labels and other modifiers to customize
the curation of the data on the reaction network. Metaboverse will then build the model. Once the model is complete,
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the user will be able to visualize the patterns identified within reactions, explore pathway-specific or general
perturbation networks, and perform general pathway and nearest reaction neighborhood exploration of the data.

We chose to format network visualizations in a reaction-centric format, which means that a sub-
network unit is comprised of a reaction node, linked with its reaction input (substrate) and reaction
output (product) nodes, along with any modifier (catalyst or inhibitor) nodes. If modifier nodes are a
protein complex, the component proteins of that complex are linked to the complex node. Any genes
available in the database are linked to their related proteins. Each node and link type are color-coded
to help the user quickly distinguish the details of a reaction sub-network structure. Reactions with
matching input or output sides are naturally linked when the network is constructed, allowing a multi-
reaction pathway to emerge from this network structure. This formatting differs from other
formatting styles with which the user may be familiar, such as KEGG pathway maps, for various
reasons. While classical pathway definitions are used to group sets of reactions during visualization,
analytical methods such as the pattern search in Metaboverse explore the global reaction network
and display the pathways more accurately within their network context. This approach aids in making
pattern analysis within the reaction network less subject to biases arising from constraining analysis
to only familiar pathways and enables the exploration of patterns that may not neatly fit into
canonical pathway representations. As this dynamic visualization approach differs from more classical
imagery, each pathway within the visualization module contains a button linking to a more traditional
representation of the pathway for reference, which is sourced from Reactome [17].

Rapid identification of interesting regulatory patterns in the reaction network

Following network curation, the user can visualize the available patterns identified across all reactions
in the network. In a computer science context, a motif is a recurring pattern within a network
structure or the organization of network entities and their relationships. However, with omics data, we
are more interested in identifying patterns involving expression or abundance of genes, proteins, and
metabolites. Previous work by Checkik, et al. introduced the concept of “activity motifs.” Instead of
identifying motifs based on sub-network structure, they identified motifs using the expression
characteristics of nodes in transcription factor binding signaling networks [22]. We adapted this
methodology to identify and interactively display interesting regulatory hotspots across all reactions
in the network. For example, a reaction’s inputs may exhibit increased levels and its outputs
decreased levels, suggesting a possible regulatory event occurring at the reaction (see Supplementary
Figure 6 for examples of reaction patterns and Supplementary Figure 7 for an example of the visual
output of this module in Metaboverse).

Magnitude change and statistical values associated with each measurement for a measured entity are
provided by the user. Once the data is layered upon the network, Metaboverse will consider all the
reactions in the network and compare the expression or abundance patterns to those from a pre-
defined library of regulatory patterns (please refer to the documentation for more details on available
patterns and details on how they each operate [23]). Metaboverse then returns a graphical stamp
view of identified patterns and sorts these reactions based on the significance values associated with
those components that determined the regulatory feature. We use a three-tiered sorting strategy
when sorting by the associated statistical values. The highest prioritized reaction patterns are those
where the relevant components that determined the presence of a regulatory pattern (inputs

vs. outputs) are statistically significant. Of these reactions from the first tier, reactions are sorted by
lowest to highest cumulative p-value or other relevant statistical value. In the second sorting tier,
reactions with at least one side of the reaction with a statistically significant reaction component are
sorted by statistical strength. Finally, all other reactions are sorted by the cumulative statistical value
for the reaction components. The reaction’s stamp shading indicates the sorting tier of each reaction,
where green symbolizes that the components on both sides of the reaction passed significance
thresholds, yellow symbolizes components on one side of the reaction passed significance thresholds,
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and gray symbolizes neither side of the reaction contained significant components. Reactions can also
be ordered based on the magnitude of change.

During dynamic pathway visualization, reaction pattern nodes are visually distinct to quickly draw the
user’s attention to these interesting patterns. For a given regulatory pattern, the user can then explore
each pathway where the reaction was found. Pattern analysis of the all reactions within the network
will allow the user to rapidly identify interesting features within the data, particularly patterns
between canonical pathway representations or within pathways that may seem tangential to their
research. In the data vignettes below, we demonstrate this utility further.

Handling data sparsity within the global biological reaction network

Missing data points, particularly in metabolomics experiments, can be frequent and make the analysis
of pathways and identification of regulatory patterns in the network challenging. Thousands of
metabolites are known to participate in human metabolism, but the current state of the technology
often results in the quantification of a limited number of these metabolites. This limitation can lead to
gaps in the measured metabolic network and can confound pattern recognition across reactions.
Therefore, we developed a reaction compression algorithm (described in the Methods section) that
collapses up to three reactions with missing data points if they can be bridged with known data on the
distal ends of the reaction series. Similar concepts have been used in metabolomic analysis before to
identify amino acid-related metabolites [24]. However, we introduce the first computational
implementation to our knowledge and adopt a slightly more conservative collapsing scheme. These
bridged reactions, or collapsed reactions, are visually distinct to show the user where reactions were
collapsed and understand what that collapsed reaction summarizes. We found that these collapsed
reaction representations aided in identifying regulatory mechanisms across multiple reactions that
would have been missed by pattern searching across traditional, uncollapsed representations of
human metabolic reactions (see Supplementary Figure 8 and accompanying text for a brief discussion
of the benefits of this feature).

Dynamic visualization of organism-specific reaction pathways

Following the curation of the global network as described above, the user can manually search
individual pathways or individual entities and their reaction neighborhoods. For a given selection, all
relevant reactions that are annotated as a part of that pathway will be visualized, along with their core
input and output components. In addition to these core elements, known catalysts and inhibitors are
included, as well as the component proteins, genes, and metabolites that form functional complexes
involved in a particular reaction. For nodes representing protein complexes, simulated values are
calculated by taking the average of all measured component entities in that complex. If gene values
are available, but protein values are not, the user has the option to “broadcast” the gene values to the
protein nodes. Assuming all statistical values are between 0 and 1, simulated statistics are calculated
by taking the maximum statistical value of all of the measured component entities in that complex. In
cases where a gene value is known, but its protein value is unmeasured, the protein value is optionally
inferred using aggregated gene component values. Relevant pathway and analytical metadata are also
displayed. All reaction pattern types are displayed using default thresholds if found within the
selected pathway. Additional aids for visualization are also available. These aids include the ability to
remove nodes from the visualization that contain a high number of relationships to other network
features so that these nodes, which act as hubs in the network, do not lead to cluttered
representations. These hub nodes are often ubiquitous features such as water and protons, which
may be of limited interest to the user during data visualization [25]. Compartment domains, typically
defined as organelles, are also visualized to show the cellular locations of reactions and their
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components (see Supplementary Figure 9 for an example of the visual output of this module in
Metaboverse).

Visualization of downstream effects of network perturbations using reaction neighborhoods

The user may be interested in a particular metabolite or protein and the downstream effects their
perturbation has on other reactions across the entire network. By double-clicking a node of interest or
selecting the entity name from the drop-down menu, the user can explore all upstream and
downstream effects across reactions connected to that entity from all pathways. The user can also
define how many neighborhoods to display such that two or more reaction steps downstream or
upstream of the selected entity are visualized [26,27]. This functionality moves the analysis past
traditional, pathway-centric approaches and contextualizes the far-reaching effects that the disruption
of metabolism can have across classical pathways. However, as metabolism is a network with high
connectivity [25], expanding past one reaction neighborhood without defining a hub threshold can
detrimentally effect performance. In these instances, Metaboverse will display a warning and suggest
thresholds to use for the number of neighbors and hubs.

Exploring perturbation networks within the data

At times, a user may be interested in exploring all of the perturbed reactions within a network.
Metaboverse will display the total perturbation network for a given super-pathway selected by the
user. For example, a user could select the fatty acid metabolism super-pathway, then explore all of
the perturbed reactions within this context for interesting features. During perturbation network
display, all reactions are included and plotted if at least one component of that reaction passes the
indicated magnitude or statistical threshold. Naturally, sequentially perturbed reactions will be
stitched together in the resulting perturbation network (see Supplementary Figure 10 for an example
of the visual output of this module in Metaboverse).

Data vignettes

To demonstrate the utility of Metaboverse, we analyzed both public and our previously unpublished
metabolically-relevant datasets. From the vignettes provided below, we show that Metaboverse
identifies points of interest previously described or expected and rapidly identifies unexpected and
systematic regulatory patterns in a reaction network context. For an example of the reaction collapse
algorithm'’s utility, we refer the reader to the associated supplement (Supplementary Figure 8). Data
from Vignette 1 is available in distributed versions of Metaboverse (as test_data.zip)toactasa
test dataset for users to familiarize themselves with the input data format. Input and processed data
from these vignettes can be found at [28].

Vignette 1: Acute adaptations of mitochondrial fatty acid synthesis-impaired yeast during
respiratory growth

Mitochondrial fatty acid synthesis (mtFAS), an evolutionarily conserved pathway, has long been
recognized to produce lipoic acid, a critical cofactor for several metabolic enzymes. Recent work has
begun to uncover additional, important roles for this pathway. For example, we now know that mtFAS
coordinates its fatty acid synthesis with the regulation of iron-sulfur (Fe-S) cluster biogenesis and
assembly of oxidative phosphorylation complexes [29,30,31]. Additionally, this pathway has received
increased physiological focus with the discovery of patients with mutations in key mtFAS enzymes
[32].
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The Saccharomyces cerevisiae Mct1 protein is an acyltransferase responsible for the transfer of a
malonyl group from malonyl-CoA to the mitochondrial acyl carrier protein (ACP). By removing this
gene, the activity of the mtFAS pathway is abolished. In order to probe the relationship between
mtFAS-related protein concentration and the effects of its perturbation on downstream metabolic
processes from a systematic perspective, we used an mct1A mutant S. cerevisiae strain. We
previously performed steady-state comparative proteomics in this mct1A model 12 hours after
shifting to a non-fermentable carbon source [30]. To complement these previous studies, we
performed RNA-sequencing of transcript abundances at 0, 3, and 12 hours after the shift from a
fermentable, glucose carbon source to a non-fermentable, raffinose carbon source and steady-state
metabolomics at 0, 15, 30, 60, and 180 minutes after the shift in carbon source. By transitioning
between these two growth states, the yeast move from a glucose-repressed state to a glucose-
derepressed state accompanied by an increase in respiratory metabolism. By layering these data
upon the S. cerevisiae metabolic network in Metaboverse, we observed interesting respiratory
signatures as expected based on previous work [30,33]. For example, Metaboverse identified a strong
pattern in the electron transfer from ubiquinol to cytochrome C via complex Ill of the electron
transport chain (ETC) (Figure 3 A). At the protein level, the cytochrome C isoforms, CYC1 and CYC7, are
both significantly reduced in concentration compared to wild-type cells (Iogz(fold change): -1.57 &
-0.88; adjusted p-value: 1.21E-03 & 5.84E-03; Cohen'’s d: -7.99 & -3.94; respectively). This reduction in
cytochrome C concentration is paired with a marked reduction in the concentration of the protein
components of Complex Ill. These components catalyze the transfer of electrons from ubiquinol to
cytochrome C (average Iogz(fold change) of all measured protein components: -2.03, where 9/11
component proteins were measured; 8/11 passed statistical significance thresholds of adjusted p-
value <= 0.05. Range of significant Iogz(fold change) values: -0.34 to -3.21).

The second expected pattern of interest identified by Metaboverse was the marked reduction of TCA
cycle-related enzymes. Reaction pattern analysis within the TCA cycle identified several putative
regulatory hotspots between metabolites and metabolite-protein interactions throughout the TCA
cycle (Figure 3 B). However, visualizing these identified reactions and data across the time-course
revealed interesting patterns. For this discussion, we will provide metabolite measurements at the 15-
minute time point because the statistical strength for the discussed metabolites was generally
strongest. For example, citrate levels decrease across the metabolomics time-course (at 15 min;
Iogz(fold change): -1.75, adjusted p-value: 6.61E-03; Cohen’s d: -1.86), which is coincident with reduced
steady-state levels of Ctp1 (Iogz(fold change): -0.64, adjusted p-value: 6.06E-03; Cohen'’s d: -4.73), a
protein that catalyzes the transfer of citrate from the mitochondrial matrix to the cytosol [34]. Citrate
is a key metabolite and the first step in the TCA cycle. We hypothesize that due to central carbon
metabolite reductions, Ctp1 may be down-regulated in response to the decrease in citrate to maintain
citrate concentrations within the mitochondrial matrix, where it is perhaps most physiologically
important in respiring cells.

Another point of interest is the up-regulation of Dic1 (Iogz(fold change): 2.15, adjusted p-value:
5.95E-06; Cohen's d: 28.97), which catalyzes the exchange of dicarboxylates like malate (at 15 min;
Iogz(fold change): 2.61, adjusted p-value: 3.23E-06; Cohen’s d: 5.12) between the mitochondrial matrix
and cytosol. Interestingly, Dic1 is essential for growth on non-fermentable carbon source media [35].
When yeast, especially those with deficits in TCA cycle flux due to loss of Mct1, are switched to a non-
fermentable carbon, as was done in this study, they might adapt by up-regulating Dic1, which we
observed in this data.
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Figure 3: Metaboverse identifies several reaction patterns of interest in mct1A cells. (A) Steady-state proteomics
(12 hours) overlaid on the reaction, “Electron transfer from ubiquinol to cytochrome c of complex II.” (B) Steady-state
proteomics (12 hours) and metabolomics at 15 minutes overlaid on TCA-related reactions. Time stamps for each data
type are displayed in the lower-right hand corner of each subplot. Measured values are shown as node shading, where
an increasingly blue shade indicates down-regulation, and an increasingly red shade indicates up-regulation. Measured
Iogz(fold change) and statistical values for each entity are displayed below the node name. A gray node indicates a
reaction. A bold gray node with a purple border indicates a potential regulatory pattern at this reaction for the given
data type time points. Circles indicate metabolites, squares indicate complexes, diamonds indicate proteins, and
triangles indicate gene components. Gray edges are core relationships between reaction inputs and outputs. Green
edges indicate a catalyst. Dashed blue edges point from a metabolite component to the complex in which it is involved.
Dashed orange edges point from a protein component to the complex in which it is involved. Dashed purple edges point
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from a gene component to its protein product. Protein complexes with dashed borders indicate that the values
displayed on that node were inferred from the constituent protein, metabolite, and gene measurements. The
background shading demonstrates Metaboverse's ability to show cellular compartmentalization, although users may
opt to toggle compartment shading off at any time.

We also noticed that although the TCA cycle enzymes are all reduced in concentration, several related
metabolites are up-regulated across multiple time points in the dataset. It is possible, for example,
that the increased fumarate levels (at 15 min; Iogz(fold change): 1.00, adjusted p-value: < 0.01;
Cohen's d: 3.89) are related to the reduction in fumarate hydratase (FH tetramer, FUM1; Iogz(fold
change): -1.39, adjusted p-value: < 0.01; Cohen's d: -4.91), as has been demonstrated previously and
shown to associate with hereditary leiomyomatosis and renal cell cancer in humans [36]. These
patterns would be an interesting point of further study to understand the adaptations these cells
make to disruptions to the TCA cycle and the downstream consequences of these disruptions and
adaptations.

By analyzing this multi-omics dataset using reaction pattern analysis and other interactive
visualizations (or tools) available within Metaboverse, interesting questions arise. We see several
reaction patterns that are expected based on prior knowledge of this biological model and other
puzzling behaviors worthy of further follow-up. These identified patterns demonstrate the potential
Metaboverse has to act as a valuable hypothesis-generation tool, particularly with multi-omics and
time-course datasets, and how this platform allows for better visualization and analysis of a user’s
dataset in the context of metabolic reaction networks.

Vignette 2: Metabolic signatures in malignant human lung adenocarcinomas compared to
nonmalignant lung tissue

We next turned to published human lung adenocarcinoma steady-state metabolomics data [37] to
assess the utility of Metaboverse when analyzing data. Lung cancer remains a leading cause of death
worldwide, and an improved understanding of these tumors’ metabolism is essential in
understanding how to treat this disease more effectively.

Consistent with the original study [37] and our recent re-analysis of the data [25], nucleotide
metabolism was broadly up-regulated in adenocarcinomas based on the reaction pattern and
perturbation network analyses. In particular, the highest-scoring reaction pattern identified by
Metaboverse involved the transformation of dc-adenosyl methionine and spermidine to form
spermine and 5-methylthioadenosine. This reaction is a step in polyamine metabolism, but also
connects with nucleotide metabolism (Figure 4 A). We also noticed similar perturbations in xanthine
(Iogz(fold change): 1.35; adjusted p-value: 1.52E-05; Cohen'’s d: 0.86) (Figure 4 B) and other
metabolites, which are highlighted to the user quickly in the reaction pattern and perturbation
network analysis modules. However, as we previously emphasized [25], by approaching these
perturbations in a reaction-centric approach, we can identify regulatory behavior that further
contextualizes the data. For example, using a more manual approach, we previously highlighted the
up-regulation of glyceric acid (Iogz(fold change): 0.50; adjusted p-value: 1.91E-04; Cohen'’s d: 0.73)
coupled with the proximal down-regulation of 3-Phosphoglyceric acid (Iogz(fold change): -1.09;
adjusted p-value: 4.74E-04; Cohen'’s d: -0.68) which could indicate the decreased activity of glycerate
kinase [25]. This connection was missed in the original study but was highlighted by Metaboverse’s
reaction pattern analysis module. This sub-pathway activity is consequential as it has connections to
serine metabolism that contributes to generating an ideal environment for tumorigenesis (Figure 4 C).
Interestingly, of the measured and significant metabolites involved in the TCA cycle, we see a
moderate up-regulation of malate (Iogz(fold change): 0.39, adjusted p-value: 3.85E-03; Cohen’s d: 0.56)
and down-regulation of citrate (Iogz(fold change): -0.64, adjusted p-value: 1.20E-03; Cohen'’s d: -0.63).
This pattern is consistent with the hypothesis that the TCA cycle is starved of pyruvate-derived
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carbons and is compensating by shunting carbon into the TCA cycle via glutaminolysis. This
compensatory pathway, a feature in many cancers, consists of glutamine transport into mitochondria
and its conversion to alpha-ketoglutarate. Alpha-ketoglutarate then enters the second half of the TCA
cycle to generate ATP, reducing equivalents, and biosynthetic intermediates [38,39]. Pyruvate is likely
shunted towards the production of lactate and other biosynthetic products (no measurements for
lactate were available in the dataset). This pattern might explain the lower citrate levels, while the
second half of the TCA cycle could be fed through glutamate (Iogz(fold change): 0.47, adjusted p-value:
1.99E-06; Cohen’s d: 0.98), providing the increased malate concentration (Figure 4 D) [40].

Metaboverse simplifies the analysis process of metabolic data and allows the user more flexibility via
an interactive platform that augments the identification of both canonical and novel regulatory
patterns within the data. We were able to identify the regulatory pattern identified in Figure 4 C
previously using more manual approaches, but Metaboverse offers an automated platform for the
discovery of such events not identified in the original study. We anticipate that the use of
Metaboverse will enable the user to extract new and exciting hypotheses that can drive their fields
forward.
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Figure 4: Metaboverse identifies nucleotide metabolism and other signatures in lung adenocarcinoma
metabolomics data. (A) Up-regulation of polyamine and nucleotide metabolites. (B) Identification of xanthine
regulation by both the pattern recognition and perturbation analysis modules. (C) Regulatory activity between glyceric
acid and 3-Phosphoglyceric acid identified by Metaboverse's pattern recognition analysis module. (D) Disruptions of TCA
metabolism support canonical disruptions during adenocarcinoma development. Metabolomics values are shown as
node shading, where an increasingly blue shade indicates down-regulation and an increasingly red shade indicates up-
regulation. Measured Iogz(fold change) and statistical values for each entity are displayed below the node name. A gray
node indicates a reaction. A bold gray node with a purple border indicates a motif at this reaction. Circles indicate
metabolites, squares indicate complexes, and diamonds indicate proteins. Gray edges indicate core relationships
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between reaction inputs and outputs. Green edges indicate a catalyst, and red edges indicate inhibitors. Dashed blue
edges point from a metabolite component to the protein complex in which it is involved. Dashed orange edges point
from a protein component to the protein complex in which it is involved. Protein complexes with dashed borders
indicate that the values displayed on that node were inferred from the constituent protein and metabolite
measurements. Hub limit was set at 30 during generation of the network visualization as shown in sub-panel (D).

Discussion

In this manuscript, we introduce a new software tool for the analysis and exploration of user data
layered on the metabolic reaction network. To improve on software with similar visualization
capabilities, we introduced several new analytical tools and methods to aid the user in the automated
identification and discovery of regulatory patterns within their data. These tools and methods include
the automated ability to identify regulatory events across reactions, such as a reaction where an input
has a high measured abundance and an output has a low measured abundance. Metaboverse also
provides dynamic and interactive visualization capabilities to search for patterns and features within
the user data manually within classical pathway representations. If a user is interested in how a
reaction pattern is propagating across the entire reaction network and not just a single pathway, they
can explore an entity’s nearest reaction neighborhood. The user can also explore the total extent of
perturbations across the network and begin to explore hypotheses around the role of connected or
disconnected reactions within a particular biological model.

To address the challenge of data sparsity, particularly regarding metabolomics data and the metabolic
reaction network, we introduce a reaction collapsing feature. This feature summarizes a series of
connected reactions in which values may be missing between the reactions, but where the terminal
ends of the reaction path have measured values. Importantly, the ability to collapse reactions
augments the capabilities available within Metaboverse, especially in identifying disease-relevant
reaction patterns that may be of interest to the user but are otherwise obfuscated.

We demonstrated the utility of Metaboverse in exploring single- and multi-omic datasets. We analyzed
previously published studies and generated new datasets to highlight the time-course and multi-omic
capabilities of this tool. We demonstrated that Metaboverse was able to identify regulatory patterns
that were expected in the models based on the current literature and identify intriguing patterns that
led us to form new hypotheses. We expect these features to be a powerful tool in researchers’ toolkits
as they analyze their data and plan their next experimental steps. We plan to continue to implement
additional features that will expand the applicability of Metaboverse, and new features requested by
users of Metaboverse have already been added and will continue to be added.

Metaboverse aims to enhance the computational toolkit for data analysis and hypothesis generation
in metabolic and other experiments. However, numerous challenges remain, which we intend to
address in future versions of this software. For example, the reaction collapsing features of
Metaboverse aid in identifying patterns across several reactions where data may be missing, but
various biological and technical edge cases will need to be accounted for in future implementations of
this feature. As more technical limitations in metabolomics data generation and analysis are
overcome, we hope that more complete snapshots of metabolism will be visible. Additionally, we
currently take a more straightforward and somewhat rudimentary approach to statistical significance
integration in the reaction pattern searches. However, more holistic platforms for multi-omics
integration are needed and remain a significant challenge within the broader field of multi-omics data
analysis.

We hope that Metaboverse will bring a new perspective to users’ data. We envision Metaboverse will
become a staple in the metabolic research toolkit that will help researchers critically and holistically
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consider their data in the context of biological network interactions and draw the connections needed
to extract new and exciting hypotheses that might be challenging without these features.

Methods

A tutorial for how to use Metaboverse can be found at https://metaboverse.readthedocs.io/en/latest/
content/general-usage.html. For the most up-to-date instructions and details of available features, we
refer the user to this documentation.

1. Network curation

Biological networks are curated using the current version of the Reactome database. In particular, the
pathway records and Ensembl- and UniProt-Reactome mapping tables are integrated into the network
database for Metaboverse. Additionally, the ChEBI and The Human Metabolome databases are also
referenced for metabolite synonym mapping to accept more flexible metabolite input nomenclature
from the user [18,19]. These data are used to generate a series of mapping dictionaries for entities to
reactions and reactions to pathways for the curation of the total reaction network.

After the relevant information is parsed from each table or record, the global network is propagated
using the NetworkX framework [41] to generate nodes for each reaction and reaction component and
edges connecting components to the appropriate reactions. In some cases, a separate ID is used to
generate two nodes for the same metabolite within two separate compartments to aid in downstream
visualization; however, user data for the given entity would be mapped to both nodes.

After the network is curated for the user-specified organism, each node’s degree (or magnitude of
edges or connections) is determined to aid in the user's downstream ability to avoid visualizing high-
degree components, such as a proton or water, on the metabolic network, which can lead to visual
network entanglement and cluttering and a decrease in computational performance [25].

2. Data overlay and broadcasting for missing entities

In order to overlay user data on the global network, first, user-provided gene expression, protein
abundance, and/or metabolite abundances’ names are mapped to Metaboverse compatible
identifiers. For components that Metaboverse is unable to map, a table is returned to the user so they
can provide alternative names to aid in mapping. Second, provided data values are mapped to the
appropriate nodes in the network. In cases where gene expression data are available, but protein
abundance values are missing, Metaboverse will take the average of the available gene expression
values to broadcast to the protein node. For complexes, all available component values (metabolites,
proteins, etc.) are averaged. Nodes for which values were inferred will be marked by a dashed border
during visualization to clearly show which values are known and which were inferred. Statistical values
are derived from the highest value of the components (assuming a scale of 1 denotes no statistical
significance and 0 denotes high statistical significance).

3. Collapsing reactions with missing expression or abundance values in user data

After data mapping is complete, Metaboverse will generate a collapsed network representation for
optional viewing during later visualization. Metaboverse enforces a limit of up to three reactions that
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can be collapsed as data down a pathway should be inferred only so far. Additional parameters for
the reaction-collapse are as follows:

4,

. If areaction has at least one known or inferred value for inputs (substrates) and one known or

inferred value for outputs (products), the reaction will be left as is. During the entire reaction
collapse step, known catalysts can be included when assessing whether a reaction has measured
output values (increased catalyst should lead to more output in most cases), and inhibitors can be
included when assessing whether the reaction has measured input values (increased inhibitor
should lead to an accumulation of input in most cases). Catalysts and inhibitors are not included
when determining reaction neighbors, as described below.

If a reaction has at least one known input, the input is left as is, and each reaction that shares the
same inputs with the first reaction’s outputs is determined whether it has a measured output. If
the neighbor reaction does not contain a known output value, the reaction is left as is. If the
neighboring reaction does contain a measured output, the first reaction’s inputs and the
neighboring reaction’s outputs are collapsed to form a single, pseudo-reaction between the two. If
the reaction has at least one known output, the inverse is performed where neighbors with
components identical to the reaction’s inputs are assessed for whether a collapsed reaction can be
created.

If a reaction has no measured values, it is determined if the neighboring reactions on both sides
(one sharing the reaction’s inputs and other sharing the reaction’s outputs) have measured values.
If both neighbors contain a measured value, a collapsed pseudo-reaction is created, summarizing
all three reactions.

All other reactions are maintained in the network.

For collapsed reactions, appropriate notes are included to describe the collapse. During visualization,
these collapsed reactions are marked by black dashed edges and dashed node borders. A graphical
representation of how this reaction collapse scheme is executed can be found in Figure 5.
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Figure 5: Reaction node collapse schematic. (a) For reactions for which at least one input and at least one output
component contain a measured value from the user data, the reaction will be maintained as is. (b) When an input of a
reaction is known, but no output has a known value, Metaboverse will search for all neighboring reactions that contain
identical inputs. If the neighboring reaction has a known output value, the two reactions will be merged into one
pseudo-reaction. (c) When an output of a reaction is known, but no input has a known value, Metaboverse will search
for all neighboring reactions that contain identical outputs. If the neighboring reaction has a known input value, the two
reactions will be merged into one pseudo-reaction. (d) For reactions with no known values, neighbor pairs that match
the inputs and outputs of the considered reaction will be evaluated for whether their respective outputs and inputs
both have known values. If values are known for both neighbors, the three reactions will be merged into one pseudo-
reaction. (e) is performed as in (d), but if one neighbor does not contain a value and the other does contain a value, no
reaction merging will be performed. (f) As in (d), but if neither neighbors contain known values, no reaction merging will
be performed. Example (g) demonstrates how reactions with multiple paths are collapsed to a representative reaction.
An asterisk (*) indicates the target reaction being considered for a given reaction collapse. A red node indicates a
reaction input or output with a measured value. A white node indicates a reaction input or output with no measured
value. A gray node indicates a reaction. A gray node with a dashed border indicates a pseudo-reaction. A solid edge
indicates a known relationship. A dashed edge indicates a relationship inferred via reaction merging.

4. Regulatory pattern searches and sorting
Metaboverse provides a variety of different regulatory patterns for the user to explore. To identify a

reaction-pattern is to compare some value that is computed from a reaction or a pathway with a user-
specified threshold.
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The identified reaction-patterns will be listed in a stamp view. Each stamp represents a reaction, with
a glyph of the reaction, or the name of the pathway on it. In this stamp view, the identified patterns
can be sorted according to three criteria: the number of pathways containing the reaction (not
applicable for pathway pattern identification), the magnitude of the change of the computed value,
and the statistical significance. When sorting by the number of pathways or the magnitude of the
change, the identified reactions are arranged in order from the largest to the smallest. When sorting
by the statistical significance, reactions with statistical significance on both the input side (substrates)
and the output side (products) are listed first by the product of their maximum statistics, followed by
the reactions with statistical significance on one of the two sides, and finally the reactions with no
statistical significance on both sides. Within each tier, the reactions are sorted from lowest to highest
p-values. For all values or statistics used in sorting, only those that determined the reaction-pattern
are used.

When a reaction is selected from the stamp view, all the pathways containing the corresponding
reactions will be listed below the stamp. Clicking on a pathway ID will draw the selected pathway in
which the reaction-pattern was found, with all other reaction-patterns within this pathway also
highlighted. For time-course and multi-condition datasets, the selected reaction-pattern’s total
behavior is displayed below these windows as line-plots showing the reaction components’ behavior
across all time-points or conditions.

5. Nearest neighborhood searches and prioritization

To visualize all connections to a given network component, a user can select an entity (a gene, protein,
or metabolite) and visualize all reactions in which the component is involved. By doing so, the user
can visualize other downstream effects the change of one entity might have across the total network,
which consequently aids in bridging and identifying any reaction that may occur between canonically
annotated pathways. These neighborhoods can be expanded to view multiple downstream reaction
steps and their accompanying genes, proteins, and metabolites by modulating the appropriate user
option in the software.

The user can also limit which entities are shown by enforcing a degree threshold. By setting this value
at 50, for example, the network would not show nodes that have 50 or more connections. One caveat,
however, is that this feature will occasionally break synchronous pathways into multiple pieces if one
of these high-degree nodes formed the bridge between two ends of a pathway.

6. Perturbation networks

Perturbation networks are generated by searching each reaction in the total reaction network for any
reaction where at least one component is significantly perturbed. The user can modify the necessary
criteria to base the search on the expression or abundance value or the statistical value and can
choose the thresholding value to be used. For the expression thresholding, the provided value is
assumed to be the absolute value, so a thresholding value of 3 would include any reactions where at
least one component showed a greater than 3 measured change or less than -3 measured change,
the value of which is dependent on the data provided by the user. Thus, these networks could
represent reactions where a component was perturbed to a significant degree on a log, fold change
scale, z-score scale, or other appropriate unit for that biological context.

Once a list of perturbed reactions is collected, the network is constructed, including each of these
reactions and their components. Perturbed neighboring reactions that share components are thus
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connected within the network, and perturbed reactions that are not next to other perturbed reactions
are shown as disconnected sub-networks.

7. Network visualization and exploration

7.1 Dynamic network plotting

The user interacts with Metaboverse through an interactive app interface. Metaboverse comes
packaged as a single executable app with all necessary dependencies included for running on Linux,
macOS, and Windows.

Force-directed layouts of networks are constructed by taking a user-selected pathway or entity and
querying the reactions that are components of the selected pathway or entity. All inputs, outputs,
modifiers, and other components of these reactions, along with edges where both source and target
are found in the sub-network as nodes, are included and displayed. Relevant metadata, such as user-
provided data and reaction descriptions, can be accessed by the user in real-time.

Some performance optimization features are included by default to prevent computational overload.
For example, nearest neighbor sub-networks with more than 1,500 nodes, or nodes with more than
500 edges, will not be plotted because the plotting of this information in real-time can be quite slow.

7.2 Visualizing pathways and super-pathways

To visualize a pathway, a user selects a pathway, and all component reactions and their substrates,
products, modifiers, and metadata are queried from the total reaction database. Super-pathways help
categorize these pathways and are defined as any pathway containing more than 200 nodes.

7.3 Visualizing time-course and multiple condition experiments

Time-course and multiple condition experiments are automatically detected from the user’s input
data. When users provide these data and specifies the appropriate experimental parameters on the
variable input page, they will have the option to provide time point or condition labels. Provided data
should be listed in the data table in the same order that the labels are provided. Within all
visualization modules, the data for each time point or condition can then be displayed using a slider
bar, which will allow the user to cycle between time points or conditions.

7.4 Visualizing compartments

Compartments are derived from Reactome annotations. Compartment visualizations are generated
using D3's hull plotting feature. Compartment boundaries are defined at the reaction levels and made
to encompass each reaction’s substrates, products, and modifiers for that given compartment.

7.5 Annotations

Annotations for each reaction are derived from the Reactome database. Pseudo-reactions
annotations do not include this information; instead, they include notes on which reactions were
collapsed to create the selected pseudo-reaction. All inferred pseudo-reactions and protein or
complex values are displayed with dashed edges to differentiate them from measured values.
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7.6 Additional features

Metaboverse will continue to undergo development, and new features will be added, but we will
briefly highlight some additional features available at the time of publication. We encourage the user
to check the documentation for more current updates and information regarding the use of
Metaboverse [23].

7.6a Toggling genes

As gene components can crowd the network visualization space, the user can toggle gene display on
and off using the appropriate button. The network is then refreshed to either include or ignore gene
components based on their node meta-tag.

7.6b Toggling values

The user can switch between coloring nodes based on the value provided by toggling the appropriate
button. Color bar information for the dataset is saved in the network metadata during curation and
used to generate a color bar. Statistically significant nodes, as determined by the user’s input
threshold, are displayed with bold node borders.

7.6c Toggling features/labels

By default, reaction and feature labels are displayed by hovering the mouse over the node. Reaction
or feature nodes can have the labels statically displayed by selecting the appropriate button.

7.6d Toggling collapsed reactions

By selecting the appropriate button, the user can toggle between displaying a full or collapsed
pathway representation of the sub-network. By selecting this button, the network is refreshed using
the appropriate reaction dictionary, where for visualization of the collapsed representation, a reaction
with available collapsed reactions substituted for the original reactions is included for network
visualization.

7.6e Viewing curated pathway image

Metaboverse visualizes networks dynamically, but users may be more familiar or comfortable with
classical, curated pathway layouts when exploring their data. For a given pathway network, the user
can select the appropriate button, and Metaboverse will open a new window with the Reactome
curated pathway layout.

7.6f Saving network visualizations

The user can generate a PNG output file for any network created in Metaboverse by selecting the
appropriate button.

7.6g Nearest neighbor and hub thresholding

The number of nearest neighbors to visualize, or the limit to the number of edges a visualized node
can have, can be modulated by the user using the appropriate input spaces. When visualizing a
nearest neighbors network, Metaboverse will recursively fetch related reactions and their neighbors
until the critical node display threshold is reached. This searching capability allows the user to
visualize downstream effects of a change that may propagate across several reactions. The hub
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threshold option prevents the plotting of nodes with more than the specified number of edges. This
thresholding is handled during the visualization process by excluding any entity nodes that meet
these criteria as the neighborhood is propagated. This thresholding is particularly useful in removing
hub nodes, such as water or protons, which may be less relevant to the user experience and can
quickly clutter the network visualization. This feature can also help plot more extensive
neighborhoods, as often neighborhoods quickly link to high-degree nodes, such as water, and limit
visualization clarity.

7.6h Metadata display

To help inform the user of selection information and relevant metadata, a space in the legend bar
during visualization is reserved for displaying this information, which is updated based on the user’s
node selections. Compartment and node legends are available for the user’s reference by hovering
over the appropriate icons.

8. Packaging

The Metaboverse app is packaged using Electron [42] . Back-end network curation and data
processing are performed using Python [43] and the NetworkX library [41]. This back-end
functionality is packaged as a single, operating system-specific executable using the Pylnstaller library
[44] and is available to the app’s visual interface for data processing. Front-end visualization is
performed using Javascript and relies on the D3 [45] and JQuery packages. Saving network
representations to a PNG file is performed using the d3-save-svg [46] and string-pixel-width [47]
packages (Table 1). Documentation for Metaboverse is available at https://
metaboverse.readthedocs.io. Continuous integration services are performed by Travis Cl [48] to
routinely run test cases for each change made to the Metaboverse architecture. The Metaboverse
source code can be accessed at https://github.com/Metaboverse/metaboverse. The code used to draft
and revise this manuscript, as well as all associated scripts used to generate and visualize the data
presented in this manuscript, can be accessed at https://github.come/Metaboverse/manuscript.

Table 1: Dependencies table.

Name Reference
HTML N/A
CSsS N/A
Javascript N/A
Electron [42]
JQuery [49]

D3 [45]
string-pixel-width [47]
d3-save-svg [46]
Python [43]
pandas [50,51]
numpy [52]
scipy [53]

matplotlib [54]
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Name Reference

NetworkX [41]

9. Validation using biological data

9.1 mct1 perturbation in Saccharomyces cerevisiae

Yeast Strains

Saccharomyces cerevisiae BY4743 (MATa/A, his3/his3, leu2/leu2, ura3/ura3, met15/MET15, lys2/LYS2)
was used to generate the mct1A strain as described in [30].

RNA-sequencing sample preparation

RNA sequencing data were generated by growing Saccharomyces cerevisiae biological replicates for
strains mct1A (n=4) and wild-type (n=4). Briefly, cells were grown in glucose and switched to raffinose-
supplemented growth medium for O, 3, and 12 hours such that at the time of harvest, cultures were at
ODgpo=1- Cultures were flash-frozen, and later total RNA was isolated using the Direct-zol kit (Zymo
Research) with on-column DNase digestion and water elution. Sequencing libraries were prepared by
purifying intact poly(A) RNA from total RNA samples (100-500 ng) with oligo(dT) magnetic beads, and
stranded mRNA sequencing libraries were prepared as described using the lllumina TruSeq Stranded
MRNA Library Preparation Kit (RS-122-2101, RS-122-2102). Purified libraries were qualified on an
Agilent Technologies 2200 TapeStation using a D1000 ScreenTape assay (cat# 5067-5582 and
5067-5583). The molarity of adapter-modified molecules was defined by quantitative PCR using the
Kapa Biosystems Kapa Library Quant Kit (cat#KK4824). Individual libraries were normalized to 5 nM,
and equal volumes were pooled in preparation for lllumina sequence analysis. Sequencing libraries
(25 pM) were chemically denatured and applied to an Illumina HiSeq v4 single-read flow cell using an
[llumina cBot. Hybridized molecules were clonally amplified and annealed to sequencing primers with
reagents from an lllumina HiSeq SR Cluster Kit v4-cBot (GD-401-4001). Following transfer of the
flowcell to an Illumina HiSeq 2500 instrument (HCSv2.2.38 and RTA v1.18.61), a 50 cycle single-read
sequence run was performed using HiSeq SBS Kit v4 sequencing reagents (FC-401-4002).

Sequence analysis

Sequence FASTQ files were processed using XPRESSpipe (v0.6.0) [55]. Batch and log files are available
at [56]. Notably, reads were trimmed of adapters (AGATCGGAAGAGCACACGTCTGAACTCCAGTCA).
Based on library complexity quality control, de-duplicated alignments were used for read
quantification due to the high number of duplicated sequences in each library. Differential expression
analysis was performed using DESeq2 [20] by comparing mct1A samples with wild-type samples at
the 12-hour time-point to match the steady-state proteomics data. Iogz(fold change) and false
discovery rate (“p-adj”) values were extracted from the DESeq2 output.

Proteomics analysis

Steady-state quantitative proteomics data were generated as described in [30]. Briefly, cells were
grown in glucose and switched to raffinose-supplemented growth medium overnight and harvested at
mid-log phase. For this analysis, we compared the mct1A (n=3) with the wild-type (n=3) cell
populations. Iogz(fold change) values and Benjamini-Hochberg corrected p-values were generated by
comparing mct1A with the wild-type cells. P-values were generated before correction using a 2-tailed,
homoscedastic Student’s T-test.
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Metabolomics sample preparation

Metabolomics data were generated by growing the appropriate yeast strains in synthetic complete
media supplemented with 2% glucose until they reached saturation (n=6; except in one 3-hour wild-
type sample, where n=5). Cells were then transferred to S-min media containing 2% raffinose and
leucine and harvested after 0, 15, 30, 60, and 180 minutes (n=6/time-point/strain, except for the 3-
hour wild-type samples, where n=5) at OD,,=0.6-0.8.

Metabolite extraction

A 75% boiling ethanol (EtOH) solution containing the internal standard d4-succinic acid (Sigma
293075) was then added to each sample. Boiling samples were vortexed and incubated at 90 °C for 5
minutes. Samples were then incubated at -20 °C for 1 hour. After incubation, samples were
centrifuged at 5,000 x g for 10 minutes at 4°C. The supernatant was then transferred from each
sample tube into a labeled, fresh 13x100mm glass culture tube. A second standard was then added
(d27-myristic acid CDN Isotopes: D-1711). Pooled quality control samples were made by removing a
fraction of collected supernatant from each sample, and process blanks were made using only
extraction solvent and no cell culture. The samples were then dried en vacuo. This process was
completed in three separate batches.

Mass spectrometry analysis of samples

All GC-MS analysis was performed with an Agilent 5977b GC-MS MSD-HES and an Agilent 7693A
automatic liquid sampler. Dried samples were suspended in 40 pL of a 40 mg/mL O-methoxylamine
hydrochloride (MOX) (MP Bio #155405) in dry pyridine (EMD Millipore #PX2012-7) and incubated for 1
hour at 37 °Cin a sand bath. 25 pL of this solution were added to auto sampler vials. 60 pL of N-
methyl-N-trimethylsilyltrifluoracetamide (MSTFA with 1%TMCS, Thermo #TS48913) were added
automatically via the auto sampler and incubated for 30 minutes at 37 °C. After incubation, samples
were vortexed, and 1 pL of the prepared sample was injected into the gas chromatograph inlet in the
split mode with the inlet temperature held at 250 °C. A 10:1 split ratio was used for the analysis of the
majority of metabolites. For those metabolites that saturated the instrument at the 10:1 split
concentration, a split of 50:1 was used for the analysis. The gas chromatograph had an initial
temperature of 60 °C for 1 minute followed by a 10 °C/min ramp to 325 °C and a hold time of 5
minutes. A 30-meter Phenomenex Zebron AB-5HT with 5m inert Guardian capillary column was
employed for chromatographic separation. Helium was used as the carrier gas at a rate of 1 mL/min.

Analysis of mass spectrometry data

Data were collected using MassHunter software (Agilent). Metabolites were identified, and their peak
area was recorded using MassHunter Quant. These data were transferred to an Excel spreadsheet
(Microsoft, Redmond WA). Metabolite identity was established using a combination of an in-house
metabolite library developed using pure purchased standards, the NIST and Fiehn libraries. Resulting
data from all samples were normalized to the internal standard d4-succinate. P-values were derived
using a homoscedastic, two-tailed Student’s T-test and adjusted using the Benjamini-Hochberg
correction procedure.

9.2 Human lung adenocarcinoma metabolomics
Data were accessed from Metabolomics Workbench [57] and processed as in our previous re-study of

these data [25]. P-values were derived using a two-tailed, homoscedastic Student’s T-test and
adjusted using the Benjamini-Hochberg correction procedure.
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10. Data availability

mct1A and accompanying wild-type transcriptomics time-course data are deposited at the GEO
repository under identifier GSE151606 [58]. Metabolomics data are deposited at the Metabolomics
Workbench repository under project identifier PRO00961, study identifier ST001401 [59].

The curated networks for these data are available at [60]. Networks were generated by taking the 12-
hour transcriptomics and proteomics datasets with their appropriate Iogz(fold change) and statistical
values, along with the 0, 15, 30, 60, and 180 minute metabolomics datasets with their respective
Iogz(fold change) and statistical values and layering these data on the Saccharomyces cereviseae
global reaction network as curated by Metaboverse from the Reactome database. reaction-patterns
and perturbation network analyses were performed within the Metaboverse platform.

The Metaboverse source code is available at https://github.com/Metaboverse/Metaboverse. The latest
version of the software can be found at https://github.com/Metaboverse/Metaboverse/releases/
latest.

The source code and data for this manuscript and the subsequent analyses are available at [28].
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Supplementary Material

Examples of reaction patterns in Metaboverse

The following figure provides examples of reaction patterns that Metaboverse will search for in the
network based on the user’s data (Supplementary Figure 6).
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Figure 6: Reaction pattern examples. (1a-b) Examples where the measured values on both sides of a reaction are
averaged. The difference between the two averages is then compared and, if greater than the specified threshold,
identified as a reaction pattern. Where the metabolite product is unmeasured (a white node), that entity is ignored
during averaging and comparing the two sides of the reaction. (2a-b) Examples where the minimum measured
substrate value and the maximum measured product, or vice versa, are compared and identified as a reaction pattern if
the difference passes the specified threshold. (3a-b) Examples where the minimum measured substrate and product
values are compared and identified as a reaction pattern if the difference passes the given threshold. Alternatively, an
option exists to compare the maximum values on both sides of the reaction. (4) An example where at least two different
entities on both sides of the reaction are both upregulated or downregulated past the specified threshold. (5) An
example where the same reaction entity on both sides is upregulated or downregulated past the specified threshold,
with a modifier component also being upregulated or downregulated. (6) An example where the difference between at
least one core reaction component and one reaction modifier is greater than the specified threshold. A star node
indicates a reaction node. A purple border on a reaction node indicates a reaction pattern was identified. Circles
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indicate metabolites, squares indicate protein complexes, and diamonds indicate proteins. Grey arrows indicate the
core relationships of a reaction. Green arrows indicate a catalyst component of a reaction, and red arrows indicate an
inhibitor component of a reaction. A representative colormap is provided, where increasingly red shades indicate
increased abundance, while increasingly blue shades indicate decreased abundance. Entities underlined in red are
those that are relevant to the particular reaction pattern.

Example for the Pattern Analysis module
The following figure provides an example of the Pattern Analysis module within Metaboverse,

with relevant points of interest highlighted and explained in the figure legend (Supplementary Figure
7).
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Figure 7: Pattern Analysis module. (a) The patterns currently available to search in Metaboverse are displayed in this
panel. Users can adjust the thresholds for the given pattern using the appropriate fields. (b) For the selected pattern
type, all available reaction-patterns within the organism'’s network will appear here. Reactions will be sorted by statistical
values, as provided by the user, that were relevant to the identified pattern. Green stamps indicate both sides of the
reaction contained significant values, yellow stamps indicate one side of the reaction contained significant values, and
gray stamps indicate neither side of the reaction contained significant values. (c) This panel displays all of the pathways
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in which the reaction-pattern can be found. The graphic provides a simplified view of the reaction’s primary substrates
and products, with the nodes shaded by associated value. A user can select one of these pathways for viewing. (d) The
selected pathway is displayed here, with all reaction-patterns in the pathway highlighted with a bold purple border. (e) If
a user would like to view the selected pathway within the Explore module, they can click the icon to open the
pathway in a new window. All reaction-patterns within the displayed pathway are listed below. (f) For time-course or
multi-condition datasets, the user can choose to display reaction-patterns for the selected time-point or condition that
are not present in another time-point or condition. (g) For time-course or multi-condition datasets, a slider bar will
appear with the time-points or conditions for the user to select. (h) This panel provides a shape legend for the different
shape types used in Metaboverse. (i) For time-course or multi-condition datasets, a line plot will appear for the selected
reaction. While panels above only display the behavior of that reaction-pattern at a single time-point or condition, the
line plot will display that reaction’s behavior across all of the available time-points or conditions.

Reaction collapsing reveals multi-reaction putative regulatory patterns

Yeast time-course metabolomics processed data were obtained as measured and discussed in this
study in Vignette 1. Metaboverse reaction-pattern searches identified a pattern across the two-step
transformation of glutathione and methylglyoxal into lactate at 60 minutes after the carbon source
shift. Since the intermediate metabolite was not measured in the dataset, but the inputs to the first
reaction and the outputs to the second reaction were measured, Metaboverse collapsed the two
reactions into one, thus enabling pattern recognition across two reactions (Figure 8). Conventional
methods might have missed such a reaction without summarizing the intermediate steps where the
intermediate metabolite(s) are not measured. This transformation is particularly important in this
model as lactate is closely tied to TCA metabolism and may provide explanatory mechanisms for the
changes in TCA metabolism observed in this model.
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Figure 8: Reaction collapsing reveals putative regulatory patterns across TCA metabolism-proximal reactions in
mtFAS-deficient yeast. (Left) Metabolomics values are shown as node shading, where an increasingly blue shade
indicates down-regulation, and an increasingly red shade indicates up-regulation. Measured Iogz(fold change) and
statistical values for each entity are displayed below the node name. A gray node indicates a reaction. A bold gray node
with a purple border indicates a pattern was found at this reaction for the given data-type time points. A dashed purple
border indicates a pattern was discovered across collapsed reactions. Circles indicate metabolites, squares indicate
protein complexes, diamonds indicate proteins, and triangles indicate genes. Gray edges are core relationships between
reaction inputs and outputs. Green edges indicate a catalyst. Dashed blue edges point from a metabolite component to
the complex in which it is involved. Dashed orange edges point from a protein component to the complex in which it is
involved. The background shading indicates different cellular compartments for each color. The displayed values are for
the 60 minute time point. (Right) A screenshot from the Reactome (v73; https://reactome.org/PathwayBrowser/#/R-
HSA-1428517&PATH=R-HSA-1430728) pathway explorer of this two-step reaction set.
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Example for the General Exploration module

The following figure provides an example of the Explore module within Metaboverse, with relevant
points of interest highlighted and explained in the figure legend (Supplementary Figure 9).
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Figure 9: Explore module. (a) By hovering on the icon, users can view the shape legend. Below the shape legend is the
compartment legend, where all currently displayed compartments in the selected pathway will be shown. (b) Users can
toggle features on or off using the appropriate buttons. For example, users could choose to display all reaction names,
not just when a reaction is selected. (c) Users can modulate graphing parameters, such as the number of reaction
neighborhoods to graph when selecting a network component for nearest neighborhood analysis. (d) Notes about the
selected reaction or synonyms for the selected reaction component appear here, as well as other information. (e) The
drop-down menu for the selection of a super-pathway. (f) The drop-down menu for the selection of a specific pathway
within the selected super-pathway. (g) For time-course and multi-condition datasets, a slider bar will appear that users
can use to change value shading of nodes and highlighted reaction-patterns. (h) Viewing area for the selected pathway.
(i) When users double-click on a reaction component, a nearest neighborhood graph will be displayed. In this instance,
citrate was selected and all reactions citrate is involved in across all pathways are plotted.

Example for the Perturbation Networks module
The following figure provides an example of the Perturbation Networks module within

Metaboverse, with relevant points of interest highlighted and explained in the figure legend
(Supplementary Figure 10).
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Figure 10: Perturbation Networks module. (a) Users can select what constitutes a perturbed reaction by modulating
the appropriate thresholds. Only one type of perturbation (by magnitude or by statistical value) will be used. (b) Users
select a super-pathway, for which all perturbed reactions belonging to that super-pathway are selected and displayed.
Reactions that are neighbors and perturbed will be shown stitched together within the network, even if these reactions
are connected across different pathways.
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