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Abstract

Life’s fundamental processes involve multiple molecules operating in close proximity within cells.
To probe the composition and kinetics of molecular clusters confined within small (diffraction-limited)
regions, experiments often report on the total fluorescence intensity simultaneously emitted from la-
beled molecules confined to such regions. Methods exist to enumerate total fluorophore numbers (e.g.,
step counting by photobleaching). However, methods aimed at step counting by photobleaching cannot
treat photophysical dynamics in counting nor learn their associated kinetic rates. Here we propose a
method to simultaneously enumerate fluorophores and determine their individual photophysical state
trajectories. As the number of active (fluorescent) molecules at any given time is unknown, we rely
on Bayesian nonparametrics and use specialized Monte Carlo algorithms to derive our estimates. Our
formulation is benchmarked on synthetic and real data sets. While our focus here is on photophysical
dynamics (in which labels transition between active and inactive states), such dynamics can also serve
as a proxy for other types of dynamics such as assembly and disassembly kinetics of clusters. Similarly,
while we focus on the case where all labels are initially fluorescent, other regimes, more appropriate to
photoactivated localization microscopy, where fluorophores are instantiated in a non-fluorescent state,
fall within the scope of the framework. As such, we provide a complete and versatile framework for the
interpretation of complex time traces arising from the simultaneous activity of up to 100 fluorophores.
Keywords: photobleaching; stochastic dynamics; superresolution; biophysics; molecular biology;
data analysis; Bayesian nonparametrics
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1 Introduction

Fluorescently labeled molecules, such as labeled
proteins, are often used to create contrast between a
cell’s background and the labeled molecular species
of interest [1, 2, 3]. As biological processes unfold
within cellular environments, these labeled molec-
ular species may aggregate into clusters giving rise
to the appearance of bright spots in fluorescence
microscopy [4, 5, 6, 7]. Assessing the composition
of these clusters on the basis of the spot’s variable
brightness is a key step toward unraveling the role
of molecular clusters [4, 5, 8, 9, 10, 6, 7].

Directly enumerating fluorophores and track-
ing their photophysical dynamics by discriminating
between them on the basis of their physical loca-
tion [11] is often impossible as typically an entire
bright spot lies below the diffraction limit [2, 3].
Furthermore, fluorescence ruler methods, which
enumerate fluorophores across time by comparing
the brightness of a region of interest (ROI) to the
brightness of a known calibration standard, are un-
reliable when the number of fluorophores is large
on account of the inherent uncertainty introduced
by photon shot noise which increases with grow-
ing fluorophore numbers [12, 13]. Other sources of
uncertainty, beyond shot noise, include camera or
detector noise and the rapid rise and fall of flu-
orescence intensity of the spot [4, 5]. The latter
can arise on account of photophysical activity of
the individual fluorophore labels as they cycle be-
tween fluorescently emitting or active (i.e., bright)
and non-emitting or inactive (i.e., dark or photo-
bleached) states [14] or it can arise due to assem-
bly and disassembly of a cluster as individual con-
stituents bind and unbind. For the purposes of this
manuscript we will focus on brightness steps as be-
ing caused exclusively by photophysical dynamics
and postpone further mention of (dis)assembly to
the Discussion. A cartoon depicting this process is
shown in figure 1.

Traditionally, Photobleaching step analysis
(PBSA) methods were developed to enumerate the
number of fluorophores within a spot [12, 13, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Such meth-
ods proceed in many ways; for example, by exploit-
ing hidden Markov models [23, 25], data filtering
to identify steps [17], statistical measures to iden-
tify expected violations of statistics characteristic
of steps [21, 18, 20, 19], or neural nets [22]. In
a recently submitted manuscript, additional ways
of automating and improving upon PBSA meth-
ods listed above have also been explored [26]. Yet
all PBSA are limited to clusters where fluorophores

irreversibly inactivate one at a time until they are
all photobleached giving rise to step-like transitions
between brightness levels [27, 15, 2, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39].

Figure 1: Summary of the problem. Each
fluorophore attains one of three types of states:
dark, active (bright), or photobleached. Only flu-
orophores in the active state emit photons. Each
fluorophore transitions between these states as in-
dicated by the arrows. The brightness over time of
an ROI reflects the states of all fluorophores within
the ROI. Our goal is to estimate the number of flu-
orophores in each ROI, as well as the photo-states
of the fluorophores at each time level.

Our goal is to present a general framework that
can simultaneously count and determine the photo-
trajectories of fluorophores within a diffraction-
limited ROI while taking into account photophys-
ical artifacts such as blinking. To achieve this:
1) we exploit a realistic generative model that in-
cludes accurate photophysics, learns photophysical
parameters, and can treat detailed camera mod-
els; 2) we relax the requirement that fluorophores
all initialize from the bright state; and 3) we
provide full Bayesian analysis providing not only
point estimates, but also uncertainties over all un-
known parameters. We show that the novel as-
pects of our method allow us to count upwards
of 100 fluorophores in a single ROI. By virtue of
the generality of our framework, we have the abil-
ity to treat other camera models or re-interpret
the brightness step transitions as cluster assembly
and disassembly kinetics. To illustrate our method,
we use data in which a spot is illuminated with
bright light and whose active fluorophores undergo
photophysical transitions between bright and dark
states before eventually photobleaching. As the
number of fluorophores at any given time is un-
known, we exploit tools within Bayesian nonpara-
metrics [40, 41], in particular the Beta-Bernoulli
process (BBP) [42, 43] never previously exploited
in assessing the kinetics and composition of molec-
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ular clusters.

2 Methods
Here we set up: 1) the forward model, i.e., a model
describing the stochastic dynamics of a large col-
lection of molecules as well as other contributions
to the data; and 2) discuss the inference strategy
required to learn the number of fluorophores and
their photophysical trajectories from the data. In
particular, we show how we estimate the state (for
simplicity we refer to photo-states as states) of each
fluorophore at each time, the transition probabili-
ties between fluorophore states, the probability that
a fluorophore starts bright, the fluorophore mean
brightness, and the background mean brightness.
As with all methods within the Bayesian paradigm,
whether parametric or nonparametric, we provide
not only a point estimate for the maximum a poste-
riori (MAP) value of each variable, but also achieve
full posterior inference with credible intervals.

2.1 Forward model
The forward model describes how the data are gen-
erated. We start with R diffraction-limited ROIs,
indexed by r = 1, . . . , R. Each ROI has Kr fluo-
rophores indexed by m = 1, . . . ,Kr. We record the
brightness (measured in ADUs) of each ROI for N
successive time levels, indexed by n = 1, . . . , N .
The brightness of the ROI r, at time level n is de-
noted wrn and is conditioned on the states of the flu-
orophores within the ROI at that time. The state
of the kth fluorophore in ROI r at time level n is
labeled sk,rn . For simplicity, at each time level, we
let sk,rn be in one of three states: dark, σD, active,
σA, and photobleached, σB . We tackle the obstacle
of multiple bright states in the supplement (supple-
ment 5.5).

At the first time level, each fluorophore in each
ROI, starts either active or dark with probabilities
given by π0 which is an array with two elements:
the probability of a fluorophore starting bright, π0A
and the probability of a fluorophore starting dark,
π0D. At each following time level, n, the state
of each fluorophore is conditioned on the previous
state of the fluorophore according to π, the transi-
tion probability matrix. Each element, πij , of the
matrix represents the probability that a fluorophore
will be in state σj given that it was previously in
state σi (supplement 5.2). These transitions include
“dark to dark”, “dark to bright”, “bright to bright”,
“bright to dark”, “bright to photobleached”, or “pho-
tobleached to photobleached” transitions (figure 1).

Our kinetic scheme is mapped here,

sk,r1 ∼ Categorical (π0) (1)

sk,rn |s
k,r
n−1 ∼ Categorical

(
πsk,rn−1

)
(2)

where sk,rn is the state of fluorophore k in ROI r at
time level n, ∼ means “is sampled from”, | means
“given” or “conditioned on”, Categorical (x) means
“the categorical distribution with probability mass
x”, and πsk,rn−1

means “the row of π corresponding to

the state of sk,rn−1”. The support for these categorical
distributions is understood to be the set of possible
states of the fluorophores, {σD, σA, σB} meaning
that for all n, k, and r, sk,rn = σD, sk,rn = σA, or
sk,rn = σB .

At each time level, the fluorophores in each ROI
give rise to the mean brightness of the ROI at the
time level, µrn. The mean brightness, µrn is the ex-
pected number of photons for the time level (cal-
culated as the time step multiplied by mean pho-
tons emitted per unit time for the time level). We
can decompose it into the sum of the mean back-
ground brightness of the ROI, µrB , and the mean
fluorophore brightness, µA, multiplied by the num-
ber of active fluorophores in the ROI,

µrn = µrB +

Kr∑
k=1

µsk,rn (3)

where µsk,rn means “the brightness of the state corre-
sponding to sk,rn ”, as in, if sk,rn = σA then µsk,rn = µA

or if sk,rn = σB then µsk,rn = 0. We note that∑Kr
k=1 µsk,rn simply counts how many fluorophores

are in the active state in the ROI at the time level
of interest.

For data obtained with an EMCCD camera the
brightness measured, wrn, is conditioned on the
mean brightness and the gain, G, through a gamma
distribution [44]

wrn|µrn ∼ Gamma (µrn/2, 2G) . (4)

This model takes into account both shot and the
readout noise [45]. Substituting Eq. (3) into Eq. (4)
we find

wrn|s1:Kr,rn , µA, µ
r
B (5)

∼ Gamma

(
1

2

(
µrB +

K∑
k=1

µsk,rn

)
, 2G

)
.

With this model, the mean expected readout is µrnG
ADUs (units of camera readout) with a standard
deviation of

√
2µrnG

2 ADUs. Thus our model’s
noise scales with the brightness with an excess noise
factor of 2 that is characteristic of EMCCDs [46, 44]
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This scheme, where many fluorophores give rise
to a single measurement (the brightness at a time
level), takes the form of a factorial hidden Markov
model [47, 48].

2.2 Inverse formulation

We now develop the inverse formulation needed to
estimate parameters from the data given a known
number of ROIs, R, and associated time trace
lengths, N . Following the Bayesian paradigm, we
place prior distributions on all parameters whose
posterior distribution we wish to determine. A
graphical representation of our inverse model is
shown in figure 2. Our choice of priors for transi-
tion rates and brightness parameters is straightfor-
ward and can be found in the SI (See supplemental
section 5.1). However, our prior on the number of
fluorophores is less straightforward as it requires a
Bayesian nonparametric formulation that we out-
line below.

As we cannot set a prior on the number of flu-
orophores in each ROI, Kr, we invoke Bayesian
nonparametrics in our analysis. Briefly, we imple-
ment this using a nonparametric weak limit [49, 50].
That is, we assume an exceedingly large number of
model fluorophores in the ROI, K � Kr, index-
ing each fluorophore with k = 1, . . . ,K. We then
assign each model fluorophore a load variable bk,r.
If the load is on, bk,r = 1, we say that the fluo-
rophore contributes to the ROI’s brightness. If the
load is off, bk,r = 0, then the fluorophore is a vir-
tual fluorophore which does not contribute to the
brightness. Thus by summing the loads over all
model fluorophores, we obtain the number of fluo-
rophores located within the ROI. A load, bk,r, is a
random variable sampled from the Bernoulli distri-
bution with hyperparameter γ

bk,r ∼ Bernoulli
(

γ

K + γ − 1

)
. (6)

This probability mass is motivated by the Beta-
Bernoulli process [42, 43] further discussed in sup-
plement 5.4. In particular, as K becomes large, for-
mally as K →∞, the probability distribution con-
verges to a distribution in which an infinite number
of model fluorophores are considered [49, 50]. This
choice of prior allows for inference independent on
our choice forK provided a sufficiently large K (ex-
ceeding any reasonable number of fluorophores) is
set; see supplement 5.10).

In analogy to equations (1)-(5), states are sam-
pled just as we did in the forward model, except
that each measurement, wrn, is now conditioned on

the loads

sk,r1 |π0 (7)
∼ Categorical (π0)

sk,rn |s
k,r
n−1,π (8)

∼ Categorical
(
πsk,rn−1

)
wrn|s1:K,rn , b1:K,r, µA, µ

r
B (9)

∼ Gamma

(
1

2

(
µrB +

K∑
k=1

bk,rµsk,rn

)
, 2G

)
.

Here
∑K
k=1 b

k,rµsk,rn enumerates the number of flu-
orophores simultaneously active (i.e., loads in the
active state in the ROI at time level n).

Lastly, if experiments are carried out long
enough, all fluorophores eventually irreversibly
photobleach. As such, we have knowledge of the
final states of the fluorophores. Put differently, the
fluorophore states at the last time level are fixed at

sk,rN = σB . (10)

As such sk,rN is shaded in grey in figure 2.
Together, these equations allow us to construct

the high dimensional posterior over the collection
of random variables (s1:K,1:R1:N , b1:K,1:R, µA, µ

1:R
B ,π,

and π0). This posterior does not assume an ana-
lytical form. As such, we employ the Markov chain
Monte Carlo framework to computational sample
parameters from this posterior [51, 52, 40, 53].
Briefly, our Gibbs sampler starts with an initial set
of values for the parameters and attractively sam-
ples new values for each parameter one at a time
while holding the others fixed (supplement 5.7).

3 Results
Here we demonstrate our method on simulated and
experimental data for purposes of model validation.
We show that we can accurately learn the num-
ber of fluorophores within in an ROI as well as the
fluorophore photo-trajectories. We do so robustly
even as the number of fluorophores approaches 100.
In the supplement, we perform a more detailed ro-
bustness analysis on our method using simulated
data (supplement 5.10). There, we test our method
by varying the number of loads and the number of
simulated fluorophores, and the fluorophore state
model.

To validate our method on real data, we ana-
lyzed brightness traces where fluorophores undergo
transitions between photophysical states as they
eventually photobleach. This data uses Gattaquant
DNA origami constructs with known number of
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Figure 2: The graphical representation of the inverse model. Nodes (circles) in the graphical
model represent random variables. Blue nodes are the random variables we infer. White nodes are auxil-
iary random variables (latent variables). Grey nodes are observations (data). The arrow between nodes
indicates conditional dependence, meaning that if x is conditioned on y then we would draw an arrow
going from node y to node x. The plates (dashed boxes) indicate that random variables within plates
repeat over the index appearing at the top left of the plate. For example, the µrB node is within the outer
plate with index r implying an µrB associated to each ROI (indexed r).

fluorophore binding sites (such that ground truth
be known on the total expected number of fluo-
rophores) labelled with ATTO-647N fluorophores
with known binding efficiency [26].

Traces with ATTO647N fluorophores examined
by us and by others [54] show that ATTO647N has
two bright states (see SI section 5.13 for plots of
the data traces). We note that in the following sec-
tions, our model is supplemented to accommodate a
second bright state for the fluorophores in the data
we analyze. The expanded model is discussed in
supplement 5.5.

3.1 Data acquisition

Data acquisition, provided by Hummert and
Yserentant et al. [26], is briefly summarized here.
ATTO647N labeled DNA oligomers were bound to
DNA origami constructs. The DNA origami were
imaged using a custom built Nikon Eclipse mi-
croscope with total internal reflection fluorescence
(TIRF) illumination and a back illuminated EM-
CCD iXon Ultra 897 camera [26]. A log of Gaussian
filter was used to select ROIs. Traces including arti-
facts such as diffusing fluorophores where excluded.
For each ROI at each time level, we summed the
brightness of every pixel within the ROI to get the
total ROI’s brightness at each time level (i.e., the
brightness time trace). We took time traces using

two different types of of DNA origami constructs
with 20 and 35 binding sites, respectively. For the
20 binding site origami, movies were taken for 1000
seconds at 50ms camera exposure (20000 frames)
with a gain of 50. For the 35 binding site origami,
movies were taken for 3000 seconds at 200ms cam-
era exposure with an gain of 10 (15000 frames).

In order to analyze traces with more than 20
or 35 fluorophores, we also summed the brightness
of every pixel involving multiple ROIs to get the
total brightness arising from these combined ROIs
at each time level. Because our camera model is a
gamma distribution which is closed under addition,
this procedure generates controlled traces with a
ground truth containing known multiples of 20 or
35 fluorophores.

3.2 Results on simulated data

We evaluated our method with data simulated us-
ing the forward model put forward in Eqs. (1)-(5)
with parameters chosen to mimic real data. We
simulated 50 ROIs containing 14 fluorophores on
average. The traces are 1000 s long with brightness
wrn collected every 50 ms, so 20000 total frames.
The exact number of fluorophores in each ROI is
sampled from a binomial distribution to mimic 20
binding sites with 70% labeling efficiency. The
gain used for the simulation was 50 [55]. The di-
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Figure 3: Inference on simulated data. We generated data using the forward model in section 2.1. We
learn the number of fluorophores in each ROI and compare to ground truth (right panel) and associated
photo-trajectories in each ROI (shown on left panel for one of many ROIs). In addition, we must also
simultaneously and self-consistently learn all other associated parameters shown in figure 2.

mensionless background brightness parameters are
µrB = 1000. The fluorophores were simulated
with two bright states with brightness given by
µA1 = 450 and µA2 = 350 (plus one dark state
and a photobleached state with brightness given
by µD = µB = 0). These values were chosen to
mimic the experimental data that we analyze in sec-
tion 3.4. For example, the height and duration of a
simulated photobleaching event qualitatively match
those seen in the real data (see SI section 5.13).

Figure 3 shows the results for our analysis. The
left panel shows the measured brightness versus
time trace, superimposed with a sampled mean
brightness over time, and the ground truth mean
brightness over time. By mean brightness over time
we mean the mean expected measurement at each
time, µrn, given the number of fluorophores in each
state at that time level, the brightness of each state,
and the camera gain. The mean brightness over
time directly informs us on the photo-states of the
fluorophores; see Eq. 3. Importantly, we capture all
brightness drops due to blinking (i.e., photophysical
dynamics) that cannot otherwise be obtained using
existing PBSA methods that have built into them
assumptions 1 and 2 discussed in the introduction.

On the right panel we show posterior over the
number of fluorophores per ROI. That is, we find
Br =

∑K
k=1 b

r
k for each ROI and each sample of

our posterior. We then histogram the Br’s for
r = 1, .., R. In the limit that the number of ROIs is

large, this should converge to the ground truth dis-
tribution of fluorophore numbers marginalized over
the uncertainty associated with the number of flu-
orophores in a single ROI. We calculate the mean
error of our method as the average difference be-
tween our estimate and the ground truth. Our sam-
pled mean expected brightness trace matches well
with the ground truth (within 1 fluorophore). Er-
ror analysis shows that roughly half of the samples
were equal to the ground truth. No samples were
more than 2 fluorophores off.

3.3 Comparison against other meth-
ods

Here we compare the results of our method to those
obtained using the change point method of Tsek-
ouras et al. [15], the two state model of Garry et
al. [25], as well as a ruler method [12, 13]. We note
that the Garry et al. method is equivalent to a two
state implementation of our own method though
they focus on state populations whereas we look at
the state of each individual fluorophore. As such,
we use our own method, but modified to include
only one bright state, one photobleaching state, and
no dark state, when comparing our method to the
two state model. Our implementation of the ruler
method is explained in SI section 5.9. We com-
pare the methods on three different data sets: 1)
data simulated using the same parameters as in the
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Figure 4: Comparison against other methods. Here we compare our method against a change point
method, the ruler method, and the two state model. We compare all methods on three different data
sets. On the top row we compare on simulated data using the base set of parameters. On the second
row we compare on simulated data in which some fluorophores start dark. On the bottom we compare
on simulated data with high noise. The left panel of each row shows the inferred phototrajectory for an
ROI using our method, the change point method, and the two state model (the ruler method does not
generate trajectories). The right panel shows the inferred distribution for the number of fluorophores for
each of the different methods. In the legend we show the mean error of each method calculated as the
average difference between the inferred number of fluorophores and the ground truth.

demonstration (section 3.2); 2) data simulated in
which some fluorophores initiate in the dark state;
and 3) data simulated with higher noise. Figure 4
shows the results of our comparison.

As seen in the top row of figure 4, all three meth-
ods, besides the two state model, do reasonably well
(within 20% error) in inferring the number of flu-
orophores using the base set of parameters. The
two state model underestimates the number of flu-
orophores due to the fact that it cannot account for
blink events (see SI section 5.10.3). Note that the
mean error (the average difference between the es-
timated number of fluorophores in an ROI and the
ground truth number of fluorophores used in the
simulation) was smallest for our method. That all
four methods do well is expected because the data
is clean and the steps are easy to see by eye and
therefore all three methods should do well at iden-
tifying brightness levels and inferring the number
of fluorophores.

Next we look at simulated data in which some
(40%) of the fluorophores start in the dark state.
The second row of figure 4 shows the results. Here,
the two state model, the ruler method, and the
change point method underestimate the number of
fluorophores by over 40% because they do not allow
for fluorophores to initiate in a dark. Our method,
which allows fluorophores to initiate in such a state,
learns the number of fluorophores with less than
two fluorophores mean error.

The last row of figure 4 shows results on data
simulated with higher noise. The higher noise level
was achieved by decreasing the brightnesses, µA
and µB . This physically represents lowering the in-
tensity of the laser used to excite the fluorophores
down to a level where shot noise dominates. We
simultaneously raised the gain to keep the average
brightness at the same level. Under these condi-
tions, the two state model no longer underestimates
the number of fluorophores as brightness drops aris-
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ing from blinking events are within the variance of
the noise. As such, the two state model becomes
reasonable. Our model, which has four states in-
cluding two bright states and a dark state, has
negligibly greater mean error than the two state
model in this experiment, due to slight overfitting
from having two bright states with brightnesses
very close to each other relative to the measurement
noise. While the two state model was able to infer
the number of fluorophores in the noisy data essen-
tially as accurately as our method, it was unable
to do so in the low noise limit (figure 4 top row).
As such, our physically-inspired method with pho-
tophysical dynamics reveals itself to be most robust
across a range of scenarios.

3.4 Results on experimental data

Results from experimental data are shown in the
top left and bottom left of figure 5. Here we plot the
inferred distribution for the number of fluorophores
in an ROI against the ground truth distribution
for the number of fluorophores. The ground truth
distribution of fluorophores here is binomially dis-
tributed [48] assuming a 70% percent labeling effi-
ciency. The 70% labeling efficiency was provided to
us by the manufacturer.

We note that the width of the ground truth dis-
tribution for the number of fluorophores in the ROI
arises due to labeling efficiency of the fluorophores,
whereas the width in the distribution of the learned
number of fluorophores arises from labeling effi-
ciency as well as uncertainty in the inference. As
such, we expect the distribution over the learned
number of fluorophores to naturally be wider than
the ground truth distribution for the number of flu-
orophores. For example, in the extreme case where
we had 100% labeling efficiency, the ground truth
distribution would have zero width, yet our method
would still have a width due to uncertainty in the
estimate. On the other hand, the mean estimated
number of fluorophores in each ROI should be close
to the ground truth and thus remains a reliable way
by which to evaluate the accuracy of our method.

For our 20 binding site analysis, the predicted
mean of the distribution for the number of fluo-
rophores is only about 1.3 fluorophores higher than
expected as can be seen in the top left panel of
figure 5. This is likely due to overfitting sources
of noise not accounted for in our model such as
unbound fluorophores freely diffusing above the
origami structure.

Given the agreement between ground truth and
our method for 20 and 35 binding sites, we wanted

to test how high we could count. In order to create
controlled data sets with known ground truth, we
combined the data from ROIs as discussed in sec-
tion 3.1. For example, by summing together two
ROIs with 20 or 35 binding sites, we could count
fluorophores in ROIs with as many as 40 or 70 total
binding sites (figure 5 middle column). By adding
together four ROIs with 20 or 35 binding sites, we
could generate new ROIs with as many as 80 or
140 fluorophores (figure 5 right column). For all
four cases, the mean number of fluorophores per
ROI learned from our an analysis closely matches
(within 3 fluorophores) the ground truth of the ex-
pected mean.

4 Discussion
Learning the number of molecules located within
a molecular cluster, while simultaneously and self-
consistently determining the dynamics of the clus-
ter’s constituent members, is a key step toward un-
raveling life’s processes occurring well below light’s
diffraction limit [27, 15, 2, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 12, 13, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 56]. In order to do so, we in-
troduced a Bayesian nonparametric framework that
accurately models the photophysics, shot noise, and
detector noise that gives rise to the data, along with
sampling methods capable of exploring this high
dimensional probability space. Our method was il-
lustrated for as many as 100 fluorophores. We note
that the ability to count such a high number of flu-
orophores is necessary for cellular applications as,
for example, nuclear pore complexes are known to
be made up from 32 monomers [6, 26], Rac1 can
aggregate into clusters of 50-100 [7], and Pol-II can
aggregate into clusters of a few hundred [4].

By operating within the Bayesian paradigm, we
can propagate uncertainty arising from sources of
error, such as photon shot noise and detector signal
amplification, into the full distributions over fluo-
rophore numbers and the transition probabilities we
determined.

Now, if the counting of fluorophores in a clus-
ter were the only goal and it could be assumed
that all fluorophores were initially active, then we
could ignore dynamics altogether and avoid learn-
ing transition probabilities (as well as trajectories).
In this case, a collapsed state formulation (one that
keeps track of the total population of decreasing
numbers of fluorophores) can be used [15, 25, 26].
However, even then, existing methods for enumer-
ation do not sample full Bayesian posteriors and
counting would not be possible for cases where the
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Figure 5: Inference on real data. Here we illustrate our method in enumerating fluorophores from real
data. The top row analyzes data from experiments using DNA origami with 20 binding sites (we then
combine data from different ROIs to generate data sets with a higher number of fluorophores). Similarly,
the bottom row analyzes data from experiments using DNA origami with 35 binding sites (also combined
to form ROIs with a larger number of fluorophores). Also plotted are the expected distribution of fluo-
rophores (a binomial distribution), and a vertical line showing the mean expected number of fluorophores
learned from our method.

majority of fluorophores are initially inactive such
as in the case of photoactivation localization mi-
croscopy (PALM) [57, 58, 59, 11]. Indeed, moving
forward, PALM and other superresolution experi-
ments [4, 5] could provide exciting in vivo test beds
for our method.

Furthermore, while we have chosen to focus on
brightness traces recorded using an EMCCD cam-
era, we could in principle modify our method to al-
low other detector models. This could be achieved
trivially be modifying equation 31 to incorporate
the noise model of the desired detector. Moving for-
ward this would allow photobleaching enumeration
on a variety of detectors including photomultiplier
tubes [60] or sCMOS cameras [61].

The generality afforded by our method in learn-
ing dynamics, and thus learning the state of ev-
ery constituent member of a cluster explicitly, does
come at an added computational cost. The ma-
jority of the computational cost comes from the
forward-backward filtering algorithm used to sam-
ple the states. The forward filter backwards sam-
ple algorithm (FFBS) runs with time complexity
O(S2N) where S is the size of the the state space
and N is the number of time levels. As we must

run the FFBS over each load in each ROI, the to-
tal computation time to sample all the states scales
like O(S2NRK) where R is the number of ROIs
and K is the number of loads per ROI. Addition-
ally, in order to facilitate proper mixing of the vari-
ables, we sample the states, two loads at a time in
a joint state space of size SJ where J is the num-
ber of loads we sample jointly (see SI section 5.7)
which increases the size of the state space, but also
decreases the number of times we have to run the
FFBS per ROI (for example, sampling two loads at
a time means we use FFBS half as many times).
As such, overall, the time complexity of our algo-
rithm scales as O(SJNRK/J). As the majority of
the computational bottleneck is ascribed to sam-
pling the states, we therefore sample the states of
each ROI in parallel. Computational time can be
improved by a factor of R if at each iteration of
the Gibbs sampler, we sample the states for each
ROI (which are independent from each other) in
parallel. As the remaining parameters are sampled
relatively quickly as compared to state sampling,
we sample those globally at each iteration of the
Gibbs sampler.

Finally, while we have focused on photophys-
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ical dynamics, it is possible to imagine learning
the assembly and disassembly kinetics of a clus-
ter. For example, using a two state model where
the fluorophores transition between being cluster
bound and unbound, our framework could be used
to learn the state transition rates as well as the to-
tal number of fluorophores bound to the cluster at
any given time. Learning such kinetics would be
especially relevant to monitoring the formation of
large transient protein assemblies relevant to cel-
lular transcription [8, 9, 10]. What remains to be

seen is how data could be analyzed if assembly and
disassembly of molecules in a cluster are occurring
while photophysics of labels on these molecules is
simultaneously taking place. In this case, either
stable fluorophores that remain in a bright state
would need to be used or a difference in timescales
between the assembly and disassembly kinetics and
photophysical kinetics would need to be sufficiently
large to be independently determined by a future
analysis method.
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5 Supplemental Information

5.1 Choice of priors
Priors on initial state probabilities and priors on the rows of the transition probability matrix follow
Dirichlet distributions [48, 62, 63, 64]

π0 ∼ Dirichlet (α0) (11)
πσi ∼ Dirichlet (ασi) (i = D,A,B) (12)

where α0 and ασi are hyperparameters (discussed further in supplement 5.7). The Dirichlet distributions
are chosen for computational convenience alone as these are conjugate to the categorical distribution,
Eq. (2); see supplement 5.3. The choice of prior becomes largely immaterial as the data set size increases.

We select gamma distributions as our priors on the mean fluorophore brightness and mean background
brightness

µA ∼ Gamma (φµA , ψµA) (13)
µrB ∼ Gamma (φµB , ψµB ) . (14)
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The gamma distribution choice reflects our knowledge that these variables are positive and the hyperpa-
rameters are calibrated in such a way as to broaden the range of values these brightnesses may adopt. In
particular, by selecting small hyperparameters (φµA , φµB = 2), the prior gives non-negligible probability
to a wide range of values for µA and µrB ; the choice for these scale parameters of the gamma distribution,
ψµA and ψµB , is further discussed in supplement 5.7. Once more, the choice of hyperparameters become
increasingly unimportant as more data are collected [40, 65].

5.2 Remark on transition probabilities
As shown in figure 1, fluorophores can transition from “dark to bright”, “bright to dark”, and “bright to
photobleached” states as well as self transition from “dark to dark”, “bright to bright”, and “photobleached
to photobleached” states. This is captured by the layout of π, where rows correspond to the “old state”
and columns correspond to the “new state”.

π =

πσD→σD πσD→σA 0
πσA→σD πσA→σA πσA→σB

0 0 1

 (15)

Here, πσB→σB = 1 because there are no transitions out of the photobleached state. Similarly, π0, the
initial state probability, takes the form

π0 =
[
π0→σD π0→σA 0

]
. (16)

5.3 Conjugate prior on transition probabilities
The choice of Dirichlet prior on the rows of π combined with the likelihood give back a Dirichlet distri-
bution [48].
Proof:
Using Bayes’s theorem, and dropping all terms that do not depend on π0 and π, the likelihood of our
model is

P
(
s1:K,1:R1:N , b1:K,1:R, µ1:R

A , µ1:R
B , G,π,π0|w1:R

1:N ,Ω
)

∝ P
(
w1:R

1:N |s
1:K,1:R
1:N , b1:K,1:R, µ1:R

A , µ1:R
B , G,π,π0,Ω

)
× P (π,π0)

∝

(
R∏
r=1

K∏
k=1

P
(
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) N∏
n=2
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k,r
n−1,π

))(
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∏
i

Dirichlet
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πσi |απσi

))
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∏
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0,σD
π
α0,σA

−1
0,σA

∏
i,j

π
ασi,σj−1
σi,σj


∝ πC0,D+α0,σD

−1
0,σD

π
C0,A+α0,σA

−1
0,σA

∏
i,j

π
Ci,j+ασi,σj−1
σi,σj

∝ Dirichlet (π0|C0 + απ0
)
∏
i

Dirichlet
(
πσi |Ci + απσi

)
where C0,D and C0,A are the number of fluorophores that started in states σD, σA, and Ci,j is the number
of fluorophores that transitioned from σi to σj , C0 and Ci are the arrays containing the counts Ci,j , and
the products indexed by i and j go over σD, σA, and σB . So the Dirichlet prior on the initial state
probability and transition probabilities allow us to get back independent Dirichlet distributions in the
posterior.
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Notice that all elements of π0 and π that are equal to zero also have zero counts in the trace. By
declaring 00 = 1, these components do not affect the probability.

5.4 Hyperparameter on loads
Each load is sampled from a Bernoulli distribution with a parameter qk,r. This parameter qk,r is sampled
from a beta distribution with hyperparameters γ and K, where γ is a hyperhyperparameter on all qk,r’s
and K is the total number of load on and load off fluorophores in ROI r.

bk,r ∼ Bernoulli
(
qk,r

)
(17)

qk,r ∼ Beta
(
γ

K
,
K − 1

K

)
(18)

This is the Beta-Bernoulli process (BBP) [42, 43]. The distribution on qk,r is constructed in such a way
that as K goes to infinity, qk,r goes to zero consistent with our assumption that K � Kr. Because qk,r is
a hyperparameter, it is computationally advantageous for us to marginalize it out. We marginalize over
the qk,r’s to get a Bernoulli distribution for bk,r in terms of γ and K.
Proof (with indices dropped for clarity):

P (b) =

∫ 1

0

dq P (b|q)P (q)

=

∫ 1

0

dq Bernoulli (b|q)Beta
(
q| γ
K
,
K − 1

K

)
=

∫ 1

0

dq
(
qb (1− q)1−b

)( Γ
(
γ
K + K−1

K

)
Γ
(
γ
K

)
Γ
(
K−1
K

)q γK (1− q)
K−1
K

)

=
Γ
(
γ
K + K−1

K

)
Γ
(
γ
K

)
Γ
(
K−1
K

) ∫ 1

0

dq q
γ
K+b−1 (1− q)

K−1
K −b+1−1

=
Γ
(
γ
K + K−1

K

)
Γ
(
γ
K

)
Γ
(
K−1
K

) Γ
(
γ
K + b

)
Γ
(
K−1
K − b+ 1

)
Γ
(
γ
K + K−1

K + 1
) ∫ 1

0

dq Beta
(
q| γ
K

+ b,
K − 1

K
− b+ 1

)
=

K

γ +K − 1

Γ
(
γ
K + b

)
Γ
(
γ
K

) Γ
(
K−1
K − b+ 1

)
Γ
(
K−1
K

)
=

{
K−1

γ+K−1 b = 0
γ

γ+K−1 b = 1

= Bernoulli
(

γ

γ +K − 1

)
.

Following our assumption, K � Kr, γ/(γ +K − 1) must be a small number (we use γ/(γ +K − 1) = .1
with K = 100). Beyond this restriction, we can set γ by hand knowing that its effect is minimal for
sufficient data. Altogether we have

bk,r ∼ Bernoulli
(

γ

γ +K − 1

)
. (19)

5.5 Multiple bright states
Here instead of having one active state, σA, we will have L active states, σA1, . . . , σAL each with brightness
µA1, . . .µAL. We note that L must be selected a priori. The transition matrix is now an L+ 2 by L+ 2
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matrix

π =


πσD→σD πσD→σA1

πσD→σA2
. . . 0

πσA1→σD πσA1→σA1
πσA1→σA2

. . . πσA1→σB
πσA2→σD πσA2→σA1

πσA2→σA2
. . . πσA2→σB

. . . . . . . . . . . . . . .
0 0 0 . . . 1

 . (20)

We note that as we add these bright states, we must add L different random variables (µA1, . . .µAL).

5.6 Model summary and posterior
The model is summarized as follows.

µA ∼ Gamma (φµA , ψµA) (21)
µrB ∼ Gamma (φµB , ψµB ) r = 1, . . . , R (22)
π0 ∼ Dirichlet (α0) (23)
πσi ∼ Dirichlet (ασi) i = D,B,A (24)

bk,r ∼ Bernoulli
(

γ

K + γ − 1

)
k = 1, . . . ,K; r = 1, . . . , R (25)

sk,r1 |π0 ∼ Categorical (π0) (26)

sk,rn |s
k,r
n−1,π ∼ Categorical

(
πsk,rn−1

)
k = 1, . . . ,K; r = 1, . . . , R (27)

wrn|s1:K,rn , b1:K,r, µA, µ
r
B ∼ Gamma

(
(µrB +

K∑
k=1

bk,rµsk,rn )/2, 2G

)
n = 1, . . . , N ; r = 1, . . . , R (28)

sk,rN = σB . (29)

The inverse model scheme (section 2.2) allow us to develop the joint posterior of our model

P
(
s1:K,1:R1:N , b1:K,1:R, µA, µ

1:R
B ,π,π0|w1:R

1:N

)
(30)

∝ P
(
w1:R

1:N |s
1:K,1:R
1:N , b1:K,1:R, µA, µ

1:R
B ,π,π0

)
× P

(
s1:K,1:R1:N , b1:K,1:R, µA, µ

1:R
B ,π,π0

)
where the likelihood (middle term of Eq. (30)) is the product of Eq. (31) for all time levels and ROIs,
which looks like

P
(
w1:R

1:N |s
1:K,1:R
1:N , b1:K,1:R, µA, µ

1:R
B ,π,π0

)
(31)

=
R∏
r=1

N∏
n=1

Gamma

(
wrn; (µr,nB +

K∑
k=1

bk,rµsk,rn )/2, 2G

)
,

and the prior (final term) of can be further decomposed into

P
(
s1:K,1:R1:N , b1:K,1:R, µA, µ

1:R
B ,π,π0

)
(32)

∝ P
(
b1:K,1:R

)
P (µA)P

(
µ1:R
B

)
P (π)P (π0)

× P
(
s1:K,1:R1:N−1 |π,π0

)
which has two main parts, 1) the middle terms of Eq. (32) are the product of Eqs. (11)-(6) over all
indexes 2) the last term of Eq. (32) is the product of π0,D to the power of the number of fluorophores that
start dark (C0D is the number of fluorophores that start dark) times π0,A to the power of the number of
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fluorophores that start bright (C0A is the number of fluorophores that start bright) times πij to the power
of the number of transitions that occurred from σi to σj (Cij is the number of transitions from σi to σj)

P
(
s1:K,1:R1:N−1 |π,π0

)
= πC0D

O,Dπ
C0A

0,A

∏
i,j

π
Cij
ij (33)

C0D =
R∑
r=1

K∑
k=1

I[sk,r1 = σD] (34)

C0A =
R∑
r=1

K∑
k=1

I[sk,r1 = σA] (35)

Cij =
R∑
r=1

K∑
k=1

N∑
n=2

I[sk,rn = σj ]I[sk,rn−1 = σi] (36)

where I[x = y] is the indicator function that is equal to 1 if x = y and 0 else. We note that in this
scheme (Eqs. (30)-(33)), we are learning the number of fluorophores in many ROI simultaneously. This
is important because by analyzing many ROI together, we effectively have more information to train on
and therefore obtain more accurate results.

5.7 Sampling
We outline the Gibbs sampling scheme below where (i) indexes the iteration in the Gibbs sampler.

• Step 1: Choose initial s1:K,1:R,(0)1:N , b1:K,1:R,(0), µ(0)
A , µ1:R,(0)

B , π(0), and π(0)
0 .

• Step 2: For many iterations, i:

– A) Sample new states and loads from

P
(
s
1:K,1:R,(i)
1:N , b1:K,1:R,(i)|µ(i−1)

A , µ
1:R,(i−1)
B ,π(i−1),π

(i−1)
0 , w1:R

1:N

)
which is the product of Eq. (31) and Eq. (33).

– B) Sample new transition probabilities and initial state probabilities from

P
(
π(i),π

(i)
0 |s

1:K,1:R,(i)
1:N , b1:K,1:R,(i), µ

(i−1)
A , µ

1:R,(i−1)
B , w1:R

1:N

)
which is the product of Eqs. (11), (12), and (33). Here the choice of conjugate priors allow us
to sample π0 and π directly.

– C) Sample new camera parameters from

P
(
µ
(i)
A , µ

1:R,(i)
B |s1:K,1:R,(i)1:N , b1:K,1:R,(i),π(i),π

(i)
0 , w1:R

1:N

)
which is the product of Eq. (31) and the priors (Eqs. (13)-(14)).

For Step 1, the initial values are chosen to be the means of the prior. These means can in principle
be anything, although, better guesses lead to faster convergence. We did notice the sampler is sensitive
to the initial value for the fluorophore brightness. In other words we could sample, for example, half as
many fluorophores with twice the brightness or three times the number of fluorophore with a third the
brightness. To avoid this problem we set a sharp prior for the value of µA on the brightness of a single
fluorophore which is clear at the end of the trace. This makes sure that our model posterior is sharply
peaked at reasonable numbers of fluorophores. We calibrate gain, G, using methods described in Hirsch
et al [44]. We estimate the background brightness for each ROI by looking at the end of the brightness
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time trace, when all fluorophores are presumed to be photobleached. For π(0)
0 we take the maximally

naive approach and choose the starting probability for bright and dark to be 50/50. We can choose π(0)

using this approach, but we find that choosing self transitions to be larger speeds up the convergence
significantly (by about 100-500 iterations) For s(0),1:R,1:K1:N we guess that there are no fluorophores in any
ROI, i.e that for all loads, bk,r = 0. In our analysis, we chose the hyperparameters to coincide with
the initial guess. So α0 = [.5, .5, 0], ασD = [.9, .1, 0], ασA = [.1, .8, .1], ασB = [0, 0, 1]. For the mean
background brightness and mean fluorophore brightness, we chose the initial guess to be the mean of the
prior by scaling the scale parameter by the shape parameter,

ψµA = µ
(0)
A /φµA

ψrµB = µ
r,(0)
B /φµB

In Step 2 A, for each ROI, we sample loads and states together by using the forward filter backwards
sample algorithm [48]. To speed up computation we do this using a collapsed state space where we treat
photobleached fluorophores and fluorophores with load off to be the same. That is, under our model each
fluorophore is described by two different random variables, its load and its state. However, we instead
describe it with one random variable by lumping together fluorophores with off loads and photobleached
fluorophores with on loads. Consider a new state space defined by

σ′D = {bk,r = 1 and sk,rn = σD} (37)

σ′A = {bk,r = 1 and sk,rn = σA} (38)

σ′B = {(bk,r = 1 and sk,rn = σB) or (bk,r = 0)} (39)

In this “collapsed state space”, we ignore the loads entirely, but allow for fluorophores to start from the
photobleached state with probability (K − 1)/(γ + K − 1) (the probability that a fluorophore has load
off). This in turn causes π0 to scale down by γ/(γ +K − 1) as well,

π0 =

[
γ

γ +K − 1
π0D,

γ

γ +K − 1
π0A,

K − 1

γ +K − 1
π0B

]
(40)

but notice that π is not affected (as off load fluorophores cannot become on and vice versa) nor are any of
the other random variables. Thus we can simplify our calculations by simply allowing load off fluorophores
to be considered photobleached so long as we keep track of π0. Additionally, rather than sample each
sk,rn individually, we sample sk,rn , sk+1,r

n ,. . . sk+J,rn together (for J = 4 in our case). We additionally shuffle
the fluorophore indices k so that at each sampler iteration, different fluorophores are sampled together.
Sampling fluorophore states together in this way helps the sampler mixing. The joint microstate, Sk,rn ,
specifies the states of the fluorophores when we consider them together. For example, one realization of
a joint microstate might look like

Sk,rn =Σ17

Sk,rn ={sk,rn = σ′D, s
k+1,r
n = σ′A, s

k+2,r
n = σ′B , s

k+3,r
n = σ′A, s

k+4,r
n = σ′D, s

k+5,r
n = σ′B},

or using a notation Σ1,Σ2, . . . to represent the possible joint microstates that Sk,rn can take,

Sk,rn =Σ17

Σ17 ={σ′D, σ′A, σ′B , σ′A, σ′D, σ′B},

where the index, 17, on Σ17 is used simply to illustrate an example. The number of values Sk,rn can take
(Σ1,Σ2, . . . ) is the Kronecker product of the individual state spaces ({σ′D, σ′A, σ′B}). For Step 2 C, we
sample µA and µ1:R

B each separately using a Hamiltonian Monte Carlo step [66].
As the sampler runs, higher probability regions are sampled more often and lower probability regions

are sampled less often [51, 52, 40, 53]. After many iterations we can histogram the results to approximate
the shape of our posterior. By looking at the histogram and not just the MAP or mean, we are able to
get credible intervals for our estimates.
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We note that the R ROIs in the base set are analyzed simultaneously. To be clear, we mean that
each ROI has its own fluorophore states, loads, and mean background brightness, but the transition
probabilities, initial state probability, and mean fluorophore brightness are global. This is advantageous
because it allows the inference of each ROI to benefit from the others by providing more data on which
to train the transition probabilities.

5.8 Hamiltonian Monte Carlo
We sampled our state brightness and background brightness using Hamiltonian Monte Carlo [66]. Briefly,
Hamiltonian Monte Carlo proposes samples using a numerical integrator with strong parallels to Hamil-
tonian dynamics. Here, our random variables are sampled along with normally distributed auxiliary
variables, referred to as momenta, pA and pB

P (µA, µB |w) =

∫
dpA

∫
dpBP (µA, µB |w)P (p) (41)

=

∫
dpA

∫
dpBP (µA, µB |w)Normal (pA; 0,mA)Normal (pB ; 0,mB) (42)

where mA and mB , called the masses, are the variances of the priors on the momenta (for simplicity in
the derivation we only look at a single bright state and single background brightness). The negative log
of the conditional posterior, including the momenta, is called the Hamiltonian.

H =− log(P (µA, µB |w)P (p)) (43)

=− log

(
Gamma (µA;αµA , θµA)Gamma (µB ;αµB , θµB ) (44)

×

(
N∏
n=1

Gamma (wn;µn/2, 2G)

)
(45)

×Normal (pA; 0,mA)Normal (pB ; 0,mB)

)
(46)

=
p2A

2mA
+

p2B
2mB

+
µA
θµA
− (αA − 1) log(µA) +

µB
θµB
− (αB − 1) log(µB) (47)

+

N∑
n=1

(log(Γ(µn/2))− (µn/2− 1) log(wn/2G)) + C (48)

where µn = µB + XnµA with Xn is the number of fluorophores in the bright state at time level n,
and where C includes all terms not dependent on pA, pB , µA, or muB . Note that the momenta in the
Hamiltonian appear exactly like kinetic energy terms (motivating the name Hamiltonian Monte Carlo).
We may use Hamilton’s equations of motion to modify pA, pB , µA, and µB in such a way that the total
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“energy” of the system is conserved

∂µA
∂t

=
∂H
∂pA

(49)

=
pA
mA

(50)

∂µB
∂t

=
∂H
∂pB

(51)

=
pB
µB

(52)

∂pA
∂t

=− ∂H
∂µA

(53)

=− 1

θµA
+
αµA − 1

µA
− 1

2

N∑
n=1

Xn (ψ(µn/2)− log(wn/2G)) (54)

∂µB
∂t

=− ∂H
∂pB

(55)

=− 1

θµA
+
αµA − 1

µA
− 1

2

N∑
n=1

(ψ(µn/2)− log(wn/2G)) . (56)

Conservation of energy in this case corresponds exactly to conservation of probability in the posterior. In
principle, this means that starting with sampled values for pA and pB , we can use a Hamiltonian mechanics
integrator to find proposal values of µA and µB with equal probability as those from the previous Gibbs
sampler iteration.

5.9 Ruler method
The ruler method estimates the number of fluorophores by dividing the initial brightness by the estimated
fluorophore brightness. For our implementation of the ruler method we average the last 10% of the
brightness trace to get an estimate for the background brightness and we average the first 10 data points
to get an estimate for the initial brightness. To estimate the brightness of a single fluorophore we average
the last ten frames of the final photobleaching step less the background. The final photobleaching step is
found by looking for the last time level where the brightness is above a set threshold. For our purposes,
this threshold is always chosen to be the same brightness guess that we use to inform our prior on
brightness, except for the high noise experiment (figure 4 bottom row) in which the high noise causes the
background brightness to be frequently measured higher than the fluorophore brightness step. For the
high noise case, we set the threshold to be 3 times the fluorophore brightness guess, which is high enough
that the background is excluded, but low enough that it is sampled in the final photobleaching step (see
figure 5.13). We note that setting the brightness of a fluorophore by hand can improve the ruler method’s
accuracy. However, as our method, the change point method, and the two state method simultaneously
learn fluorophore brightness with the number of fluorophores, we require that the ruler method also learn
the fluorophore brightness in establish a fair comparison.

5.10 Robustness analysis on simulated data
In this section we evaluate the robustness of our method. In the main (section 3.2), we demonstrated the
method using a “base set of parameters”. For the base set we have 50 ROIs containing 14 fluorophores
on average. The traces are 1000 seconds long with brightness wrn collected every 50 ms, so 20000 total
frames. The exact number of fluorophores in each ROI is sampled from a binomial distribution to mimic
20 binding sites with 70% labeling efficiency. The gain used for the simulation was 50. The dimensionless
background brightness parameters are µrB = 1000. The fluorophores were simulated with two bright states
with brightness given by µA1 = 450 and µA2 = 350 (plus one dark state and a photobleached state with
brightness given by µD = µB = 0). For the number of loads, K, we chose 39. These parameters were
chosen to mimic the parameters learned from real data, for example, the brightness states (µA1 and µA2)

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2020.09.28.317057doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317057
http://creativecommons.org/licenses/by/4.0/


were chosen so that the height of a photobleaching step in the simulated data is the same height as a
photobleaching step in the real data. We will refer to these parameters as the “base set.”

5.10.1 Varying the number of loads

Figure 6: Inference on fluorophore number from data simulated with varying number of
loads. Each panel shows inference on simulated data using a different number of loads. The mean error
is annotated on the bottom left of each panel.

We must make sure that our choice of nonparametric limit in our beta-Bernoulli prior, Eq. (6), does not
heavily the number of loads we choose. That is, we want to make sure that if 14 fluorophores are present
in an ROI, then our choice of K = 30 or K = 300 from Eq. (6) is inconsequential. To address this we
ran inference on the same simulated data, but with a different number of loads. The results are shown in
figure 6.

The top row of figure 6 shows that if we do not provide a sufficient number of loads, then we cannot
count the correct number of fluorophores. This is obvious because if the number of fluorophores is
determined by how many loads are “on”, then when there are not enough loads, we cannot turn on enough
loads to account for all the fluorophores. For example, if we provide 9 loads, but there are 14 fluorophores,
then even if all 9 loads are “on” we underestimate by 5 fluorophores. Aside from this constraint, we found
that once a sufficient number of loads are chosen then the results are not dependent on the number of
loads. As seen in the bottom three rows of figure 6, increasing the number of loads has negligible impact
on the performance of the sampler.

Therefore, for the rest of this paper we will take for granted that we are free to set the number of
loads, K, as we please provided that we set K larger than the maximum expected number of fluorophores.
A note however is in order. If we choose too many loads, then the computation becomes expensive and
inefficient. As a nice balance between sufficiency and efficiency, we will choose to make the number of
loads equal to two times the expected number of fluorophores. In the case that the ground truth number
of fluorophores is unknown (like for real data) the best way forward would be to guess a number of loads
and if it maxes out (i.e., the number of sampled fluorophores in an ROI is equal to the number of loads)
then to double the number of loads and try again.
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5.10.2 Varying the number of fluorophores

Figure 7: Inference on fluorophore number from data simulated with varying fluorophore
numbers. Each panel shows inference on data simulated with a different number of fluorophores per
ROI.

Now that we have shown that we can accurately count the number of fluorophores in an ROI, the next
clear step forward is to see how high we can count. For this, we simulated data using the same base case
parameters, but changed the way in which we sample the ground truth number of fluorophores. Here
we simulate ten different experiments with 20, 40, ..., 200 fluorophore binding sites and 50% labeling
efficiency so that the expected number of fluorophores for each ROI is 10, 20, ..., 100 respectively.
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Figure 8: As the number of active fluorophores increases, photon shot noise, amplified by
camera noise, becomes an essential modeling component. On the right we see two brightness time
traces for an ROI. The ROI giving rise to the red trace contains 5 fluorophores and the ROI giving rise to
the green trace contains 26 fluorophores. The black line through each trace represents the expected mean
brightness at each time level based on the background brightness, fluorophore brightness, and number
of active fluorophores at the time level. On the left we see the probability distribution for the initial
brightness of each ROI (blue) as well as the probability distribution for the initial brightness if the ROI
contained one more or fewer fluorophores (orange). We notice that: 1) for the red trace, the measured
brightness matches closely with the mean, whereas the green trace fluctuates wildly; 2) the probability
for the initial brightness is sharply peaked for the red trace which allows us to easily tell how many
fluorophores are initially active. By contrast, the probability for the initial brightness is much more
spread out for the green trace and overlaps greatly with the distributions for one more and one fewer
fluorophores.

As seen in figure 7, on simulated data for the parameters chosen, the learned distribution of fluorophores
overlaps with the ground truth for all simulations. There is a slight underestimation, in which the sampler
misses about 1 fluorophore out of every ten, that becomes more noticeable as the number of simulated
fluorophores increases. The source of this underestimation is the prior on the number of loads(equation 6),
which favors samples from the posterior that use fewer fluorophores to explain the data. At the beginning
of the brightness trace, where the width of the brightness levels is much wider than the separation between
brightness levels (figure 8), the sampler may “choose” to interpret steps as noise fluctuations, thus missing
fluorophores. This underestimation percentage is consistent across number of fluorophores used for the
simulations (we have similar error percentage when there are 20 ground truth fluorophores as when there
are 100 fluorophores) and thus does not negate that we can count high number of fluorophores.
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5.10.3 Varying the number of states

Figure 9: Inference on data simulated with different number of states. Here for each row we
generate simulated data using a different state model for the forward model. Each column shows the
inference on that data set using a different state model for the inverse model.

We note that while our model is nonparametric in the number of fluorophores in an ROI (i.e., that the
number of fluorophores in an ROI is not a fixed quantity but inferred), our model is parametric in the
number of fluorophore states. That is, we must pre-specify the number of fluorophore states. It is difficult
to be both nonparametric in the number of fluorophores and the number of states (as then, trivially,
each transition could be considered to visit a new state of the fluorophore). In the previous sections,
we have taken for granted that we knew the correct number of fluorophore states. We modeled that the
fluorophores have two separate bright states, a dark state, and a photobleached state. Here we explore the
photophysical state space further using different numbers of bright states. For conciseness, in this section
we will refer to these models using a naming convention that starts with ‘D’ followed by the number of
dark states and then ‘B’ followed by the number of bright states: 1) D0B1, a model with no dark state
and one bright state (i.e., the fluorophore is either bright or photobleached); 2) D1B1, a model with one
dark state one bright state; and 3) D1B2, a model with one dark state and two bright states. In principle
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we could also explore more bright or dark states, but the combinatorics on the possible arrangements on
fluorophore states adds computational burden. We note that the base case set of parameters uses a D1B2
model and the model with only two states, D0B1, is the same model as the one used in Garry et al. [25].

We simulated data using each of the different state models and then analyzed each simulated data
set using each of the different state models. Results are shown in figure 9. Starting left to right, we first
notice that the D0B1 model does well at counting fluorophores from data generated using the D0B1 model
(figure 9 top left). On the other hand, the inference severely underestimates the number of fluorophores
for the data generated using the D1B1 model (figure 9 middle left) and the D1B2 model (figure 9 bottom
left). This is because, lacking a dark state, no possible fluorophore state trajectory under the D0B1 model
can account for blinks where the brightness of the ROI goes down and then comes back up. Thus the
only way for the method to account for blinks is to increase the variance (by increasing the background
brightness, µB) to a level where a sudden drop in brightness is explained purely by noise. This in turn
makes photobleaching steps the same size as noise fluctuations (because the drop in brightness from a blink
is the same as a drop in brightness from a photobleaching event), thus the method “misses” photobleaching
steps and most brightness drops are explained purely by the exponentially decaying background.

The remaining models, D1B1 and D1B2, provide good matches to the ground truth number of fluo-
rophores for the data with no dark state (figure 9 top row). In this case the dark state is never visited
despite being available. Similarly both models are able to exactly learn the ground truth number of fluo-
rophores in the data sets with only one bright state. Again, in this case the two bright state inverse model
will simply rarely visit one of its available bright states. For the data generated using two bright states,
both the single bright state model, D1B1, and the two bright state model, D1B2, both infer a distribution
of fluorophore numbers with similar accuracy. As the two bright states are very close to each other in
brightness, the D1B1 model is able to find a brightness that averages the two together. For this reason,
we say that our inference scheme is robust to bright state number. The advantage to using the two bright
state model, D1B2, is that the inferred brightness traces will learn bright state transitions kinetics.

5.11 Additional comparison

Figure 10: Comparison against other methods on real data. Here we compare our method against
a change point method and the ruler methods on real data. Each panel shows the inference on a data set
with a different number of fluorophores. We plot the inferred distribution for the number of fluorophores
for each method in a different color. On the bottom right of each panel we annotate the mean expected
number of fluorophores as well as the learned mean expected number of fluorophores.
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Figure 11: Additional comparison against other methods on simulated data. Here we compare
our method against a change point method [15] and the ruler methods on real data. Each panel shows the
inference on a data set simulated with a different number of fluorophores. We plot the inferred distribution
for the number of fluorophores for each method in a different color. On the bottom left of each panel we
annotate the mean error.

Here we plot additional figures comparing our method to the change point detection algorithm laid
out in Tsekouras et al. [15] and the ruler method[12, 13].

In figure 11 we plot the learned distribution for the number of fluorophores for each method as well
as the ground truth distribution for the number of fluorophores. On the bottom left of each panel we
show the mean error of each method, that is the average difference between the predicted number of
fluorophores and the ground truth number of fluorophores for each ROI. Our method provides the least
error for all data sets except the 80 fluorophore data set in which the ruler method has less error. This
is likely a statistical artifact in which the noise fluctuations at the beginning of the trace and end of the
last photobleaching step made estimating the fluorophore brightness and initial brightness easier. Note
on the other hand that because such statistical deviations are rare, for every other data set our method
is more accurate than the ruler method for this point statistic alone (determining fluorophore counts).

In figure 10 we plot the learned distribution for the number of fluorophores for each method as well
as the ground truth expected distribution for the number of fluorophores. As there is no known ground
truth, we cannot compare errors. Instead we compare the learned average number of fluorophores against
the best guess for the expected average number of fluorophores given the factory estimated binding rate.
We note that the ruler method occasionally predicts very high number of fluorophores (200+) when the
fluorophore brightness is underestimated due to blinking or random spikes.

We can use our obtained mean number of fluorophores to validate the 70% binding efficiency provided
to us by the manufacturer. We do this by dividing the learned mean number of fluorophores by the
number of binding sites. Doing this we estimate 76% binding efficiency from our 20 binding site data and
we estimate 74% binding efficiency from our 35 binding site data. Both of these estimates are within 10%
of the provided estimate.

5.12 Full posteriors
Here we plot full posterior samples for each unknown quantity from the analysis on each data set. We
do this in two figures for each experiment. For the first part we plot the Gibbs sample trace showing the
values of each of our parameters as a function of iteration. The top panel of each figure shows the log
probability at each iteration. The second panel shows the brightness of the bright states at each iteration.
The third panel shows the lifetime of the bright states at each iteration. The final panel shows the learned
average number of fluorophores at each iteration, that is, we learn the number of fluorophores in each ROI
and then average them. For simulated data sets we plot the ground truth values as a horizontal line. As
there are two bright states, the middle two panels will have two Gibbs sample traces (there are also two
ground truth values, but they are very close together). For the second figure we show a scatter plot of the
covariance of the posterior. For this plot, each row and column represent a different variable (we simplify
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by only showing the brightness of the brightest state, the lifetime of the brightest state, and the mean
number of fluorophores per ROI). Each panel i, j shows there covariance between variable i and variable j
(where, again, i and j will be the brightness of the brightest state, the lifetime of the brightest state, and
the mean number of fluorophores per ROI) and each panel along the diagonal shows the histogrammed
posterior of variable i.

The input parameters used for analysis are the same for each data set and correspond to the default
inputs on the provided code. We reproduce those default values below. Let ur be the average of the last
100 data points of ROI r which is used for estimating the background brightness.

f fluorophore brightness guess 10000
G gain* 22
γ hyperparameter on loads .1
φµA scale parameter for fluorophore brightness 100
ψµA shape parameter for fluorophore brightness f/(G× φµA)
φrµB scale parameter for background brightness 10
ψrµB shape parameter for background brightness ur/φ

r
µB

π concentration parameter for transitions


100 1 1 0
1 100 1 1
1 1 100 1
0 0 0 1


π0 concentration parameter for initial state

[
1 1 1 0

]
*Gain is G = 2200 for the experiment in figure 4 bottom row.

For all experiments we perform one MCMC chain with a set random seed. We run our Gibbs sampler
for 20,000 iterations or 1 week, whichever comes first, then eliminate the burn in phase by selecting only
the samples where the variables and the log posterior have stabilized. Our heuristic metric for stablization
is when the slope of all samples with respect to Gibbs sample iteration is less than one percent of the
mean.

Note that the state lifetimes are calculated from the transition learned transition matrix as a post
processing step via τk = dt/(1 − πk,k) where τk is the lifetime of state k and πk,k is the self transition
probability of state k. Under this transformation, small displacements in πk,k can cause large displace-
ments in τk. For this reason, the learned bright state lifetimes can be off by as much as a factor of 2 even
if the learned transition rate is only off by 10% or less.
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5.13 Plots of data
Here we plot the brightness vs time traces that we analyze in the main manuscript. Note that we only
plot data from the first three ROIs, but there are, in fact, many more traces that we do not show. On
the top under the title of each figure we print the total number of ROIs per data set.
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