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Abstract

The Developing Human Connectome Project (dHCP) is an Open Science project which
provides the first large sample of neonatal functional MRI (fMRI) data with high temporal and
spatial resolution. This data enables mapping of intrinsic functional connectivity between
spatially distributed brain regions under normal and adverse perinatal circumstances, offering a
framework to study the ontogeny of large-scale brain organisation in humans. Here, we
characterise in unprecedented detail the maturation and integrity of resting-state networks

(RSNSs) at normal term age in 337 infants (including 65 born preterm).

First, we applied group independent component analysis (ICA) to define 11 RSNs in term-born
infants scanned at 43.5-44.5 weeks postmenstrual age (PMA). Adult-like topography was
observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among
six higher-order, association RSNs, analogues of the adult networks for language and ocular
control were identified, but a complete default mode network precursor was not. Next, we
regressed the subject-level datasets from an independent cohort of infants scanned at 37-43.5
weeks PMA against the group-level RSN to test for the effects of age, sex and preterm birth.
Brain mapping in term-born infants revealed areas of positive association with age across four
of six association RSN, indicating active maturation in functional connectivity from 37 to 43.5
weeks PMA. Female infants showed increased connectivity in inferotemporal regions of the
visual association network. Preterm birth was associated with striking impairments of
functional connectivity across all RSNs in a dose-dependent manner; conversely, connectivity
of the superior parietal lobules within the lateral motor network was abnormally increased in
preterm infants, suggesting a possible mechanism for specific difficulties such as

developmental coordination disorder which occur frequently in preterm children.

Overall, we find a robust, modular, symmetrical functional brain organisation at normal term
age. A complete set of adult-equivalent primary RSNs is already instated, alongside emerging
connectivity in immature association RSNs, consistent with a primary-to-higher-order
ontogenetic sequence of brain development. The early developmental disruption imposed by

preterm birth is associated with extensive alterations in functional connectivity.
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Introduction

The Developing Human Connectome Project (dHCP) is an Open Science project funded by the
European Research Council to provide a large dataset of functional and structural brain images
from 20 to 44 weeks of gestational age (GA). This enables the characterisation of 4-
dimensional (three spatial dimensions and time) connectivity maps, which map the trajectories
of human brain development to improve understanding of normal development and allow

earlier detection and intervention for neurological and psychological disorders.

This paper analyses functional connectivity at the time of normal birth in infants born at term
and preterm. Temporal coherences in the blood-oxygen—level-dependent (BOLD) contrast
measured with resting-state functional magnetic resonance images (rs-fMRI) can be
spatiotemporally decomposed into resting-state networks (RSNs) (Damoiseaux et al., 2006)
(Biswal et al., 1995), predominantly at low frequency (< 0.1 Hz) (Cordes et al., 2001), distinct
from cardiovascular signal (De Luca et al., 2006). Whilst RSNs have been extensively and
robustly characterized in the mature brain, previous studies of RSN development in newborn
infants have been limited by smaller sample sizes. The dHCP provides the first high-quality,
large-scale, 4-dimensional dataset of structural-functional connectivity at this critical period of
development, enabling us to address two key questions. Firstly, are higher-order RSNs such as
the default-mode network (DMN) (Raichle et al., 2001) instated with adult topology in the
neonatal period? Some find analogues of these at term-equivalent age (TEA) (Doria et al.,
2010; Fransson et al., 2009; Fransson et al., 2007; Smyser et al., 2010; Smyser et al., 2016)
while others locate their origin in later infancy or early childhood, contemporaneous with the
emergence of the higher cognitive abilities these networks are believed to support (Gao et al.,
2014; Gao et al., 2015). Secondly, what is the effect of preterm birth on RSN development?
Although various alterations in the complexity, scope, strength and efficiency of functional
connectivity in preterm-at-term infants have been reported (Ball et al., 2016; Bouyssi-Kobar et
al., 2019; Doria et al., 2010; Smyser et al., 2010; Smyser et al., 2016; Toulmin et al., 2015), the
majority of studies lack the large numbers of control subjects required to characterise these

effects with precision.

The mature adult RSNs are well characterised, with high intra-subject reproducibility (Finn et
al., 2015; Wang et al., 2015), largely consistent topology across healthy subjects, and
anatomical mapping that reinforces both structural and task-fMRI-derived parcellations of the
cortex (Glasser et al., 2016). The identification of fMRI-RSN signatures associated with
disease offers considerable translational potential due to rs-fMRI’s relatively straightforward
and widely-used acquisition, whole-brain coverage, and high spatial resolution compared to

other functional imaging methods. The achievement of this in the immature brain requires a
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complete account of RSN ontogeny. The developing CNS shows spontaneous, patterned,
correlated intrinsic activity from early prenatal life (reviewed in (Blankenship and Feller, 2010;
Keunen et al., 2017; Vasung et al., 2019); immature RSNs can be identified from as early as 26
weeks postmenstrual age (PMA) in the preterm infant (Doria et al., 2010; Smyser et al., 2010).
By TEA, RSNs bearing closer resemblance to adult RSNs are observed in both term- and
preterm-born infants (Doria et al., 2010; Fransson et al., 2011; Fransson et al., 2009; Fransson
et al., 2007; Gao et al., 2014; Gao et al., 2015; Smyser et al., 2016). However, TEA
encompasses a critical period of brain development in which there is intense myelination of
white matter (reviewed in (Dubois et al., 2014) and rapid expansion in both the size and
gyrification of the cerebral cortex (Dubois et al., 2019; Shimony et al., 2016). Dense sampling
across the age range is therefore required to map the associated changes in functional

connectivity.

Here we apply a data-driven approach to 337 rs-fMRI datasets acquired in term and preterm
infants between 37 and 44.5 weeks PMA. We first defined a normative set of RSNs in a sub-
sample of term-born infants scanned at 43.5-44.5 weeks PMA using probabilistic independent
component analysis (ICA) (Beckmann and Smith, 2004). ICA is a dimensionality reduction
technique which decomposes data into a set of components with maximal statistical
independence; applied to rs-fMRI, ICA can reveal large-scale brain networks without
requirement for a predefined model of network structure. We then regressed subject-level data
from term and preterm infants scanned at 37-43.5 weeks PMA against these networks. The
resulting whole-brain correlation maps enabled us to both characterise the ontogeny of
individual RSNs, and investigate the influence of prematurity on cortical functional

connectivity.

Materials and methods

Subjects

Research participants were prospectively recruited as part of the dHCP, an observational,
cross-sectional Open Science programme approved by the UK National Research Ethics
Authority (14/L0O/1169). Written consent was obtained from all participating families prior to
imaging. We selected 416 structural-functional datasets acquired at TEA from the 2019
(second) dHCP data release. Only infants scanned at 37-44.5 weeks PMA in term-born infants,
or 37-43.5 weeks PMA in preterm-born infants, were considered for inclusion. One infant was

included twice due to two datasets being acquired at different ages; only the second dataset was
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used. Thirty-five infants were excluded due to a history of neurodevelopmental disorder in a
first-degree relative. Forty-three were excluded due to motion (see Functional data pre-
processing). The final study population therefore consisted of 337 infants, divided into three
groups: term-born infants scanned at 43.5-44.5 weeks PMA, who were used to define the
normative set of RSNs and excluded from all subsequent subject-level analyses (i); and the
remaining infants scanned at 37-43.5 weeks PMA, including both term-born (ii) and preterm-
born (iii) infants (Table 1).

MR data acquisition

Neuroimaging was acquired in a single scan session for each infant at the Evelina Newborn
Imaging Centre, Evelina London Children’s Hospital, using a 3-Tesla Philips Achieva system
(Philips Medical Systems, Best, The Netherlands). All infants were scanned without sedation

in a scanner environment optimized for safe and comfortable neonatal imaging, including a
dedicated transport system, positioning device and a customized 32-channel receive coil, with a
custom-made acoustic hood (Hughes et al., 2017). MR-compatible ear putty and earmuffs were
used to provide additional acoustic noise attenuation. Infants were fed, swaddled and
comfortably positioned in a vacuum jacket prior to scanning to promote natural sleep. All scans
were supervised by a neonatal nurse and/or paediatrician who monitored heart rate, oxygen

saturation and temperature throughout the scan.

High-temporal-resolution BOLD fMRI optimized for neonates was acquired over 15 minutes 3
seconds (2300 volumes) using a multislice gradient-echo echo planar imaging (EPI) sequence
with multiband excitation (multiband factor 9). Repetition time (TR) was 392 milliseconds,
echo time (TE) was 38 milliseconds, flip angle was 34°, and the acquired spatial resolution was
2.15 mm isotropic (Price et al., 2015). For registration of the fMRI data, high-resolution T1-
and T2-weighted anatomical imaging was also acquired in the same scan session, with a spatial
resolution of 0.8 mm isotropic (T1w: field of view 145 x 122 x 100 mm, TR 4795 ms; T2w:
field of view 145 x 145 x 108 mm, TR 12000 ms, TE 156 ms).

Functional data pre-processing

Data were pre-processed using an in-house pipeline optimized for neonatal imaging and
specifically developed for the dHCP, detailed in Fitzgibbon et al. (2019). In brief, susceptibility
dynamic distortion together with intra- and inter-volume motion effects were corrected in each
subject using a bespoke pipeline including slice-to-volume and rigid-body registration
(Andersson et al., 2018; Andersson et al., 2017; Andersson et al., 2001; Andersson et al.,
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2003). In order to regress out signal artifacts related to head motion, cardiorespiratory
fluctuations and multiband acquisition (Salimi-Khorshidi et al., 2014), 24 extended rigid-body
motion parameters were regressed together with single-subject ICA noise components
identified with the FSL FIX tool (Oxford Centre for Functional Magnetic Resonance Imaging
of the Brain’s Software Library, version 5.0). Denoised data were registered into T2w native
space using boundary-based registration (Greve and Fischl, 2009) and non-linearly registered
to a standard space based in a weekly template from the dHCP volumetric atlas (Schuh et al.,
2018) using a diffeomorphic multimodal (T1/T2) registration (Avants et al., 2008).

While the fMRI preprocessing pipeline for the dHCP (Fitzgibbon et al., 2019) addresses the
potential problem of head motion in rs-fMRI data (Power et al., 2012; Satterthwaite et al.,
2012), motion is also a surrogate marker of the arousal state of the infant, which interacts with
the underlying neural activity (Denisova, 2019; Whitehead et al., 2018). To address this issue,
we opted for a conservative approach consisting in the selection of a continuous sub-sample of
the data (~70%) with lowest motion for each subject, and excluding those subjects with a high
level of motion from further analyses. Specifically, volumes with DVARS (the root mean
square intensity difference between successive volumes) higher than 1.5 IQR above the 75"
centile, after motion and distortion correction, were considered as motion outliers (Fitzgibbon
et al., 2019); within each acquired dataset (2300 volumes), the continuous set of 1600 volumes
with the minimum number of motion-outlier volumes was identified, and the dataset cropped
accordingly for all subsequent analyses. Subjects with more than 160 motion-outlier volumes
(10% of the cropped dataset) were excluded entirely. This allowed us to minimise the potential
effect of different states of arousal even after appropriately denoising the data. The number of
motion-outlier volumes remaining in the cropped dataset was recorded for each subject and
included as a covariate in all subsequent regression analyses. The median number of motion-
outlier volumes in the term-born group was 49.5 (IQR 27-86.5) and in the preterm-born group
was 34 (IQR 12-83) (p = 0.052, Mann-Whitney U test).

Functional data analysis
Group-level network definition

We first defined the normative set of RSNs by group ICA in 24 healthy term-born infants
scanned at 43.5-44.5 weeks PMA. These subjects were excluded from all subsequent
regression analyses. Probabilistic group ICA by temporal concatenation across subjects was
carried out using FSL MELODIC (Beckmann and Smith, 2004). The ICA dimensionality was

set at 30, representing a pragmatic balance between robustness and interpretability (as in
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(Toulmin et al., 2015)). The output comprised 30 group-average spatial maps representing 30
independent components. The maps were visually inspected and each component manually
labelled as RSN or noise, following guidelines in Fitzgibbon et al. (2019).

Subject-level analyses

We next regressed the group-level spatial maps into the subject-level 4D space-time datasets of
the subjects scanned at 37-43.5 weeks PMA (248 term-born, 65 preterm-born). Specifically,
the group-level spatial maps (including both RSN signal and artifact components) were used to
generate subject-specific versions of the spatial maps and associated time series using dual
regression (Nickerson et al., 2017). First, for each subject, the set of group-level RSN spatial
maps was regressed (as spatial regressors in a multiple regression) into the subject's 4D space-
time dataset. This resulted in a set of subject-specific time series, one per group-level spatial
map. Next, those timeseries were regressed (as temporal regressors, again in a multiple
regression) into the same 4D dataset, resulting in a set of subject-specific spatial maps, one per
group-level spatial map.

We then performed cross-subject analysis using general linear models (GLM) to test for the
effects of group (term vs. preterm birth, sex) and continuous variables (GA at birth, PMA at
scan) on the subject-level spatial maps, including the number of motion-compromised volumes
as a nuisance covariate. A further group-level analysis was conducted in which term-born
infants were separated into weekly bins according to their PMA at scan, enabling group-
average maps of functional connectivity at each week of brain development to be generated.
For this we entered data from the 20 subjects in each bin with the lowest number of postnatal
days of life at time of scan, to maximise similarity between groups for meaningful visual

comparison.

To further quantify longitudinal changes in within-network functional connectivity, we
analysed the relationship between PMA at scan and a derived parameter we term ‘core network
strength’. This measure was determined for each RSN for each subject by masking the RSN-
specific spatial map (the output of stage two of dual regression) by the corresponding group-
ICA network template thresholded at Z > 3, then calculating the mean B parameter value
(regression coefficient) within the masked image. The partial Spearman’s correlation between
core network strength and PMA at scan was calculated in term-born infants while controlling
for sex and motion, and a GLM was used to test for group differences in core network strength

between term and preterm infants while controlling for PMA at scan, sex and motion.
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Statistical tests

Voxelwise statistical tests were implemented in FSL randomise (Winkler et al., 2014) using
threshold-free cluster enhancement (Smith and Nichols, 2009) with 5000 permutations. As all
contrasts were two-tailed, family-wise error-rate (FWE) corrected (for multiple comparisons
across voxels) p-values less than 0.025 were accepted as significant. Correlation and GLM
analyses of core network strength were implemented in Python 3.7 with pingouin 0.2.9 and
statsmodels.api 0.10.1.

Anatomical localisation and data visualisation

Results were localised in the standard space using an in-house adaptation of the neonatal
version (Shi et al., 2011) of the AAL atlas (Tzourio-Mazoyer et al., 2002), projected to the 40-
week high-resolution neonatal dHCP template (Schuh et al., 2018).

Data were displayed using FSLeyes for planar visualisation and Connectome Workbench for

cortical surface visualisation.

Data availability

The dHCP is an open-access project. The imaging and collateral data used in this study were
included in the 2019 (second) dHCP data release, which can be downloaded by registering at

https://data.developingconnectome.org/

Results

Resting-state networks

Eleven RSNs were identified by group ICA in a sub-sample of term-born infants scanned
between 43.5 and 44.5 weeks PMA (n =24), who were excluded from any further analyses.
Five RSNs included primary motor or sensory cortical areas and were categorised as primary
networks (Fig. 1A): medial motor, lateral motor, somatosensory, auditory and visual. The
remaining six were categorised as association networks (Fig. 1C): motor association (including
the premotor and supplementary motor areas), temporoparietal (including Broca’s area and the
extended Wernicke’s area), posterior parietal (including the precuneus and posterior cingulate

cortices), frontoparietal (including the frontal, supplementary and parietal eye fields),
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prefrontal and visual association. The full cortical surface parcellation is provided in
Supplementary Fig. S1 and the Supplementary Video.
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Figure 1. Resting-state networks identified by group independent component analysis.
Spontaneous BOLD activity patterns (RSNs) derived from group ICA in 24 term-born infants
scanned at 43.5-44.5 weeks PMA. Panels: Example axial, coronal, and sagittal slices for
meaningful spatial patterns in primary (A) and association (C) RSNs, thresholded at Z > 3 and
overlaid on a T1 structural template, displayed in radiological convention. Centre: Functional
parcellation of the brain using a ‘winner-takes-all” approach based on the RSNs from group
ICA. RSNs were spatially smoothed and thresholded at Z > 1 prior to determination of the
‘winning’ RSN at each voxel. The resulting volume was projected to the midthickness cortical
surface using enclosed (nearest neighbour) volume-to-surface mapping, here displayed on the
pial surface of an individual subject scanned at 42 weeks PMA and viewed from the dorsal (B)
and left lateral (D) aspects.

Effect of postmenstrual age at scan

To characterise normal maturation in functional connectivity from 37-43.5 weeks in term-born
infants, we analysed the association between previously calculated RSNs independently

regressed to each subject and PMA at scan, while controlling for sex and motion. Brain regions
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showing increased connectivity with older PMA at scan were identified in four RSN, all
association networks (Fig. 2). There were no brain tissue regions showing negative association.
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Figure 2. Effect of postmenstrual age at scan on functional connectivity. Brain regions
showing increased functional connectivity with older PMA at scan in term-born infants
scanned at 37-43.5 weeks PMA. Example sagittal, coronal, and axial slices for meaningful
spatial patterns in four RSNs are shown, overlaid on a T1 structural template and displayed in
radiological convention. T-statistic maps were thresholded at p < 0.025 (FWE corrected).
White lines represent the outlines of the group-ICA RSNs, thresholded at Z > 3.

To further illustrate maturational changes in functional connectivity, we produced spatial maps
of average network structure in term-born infants categorised into weekly groups according to

their PMA at scan, while controlling for sex and motion (Fig. 3).
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Figure 3. Weekly maturation in functional network structure at term-equivalent age. Group-
average t-statistic maps of functional connectivity in term-born infants scanned at 37.5-42.5
weeks PMA, grouped into weekly bins by PMA at scan. Within each bin 20 subjects with the
lowest postnatal age at time of scan were selected. Example axial slices for meaningful spatial
patterns in primary (A) and association (B) RSNs are shown, overlaid on a T1 structural
template and displayed in radiological convention. Results were thresholded at p < 0.05 (FWE
corrected).
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To further quantify longitudinal changes in within-network functional connectivity, we
analysed the relationship between PMA at scan and a derived parameter we term ‘core network
strength’, defined as the mean 3 parameter value in each subject’s RSN-specific spatial map
(the outputs of stage two of dual regression) after masking by the corresponding group-ICA
network template thresholded at Z > 3. Three RSNs showed a positive partial correlation
between PMA at scan and core network strength (Fig. 4). There were no RSNs with negative

correlation.
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Figure 4. Relationship between postmenstrual age at scan and core network strength.
Relationship between the residuals (after correcting for sex and motion) for PMA at scan and
core network strength in term-born infants scanned at 37-43.5 weeks PMA. Core network
strength was defined as the mean [§ parameter value in each subject’s RSN-specific spatial map
after masking by the corresponding group-ICA network template thresholded at Z > 3. Partial
Spearman’s correlation coefficients and associated p values are displayed for the three RSNs
significant at p < 0.025. Example axial, coronal and sagittal slices for meaningful spatial
patterns in the corresponding group-1CA network templates are shown for reference.
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Effect of Sex

To determine differences in functional connectivity between male and female infants we
analysed this as a group effect, while controlling for GA at birth, PMA at scan and motion.
Female infants showed increased connectivity of inferior occipito-temporal regions (including
the posterior fusiform gyrus) within the visual association network (Fig. 5).

Figure 5. Increased functional connectivity in the visual association network in female
infants. Brain regions showing increased functional connectivity within the visual association
RSN in female infants. Example axial, sagittal and coronal slices for meaningful spatial
patterns are shown, overlaid on a T1 structural template and displayed in radiological
convention. T-statistic maps were thresholded at p < 0.025 (FWE corrected). White lines
represent the outline of the group-1CA visual association network, thresholded at Z > 3.

Effect of preterm birth

To determine differences in functional connectivity between term- and preterm-born infants we
first analysed this as a group effect, while controlling for PMA at scan, sex and motion. There
was extensive impairment of functional connectivity across all RSNs in preterm-born infants;
uncorrected core network strength was 23-41% reduced relative to term-born infants across the
11 networks (all p < 0.001, independent samples t-tests) (Fig. 6). Conversely, preterm-born
infants showed increased connectivity of the bilateral superior parietal lobule within the lateral
motor network (Fig. 6). The association of younger GA at birth with impaired functional
connectivity was replicated across all networks in a separate analysis in which GA at birth was
entered as a continuous variable, indicating a dose-dependent effect of prematurity on

functional connectivity (Supplementary Fig. S2).
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Figure 6. Effect of preterm birth on functional connectivity. Group differences in functional
connectivity between term- and preterm-born infants scanned at 37-43.5 weeks PMA. Coloured
t-statistic maps thresholded at p < 0.025 (FWE corrected) show brain regions with reduced
(blue) or increased (red-yellow) connectivity in preterm-born infants. Example sagittal,
coronal, and axial slices for meaningful spatial patterns within each RSN are shown, overlaid
on a T1 structural template and displayed in radiological convention. White lines represent the
outlines of the group-ICA RSNs, thresholded at Z > 3. Boxplots show group differences in core
network strength after regressing out PMA at scan, sex and motion. Core network strength was
defined as the mean g parameter value in each subject’s RSN-specific spatial map after
masking by the corresponding group-1CA network template thresholded at Z > 3. P-values
relate to the term vs. preterm group contrast in a GLM in which core network strength was the
dependent variable and PMA at scan, sex and motion were controlled for as nuisance
covariates.
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Discussion

In this large cohort of newborn infants we provide detailed characterization of the maturational
trajectories of normal functional network development at TEA, and show that the early
developmental disruption imposed by preterm birth is associated with significant and

widespread alterations in functional connectivity.

Network architecture and maturation in term-born infants

Overall we find a robust, modular, symmetrical functional organisation of the brain at TEA.
Our results confirm and further elucidate the primary-to-higher-order maturational sequence of

RSN development.

Primary networks

We identified five primary RSNs (Fig. 1A) which showed adult-like topology from the earliest
ages studied (Fig. 3A) and no significant change in architecture from 37-43.5 weeks PMA.
Primary, unimodal RSNs mature earlier than higher-order networks in the preterm brain (Doria
et al., 2010; Liu et al., 2008; Smyser et al., 2010); our finding of an adult-like configuration of
primary RSNs at TEA is in agreement with previous studies at this age (Doria et al., 2010;
Fransson et al., 2011; Fransson et al., 2009; Fransson et al., 2007; Gao et al., 2014; Gao et al.,
2015; Smyser et al., 2010). The precise localisation of sensorimotor networks along the central
sulcus is especially striking in our data, even in the youngest infants studied (Fig. 3A).
Determination of somatotopic maps in primary sensorimotor cortical areas occurs as early as
mid-third trimester equivalent age, with similar stimulation response to adults observed by
TEA (Allievi et al., 2015; Dall’Orso et al., 2018). We additionally observed a significant
increase in core network strength within the somatosensory network from 37-43.5 weeks PMA
(Fig. 4), possibly reflecting increasing integration of secondary somatosensory cortex at this
age (Allievi et al., 2015), and/or increased influence of ex-utero experience on this network.
The bilateral insula (Fig. 1A) and thalamus (Supplementary Fig. S1C) were strongly
connected within the medial motor network, consistent with previous studies finding strong
thalamocortical connectivity in sensorimotor networks (Smyser et al., 2016; Toulmin et al.,
2015).

Association networks
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We identified six RSNs representing higher-order association networks (Fig. 1C). Using
quantitative (Fig. 2, Fig. 4) and qualitative (Fig. 3) methods, we found modest expansions in
both the spatial extent and core temporal coherence of higher-order association networks from
37-43.5 weeks PMA. To our knowledge this is the first time these changes have been
quantified over this brief but developmentally critical period. The heterogeneous timing of
functional network development, in which primary networks mature earlier than higher-order
association networks, can be related to parallel changes in brain structure (reviewed in (Keunen
et al., 2017). Structural connectivity of the cortex begins with thalamic connections to frontal,
auditory, visual and somatosensory cortices at 24-32 weeks gestation, while long-range
cortico-cortical connections are not established until 33-35 weeks (reviewed in (Dubois et al.,
2016; Kostovic and Jovanov-Milosevic, 2006). The same sequence is later repeated in cortical
myelination, with the “primordial” sensorimotor and visual cortices histologically more mature
at the time of birth (Flechsig, 1901). White matter tracts connecting to these regions, such as
the corticospinal tract and optic radiation, are also the first to mature later in infancy (reviewed
in (Dubois et al., 2014). The structural and functional ontogeny mirrors the observed
behavioural sequence of developmental ‘milestones’ in young children, in which sensorimotor,
auditory and visual competencies are acquired before higher-order cognitive functions (Keunen
et al., 2017).

The two RSNs showing greatest increase in intrinsic connectivity (core network strength) from
37-43.5 weeks PMA were the posterior parietal network and visual association network (Fig.
4). The former encompasses the medial precuneus and posterior cingulate cortices
(Supplementary Fig. S1C), an area of emerging functional connectivity at TEA (Gao et al.,
2009). In adulthood these regions are a prominent component of the DMN, leading some to
label infant RSNs encompassing these as DMN precursors (Doria et al., 2010; Fransson et al.,
2009; Fransson et al., 2007; Smyser et al., 2010; Smyser et al., 2016). However, the mature
DMN also incorporates distinct modules in the anterior cingulate/medial prefrontal cortex,
orbitofrontal cortex, lateral temporal cortex and hippocampus (reviewed in (Raichle, 2015)).
We observe no temporal involvement in the posterior parietal network, and only sparse frontal
involvement, specifically at the right anterior cingulate (Supplementary Fig. S1C) and
bilateral orbitofrontal cortex (Supplementary Fig. S1E). This dominant posterior hub with
limited frontoparietal connectivity bears more similarity to the adult DMN under anaesthesia
(Amico et al., 2014; Bonhomme et al., 2016). Overall we find support for the concept of
fragmented local modules prevailing over long-range integration at this period of development,
preceding the emergence of a full analogue of the adult DMN at 6-12 months of age (Gao et
al., 2014; Gao et al., 2015; Gao et al., 2009).
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The visual association network comprises lateral occipital (Supplementary Fig. S1D) and
inferotemporal (Supplementary Fig. S1B) cortices; regions which contribute to the ventral
stream of visual processing, in which simple features coded by primary visual cortex are
transformed into higher-level representations of objects, invariant of their size, rotation and
position, enabling downstream object recognition and semantic processing (DiCarlo et al.,
2012; Goodale and Milner, 1992). It was therefore not surprising to find significant growth in
the strength of this network from 37-43.5 weeks PMA (Fig. 2, Fig. 4), a period in which
infants are increasingly exposed to, and able to resolve, objects in the visual field (Dubowitz et
al., 1983). Furthermore, after controlling for differences in age, we found increased
connectivity within this network of inferotemporal regions including the posterior fusiform
gyrus in female infants (Fig. 5). The fusiform is sensitive to complex visual stimuli including
faces and facial expressions (Li et al., 2019); in the corresponding region of the macaque brain
the code determining face cell firing was recently deciphered (Chang and Tsao, 2017). In
humans, reduced functional connectivity of the fusiform face area is associated with
developmental prosopagnosia (Lohse et al., 2016). The sex difference in functional
connectivity we have identified in this region is especially interesting in the context of
behavioural data in which female neonates, compared to males, show increased preference for
looking at faces (Connellan et al., 2000). A recent study comparing neonates at high familial
risk for autism with controls also identified a significant group difference in this region
(Ciarrusta et al., 2019). Further investigation of functional connectivity in the ventral stream
and social-cognitive development might elucidate mechanisms for sex differences in this

domain.

Two RSNs comprised segregated (i.e. non-contiguous) brain regions revealing anatomically
meaningful patterns of functional connectivity. The temporoparietal network (Fig. 1D)
connects a posterior module encompassing the extended Wernicke’s area to a smaller anterior
module corresponding to Broca’s area. Integrated structural-functional analysis in adults
showed this network is facilitated by the arcuate fasciculus (O'Muircheartaigh and Jbabdi,
2018). The instatement of a putative ‘language network’ in early infancy is supported by
stimulus-fMRI showing activation of these regions in response to speech (Dehaene-Lambertz
et al., 2002; Dehaene-Lambertz et al., 2006). The frontoparietal network (Fig. 1B) connects the
frontal, supplementary and parietal eye fields, with close resemblance to the adult dorsal
attention network (\Vossel et al., 2014). Ocular control relies on widespread white-matter
connections between cortical and subcortical regions, the microstructural integrity of which
correlates with visual fixation behaviour in the neonate (Stjerna et al., 2015). Striatal

projections of the frontal and supplementary eye fields converge upon the caudate nucleus
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(Parthasarathy et al., 1992); we found a positive association between older PMA at scan and
functional connectivity of the caudate nucleus within this frontoparietal network (Fig. 2),
consistent with active development of the oculomotor corticostriatal system at this age.

Impact of preterm birth

Preterm birth confers a high risk of neurodevelopmental impairment (Bhutta et al., 2002;
Marlow et al., 2005; Saigal and Doyle, 2008) and psychiatric illness in later life (Nosarti et al.,
2012). Pervasive deficiencies and delays in structural brain maturation have been identified in
preterm infants scanned at TEA, even in those without focal brain injury, including
macrostructural differences in tissue volume and gyrification (Ball et al., 2012; Kapellou et al.,
2006; Keunen et al., 2012; Shimony et al., 2016) and microstructural alterations in both grey
and white matter (Ball et al., 2013b; Bouyssi-Kobar et al., 2018a; Krishnan et al., 2007). The
overall structural network architecture appears unchanged, with preservation or even abnormal
strengthening of the rich-club organisation of highly connected cortical hubs, at the expense of
diminished peripheral connectivity and specific disruptions to thalamocortical, cortical-
subcortical and short-distance corticocortical connectivity (Ball et al., 2014; Ball et al., 2013a;
Ball et al., 2015; Batalle et al., 2017; Lee et al., 2019).

Widespread impairment of functional connectivity

Now we show that, similar to structural connectivity, functional connectivity is profoundly
affected by preterm birth. We found striking deficiencies in within-network connectivity across
the full range of RSNs studied (Fig. 6), also replicated as a dose-dependent relationship, such
that increased exposure to prematurity (younger GA at birth) was associated with decreased
functional connectivity (Supplementary Fig. S2). This suggests that although functional
connectivity increases across the preterm period (Cao et al., 2016; Doria et al., 2010; Smyser et
al., 2010; Smyser et al., 2016; van den Heuvel et al., 2015), it does not reach a normal
configuration at TEA. Instead there appears to be an aberrant developmental trajectory, in
which connections between brain regions are reconfigured by premature exposure to the
extrauterine environment. Graph theoretical approaches have shown global network measures
of clustering, integration and modularity at TEA are all reduced in preterm infants compared to
full-term controls (Bouyssi-Kobar et al., 2019; Scheinost et al., 2016). Hypothesis-driven seed-
based approaches have identified disrupted thalamocortical connectivity (Smyser et al., 2010;
Toulmin et al., 2015), consistent with structural disruption of the same (Ball et al., 2015). In

our data-driven, whole-brain ICA approach, the main finding was globally reduced within-
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network functional connectivity. Primary and association RSNs appeared to be similarly
affected, in contrast to the findings of Smyser and colleagues, who also employed whole-brain
correlation mapping, and found primary RSNs were less affected by prematurity (Smyser et al.,
2016). This discrepancy may be due to differences in approach to RSN definition (adult-
derived RSNs), network mapping (node-based) and inclusion criteria for the preterm group (<
30 weeks GA at birth). In another study investigating preterm-at-term infants with whole-brain
ICA, the method comprised identification of 71 nodes by ICA followed by subject-specific
network estimation and selection of discriminatory edges between cases and controls using
machine-learning classifiers (Ball et al., 2016). Connections to frontal and basal ganglia nodes
were overrepresented among the discriminatory edges, indicating altered connectivity in
preterm infants. Taken together, these different approaches provide complementary
demonstrations of spatially widespread impaired RSN coherence in the preterm-at-term brain.

Modulation of parieto-motor connectivity

In the context of brain-wide deficiencies in functional connectivity in preterm-at-term infants,
it was notable that there was also increased functional connectivity of the bilateral superior
parietal lobule (Brodmann area 5) within the lateral motor network, both when prematurity was
evaluated as a group effect (Fig. 6) and as a continuous variable (Supplementary Fig. S2).
The lateral motor network corresponds approximately to the primary somatotopic regions
serving the upper limb, hand and face (Fig. 1D). Ex-utero experience during the preterm period
strongly influences the development of sensorimotor networks: bilateral functional responses in
the perirolandic cortices to stimulation of the wrist increases with postnatal age, even after
controlling for GA at birth (Allievi et al., 2015). Interestingly, connectivity with superior
parietal regions appears to occur as a feature of normal development in the lateral motor
network in older term-born infants (Fig. 3A). Area 5 comprises the somatosensory association
cortex which integrates visual and somatosensory inputs to encode limb configuration in space,
enabling coordinated movements within the immediate environment (Graziano et al., 2000;
Mountcastle et al., 1975). It is intuitive that connectivity of area 5 with lateral motor cortex
could be highly dependent upon ex-utero experience, given the natural constraints upon limb
movement and visuomotor integration in utero. We propose therefore that the experience of
premature exposure to the extrauterine environment modulates the normal development of

parieto-motor connectivity, leading to an abnormal increase in connectivity at TEA.

Previous studies have identified increased functional connectivity of certain primary cortical
regions in preterm-at-term infants compared to controls, specifically the lateral postcentral

gyrus with the thalamus (Toulmin et al., 2015) and regional connectivity within occipital/visual
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networks (Bouyssi-Kobar et al., 2018a). This may occur at the expense of connectivity in other
brain areas, and can persist into later life; analysis of language networks in preterm children
scanned at 12 years of age showed increased connectivity with primary sensorimotor areas, but
reduced connectivity with higher-order frontal areas (Schafer et al., 2009). Relatively
conserved topology of core structural networks has been reported in preterm-born babies
(Batalle et al., 2017), persisting into later childhood and adulthood (Fischi-Gomez et al., 2016;
Karolis et al., 2016). Disruption of the normal balance of sensorimotor development may have
persisting effects on later motor and cognitive development. In the mature brain, the superior
parietal lobule supports not only the smooth execution of motor plans (Simon et al., 2002) but
also more abstract visuospatial functions such as mental rotation (Gogos et al., 2010). The
aberrant parietal connectivity we have identified at TEA could therefore be a prelude to
specific difficulties occurring with high prevalence in preterm children, such as developmental
coordination disorder (Caravale et al., 2019; Davis et al., 2007; Dewey et al., 2019; Kashiwagi
et al., 2009; Wilson et al., 2017), inattention and intellectual impairment (reviewed in (Rogers
et al., 2018). Long-term follow up of the study population at school age will be required to
confirm this hypothesis.

Limitations

The customised neonatal imaging system for the dHCP includes a close-fitting head coil sized
specifically for the neonatal head, thus providing exceptional signal-to-noise at the cortical
surface (Hughes et al., 2017). This bias towards surface-proximate sources is compounded by
the use of highly accelerated multiband EPI (Fitzgibbon et al., 2019). As such, this has likely
resulted in greater sensitivity to detect correlated signal fluctuations in the cerebral cortex
compared to deeper sources such as the thalamus, basal ganglia and cerebellum. This may
explain the relatively sparse involvement of subcortical regions in the identified RSNs (Fig.
1A, 1C). Thalamocortical and cerebellar functional connectivity may be better appreciated
with seed-based methods (Herzmann et al., 2018; Toulmin et al., 2015). We also noted sparse
involvement of inferior frontotemporal regions, even at Z > 1 (Supplementary Fig. S1B). The
dHCP functional pipeline includes advanced distortion-correction techniques (Fitzgibbon et al.,
2019), but some signal loss related to air/tissue and bone/tissue interfaces in this vicinity
cannot be fully excluded. However, this may also reflect biological reality in these brain
regions, which are the least myelinated at birth (Flechsig, 1901) and so may be the least able to

participate in long-range phase-synchronous activity.
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In this study we used a dense sampling strategy at TEA to infer longitudinal change in RSN,
but each infant was scanned on only one occasion. GA at birth and PMA at scan were strongly
correlated within the term-born group, which complicates the interpretation of these
longitudinal analyses. Furthermore, as some potentially relevant neonatal characteristics such
as intracranial volume and postnatal days of life, are intrinsically associated to some of our
variables of interest (i.e., postmenstrual age at scan, sex, gestational age at birth), it is difficult
to disentangle their relative contributions to our results.

The optimised fMRI dHCP pipeline includes multiple steps to control for motion and
physiological confounds, thus minimising data loss. However, while well-fed babies tend to
fall asleep during the scan, subject motion is inherently correlated with the arousal and sleep
state of the baby, which may have an effect in the reconstructed RSNs (Horovitz et al., 2009).
While our stringent control for high motion during the scan will minimise the potential effect
of subject differences in arousal and sleep state, the specific measure that should be used as a
surrogate to model arousal state is unclear. Future studies using simultaneous EEG-fMRI could
help to better understand the effect of different sleep states on RSNs. Differences in arousal in
the scanner between infants and adults should also be considered when comparing RSN
topology between these groups (Mitra et al., 2017). Our use of infants scanned at 43.5-44.5
PMA to define the group-1CA components may have missed some sources of structured noise
occurring predominantly at younger ages, such as CSF signal in the cavum septum pellucidum.
More fundamentally, the extent to which BOLD signal might be confounded by
cerebrovascular factors differing between preterm- and term-born infants (Bouyssi-Kobar et
al., 2018b) remains open to debate. Some of the important temporal dynamics in functional
networks may be missed by rs-fMRI, which predominantly identifies activity at < 0.1Hz
(Cordes et al., 2001). Complementary approaches such as EEG may help to address this
(Arichi et al., 2017; Mehrkanoon, 2019).

Conclusion

Brain development occurs in a pre-programmed and spatially heterogeneous progression,
modulated by environmental influence. As such, we observed different trajectories for different
neural systems, obeying a generally primary-to-higher-order sequence of maturation. At TEA
we find already instated a complete set of adult-analogous unimodal RSNs corresponding to
primary sensorimotor, visual and auditory cortices, with relatively little change from 37-43.5
weeks PMA. In contrast, association RSNs appear fragmented and incomplete compared to the

adult repertoire, and are undergoing active maturation at this time. Connectivity within the
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visual association network in particular is highly associated with age, likely as a result of
postnatal environmental experience, but also modified by the sex of the infant. Preterm birth is
associated with profoundly reduced functional connectivity across all RSNs, but also with
augmentation of parieto-motor connectivity, with possible implications for understanding
certain neurocognitive sequelae of prematurity. In future we may be able to positively
modulate RSN development in prematurity via targeted environmental manipulations (Lordier
et al., 2019). Preterm birth is best conceptualised as a developmental perturbation which
reconfigures, rather than simply diminishes, the organisation of functional brain networks.
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Figure Legends

Figure 1. Resting-state networks identified by group independent component analysis.
Spontaneous BOLD activity patterns (RSNs) derived from group ICA in 24 term-born infants
scanned at 43.5-44.5 weeks PMA. Panels: Example axial, coronal, and sagittal slices for
meaningful spatial patterns in primary (A) and association (C) RSNs, thresholded at Z > 3 and
overlaid on a T1 structural template, displayed in radiological convention. Centre: Functional
parcellation of the brain using a ‘winner-takes-all’ approach based on the RSNs from group
ICA. RSNs were spatially smoothed and thresholded at Z > 1 prior to determination of the
‘winning’ RSN at each voxel. The resulting volume was projected to the midthickness cortical
surface using enclosed (nearest neighbour) volume-to-surface mapping, here displayed on the
pial surface of an individual subject scanned at 42 weeks PMA and viewed from the dorsal (B)
and left lateral (D) aspects.

Figure 2. Effect of postmenstrual age at scan on functional connectivity. Brain regions
showing increased functional connectivity with older PMA at scan in term-born infants
scanned at 37-43.5 weeks PMA. Example sagittal, coronal, and axial slices for meaningful
spatial patterns in four RSNs are shown, overlaid on a T1 structural template and displayed in
radiological convention. T-statistic maps were thresholded at p < 0.025 (FWE corrected).
White lines represent the outlines of the group-ICA RSNs, thresholded at Z > 3.

Figure 3. Weekly maturation in functional network structure at term-equivalent age.
Group-average t-statistic maps of functional connectivity in term-born infants scanned at 37.5-
42.5 weeks PMA, grouped into weekly bins by PMA at scan. Within each bin 20 subjects with
the lowest postnatal age at time of scan were selected. Example axial slices for meaningful
spatial patterns in primary (A) and association (B) RSNs are shown, overlaid on a T1 structural
template and displayed in radiological convention. Results were thresholded at p < 0.05 (FWE

corrected).

Figure 4. Relationship between postmenstrual age at scan and core network strength.
Relationship between the residuals (after correcting for sex and motion) for PMA at scan and
core network strength in term-born infants scanned at 37-43.5 weeks PMA. Core network
strength was defined as the mean § parameter value in each subject’s RSN-specific spatial map
after masking by the corresponding group-ICA network template thresholded at Z > 3. Partial
Spearman’s correlation coefficients and associated p values are displayed for the three RSNs
significant at p < 0.025. Example axial, coronal and sagittal slices for meaningful spatial

patterns in the corresponding group-1CA network templates are shown for reference.
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Figure 5. Increased functional connectivity in the visual association network in female
infants. Brain regions showing increased functional connectivity within the visual association
RSN in female infants. Example axial, sagittal and coronal slices for meaningful spatial
patterns are shown, overlaid on a T1 structural template and displayed in radiological
convention. T-statistic maps were thresholded at p < 0.025 (FWE corrected). White lines
represent the outline of the group-1CA visual association network, thresholded at Z > 3.

Figure 6. Effect of preterm birth on functional connectivity. Group differences in functional
connectivity between term- and preterm-born infants scanned at 37-43.5 weeks PMA.
Coloured t-statistic maps thresholded at p < 0.025 (FWE corrected) show brain regions with
reduced (blue) or increased (red-yellow) connectivity in preterm-born infants. Example
sagittal, coronal, and axial slices for meaningful spatial patterns within each RSN are shown,
overlaid on a T1 structural template and displayed in radiological convention. White lines
represent the outlines of the group-ICA RSN, thresholded at Z > 3. Boxplots show group
differences in core network strength after regressing out PMA at scan, sex and motion. Core
network strength was defined as the mean § parameter value in each subject’s RSN-specific
spatial map after masking by the corresponding group-1CA network template thresholded at
Z > 3. P-values relate to the term vs. preterm group contrast in a GLM in which core network
strength was the dependent variable and PMA at scan, sex and motion were controlled for as

nuisance covariates.

Supplementary Figure S1. Spontaneous BOLD activity patterns (RSNs) derived from group
ICA in 24 term-born infants scanned at 43.5-44.5 weeks PMA. RSN are expressed as a functional
parcellation of the brain using a ‘winner-takes-all’ approach based on the RSNs from group ICA.
RSNs were spatially smoothed and thresholded at Z > 1 prior to determination of the ‘winning’
RSN at each voxel. The resulting volume was projected to the midthickness cortical surface
using enclosed (nearest neighbour) volume-to-surface mapping, here displayed on the pial
surface of an individual subject scanned at 42 weeks PMA and viewed from the superior (A),

inferior (B), medial (C), lateral (D), anterior (D) and posterior (E) aspects.

Supplementary Figure S2. Effect of gestational age at birth in functional connectivity.
Association of functional connectivity and gestational age at birth (GA) in term- and preterm-
born infants scanned at 37-43.5 weeks PMA. Coloured t-statistic maps thresholded at p < 0.025
(FWE corrected) show connectivity in brain regions negatively (blue) or positively (red-
yellow) associated with gestational age at birth. Example sagittal, coronal, and axial slices for
meaningful spatial patterns within each RSN are shown, overlaid on a T1 structural template
and displayed in radiological convention. White lines represent the outlines of the group-ICA
RSNs, thresholded at Z > 3
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