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ABSTRACT 82 

Traditional Hardy-Weinberg equilibrium (HWE) tests (the χ2 test and the exact test) have long 83 

been used as a metric for evaluating genotype quality, as technical artifacts leading to incorrect 84 

genotype calls often can be identified as deviations from HWE. However, in datasets comprised 85 

of individuals from diverse ancestries, HWE can be violated even without genotyping error, 86 

complicating the use of HWE testing to assess genotype data quality. In this manuscript, we 87 

present the Robust Unified Test for HWE (RUTH) to test for HWE while accounting for 88 

population structure and genotype uncertainty, and evaluate the impact of population 89 

heterogeneity and genotype uncertainty on the standard HWE tests and alternative methods 90 

using simulated and real sequence datasets. Our results demonstrate that ignoring population 91 

structure or genotype uncertainty in HWE tests can inflate false positive rates by many orders 92 

of magnitude. Our evaluations demonstrate different tradeoffs between false positives and 93 

statistical power across the methods, with RUTH consistently amongst the best across all 94 

evaluations. RUTH is implemented as a practical and scalable software tool to rapidly perform 95 

HWE tests across millions of markers and hundreds of thousands of individuals while supporting 96 

standard VCF/BCF formats. RUTH is publicly available at https://www.github.com/statgen/ruth. 97 

 98 
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INTRODUCTION 100 

Hardy-Weinberg equilibrium (HWE) is a fundamental theorem of population genetics and has 101 

been one of the key mathematical principles to understand the characteristics of genetic 102 

variation in a population for more than a century (HARDY 1908; WEINBERG 1908). HWE describes 103 

a remarkably simple relationship between allele frequencies and genotype frequencies which is 104 

constant across generations in homogeneous, random-mating populations. Genetic variants in 105 

a homogeneous population typically follow HWE except for unusual deviations due to very 106 

strong case-control association and enrichment (NIELSEN et al. 1998), sex linkage, or non-107 

random sampling (WAPLES 2015).  108 

HWE tests are often used to assess the quality of microsatellite (VAN OOSTERHOUT et al. 109 

2004), SNP-array (WIGGINTON et al. 2005), and sequence-based (DANECEK et al. 2011) genotypes. 110 

Testing for HWE may reveal technical artifacts in sequence or genotype data, such as high rates 111 

of genotyping error and/or missingness, or sequencing/alignment errors (NIELSEN et al. 2011). It 112 

can also identify hemizygotes in structural variants which are incorrectly called as homozygotes 113 

(MCCARROLL et al. 2006). Quality control for array-based or sequence-based genotypes typically 114 

includes a HWE test to detect and filter out artifactual or poorly genotyped variants (LAURIE et 115 

al. 2010; NIELSEN et al. 2011).  116 

While HWE tests are commonly and reliably used for variant quality control in samples 117 

from homogeneous populations, applying them to more diverse samples remains challenging. 118 

When analyzing individuals from a heterogeneous population, the standard HWE tests may 119 

falsely flag real, well-genotyped variants, unnecessarily filtering them out for downstream 120 

analyses (HAO AND STOREY 2019). This problem is important since genetic studies increasingly 121 
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collect genetic data from heterogeneous populations. In principle, HWE tests in these 122 

structured populations can be performed on smaller cohorts with homogenous backgrounds 123 

(BYCROFT et al. 2018), and the test statistics combined using Fisher’s or Stouffer’s method 124 

(MOSTELLER AND FISHER 1948; STOUFFER 1949). However, such a procedure requires much more 125 

effort than using a single HWE test across all samples and information that may be imperfect or 126 

unavailable.  127 

Here, we describe RUTH (Robust Unified Test for Hardy-Weinberg Equilibrium) which 128 

tests for HWE under heterogeneous population structure. Our primary motivation for 129 

developing RUTH is to robustly filter out artifactual or poorly genotyped variants using HWE 130 

test statistics. RUTH is (1) computationally efficient, (2) robust against various degrees of 131 

population structure, and (3) flexible in accepting key representations of sequence-based 132 

genotypes including best-guess genotypes and genotype likelihoods. We perform systematic 133 

evaluations of RUTH and alternative methods for HWE testing using simulated and real data to 134 

explore the advantages and disadvantages of these methods for samples of diverse ancestries.  135 

MATERIALS AND METHODS 136 

Unadjusted HWE tests  137 

Consider a study of 𝑛 participants with true (unobserved) genotypes 𝑔1, 𝑔2, ⋯ , 𝑔𝑛 at a bi-allelic 138 

variant coded as 0 (reference homozygote), 1 (heterozygote), or 2 (alternate homozygote). 139 

Represent the best-guess/hard-call (observed) genotypes as 𝑔̂1, 𝑔̂2, ⋯ , 𝑔̂𝑛. A simple HWE test 140 

uses the chi-squared statistic to compare the expected and observed genotype counts 141 

assuming no population structure and no genotype uncertainty. The chi-squared HWE test 142 
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statistic is defined as  𝑇𝜒2 = ∑
(𝑐𝑘−𝑐𝑘̂)2

𝑐̂𝑘

2
𝑘=0  where 𝑐𝑗 = ∑ 𝐼(𝑔̂𝑖 = 𝑗)𝑛

𝑖=0  (ignoring missing 143 

genotypes), 𝑝̂ =
𝑐1+2𝑐2

2𝑛
, 𝑞̂ = 1 − 𝑝̂ , 𝑐̂0 = 𝑛𝑞̂2, 𝑐̂1 = 2𝑛𝑝̂𝑞̂, and 𝑐̂2 = 𝑛𝑝̂2. Under HWE, the 144 

asymptotic distribution of 𝑇𝜒2  is usually assumed to follow 𝜒1
2 (ROHLFS AND WEIR 2008). An exact 145 

test is known to be more accurate for finite samples, particularly for rare variants (WIGGINTON et 146 

al. 2005). HWE tests stratified by case-control status are known to prevent an inflation of Type I 147 

errors for disease-associated variants (LI AND LI 2008). Widely used software tools such as PLINK 148 

(PURCELL et al. 2007) and VCFTools (DANECEK et al. 2011) implement an exact HWE test based on 149 

best-guess genotypes. We will refer to the exact test as the unadjusted test. 150 

Existing HWE tests accounting for structured populations 151 

The unadjusted HWE test assumes that the population is homogeneous. If a study is comprised 152 

of a set of discrete structured subpopulations, a straightforward extension of the unadjusted 153 

test is to (1) stratify each study participant into exactly one of the subpopulations, (2) perform 154 

the unadjusted HWE test for each subpopulation separately, and (3) meta-analyze test statistics 155 

across subpopulations to obtain a combined p-value using Stouffer’s method (STOUFFER et al. 156 

1949). More specifically, let 𝑧1, 𝑧2, ⋯ , 𝑧𝑠 be the z-scores from HWE test statistics for s distinct 157 

subpopulations with sample sizes 𝑛1, 𝑛2, ⋯ , 𝑛𝑠. A combined meta-analysis HWE test statistic 158 

across the subpopulations is then 𝑇𝑚𝑒𝑡𝑎 =
∑ 𝑧𝑖√𝑛𝑖

𝑠
𝑖=1

√∑ 𝑛𝑖
𝑠
𝑖=1

 , which asymptotically follows a standard 159 

normal distribution when each subpopulation follows HWE. 160 

When the population cannot be easily stratified into distinct subpopulations (e.g. intra-161 

continental diversity or an admixed population), a quantitative representation of genetic 162 
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ancestry, such as principal component (PC) coordinates or fractional mixture over 163 

subpopulations, can be more useful for representing each study participant’s genetic diversity 164 

(ROSENBERG et al. 2002; PRICE et al. 2006). HWES takes PCs as additional input to perform HWE 165 

tests under population structure with logistic regression (SHA AND ZHANG 2011), and a similar 166 

idea was suggested by Hao and colleagues (2016). However, existing implementations do not 167 

support sequence-based genotypes (where genotype uncertainty may remain at low or 168 

moderate sequencing depth) or other commonly used formats for genetic array data. A recent 169 

method, PCAngsd estimates PCs from uncertain genotypes represented as genotype likelihoods 170 

(MEISNER AND ALBRECHTSEN 2019) and uses these estimates to perform a likelihood ratio test (LRT) 171 

for HWE, which is similar to the LRT version of RUTH with differences in computational 172 

performance (see below).  173 

Robust HWE testing with RUTH 174 

Here we describe RUTH (Robust and Unified Test for Hardy-Weinberg equilibrium) to enable 175 

HWE testing under structured populations, which is especially useful for large sequencing 176 

studies. We developed RUTH to produce HWE test statistics to allow quality control of 177 

sequence-based variant callsets from increasingly diverse samples. RUTH models the 178 

uncertainty encoded in sequence-based genotypes to robustly distinguish true and artifactual 179 

variants in the presence of population structure, and seamlessly scales to millions of individuals 180 

and genetic variants.  181 

We assume the observed genotype for individual 𝑖 can be represented as a genotype 182 

likelihood (GL)  𝐿𝑖
(𝐺)

= Pr (𝐷𝑎𝑡𝑎𝑖|𝑔𝑖 = 𝐺), where 𝐷𝑎𝑡𝑎𝑖  represents observed data (e.g. 183 

sequence or array), and 𝑔𝑖 ∈ {0,1,2} the true (unobserved) genotype. For example, GLs for 184 
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sequence-based genotypes can be represented as 𝐿𝑖
(𝐺)

= ∏ Pr (𝑟𝑖𝑗|𝑔𝑖 = 𝐺; 𝑞𝑖𝑗)
𝑑𝑖
𝑗=1  where 𝑑𝑖 is 185 

the sequencing depth, 𝑟𝑖𝑗 is the observed read, and 𝑞𝑖𝑗 is the corresponding quality score  186 

(EWING AND GREEN 1998; JUN et al. 2012). We model GLs for best-guess genotypes 𝑔̂𝑖  from SNP 187 

arrays as 𝐿𝑖
(𝐺)

= (1 − 𝑒𝑖)
2, 2𝑒𝑖(1 − 𝑒𝑖),  𝑒𝑖

2  for 𝑔̂𝑖 = 2, 1, 0 where 𝑒𝑖 is assumed per-allele error 188 

rate. Imputed genotypes may also be approximately modeled using this framework, but the 189 

current implementation requires creating a pseudo-genotype likelihood to describe this 190 

uncertainty (see Discussion). 191 

Accounting for Population Structure with Individual-Specific Allele Frequencies 192 

We account for population structure by modeling individual-specific allele frequencies from 193 

quantitative coordinates of genetic ancestry such as PCs, similar to the model (HAO et al. 2016). 194 

For any given variant, instead of assuming that genotypes follow HWE with a single universal 195 

allele frequency across all individuals, we assume that genotypes follow HWE with 196 

heterogeneous allele frequencies specific to each individual, modeled as a function of genetic 197 

ancestry. Let 𝒙𝒊 ∈ ℝ𝑘  represent the genetic ancestry of individual 𝑖, where 𝑘 is the number of 198 

PCs used. We estimate individual-specific allele frequency 𝑝 as a bounded linear function of 199 

genetic ancestry  200 

𝑝(𝒙𝑖; 𝜷) = {

𝜷𝑻𝒙𝑖 𝜀 ≤ 𝜷𝑻𝒙𝑖 ≤ 1 − 𝜀

𝜀 𝜷𝑻𝒙𝑖 < 𝜀

1 − 𝜀 𝜷𝑻𝒙𝑖 > 1 − 𝜀

 , 201 

where 𝜀 is the minimum frequency threshold. We used 𝜀 =
1

4𝑛
 in our evaluation. Even though 202 

we used a linear model for 𝑝(𝒙𝑖; 𝜷) for computational efficiency, it is straightforward to apply a 203 

logistic model, which is arguably better (YANG et al. 2012; HAO et al. 2016). 204 
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 Let 𝑝𝑖 = 𝑝(𝒙𝑖; 𝜷) and 𝑞𝑖 = 1 − 𝑝𝑖  be the individual specific allele frequencies of the 205 

non-reference and reference alleles for individual 𝑖. Under the null hypothesis of HWE, the 206 

frequencies of genotypes (0, 1, 2) are [𝑞𝑖
2, 2𝑝𝑖𝑞𝑖 , 𝑝𝑖

2]. Under the alternative hypothesis, we 207 

assume these frequencies are [𝑞𝑖
2 + 𝜃𝑝𝑖𝑞𝑖, 2𝑝𝑖𝑞𝑖(1 − 𝜃), 𝑝𝑖

2 + 𝜃𝑝𝑖𝑞𝑖] where 𝜃 is the 208 

inbreeding coefficient. This model is a straightforward extension of a fully general model where 209 

𝑝𝑖, 𝑞𝑖 is identical across all samples. Then the log-likelihood across all study participants is 210 

𝑙(𝜷, 𝜃) = ∑ log[𝐿𝑖
(0)(𝑞𝑖

2 + 𝜃𝑝𝑖𝑞𝑖) + 𝐿𝑖
(1)

 2𝑝𝑖𝑞𝑖(1 − 𝜃) + 𝐿𝑖
(2)(𝑝𝑖

2 + 𝜃𝑝𝑖𝑞𝑖)]
𝑛

𝑖=1
 211 

Under both the null (𝜃 = 0) and alternative (𝜃 ≠ 0) hypotheses, we maximize the log-212 

likelihood using an Expectation-Maximization (E-M) algorithm (DEMPSTER et al. 1977). As we 213 

empirically observed quick convergence within several iterations in most cases, we used a fixed 214 

(n=20) number of iterations in our implementation.  215 

RUTH Score Test 216 

The score function of the log-likelihood is 217 

𝑈(𝜃) = ∑
𝑝𝑖𝑞𝑖[𝐿𝑖

(0)
− 2𝐿𝑖

(1)
+ 𝐿𝑖

(2)
]

𝐿𝑖
(0)(𝑞𝑖

2 + 𝜃𝑝𝑖𝑞𝑖) + 𝐿𝑖
(1)

  2𝑝𝑖𝑞𝑖(1 − 𝜃) + 𝐿𝑖
(2)(𝑝𝑖

2 + 𝜃𝑝𝑖𝑞𝑖)

𝑛

𝑖=1
= ∑ 𝑢𝑖(𝜃)

𝑛

𝑖=1
 218 

Since  𝑢𝑖
′(𝜃) = −𝑢𝑖

2(𝜃), we construct a score test statistic of 𝐻0: 𝜃 = 0 vs 𝐻1: 𝜃 ≠ 0 as: 219 

𝑇𝑠𝑐𝑜𝑟𝑒 =
[𝑈(0)]2

𝐼(0)
=

[∑ 𝑢𝑖(0)𝑛
𝑖=1 ]2

∑ 𝑢𝑖
2(0)𝑛

𝑖=1

 220 
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where I(0) is the Fisher information under the null hypothesis. Under the null, 𝑇𝑠𝑐𝑜𝑟𝑒 has an 221 

asymptotic chi-squared distribution with one degree of freedom, i.e. 𝑇𝑠𝑐𝑜𝑟𝑒~𝜒1
2. We estimate 𝜷̂ 222 

with an E-M algorithm. 223 

RUTH Likelihood Ratio Test 224 

The log-likelihood function 𝑙(𝜷, 𝜃) can also be used to calculate a likelihood ratio test statistic: 225 

𝑇𝐿𝑅𝑇 = 2 [max
𝜷,𝜃

𝑙(𝜷, 𝜃) − max
𝜷

𝑙(𝜷, 0)]. 226 

Like the score test, we estimate MLE parameters 𝜷, 𝜃 iteratively using an E-M algorithm to test 227 

𝐻0: 𝜃 = 0 vs 𝐻1: 𝜃 ≠ 0. Under the null hypothesis, the asymptotic distribution of 𝑇𝐿𝑅𝑇 is 228 

expected to follow 𝜒1
2. This test is very similar to the likelihood-ratio test proposed by PCAngsd 229 

(MEISNER AND ALBRECHTSEN 2019), except PCAngsd does not re-estimate 𝜷 under the alternative 230 

hypothesis. In principle, the RUTH LRT should be slightly more powerful due to this difference; 231 

we expect the practical difference in power to be small, as deviations from HWE usually do not 232 

change the estimates of 𝜷 substantially.  233 

Simulation of genotypes and sequence reads under population structure 234 

We simulated sequence-based genotypes under population structure using the following 235 

procedure. First, for each variant, we simulated an ancestral allele frequency and population-236 

specific allele frequencies. Second, we sampled unobserved (true) genotypes based on these 237 

allele frequencies. Third, we sampled sequence reads based on the unobserved genotypes. 238 

Fourth, we generated genotype likelihoods and best-guess genotypes based on sequence reads. 239 
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To simulate ancestral and population-specific allele frequencies, we followed the 240 

BALDING AND NICHOLS (1995) procedure, except we sampled ancestral allele frequencies from 241 

𝑝 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) instead of 𝑝 ~ Uniform(0.1, 0.9) to include rare variants. For each of 𝐾 ∈242 

{1, 2, 5, 10} populations, we sampled population-specific allele frequencies from 243 

𝑝𝑘 ~ 𝐵𝑒𝑡𝑎 (
𝑝(1−𝐹𝑠𝑡)

𝐹𝑠𝑡
,

(1−𝑝)(1−𝐹𝑠𝑡)

𝐹𝑠𝑡
), where 𝑘 ∈ {1, ⋯ , 𝐾}, and 𝐹𝑠𝑡 ∈ {.01, .02, .03, .05, .10} was 244 

the fixation index to quantify the differentiation between the populations, as suggested by 245 

Holsinger (HOLSINGER 1999) and implemented in previous studies (HOLSINGER et al. 2002; BALDING 246 

2003). Because 𝑝𝑘 no longer follows the uniform distribution, we used rejection sampling to 247 

ensure that 𝑝̅ =  
1

𝐾
∑ 𝑝𝑘

𝐾
𝑘=1  is uniformly distributed across 100 bins across simulations to avoid 248 

artifacts caused by systematic differences in allele frequencies.  249 

The unobserved genotype 𝐺𝑖 ∈ {0,1,2} for individual 𝑖 ∈ {1, ⋯ , 𝑛𝑘}, belonging to 250 

population 𝑘 with sample size 𝑛𝑘, was simulated from genotype frequencies (𝑞𝑘
2 +251 

𝜃 𝑝𝑘𝑞𝑘, 2𝑝𝑘𝑞𝑘(1 − 𝜃), 𝑝𝑘
2 + 𝜃 𝑝𝑘𝑞𝑘), where 𝑞𝑘 = 1 − 𝑝𝑘 and 𝜃 ∈ [− min (

𝑞𝑘

𝑝𝑘
,

𝑝𝑘

𝑞𝑘
) , 1] quantifies 252 

deviation from HWE; 𝜃 = 0 represents HWE, while 𝜃 < 0 and 𝜃 > 0 represent excess 253 

heterozygosity and homozygosity compared to HWE expectation, respectively. In our 254 

experiments, we evaluated 𝜃 ∈ {0, ±.01, ±.05, ±.1, ±.5}. When 𝜃 was smaller than the 255 

minimum possible value for a specific population, we replaced it with the minimum value.  256 

We simulated sequence reads based on unobserved genotypes, sequence depths, and 257 

base call error rates. To reflect the variation of sequence depths between individuals, we 258 

simulated the mean depth of each sequenced sample to be distributed as 259 

𝜇𝑖~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1, 2𝐷 − 1), where 𝐷 is the expected depth and 𝐷 = 5 and 𝐷 = 30 representing 260 

low-coverage and deep sequencing, respectively. For each sequenced sample and variant site, 261 
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we sampled the sequence depth from 𝑑𝑖~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖). Each sequence read carried either of 262 

the possible unobserved (true) alleles 𝑟𝑖𝑗 ∈ {0,1}, where 𝑗 ∈ {1, ⋯ , 𝑑𝑖}. Given unobserved 263 

genotype 𝐺𝑖, we generated 𝑟𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (
𝐺𝑖

2
), with observed allele 𝑜𝑖𝑗 = (1 − 𝑒𝑖𝑗)𝑟𝑖𝑗 +264 

𝑒𝑖𝑗(1 − 𝑟𝑖𝑗) flipping to the other allele when a sequencing error occurs with probability 265 

𝑒𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜖). We used 𝜖 = 0.01 throughout our simulations (which corresponds to phred-266 

scale base quality of 20) and assumed that all base calling errors switched between reference 267 

and alternate alleles.  268 

We then generated genotype likelihoods and best-guess genotypes from the simulated 269 

alleles. Let 𝑡𝑖 = ∑ 𝑜𝑖𝑗
𝑑𝑖
𝑗=1  be the observed alternate allele count. The GLs for the three possible 270 

genotypes are 𝐿𝑖
(0)

= (1 − 𝜖)𝑑𝑖−𝑡𝑖  (𝜖)𝑡𝑖 , 𝐿𝑣
(1)

= 0.5𝑑𝑖  , 𝐿𝑖
(2)

= (𝜖)𝑑𝑖−𝑡𝑖  (1 − 𝜖)𝑡𝑖. We called best-271 

guess genotypes by using the overall ancestral allele frequency 𝑝̅ for a given variant as the 272 

prior, then calling the genotype corresponding to the highest posterior probability among 273 

(𝐿𝑖
(0)

(1 − 𝑝̅)2, 2𝐿𝑖
(1)

𝑝̅(1 − 𝑝̅)2, 𝐿𝑖
(2)

𝑝̅2) for each sample. For each possible combination of 𝐹𝑠𝑡, 274 

𝐾, and 𝜃, we generated 50,000 independent variants across a set of 𝑛 = 5,000 samples with 275 

per-ancestry samples sizes 𝑛𝑘 =
𝑛

𝐾
.  276 

Evaluation of Type I Error and Statistical Power 277 

We used different p-value thresholds, 𝐹𝑠𝑡 values, number of ancestry groups 𝐾, and average 278 

sequencing depth 𝐷 to determine the number of variants significantly deviating from HWE. To 279 

evaluate Type I error, we simulated sequence reads under HWE (𝜃 = 0) and calculated the 280 

proportion of significant variants at each p-value threshold. In RUTH tests, we assumed PCs 281 

were accurately estimated using true genotypes unless indicated otherwise. For real data, we 282 
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summarized ancestral information by projecting PCs estimated from their full genomes onto 283 

the reference PC space of the Human Genome Diversity Panel (HGDP) (LI et al. 2008) using 284 

verifyBamID2 (ZHANG et al. 2020), similar to the procedure for variant calling in the TOPMed 285 

Project, which has already integrated RUTH as part of its quality control pipeline 286 

(https://github.com/statgen/topmed_variant_calling).  287 

In all datasets, we evaluated the tradeoff between Type I Error and power for each 288 

method using precision-recall curves (PRCs) and receiver-operator characteristic curves (ROCs). 289 

In simulated data, we considered variants with θ = 0 to be true negatives and variants with 290 

θ = -0.05 to be true positives. In both our 1000G and TOPMed data, we labeled HQ variants as 291 

negative and LQ variants as positive. 292 

Data source 293 

To evaluate our method, we used sequence-based genotype data from the 1000 Genomes 294 

Project (1000G) (THE 1000 GENOMES PROJECT CONSORTIUM et al. 2015) and the Trans-Omics 295 

Precision Medicine (TOPMed) Project (TALIUN et al. 2019). In both cases, we used a subset of 296 

variants from chromosome 20. For 1000G, we started with 1,812,841 variants in 2,504 297 

individuals, with an average depth of 7.0 ×. For TOPMed, we started with 12,983,576 variants 298 

in 53,831 individuals, with an average depth of 37.2 ×. 299 

Application to 1000 Genomes data 300 

To test our method on 1000G data, we first needed to define two sets of variants: one set 301 

which is expected to follow HWE, and another set which is expected to deviate from HWE. 302 

Unlike simulated data, variants in 1000G are not clearly classified into “true” or “artifactual”, so 303 
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evaluation of false positives and power is less straightforward. We focused on two subsets of 304 

variants in chromosome 20 which serve as proxies for these two variant types. We selected 305 

non-monomorphic sites found in both the Illumina Infinium Omni2.5 genotyping array and in 306 

HapMap3 (THE INTERNATIONAL HAPMAP CONSORTIUM et al. 2010) as “high-quality” (HQ) variants that 307 

mostly follow HWE after controlling for ancestry, ending up with 17,740 variants. Similarly, we 308 

selected variants that displayed high discordance between duplicates or Mendelian 309 

inconsistencies within family members in TOPMed sequencing study as “low quality” (LQ) 310 

variants that should be enriched for deviations from HWE even after accounting for ancestry, 311 

ending up with 10,966 variants. Among 329,699 LQ variants from TOPMed in chromosome 20, 312 

we found that only 10,966 overlap with 1000 Genome samples because likely artifactual 313 

variants were stringently filtered prior to haplotype phasing. We suspect that a substantial 314 

fraction of these 10,966 LQ variants are true variants since they passed all of the 1000G 315 

Project’s quality filters. Nevertheless, we still expect a much larger fraction of these LQ variants 316 

to deviate from HWE compared to HQ variants.  317 

We evaluated multiple representations of sequence-based genotypes from 1000G. As 318 

1000G samples were sequenced at relatively low-coverage of 7.0 × on average, best-guess 319 

genotypes inferred only from sequence reads (raw GT) tend to have poor accuracy. Therefore, 320 

the officially released best-guess genotypes in 1000G were estimated by combining genotype 321 

likelihoods (GL), calculated based on sequence reads, with haplotype information from nearby 322 

variants through linkage-disequilibrium (LD)-aware genotype refinement using SHAPEIT2 323 

(DELANEAU et al. 2013). This procedure resulted in more accurate genotypes (LD-aware GT), but 324 

it implicitly assumed HWE during refinement. As different representations of sequence 325 

genotypes may result in different performance in HWE tests, we evaluated all three different 326 
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representations - raw GT, LD-aware GT, and GL. In all tests of RUTH using hard genotype calls, 327 

we assumed the error rate for GT-based genotypes to be 0.5%, which is representative of a 328 

typical non-reference genotype error rate for SNP arrays. We restricted our analyses to biallelic 329 

variants. The positions and alleles of 1000G and TOPMed variants were matched using the 330 

liftOver software tool (KUHN et al. 2013). 331 

We evaluated all tests as described above. For meta-analysis with Stouffer’s method, we 332 

divided the samples into 5 strata, using the five 1000G super population code labels – African 333 

(AFR), Admixed American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS). To 334 

obtain PC coordinates for 1000G samples, we estimated 4 PCs from the aligned sequence reads 335 

(BAM) with verifyBamID2 (ZHANG et al. 2020), using PCs from 936 samples from the Human 336 

Genome Diversity Project (HGDP) panel as reference coordinates. The RUTH score test and LRT 337 

used these PCs as inputs, along with genotypes in raw GT, LD-aware GT, and GL formats. For 338 

PCAngsd, we used GLs from all variants tested as the input. We limited the analysis to a single 339 

chromosome due to the heavy computational requirements of PCAngsd. 340 

Application to TOPMed Data 341 

We analyzed variants from 53,831 individuals from the TOPMed sequencing study (TALIUN et al. 342 

2019). These samples came from multiple studies from a diverse spectrum of ancestries, 343 

leading to substantial population structure. Using the same criteria as our 1000G analysis, we 344 

identified 17,524 high-quality variants and 329,699 low-quality variants across chromosome 20. 345 

Since TOPMed genomes were deeply sequenced at 37.2 × (±4.5 ×), LD-aware genotype 346 

refinement was not necessary to obtain accurate genotypes. Therefore, we used two genotype 347 

representations – raw GT and GL – in our evaluations. 348 
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Similar to 1000G, for best-guess genotypes (raw GT), we used PLINK for the unadjusted 349 

test. For meta-analysis, we assigned each sample to one of the five 1000G super populations as 350 

follows. First, we summarized the genetic ancestries of aligned sequenced genomes with 351 

verifyBamID2 by estimating 4 PCs using HGDP as reference. Second, we used Procrustes 352 

analysis (DRYDEN AND MARDIA 1998; WANG et al. 2010) to align the PC coordinates of HGDP panels 353 

(to account for different genome builds) so that the PC coordinates were compatible between 354 

TOPMed and 1000G samples. Third, for each TOPMed sample, we identified the 10 closest 355 

corresponding individuals from 1000G using the first 4 PC coordinates with a weighted voting 356 

system (assigning the closest individual a score of 10, next closest a score of 9, and so on until 357 

the 10th closest individual is assigned a score of 1, then adding up the scores for each super 358 

population) to determine the super population code that had the highest sum of scores, and 359 

therefore best described that sample. In this way, we classified 15,580 samples as AFR, 4,836 as 360 

AMR, 29,943 as EUR, 2,960 as EAS, and 716 as SAS. Among these samples, 94.5% had the same 361 

super population code for all 10 nearest 1000G neighbors. To evaluate the RUTH score test and 362 

LRT for both raw GT and GL, we used 4 PCs estimated by verifyBamID2 (ZHANG et al. 2020), 363 

consistent with the method applied for the 1000G data. 364 

Impact of Ancestry Estimates on Adjusted HWE Tests 365 

We examined the effect of changing the number of PCs used as input for RUTH tests by using 2 366 

PCs as opposed to 4 PCs. We also evaluated the impact of using different approaches to classify 367 

ancestry when adjusting for population structure with meta-analysis. By default, our analysis 368 

classified the 1000 Genomes subjects into 5 continental super populations based on published 369 

information (THE 1000 GENOMES PROJECT CONSORTIUM et al. 2015). For TOPMed, the best-matching 370 
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1000 Genomes continental ancestry was carefully determined using the PCA-based matching 371 

strategy described above. However, in practice, ancestry classification may be performed with a 372 

coarser resolution (JIN et al. 2019). To mimic such a setting, we used k-means clustering on the 373 

first 2 PCs of our samples to divide individuals into 3 distinct groups, and performed meta-374 

analyses based on this coarse classification for both 1000G and TOPMed data.  375 

Software and data availability 376 

RUTH is available at https://github.com/statgen/ruth. Genotype data from 1000G is available 377 

from the International Genome Sample Resource at https://www.internationalgenome.org. 378 

TOPMed data is available via a dbGaP application for controlled-access data (see 379 

https://www.nhlbiwgs.org for details). 380 

RESULTS 381 

Simulation: Effect of Genotype Uncertainty 382 

To evaluate the impact of genotype uncertainty, we first compared tests in the absence of 383 

population structure (i.e. single ancestry). For the unadjusted test, we used only best-guess 384 

genotypes (GTs). For PCAngsd, we used only genotype likelihoods (GLs). For RUTH score and 385 

likelihood ratio tests, we used both.  386 

Using GLs over GTs substantially reduced Type I errors in HWE tests, especially in low-387 

coverage data (Figure 1A-C). For example, the standard HWE test based on GTs resulted in a 388 

229-fold inflation (22.9%) at p < .001 (Figure 1B, Table S1), a threshold which allows the 389 

evaluation of Type I error with reasonable precision with 50,000 variants (50 expected false 390 
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positives under the null). GT-based RUTH-Score and RUTH-LRT tests showed similar inflation. 391 

When GLs were used instead of best-guess genotypes, RUTH-Score and RUTH-LRT had Type I 392 

errors close to the null expectation (.001 for RUTH-Score and .0012 for RUTH-LRT). PCAngsd, 393 

which also accounts for genotype uncertainty (MEISNER AND ALBRECHTSEN 2019), had similar 394 

performance. The severely inflated Type I errors with best-guess genotypes can largely be 395 

attributed to high uncertainty and bias towards homozygote reference genotypes in single site 396 

calls from low-coverage sequence data, resulting in apparent deviations from HWE. For high-397 

coverage sequence data, inflation of Type I error with GTs was substantially attenuated; 398 

inflation nearly disappeared when using GLs (.004 for RUTH-Score and .002 for RUTH-LRT; 399 

Figure 1D-F).  400 

Next, we evaluated the power to identify variants truly deviating from HWE at various 401 

levels of inbreeding coefficient (θ). For low-coverage sequence data, we skip interpretation of 402 

power of GT-based tests owing to their extremely inflated false positive rates. All GL-based 403 

tests behaved similarly, achieving ~19-21% power at p < .001 with moderate excess 404 

heterozygosity (θ = -0.05) (Figure 2B, Table S1). For high-coverage sequence data, the power of 405 

GL-based tests at the same p-value threshold increased to ~56-60%, comparable to 406 

corresponding GT-based tests. Interestingly, the unadjusted GT-based test showed much lower 407 

power than RUTH and PCAngsd tests under excess heterozygosity (θ < 0) while demonstrating 408 

much higher power with excess homozygosity (θ > 0). Upon further investigation, we observed 409 

that the tests behave very differently for rare variants for which an asymptotic approximation 410 

performs poorly.   411 
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 We also generated precision-recall curves (PRC) and receiver-operator characteristic 412 

(ROC) curves to better understand the tradeoff between the Type I errors and power under 413 

moderate excess heterozygosity (θ = -.05) (Figure S1C-D). Again, accounting for genotype 414 

uncertainty resulted in better empirical power and Type I error, especially for low-coverage 415 

data, for which, at an empirical false positive rate of 1%, GL-based tests had 41-45% power, as 416 

opposed to 4-10% for GT-based tests. For high-coverage data, GL-based tests had 1-2% greater 417 

power than GT-based tests at the same false positive rate. These results suggest that ignoring 418 

genotype uncertainty in HWE tests is reasonable for high-coverage sequence data.  419 

Simulation: Impact of Population Structure on HWE Test Statistics 420 

As expected, the unadjusted HWE test had substantially inflated Type I errors under population 421 

structure based on the Balding-Nichols (1995) model (Figure 1, Table S1). Even for an intra-422 

continental level of population differentiation (FST = .01), the Type I errors at p < .001 were 423 

inflated 13.5-fold even for high-coverage data. With an inter-continental level of differentiation 424 

(FST = .1), we observed orders of magnitude more Type I errors across different simulation 425 

conditions. This inflation is expected to increase with larger sample sizes, suggesting that 426 

adjustment for population structure is important even if a study focuses on a single continental 427 

population. 428 

One simple approach to account for population structure is to stratify individuals into 429 

distinct subpopulations to apply HWE tests separately (BYCROFT et al. 2018), and meta-analyze 430 

the results (Figure 3B). Type I errors were appropriately controlled with this approach in high-431 

coverage but not low-coverage data, likely due to unmodeled genotype uncertainty (Figure 1, 432 

Table S1). Instead of classifying individuals into distinct subpopulations, RUTH incorporates PCs 433 
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to jointly perform HWE tests (Figure 3C). For both low- or high-coverage data, GL-based RUTH 434 

tests and PCAngsd showed well-controlled Type I errors, while GT-based tests showed slight 435 

(high-coverage) or severe (low-coverage) inflation.  436 

Although meta-analysis resulted in well-controlled Type I errors for high-coverage data, 437 

it was considerably less powerful than RUTH. For example, with moderate excess 438 

heterozygosity (θ = -.05) across five ancestries (FST = .1), RUTH tests identified 20-27% more 439 

variants as significant at p < .001 (Figure 2, Table S1) compared to meta-analysis. PRCs also 440 

clearly showed better operating characteristics for RUTH and PCAngsd compared to meta-441 

analysis (Figure S2). For example, at an empirical false positive rate of 1%, RUTH showed much 442 

greater power (66-68%) than meta-analysis (43%), even though the simulation scenario favors 443 

meta-analysis because samples were perfectly classified into distinct subpopulations.  444 

Application to 1000 Genomes WGS data 445 

Next, we evaluated the performance of various HWE tests in low-coverage (~6x) sequence data 446 

from the 1000 Genomes Project. We evaluated three representations of genotypes - (1) raw GT, 447 

(2) LD-aware GT, and (3) GL, as described in Materials and Methods. Among chromosome 20 448 

variants, we selected 17,740 high-quality (HQ) variants that are polymorphic in GWAS arrays, 449 

and 10,966 low-quality (LQ) variants enriched for genotype discordance in duplicates and trios. 450 

Unlike simulation studies, not all LQ variants are necessarily expected to violate HWE, so we 451 

consider the proportion of significant LQ variants as a lower bound on the sensitivity to identify 452 

significant variants. Similarly, not all HQ variants are necessarily expected to follow HWE, 453 

although we expect most to do so, so that the proportion of significant HQ variants serves as an 454 

upper bound for the false positive rate. 455 
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 Consistent with our simulation results, all tests based on raw GTs generated from low-456 

coverage sequence data had severe inflation of false positives (Figure 4A, Table 1). This was 457 

true even for HQ variants, presumably due to genotyping errors and bias in raw GTs. Standard 458 

HWE tests, which model neither genotype uncertainty nor population structure, showed the 459 

highest inflation of false positives at 44% for p < 10-6, a threshold commonly used for HWE 460 

testing in large genetic studies (LOCKE et al. 2015; FRITSCHE et al. 2016). Modeling population 461 

structure substantially reduced inflation, with RUTH tests showing fewer false positives (0.7-462 

1.0% at p < 10-6) than meta-analysis (2.0% at p < 10-6). False positives were inflated across all 463 

methods when using raw GTs.  464 

Consistent with our simulation studies, GL-based RUTH tests reduced false positives 465 

even further (0.034% at p < 10-6). In contrast to our simulations, PCAngsd demonstrated 466 

considerably higher false positives than RUTH (2.1% at p < 10-6), likely because PCAngsd 467 

estimates PCs from the input data without the ability to use externally provided PCs (see 468 

Discussion). The sensitivity for detecting significant LQ variants was also consistent with our 469 

simulations (Figure 4B, Table 1). GL-based tests, which showed better control of false positives, 470 

identified 22-25% of LQ variants as significant at p < 10-6. 471 

 Strikingly, while using LD-aware GTs reduced false positives with adjusted tests, it was at 472 

the expense of substantially reduced sensitivity to detect LQ variants. The false positive rates of 473 

any adjusted test with LD-aware GTs were uniformly lower than those of any GL- and raw GT-474 

based tests across all p-value thresholds (Figure 4A). However, sensitivity was also substantially 475 

reduced with LD-aware genotypes (Figure 4B). For example, at p < 10-6, GL-based RUTH tests 476 

identified 22-23% of LQ variants significant, while using LD-aware GTs halved the proportions. 477 
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Running meta-analysis with LD-aware GTs reduced sensitivity even further, likely because the 478 

implicit HWE assumption in the LD-aware genotype refinement algorithms may have further 479 

reduced false positives and sensitivity by altering the LD-aware genotypes to conform to HWE. 480 

We evaluated PRCs between HQ and LQ variants to further evaluate this tradeoff. The 481 

results clearly demonstrated that HWE tests using LD-aware GTs are substantially less robust 482 

than tests on other genotype representations (Table S2, Figure S3A). For example, for the RUTH 483 

score test, when LD-aware GTs identified 0.1% of HQ variants as significant, 17% of LQ variants 484 

were identified as significant. However, with raw GT and GL, 24~27% were identified as 485 

significant at the same threshold. Even fewer were significant in meta-analysis with LD-aware 486 

GTs (13%). Similar trends were observed across all thresholds, suggesting that using LD-aware 487 

GTs results in substantially poorer operating characteristics than other genotype 488 

representations. As more accurate genotyping in LD-aware genotype refinement is expected to 489 

improve the performance of QC metrics compared to raw GTs, these results are quite striking, 490 

and highlight a potential oversight in using LD-aware genotypes in various QC metrics for 491 

sequence-based genotypes. 492 

Application to TOPMed Deep WGS data  493 

We evaluated the various HWE tests on a subset of the Freeze 5 variant calls from the high-494 

coverage (~37×) whole genome sequence (WGS) data in the TOPMed Project (TALIUN et al. 495 

2019). We identified 17,524 HQ variants and 329,699 LQ variants using the same criteria used 496 

for 1000G variants and evaluated raw GTs and GLs. We did not evaluate PCAngsd due to 497 

excessive computational time (see “Computational cost” below). 498 
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We first evaluated the false positive rates of different HWE tests indirectly by using HQ 499 

variants. With a >20-fold larger sample size than 1000G, we identified more significant HQ 500 

variants, while the false positive rates were still reasonable with adjusted tests. At p < 10-6, 74% 501 

of HQ variants were significant with unadjusted tests, while the adjusted GL-based tests 502 

identified ~0.3% at p < 10-6 (Figure 4C-D, Table 2). Adjusted GT-based tests had only slightly 503 

higher levels of false positives at p < 10-6. However, inflation was more noticeable at less 504 

stringent p-value thresholds suggesting that GL-based tests may be needed for larger sample 505 

sizes. 506 

Next, we evaluated the proportions of LQ variants found to be significant by different 507 

tests to indirectly evaluate their statistical power. GT- and GL-based RUTH tests showed similar 508 

power, while meta-analysis showed considerably lower power. For example, at p < 10-6, meta-509 

analysis identified 47% of LQ variants as significant, while RUTH tests identified 54-58%. This 510 

pattern was similar across different p-value thresholds (Figure 4C-D) or choices of LQ variants 511 

(Table S3, Figure S4). Our results suggest that GL-based RUTH tests are suitable for testing HWE 512 

for tens of thousands of deeply sequenced genomes with diverse ancestries, but that using raw 513 

GTs will also result in a comparable performance at typically used HWE p-value thresholds (e.g. 514 

p < 10-6) when performing QC without access to GLs. 515 

We used PRCs to evaluate the tradeoff between empirical false positive rates and 516 

power. Consistent with previous results, the GL-based RUTH test showed the best tradeoff 517 

between false positives and power, while the GT-based RUTH test and meta-analysis were 518 

slightly less robust but largely comparable (Figure S3). Notably, when we evaluated the 519 
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different methods at an empirical false positive rate of 0.1%, RUTH score tests had ~4% higher 520 

power than RUTH LRT for both raw GTs and GLs (Figure S5-6). 521 

Impact of ancestry estimation accuracy on HWE tests 522 

So far, our evaluations relied on genetic ancestry estimates carefully determined with 523 

sophisticated methods (see Materials and Methods). However, simpler approaches may be 524 

used instead during the variant QC step, which may affect the performance of adjusted HWE 525 

tests. We evaluated whether the number of PC coordinates affected the performance of RUTH 526 

tests by comparing the performance of RUTH tests when using 2 PCs to using 4 PCs (default). 527 

The results from both simulated and real datasets consistently demonstrated that using 4 PCs 528 

led to substantially reduced Type I errors compared to using 2 PCs at a similar level of power 529 

(Table S2, Table S4, Figure S7). PRCs also clearly showed that using 4 PCs was more robust 530 

against population structure across both simulated and real datasets (Figure S8).  531 

 We also evaluated whether the classification accuracy of subpopulations affected the 532 

performance of meta-analysis. Instead of assigning 1000 Genomes individuals into five 533 

continental populations, we used the k-means algorithm on those samples’ top 2 PCs to classify 534 

them into 3 crude subpopulations (Figure S9). This led to a much higher false positive rate with 535 

virtually no increase in true positives (Figure S10, Table S2). We saw the same pattern in 536 

simulated data (Figure S8, Table S5). 537 

Computational cost  538 

We compared the computational costs of RUTH and PCAngsd for simulated and real data. RUTH 539 

has linear time complexity to sample size, while PCAngsd appears to have quadratic time 540 
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complexity (Tables 3, S6). RUTH also has low memory requirement compared to PCAngsd (for 541 

example, 14 MB vs 2 GB for 1000 Genomes data). Extrapolating our results to the whole 542 

genome scale, analyzing 1000 Genomes (i.e. 80 million variants) is expected to take 120 CPU-543 

hours for RUTH, and 3,200 CPU-hours for PCAngsd (with >1 TB memory consumption). 544 

Additionally, RUTH can be parallelized into smaller regions in a straightforward manner. 545 

DISCUSSION 546 

RUTH is a unified, flexible, and robust approach to incorporate genetic ancestry and genotype 547 

uncertainty for testing Hardy-Weinberg Equilibrium capable of handling large amounts of 548 

genotype data with structured populations. Sha and Zhang (2011) proposed HWES, an HWE test 549 

for structured populations, to address some of these challenges, but it has not been widely 550 

used due to the lack of an implementation that supports widely used genotype data formats 551 

(e.g. PED, BED, VCF, or BCF) and inability to handle imputed or uncertain genotypes. Hao and 552 

colleagues (2016) proposed sHWE which can only handle best-guess (hard call) genotypes (i.e. 553 

0, 1, or 2 for biallelic variants) and does not account for genotype uncertainty. MEISNER AND 554 

ALBRECHTSEN (2019) proposed PCAngsd to address some of these issues, but it does not support 555 

the standard VCF/BCF formats for sequence-based genotypes, and its current implementation 556 

scales poorly with genome-wide analyses of large samples.  557 

Similar to previous studies (SHA AND ZHANG 2011; HAO et al. 2016), our proposed 558 

framework uses individual-specific allele frequencies rather than allele frequencies pooled 559 

across all samples to systematically account for population structure in HWE tests. Unlike 560 

previous studies, we model genotype uncertainty in sequence-based genotypes in a likelihood-561 

based framework. We implemented two RUTH tests – a score test and a likelihood ratio test 562 
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(LRT) – to test for HWE under population structure for genotypes with uncertainty. While RUTH 563 

LRT is similar to the independently developed PCAngsd, the software implementation of RUTH 564 

is more flexible, scales much better to large studies, and supports the standard VCF format. 565 

We provide a comprehensive evaluation of various approaches for testing HWE using 566 

simulated and real data. Our results demonstrated that modeling population stratification is 567 

necessary for HWE tests on heterogenous populations. We showed that accounting for 568 

genotype uncertainty via genotype likelihoods performs substantially better than testing HWE 569 

with best-guess genotypes, especially for low-coverage sequenced genomes. Importantly, we 570 

included the evaluations for an unpublished but commonly used approach – meta-analysis 571 

across stratified subpopulations, cohorts, or batches. Our results demonstrate that meta-572 

analysis may be effective in reducing false positives, but at the expense of substantially reduced 573 

power compared to RUTH.  574 

We observed that the current implementation of PCAngsd does not scale well to large-575 

scale sequencing data, though in principle it can be implemented more efficiently, because the 576 

underlying HWE test itself is similar to RUTH LRT. PCAngsd requires loading all genotypes into 577 

memory, which is often infeasible for large sequencing studies. For example, loading all of 1000 578 

Genomes will require ~4.8 TB of memory. In our evaluation of 1000G chromosome 20 variants, 579 

the inability of PCAngsd to estimate PCs from the whole genome may have contributed to the 580 

observed difference in results from RUTH compared to our simulation studies.  581 

Although our 1000G experiments demonstrated the unexpected result that using raw 582 

GTs had better sensitivity than using LD-aware GTs at the same empirical false positive rates for 583 

low-coverage data, we do not advocate using raw GTs for low-coverage sequence data. First, 584 

the results for raw GTs were still consistently less robust than GL-based RUTH tests. Moreover, 585 
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it would be tricky to determine an appropriate p-value threshold when the false positives are 586 

severely inflated. Therefore, we strongly advocate using GL-based RUTH tests for robust HWE 587 

tests with low-coverage sequence data. For the now more typical high-coverage sequence data, 588 

GL-based tests are still preferred, but GT-based RUTH tests should be acceptable for cases in 589 

which genotype likelihoods are unavailable. 590 

Our experiment compared using 2 vs 4 PCs only because verifyBamID2 software tool 591 

estimated up to 4 PCs projected onto HGDP panel by default (ZHANG et al. 2020). Because our 592 

method focuses on testing HWE during the QC steps in sequence-based variant calls, a curated 593 

version of PCs, estimated from sequenced cohort themselves, may not be readily available at 594 

the time of HWE test. However, it is possible to use a larger number of PCs (e.g. >10 PCs) if 595 

available at the time of HWE test. We expect that a larger number of PCs will account for finer-596 

grained population structure and may benefit the performance of HWE test, but additional 597 

experiments are needed to quantify the impact of using larger number of PCs.      598 

 Our results demonstrate that RUTH score and LRT tests perform similarly in simulated 599 

and experimental datasets. Overall, the RUTH-LRT was slightly more powerful than the RUTH-600 

score test at the expense of slightly greater false positive rates, although this tendency was not 601 

consistent. We observed that the RUTH tests tended to be slightly more powerful in identifying 602 

deviation from HWE in the direction of excess heterozygosity than excess homozygosity when 603 

compared to adjusted meta-analysis. These results might be caused by the difference between 604 

our model-based asymptotic tests compared to the exact test used in meta-analysis. 605 

 We did not evaluate our methods on imputed genotypes in this manuscript. Because 606 

imputed genotypes implicitly assume HWE, we suspect that HWE tests based on imputed 607 

genotypes may have reduced power compared to directly genotyped variants. It is possible to 608 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.23.167759doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.167759
http://creativecommons.org/licenses/by-nd/4.0/


 

 

29 
 

use approximate genotype likelihoods instead of best-guess genotypes for imputed genotypes, 609 

but this requires genotype probabilities, not just the genotype dosages. If genotype 610 

probabilities Pr (𝑔𝑖 = 𝐺|𝐷𝑎𝑡𝑎𝑖) are available, they can be converted to genotype likelihoods 611 

𝐿𝑖
(𝐺)

= Pr (𝐷𝑎𝑡𝑎𝑖|𝑔𝑖 = 𝐺) using Bayes’ rule by modeling Pr(𝑔𝑖 = 𝐺) as a binomial distribution 612 

based on allele frequencies (which implicitly assumes HWE). However, similar to LD-aware 613 

genotypes in low-coverage sequencing, the power of HWE tests with imputed genotypes may 614 

be poor. Further evaluation is needed to understand how useful this approximation will be 615 

compared to alternative methods including the use of best-guess imputed genotypes.   616 

Our methods have room for further improvement. First, we used a truncated linear 617 

model for individual-specific allele frequencies for computational efficiency. Although such an 618 

approximation was demonstrated to be effective in practice (ZHANG et al. 2020), applying a 619 

logistic model or some other more sophisticated model may be more effective in improving the 620 

precision and recall of RUTH tests. Second, we did not attempt to model or evaluate the effect 621 

of admixture in our method. Because HWE is reached in two generations with random mating, 622 

accounting for admixed individuals may only have marginal impact. On the other hand, 623 

admixture can lead to higher observed heterozygosity. It may be possible to improve RUTH by 624 

explicitly modeling and adjusting for the effect of admixture on individual-specific allele 625 

frequencies. Systematic evaluations focusing on admixed populations are needed to evaluate 626 

RUTH’s performance on such samples, and whether an admixture adjustment is necessary. 627 

Third, RUTH tests do not account for family structure. We suspect that the apparent inflation of 628 

Type I error for the TOPMed data was partially due to sample relatedness. Accounting for 629 

family structure in other ways, for example using variance components models, will require 630 

much longer computational times and may not be feasible for large-scale datasets. Fourth, 631 
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RUTH currently does not directly support imputed genotypes or genotype dosages. In principle, 632 

it is possible to convert posterior probabilities for imputed genotypes into genotype likelihoods 633 

to account for genotype uncertainty (by using individual-specific allele frequencies). However, 634 

because most genotype imputation methods implicitly assume HWE, we suspect that HWE tests 635 

on imputed genotypes will be underpowered, similar to our observations with LD-aware 636 

genotypes in the 1000 Genomes dataset, even though explicitly modeling posterior 637 

probabilities may slightly mitigate this reduction in power.  638 

In summary, we have developed and implemented robust and rapid methods and 639 

software tools to enable HWE tests that account for population structure and genotype 640 

uncertainty. We performed comprehensive evaluations of both our methods and alternative 641 

approaches. Our tools can be used to evaluate variant quality in very large-scale genetic data 642 

sets, with the ability to handle standard VCF formats for storing sequence-based genotypes. 643 

Our software tools are publicly available at http://github.com/statgen/ruth. 644 
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 762 

Figure 1 763 
Evaluation of Type I Errors between various HWE tests on simulated genotypes. Under each combination of 764 
simulation conditions (number of ancestries, sequencing coverage, and fixation index), we simulated 5,000 765 
samples with 50,000 variants that follow HWE within each of the subpopulations and determined the Type I error 766 
performances of different HWE tests based on the proportion of variants labeled as having significant p-values. 767 
Five HWE tests – (1) Unadjusted HWE test (WIGGINTON et al. 2005) implemented in PLINK-1.9 (PURCELL et al. 2007) 768 
using hard genotypes, (2) meta-analysis using Stouffer’s method across ancestries using hard genotypes (GT), (3) 769 
RUTH test using hard genotypes, (4) RUTH test using phred-scale likelihood (GL) computed from simulated 770 
sequence reads, and (5) PCAngsd (MEISNER AND ALBRECHTSEN 2019) – were tested under HWE with various parameter 771 
settings. Gray dotted lines indicate targeted Type I Error rates. Top panels (A-C) represent results from shallow 772 
sequencing (5x), and the bottom panels (D-F) represent results from deep sequencing (30x). Using GL-based 773 
genotypes resulted in Type I Error rates closer to the targeted rate than using GT-based genotypes across different 774 
numbers of ancestries (A, D), P-value thresholds (B, E), and fixation indices (C, F). The difference is especially large 775 
for low-coverage genotypes.  776 
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 777 

Figure 2 778 
Evaluation of power between different HWE tests on simulated genotypes. Under each combination of simulation 779 
conditions (number of ancestries, sequencing coverage, fixation index, and deviation from HWE), we simulated 780 
50,000 variants for 5,000 samples and evaluated the ability of different HWE tests to find the variants significant. 781 
Unless otherwise specified, the default simulation parameters are 5 ancestries, with FST=.1, P-value threshold=.001, 782 
and Theta=-0.05. Tests that can find a larger proportion of significant variants are considered more powerful. Five 783 
HWE tests – (1) Unadjusted HWE test (WIGGINTON et al. 2005) implemented in PLINK-1.9 using hard genotypes  (2) 784 
RUTH test using hard genotypes, (3) RUTH test using phred-scale likelihood (PL) computed from simulated 785 
sequence reads, (4) meta-analysis using Stouffer’s method across ancestries using hard genotypes, and (5) 786 
PCAngsd (MEISNER AND ALBRECHTSEN 2019) – were tested for variants deviating from HWE with various parameter 787 
settings, for low coverage (A-D) and high coverage (E-H) data. (A, E) Theta controls the degree of deviation from 788 
HWE, with negative values indicating excess heterozygosity and positive values indicating heterozygote depletion. 789 
The high Type I Error rates in GT-based tests (Figure 2) lead to those methods appearing to have higher power in 790 
some scenarios. The unadjusted test suffers from this problem the most. GL-based methods have slightly lower 791 
powers than GT-based methods in exchange for a much better controlled Type I error rate. This pattern mostly 792 
holds across different numbers of ancestries (B, F), p-value thresholds (C, G), and fixation indices (D, H). Meta-793 
analysis had the lowest power in the presence of excess heterozygosity. 794 
  795 
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 796 

Figure 3 797 
Schematic diagrams of different methods to test HWE under population structure. Three different methods to test 798 
HWE under population structure are described. (A) In the standard (unadjusted) HWE test, all samples are tested 799 
together using best-guess genotypes. This test does not adjust for sample ancestry. (B) In a meta-analysis of 800 
stratified HWE tests, the samples must first be categorized into discrete subpopulations, determined a priori based 801 
on their genotypes or self-reported ancestries. Next, standard HWE tests (based on best-guess genotypes) are 802 
performed on each of these subpopulations. Then, the resulting HWE statistics are converted into Z-scores and 803 
combined in a meta-analysis using Stouffer’s method, with the sample sizes of the subpopulations as weights. (C) 804 
In our proposed method (RUTH), either best-guess genotypes or genotype likelihoods can be used as input for 805 
HWE test. We assume that the genetic ancestries of each sample are estimated a priori, typically as principal 806 
components (PCs). We combine the genotypes and PCs to perform either a score test or a likelihood ratio test to 807 
obtain a joint ancestry-adjusted HWE statistic for each variant across all samples. 808 
  809 
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 810 

Figure 4 811 
Evaluation of different HWE tests on 1000 Genomes and TOPMed variants. In 1000 Genomes data (A, B), we 812 
identified 17,740 “high quality” (HQ) variants and 10,966 “low quality” (LQ) variants in chromosome 20. In 813 
TOPMed data (C, D), we identified 17,524 HQ variants and 329,699 LQ variants in chromosome 20. A well-behaved 814 
HWE test should maximize the proportion of significant LQ variants while controlling the false positive rate for HQ 815 
variants. Dotted gray lines represent targeted Type I error levels if we assume all HQ variants follow HWE. (A) Both 816 
the unadjusted test and PCAngsd found substantially more significant variants than expected in the 1000G HQ 817 
variant set, while both RUTH and meta-analysis were more conservative. Methods that used raw GTs showed 818 
substantial false positive rates, while methods that used GLs and LD-aware GTs had much better control of false 819 
positives. (B) In 1000G LQ variants, meta-analysis lagged behind RUTH and the unadjusted test in discovering 820 
significant deviation from HWE. RUTH behaved well for HQ variants while having more power to find low-quality 821 
variants significantly deviating from HWE. (C) In TOPMed data, the unadjusted test resulted in an excess of false 822 
positives. Tests using GL-based genotypes outperformed tests using GT-based genotypes. (D) Methods using GL-823 
based genotypes were able to discover more LQ variants than methods using GT-based genotypes, demonstrating 824 
the advantage of accounting for genotype uncertainty in HWE tests. 825 
  826 
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Table 1 827 

Performance of the unadjusted test, meta-analysis, RUTH, and PCAngsd on 1000 Genomes chromosome 20 828 
variants. 829 

Variant  
Category 

Genotype 
Format 

HWE Test 
Proportion of Significant Variants Total 

Variant 
Count P < 10-2 P < 10-3 P < 10-4 P < 10-5 P < 10-6 

LQ 
Variants 

raw GT 

Unadjusted 0.487 0.432 0.394 0.366 0.339 10,966 

Meta-analysis 0.392 0.343 0.307 0.283 0.262 10,966 

RUTH-Score 0.418 0.367 0.333 0.305 0.284 10,966 

RUTH-LRT 0.431 0.373 0.335 0.305 0.280 10,966 

LD-aware 
GT 

Unadjusted 0.479 0.395 0.336 0.292 0.259 10,966 

Meta-analysis 0.184 0.149 0.127 0.111 0.098 10,966 

RUTH-Score 0.211 0.172 0.147 0.130 0.112 10,966 

RUTH-LRT 0.215 0.177 0.151 0.131 0.115 10,966 

GL 

RUTH-Score 0.336 0.295 0.264 0.242 0.223 10,966 

RUTH-LRT 0.358 0.306 0.270 0.243 0.225 10,966 

PCAngsd 0.380 0.331 0.300 0.275 0.255 10,920 

HQ 
Variants 

raw GT 

Unadjusted 0.755 0.657 0.573 0.501 0.443 17,740 

Meta-analysis 0.298 0.161 0.084 0.042 0.020 17,740 

RUTH-Score 0.183 0.083 0.036 0.015 7.4x10-3 17,740 

RUTH-LRT 0.200 0.095 0.044 0.021 0.010 17,740 

LD-aware 
GT 

Unadjusted 0.623 0.507 0.422 0.361 0.311 17,740 

Meta-analysis 0.019 3.1x10-3 5.6x10-4 1.7x10-4 1.1x10-4 17,740 

RUTH-Score 0.011 1.9x10-3 1.1x10-4 0 0 17,740 

RUTH-LRT 0.011 1.1x10-3 2.3x10-4 5.6x10-5 0 17,740 

GL 

RUTH-Score 0.026 3.3x10-3 7.9x10-4 4.5x10-4 3.4x10-4 17,740 

RUTH-LRT 0.036 6.4x10-3 1.3x10-3 5.1x10-4 3.4x10-4 17,740 

PCAngsd 0.059 0.032 0.026 0.022 0.021 17,740 

The numbers within cells represent the proportions of significant variants under the corresponding testing 830 
conditions at the given P-value threshold. We expect our LQ variants to violate HWE at a higher rate than our HQ 831 
variants. A well-behaved test is expected to find a high proportion of LQ variants to be significant while 832 
maintaining the targeted Type I Error rate in HQ variants. The unadjusted test consistently shows the highest false 833 
positive rate among all the tests. HWE tests that rely on raw GTs also show much higher false positive rates than 834 
tests that use other genotype representations. RUTH tests were the best at controlling false positives while still 835 
maintaining comparable power to the other methods. PCAngsd had a much higher false positive rate than RUTH-836 
based methods, especially at more stringent p-value thresholds. 837 
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Table 2 839 

Performance of the unadjusted test, meta-analysis, and RUTH on TOPMed freeze 5 chromosome 20 variants. 840 

 841 

Variant 
set 

Genotype 
Format 

HWE Test 
Proportion of Significant Variants Total Variant 

Count P < 10-2 P < 10-3 P < 10-4 P < 10-5 P < 10-6 

LQ 
Variants 

raw GT Unadjusted 0.592 0.561 0.539 0.521 0.506 329,699 

raw GT Meta-analysis 0.554 0.524 0.502 0.485 0.471 329,699 

raw GT RUTH-Score 0.608 0.587 0.572 0.559 0.549 329,699 

GL RUTH-Score 0.635 0.608 0.590 0.575 0.563 329,699 

raw GT RUTH-LRT 0.610 0.580 0.556 0.538 0.522 329,699 

GL RUTH-LRT 0.653 0.615 0.588 0.567 0.550 329,699 

HQ 
Variants 

raw GT Unadjusted 0.890 0.842 0.800 0.766 0.736 17,524 

raw GT Meta-analysis 0.065 0.022 9.0x10-3 4.8x10-3 3.3x10-3 17,524 

raw GT RUTH-Score 0.145 0.047 0.172 7.1x10-3 3.5x10-3 17,524 

GL RUTH-Score 0.034 0.011 4.9x10-3 3.1x10-3 2.5x10-3 17,524 

raw GT RUTH-LRT 0.125 0.036 0.012 5.0x10-3 2.7x10-3 17,524 

GL RUTH-LRT 0.041 0.018 8.5x10-3 4.3x10-3 3.1x10-3 17,524 

 842 
The numbers within cells represent the proportions of significant variants under the corresponding testing 843 
conditions at the given P-value threshold. These results are based on tests that used likelihood-based genotype 844 
representations as input. A well-behaved test should reduce the number of significant high-quality (HQ) variants 845 
while increasing the number of significant low-quality (LQ) variants. The unadjusted test had a greatly inflated false 846 
positive rate for HQ variants while showing a lower true positive rate for LQ variants. While meta-analysis 847 
performed better for HQ variants, it had reduced power to find LQ variants to be significant. RUTH performed the 848 
best, with fewer false positives (significant HQ variants) compared to both the unadjusted test and meta-analysis, 849 
while at the same time finding more true positives (significant LQ variants). 850 
  851 
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Table 3 852 

Runtimes for RUTH and PCAngsd on simulated data. 853 

Sample Size 
Wall Time (s) User Time (s) 

RUTH-LRT RUTH-Score PCAngsd RUTH-LRT RUTH-Score PCAngsd 

1,000 16.21 27.24 173.11 16.16 27.09 172.37 

2,000 32.19 54.63 347.10 31.94 54.51 345.58 

5,000 82.80 136.44 1,124.83 81.81 136.20 1,102.85 

10,000 165.48 273.67 7,396.00 163.88 273.27 7,235.91 

20,000 336.75 553.92 38,807.67 332.06 553.05 37,338.69 

50,000 902.81 1,438.32 461,971.33 886.67 1,435.87 403,296.5 

 854 
We simulated 10,000 genotype likelihood-based variants for varying numbers of samples. Wall time indicates total 855 
runtime, while user time is the amount of time the CPUs spent running each program. All programs were run in 856 
single-threaded mode. System processes make up the difference between the two values, with a majority 857 
consisting of file I/O. We used VCF files with GL fields in RUTH and converted them to Beagle3 format for PCAngsd. 858 
The RUTH likelihood ratio test (LRT) was the fastest method, with the score test about 60% slower. PCAngsd was 859 
about 10 times slower than RUTH-LRT with the smallest sample sizes and over 400 times slower with our largest 860 
tested size of 50,000 samples.  861 
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 889 

Figure S1 890 
ROC and PRC for simulated single-ancestry data. For both low coverage (A, C) and high coverage (B, D) settings, 891 
500,000 variants were generated from 5,000 samples arising from a single ancestry, with half of the variants as 892 
true positives (θ = -0.05) and half of the variants as true negatives (θ = 0). The colors of the lines correspond to the 893 
different HWE tests, while the colors of the points correspond to different P-value thresholds. In all cases, the 894 
unadjusted test performed the worst. For low-coverage data, tests using GT-based genotypes performed poorly 895 
due to their inability to capture the effects of genotype uncertainty, whereas tests using GL-based genotypes 896 
performed much better. The difference was negligible in high-coverage genotype data. 897 
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 899 

Figure S2 900 
Precision-recall curves for simulated data with multiple ancestries. We generated Precision-recall curves to 901 
evaluate the tradeoff between the different HWE tests’ ability to identify true positive variants while minimizing 902 
the misidentification of true negative variants as significantly departing from HWE. We analyzed 50,000 true 903 
positive and 50,000 true negative variants in 5,000 samples arising from 5 different ancestries with an average 904 
simulated depth of (A) 5x and (B) 30x. True negative variants are defined as variants with the HWE deviation 905 
parameter θ = 0. True positives are defined as variants with θ = -0.05. The True Positive Rate (TPR) is defined to be 906 
the proportion of variants with θ = -0.05 that are significant at a given P-value threshold, while the Positive 907 
Predictive Value (PPV) is defined as the proportion of significant variants with θ = -0.05 at the same P-value 908 
threshold. Selected p-value thresholds are indicated with colored circles. For low-depth genotypes, in the presence 909 
of high genotype uncertainty, GL-based HWE tests performed relatively well, while GT-based tests performed 910 
poorly. For high-depth genotypes, with low genotype uncertainty, all methods adjusting for population structure 911 
performed relatively well. 912 
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 914 

Figure S3 915 
Precision-recall curves for 1000G and TOPMed variants. We defined positive variants as those with a high level of 916 
Mendelian inconsistency in family-based TOPMed data, and negative variants as those found in the intersection of 917 
the Illumina Omni2.5 and HapMap3 variant site lists. (A) For low-coverage sequence data found in 1000G, tests 918 
using GL-based genotypes (solid lines) generally performed better than tests using any GT-based genotypes 919 
(dotted and dashed lines). Both the unadjusted test and meta-analysis performed much worse than all other 920 
methods. (B) For high-coverage sequence data found in TOPMed, tests using GL-based genotypes retained their 921 
improved performance over tests using GT-based genotypes. 922 
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 924 

Figure S4 925 
Results of testing TOPMed variants found in 1000G variant list. This analysis contains 10,966 TOPMed variants 926 
found to be discordant in TOPMed family data and overlapping with 1000G discordant variants, as opposed to all 927 
329,699 discordant TOPMed variants (as seen in Figure 4D). Our results are similar to those for 1000G discordant 928 
variants (Figure 4B), suggesting that the differences between the patterns observed in 1000G and TOPMed results 929 
may have been caused by the difference in allele frequency distributions in the two data sets (Table S1). 930 
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 932 

Figure S5 933 
ROC curves for TOPMed variants found in 1000G variant list. GL-based tests have the best overall performance 934 
among the different methods. 935 
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 937 

Figure S6 938 
PRC curves for TOPMed variants found in 1000G variant list. RUTH tests using GLs offer the best balance between 939 
finding true positives and maximizing positive predictive value. 940 
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 942 

Figure S7  943 
Results of testing 1000G and TOPMed variants with RUTH using two vs. four PCs. Using only 2 PCs lead to 944 
noticeably worse performance, especially for GL-based tests. (A) In 1000 Genomes data, using only 2 PCs leads to 945 
much higher false positives in HQ variants for both RUTH-Score and RUTH-LRT compared to using 4 PCs. (B) Tests 946 
on LQ variants with 2 PCs appear to have modestly higher power than tests using 4 PCs, but this is mainly due to 947 
the much higher false positive rate. (C) For HQ variants in TOPMed, tests using only 2 PCs have substantially higher 948 
false positive rate than tests using 4 PCs for GL-based tests, while GT-based tests are comparable. (D) Surprisingly, 949 
GL-based tests using 4 PCs discovered more significant LQ variants compared to GL-based tests using 2 PCs, even 950 
though GL-based tests using 2 PCs had a higher false positive rate in HQ variants. 951 
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 953 

Figure S8 954 
Effect of ancestry estimation accuracy on Precision-Recall Curves. We evaluated the effect of using 2 vs. 4 principal 955 
components on the performance of RUTH-LRT, and the effect of using our nearest-neighbor algorithm (“curated”) 956 
vs. k-means for subpopulation classification of samples on the performance of meta-analysis on (A) low-depth 957 
simulated data, (B) high-depth simulated data, (C) 1000G variants, and (D) TOPMed variants. We simulated null 958 
variants with θ = 0 and alternative variants with θ = -0.05, with a fixation index of 0.1 for 5,000 samples from 5 959 
ancestries (1,000 samples each). RUTH-LRT used GL-based genotypes, and meta-analysis used raw GT-based 960 
genotypes. K-means classification for simulated data was performed assuming 3 subpopulation clusters. 961 
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 963 

Figure S9 964 
Principal component plots and group assignments for 1000 Genomes and TOPMed samples. Ancestry group 965 
assignments for samples in 1000G (A, B) and TOPMed (C, D) samples used either a high-quality ancestry estimation 966 
method (A, C) or a crude k-means based method (B, D). In meta-analysis, samples within a group were first 967 
analyzed together using the unadjusted test. Then, the group-level results were combined using Stouffer’s method. 968 
Meta-analyses using the cruder k-means groupings performed much worse than those using the high-quality 969 
ancestry estimates due to population stratification within the cruder groups. 970 
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 972 

Figure S10 973 
Results of testing 1000G and TOPMed variants with meta-analysis using K-means to generate ancestry groups. We 974 
generated three subpopulations for 1000G and TOPMed separately by applying k-means to the first two principal 975 
components of each group. Next, we calculated subpopulation-specific HWE statistics, which were converted to Z-976 
scores and combined using Stouffer’s method, using each subpopulation’s size as the weights. (A) K-means-based 977 
meta-analysis had much higher false positive rates in 1000G compared to meta-analysis that used more accurate 978 
population labels, which (B) confounds its seemingly higher power to discover true positives. (C) We see the same 979 
increased false positive rate in K-means-based meta-analysis in TOPMed, but surprisingly (D) it also reduced the 980 
power to discover true positives in TOPMed. High-quality ancestry groups can substantially improve the 981 
performance of ancestry-based meta-analysis. 982 
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Table S1 984 

Simulation results for the unadjusted test, meta-analysis, RUTH, and PCAngsd for HWE. 985 

This table can be found at the following link: 986 
https://docs.google.com/spreadsheets/d/1zdn7jOWgOMG_wwqwgDD4b1i0a2clGlyNFKmI5xR_DoE/edit?usp=shari987 
ng  988 
Results from various HWE tests for simulations with 50,000 variants for 5,000 samples. Samples were generated 989 
using a population fixation index (FST) between .01 and .1. “GL” indicates a method using genotype likelihoods, 990 
while “GT” indicates a method using best-guess genotypes. Theta denotes deviation from HWE: Theta = 0 indicates 991 
no deviation from HWE, Theta < 0 indicates excess heterozygosity, and Theta > 0 indicates heterozygote depletion. 992 
When the samples were generated from a single ancestry, meta-analysis and the unadjusted test were identical. 993 
*Combined FST indicates the combined results for FST=.01, .02, .03, .05, and .1. This is available only when the 994 
number of ancestries is 1, because FST should not affect the results with single ancestry, so the results may be 995 
combined. 996 
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Table S2 998 

Results from using lower quality ancestry estimations on meta-analysis and RUTH. 999 

Data set 
Variant 

set 
Genotype

Format 
HWE Test PCs 

Proportion of Significant Variants Total 
Variant 
Count P < 0.01 P < 10-3 P < 10-4 P < 10-5 P < 10-6 

1000G 

LQ 

raw GT 
Meta-analysis n/a 0.392 0.343 0.307 0.283 0.262 10,966 

Meta-analysis (k-means) n/a 0.405 0.356 0.319 0.292 0.269 10,966 

LD-aware 
GT 

Meta-analysis n/a 0.184 0.149 0.127 0.111 0.098 10,966 

Meta-analysis (k-means) n/a 0.221 0.169 0.136 0.116 0.102 10,966 

HQ 

raw GT 
Meta-analysis n/a 0.298 0.161 0.084 0.042 0.020 17,740 

Meta-analysis (k-means) n/a 0.427 0.279 0.180 0.112 0.067 17,740 

LD-aware 
GT 

Meta-analysis n/a 0.019 3.1x10-3 5.6x10-4 1.7x10-4 1.1x10-4 17,740 

Meta-analysis (k-means) n/a 0.107 0.043 0.020 9.5x10-3 5.0x10-3 17,740 

TOPMed 

LQ 

GT 

Meta-analysis n/a 0.553 0.523 0.501 0.485 0.471 329,699 

Meta-analysis (k-means) n/a 0.557 0.526 0.505 0.488 0.474 329,699 

HQ 
Meta-analysis n/a 0.064 0.022 9.2x10-3 5.0x10-3 3.3x10-3 17,524 

Meta-analysis (k-means) n/a 0.224 0.121 0.074 0.047 0.033 17,524 

1000G 

LQ 

GL 

RUTH-LRT 
2 0.357 0.304 0.271 0.243 0.224 10,966 

4 0.358 0.306 0.270 0.243 0.225 10,966 

RUTH-Score 
2 0.336 0.293 0.263 0.241 0.221 10,966 

4 0.336 0.295 0.264 0.242 0.223 10,966 

LD-aware 
GT 

RUTH-LRT 
2 0.220 0.177 0.149 0.128 0.113 10,966 

4 0.215 0.177 0.151 0.131 0.115 10,966 

RUTH-Score 
2 0.211 0.169 0.143 0.124 0.109 10,966 

4 0.211 0.172 0.147 0.130 0.112 10,966 

raw GT 

RUTH-LRT 
2 0.438 0.377 0.338 0.308 0.284 10,966 

4 0.431 0.373 0.335 0.305 0.28 10,966 

RUTH-Score 
2 0.424 0.372 0.335 0.309 0.286 10,966 

4 0.418 0.367 0.333 0.305 0.284 10,966 

HQ 

GL 

RUTH-LRT 
2 0.110 0.040 0.016 7.3x10-3 3.3x10-3 17,740 

4 0.036 6.4x10-3 1.3x10-3 5.1x10-4 3.4x10-4 17,740 

RUTH-Score 
2 0.087 0.026 9.2x10-3 3.4x10-3 1.6x10-3 17,740 

4 0.026 3.3x10-3 7.9x10-4 4.5x10-4 3.4x10-4 17,740 

LD-aware 
GT 

RUTH-LRT 
2 0.041 0.014 5.4x10-3 2.4x10-3 1.4x10-3 17,740 

4 0.011 1.1x10-3 2.3x10-4 5.6x10-5 0 17,740 

RUTH-Score 
2 0.034 9.5x10-3 2.8x10-3 1.2x10-3 5.1x10-4 17,740 

4 0.011 1.9x10-3 1.1x10-4 0 0 17,740 

raw GT 

RUTH-LRT 
2 0.299 0.176 0.098 0.055 0.03 17,740 

4 0.200 0.095 0.044 0.021 9.7x10-3 17,740 

RUTH-Score 
2 0.276 0.155 0.083 0.044 0.023 17,740 

4 0.183 0.083 0.036 0.015 7.4x10-3 17,740 

TOPMed 

LQ 

GL 

RUTH-LRT 
2 0.646 0.610 0.584 0.563 0.547 329,699 

4 0.652 0.614 0.588 0.567 0.55 329,699 

RUTH-Score 
2 0.634 0.607 0.589 0.574 0.562 329,699 

4 0.635 0.608 0.590 0.575 0.562 329,699 

GT 

RUTH-LRT 
2 0.603 0.573 0.551 0.533 0.518 329,699 

4 0.610 0.580 0.556 0.538 0.552 329,699 

RUTH-Score 
2 0.608 0.586 0.571 0.558 0.548 329,699 

4 0.608 0.587 0.572 0.559 0.549 329,699 

HQ 

GL 

RUTH-LRT 
2 0.130 0.067 0.039 0.024 0.016 17,524 

4 0.041 0.018 8.7x10-3 4.2x10-3 3.1x10-3 17,524 

RUTH-Score 
2 0.130 0.065 0.036 0.021 0.014 17,524 

4 0.034 0.011 4.9x10-3 3.1x10-3 2.5x10-3 17,524 

GT 

RUTH-LRT 
2 0.079 0.028 0.012 7.6x10-3 5.9x10-3 17,524 

4 0.125 0.036 0.012 5.0x10-3 2.7x10-3 17,524 

RUTH-Score 
2 0.093 0.033 0.015 8.8x10-3 6.0x10-3 17,524 

4 0.145 0.047 0.017 7.1x10-3 3.5x10-3 17,524 

In both 1000G and TOPMed, the false positive rate was much higher when k-means-based groupings were used for 1000 
meta-analysis, compared to when high quality ancestry groupings were used. Similarly, the false positive rate was 1001 
much higher when only 2 PCs were used, compared to when 4 PCs were used. Surprisingly, in TOPMed, using 4 PCs 1002 
led to both a lower false positive rate and higher true positive rate when compared to using 2 PCs.  1003 
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Table S3 1004 

Performance of the unadjusted test, meta-analysis, and RUTH on the subset of TOPMed freeze 5 chromosome 20 1005 
variants that are also found in 1000G. 1006 

 1007 

Variant 
set 

Genotype 
Format 

HWE Test 
Proportion of Significant Variants Total 

Variant 
Count P < 10-2 P < 10-3 P < 10-4 P < 10-5 P < 10-6 

HQ 
Variants 

raw GT Unadjusted 0.890 0.842 0.800 0.766 0.736 16,924 
raw GT Meta-analysis 0.062 0.020 8.0x10-3 3.8x10-3 2.3x10-3 16,924 
raw GT RUTH-Score 0.145 0.046 0.016 6.3x10-3 2.8x10-3 16,924 

GL RUTH-Score 0.032 9.3x10-3 3.7x10-3 2.0x10-3 1.5x10-3 16,924 
raw GT RUTH-LRT 0.125 0.035 0.011 4.2x10-3 1.9x10-3 16,924 

GL RUTH-LRT 0.039 0.016 7.4x10-3 3.1x10-3 2.2x10-3 16,924 

LQ 
Variants 

raw GT Unadjusted 0.762 0.728 0.702 0.683 0.667 10,513 
raw GT Meta-analysis 0.649 0.616 0.592 0.575 0.560 10,513 
raw GT RUTH-Score 0.727 0.693 0.673 0.656 0.640 10,513 

GL RUTH-Score 0.698 0.669 0.648 0.631 0.618 10,513 
raw GT RUTH-LRT 0.719 0.686 0.663 0.643 0.627 10,513 

GL RUTH-LRT 0.693 0.662 0.639 0.621 0.605 10,513 

For HQ variants, GL-based HWE tests had much better control of false positives than GT-based tests. 1008 
Conversely, for LQ variants, GT-based HWE tests had a slightly better true positive rate than GL-based 1009 
tests. Overall, GL-based tests had the best performance when considering the tradeoff between false 1010 
positives and true positives (Figure S5-6). 1011 
  1012 
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Table S4 1013 

Simulation results for RUTH tests using 2 vs 4 principal components. 1014 

This table can be found at the following link: 1015 

https://docs.google.com/spreadsheets/d/1Ac9rveZax5Y8NlKQ47wBaJNELqeJkFuNUpa1sNgnsno/edit?usp=sharing1016 

We tested the effect of using different numbers of PCs in RUTH on Type I Error (θ = 0) and power (θ ≠ 0) for 1017 

simulated samples with different numbers of ancestries, fixation indices, sequencing depths, and genotype 1018 

representations. We simulated 50,000 variants for each combination of simulation parameters. 1019 
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Table S5 1021 

The effect of high vs. low quality subpopulation classification on meta-analysis in simulated samples. 1022 
 1023 

Grouping Depth Theta 
Proportion of significant variants 

P < 10-6 P < 10-5 P < 10-4 P < 10-3 P < 0.01 

True 
ancestry 

labels 

5 
-0.05 0.0073 0.0125 0.0235 0.05 0.1145 

0 0.0147 0.0388 0.0919 0.1955 0.3519 

30 
-0.05 0.0139 0.04 0.1048 0.2389 0.4594 

0 0 0 0.0001 0.0016 0.0127 

k-means 
(3 groups) 

5 
-0.05 0.1201 0.149 0.19 0.2509 0.3513 

0 0.2907 0.3496 0.4195 0.4977 0.5826 

30 
-0.05 0.0919 0.1122 0.1447 0.2017 0.3097 

0 0.2183 0.2553 0.3054 0.3734 0.4747 

We simulated 50,000 variants in 5,000 samples arising from 5 distinct subpopulations (1,000 samples each), at low 1024 
(5x) and high (30x) depth, with no deviation from HWE (θ = 0) and moderate excess heterozygosity (θ = -0.05). We 1025 
used one of two different groupings for our samples: for high-quality labels, we used the original true ancestry 1026 
labels from which we simulated our data; for low-quality labels, we ran k-means classification on the first 2 1027 
principal components of genetic variation for all our samples to generate 3 groups. We meta-analyzed all data sets 1028 
using Stouffer’s method. Type I error rates for low-depth samples were greatly inflated. For high-depth samples, 1029 
when we used the true ancestry labels, Type I errors were well-controlled, with reasonable power to discover 1030 
deviations from HWE, while when we used the crude k-means labels, Type I errors were greatly inflated, with 1031 
surprisingly less power to discover deviations from HWE at less stringent P-value thresholds. These results 1032 
highlight the importance of high-quality subpopulation classification for meta-analysis. 1033 
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Table S6 1035 

Comparison of runtimes and memory requirements for RUTH and PCAngsd in simulated and 1000G data. 1036 

 1037 

Data set 
Genotype 

Format 
Software Test N 

Total 
Variant 
Count 

Runtime 
(s) 

Memory 
requirement 

(MB) 

Simulated 

GT PLINK Unadjusted 5,000 50,000 22 10 

GT RUTH RUTH LRT 5,000 50,000 348 15 

GL RUTH RUTH LRT 5,000 50,000 341 15 

GT RUTH RUTH Score 5,000 50,000 460 15 

GL RUTH RUTH Score 5,000 50,000 469 15 

Simulated (5x) GL PCAngsd PCAngsd 5,000 50,000 6,068 6,946 

Simulated (30x) GL PCAngsd PCAngsd 5,000 50,000 5,337 6,872 

1000G 

GT PLINK Unadjusted 2,504 28,706 2 8 

GL RUTH RUTH LRT 2,504 28,706 147 14 

GT RUTH RUTH LRT 2,504 28,706 96 13 

GL RUTH RUTH Score 2,504 28,706 216 14 

GT RUTH RUTH Score 2,504 28,706 177 13 

GL PCAngsd PCAngsd 2,504 28,660 4,105 2,073 

TOPMed 
GT RUTH RUTH LRT 53,831 347,223 158,731 57 

GL RUTH RUTH LRT 53,831 347,223 196,169 57 

Simulation runtimes for PLINK and RUTH are averaged over 360 runs, across combinations of different simulation 1038 
parameters. Simulation results for PCAngsd are averaged over 66 runs each for 5x and 30x coverage data. The 1039 
higher uncertainty in low depth simulated data appears to have led to slower convergence in PCAngsd. All results 1040 
for 1000G were from single runs. The listed TOPMed runtimes and memory requirements are for single-threaded 1041 
analyses of all variants. 1042 
  1043 
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Table S7 1044 

TOPMed Study Name TOPMed Accession Sample Size 

Genetics of Cardiometabolic Health in the Amish phs000956 1,025 

Trans-Omics for Precision Medicine Whole Genome 
Sequencing Project: ARIC phs001211 3,585 

The Genetics and Epidemiology of Asthma in Barbados phs001143 944 

Cleveland Clinic Atrial Fibrillation Study phs001189 328 

The Cleveland Family Study (WGS) phs000954 919 

Cardiovascular Health Study phs001368 69 

Genetic Epidemiology of COPD (COPDGene) in theTOPMed 
Program phs000951 8,733 

The Genetic Epidemiology of Asthma in Costa Rica phs000988 1,040 

Diabetes Heart Study African American Coronary Artery 
Calcification (AA CAC) phs001412 322 

Whole Genome Sequencing and Related Phenotypes in the 
Framingham Heart Study phs000974 3,725 

Genes-environments and Admixture in Latino Asthmatics 
(GALA II) Study phs000920 912 

GeneSTAR (Genetic Study of Atherosclerosis Risk) phs001218 1,633 

Genetic Epidemiology Network of Arteriopathy (GENOA) phs001345 1,069 

Genetic Epidemiology Network of Salt Sensitivity (GenSalt) phs001217 1,680 

Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) phs001359 892 

Heart and Vascular Health Study (HVH) phs000993 64 

HyperGEN - Genetics of Left Ventricular (LV) Hypertrophy phs001293 1,752 

Jackson Heart Study phs000964 3,074 

Whole Genome Sequencing of Venous Thromboembolism 
(WGS of VTE) phs001402 1,250 

MESA and MESA Family AA-CAC phs001416 4,804 

MGH Atrial Fibrillation Study phs001062 916 

Partners HealthCare Biobank phs001024 109 

San Antonio Family Heart Study (WGS) phs001215 1,478 

Study of African Americans, Asthma, Genes and 
Environment (SAGE) Study phs000921 450 

African American Sarcoidosis Genetics Resource phs001207 606 

Genome-wide Association Study of Adiposity in Samoans phs000972 1,198 

The Vanderbilt AF Ablation Registry phs000997 154 

The Vanderbilt Atrial Fibrillation Registry phs001032 1016 

Novel Risk Factors for the Development of Atrial Fibrillation 
in Women phs001040 97 

Women's Health Initiative (WHI) phs001237 9,984 

Total  53,831 
   

Sample contributions from each of the participating TOPMed studies. 1045 
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Table S8 1047 

TOPMed 
Accession # TOPMed Project Parent Study 

TOPMed 
Phase Omics Center Omics Support 

phs000956 Amish Amish 1 Broad Genomics 3R01HL121007-01S1 

phs001211 AFGen ARIC AFGen 1 Broad Genomics 3R01HL092577-06S1 

phs001211 VTE ARIC 2 Baylor 
3U54HG003273-12S2 / 
HHSN268201500015C 

phs001143 BAGS BAGS 1 Illumina 3R01HL104608-04S1 

phs001189 AFGen CCAF 1 Broad Genomics 3R01HL092577-06S1 

phs000954 CFS CFS 1 NWGC 3R01HL098433-05S1 

phs000954 CFS CFS 3.5 NWGC HHSN268201600032I 
phs001368 CHS CHS 3 Baylor HHSN268201600033I 

phs001368 VTE CHS VTE 2 Baylor 
3U54HG003273-12S2 / 
HHSN268201500015C 

phs000951 COPD COPDGene 1 NWGC 3R01HL089856-08S1 
phs000951 COPD COPDGene 2 Broad Genomics HHSN268201500014C 
phs000951 COPD COPDGene 2.5 Broad Genomics HHSN268201500014C 

phs000988 CRA_CAMP CRA 1 NWGC 3R37HL066289-13S1 
phs000988 CRA_CAMP CRA 3 NWGC HHSN268201600032I 

phs001412 AA_CAC DHS 2 Broad Genomics HHSN268201500014C 

phs000974 AFGen FHS AFGen 1 Broad Genomics 3R01HL092577-06S1 
phs000974 FHS FHS 1 Broad Genomics 3U54HG003067-12S2 

phs000920 ATGC GALAII ATGC 3 NWGC HHSN268201600032I 
phs000920 PGX_Asthma GALAII 1 NYGC 3R01HL117004-02S3 

phs001218 AA_CAC GeneSTAR AA_CAC 2 Broad Genomics HHSN268201500014C 
phs001218 GeneSTAR GeneSTAR legacy Illumina R01HL112064 
phs001218 GeneSTAR GeneSTAR 2 Psomagen 3R01HL112064-04S1 

phs001345 HyperGEN_GENOA GENOA 2 NWGC 3R01HL055673-18S1 
phs001345 AA_CAC GENOA AA_CAC 2 Broad Genomics HHSN268201500014C 

phs001217 GenSalt GenSalt 2 Baylor HHSN268201500015C 

phs001359 GOLDN GOLDN 2 NWGC 3R01HL104135-04S1 

phs000993 AFGen HVH 1 Broad Genomics 3R01HL092577-06S1 

phs000993 VTE HVH VTE 2 Baylor 
3U54HG003273-12S2 / 
HHSN268201500015C 

phs001293 HyperGEN_GENOA HyperGEN 2 NWGC 3R01HL055673-18S1 

phs000964 JHS JHS 1 NWGC HHSN268201100037C 

phs001402 VTE Mayo_VTE 2 Baylor 
3U54HG003273-12S2 / 
HHSN268201500015C 

phs001416 AA_CAC MESA AA_CAC 2 Broad Genomics HHSN268201500014C 
phs001416 MESA MESA 2 Broad Genomics 3U54HG003067-13S1 

phs001062 AFGen MGH_AF 1.4; 1.5; 2.4 Broad Genomics 

3U54HG003067-12S2 / 
3U54HG003067-13S1; 
3U54HG003067-12S2 / 
3U54HG003067-13S1; 
3UM1HG008895-01S2 

phs001062 AFGen MGH_AF 1 Broad Genomics 3R01HL092577-06S1 

phs001024 AFGen Partners 1 Broad Genomics 3R01HL092577-06S1 

phs001215 SAFS SAFS 1 Illumina 3R01HL113323-03S1 
phs001215 SAFS SAFS legacy Illumina R01HL113322 

phs000921 ATGC SAGE ATGC 3 NWGC HHSN268201600032I 
phs000921 PGX_Asthma SAGE 1 NYGC 3R01HL117004-02S3 

phs000972 Samoan Samoan 1 NWGC HHSN268201100037C 
phs000972 Samoan Samoan 2 NYGC HHSN268201500016C 

phs001207 Sarcoidosis Sarcoidosis 2 Baylor 3R01HL113326-04S1 
phs001207 Sarcoidosis Sarcoidosis 3.5 NWGC HHSN268201600032I 

phs000997 AFGen VAFAR 1.5; 2.4; 5.3 Broad Genomics 

3U54HG003067-12S2 / 
3U54HG003067-13S1; 
3UM1HG008895-01S2; 
3UM1HG008895-01S2 
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phs000997 AFGen VAFAR 1 Broad Genomics 3R01HL092577-06S1 

phs001032 AFGen VU_AF 1 Broad Genomics 3R01HL092577-06S1 

phs001040 AFGen WGHS 1 Broad Genomics 3R01HL092577-06S1 

phs001237 WHI WHI 2 Broad Genomics HHSN268201500014C 

TOPMed acknowledgements for omics support. 1048 
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File S1 1050 
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Harvard (3R01HL092577-06S1).  1060 

The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal 1061 

funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, 1062 

Department of Health and Human Services (contract numbers HHSN268201700001I, 1063 

HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I). 1064 

The authors thank the staff and participants of the ARIC study for their important contributions.  1065 

NHLBI TOPMed: The Genetics and Epidemiology of Asthma in Barbados 1066 

The Genetics and Epidemiology of Asthma in Barbados is supported by National Institutes of 1067 

Health (NIH) National Heart, Lung, Blood Institute TOPMed (R01 HL104608-S1) and: R01 1068 

AI20059, K23 HL076322, and RC2 HL101651. For the specific cohort descriptions and 1069 

descriptions regarding the collection of phenotype data can be found at: 1070 

https://www.nhlbiwgs.org/group/bags-asthma. The authors wish to give special recognition to 1071 

the individual study participants who provided biological samples and or data, without their 1072 

support in research none of this would be possible.  1073 

NHLBI TOPMed: Cleveland Clinic Atrial Fibrillation Study 1074 

The research reported in this article was supported by grants from the National Institutes of 1075 

Health (NIH) National Heart, Lung, and Blood Institute grants R01 HL090620 and R01 HL111314, 1076 

the NIH National Center for Research Resources for Case Western Reserve University and the 1077 

Cleveland Clinic Clinical and Translational Science Award (CTSA) UL1-RR024989, the 1078 

Department of Cardiovascular Medicine philanthropic research fund, Heart and Vascular 1079 

Institute, Cleveland Clinic, the Fondation Leducq grant 07-CVD 03, and The Atrial Fibrillation 1080 

Innovation Center, State of Ohio.  1081 

NHLBI TOPMed: The Cleveland Family Study (WGS) 1082 
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Support for the Cleveland Family Study was provided by NHLBI grant numbers R01 HL46380, 1083 

R01 HL113338 and R35 HL135818.  1084 

NHLBI TOPMed: Cardiovascular Health Study 1085 

This research was supported by contracts HHSN268201200036C, HHSN268200800007C, 1086 

HHSN268201800001C, N01-HC85079, N01-HC-85080, N01-HC-85081, N01-HC-85082, N01-HC-1087 

85083, N01-HC-85084, N01-HC-85085, N01-HC-85086, N01-HC-35129, N01-HC-15103, N01-HC-1088 

55222, N01-HC-75150, N01-HC-45133, and N01-HC-85239; grant numbers U01 HL080295, U01 1089 

HL130114 and R01 HL059367 from the National Heart, Lung, and Blood Institute, and R01 1090 

AG023629 from the National Institute on Aging, with additional contributions from the National 1091 

Institute of Neurological Disorders and Stroke. A full list of principal CHS investigators and 1092 

institutions can be found at https://chs-nhlbi.org/pi. Its content is solely the responsibility of 1093 

the authors and does not necessarily represent the official views of the National Institutes of 1094 

Health.  1095 

NHLBI TOPMed: Genetic Epidemiology of COPD (COPDGene) in the TOPMed Program 1096 

This research used data generated by the COPDGene study, which was supported by NIH Award 1097 

Number U01 HL089897 and Award Number U01 HL089856 from the National Heart, Lung, and 1098 

Blood Institute. The content is solely the responsibility of the authors and does not necessarily 1099 

represent the official views of the National Heart, Lung, and Blood Institute or the National 1100 

Institutes of Health. 1101 

The COPDGene project is also supported by the COPD Foundation through contributions made 1102 

to an Industry Advisory Board comprised of AstraZeneca, Boehringer Ingelheim, 1103 

GlaxoSmithKline, Novartis, Pfizer, Siemens and Sunovion.  1104 

NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica 1105 

This study was supported by NHLBI grants R37 HL066289 and P01 HL132825. We wish to 1106 

acknowledge the investigators at the Channing Division of Network Medicine at Brigham and 1107 

Women's Hospital, the investigators at the Hospital Nacional de Niños in San José, Costa Rica 1108 

and the study subjects and their extended family members who contributed samples and 1109 

genotypes to the study, and the NIH/NHLBI for its support in making this project possible.  1110 

NHLBI TOPMed: Diabetes Heart Study African American Coronary Artery Calcification (AA 1111 

CAC) 1112 

This work was supported by R01 HL92301, R01 HL67348, R01 NS058700, R01 AR48797, R01 1113 

DK071891, R01 AG058921, the General Clinical Research Center of the Wake Forest University 1114 

School of Medicine (M01 RR07122, F32 HL085989), the American Diabetes Association, and a 1115 

pilot grant from the Claude Pepper Older Americans Independence Center of Wake Forest 1116 

University Health Sciences (P60 AG10484). 1117 
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NHLBI TOPMed: Whole Genome Sequencing and Related Phenotypes in the Framingham 1118 

Heart Study 1119 

The Framingham Heart Study (FHS) is a prospective cohort study of 3 generations of subjects 1120 

who have been followed up to 65 years to evaluate risk factors for cardiovascular disease.13-16 1121 

Its large sample of ~15,000 men and women who have been extensively phenotyped with 1122 

repeated examinations make it ideal for the study of genetic associations with cardiovascular 1123 

disease risk factors and outcomes. DNA samples have been collected and immortalized since 1124 

the mid-1990s and are available on ~8000 study participants in 1037 families. These samples 1125 

have been used for collection of GWAS array data and exome chip data in nearly all with DNA 1126 

samples, and for targeted sequencing, deep exome sequencing and light coverage whole 1127 

genome sequencing in limited numbers. Additionally, mRNA and miRNA expression data, DNA 1128 

methylation data, metabolomics and other 'omics data are available on a sizable portion of 1129 

study participants. This project will focus on deep whole genome sequencing (mean 30X 1130 

coverage) in ~4100 subjects and imputed to all with GWAS array data to more fully understand 1131 

the genetic contributions to cardiovascular, lung, blood and sleep disorders. 1132 

The FHS acknowledges the support of contracts NO1-HC-25195 and HHSN268201500001I from 1133 

the National Heart, Lung, and Blood Institute and grant supplement R01 HL092577-06S1 for this 1134 

research. We also acknowledge the dedication of the FHS study participants without whom this 1135 

research would not be possible.  1136 
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R01HL117004 and X01HL134589; study enrollment supported by the Sandler Family 1140 
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and the National Institute of Environmental Health Sciences grant R01ES015794. 1143 
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Saeedi, Dean Soto, Ana Taveras; and the lab researcher Celeste Eng who processed the 1160 

biospecimens. 1161 
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HL054464, HL054481, HL119443, and HL087660) of the National Institutes of Health. WGS for 1165 
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University of Washington (3R01HL055673-18S1), and the Broad Institute 1168 

(HHSN268201500014C) for their genotyping and sequencing services. We would like to thank 1169 

the GENOA participants. 1170 
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collected with funding from the National Heart, Lung and Blood Institute (NHLBI) grant U01 1177 

HL072524. Whole-genome sequencing in GOLDN was funded by NHLBI grant R01 HL104135 and 1178 

supplement R01 HL104135-04S1.  1179 
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