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ABSTRACT12

Mice are the most widely used animal model to study genotype to phenotype relationships. Inbred mice
are genetically identical, which eliminates genetic heterogeneity and makes them particularly useful for
genetic studies. Many different strains have been bred over decades and a vast amount of phenotypic
data has been generated. In addition, recently whole genome sequencing-based genome-wide genotype
data for many widely used inbred strains has been released. Here, we present an approach for in silico
fine-mapping that uses genotypic data of 37 inbred mouse strains together with phenotypic data provided
by the user to propose candidate variants and genes for the phenotype under study. Public genome-wide
genotype data covering more than 74 million variant sites is queried efficiently in real-time to provide
those variants that are compatible with the observed phenotype differences between strains. Variants
can be filtered by molecular consequences and by corresponding molecular impact. Candidate gene
lists can be generated from variant lists on the fly. Fine-mapping together with annotation or filtering of
results is provided in a Bioconductor package called MouseFM. In order to characterize candidate variant
lists under various settings, MouseFM was applied to two expression data sets across 20 inbred mouse
strains, one from neutrophils and one from CD4+ T cells. Fine-mapping was assessed for about 10,000
genes, respectively, and identified candidate variants and haplotypes for many expression quantitative
trait loci (eQTLs) reported previously based on these data. For albinism, MouseFM reports only one
variant allele of moderate or high molecular impact that only albino mice share: a missense variant in
the Tyr gene, reported previously to be causal for this phenotype. Performing in silico fine-mapping for
interfrontal bone formation in mice using four strains with and five strains without interfrontal bone results
in 12 genes. Of these, three are related to skull shaping abnormality. Finally performing fine-mapping for
dystrophic cardiac calcification by comparing 9 strains showing the phenotype with 8 strains lacking it, we
identify only one moderate impact variant in the known causal gene Abcc6. In summary, this illustrates
the benefit of using MouseFM for candidate variant and gene identification.
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INTRODUCTION36

Mice are the most widely used animal models in research. Several factors such as small size, low cost of37

maintain, and fast reproduction as well as sharing disease phenotypes and physiological similarities with38

human makes them one of the most favourable animal models (Uhl and Warner, 2015). Inbred mouse39

strains are strains with all mice being genetically identical, i.e. clones, as a result of sibling mating for40

many generations, which results in eventually identical chromosome copies. When assessing genetic41

variance between mouse strains, the genome of the most commonly used inbred strain, called Black 6J42

(C57BL/6J) is typically used as reference and variants called with respect to the Black 6J mouse genome.43

For inbred mouse strains, variants are homozygous by design.44

Grupe et al. in 2001 published impressive results utilizing first genome-wide genetic data for in45

silico fine-mapping of complex traits, “reducing the time required for analysis of such [inbred mouse]46

models from many months down to milliseconds” (Grupe et al., 2001). Darvasi commented on this47
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paper that in his opinion, the benefit of in silico fine-mapping lies in the analysis of monogenic traits48

and in informing researchers prior to initiating traditional breeding-based studies. In 2007, with Cervino49

et al., he suggested to combine in silico mapping with expression information for gene prioritization50

using 20,000 and 240,000 common variants, respectively (Cervino et al., 2007). Since then, the general51

approach has been applied successfully and uncovered a number of genotype-phenotype relationships52

in inbred mice (Liao et al., 2004; Zheng et al., 2012; Hall and Lammert, 2017; Mulligan et al., 2019).53

Nonetheless, to the best of our knowledge, there is to date no tool publicly available that implements the54

idea and which allows to analyze any phenotype of interest. Such a tool is particularly helpful now that55

all genetic variation between all commonly used inbred strains is known at base pair resolution (Doran56

et al., 2016; Keane et al., 2011).57

At the same time, in the last years huge amounts of mouse phenotype data were generated, often58

in collaborative efforts and systematically for many mouse strains. Examples are phenotyping under-59

taken by the International Mouse Phenotyping Consortium (IMPC) (Dickinson et al., 2016)(Meehan60

et al., 2017) or lately also the phenotyping of the expanded BXD family of mice (Ashbrook et al.,61

2019). Data are publicly available in resources such as the mouse phenome database (MPD) (Bogue62

et al., 2018) (https://www.mousephenotype.org) or the IMPC’s website (Dickinson et al.,63

2016) (https://phenome.jax.org). Other websites such as Mouse Genome Informatics (MGI)64

(http://www.informatics.jax.org) or GeneNetwork (Mulligan et al., 2017) (https://www.65

genenetwork.org) also house phenotype data together with web browser-based functionality to in-66

vestigate genotype-phenotype relationships.67

Several of the aforementioned resources allow to interactively query genotypes for user-selected inbred68

mouse strains for input genes or genetic regions. None of them though provides the functionality to extract69

genome-wide all variants that are different between two user-specified groups of inbred mouse strains.70

Such information can be used for in silico fine-mapping and for the identification of candidate genes and71

variants underlying a phenotypic trait. Further, such a catalog of genetic differences between groups of72

strains is very useful prior to designing mouse breeding-based experiments e.g. for the identification or73

fine-mapping of quantitative trait loci (QTL).74

METHODS75

Fine-mapping approach76

Unlike previous approaches for in silico fine-mapping, here we are using whole genome sequencing-based77

variant data and thus information on all single nucleotide variation present between inbred strains. Due to78

the completeness of this variant data, we do not need to perform any statistical aggregation of variant data79

over genetic loci, but simply report all variant sites with different alleles between two groups of inbred80

strains. That is, we report all variant sites with alleles compatible with the observed phenotype difference,81

see Figure 1 for an illustration.82

In the case of a binary phenotype caused by a single variant, this causal variant is one of the variants83

that has a different allele in those strains showing the phenotype compared to those strains lacking the84

phenotype. This is the case for example for albinism and its underlying causal variant rs31191169, used85

in Figure 1 for illustration and discussed later in detail.86

This in silico fine-mapping approach can reduce the number of variants to a much smaller set of87

variants that are compatible with a phenotype. The more inbred strains are phenotyped and used for88

comparison, the more variants can be discarded because they are not compatible with the observed89

phenotypic difference.90

In the case of a quantitative phenotype, the fine-mapping can be performed in two ways. The first91

option is to obtain genetic differences between strains showing the most extreme phenotypes. The second92

option is binarization of the phenotype by applying a cutoff. Since in these cases allele differences of93

variants affecting the trait may not be fully compatible with an artificially binarized phenotype, fine-94

mapping is provided with an option that allows alleles of a certain number of strains to be incompatible95

with the phenotype, see Figure 1 for an example.96

Two important, related aspects need to be considered with respect to the in silico fine-mapping97

approach implemented in MouseFM: (i) power and (ii) significance of the MouseFM candidates with98

respect to chance findings. With respect to (i): The suggested fine-mapping approach considerably gains99

power when increasing the number of inbred strains with phenotype data available. This is the result of an100

explosion of the number of possible genotype combinations across the analyzed strains. Figure 2 shows101
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Figure 1. Illustration of the in silico fine-mapping approach. Every row represents a variant site and
every column one inbred mouse strain. In this example, the phenotype is albinism and four strains are
albinos and 5 are not. Displayed are six variants, but only one variant, rs31191169, has consistently
different alleles between the albino and the other mice (G allele is here linked to albinism). With option
thr2=1 in the MouseFM package, one discordant strain would be allowed in the second strain group and
the variant in the row above rs31191169 would also be returned.

the number of possible genotype combinations. If, e.g. for a Mendelian trait, only one combination is102

compatible with the phenotype, it is increasingly unlikely to observe this combination by chance when the103

number of strains increases. Based on these theoretical considerations, we recommend using MouseFM104

for more than 8 phenotyped strains. The number of actual genotype combinations for a given set of105

inbred strains is less than the maximum depicted in Figure 2, because of kinship between strains. One106

favourable extreme are two phenotypic groups of overall closely related strains: only few variants differ107

between the groups and will be returned by MouseFM. The opposite extreme are groups of inbred strains108

closely related only within their phenotypic group, but not across groups: many variants will differ and be109

returned by MouseFM. With respect to (ii): For a low number of strains, a random split may result in110

a similar number of candidate variants compared to a split by phenotype and false-positive candidates111

increase. The important property is though, that in a split by phenotype, true positives will be among the112

candidates and once the number of phenotyped strains increases, the candidate set becomes smaller while113

still including true positives.114

Variant data115

The database used by this tool was created based on the genetic variants database of the Mouse Genomes116

Project (https://www.sanger.ac.uk/science/data/mouse-genomes-project) of the117

Wellcome Sanger Institute. It includes whole genome sequencing-based single nucleotide variants of118

36 inbred mouse strains which have been compiled by Keane et al. (2011), see ftp://ftp-mouse.119

sanger.ac.uk/REL-1502-BAM/sample_accessions.txt for the accession code and sources.120

This well designed set of inbred mouse strains for which genome-wide variant data is available in-121

cludes classical laboratory strains (C3H/HeJ, CBA/J, A/J, AKR/J, DBA/2J, LP/J, BALB/cJ, NZO/HlLtJ,122

NOD/ShiLtJ), strains extensively used in knockout experiments (129S5SvEvBrd, 129P2/OlaHsd, 129S1/SvImJ,123

C57BL/6NJ), strains used commonly for a range of diseases (BUB/BnJ, C57BL/10J, C57BR/cdJ, C58/J,124

DBA/1J, I/LnJ, KK/HiJ, NZB/B1NJ, NZW/LacJ, RF/J, SEA/GnJ, ST/bJ) as well as wild-derived inbred125

strains from different mouse taxa (CAST/EiJ, PWK/PhJ, WSB/EiJ, SPRET/EiJ, MOLF/EiJ). Genome se-126

quencing, variant identification an characterization of 17 strains was performed by Keane et al. (2011) and127

of 13 strains by Doran et al. (2016). We downloaded the single nucleotide polymorphism (SNP) VCF file128

ftp://ftp-mouse.sanger.ac.uk/current_snps/mgp.v5.merged.snps_all.dbSNP142.129

vcf.gz. Overall, it contains 78,767,736 SNPs, of which 74,873,854 are autosomal. The chromosomal130

positions map to the mouse reference genome assembly GRCm38 which is based on the Black 6J inbred131
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Figure 2. The maximum number of genotype combinations for an overall number of inbred strains n
including up to k alternative alleles is given by ∑

n
k=1 ∑

k
j=1

(k
j

)
and grows exponentially with respect to the

overall number of inbred strains. Further the more evenly the alleles are divided among these overall
strains, the larger the corresponding number of genotype combinations. The gray horizontal line denotes
the number of variants in MouseFM (n=74,480,058). For more than 26 strains, the maximum number of
genotype combinations are larger than the number of variant positions, and it is thus extremely unlikely to
observe a phenotype-compatible combination by chance. For 10 and more strains, there is a maximum of
more than 1000 genotype combinations, which reduces the probability of a phenotype-compatible
combination already considerably. The number of actual, observed genotype combinations depends on
the particular inbred strains used and, importantly, on their kinship.

mouse strain and by definition has no variant positions.132

Low confidence, heterozygous, missing and multiallelic variants vary by strain, in sum they are133

typically less than 5% of the autosomal variants (Figure 3, Suppl. Table 1). Exceptions are for example134

the wild-derived inbred strains, for which variant genotypes excluded from the database reach a maximum135

of 11.5% for SPRET/EiJ. There are four strains that are markedly genetically different from each other136

and all remaining strains, these are the wild-derived, inbred strains CAST/EiJ, PWK/PhJ, SPRET/EiJ and137

MOLF/EiJ, see Figure 3A. These four strains also show the highest number of missing and multiallelic138

genotypes (Figure 3B and Suppl. Table 1).139

Database140

We re-annotated the source VCF file with Ensembl Variant Effect Predictor (VEP) v100 (McLaren141

et al., 2016) using a Docker container image (https://github.com/matmu/vep). For real-time142

retrieval of variants compatible with phenotypes under various filtering criteria, the variant data was143

loaded into a MySQL database. The database consists of a single table with columns for chromosomal144

locus, the reference SNP cluster ID (rsID), variant consequences based on a controlled vocabulary from145

the sequence ontology (Eilbeck et al., 2005), the consequence categorization into variant impacts “HIGH”,146

“MODERATE”, ‘LOW” or “MODIFIER” according to the Ensembl Variation database (Hunt et al., 2018)147

(see Suppl. Table 2 for details) and the genotypes (NULL = missing, low confidence, heterozygous or148

consisting of other alleles than reference or most frequent alternative allele; 0 = homozygous for the149

reference allele, 1 = homozygous for alternative allele). SNPs with exclusively NULL genotypes were not150

loaded into the database resulting in 74,480,058 autosomal SNVs that were finally added to our database.151

These have been annotated with overall 120,927,856 consequences, i.e. on average every variant has152

two annotated consequences. Figure 4 summarizes these consequence annotations stratified by impact;153

description of consequences and annotation counts are provided in Suppl. Table 2. Most annotations154

belong to impact category “MODIFIER” (99.4%). High impact annotations are rare, because they are155

typically deleterious (0.013%). Annotation with moderate impact consequences comprise only missense,156

i.e. protein sequence altering variants contributing 0.204%. Low impact consequences are slightly more157

often annotated, amounting to 0.37%. Ensembl Variant Effect Predictor (VEP) annotation is loaded into158

the MouseFM database to allow for quick candidate ranking and filtering, which otherwise could not be159
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A

B

Figure 3. A) Inbred mouse strain autosomal SNP characteristics: The number of homozygous, low
confidence, missing and multiallelic genotypes for 36 non-reference strains. For each strain, a SNP was
checked for group membership in the order low confidence → missing → multiallelic → homozygous →
heterozygous and was assigned to the first matching group. Since no SNP made it to the group with
heterozygous genotypes it is not shown in the diagram. B) Principal component analysis shows four
outlier inbred strains, CAST/EiJ, PWK/PhJ, SPRET/EiJ and MOLF/EiJ.

5/15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.09.04.282731doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.282731
http://creativecommons.org/licenses/by-nc-nd/4.0/


stop_lost

start_lost

stop_gained

splice_acceptor_variant

splice_donor_variant

HIGH (0.013%)

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

missense_variant

MODERATE (0.204%)

0

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

incomplete_terminal_codon_variant

stop_retained_variant

splice_region_variant

synonymous_variant

LOW (0.37%)

0
5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

2
5
0
0
0
0

3
0
0
0
0
0

3
5
0
0
0
0

coding_sequence_variant

mature_miRNA_variant

5_prime_UTR_variant

3_prime_UTR_variant

non_coding_transcript_exon_variant

NMD_transcript_variant

upstream_gene_variant

downstream_gene_variant

non_coding_transcript_variant

intergenic_variant

intron_variant

MODIFIER (99.413%)

0
.0
e
+
0
0

5
.0
e
+
0
6

1
.0
e
+
0
7

1
.5
e
+
0
7

2
.0
e
+
0
7

2
.5
e
+
0
7

3
.0
e
+
0
7

3
.5
e
+
0
7

Figure 4. 74,480,058 variants have been annotated with 120,927,856 consequences. Shown here are the
number of variants annotated with a given consequence, stratified by consequence impact (“HIGH”,
“MODERATE”,‘ “LOW”, “MODIFIER”). For description of consequence types see Suppl. Table 2. Both
impact and consequence can be used for variant prioritization in MouseFM.

performed in real-time. Additionally, all candidate variants can be retrieved unfiltered and independent of160

VEP predictions to allow for custom effect predictions, ranking and filtering.161

Bioconductor R package MouseFM162

Our fine-mapping approach was implemented as function finemap in the Bioconductor R package163

“MouseFM”. Bioconductor is a repository for open software for bioinformatics.164

The function finemap takes as input two groups of inbred strains and one or more chromosomal165

regions on the GRCm38 assembly and returns a SNP list for which the homozygous genotypes are166

discordant between the two groups. Optionally, filters for variant consequence and impacts as well167

as a threshold for each group to allow for intra-group discordances can be passed. With function168

annotate mouse genes the SNP list can further be annotated with overlapping genes. Optionally,169

flanking regions can be passed.170

The finemap function queries the genotype data from our backend server while function annotate mouse genes171

queries the Ensembl Rest Service (Yates et al., 2015). The repository containing the backend of the172

MouseFM tool, including the scripts of the ETL (Extract, transform, load) process and the webserver,173

is available at https://github.com/matmu/MouseFM-Backend. Following the repositories’174

instructions, users may also install the data base and server application on a local server.175

The workflow and scripts to generate the MouseFM case study results are available at https:176

//github.com/iwohlers/2020\_mousefm\_finemap.177

RESULTS178

In order to characterize fine-mapping results of MouseFM for different numbers of strains and when179

applying the threshold parameter allowing phenotype-incompatible strains, we use a large gene expression180

data set. Such a data set contains both (i) genes with clear binary expression phenotype, likely caused by181

a cis variant or haplotype, (ii) cases with no or no binary difference in phenotype.182
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A B C

Figure 5. Visualization of mouse phenotypic data for which fine-mapping is performed. A) Binary
inbred mouse strain phenotype albinism. All or no mice of a strain are albinos; shown here is which strain
belongs to which group. B) Quantitative inbred mouse strain phenotype interfrontal bone (IF). Shown is
the number of mice of the respective strain having an interfrontal bone (dark blue, IF) and not having an
interfrontal bone (light blue, No IF). The interfrontal bone (IF) image is taken from (Zimmerman et al.,
2019). C) Phenotype cardiac dystrophic calcification (DCC). Five inbred strains show the phenotype and
five strains lack it.

Further, as a proof of concept, we applied our in silico fine-mapping approach on three additional183

phenotypes: albinism, interfrontal bone formation and dystrophic cardiac calcification. Phenotypic data is184

illustrated in Figure 5.185

Expression quantitative trait loci186

MouseFM is particularly useful for detecting variants for which a large, binary effect on a trait can be187

observed. As such, it is useful for providing candidate variants affecting gene expression, i.e. expression188

quantitative trait loci (eQTLs). Here, we use two expression data sets to illustrate this use case as well189

as to investigate aspects of MouseFM candidate variant lists for a large number of traits with different190

charactersitics. We use neutorphil and CD4+ T cell expression data from Mostafavi et al. (2014) generated191

in the context of an eQTL study by the Immunological Genome Project. This data is available for 39192

inbred mouse strains of which 20 are part of MouseFM. Polymorphonuclear neutrophils (granulocytes)193

data is available under GEO Accession GSE60336, CD4+ T cell data under GSE60337. We downloaded194

the corresponding normalized expression data from http://rstats.immgen.org/DataPage.195

Of the strains used here, expression is assessed for two mice each, except for the Black 6J strain of which196

expression from five mice is available. Neutrophils further have expression for only one FVB mouse.197

We read in the expression data and selected all mice from the 20 MouseFM strains (n=43 for CD4+198

T cell; n= 42 for neutrophils). As Mostafavi et al. (2014), we keep only expressed genes using a cutoff199

of 120 expression on the intensity scale. This way, we obtain n=10,676 transcripts from 9,136 genes for200

T cells and n=10,137 transcripts from 8,687 genes for neutrophils, which is comparable to the numbers201

assessed by Mostafavi et al. using all 39 strains. Mostafavi et al. (2014) applied a well-designed dedicated202

statistical approach to identify and interpret cis eQTLs. Briefly, they introduce a metric called TV metric203

to identify cases of bimodal gene expression and test SNPs within 1MB of the transcription start side using204

a linear regression model. For testing, genome-wide 96,779 SNPs were available in their study. Overall,205

Mostafavi et al. identified 1,111 joint T cell and neutrophil eQTLs using n=39 strains. Assessment with206

MouseFM uses about 74 million SNVs and can be considered somewhat an inverse approach to this207
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Figure 6. Summary of fine-mapping results for two expression data sets. Shown are numbers of
fine-mapped transcripts and boxplots of fine-mapped variants for these transcripts. The subset of
fine-mapped eQTL transcripts and variants according to Mostafavi et al. (2014) is colored blue, the subset
of fine-mapped eQTL transcripts without reported eQTL variant according to Mostafavi et al. (2014) is
colored red, remaining fine-mapped transcripts yellow. A) The number of successfully fine-mapped
transcripts for the neutrophil data set on log 10 scale at different allowed minimum group sizes from 1 to
10. Solid lines denote a threshold of 0 incompatible strains, dashed lines denote a threshold of 1 of
incompatible strains (thr1=1 and thr2=1). B) As A, but for CD4+ T cells. C) Boxplots of number of
fine-mapped variants for the transcripts in A (threshold 0, i.e. solid lines) for different minimum group
sizes from 1 to 10. D) As C, but for CD4+ T cells. E) Boxplots of number of fine-mapped variants for the
transcripts in A (threshold 1, i.e. dashed lines and thr1=1 and thr2=1) for different minimum group sizes
from 2 to 10. F) As E, but for CD4+ T cells.
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previous eQTL study: It is not testing expression differences for a SNP, but it needs as input a separation208

of strains into two expression groups and identifies all compatible variants, if available. In order to assess209

characteristics of fine-mapped variants of MouseFM, we use a very crude group separation based on210

ordering strains using the mouse with minimum expression of a strain and then splitting at the rank of211

maximum difference between median expression of all mice of strains with smaller rank compared to all212

mice of strains with larger rank. We run MouseFM for smaller group size from 1 to 10. According to213

theoretical expectation (cf. Figure 2), the number of cases in which MouseFM returns candidate variants214

that are entirely compatible with phenotype decreases with increasing group size, see Figure 6A for215

neutrophils and Figure 6B for CD4+ T cells. At the same time, the proportion of previously detected216

eQTL transcripts and the number of previously identified eQTL variants increases, because the probability217

of chance findings decreases. The number of fine-mapped variants varies greatly, often being less than218

ten but also often more than 100, see Figure 6C and Figure 6D, for neutrophils and T cells, respectively.219

Cases, in which a previously reported eQTL variant was among the fine-mapped variants are comparably220

few. In these cases, the number of fine-mapped variants tends to be larger than in those cases without a221

previous eQTL variant among the fine-mapped variants. This effect is likely caused by the much smaller222

number of variants assessed in the eQTL study – we observe a variant overlap only in cases of large223

expression-compatible haplotypes. The overall number of fine-mapped variants is rather low, which may224

be because of the crude group definition. We observe that group definition sometimes can be improved,225

especially if expression is not clearly bimodal. Thus, it is useful to apply MouseFM with a threshold226

allowing for a given number of incompatible strains. We here allow for one incompatible strain in the227

first and one incompatible strain in the second group. This increases the number transcripts that could be228

fine-mapped considerably, especially for large group sizes, see Figure 6A and Figure 6B. At the same229

time, the distributions of number of fine-mapped variants are only marginally affected, see Figures 6E230

and 6F. Nearly all high TV scores and/or high effect size and/or low cis eQTL p-value genes mentioned231

by Mostafavi et al. can be fine-mapped (71 of 74), illustrating that MouseFM is particularly useful for232

detecting variants and haplotypes that are compatible with binary, high effect phenotypes.233

Albinism234

Albinism is the absence of pigmentation resulting from a lack of melanin and is well-studied in mice (Beer-235

mann et al., 2004). It is a monogenic trait caused by a mutation in the Tyr gene (Beermann et al., 2004),236

which encodes for tyrosinase, an enzyme involved in melanin synthesis. The Tyr locus has been used237

before for the validation of in silico fine-mapping approaches (Cervino et al., 2007). According to238

the Jackson Laboratory website (https://www.jax.org), 10 of the 37 inbred mouse strains are239

albinos with a Tyrc genotype (http://www.informatics.jax.org/allele/MGI:1855976),240

see Figure 5A.241

Our algorithm resulted in only one genetic locus, which includes the Tyr gene; only 245 SNPs have242

different alleles between the albino and non-albino inbred mouse strains, all located from 7:83,244,464243

to 7:95,801,713 (GRCm38). When removing SNPs except those of moderate or high impact, only one244

variant remains. This variant rs31191169 at position 7:87,493,043, with reference allele C and with245

alternative allele G in the albino strains is the previously described causal missense SNP in the Tyr gene,246

which results in a cysteine to serine amino acid change at position 103 of the tyrosine protein.247

Interfrontal bone248

Further, we applied our algorithm to the phenotype of interfrontal bone formation, a complex skeletal249

trait residing between the frontal bones in inbred mice (Figure 5B). In some inbred mouse strains, the250

interfrontal bone is present or absent in all mice, whereas other strains are polymorphic for this phenotype251

suggesting that phenotypic plasticity is involved. Phenotypic data related to interfrontal bone has recently252

been generated by Zimmerman et al. (Zimmerman et al., 2019) for 27 inbred mouse strains (Figure 5B).253

They performed QTL mapping and identified four significant loci on chromosomes 4,7,11 and 14, the254

same loci for interfrontal bone length and interfrontal bone width. For the genotyping, the authors use255

the mapping and developmental analysis panel (MMDAP; Partners HealthCare Center for Personalized256

Genetic Medicine, Cambridge, MA, United States), which contains 748 SNPs.257

Of the available interfrontal bone data, we only used inbred strains for which all mice show the258

same phenotype. This corresponds to four strains with interfrontal bone (C57BL/6J, C57L/J, CBA/J,259

NZB/B1NJ) and five strains without interfrontal bone (C3H/HEJ, MOLF/EiJ, NZW/LacJ, WSB/EiJ,260

SPRET/EiJ).261
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In silico fine-mapping resulted in 8,608 SNPs compatible with the observed interfrontal bone pheno-262

type. Of these, 15 showed moderate or high impact on 12 candidate genes, see Table 1. None of the loci263

identified by us overlaps with the fine-mapping results reported by Zimmerman et al. Variant rs29393437264

is located in the less well described isoform ENSMUST00000131519.1 of Stac2, one of two isoforms of265

this gene. It is is a missense variant, changing arginine (R) to histidine (H) which is at low confidence266

predicted to be deleterious by SIFT. Stac2 has been shown to negatively regulate formation of osteoclasts,267

cells that dissect bone tissue (Jeong et al., 2018). Phf21 is expressed during ossification of cranial bones in268

mouse early embryonic stages and has been linked to craniofacial development (Kim et al., 2012). Gene269

Abcc6 is linked to abnormal snout skin morphology in mouse and abnormality of the mouth, high palate270

in human according to MGI.271

RSID Position Gene
rs32785405 1:36311963 Arid5a
rs27384937 2:92330761 Phf21a
rs32757904 7:45996764 Abcc6
rs32761224 7:46068710 Nomo1
rs32763636 7:46081416 Nomo1
rs13472312 7:46376829 Myod1
rs31674298 7:46443316 Sergef
rs31226051 7:49464827 Nav2
rs248206089 7:49547983 Nav2
rs45995457 9:86586988 Me1
rs29393437 11:98040971 Stac2
rs29414131 11:98042573 Stac2
rs251305478 11:98155926 Med1
rs27086373 11:98204403 Cdk12
rs27026064 11:98918145 Cdc6

Table 1. Moderate and high impact candidate variants and genes for interfrontal bone formation.

Dystrophic cardiac calcification272

Physiological calcification takes place in bones, however pathologically calcification may affect the273

cardiovascular system including vessels and the cardiac tissue. Dystrophic cardiac calcification (DCC) is274

known as calcium phosphate deposits in necrotic myocardiac tissue independently from plasma calcium275

and phosphate imbalances. We previously reported the identification of four DCC loci Dyscal1, Dyscalc2,276

Dyscalc3, and Dyscalc4 on chromosomes 7, 4, 12 and 14, respectively using QTL analysis and composite277

interval mapping (Ivandic et al., 1996, 2001). The Dyscalc1 was confirmed as major genetic determinant278

contributing significantly to DCC (Aherrahrou et al., 2004). It spans a 15.2 Mb region on proximal279

chromosome 7. Finally, chromosome 7 was further refined to a 80 kb region and Abcc6 was identified280

as causal gene (Meng et al., 2007; Aherrahrou et al., 2007). In this study we applied our algorithm to281

previously reported data on 16 mouse inbred strains which were well-characterized for DCC (Aherrahrou282

et al., 2007). Eight inbred mouse strains were found to be susceptible to DCC (C3H/HeJ, NZW/LacJ,283

129S1/SvImJ, C3H/HeH, DBA/1J, DBA/2J, BALB/cJ, NZB/B1NJ) and eight strains were resistant to284

DCC (CBA/J, FVB/NJ, AKR/J, C57BL/10J, C57BL/6J, C57BL/6NJ, C57BR/cdJ, C57L/J). 2,003 SNPs285

in 13 genetic loci were fine-mapped and found to match the observed DCC phenotype in the tested286

16 DCC strains. Of these, 19 SNPs are moderate or high impact variants affecting protein amino acid287

sequences of 13 genes localized in two chromosomal regions mainly on chromosome 7 (45.6-46.3 Mb)288

and 11 (102.4-102.6 Mb), see Table 2. The SNP rs32753988 is compatible with the observed phenotype289

manifestations and affects the previously identified causal gene Abcc6. This SNP has a SIFT score of 0.22,290

the lowest score after two SNPs in gene Sec1 and one variant in gene Mamstr, although SIFT predicts all291

amino acid changes to be tolerated.292
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RSID Position Gene
rs46174746 7:45538428 Plekha4
rs49200743 7:45634990 Rasip1
rs32122777 7:45642384 Mamstr
rs215144870 7:45679109 Sec1
rs45768641 7:45679410 Sec1
rs51645617 7:45679423 Sec1
rs31997402 7:45725284 Spaca4
rs50753342 7:45794044 Lmtk3
rs50693551 7:45794821 Lmtk3
rs52312062 7:45798406 Lmtk3
rs49106901 7:45798469 Emp3
rs47934871 7:45918097 Emp3
rs32444059 7:45942897 Ccdc114
rs32753988 7:45998774 Abcc6
rs32778283 7:46219386 Ush1c
rs31889971 7:46288929 Otog
rs50613184 11:102456258 Itga2b
rs27040377 11:102457490 Itga2b
rs29383996 11:102605308 Fzd2

Table 2. Moderate and high impact candidate variants and genes for dystrophic cardiac calcification.

DISCUSSION293

With MouseFM, we developed a novel tool for in silico-based genetic fine-mapping exploiting the294

extremely high homozygosity rate of inbred mouse strains for identifying new candidate SNPs and genes.295

Towards this, by including latest genotype data for 37 inbred mouse strains at a genome-wide scale derived296

from next generation sequencing, MouseFM uses the most detailed genetic resolution for this approach to297

date.298

Using two large expression data sets, we apply MouseFM to more than 20,000 expression phenotypes299

of diverse distributions, using different minimum group sizes and also a setting allowing up to one300

incompatible strain per group. This results in a comprehensive characterization of MouseFM fine-mapped301

candidate variants. For low group sizes, many phenotype compatible variants can be detected, but302

these likely include many more false-positives than larger group sies. For larger group sizes, previously303

identified eQTLs of Mostafavi et al. (2014) are much more often successfully fine-mapped than expected304

by chance, which is in line with theoretical expectation that a given 10/10 group split is rather unlikely305

to be observed by chance and thus indicates a causal genetic effect. The high number of non-eQTL306

transcripts that could be fine-mapped also at large group sizes could have several sources. Firstly, we307

analyze only 20 strains compared to 39 strains analyzed by Mostafavi et al. (2014), so likely not all of308

their eQTLs still apply to the smaller set of strains used here. Secondly, previously undetected eQTLs309

may occur in this smaller set. Lastly, these may indeed be chance findings unrelated to the expression310

phenotype, possibly confounded by strain kinship. Manual inspection would help to obtain a clearer311

picture on a case-by-case basis. Finally, the number of fine-mapped variants varies greatly, so in many312

cases, additional regulatory information will still be needed to refine the candidate variant list.313

By re-analyzing previously published fine-mapping studies for albinism and dystrophic cardiac314

calcificaton, we could show that MouseFM is capable of re-identifying causal SNPs and genes. Re-315

analyzing a study on interfrontal bone formation (IF), however, did not show any overlap with the regions316

suggested in the original publication. Reasons might be complex nature of this phenotype and that the317

causal genetic factors are still largely unknown. With gene Stac2 we suggest a new candidate gene318

possibly affecting interfrontal bone formation.319

We selected cases studies particularly to validate that MouseFM can identify experimentally validated320

variants and genes, such as the Tyr variant rs31191169 for albinism and the gene Abcc6 for dystrophic321

cardiac calcification. Variant rs31191169 is not a candidate variant and Abcc6 not a candidate gene, both322

are experimentally validated to be causally linked to the phenotype. Only for traits that are polygenic, e.g.323
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for DCC (but not for albinism), other candidates returned by MouseFM may be linked to the phenotype,324

but they do not need to, they are only candidates to follow up on. A different type of case study relates to325

phenotype interfrontal bone formation, for which causal variants and genes are not known. Still, several326

candidate genes returned by MouseFM are plausible to affect the phenotype. In summary, additional DCC327

candidate loci beyond Abcc6 as well as identified interfrontal bone loci are valid candidate loci. Whether328

they are in fact affecting the phenotypes needs to be assessed in subsequent QTL and experimental studies.329

MouseFM performs most powerful and without limitations for Mendelian traits such as albinism.330

Secondly, it is most useful as a second-line after QTL mapping. MouseFM is specifically designed to331

accommodate this fine-mapping setting by allowing to provide start and end of a region to be analyzed.332

Complex traits and phenotypes with several large effect loci are much more challenging. For these,333

binarizing the phenotype and performing fine-mapping with MouseFM is not guaranteed to include all334

causal variants and genes (unlike Mendelian traits). For this reason, we added the option to allow for335

a user-selected number of outlier strains, which have a genotype discordant with the phenotype. The336

rationale behind this is identification of genomic regions which are more similar in those strains showing337

the phenotype compared to strains not showing the phenotype. Lastly, another informative MouseFM338

setting is the comparison of one phenotype-outlier strain with all other strains, which identifies genetic339

variants specific to this strain. In summary, MouseFM users need to consider that for polygenic and340

complex traits, the quality of variant and gene candidates obtained by MouseFM depends on the number341

and effect size and direction of loci, the genetic diversity of mouse strains and the variability of the342

phenotype.343

A current limitation of MouseFM is that it does only consider single nucleotide variants. Loci344

containing other types of genetic variation such as insertions, deletions or other, structural variants345

affecting a phenotype may thus be missed. QTL studies would be able to identify these loci. This could346

thus be a reason for QTLs without MouseFM support, such as we observe in our case study on interfrontal347

bone formation. However, this constitutes not a methodological limitation, and other variant types can be348

added to MouseFM. To date though, genome-wide identification of structural variants is less accurate and349

less standard compared to small variant identification and thus structural variants are typically not yet350

systematically analyzed in genetic studies.351

We observe that frequently genetic loci identified by MouseFM fine-mapping consist of few or often352

only a single variant compatible with the phenotype. For example, five of 13 fine-mapped DCC loci353

comprise a single phenotype-pattern compatible variant and 3 loci comprise less than 10 variants. This354

contradicts the expectation that commonly used mice strains differ by chromosomal segments comprising355

several or many consecutive variants. Commenly used inbred strains display mosaic genomes with356

sequences from different subspecific origins (Wade et al., 2002) and thus one may expect genomic regions357

with high SNP rate. Fine-mapped loci comprising more phenotype-compatible variants are thus likely358

more informative for downstream experiments. When allowing no phenotype outlier strain (i.e. thr1=0 and359

thr2=0), in the case of DCC we identify only six such genetic loci that lend themselves for further experi-360

mental fine-mapping (chr7:45,327,763-46,308,368 (811 compatible SNVs); chr7:54,894,131-54,974,260361

(32 compatible SNVs); chr9:106,456,180-106,576,076 (170 SNVs); chr11:24,453,006-24,568,761 (40362

compatible SNVs); chr11:102,320,611-102,607,848 (46 compatible SNVs); chr16:65,577,755-66,821,071363

(890 compatible SNVs)).364

CONCLUSIONS365

We show here that in silico fine-mapping can effectively identify genetic loci compatible with the observed366

phenotypic differences and prioritize genetic variants and genes for further consideration. This allows for367

subsequent more targeted approaches towards identification of causal variants and genes using literature,368

data integration, and lab and animal experiments. MouseFM in silico fine-mapping provides phenotype-369

compatible genotypic differences between representatives of many common laboratory mice strains. These370

genetic differences can be used to select strains which are genetically diverse at an indicated genetic locus371

and which are thus providing additional information when performing phenotyping or breeding-based372

mouse experiments. Thus in silico fine-mapping is a first, very efficient step on the way of unraveling373

genotype-phenotype relationships.374

During the implementation of MouseFM we have paid attention to a very easy handling. To perform a375

fine-mapping study, our tool only requires binary information (e.g. case versus control) for a phenotype of376

interest on at least two of the 37 available input strains. Further optional parameters can be set to reduce377
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or expand the search space. MouseFM can also be performed on quantitative traits as we showed in the378

interfrontal bone example.379

The general approach underlying MouseFM is straightforward and it has been successfully applied380

before in a case-wise setting (Liao et al., 2004; Zheng et al., 2012; Hall and Lammert, 2017; Mulligan et al.,381

2019) and also recently in a high-throughput manner (Arslan et al., 2020). Nonetheless, genome-wide382

variant data of many inbred mouse strains is quite recently available, and this data is large and from383

raw VCF format difficult to assess systematically for any phenotype of interest. MouseFM is the first384

tool providing this functionality together with versatile query settings and subsequent variant and gene385

annotation and filtering options.386

In conclusion, MouseFM implements a conceptually simple, but powerful approach for in silico387

fine-mapping inluding a very comprehensive SNV set of 37 inbred mouse strains. By re-analyzing388

three fine-mapping studies, we demonstrate that MouseFM is a very useful tool for studying genotype-389

phenotype relationships in mice. Further, by high-throughput analysis of all genes of two expression390

datasets, we illustrate that MouseFM is capable of analyzing molecular phenotypes in a versatile and391

high-throughput manner. This shows the potential of MouseFM to be used for large-scale analyses of392

diverse phenotypes in future work.393
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