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Abstract 

Within-species contamination is a major issue in sequencing studies, especially for           

mitochondrial studies. Contamination can be detected by analysing the nuclear genome or            

by inspecting the heteroplasmic sites in the mitochondrial genome. Existing methods using            

the nuclear genome are computationally expensive, and no suitable tool for detecting            

contamination in large-scale mitochondrial datasets is available. Here we present          

haplocheck, a tool that requires only the mitochondrial genome to detect contamination in             

both mitochondrial and whole-genome sequencing studies. Haplocheck is able to          

distinguish between contaminated and real heteroplasmic sites using the mitochondrial          

phylogeny. By applying haplocheck to the 1000 Genomes Project data, we show (1) high              

concordance in contamination estimates between mitochondrial and nuclear DNA and (2)           

quantify the impact of mitochondrial copy numbers on the mitochondrial based           

contamination results. Haplocheck complements leading nuclear DNA based contamination         

tools, and can therefore be used as a proxy tool in nuclear genome studies.  

Haplocheck is available both as a command-line tool at         

https://github.com/genepi/haplocheck and as a cloud web-service producing interactive        

reports that facilitates the navigation through the phylogeny of contaminated samples​.  

Introduction 

The human mitochondrial DNA (mtDNA) is an extranuclear DNA of ~16.6 kb length ​(Andrews et               

al. 1999)​. It is inherited exclusively through the maternal line facilitating the reconstruction of the               
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human maternal phylogeny and female (pre-)historical demographic patterns worldwide. The          

strict maternal inheritance of mtDNA results in a natural grouping of haplotypes into             

monophyletic clusters, referred to as haplogroups ​(Kivisild et al. 2006; Kloss-Brandstätter et al.             

2011)​. Furthermore, second generation sequencing enables the detection of heteroplasmy over           

the complete mitochondrial genome. Heteroplasmy is the occurrence of at least two different             

haplotypes of mtDNA in the investigated biological samples (e.g. cells or tissues). Depending on              

the sequencing coverage, heteroplasmic positions are reliably detectable down to the 1%            

variant level ​(Weissensteiner et al. 2016; Ye et al. 2014)​. In recent years, the issue on apparent                 

heteroplasmy in mitochondrial data and data interpretation was addressed by several studies            

(Bandelt and Salas 2012; He et al. 2010; Ye et al. 2014; Just et al. 2014) resulting in a                   

comprehensive review on the quality of mtDNA data derived from sequencing studies ​(Just et              

al. 2015)​. It has been shown that certain studies can overestimate the presence of              

heteroplasmy, which can often be explained by external or cross-contamination ​(Yao et al.             

2007; Just et al. 2014, 2015; Brandhagen et al. 2020; Yin et al. 2019)​, artificial recombination                

(Bandelt et al. 2004)​, artifacts, index hopping ​(Van Der Valk et al. 2019) or analysis software                

inconsistencies. Sample contamination is still a major issue in both nuclear DNA (nDNA) and              

mtDNA sequencing studies that must be prevented to avoid mistakes as it occurred with Sanger               

sequencing studies in the past ​(Salas et al. 2005)​. Due to the accuracy and sensitivity of second                 

generation sequencing combined with the availability of improved computational models,          

within-species contamination is traceable down to the 1% level in whole-genome sequencing            

(WGS) studies ​(Jun et al. 2012)​.  

Several approaches exist to detect contamination in mtDNA sequencing studies. We previously            

showed that a contamination approach based on the co-existence of phylogenetically           

incompatible mitochondrial haplotypes observable as heteroplasmy is feasible ​(Weissensteiner         
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et al. 2016)​, which has also been demonstrated by others ​(Avital et al. 2012; Li et al. 2010,                  

2015)​. Other methods, such as a Galaxy-based approach ​(Dickins et al. 2014) facilitates the              

check for contamination by building neighbor joining trees. Mixemt ​(Vohr et al. 2017)             

incorporates the mitochondrial phylogeny and estimates the most probable haplogroup for each            

sequence read; the computational expensive algorithm implemented in Mixemt reveals          

advantages for contamination detection of several haplotypes within one sample and is            

independent of variant frequencies. For ancient DNA studies, schmutzi ​(Renaud et al. 2015)             

uses sequence deamination patterns and fragment length distributions to estimate          

contamination. Additionally, specific lab-protocols were designed for eliminating contamination,         

including double-barcode sequencing approaches ​(Yin et al. 2019)​.  

For contamination detection in mitochondrial studies, cross-contamination using the nuclear          

genome is often investigated ​(Wei et al. 2019; Ding et al. 2015; Yuan et al. 2020) by applying                  

widely accepted software tools like VerifyBamID ​(Zhang et al. 2020; Jun et al. 2012)​.              

Nevertheless, it becomes apparent that a tool for mitochondrial studies is missing that is able to                

detect contamination using the mitochondrial genome. Furthermore, since mtDNA is also           

present hundred to several thousand-fold per cell depending on cell-type, also WGS datasets             

specifically targeting the autosomal genome result in a high coverage over the mitochondrial             

genome. We hypothesize that the nDNA contamination level might be estimated by looking only              

at the mitochondrial genome.  

In this paper, we systematically evaluate the approach of using the mtDNA phylogeny for              

contamination detection and present haplocheck, a tool to detect contamination in mtDNA and             

WGS studies. In general, haplocheck works by identifying heteroplasmic sites (both real and             

artificial due to contamination) starting both from CRAM, BAM or VCF files. Using the              

mitochondrial phylogeny and the concept of haplogroups, haplocheck is able to report            
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contamination estimates by identifying two stable haplogroups within one sample. Overall, this            

work should demonstrate the merits of the mitochondrial genome as an instrument for rapid              

contamination detection in sequencing studies and presents a tool that takes advantage of a              

solid well-known mitochondrial phylogeny.  

Methods 

Haplocheck takes either CRAM, BAM or VCF files as an input. For files in the CRAM or BAM                  

format, an initial step to detect homoplasmic and heteroplasmic sites using a Maximum             

Likelihood (ML) function ​(Ye et al. 2014) is executed and final sites are reported in the variant                 

call format (VCF). Heteroplasmic sites are then split by their allele frequency (AF) into a major                

and minor profile. A profile consists of all detected homoplasmic and the corresponding fraction              

of each heteroplasmic variant. Heteroplasmic fractions with an AF >=50% are added to the              

major profile, otherwise to the minor profile. The haplogroup for each profile is then determined               

using Haplogrep2 ​(Weissensteiner et al. 2016b)​. Using the mitochondrial phylogeny, the           

phylogenetic distance (i.e. number of nodes between the two haplogroups) is calculated. The             

identification of two stable haplogroups allows haplocheck to report the contamination level for             

each sample.  

Three different scenarios need to be considered for contamination detection based on the             

mitochondrial phylogeny. First, two haplotypes branch into two different nodes: a major            

haplotype with heteroplasmy level x and a minor haplotype with heteroplasmy level 1-x (Figure              

1A), whereas H1a1 represents the Last Common Ancestor (LCA) for both haplotypes. Second,             

if heteroplasmic sites are only identified in the major haplotype, the minor haplotype H1a1 is               
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defined as the LCA (Figure 1B). Third, if heteroplasmic sites are only present in the minor                

haplotype, the major haplotype H1a1 defines the LCA (Figure 1C).  

 

Figure 1: All possible contamination scenarios. Here, a contamination level of 20% is shown in all three                 

scenarios A) to C). Shared polymorphisms of two haplotypes are included in a single branch, whereas the                 

split into two branches displays the different lineage haplotypes. A) ​Shared mutations defining H1a1              

(Last Common Ancestor, LCA) are present at 100%, while 7961C is present only at 20% defining the                 

minor haplogroup H1a1b, whereas 4639C and 10993A is present at 80% defining the major haplogroup               

H1a1a1. ​B) A mixture of two haplotypes within a single lineage but of different lineage depths (minor                 

haplotype H1a1 and major haplotype H1a1a1) is observed if no minor haplotype can be found. ​C) A                 

mixture of two haplotypes within a single lineage but of different lineage depths (minor H1a1a1 and major                 

H1a1) is observed if the minor haplotype results in a haplogroup. Shared homoplasmic sites facilitate the                

identification of the branching pattern in all three scenarios and improving the overall haplogroup quality.               
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The used notation for variants (e.g. 1438G) includes the mtDNA position (1438) followed by the actual                

base change (G).  

Heteroplasmic and Homoplasmic Variant Calling 

For BAM or CRAM files, the overall performance of haplocheck relies on an accurate              

homoplasmic and heteroplasmic variant calling. Therefore, we previously developed         

mtDNA-Server ​(Weissensteiner et al. 2016) that allows the detection of heteroplasmic positions            

accurately down to 1%. The identification of heteroplasmic positions is based on a previously              

published method ​(Ye et al. 2014) that also includes several criteria for calling heteroplasmy              

such as (a) base quality >= 20, (b) >10 depth per strand, (c) 1% minor allele frequency on        ×           

each strand and (d) a log-likelihood ratio (LLR) of >=5. LLR represents the ratio between the                

estimated frequency of the major allele within the ML function of the heteroplasmy and the               

homoplasmy model.  

For this work, we re-implemented mtDNA-Server as a standalone module (           

https://github.com/seppinho/mutserve ​) and integrated it into haplocheck. Detected       

heteroplasmic positions are reported in VCF format as heterozygous genotypes (GT) using the             

AF tag for the estimated contamination level. Although the term genotype makes sense in              

autosomal diploid scenarios, we use it here to refer to mtDNA variation patterns that resemble a                

genotype status. 

For homoplasmic positions, the final genotype GT ({A,C,G,T}) is detected using all input reads              

(reads) and calculating the genotype probability P using Bayes’ Theorem P(GT|reads) =            

P(reads|GT) P(GT) / P(reads). To calculate the prior probability P(GT), we used the 1000 ×               

Genomes Phase 3 VCF file and calculated the frequencies for all sites using vcftools ​(Danecek               

et al. 2011)​. To compute P(reads|GT), we calculate the sequence error rate (e ​i = 10 ​-Qi/10​) for                
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each base ​i of a read, whereas ​Q is the reported quality value. For each genotype GT (GT ∈                   

{A,C,G,T}) of a read, we determine the genotype likelihood by multiplying 1-e ​i in case the base                

of the read r​i = GT and e ​i ​/3 otherwise over all reads ​(Ding et al. 2015)​. The denominator                  

P(reads) is the sum of all four P(reads|GT).  

Contamination Detection Model 

The contamination model within haplocheck requires a VCF file as an input and includes steps               

for (a) splitting homoplasmic and heteroplasmic sites into two haplotype profiles, (b) haplogroup             

classification for each haplotype profile, and (c) applying quality-control criteria. Homozygous           

genotypes for the alternate alleles (ALT; i.e. homoplasmic sites) are added to both haplotypes              

and heterozygous genotypes (i.e. real and artificial heteroplasmic sites) and are split using the              

AF tag. Since mutserve always reports the AF of the non-reference allele, the split method               

applies the following rule: In case a GT 0/1 (e.g. Ref: G, ALT: C) with an AF of 0.20 is included,                     

the split method defines C as the minor allele, 0.2 as the minor level and 0.8 as the major level.                    

In case a GT 0/1 (e.g. Ref: G, ALT: C) with an AF of 0.80 is included, the C defines the major                      

allele. If no reference allele is included (e.g. 1/2), we use the first allele as the major allele and                   

assign the included AF to that allele.  

For haplogroup classification, we use HaploGrep2 based on Phylotree 17 ​(van Oven and             

Kayser 2009)​, which has been refactored as a module and integrated directly into haplocheck.              

As a result, Haplogrep2 reports the haplogroup of both the major and minor haplotype. For each                

analyzed sample, the LCA is calculated, which is required to estimate the final contamination              

level and to calculate the distance between the two haplotypes. Therefore, we traverse             

Phylotree from the rCRS reference to each node. The LCA is determined by starting at the final                 

node of haplotype 1 (h1) and by iterating back until the reference (rCRS) is reached. Then, we                 
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iterate back to rCRS for haplotype 2 (h2) until the first node included in h1 is identified. This                  

node then defines the LCA of both haplotypes. Only heteroplasmic positions starting from the              

LCA and showing a phylogenetic weight >5 are included. The phylogenetic weight describes the              

frequency of each mutation in Phylotree and is scaled from 1 to 10 in a non-linear way. Variants                  

with a high occurrence in Phylotree are assigned a small phylogenetic weight. Furthermore,             

back mutations (i.e. mutation changes back to the rCRS reference within a specific haplogroup)              

and deletions on heteroplasmic sites are ignored by haplocheck.  

Using all previous information, we finally estimate the contamination level for samples fulfilling             

the following three quality control criteria: (a) >=2 heteroplasmic variants starting from the LCA,              

(b) >=0.5 haplogroup quality for each haplotype (calculated by HaploGrep2 using the Kulczynski             

metric) and (c) phylogenetic distance betcomponentween both haplotypes of >=2. The median            

level of all detected heteroplasmic sites reaching the described criteria is calculated for both              

haplotypes (h1 and h2) independently. Haplocheck reports the median level of the minor             

haplotype as the final contamination level.  

Report  

Haplocheck produces a tab-delimited text file and an interactive HTML report. For each sample,              

haplocheck determines the final contamination status, the contamination level and several           

quality metrics such as the phylogenetic distance. Additionally, a graphical phylogenetic tree is             

generated dynamically for each sample including the path from the rCRS to the two final               

haplotypes. This allows the user to manually inspect edge cases, visualize the contamination             

graphically or analyze the source of contamination (see Supplemental Figure S1).  
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Results 

Haplocheck can be used as a standalone command-line tool or as a cloud web service. For                

both scenarios, the same workflow is applied. The Cloudgene framework ​(Schönherr et al.             

2012) is utilized to provide the workflow as-a-service to users, which is also used for large-scale                

genetic services like the Michigan Imputation Server ​(Das et al. 2016) and the mtDNA-Server              

(Weissensteiner et al. 2016)​ that greatly improves user experience and productivity. 

Evaluation 

To test the performance of haplocheck within mtDNA and WGS studies, we simulated several              

data sets. In a first step, we created wet-lab mixtures of two mitochondrial samples to validate                

the variant calling with mutserve. The mixtures were as follows: M1 - 1:2 (50%), M2 - 1:10                 

(10%), M3 - 1:50 (2%), M4 - 1:100 (1%), M5 - 1:200 (0.5%, created in-silico). All mixtures and                  

the two initial samples have been then sequenced on an Illumina HiSeq system. We analyzed               

the original samples (coverage 60,000 ) and downsampled them accordingly. Table 1    ×        

summarizes our findings and shows that a coverage between 600 - 900 is required, to detect                

contamination down to 1%. For example, the 1000 Genomes Project low-coverage sequence            

data already include an average coverage of 1797 of the mitochondrial genome ​(1000             

Genomes Project Consortium 2015)​. 

 Mixtures 

Coverage M1 (50%) M2 (10%) M3 (2%) M4 (1%) M5 (0.5%) 

60,000 0.464 0.126 0.023 0.011 0.006 

30,000 0.463 0.121 0.023 0.011 0.006 

6,000 0.462 0.118 0.023 0.011 0.006 

3,000 0.462 0.115 0.025 0.011 0.006 
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2,500 0.465 0.114 0.026 0.011 0.006 

2,000 0.463 0.109 0.024 0.011 0.007 

1,800 0.464 0.111 0.025 0.012 0.007 

1,500 0.467* 0.116 0.025 0.012 n/a 

1,200 0.464 0.113 0.025 0.012 n/a 

900 0.461 0.106 0.031 0.013 n/a 

600 0.458 0.106 0.030 0.012* n/a 

300 0.454* 0.100 0.034* n/a n/a 

120 0.447* 0.113 n/a n/a n/a 

60 0.439* 0.143* n/a n/a n/a 

30 0.407* n/a n/a n/a n/a 

15 n/a n/a n/a n/a n/a 
Table 1: Four wet-lab mixtures (M1-M4) and 1 in-silico mixture (M5) have been analyzed using                

haplocheck with varying coverage. The columns “M1 - M5” indicate the mixture levels, “Coverage”              

indicates the downsampled coverage. Each cell in the table includes either the actual detected              

contamination level reported by haplocheck or n/a in case the contamination could not be detected by                

haplocheck. The asterisk (*) indicates that the detected haplotypes differed from the expected haplotypes,              

since not all variants were detected in the mixture. 

We further generated sequencing data mixtures by using the ART-NGS read simulator ​(Huang             

et al. 2012)​. The four generated mixtures differ in the contamination level (0.5% - 50 %),                

coverage (between 10 - 5000 ) and phylogenetic distance between the two mixed samples (3  ×  ×           

- 23 nodes). The results were highly concordant with the wet-lab mixtures presented in Table 1                

and show that haplocheck is able to detect contamination accurately even for samples including              

haplotypes with a short phylogenetic distance (see Supplemental Table S1). 

In a second step, we evaluated the performance of haplocheck as a proxy for estimating the                

nDNA contamination level. Therefore, we generated four whole-genome in-silico samples from           

two random 1000 Genomes samples showing no signs of contamination based on the             

VerifyBamID score. For each sample, four different mixtures between 0.5% - 10% have been              

created and analyzed using both VerifyBamID2 (nDNA) and haplocheck (mtDNA). To analyze            
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the impact of the mitochondrial copy number (mtCN), samples with different amounts of mtCN              

were chosen from the 1000 Genomes Project. Table 2 summarizes the findings, whereby each              

cell includes the average delta between the calculated and the expected value for all four               

different mixtures per sample (see also Supplemental Table S2). Levels obtained from            

VerifyBamID2 and haplocheck correlate if the copy number (CN) for each haplotype in the              

mixture is similar (see Mixture 1 and 2). Values obtained from Mixture 3 still correlate, since the                 

main haplotype shows a higher mtCN and is therefore unaffected by the lower mtCN of               

haplotype 2. In a worst-case scenario (Mixture 4), where the main haplotype has a lower mtCN                

and the minor haplotype a higher mtCN, the values between haplocheck and VerifyBamID2             

differ substantially.  

 

 
 

mtCN​ ​Ratio 

VerifyBamID2 Haplocheck 

HGPD_100K HGDP_10K 1000G_100K 1000G_10K Phylotree 17 
Mixture 1 1:1 -0.85% -0.51% -0.34% 0.11% 0.45% 

Mixture 2 1:0.8 -0.26% -0.08% -0.49% -0.12% 1.32% 
Mixture 3 10:1 -0.66% -0.66% -0.50% -0.61% -3.70% 
Mixture 4 1:10 -0.03% -0.06% -0.22% -0.36% 20.85% 
​Table 2: ​Four different mixtures have been created and the average delta between expected and                

calculated contamination level reported. Each average delta consists of four different mixtures (1-10%)             

and has been calculated for VerifyBamID2 using a different set of markers as well as haplocheck.                

Haplocheck works well as a proxy for the first two sample mixtures, but differs as expected in                 

substantially uneven mtCN between the main haplotype (low mtCN) and the second haplotype (high              

mtCN).  

Nevertheless, a drastic shift in the copy number as in mixture 4 is atypical for a sequencing                 

project. In ​(Zhang et al. 2017) the copy number of 1,500 women with age 17-85 have been                 

analyzed and show that most samples ranging from 100 - 300 (mean 169, DNA source               

whole-blood). In ​(Fazzini et al. 2019) the mtCN has been analysed in a cohort of 4,812 chronic                 
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kidney disease patients showing also only moderate differences (mean 107.2, sd 36.4, DNA             

source whole-blood).  

In a third step, we created and analyzed in-silico data by mixing random genotype profiles from                

the currently best available mtDNA phylogeny derived from Phylotree Build 17. The overall             

performance of haplocheck heavily depends on a good classification of samples into            

haplogroups even from noisy variant calling data sets. We initially created input profiles for each               

displayed haplogroup, amounting to 5,426 profiles in total. Each input profile consists of a list of                

polymorphisms from the tree reference (rCRS) to the actual node (or haplogroup). Our test data               

consists of 500,000 unique mixtures of pairwise haplogroup profiles derived from the overall             

phylogeny comprising of 5,500 haplogroups (250,000 contaminated, 250,000 not-contaminated         

samples) and 100,000 mixtures from the haplogroup H-subtree, including 977 haplogroups. The            

generation of in-silico data from the H-subtree allows us to test the performance of samples               

showing a smaller phylogenetic distance. 

To account for noisy input data, we artificially added random ​variants to each input profile. This                

has been done by removing expected variants from the input profile and adding random variants               

available within Phylotree. The amount of noise varies from 0 - 8 variants for each mixture. The                 

proportion of added ​versus removed variants is calculated randomly. To make it further             

restrictive, we only added phylogenetic relevant variants from Phylotree. Variants that are not             

present in Phylotree (i.e. so far unknown in the phylogeny) would not affect the contamination               

estimation. Finally, 3 datasets (noise 0, 4, 8) derived from 2 different trees (complete tree,               

haplogroup H subtree) have been generated, each consisting of 500,000 and 100,000 mixtures             

respectively. F1-Score (defined as (2 precision sensitivity) / (precision + sensitivity)) has     ×   ×        

been calculated for each mixture to analyze the overall accuracy of haplocheck.  

To determine the best haplocheck configuration regarding accuracy, we tested different setups            
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for all 6 datasets. Each setup includes a different threshold for (1) the amount of major and                 

minor heteroplasmic sites, (2) the minimum allowed phylogenetic distance between two profiles            

and (3) the haplogroup classification model (Kulczynski, Hamming, Jaccard). Figure 2           

summarizes the 6 best setups that have been tested to determine the optimal trade-off between               

noise, haplogroup distance and the overall F1-Score. In our experiments, Setup 3 shows the              

best trade-off between haplogroup distance and overall accuracy. This setup allows us to detect              

contamination of samples with a phylogenetic distance of at least 2 and has been used as the                 

final setup for the contamination method.  

 

 

Figure 2: Tested haplocheck setups (=lines) to determine the best trade-off between noise and overall               

accuracy. Setup 3 (phylogenetic distance >= 2, amount of heteroplasmic sites >= 2, haplogroup quality >                
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0.5, Kulczynski Metric) shows the best trade-off for all 6 datasets. Each dataset consists of 500.000                

mixtures (Overall Phylogeny) and 100.000 mixtures (Haplogroup H subtree) respectively. The x-axis            

includes the amount of noise, the y-axis the calculated F1-Score (scale from 0 to 1, where 1 ​equates to a                    

perfect precision and recall). 

Table 3 summarizes the F1 Score statistics for Setup 3. The result demonstrates that              

haplocheck is able to accurately detect contamination of two samples also in the case where               

noise is included in the input profiles and the distance between the two haplogroups is small.  

 

In-Silico Simulation  
Setup 3: Distance: 2; Heteroplasmies: 2, Kulczynski Metric 

Metric Noise 0 Noise 4 Noise 8 

F1 Score Complete Phylogenetic Tree 0.999 0.993 0.971 

F1 Score H Phylogenetic Tree 0.995 0.976 0.899 

Table 3: ​F1 Score for different noise categories using the finally chosen Setup 3. Noise 0 - Noise 8                    

includes the amount of added / removed variants from the input profile. The two experiments based on                 

different trees (mixtures derived from the complete phylogenetic tree and mixtures derived from the              

haplogroup H subtree only) show that haplocheck is capable of detecting contamination accurately. 

Contamination Detection in the 1000 Genomes Project 

To evaluate haplocheck on a WGS study, we extracted the mtDNA genome reads (labeled as               

chromosome MT) from the 1000 Genomes Project (Phase 3), resulting in a sample size of               1

2,504 and a total file size of 95 GB. As an initial check, we compared variants detected by                  

mutserve to the official 1000 Genomes data release using callMom          

(​https://github.com/juansearch/callMom​) and determined the haplogroup using HaploGrep2.       

Overall, 98 % of the samples (n = 2,504) result in an identical haplogroup (See Supplemental                

Figure S2). The downloaded BAM files have then been used as an input for haplocheck to test                 

1 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/ 
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for contamination. Based on the mitochondrial genome, 5.07% (127 of 2,504) of all samples              

show signs of contamination on mtDNA (see Supplemental Table S3). Since the performance of              

haplocheck as a proxy for nDNA is dependent on the mtCN, we also looked at the tissue source                  

used for DNA extraction. As depicted in Table 4 and Supplemental Figure 3, there is a                

significant difference in the mtCN of the two tissue types used within the 1000 Genomes Project                

(p<2.2e-16, independent ​t​-test). The mtCN has been inferred using the formula mtDNA            

coverage / nDNA coverage  2 ​(Ding et al. 2015)​.×  

 Tissue Cell Type 

1000 Genomes Phase 3 (n= 2,504) Blood LCL Not specified 

 
Samples Absolute / Relative 

 
364 / 14.5% 
 

 
506 / 20.2% 
 

 
1634 / 65.3% 

Mitochondrial Copy Number (mtCN)  Mean 49.3 747.1 566.9 

Table 4 - Tissue Cell Types of all 2,504 samples from the 1000 Genomes Project. Significant differences                  

in the mitochondrial copy number (mtCN) between 1000G samples can be seen. Each cell includes the                

absolute and relative number of samples. LCL: lymphoblastoid cell lines. 

 

Due to the different mtCN, we split the 1000 Genomes samples into two groups based on the                 

mtCN and calculated the Pearson correlation coefficient (R) separately. Group 1 (mtCN >=300,             

n=2,004) shows a correlation of R=0.72 between the contamination levels of VerifyBamID2 and             

haplocheck, whereas the contamination levels reported by haplocheck are ranging from 0.8% to             

4.8% (see Supplemental Table 4). Group 2 (mtCN <300, n=500) shows a correlation of R=0.31               

and contamination levels reported by haplocheck are between 1.8% - 25.5% (see Supplemental             

Table 5).  

As expected, samples with a higher mtCN (group 1) are less vulnerable to level differences               

between nDNA and mtDNA. Therefore, mtDNA contamination levels are in a very similar range              

compared to those observed by VerifyBamID2 (0-3%). Samples with a lower mtCN (group 2)              
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are more vulnerable to mtCN differences. This is due to the fact that a contamination with a                 

sample showing a higher amount of mtCN can affect the contamination level substantially.             

Therefore, group 2 shows a much higher discrepancy in the contamination level compared to              

VerifyBamID2.  

As mentioned earlier, such a drastic shift in the copy number is atypical for a sequencing                

project. For studies showing only moderate differences in the mtCN, haplocheck can be used as               

an efficient nDNA proxy. For studies showing a wider range of mtCN due to different tissues, the                 

mtDNA level can differ from the reported nDNA level.  

In the last step, we looked at samples that have been excluded from the 1000 Genomes Project                 

(nDNA contamination level >3% using VerifyBamID). In total, 4 samples have been excluded by              

VerifyBamID due to a high free mix (sequence-only estimate of contamination) and 7 samples              

due to a high chip mix (for estimating contamination or swap using sequence and array               

method). Haplocheck was able to identify these samples as contaminated with a correlation of              

0.89 between nDNA and mtDNA (Supplemental Table S6).  

Nuclear DNA of mitochondrial origin 

Nuclear DNA of mitochondrial origin (NUMTS) can either result in a coverage drop on mtDNA               

sites due to the alignment of mitochondrial reads to NUMTS or false positive heteroplasmy calls               

due to the alignment of NUMT reads to the mitochondrial genome ​(Maude et al. 2019)​.               

Approaches exist ​(Goto et al. 2011; Samuels et al. 2013) that exclude reads mapping to the                

nDNA but overall reduce coverage and may result in false negatives ​(Albayrak et al. 2016)​. In                

(Weissensteiner et al. 2016)​, we annotated mitochondrial sites coming from an NUMTS            

reference database ​(Li et al. 2012; Dayama et al. 2014)​, although limited to known NUMTS. For                

contamination detection with haplocheck, false positive heteroplasmic sites due to NUMTS are            
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expected to only have a minor effect since they typically do not resemble the complete               

mitochondrial haplotypes. Nevertheless, sufficient coverage for the haplogroup defining variants          

is still required when dealing with NUMTS. In a study conducted by ​(Maude et al. 2019)​, an                 

in-silico model has been set up to analyze the homology between mitochondrial variants and              

NUMTS. They show that 29 variants representing haplogroups A, H, L2, M, and U did not cause                 

loss of coverage, nevertheless substantial loss of coverage has been identified for specific sites              

(e.g.G1888A, A4769G). In a recent work the presence of a mega-NUMT that could mimic              

contamination on mitochondrial haplogroup level is described ​(Balciuniene and Balciunas 2019)​.           

This indicates that in very rare cases, NUMTs could indeed resemble complete mitochondrial             

haplotypes and yield to a false positive contamination result ​(Salas et al. 2020; Wei et al. 2020)​.                 

While we did not observe NUMT-related issues in the validation of the 1000 Genome Project,               

we can not entirely rule out eventual NUMTs effects on contamination detection. 

Runtime and Performance  

Table 5 shows that our pipeline starting from BAM data scales linearly with the data size (i.e.                 

sequence reads). For the complete 1000 Genomes Project data, the contamination estimate            

has been calculated within 8 hours and 58 minutes starting from BAM using a single core (Intel                 

Xeon CPU 2.30GHz) and 2 GB of RAM.  

Runtime Haplocheck File Size 

1 min 49 sec 0.19 GB 

2 min 58 sec 0.37 GB 

15 min 55 sec 1.85 GB 

31 min 26 sec 3.7 GB 

8 h 58 min 95 GB (2,504 samples) 

Table 5 - ​Haplocheck v1.1.3 runtime for different BAM files. Runtime includes both variant calling (using                 
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mutserve) and contamination detection. All tests have been executed using a single core (Intel Xeon               

Processor E5-2650 v3) and 2 GB of RAM.  

 

Table 6 includes a runtime comparison for 26 samples of VerifyBamID2 (input WGS data,              

varying amounts of markers and cores) with haplocheck (input mtDNA) starting from BAM data.  

 Haplocheck VerifyBamID2 

# Samples 
 

Phylotree 17  
(1 thread) 

1KP3 10k  
(1 thread) 

1KP3 100k  
(1 thread) 

26 samples 2 min 2h 12 min 4h 33 min 

Table 6 - ​Haplocheck v1.1.3 runtime for 26 samples of the 1000 Genomes Project data. For haplocheck,                 

runtime includes variant calling with mutserve and contamination detection. For VerifyBamID2, all            

autosomes have been analyzed with different sets of markers (10k and 100k), therefore resulting in a                

much larger data size. All tests have been executed on an Intel Xeon Processor E5-2650 v3 CPU using                  

OpenJDK 8 for haplocheck. 

Contamination Source 

Haplocheck always reports both the major and minor haplotype for each sample. Therefore,             

possible sources of contamination can be investigated. For example, sample HG00740 from the             

1000 Genomes Project shows a contamination level of 2.74% on nDNA (using VerifyBamID2)             

and 3% on mtDNA (using haplocheck). By looking at the phylogenetic tree that is created for                

each sample by haplocheck, the contaminating minor haplogroup B2b3a can be identified. The             

identical haplogroup is also assigned to sample HG01079 that has been analyzed in the same               

center with a similar mitochondrial copy number. Such phylogenetic information provided within            

the interactive HTML report can help in identifying the source of contamination for all three types                

of contamination.  
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Discussion 

There are many examples in the literature showing the negative impact of artefacts on mtDNA               

datasets in different areas of research, including medical studies, forensic genetics and human             

population studies ​(Bandelt and Salas 2012; He et al. 2010; Ye et al. 2014; Just et al. 2014)​.                  

The described approach in this paper takes advantage of the mitochondrial phylogeny and is              

capable of detecting contamination based on mitochondrial haplotype mixtures. By creating           

several in-silico data sets and analyzing the 1000 Genomes Project data, we show that              

haplocheck can be used in both targeted mtDNA sequencing studies and WGS studies. We              

also investigated the influence of the mitochondrial copy number (mtCN) and showed that it              

must be taken into account when comparing mtDNA to nDNA contamination levels.  

Several other methods for contamination detection exist. For nDNA sequences, VerifyBamID2           

(Zhang et al. 2020) offers an ancestry-agnostic DNA contamination estimation method and is             

widely used in WGS studies. Schmutzi ​(Renaud et al. 2015) provides a contamination             

estimation tool appropriate for ancient mtDNA. A further approach was suggested in ​(Dickins et              

al. 2014)​, describing a pipeline for contamination detection accessible through the Galaxy online             

platform ​(Afgan et al. 2018)​. 

We also identified limitations with the proposed phylogenetic based contamination check in this             

paper, previously applied in a semi-automatic manner ​(Avital et al. 2012; Li et al. 2010)​. There is                 

currently a publication bias in favor of the European mtDNA haplogroups that provides the most               

phylogenetic details, whereas especially African haplogroups are underrepresented (626 African          

haplogroups compared to 2,546 European haplogroups in Phylotree 17). While the major            

changes in the phylogeny were performed during the initial growing process of the tree, the last                
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few years showed only refinements of lineages and branches. Therefore, major changes are no              

longer expected in the human phylogeny, but data from upcoming sequencing studies will help              

to refine existing groups. Further, contamination detection based on mitochondrial genomes is            

limited in scenarios where samples belong to the same maternal line (e.g. mother-offspring). If a               

contamination between mother and offspring exists, the presented approach is unable to detect             

it. 

Overall, we demonstrated that haplogroup-based analysis as carried out by haplocheck can be             

used systematically as a quality measure for mtDNA data. Such kind of analysis could become               

effective prior to data interpretation and publication of mtDNA sequencing projects. Additionally,            

haplocheck proves to be useful in WGS studies as a fast proxy tool for estimating the nDNA                 

contamination level. 

Software Availability 
Haplocheck is available at ​https://github.com/genepi/haplocheck under the MIT license and          

requires Java 8 or higher for local execution. All generated data, scripts and reports are               

available within this repository. The web service can be accessed via           

https://mitoverse.i-med.ac.at​. 
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