

***In silico* candidate variant and gene identification using inbred mouse strains**

**3 Matthias Munz^{1*}, Mohammad Khodaygani^{1*}, Zouhair Aherrahrou², Hauke
4 Busch^{1#}, and Inken Wohlers^{1#}**

**5 ¹Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and
6 Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany**

7 ²Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany

8 *,#These authors contributed equally

9 Corresponding author:

10 Hauke Busch and Inken Wohlers

11 Email address: hauke.busch@uni-luebeck.de and inken.wohlers@uni-luebeck.de

12 ABSTRACT

**13 Mice are the most widely used animal model to study genotype to phenotype relationships. Inbred mice
14 are genetically identical, which eliminates genetic heterogeneity and makes them particularly useful for
15 genetic studies. Many different strains have been bred over decades and a vast amount of phenotypic
16 data has been generated. In addition, recently whole genome sequencing-based genome-wide genotype
17 data for many widely used inbred strains has been released. Here, we present an approach for *in silico*
18 fine-mapping that uses genotypic data of 37 inbred mouse strains together with phenotypic data provided
19 by the user to propose candidate variants and genes for the phenotype under study. Public genome-wide
20 genotype data covering more than 74 million variant sites is queried efficiently in real-time to provide
21 those variants that are compatible with the observed phenotype differences between strains. Variants
22 can be filtered by molecular consequences and by corresponding molecular impact. Candidate gene
23 lists can be generated from variant lists on the fly. Fine-mapping together with annotation or filtering of
24 results is provided in a Bioconductor package called MouseFM. In order to characterize candidate variant
25 lists under various settings, MouseFM was applied to two expression data sets across 20 inbred mouse
26 strains, one from neutrophils and one from CD4⁺ T cells. Fine-mapping was assessed for about 10,000
27 genes, respectively, and identified candidate variants and haplotypes for many expression quantitative
28 trait loci (eQTLs) reported previously based on these data. For albinism, MouseFM reports only one
29 variant allele of moderate or high molecular impact that only albino mice share: a missense variant in
30 the *Tyr* gene, reported previously to be causal for this phenotype. Performing *in silico* fine-mapping for
31 interfrontal bone formation in mice using four strains with and five strains without interfrontal bone results
32 in 12 genes. Of these, three are related to skull shaping abnormality. Finally performing fine-mapping for
33 dystrophic cardiac calcification by comparing 9 strains showing the phenotype with 8 strains lacking it, we
34 identify only one moderate impact variant in the known causal gene *Abcc6*. In summary, this illustrates
35 the benefit of using MouseFM for candidate variant and gene identification.**

36 INTRODUCTION

**37 Mice are the most widely used animal models in research. Several factors such as small size, low cost of
38 maintain, and fast reproduction as well as sharing disease phenotypes and physiological similarities with
39 human makes them one of the most favourable animal models (Uhl and Warner, 2015). Inbred mouse
40 strains are strains with all mice being genetically identical, i.e. clones, as a result of sibling mating for
41 many generations, which results in eventually identical chromosome copies. When assessing genetic
42 variance between mouse strains, the genome of the most commonly used inbred strain, called Black 6J
43 (C57BL/6J) is typically used as reference and variants called with respect to the Black 6J mouse genome.
44 For inbred mouse strains, variants are homozygous by design.**

**45 Grupe *et al.* in 2001 published impressive results utilizing first genome-wide genetic data for *in
46 silico* fine-mapping of complex traits, “reducing the time required for analysis of such [inbred mouse]
47 models from many months down to milliseconds” (Grupe *et al.*, 2001). Darvasi commented on this**

48 paper that in his opinion, the benefit of *in silico* fine-mapping lies in the analysis of monogenic traits
49 and in informing researchers prior to initiating traditional breeding-based studies. In 2007, with Cervino
50 *et al.*, he suggested to combine *in silico* mapping with expression information for gene prioritization
51 using 20,000 and 240,000 common variants, respectively (Cervino *et al.*, 2007). Since then, the general
52 approach has been applied successfully and uncovered a number of genotype-phenotype relationships
53 in inbred mice (Liao *et al.*, 2004; Zheng *et al.*, 2012; Hall and Lammert, 2017; Mulligan *et al.*, 2019).
54 Nonetheless, to the best of our knowledge, there is to date no tool publicly available that implements the
55 idea and which allows to analyze any phenotype of interest. Such a tool is particularly helpful now that
56 all genetic variation between all commonly used inbred strains is known at base pair resolution (Doran
57 *et al.*, 2016; Keane *et al.*, 2011).

58 At the same time, in the last years huge amounts of mouse phenotype data were generated, often
59 in collaborative efforts and systematically for many mouse strains. Examples are phenotyping under-
60 taken by the International Mouse Phenotyping Consortium (IMPC) (Dickinson *et al.*, 2016)(Meehan
61 *et al.*, 2017) or lately also the phenotyping of the expanded BXD family of mice (Ashbrook *et al.*,
62 2019). Data are publicly available in resources such as the mouse phenotype database (MPD) (Bogue
63 *et al.*, 2018) (<https://www.mousephenotype.org>) or the IMPC's website (Dickinson *et al.*,
64 2016) (<https://phenome.jax.org>). Other websites such as Mouse Genome Informatics (MGI)
65 (<http://www.informatics.jax.org>) or GeneNetwork (Mulligan *et al.*, 2017) (<https://www.genenetwork.org>) also house phenotype data together with web browser-based functionality to in-
66 vestigate genotype-phenotype relationships.
67

68 Several of the aforementioned resources allow to interactively query genotypes for user-selected inbred
69 mouse strains for input genes or genetic regions. None of them though provides the functionality to extract
70 genome-wide all variants that are different between two user-specified groups of inbred mouse strains.
71 Such information can be used for *in silico* fine-mapping and for the identification of candidate genes and
72 variants underlying a phenotypic trait. Further, such a catalog of genetic differences between groups of
73 strains is very useful prior to designing mouse breeding-based experiments e.g. for the identification or
74 fine-mapping of quantitative trait loci (QTL).

75 METHODS

76 **Fine-mapping approach**

77 Unlike previous approaches for *in silico* fine-mapping, here we are using whole genome sequencing-based
78 variant data and thus information on all single nucleotide variation present between inbred strains. Due to
79 the completeness of this variant data, we do not need to perform any statistical aggregation of variant data
80 over genetic loci, but simply report all variant sites with different alleles between two groups of inbred
81 strains. That is, we report all variant sites with alleles compatible with the observed phenotype difference,
82 see Figure 1 for an illustration.

83 In the case of a binary phenotype caused by a single variant, this causal variant is one of the variants
84 that has a different allele in those strains showing the phenotype compared to those strains lacking the
85 phenotype. This is the case for example for albinism and its underlying causal variant rs31191169, used
86 in Figure 1 for illustration and discussed later in detail.

87 This *in silico* fine-mapping approach can reduce the number of variants to a much smaller set of
88 variants that are compatible with a phenotype. The more inbred strains are phenotyped and used for
89 comparison, the more variants can be discarded because they are not compatible with the observed
90 phenotypic difference.

91 In the case of a quantitative phenotype, the fine-mapping can be performed in two ways. The first
92 option is to obtain genetic differences between strains showing the most extreme phenotypes. The second
93 option is binarization of the phenotype by applying a cutoff. Since in these cases allele differences of
94 variants affecting the trait may not be fully compatible with an artificially binarized phenotype, fine-
95 mapping is provided with an option that allows alleles of a certain number of strains to be incompatible
96 with the phenotype, see Figure 1 for an example.

97 Two important, related aspects need to be considered with respect to the *in silico* fine-mapping
98 approach implemented in MouseFM: (i) power and (ii) significance of the MouseFM candidates with
99 respect to chance findings. With respect to (i): The suggested fine-mapping approach considerably gains
100 power when increasing the number of inbred strains with phenotype data available. This is the result of an
101 explosion of the number of possible genotype combinations across the analyzed strains. Figure 2 shows

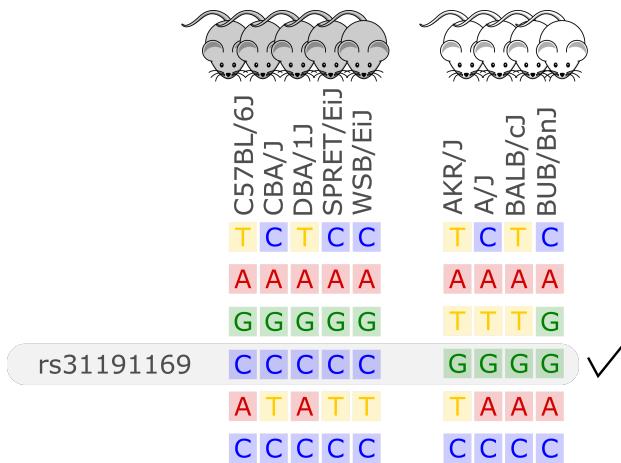


Figure 1. Illustration of the *in silico* fine-mapping approach. Every row represents a variant site and every column one inbred mouse strain. In this example, the phenotype is albinism and four strains are albinos and 5 are not. Displayed are six variants, but only one variant, rs31191169, has consistently different alleles between the albino and the other mice (G allele is here linked to albinism). With option thr2=1 in the MouseFM package, one discordant strain would be allowed in the second strain group and the variant in the row above rs31191169 would also be returned.

102 the number of possible genotype combinations. If, e.g. for a Mendelian trait, only one combination is
103 compatible with the phenotype, it is increasingly unlikely to observe this combination by chance when the
104 number of strains increases. Based on these theoretical considerations, we recommend using MouseFM
105 for more than 8 phenotyped strains. The number of actual genotype combinations for a given set of
106 inbred strains is less than the maximum depicted in Figure 2, because of kinship between strains. One
107 favourable extreme are two phenotypic groups of overall closely related strains: only few variants differ
108 between the groups and will be returned by MouseFM. The opposite extreme are groups of inbred strains
109 closely related only within their phenotypic group, but not across groups: many variants will differ and be
110 returned by MouseFM. With respect to (ii): For a low number of strains, a random split may result in
111 a similar number of candidate variants compared to a split by phenotype and false-positive candidates
112 increase. The important property is though, that in a split by phenotype, true positives will be among the
113 candidates and once the number of phenotyped strains increases, the candidate set becomes smaller while
114 still including true positives.

115 **Variant data**

116 The database used by this tool was created based on the genetic variants database of the Mouse Genomes
117 Project (<https://www.sanger.ac.uk/science/data/mouse-genomes-project>) of the
118 Wellcome Sanger Institute. It includes whole genome sequencing-based single nucleotide variants of
119 36 inbred mouse strains which have been compiled by Keane et al. (2011), see ftp://ftp-mouse.sanger.ac.uk/REL-1502-BAM/sample_accessions.txt for the accession code and sources.
120 This well designed set of inbred mouse strains for which genome-wide variant data is available in-
121 cludes classical laboratory strains (C3H/HeJ, CBA/J, A/J, AKR/J, DBA/2J, LP/J, BALB/cJ, NZO/HILtJ,
122 NOD/ShiLtJ), strains extensively used in knockout experiments (129S5SvEvBrd, 129P2/OlaHsd, 129S1/SvImJ,
123 C57BL/6NJ), strains used commonly for a range of diseases (BUB/BnJ, C57BL/10J, C57BR/cdJ, C58/J,
124 DBA/1J, I/LnJ, KK/HiJ, NZB/B1NJ, NZW/LacJ, RF/J, SEA/GnJ, ST/bJ) as well as wild-derived inbred
125 strains from different mouse taxa (CAST/EiJ, PWK/PhJ, WSB/EiJ, SPRET/EiJ, MOLF/EiJ). Genome se-
126 quencing, variant identification and characterization of 17 strains was performed by Keane et al. (2011) and
127 of 13 strains by Doran et al. (2016). We downloaded the single nucleotide polymorphism (SNP) VCF file
128 ftp://ftp-mouse.sanger.ac.uk/current_snps/mgp.v5.merged.snps_all.dbSNP142.vcf.gz. Overall, it contains 78,767,736 SNPs, of which 74,873,854 are autosomal. The chromosomal
129 positions map to the mouse reference genome assembly GRCm38 which is based on the Black 6J inbred
130 positions map to the mouse reference genome assembly GRCm38 which is based on the Black 6J inbred
131 positions map to the mouse reference genome assembly GRCm38 which is based on the Black 6J inbred

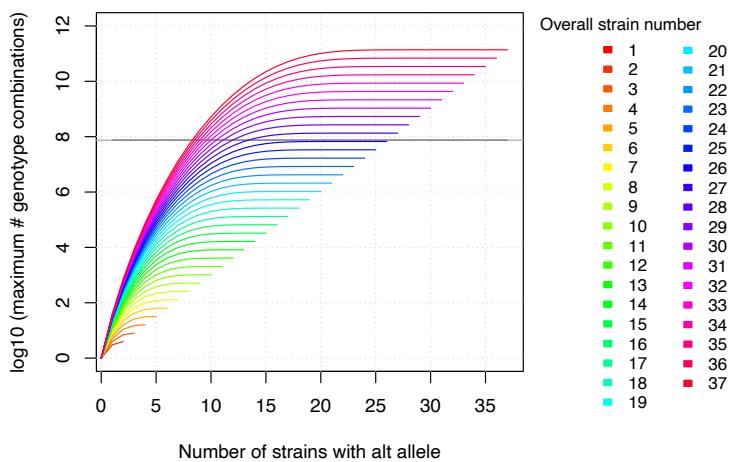


Figure 2. The maximum number of genotype combinations for an overall number of inbred strains n including up to k alternative alleles is given by $\sum_{k=1}^n \sum_{j=1}^k \binom{k}{j}$ and grows exponentially with respect to the overall number of inbred strains. Further the more evenly the alleles are divided among these overall strains, the larger the corresponding number of genotype combinations. The gray horizontal line denotes the number of variants in MouseFM ($n=74,480,058$). For more than 26 strains, the maximum number of genotype combinations are larger than the number of variant positions, and it is thus extremely unlikely to observe a phenotype-compatible combination by chance. For 10 and more strains, there is a maximum of more than 1000 genotype combinations, which reduces the probability of a phenotype-compatible combination already considerably. The number of actual, observed genotype combinations depends on the particular inbred strains used and, importantly, on their kinship.

132 mouse strain and by definition has no variant positions.

133 Low confidence, heterozygous, missing and multiallelic variants vary by strain, in sum they are
134 typically less than 5% of the autosomal variants (Figure 3, Suppl. Table 1). Exceptions are for example
135 the wild-derived inbred strains, for which variant genotypes excluded from the database reach a maximum
136 of 11.5% for SPRET/EiJ. There are four strains that are markedly genetically different from each other
137 and all remaining strains, these are the wild-derived, inbred strains CAST/EiJ, PWK/PhJ, SPRET/EiJ and
138 MOLF/EiJ, see Figure 3A. These four strains also show the highest number of missing and multiallelic
139 genotypes (Figure 3B and Suppl. Table 1).

140 **Database**

141 We re-annotated the source VCF file with Ensembl Variant Effect Predictor (VEP) v100 (McLaren
142 et al., 2016) using a Docker container image (<https://github.com/matmu/vep>). For real-time
143 retrieval of variants compatible with phenotypes under various filtering criteria, the variant data was
144 loaded into a MySQL database. The database consists of a single table with columns for chromosomal
145 locus, the reference SNP cluster ID (rsID), variant consequences based on a controlled vocabulary from
146 the sequence ontology (Eilbeck et al., 2005), the consequence categorization into variant impacts “HIGH”,
147 “MODERATE”, “LOW” or “MODIFIER” according to the Ensembl Variation database (Hunt et al., 2018)
148 (see Suppl. Table 2 for details) and the genotypes (NULL = missing, low confidence, heterozygous or
149 consisting of other alleles than reference or most frequent alternative allele; 0 = homozygous for the
150 reference allele, 1 = homozygous for alternative allele). SNPs with exclusively NULL genotypes were not
151 loaded into the database resulting in 74,480,058 autosomal SNVs that were finally added to our database.
152 These have been annotated with overall 120,927,856 consequences, i.e. on average every variant has
153 two annotated consequences. Figure 4 summarizes these consequence annotations stratified by impact;
154 description of consequences and annotation counts are provided in Suppl. Table 2. Most annotations
155 belong to impact category “MODIFIER” (99.4%). High impact annotations are rare, because they are
156 typically deleterious (0.013%). Annotation with moderate impact consequences comprise only missense,
157 i.e. protein sequence altering variants contributing 0.204%. Low impact consequences are slightly more
158 often annotated, amounting to 0.37%. Ensembl Variant Effect Predictor (VEP) annotation is loaded into
159 the MouseFM database to allow for quick candidate ranking and filtering, which otherwise could not be

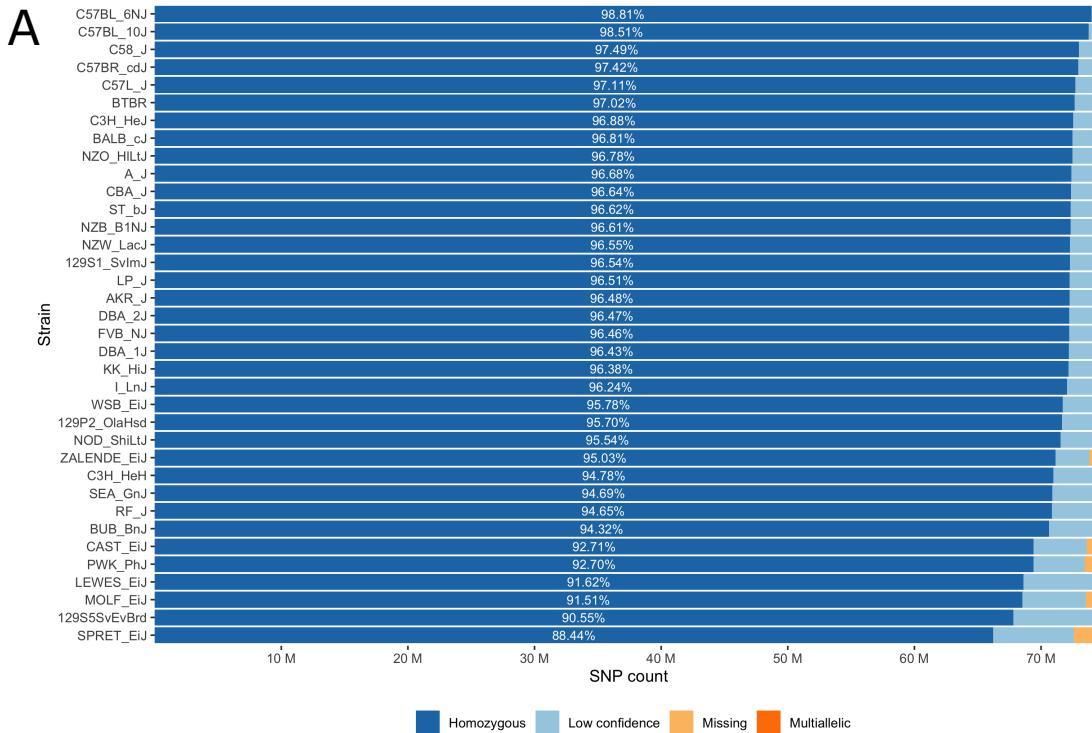
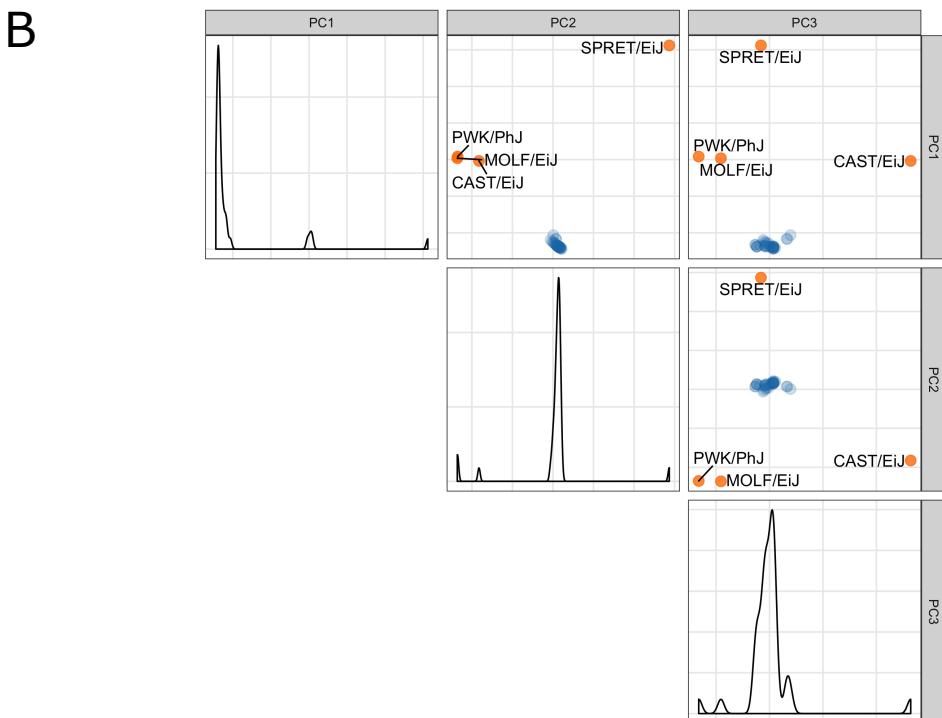


Figure 3. A) Inbred mouse strain autosomal SNP characteristics: The number of homozygous, low confidence, missing and multiallelic genotypes for 36 non-reference strains. For each strain, a SNP was checked for group membership in the order low confidence → missing → multiallelic → homozygous → heterozygous and was assigned to the first matching group. Since no SNP made it to the group with heterozygous genotypes it is not shown in the diagram. B) Principal component analysis shows four outlier inbred strains, CAST/EiJ, PWK/PhJ, SPRET/EiJ and MOLF/EiJ.

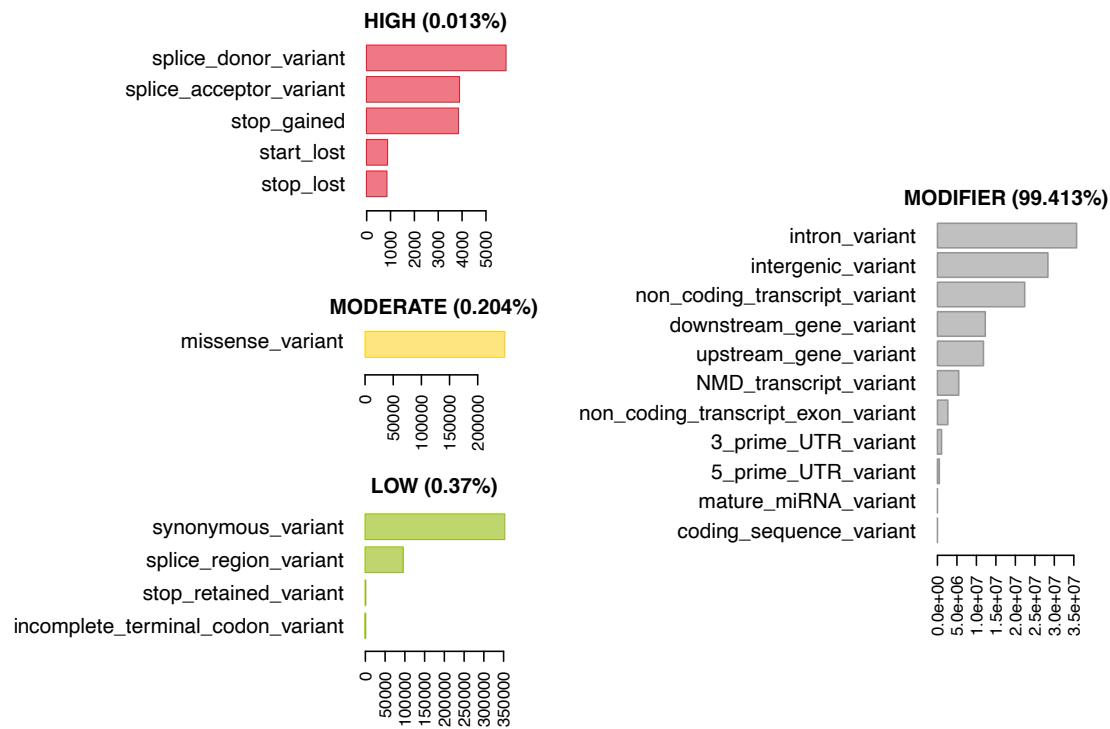


Figure 4. 74,480,058 variants have been annotated with 120,927,856 consequences. Shown here are the number of variants annotated with a given consequence, stratified by consequence impact (“HIGH”, “MODERATE”, “LOW”, “MODIFIER”). For description of consequence types see Suppl. Table 2. Both impact and consequence can be used for variant prioritization in MouseFM.

160 performed in real-time. Additionally, all candidate variants can be retrieved unfiltered and independent of
161 VEP predictions to allow for custom effect predictions, ranking and filtering.

162 **Bioconductor R package MouseFM**

163 Our fine-mapping approach was implemented as function `finemap` in the Bioconductor R package
164 “MouseFM”. Bioconductor is a repository for open software for bioinformatics.

165 The function `finemap` takes as input two groups of inbred strains and one or more chromosomal
166 regions on the GRCm38 assembly and returns a SNP list for which the homozygous genotypes are
167 discordant between the two groups. Optionally, filters for variant consequence and impacts as well
168 as a threshold for each group to allow for intra-group discordances can be passed. With function
169 `annotate_mouse_genes` the SNP list can further be annotated with overlapping genes. Optionally,
170 flanking regions can be passed.

171 The `finemap` function queries the genotype data from our backend server while function `annotate_mouse_genes`
172 queries the Ensembl Rest Service (Yates et al., 2015). The repository containing the backend of the
173 MouseFM tool, including the scripts of the ETL (Extract, transform, load) process and the webserver,
174 is available at <https://github.com/matmu/MouseFM-Backend>. Following the repositories’
175 instructions, users may also install the data base and server application on a local server.

176 The workflow and scripts to generate the MouseFM case study results are available at https://github.com/iwohlers/2020_mousefm_finemap.

178 **RESULTS**

179 In order to characterize fine-mapping results of MouseFM for different numbers of strains and when
180 applying the threshold parameter allowing phenotype-incompatible strains, we use a large gene expression
181 data set. Such a data set contains both (i) genes with clear binary expression phenotype, likely caused by
182 a *cis* variant or haplotype, (ii) cases with no or no binary difference in phenotype.

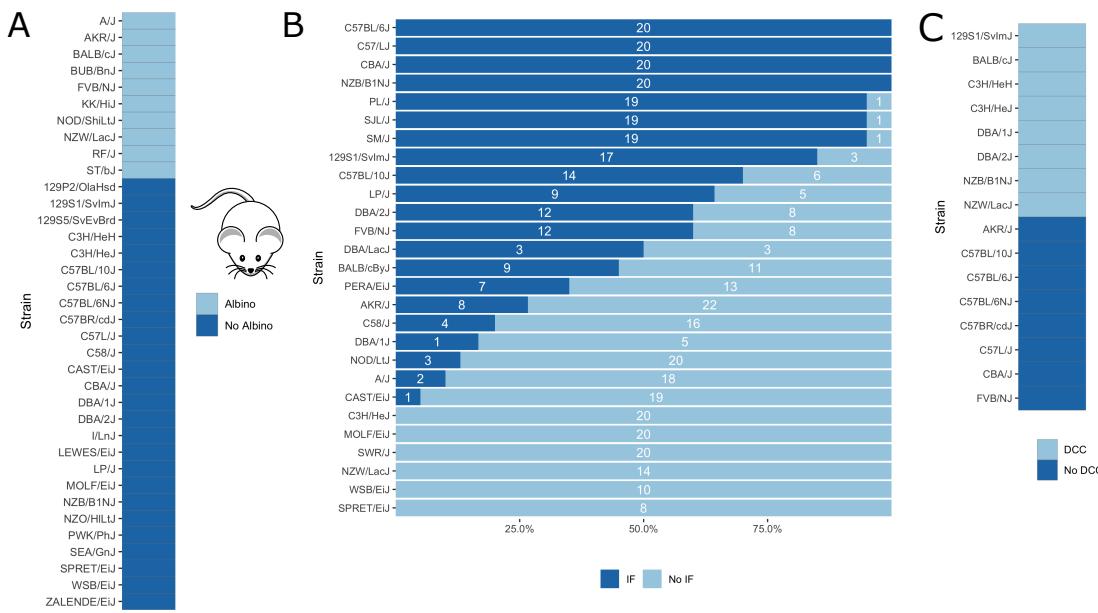


Figure 5. Visualization of mouse phenotypic data for which fine-mapping is performed. A) Binary inbred mouse strain phenotype albinism. All or no mice of a strain are albinos; shown here is which strain belongs to which group. B) Quantitative inbred mouse strain phenotype interfrontal bone (IF). Shown is the number of mice of the respective strain having an interfrontal bone (dark blue, IF) and not having an interfrontal bone (light blue, No IF). The interfrontal bone (IF) image is taken from (Zimmerman et al., 2019). C) Phenotype cardiac dystrophic calcification (DCC). Five inbred strains show the phenotype and five strains lack it.

183 Further, as a proof of concept, we applied our *in silico* fine-mapping approach on three additional
 184 phenotypes: albinism, interfrontal bone formation and dystrophic cardiac calcification. Phenotypic data is
 185 illustrated in Figure 5.

186 Expression quantitative trait loci

187 MouseFM is particularly useful for detecting variants for which a large, binary effect on a trait can be
 188 observed. As such, it is useful for providing candidate variants affecting gene expression, i.e. expression
 189 quantitative trait loci (eQTLs). Here, we use two expression data sets to illustrate this use case as well
 190 as to investigate aspects of MouseFM candidate variant lists for a large number of traits with different
 191 characteristics. We use neutrophil and CD4⁺ T cell expression data from Mostafavi et al. (2014) generated
 192 in the context of an eQTL study by the Immunological Genome Project. This data is available for 39
 193 inbred mouse strains of which 20 are part of MouseFM. Polymorphonuclear neutrophils (granulocytes)
 194 data is available under GEO Accession GSE60336, CD4⁺ T cell data under GSE60337. We downloaded
 195 the corresponding normalized expression data from <http://rstats.immgen.org/DataPage>.
 196 Of the strains used here, expression is assessed for two mice each, except for the Black 6J strain of which
 197 expression from five mice is available. Neutrophils further have expression for only one FVB mouse.

198 We read in the expression data and selected all mice from the 20 MouseFM strains (n=43 for CD4⁺
 199 T cell; n= 42 for neutrophils). As Mostafavi et al. (2014), we keep only expressed genes using a cutoff
 200 of 120 expression on the intensity scale. This way, we obtain n=10,676 transcripts from 9,136 genes for
 201 T cells and n=10,137 transcripts from 8,687 genes for neutrophils, which is comparable to the numbers
 202 assessed by Mostafavi et al. using all 39 strains. Mostafavi et al. (2014) applied a well-designed dedicated
 203 statistical approach to identify and interpret *cis* eQTLs. Briefly, they introduce a metric called TV metric
 204 to identify cases of bimodal gene expression and test SNPs within 1MB of the transcription start side using
 205 a linear regression model. For testing, genome-wide 96,779 SNPs were available in their study. Overall,
 206 Mostafavi et al. identified 1,111 joint T cell and neutrophil eQTLs using n=39 strains. Assessment with
 207 MouseFM uses about 74 million SNVs and can be considered somewhat an inverse approach to this

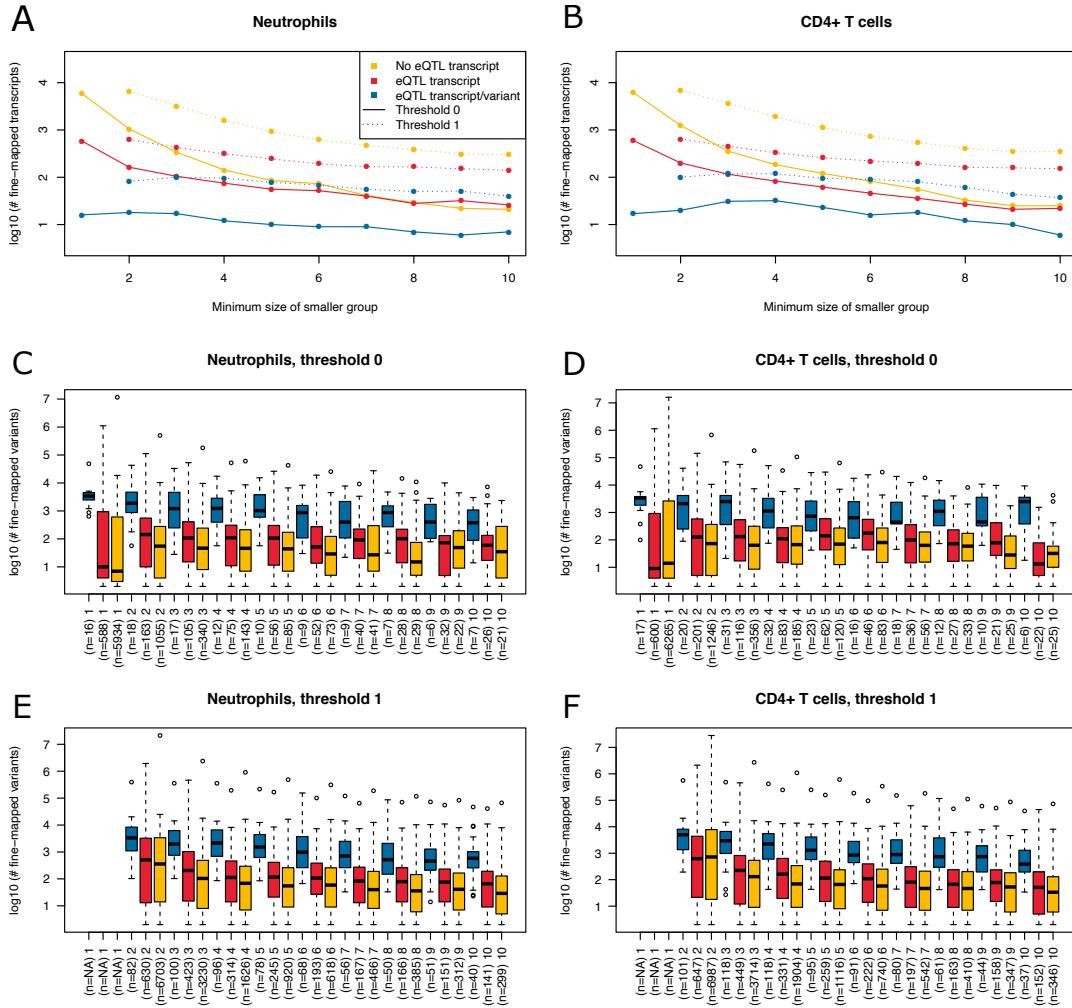


Figure 6. Summary of fine-mapping results for two expression data sets. Shown are numbers of fine-mapped transcripts and boxplots of fine-mapped variants for these transcripts. The subset of fine-mapped eQTL transcripts and variants according to Mostafavi et al. (2014) is colored blue, the subset of fine-mapped eQTL transcripts without reported eQTL variant according to Mostafavi et al. (2014) is colored red, remaining fine-mapped transcripts yellow. A) The number of successfully fine-mapped transcripts for the neutrophil data set on log 10 scale at different allowed minimum group sizes from 1 to 10. Solid lines denote a threshold of 0 incompatible strains, dashed lines denote a threshold of 1 of incompatible strains (thr1=1 and thr2=1). B) As A, but for CD4⁺ T cells. C) Boxplots of number of fine-mapped variants for the transcripts in A (threshold 0, i.e. solid lines) for different minimum group sizes from 1 to 10. D) As C, but for CD4⁺ T cells. E) Boxplots of number of fine-mapped variants for the transcripts in A (threshold 1, i.e. dashed lines and thr1=1 and thr2=1) for different minimum group sizes from 2 to 10. F) As E, but for CD4⁺ T cells.

208 previous eQTL study: It is not testing expression differences for a SNP, but it needs as input a separation
209 of strains into two expression groups and identifies all compatible variants, if available. In order to assess
210 characteristics of fine-mapped variants of MouseFM, we use a very crude group separation based on
211 ordering strains using the mouse with minimum expression of a strain and then splitting at the rank of
212 maximum difference between median expression of all mice of strains with smaller rank compared to all
213 mice of strains with larger rank. We run MouseFM for smaller group size from 1 to 10. According to
214 theoretical expectation (cf. Figure 2), the number of cases in which MouseFM returns candidate variants
215 that are entirely compatible with phenotype decreases with increasing group size, see Figure 6A for
216 neutrophils and Figure 6B for CD4⁺ T cells. At the same time, the proportion of previously detected
217 eQTL transcripts and the number of previously identified eQTL variants increases, because the probability
218 of chance findings decreases. The number of fine-mapped variants varies greatly, often being less than
219 ten but also often more than 100, see Figure 6C and Figure 6D, for neutrophils and T cells, respectively.
220 Cases, in which a previously reported eQTL variant was among the fine-mapped variants are comparably
221 few. In these cases, the number of fine-mapped variants tends to be larger than in those cases without a
222 previous eQTL variant among the fine-mapped variants. This effect is likely caused by the much smaller
223 number of variants assessed in the eQTL study – we observe a variant overlap only in cases of large
224 expression-compatible haplotypes. The overall number of fine-mapped variants is rather low, which may
225 be because of the crude group definition. We observe that group definition sometimes can be improved,
226 especially if expression is not clearly bimodal. Thus, it is useful to apply MouseFM with a threshold
227 allowing for a given number of incompatible strains. We here allow for one incompatible strain in the
228 first and one incompatible strain in the second group. This increases the number transcripts that could be
229 fine-mapped considerably, especially for large group sizes, see Figure 6A and Figure 6B. At the same
230 time, the distributions of number of fine-mapped variants are only marginally affected, see Figures 6E
231 and 6F. Nearly all high TV scores and/or high effect size and/or low *cis* eQTL p-value genes mentioned
232 by Mostafavi *et al.* can be fine-mapped (71 of 74), illustrating that MouseFM is particularly useful for
233 detecting variants and haplotypes that are compatible with binary, high effect phenotypes.

234 **Albinism**

235 Albinism is the absence of pigmentation resulting from a lack of melanin and is well-studied in mice (Beermann
236 et al., 2004). It is a monogenic trait caused by a mutation in the *Tyr* gene (Beermann et al., 2004),
237 which encodes for tyrosinase, an enzyme involved in melanin synthesis. The *Tyr* locus has been used
238 before for the validation of *in silico* fine-mapping approaches (Cervino et al., 2007). According to
239 the Jackson Laboratory website (<https://www.jax.org>), 10 of the 37 inbred mouse strains are
240 albinos with a *Tyr*^c genotype (<http://www.informatics.jax.org/allele/MGI:1855976>),
241 see Figure 5A.

242 Our algorithm resulted in only one genetic locus, which includes the *Tyr* gene; only 245 SNPs have
243 different alleles between the albino and non-albino inbred mouse strains, all located from 7:83,244,464
244 to 7:95,801,713 (GRCm38). When removing SNPs except those of moderate or high impact, only one
245 variant remains. This variant rs31191169 at position 7:87,493,043, with reference allele C and with
246 alternative allele G in the albino strains is the previously described causal missense SNP in the *Tyr* gene,
247 which results in a cysteine to serine amino acid change at position 103 of the tyrosine protein.

248 **Interfrontal bone**

249 Further, we applied our algorithm to the phenotype of interfrontal bone formation, a complex skeletal
250 trait residing between the frontal bones in inbred mice (Figure 5B). In some inbred mouse strains, the
251 interfrontal bone is present or absent in all mice, whereas other strains are polymorphic for this phenotype
252 suggesting that phenotypic plasticity is involved. Phenotypic data related to interfrontal bone has recently
253 been generated by Zimmerman *et al.* (Zimmerman et al., 2019) for 27 inbred mouse strains (Figure 5B).
254 They performed QTL mapping and identified four significant loci on chromosomes 4,7,11 and 14, the
255 same loci for interfrontal bone length and interfrontal bone width. For the genotyping, the authors use
256 the mapping and developmental analysis panel (MMDAP; Partners HealthCare Center for Personalized
257 Genetic Medicine, Cambridge, MA, United States), which contains 748 SNPs.

258 Of the available interfrontal bone data, we only used inbred strains for which all mice show the
259 same phenotype. This corresponds to four strains with interfrontal bone (C57BL/6J, C57L/J, CBA/J,
260 NZB/B1NJ) and five strains without interfrontal bone (C3H/HEJ, MOLF/EiJ, NZW/LacJ, WSB/EiJ,
261 SPRET/EiJ).

262 *In silico* fine-mapping resulted in 8,608 SNPs compatible with the observed interfrontal bone phenotype.
263 Of these, 15 showed moderate or high impact on 12 candidate genes, see Table 1. None of the loci
264 identified by us overlaps with the fine-mapping results reported by Zimmerman *et al.* Variant rs29393437
265 is located in the less well described isoform ENSMUST00000131519.1 of *Stac2*, one of two isoforms of
266 this gene. It is a missense variant, changing arginine (R) to histidine (H) which is at low confidence
267 predicted to be deleterious by SIFT. *Stac2* has been shown to negatively regulate formation of osteoclasts,
268 cells that dissect bone tissue (Jeong *et al.*, 2018). *Phf21* is expressed during ossification of cranial bones in
269 mouse early embryonic stages and has been linked to craniofacial development (Kim *et al.*, 2012). Gene
270 *Abcc6* is linked to abnormal snout skin morphology in mouse and abnormality of the mouth, high palate
271 in human according to MGI.

RSID	Position	Gene
rs32785405	1:36311963	<i>Arid5a</i>
rs27384937	2:92330761	<i>Phf21a</i>
rs32757904	7:45996764	<i>Abcc6</i>
rs32761224	7:46068710	<i>Nomo1</i>
rs32763636	7:46081416	<i>Nomo1</i>
rs13472312	7:46376829	<i>Myod1</i>
rs31674298	7:46443316	<i>Sergef</i>
rs31226051	7:49464827	<i>Nav2</i>
rs248206089	7:49547983	<i>Nav2</i>
rs45995457	9:86586988	<i>Me1</i>
rs29393437	11:98040971	<i>Stac2</i>
rs29414131	11:98042573	<i>Stac2</i>
rs251305478	11:98155926	<i>Med1</i>
rs27086373	11:98204403	<i>Cdk12</i>
rs27026064	11:98918145	<i>Cdc6</i>

Table 1. Moderate and high impact candidate variants and genes for interfrontal bone formation.

272 **Dystrophic cardiac calcification**

273 Physiological calcification takes place in bones, however pathologically calcification may affect the
274 cardiovascular system including vessels and the cardiac tissue. Dystrophic cardiac calcification (DCC) is
275 known as calcium phosphate deposits in necrotic myocardial tissue independently from plasma calcium
276 and phosphate imbalances. We previously reported the identification of four DCC loci Dyscalc1, Dyscalc2,
277 Dyscalc3, and Dyscalc4 on chromosomes 7, 4, 12 and 14, respectively using QTL analysis and composite
278 interval mapping (Ivandic *et al.*, 1996, 2001). The Dyscalc1 was confirmed as major genetic determinant
279 contributing significantly to DCC (Aherrahrou *et al.*, 2004). It spans a 15.2 Mb region on proximal
280 chromosome 7. Finally, chromosome 7 was further refined to a 80 kb region and *Abcc6* was identified
281 as causal gene (Meng *et al.*, 2007; Aherrahrou *et al.*, 2007). In this study we applied our algorithm to
282 previously reported data on 16 mouse inbred strains which were well-characterized for DCC (Aherrahrou
283 *et al.*, 2007). Eight inbred mouse strains were found to be susceptible to DCC (C3H/HeJ, NZW/LacJ,
284 129S1/SvImJ, C3H/HeH, DBA/1J, DBA/2J, BALB/cJ, NZB/B1NJ) and eight strains were resistant to
285 DCC (CBA/J, FVB/NJ, AKR/J, C57BL/10J, C57BL/6J, C57BL/6NJ, C57BR/cdJ, C57L/J). 2,003 SNPs
286 in 13 genetic loci were fine-mapped and found to match the observed DCC phenotype in the tested
287 16 DCC strains. Of these, 19 SNPs are moderate or high impact variants affecting protein amino acid
288 sequences of 13 genes localized in two chromosomal regions mainly on chromosome 7 (45.6-46.3 Mb)
289 and 11 (102.4-102.6 Mb), see Table 2. The SNP rs32753988 is compatible with the observed phenotype
290 manifestations and affects the previously identified causal gene *Abcc6*. This SNP has a SIFT score of 0.22,
291 the lowest score after two SNPs in gene *Sec1* and one variant in gene *Mamstr*, although SIFT predicts all
292 amino acid changes to be tolerated.

RSID	Position	Gene
rs46174746	7:45538428	<i>Plekha4</i>
rs49200743	7:45634990	<i>Rasip1</i>
rs32122777	7:45642384	<i>Mamstr</i>
rs215144870	7:45679109	<i>Sec1</i>
rs45768641	7:45679410	<i>Sec1</i>
rs51645617	7:45679423	<i>Sec1</i>
rs31997402	7:45725284	<i>Spaca4</i>
rs50753342	7:45794044	<i>Lmtk3</i>
rs50693551	7:45794821	<i>Lmtk3</i>
rs52312062	7:45798406	<i>Lmtk3</i>
rs49106901	7:45798469	<i>Emp3</i>
rs47934871	7:45918097	<i>Emp3</i>
rs32444059	7:45942897	<i>Ccdc114</i>
rs32753988	7:45998774	<i>Abcc6</i>
rs32778283	7:46219386	<i>Ush1c</i>
rs31889971	7:46288929	<i>Otog</i>
rs50613184	11:102456258	<i>Itga2b</i>
rs27040377	11:102457490	<i>Itga2b</i>
rs29383996	11:102605308	<i>Fzd2</i>

Table 2. Moderate and high impact candidate variants and genes for dystrophic cardiac calcification.

DISCUSSION

With MouseFM, we developed a novel tool for *in silico*-based genetic fine-mapping exploiting the extremely high homozygosity rate of inbred mouse strains for identifying new candidate SNPs and genes. Towards this, by including latest genotype data for 37 inbred mouse strains at a genome-wide scale derived from next generation sequencing, MouseFM uses the most detailed genetic resolution for this approach to date.

Using two large expression data sets, we apply MouseFM to more than 20,000 expression phenotypes of diverse distributions, using different minimum group sizes and also a setting allowing up to one incompatible strain per group. This results in a comprehensive characterization of MouseFM fine-mapped candidate variants. For low group sizes, many phenotype compatible variants can be detected, but these likely include many more false-positives than larger group sizes. For larger group sizes, previously identified eQTLs of Mostafavi et al. (2014) are much more often successfully fine-mapped than expected by chance, which is in line with theoretical expectation that a given 10/10 group split is rather unlikely to be observed by chance and thus indicates a causal genetic effect. The high number of non-eQTL transcripts that could be fine-mapped also at large group sizes could have several sources. Firstly, we analyze only 20 strains compared to 39 strains analyzed by Mostafavi et al. (2014), so likely not all of their eQTLs still apply to the smaller set of strains used here. Secondly, previously undetected eQTLs may occur in this smaller set. Lastly, these may indeed be chance findings unrelated to the expression phenotype, possibly confounded by strain kinship. Manual inspection would help to obtain a clearer picture on a case-by-case basis. Finally, the number of fine-mapped variants varies greatly, so in many cases, additional regulatory information will still be needed to refine the candidate variant list.

By re-analyzing previously published fine-mapping studies for albinism and dystrophic cardiac calcification, we could show that MouseFM is capable of re-identifying causal SNPs and genes. Re-analyzing a study on interfrontal bone formation (IF), however, did not show any overlap with the regions suggested in the original publication. Reasons might be complex nature of this phenotype and that the causal genetic factors are still largely unknown. With gene *Stac2* we suggest a new candidate gene possibly affecting interfrontal bone formation.

We selected cases studies particularly to validate that MouseFM can identify experimentally validated variants and genes, such as the *Tyr* variant rs31191169 for albinism and the gene *Abcc6* for dystrophic cardiac calcification. Variant rs31191169 is not a candidate variant and *Abcc6* not a candidate gene, both are experimentally validated to be causally linked to the phenotype. Only for traits that are polygenic, e.g.

324 for DCC (but not for albinism), other candidates returned by MouseFM may be linked to the phenotype,
325 but they do not need to, they are only candidates to follow up on. A different type of case study relates to
326 phenotype interfrontal bone formation, for which causal variants and genes are not known. Still, several
327 candidate genes returned by MouseFM are plausible to affect the phenotype. In summary, additional DCC
328 candidate loci beyond *Abcc6* as well as identified interfrontal bone loci are valid candidate loci. Whether
329 they are in fact affecting the phenotypes needs to be assessed in subsequent QTL and experimental studies.

330 MouseFM performs most powerful and without limitations for Mendelian traits such as albinism.
331 Secondly, it is most useful as a second-line after QTL mapping. MouseFM is specifically designed to
332 accommodate this fine-mapping setting by allowing to provide start and end of a region to be analyzed.
333 Complex traits and phenotypes with several large effect loci are much more challenging. For these,
334 binarizing the phenotype and performing fine-mapping with MouseFM is not guaranteed to include all
335 causal variants and genes (unlike Mendelian traits). For this reason, we added the option to allow for
336 a user-selected number of outlier strains, which have a genotype discordant with the phenotype. The
337 rationale behind this is identification of genomic regions which are more similar in those strains showing
338 the phenotype compared to strains not showing the phenotype. Lastly, another informative MouseFM
339 setting is the comparison of one phenotype-outlier strain with all other strains, which identifies genetic
340 variants specific to this strain. In summary, MouseFM users need to consider that for polygenic and
341 complex traits, the quality of variant and gene candidates obtained by MouseFM depends on the number
342 and effect size and direction of loci, the genetic diversity of mouse strains and the variability of the
343 phenotype.

344 A current limitation of MouseFM is that it does only consider single nucleotide variants. Loci
345 containing other types of genetic variation such as insertions, deletions or other, structural variants
346 affecting a phenotype may thus be missed. QTL studies would be able to identify these loci. This could
347 thus be a reason for QTLs without MouseFM support, such as we observe in our case study on interfrontal
348 bone formation. However, this constitutes not a methodological limitation, and other variant types can be
349 added to MouseFM. To date though, genome-wide identification of structural variants is less accurate and
350 less standard compared to small variant identification and thus structural variants are typically not yet
351 systematically analyzed in genetic studies.

352 We observe that frequently genetic loci identified by MouseFM fine-mapping consist of few or often
353 only a single variant compatible with the phenotype. For example, five of 13 fine-mapped DCC loci
354 comprise a single phenotype-pattern compatible variant and 3 loci comprise less than 10 variants. This
355 contradicts the expectation that commonly used mice strains differ by chromosomal segments comprising
356 several or many consecutive variants. Commonly used inbred strains display mosaic genomes with
357 sequences from different subspecific origins (Wade et al., 2002) and thus one may expect genomic regions
358 with high SNP rate. Fine-mapped loci comprising more phenotype-compatible variants are thus likely
359 more informative for downstream experiments. When allowing no phenotype outlier strain (i.e. $thr1=0$ and
360 $thr2=0$), in the case of DCC we identify only six such genetic loci that lend themselves for further exper-
361 imental fine-mapping (chr7:45,327,763-46,308,368 (811 compatible SNVs); chr7:54,894,131-54,974,260
362 (32 compatible SNVs); chr9:106,456,180-106,576,076 (170 SNVs); chr11:24,453,006-24,568,761 (40
363 compatible SNVs); chr11:102,320,611-102,607,848 (46 compatible SNVs); chr16:65,577,755-66,821,071
364 (890 compatible SNVs)).

365 CONCLUSIONS

366 We show here that *in silico* fine-mapping can effectively identify genetic loci compatible with the observed
367 phenotypic differences and prioritize genetic variants and genes for further consideration. This allows for
368 subsequent more targeted approaches towards identification of causal variants and genes using literature,
369 data integration, and lab and animal experiments. MouseFM *in silico* fine-mapping provides phenotype-
370 compatible genotypic differences between representatives of many common laboratory mice strains. These
371 genetic differences can be used to select strains which are genetically diverse at an indicated genetic locus
372 and which are thus providing additional information when performing phenotyping or breeding-based
373 mouse experiments. Thus *in silico* fine-mapping is a first, very efficient step on the way of unraveling
374 genotype-phenotype relationships.

375 During the implementation of MouseFM we have paid attention to a very easy handling. To perform a
376 fine-mapping study, our tool only requires binary information (e.g. case versus control) for a phenotype of
377 interest on at least two of the 37 available input strains. Further optional parameters can be set to reduce

378 or expand the search space. MouseFM can also be performed on quantitative traits as we showed in the
379 interfrontal bone example.

380 The general approach underlying MouseFM is straightforward and it has been successfully applied
381 before in a case-wise setting (Liao et al., 2004; Zheng et al., 2012; Hall and Lammert, 2017; Mulligan et al.,
382 2019) and also recently in a high-throughput manner (Arslan et al., 2020). Nonetheless, genome-wide
383 variant data of many inbred mouse strains is quite recently available, and this data is large and from
384 raw VCF format difficult to assess systematically for any phenotype of interest. MouseFM is the first
385 tool providing this functionality together with versatile query settings and subsequent variant and gene
386 annotation and filtering options.

387 In conclusion, MouseFM implements a conceptually simple, but powerful approach for *in silico*
388 fine-mapping including a very comprehensive SNV set of 37 inbred mouse strains. By re-analyzing
389 three fine-mapping studies, we demonstrate that MouseFM is a very useful tool for studying genotype-
390 phenotype relationships in mice. Further, by high-throughput analysis of all genes of two expression
391 datasets, we illustrate that MouseFM is capable of analyzing molecular phenotypes in a versatile and
392 high-throughput manner. This shows the potential of MouseFM to be used for large-scale analyses of
393 diverse phenotypes in future work.

394 **ACKNOWLEDGEMENTS**

395 MM, HB and IW acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Re-
396 search Foundation) under EXC 22167-390884018 and KFO 303 grant number BU 2487/3. All authors
397 acknowledge computational support from the OMICS compute cluster at the University of Lübeck.

398 **REFERENCES**

399 Aherrahrou, Z., Axtner, S. B., Kaczmarek, P. M., Jurat, A., Korff, S., Doehring, L. C., Weichenhan, D.,
400 Katus, H. A., and Ivandic, B. T. (2004). A locus on chromosome 7 determines dramatic up-regulation
401 of osteopontin in dystrophic cardiac calcification in mice. *The American Journal of Pathology*,
402 164(4):1379–1387.

403 Aherrahrou, Z., Doehring, L. C., Kaczmarek, P. M., Liptau, H., Ehlers, E.-M., Pomarino, A., Wrobel,
404 S., Götz, A., Mayer, B., Erdmann, J., and Schunkert, H. (2007). Ultrafine mapping of Dyscalc1 to
405 an 80-kb chromosomal segment on chromosome 7 in mice susceptible for dystrophic calcification.
406 *Physiological Genomics*, 28(2):203–212.

407 Arslan, A., Guan, Y., Chen, X., Donaldson, R., Zhu, W., Ford, M., Wu, M., Zheng,
408 M., Dill, D. L., and Peltz, G. (2020). High Throughput Computational Mouse
409 Genetic Analysis. *bioRxiv*. Publisher: Cold Spring Harbor Laboratory *eprint*:
410 <https://www.biorxiv.org/content/early/2020/09/01/2020.09.01.278465.full.pdf>.

411 Ashbrook, D. G., Arends, D., Prins, P., Mulligan, M. K., Roy, S., Williams, E. G., Lutz, C. M., Valenzuela,
412 A., Bohl, C. J., Ingels, J. F., McCarty, M. S., Centeno, A. G., Hager, R., Auwerx, J., Sen, S., Lu, L.,
413 and Williams, R. W. (2019). The expanded BXD family of mice: A cohort for experimental systems
414 genetics and precision medicine. *bioRxiv*, page 672097.

415 Beermann, F., Orlow, S. J., and Lamoreux, M. L. (2004). The Tyr (albino) locus of the laboratory
416 mouse. *Mammalian Genome: Official Journal of the International Mammalian Genome Society*,
417 15(10):749–758.

418 Bogue, M. A., Grubb, S. C., Walton, D. O., Philip, V. M., Kolishovski, G., Stearns, T., Dunn, M. H.,
419 Skelly, D. A., Kadakkuzha, B., TeHennepe, G., Kunde-Ramamoorthy, G., and Chesler, E. J. (2018).
420 Mouse Phenome Database: an integrative database and analysis suite for curated empirical phenotype
421 data from laboratory mice. *Nucleic Acids Research*, 46(D1):D843–D850.

422 Cervino, A. C. L., Darvasi, A., Fallahi, M., Mader, C. C., and Tsinoremas, N. F. (2007). An integrated *in*
423 *silico* gene mapping strategy in inbred mice. *Genetics*, 175(1):321–333.

424 Dickinson, M. E., Flenniken, A. M., Ji, X., Teboul, L., Wong, M. D., White, J. K., Meehan, T. F., Weninger,
425 W. J., Westerberg, H., Adissu, H., Baker, C. N., Bower, L., Brown, J. M., Caddle, L. B., Chiani, F., Clary,
426 D., Cleak, J., Daly, M. J., Denegre, J. M., Doe, B., Dolan, M. E., Edie, S. M., Fuchs, H., Gailus-Durner,
427 V., Galli, A., Gambadoro, A., Gallegos, J., Guo, S., Horner, N. R., Hsu, C.-W., Johnson, S. J., Kalaga,
428 S., Keith, L. C., Lanoue, L., Lawson, T. N., Lek, M., Mark, M., Marschall, S., Mason, J., McElwee,
429 M. L., Newbigging, S., Nutter, L. M. J., Peterson, K. A., Ramirez-Solis, R., Rowland, D. J., Ryder, E.,

430 Samocha, K. E., Seavitt, J. R., Selloum, M., Szoke-Kovacs, Z., Tamura, M., Trainor, A. G., Tudose, I., Wakana, S., Warren, J., Wendling, O., West, D. B., Wong, L., Yoshiiki, A., International Mouse Phenotyping Consortium, Jackson Laboratory, Infrastructure Nationale PHENOMIN, Institut Clinique de la Souris (ICS), Charles River Laboratories, MRC Harwell, Toronto Centre for Phenogenomics, Wellcome Trust Sanger Institute, RIKEN BioResource Center, MacArthur, D. G., Tocchini-Valentini, G. P., Gao, X., Fllice, P., Bradley, A., Skarnes, W. C., Justice, M. J., Parkinson, H. E., Moore, M., Wells, S., Braun, R. E., Svenson, K. L., de Angelis, M. H., Herault, Y., Mohun, T., Mallon, A.-M., Henkelman, R. M., Brown, S. D. M., Adams, D. J., Lloyd, K. C. K., McKerlie, C., Beaudet, A. L., Bućan, M., and Murray, S. A. (2016). High-throughput discovery of novel developmental phenotypes. *Nature*, 537(7621):508–514.

440 Doran, A. G., Wong, K., Flint, J., Adams, D. J., Hunter, K. W., and Keane, T. M. (2016). Deep genome sequencing and variation analysis of 13 inbred mouse strains defines candidate phenotypic alleles, private variation and homozygous truncating mutations. *Genome Biology*, 17(1):167.

443 Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L., Durbin, R., and Ashburner, M. (2005). The Sequence Ontology: a tool for the unification of genome annotations. *Genome Biology*, 6(5):R44.

445 Grupe, A., Germer, S., Usuka, J., Aud, D., Belknap, J. K., Klein, R. F., Ahluwalia, M. K., Higuchi, R., and Peltz, G. (2001). In silico mapping of complex disease-related traits in mice. *Science (New York, N.Y.)*, 292(5523):1915–1918.

448 Hall, R. A. and Lammert, F. (2017). Systems Genetics of Liver Fibrosis. *Methods in Molecular Biology (Clifton, N.J.)*, 1488:455–466.

450 Hunt, S. E., McLaren, W., Gil, L., Thormann, A., Schuilenburg, H., Sheppard, D., Parton, A., Armean, I. M., Trevanion, S. J., Fllice, P., and Cunningham, F. (2018). Ensembl variation resources. *Database: The Journal of Biological Databases and Curation*, 2018.

453 Ivandic, B. T., Qiao, J. H., Machleder, D., Liao, F., Drake, T. A., and Lusis, A. J. (1996). A locus on chromosome 7 determines myocardial cell necrosis and calcification (dystrophic cardiac calcinosis) in mice. *Proceedings of the National Academy of Sciences of the United States of America*, 93(11):5483–5488.

457 Ivandic, B. T., Utz, H. F., Kaczmarek, P. M., Aherrahrou, Z., Axtner, S. B., Klepsch, C., Lusis, A. J., and Katus, H. A. (2001). New Dyscalc loci for myocardial cell necrosis and calcification (dystrophic cardiac calcinosis) in mice. *Physiological Genomics*, 6(3):137–144.

460 Jeong, E., Choi, H. K., Park, J. H., and Lee, S. Y. (2018). STAC2 negatively regulates osteoclast formation by targeting the RANK signaling complex. *Cell Death and Differentiation*, 25(8):1364–1374.

462 Keane, T. M., Goodstadt, L., Danecek, P., White, M. A., Wong, K., Yalcin, B., Heger, A., Agam, A., Slater, G., Goodson, M., Furlotte, N. A., Eskin, E., Nellaker, C., Whitley, H., Cleak, J., Janowitz, D., Hernandez-Pliego, P., Edwards, A., Belgard, T. G., Oliver, P. L., McIntyre, R. E., Bhomra, A., Nicod, J., Gan, X., Yuan, W., van der Weyden, L., Steward, C. A., Bala, S., Stalker, J., Mott, R., Durbin, R., Jackson, I. J., Czechanski, A., Guerra-Assunção, J. A., Donahue, L. R., Reinholdt, L. G., Payseur, B. A., Ponting, C. P., Birney, E., Flint, J., and Adams, D. J. (2011). Mouse genomic variation and its effect on phenotypes and gene regulation. *Nature*, 477(7364):289–294.

469 Kim, H.-G., Kim, H.-T., Leach, N. T., Lan, F., Ullmann, R., Silahtaroglu, A., Kurth, I., Nowka, A., Seong, I. S., Shen, Y., Talkowski, M. E., Ruderfer, D., Lee, J.-H., Glotzbach, C., Ha, K., Kjaergaard, S., Levin, A. V., Romeike, B. F., Kleefstra, T., Bartsch, O., Elsea, S. H., Jabs, E. W., MacDonald, M. E., Harris, D. J., Quade, B. J., Ropers, H.-H., Shaffer, L. G., Kutsche, K., Layman, L. C., Tommerup, N., Kalscheuer, V. M., Shi, Y., Morton, C. C., Kim, C.-H., and Gusella, J. F. (2012). Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies. *American Journal of Human Genetics*, 91(1):56–72.

476 Liao, G., Wang, J., Guo, J., Allard, J., Cheng, J., Ng, A., Shafer, S., Puech, A., McPherson, J. D., Foernzler, D., Peltz, G., and Usuka, J. (2004). In silico genetics: identification of a functional element regulating H2-Ealpha gene expression. *Science (New York, N.Y.)*, 306(5696):690–695.

479 McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R. S., Thormann, A., Fllice, P., and Cunningham, F. (2016). The Ensembl Variant Effect Predictor. *Genome Biology*, 17(1):122.

481 Meehan, T. F., Conte, N., West, D. B., Jacobsen, J. O., Mason, J., Warren, J., Chen, C.-K., Tudose, I., Relac, M., Matthews, P., Karp, N., Santos, L., Fiegel, T., Ring, N., Westerberg, H., Greenaway, S., Sneddon, D., Morgan, H., Codner, G. F., Stewart, M. E., Brown, J., Horner, N., International Mouse Phenotyping Consortium, Haendel, M., Washington, N., Mungall, C. J., Reynolds, C. L.,

485 Gallegos, J., Gailus-Durner, V., Sorg, T., Pavlovic, G., Bower, L. R., Moore, M., Morse, I., Gao, X.,
486 Tocchini-Valentini, G. P., Obata, Y., Cho, S. Y., Seong, J. K., Seavitt, J., Beaudet, A. L., Dickinson,
487 M. E., Herault, Y., Wurst, W., de Angelis, M. H., Lloyd, K. C. K., Flenniken, A. M., Nutter, L. M. J.,
488 Newbigging, S., McKerlie, C., Justice, M. J., Murray, S. A., Svenson, K. L., Braun, R. E., White,
489 J. K., Bradley, A., Flliceck, P., Wells, S., Skarnes, W. C., Adams, D. J., Parkinson, H., Mallon, A.-M.,
490 Brown, S. D. M., and Smedley, D. (2017). Disease model discovery from 3,328 gene knockouts by
491 The International Mouse Phenotyping Consortium. *Nature Genetics*, 49(8):1231–1238.

492 Meng, H., Vera, I., Che, N., Wang, X., Wang, S. S., Ingram-Drake, L., Schadt, E. E., Drake, T. A., and
493 Lusis, A. J. (2007). Identification of Abcc6 as the major causal gene for dystrophic cardiac calcification
494 in mice through integrative genomics. *Proceedings of the National Academy of Sciences of the United
495 States of America*, 104(11):4530–4535.

496 Mostafavi, S., Ortiz-Lopez, A., Bogue, M. A., Hattori, K., Pop, C., Koller, D., Mathis, D., Benoist, C.,
497 and Immunological Genome Consortium (2014). Variation and genetic control of gene expression in
498 primary immunocytes across inbred mouse strains. *Journal of Immunology (Baltimore, Md.: 1950)*,
499 193(9):4485–4496.

500 Mulligan, M. K., Abreo, T., Neuner, S. M., Parks, C., Watkins, C. E., Houseal, M. T., Shapaker, T. M.,
501 Hook, M., Tan, H., Wang, X., Ingels, J., Peng, J., Lu, L., Kaczorowski, C. C., Bryant, C. D., Homanics,
502 G. E., and Williams, R. W. (2019). Identification of a Functional Non-coding Variant in the GABA A
503 Receptor $\alpha 2$ Subunit of the C57BL/6J Mouse Reference Genome: Major Implications for Neuroscience
504 Research. *Frontiers in Genetics*, 10:188.

505 Mulligan, M. K., Mozhui, K., Prins, P., and Williams, R. W. (2017). GeneNetwork: A Toolbox for
506 Systems Genetics. *Methods in Molecular Biology (Clifton, N.J.)*, 1488:75–120.

507 Uhl, E. W. and Warner, N. J. (2015). Mouse Models as Predictors of Human Responses: Evolutionary
508 Medicine. *Current Pathobiology Reports*, 3(3):219–223.

509 Wade, C. M., Kubokas, E. J., Kirby, A. W., Zody, M. C., Mullikin, J. C., Lander, E. S., Lindblad-Toh, K.,
510 and Daly, M. J. (2002). The mosaic structure of variation in the laboratory mouse genome. *Nature*,
511 420(6915):574–578.

512 Yates, A., Beal, K., Keenan, S., McLaren, W., Pignatelli, M., Ritchie, G. R. S., Ruffier, M., Taylor,
513 K., Vullo, A., and Flliceck, P. (2015). The Ensembl REST API: Ensembl Data for Any Language.
514 *Bioinformatics (Oxford, England)*, 31(1):143–145.

515 Zheng, M., Dill, D., and Peltz, G. (2012). A better prognosis for genetic association studies in mice.
516 *Trends in genetics: TIG*, 28(2):62–69.

517 Zimmerman, H., Yin, Z., Zou, F., and Everett, E. T. (2019). Interfrontal Bone Among Inbred Strains of
518 Mice and QTL Mapping. *Frontiers in Genetics*, 10:291.