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2 Abstract

3 A reoccurring challenge in bioinformatics is predicting the phenotypic consequence
4 of amino acid variation in proteins. With the recent advancements in sequencing tech-
5 niques, sufficient genomic data has become available to train models that predict the
6 evolutionary statistical energies, but there is still inadequate experimental data to di-
7 rectly predict functional effects. One approach to overcome this data scarcity is to
8 apply transfer learning and train more models with available datasets. In this study,
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9 we propose a set of transfer learning algorithms we call TLmutation, which implements

10 a supervised transfer learning algorithm that transfers knowledge from survival data of
11 a protein to a particular function of that protein. This is followed by an unsupervised
12 transfer learning algorithm that extends the knowledge to a homologous protein. We
13 explore the application of our algorithms in three cases. First, we test the supervised
14 transfer on 17 previously published deep mutagenesis datasets to complete and refine
15 missing datapoints. We further investigate these datasets to identify which mutations
16 build better predictors of variant functions. In the second case, we apply the algorithm
17 to predict higher-order mutations solely from single point mutagenesis data. Finally,
18 we perform the unsupervised transfer learning algorithm to predict mutational effects
19 of homologous proteins from experimental datasets. These algorithms are generalized
20 to transfer knowledge between Markov random field models. We show the benefit of
21 our transfer learning algorithms to utilize informative deep mutational data and pro-
22 vide new insights into protein variant functions. As these algorithms are generalized to
23 transfer knowledge between Markov random field models, we expect these algorithms
24 to be applicable to other disciplines.

» Introduction

26 Proteins are intricate molecular machines that regulate all biological processes. The func-
o7 tion of a particular protein is intrinsically linked to its structure, which governs its stability
s and conformational dynamics.!? Consequently, mutations in protein sequences, in which
20 one amino acid is replaced by another amino acid, can affect a protein’s structure, stabil-
s ity, and inevitably its function. While some mutations may have little to no effect on a
s1 protein’s function, others have larger implications for disease and antibiotic resistance.®*
32 Recent advancements in large-scale genomic sequencing have provided tools and resources

33 for both consumers and clinicians to identify disease-potential mutations in one’s proteome

s« at an affordable cost. However, due this large influx of genomic data, a recurring challenge
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s is predicting the phenotypic consequence in proteins due to amino acid variations. ¢

36 Several workflows, both experimentally and computationally, have been developed to
w7 identify, predict, and model the effects of mutations.”'° Engineering approaches, such as
33 deep mutational scanning, provide a unique glimpse into the sequence-function relationship
30 of proteins by surveying all single-point mutations in the sequence and assessing their altered
s function.'1* These methods provide large quantitative datasets of mutational effects for a
a1 particular protein. Alternatively, statistical models have been used as standalone approaches
22 or to compliment biophysical experiments. PolyPhen2' and SIFT!® are examples of com-
23 mon frameworks that use multiple sequence and structural-based alignments to characterize
a variants. Other models, such as SNAP2,'" CADD,!® and Envision, ! employ machine learn-
ss ing algorithms to classify and predict mutations and are popular due to their robustness
w6 with large datasets. One successful approach employed for predicting mutational effects is
s EVmutation which uses evolutionary sequence conservation.?’ In addition to applying evo-
as lutionary conservation to predict the effect of mutations, EVmutation also considers genetic
20 interactions between mutations and the sequence background. By accounting for the inter-
so actions between all residue pairs, the model predicts the effects of mutations accurately as
s compared to other predictors.?’ Additionally, this method is shown to be able to capture the
s2 functionally relevant protein conformations and their dynamics.?!?* EVmutation utilizes a
53 graph based Markov random field known as the Potts model which is trained on natural
sa sequences.?’ This means, for a given sequence, the algorithm searches through the UniProt
ss database,? locates all natural sequences in its family, and uses these sequences as data to
ss train the Potts model. However, these unsupervised probabilistic models do not directly
s7 predict the effects of mutations on the functionality of the protein; rather, they predict if
ss the mutant species are fit to survive, which may not always directly correlate to a specific
so function.?

60 As genomic sequencing and mutational libraries become readily available, it represents

61 an opportunity to utilize this data-rich regime to enhance predictors of protein mutations.
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62 However, training Potts models on specific experimental data is usually not feasible. While
63 mutational libraries of various proteins have been completed due to advancements in deep
s« mutational scanning and directed evolution methods,?%?® these datasets are inadequate for
es training, and we must rely on alternative methods to obtain insights and predictions. In a
es traditional machine learning approach, different task will be individually learned to build
ez a model. However, in many real-world applications, collecting training data and rebuilding
s models may be computationally expensive.?’ These difficulties are akin to deep mutational
eo scanning and other biophysical approaches. Many experimental methods in characterizing
70 protein variants are susceptible to noise or missing datapoints.® Moreover, it is difficult to
7 infer information about other proteins from a single deep mutational scan.

72 One approach to overcome this data scarcity is to apply transfer learning algorithms in
73 which we apply knowledge from one task to a different, yet related task.?? Transfer learning
74 has been used to tackle various challenges in molecular biology and bioinformatics, including

3031 and protein-protein interactions.®?3% Singh et al. devel-

75 protein function prediction,
76 oped a platform to predict RNA secondary structure from models initially trained on a
77 high-resolution RNA structure database.?* Due to insufficient data on residue contacts in
s membrane proteins, Wang et al. transferred convolutional neural network parameters of non-
7o membrane protein contacts to enhance structure prediction of membrane proteins.?> While
so the motivation of employing machine learning is to enhance predictions in low data regime,
a1 transfer learning can take advantage of the structural and functional similarities between
g2 homologous proteins.

83 Here, we propose an algorithm, TLmutation, which is an adaptation of the successful
s« variant effect predictor EVmutation, that utilizes deep mutational datasets to enhance pre-
ss dictions of variant effects in proteins. We implement the algorithm in two fashions. First,
ss TLmutation transfers knowledge from a model, trained on natural sequences and deep muta-

sz tional data, to a new protein function for the same protein. We call this algorithm supervised

ss 1 Lmutation. This is followed by an unsupervised transfer learning algorithm that expands
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so the knowledge to a related protein and is referred to as unsupervised TLmutation. We con-
o0 ducted multiple experiments using the proposed transfer learning algorithms to evaluate the
o1 practical efficiency in predicting the effects of mutations of multiple proteins with differ-
o2 ent types of training and test datasets. In the first case, we explore the application of the
03 proposed algorithm on 17 previously published mutagenesis datasets to complete missing
oa datapoints. We further investigate different sampling approaches to delineate which muta-
os tions provide more accurate predictors of variant functions. In the second case, we apply
o6 our algorithm to predict higher order mutations (i.e. double mutations, triple mutations)
oz solely from single point mutatgensis data. Finally, we implement the unsupervised transfer
os learning algorithm to predict mutational effects of homologous proteins from experimental
o0 datasets. Our results show that the incorporation of deep mutational dataset not only en-
100 hances the prediction of variant effects, but also can be transferable to provide new insights

101 where experimental data may be limited.

w Methods

10s Potts model for protein sequences

w0sa A Markov random field (MRF) is an undirected, probabilistic graphical model that represents
s statistical dependencies among a set of random variables, ¢ = (0y,...,0y), where V o; €
106 {1, 2,1 } MRF models have widely been used to tackle large datasets in different disciplines
107 such as genomic biology,3® physics,?” natural language processing,®® and computer vision.
ws  For this study, let 0 = (07,09, ...,05) represent the amino acid sequence of a protein with
100 length N. Each o; takes on values in {1, 2, .., 21} (one state for each of the 20 naturally

1o occurring amino acids and one additional state to represent a gap). The probability of

u1 01,...,0y is then given by:
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N

P(oy,...,0n) = %exp(z hi(o;) + 2 Z Jij(03,05)) (1)

=1 i=1 j=i+1

12 where h; is the potentials of site ¢, or fields, J;; is the potentials between residue pair
13 constraints, or couplings of sites ¢ and j,%° and Z is the partition function.4® This form of
s the MRF is commonly known as the Potts model or Potts Hamiltonian models.*!

115 Assume we have two similar domains, source and target domain, in which we have a base
ue and a new task (Figure 1). The new task must be a subset of the base task. This means
17 the base task has to be the result of multiple smaller tasks, of which the new task is one of
us them. We define M} be a MRF M of the task ¢ in the domain d. We initially are provided
1o two MRF models for the source domain and the target domain, both trained on the base

1o task, or M?b%¢ and Mtlfﬁgeet, respectively. Our aim is to obtain MRF models on the new

121 task for both source and target domains (MP¢“ ~ and M ). The training data for the

source target

122 source domain contains a set of n data points for the new task, Xnewltrain ¢ Rd= and its

13 corresponding labels or outputs, Yewirain ¢ fd=  Additionally, we have test datasets for

. test .
124 both the source and the target domain (X[l and Xy, with labels as Y2e2**" and

Ynew,test

target respectively) .

125
126 The first goal is to utilize the given training data and the MRF model to find a predictive
127 model for the new task in the source domain (M?5% ). Then, we extend the knowledge from

source
125 this supervised transfer learning step to learn a model in the target domain (M7v ;) using
120 an unsupervised transfer learning algorithm. To evaluate the performance of the algorithm,
130 the predictions (Y) are ranked and compared to the actual labels (Y) for calculation of
131 the Spearman rank correlation coefficient (p).%? For this study, p accesses the association
132 between two ranked variables, the predicted effect of a point mutation and the experimental

133 effect. The value of p ranges from -1 to +1, where +1 indicates one variable is a perfect,

132 monotonically increasing function of the other variable and -1 as a perfect, monotonically
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135 decreasing relationship.

Source Domain

Base Task Base Task
Model

¥ ¥

Uzl New Task New Task

o o mm m e m mm e e e  —
T

Figure 1: Proposed transfer learning algorithms for MRF models. In each source and target
domain, the new task is a subset of the base task. Knowledge is then transferred from the
source domain, where training data, is available to the target domain.

13 Supervised transfer from the evolutionary statistical energy to a

i functional assay.

133 We want to modify an existing predictive model that is trained on the base task to be able
130 to predict a new task. In the supervised transfer portion, all the transfer is conducted within
10 a same domain, the source domain, and therefore the subscripts that determine the domains
11 are dropped. First, we train a MRF model on the base task (M®*¢) and calculate the values
12 for the potentials of %% of all residues c using available methods in the literature.?’ Then,

13 we introduce a MRF model that can predict the new task as the following:

P(o) = exp(3 6°) ¢

ceC

s Wwhere

07" = w,.00"° (3)

s W, is a binary weight matrix (w € {0, 1}), which is calculated by maximizing the correlation

7
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us between the predicted values of labels (Y"ew’”"””) and the actual labels (Y"ewrein) a9

muE?/X | p(rgf/new,t'rai’ny ’Iﬂgynew,train) | (4)

w7 With gy new train @A TGy new train are ranks of ynewitrain gnd ynewtrain respectively. p is the
s Spearman’s rank correlation coefficient. The maximization algorithm is further explained in
10 the Supporting Information.
150 In this particular study, we want to learn a Potts model that can predict the effect of
151 mutations on a particular protein function. We are given a Potts model trained on natural
12 sequences (EVmutation model) and experimental data of the effects of point mutations on
13 a protein’s function. In the Potts model of a protein sequence (Eq. 1), each J;; parameter
154 represents the chemical or physical interactions between the corresponding residues ¢ and
155 7.20 Since the model is trained on survival data, J;;’s with large values suggest critical
156 interactions necessary for survival. Such interactions may have roles including, but not
157 limited to, expression, folding, thermal stability, or conformational dynamics. Assuming our
1ss function of interest is one of these essential survival functions, we want to decouple the J;;
159 parameters from the overall survival by nullifying J;;’s that do not contribute to the function
160 and retaining the ones that are linked to this function. This forms the basis of the proposed
161 supervised transfer learning algorithm, supervised TLmutation.
162 In the supervised transfer learning section, all the transfer occurs within the same protein
163 (referred to as source protein). First, we train a Potts model on survival (e.g. EVmutation),
10« and calculate the values for the potentials of J;; and h;.?° Then, we introduce a new Potts
165 model that can predict the function using the following modified potentials:

J i];unction

— wij.Jis]yrvival (5)

166

ti .
h{unc ion _ w’/i‘h?urvwal (6)

17 Analogous to the generalized modified potential (Eq. 2), w;; and w, are binary weight
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18 matrices (w, € {O, 1 }) and is calculated by maximizing the correlation between the predicted
10 values of the protein mutant’s function (}A/tmm) and the actual experimental values in the
170 training set (Y") (Eq. 4). The binary weights are used in the algorithm due to training
i data scarcity. The weight matrices for the couplings parameter J;; contains n * 21 *21
12 number of elements, where n is the length of the protein. Likewise, the weight vector for the
173 fields parameter h; contains n * 21 number of elements. The total elements required to train
174 the model is much more than the available experimental data points. Therefore, we decided
175 to constrain the parameter state space using a binary mask. A similar use of the binary
176 mask has recently been implemented for image recognition alogorithm.*® Furthermore, we
177 eliminate potentials which do not contribute to the enhancement in predicting the Ymewtrain,

17s In this way, we eliminate the effects of other functions and focus on the function of interest.

1 Unsupervised transfer between proteins.

10 Now, we want to expand the knowledge gained from the supervised transfer to the target
181 domain, where the training data is not available for the new task. Therefore, we train a

122 MRF model on the base task in the target domain (M2 ) and a MRF model on the new

target

183 task in the source domain (M7 ). In our generalization example, using the learned model

18 parameter, w., from Equation 3, we define a MRF model for the new task in the target

s domain (M7 ;). This model’s potential 077 ., is calculated using Equation 7.

new . base
c,target — 1UC'gc¢arget (7)
186 Since the source and target domains are similar, we assume the corresponding potentials

157 have the same effects on predicting the new task. Therefore, we use the same learned weights

base

s W to switch the potentials in M7, and obtain M. while using the same value of 62,

target

180 for potentials that remain active in the MRF.

190 Here, we extended the supervised and unsupervised TLmutation algorithms to a more
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101 generic MRF model. The algorithm transfers knowledge from a well trained MRF model of
102 one task, to other similar tasks when either limited or no training data is available. The
103 proposed supervised and unsupervised transfer algorithms presented can be generalized and
104 applied to other MRF models. For most proteins, we do not have sufficient training data to
105 use a supervised transfer learning algorithm as obtaining mutation data is experimentally
106 challenging and expensive. %% We want to use the available experimental data of a protein
107 for predicting the mutation effects in other homologous proteins. We expand the knowledge
108 gained from the supervised TLmutation to the target protein, where no training data is
100 available.

200 Assume the EVmutation model for target protein and the TLmutation model for source
201 protein are constructed. Using the parameters of the TLmutation, w and w’, from Equation
202 5, we define a new Potts model for predicting the effects of mutations in the target protein

203 on its function. The new model’s potentials are calculated using Equation 8 and 9.

func. target target

h{unc.,target _ w;.hﬁarget (9)

204 where w;; and w] are the binary masks from the TLmutation model of the source protein.

205 Jf;"gd and h'*"9" are the potentials from the EVmutation model of the target protein, and

func. target func. target
Ji; and h;

206 are the modified potentials for TLmutation model of the tar-
207 get protein. Here, the source and target proteins should be homologs, as the molecular
20 mechanisms leading to a particular function are expected to be conserved among homologus
200 proteins. The residue-residue interactions involved in the function of the source protein also
210 are anticipated to be conserved in the target protein. Similarly, for the unsupervised trans-
aun fer, we eliminate the J;;’s in the target protein that did not contribute to the function in the

212 source protein. However, we used the target’s EVmutation model as the preliminary basis

10
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213 and applied the binary masks from source to its potentials.

( Target Protein

A
Assessment of supervised TLMutation
predictions on 13 protein datasets

\
) |
I : |
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; n 7
EV Model [ B EvModel W T s
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Figure 2: (A) Schematic of the proposed transfer learning algorithms on an example of pre-
dicting protein expression. Knowledge is transferred from the source protein where training
data is available to the target protein. (B) Completeness of 17 studied mutagenesis datasets
is shown. Datasets shown in light teal have less than 35% of all possible variants in the
mutagenized region. (C) Effects of mutations computed using EVmutation and supervised
TLmutation. These predictions are compared with experimental measurements for 13 pro-
teins are shown for the test set. The agreement is measured by Spearman’s rank correlation
coefficient p. Asterisks indicate statistically significant (*, p < 0.05; ** p < 0.01; *** p <
0.001, n.s., not significant). Error bars are calculated from 5-fold cross-validation. Outliers
are represented as red crosses.

11
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2 Results

xs Case study 1: Filling gaps in experimental datasets

216 In this first case study, we want to evaluate the performance of TLmutation in refining and
217 filling gaps in the deep mutagenesis datasets. It is common to have incomplete mutage-
218 nesis datasets, where readings of certain variants were unobtainable due to experiemntal
210 difficulties (e.g. expression or purification of protein, poor sequencing). Here, we apply the
20 TLmutation algorithm to predict missing variants of 17 previously published, large-scale mu-
221 tagensises datasets (see SI Table S1 for more details). These datasets include quantitative
22 measurements of variant effects for various protein functions. For each dataset, the available
23 data were randomly divided into test and training sets. 5-fold cross-validation was used to
224 assess the robustness of the supervised TLmutation models. Our initial analysis showed TL-
25 mutation does not significantly improve EVmutation models for incomplete datasets which
26 have less than 6 mutations per site of the mutagenized region. This leads us to enforce an
227 additional constraint on the datasets to include experimental values for at least ~ 35% of all
228 possible variants of the mutagenized region (Figure S1). As shown in Figure 2 B, 12 out of 17
2o datasets contain an adequate numbers of experimental datapoints. In these datasets, super-
230 vised TLmutation improved the correlation coefficient with the actual experimental values
2n for the test set in 12 of the 13 proteins (p-value < 0.05) (Figure 2 C). Among these, the
232 largest improvements are observed in systems with a lower correlation between EVmutation

233 and experiments.
23¢ - Which mutations should be experimentally tested to build better predictors of
235 variant function?

236 As there are more than thousands of possible sites on a protein that can be subjected to
237 mutagensis, it is beneficial to understand which datapoints may provide the most gener-

238 alizable information about other variants. Here, we address this question by training the

12
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230 TLmutation model using different sampling methods.

240 Simple random sampling is the most common method as it is efficient and relatively easy
21 to implement. In this approach, samples are randomly selected with a uniform distribution.
22 'This sampling method was used in the previous section and showed a significant improve-
2e3 ment in the performance of the model in all datasets (Figure 2 C, training scores are shown
2.0 in Figure S2). However, mutagenesis datasets are inherently not uniform. More sophisti-
a5 cated sampling methods will be more suitable for these types of naturally ordered datasets.
26 Here, we tested two systematic sampling approaches on the same 13 protein datasets. In the
247 first approach, we divided the datasets based on sequence or positions of the proteins. The
25 TLmutation model was trained on all available mutations for 80% of the sequence sites and
220 tested on the remaining data (as shown in Figure 3 A). As before, 5-fold cross-validation was
250 used to assess the sampling method. This approach dramatically decreased the performance
251 of the model. In most of the systems, no improvement was observed as compared to EV-
2 mutation (Figure 3 B). This observation suggests that the effects of mutations on sites far
53 away from each other may not correlate with the mutations in other sites. This leads us to
s the second sampling approach, where the test/training splitting occurred for each position,
s meaning that 80% of available experiments for mutations on each sequence site was labeled
256 as training, and 20% as test (as shown in Figure 3 C). Using this sampling, TLmutation
27 outperformed EVmutation in 12 of the 13 systems (Figure 3 D). However, the improvement

258 18 still comparable with random sampling.

=0 Case study 2: Predicting the effects of multiple point mutations from

w0 single point mutation experiments.

21 While a single point mutation may not affect the protein’s function, it is possible for mul-
262 tiple mutations to cooperatively affect its function. Datasets of single point mutations have
263 become increasing available over the past decade. However, mutational maps with multiple

264 point mutations remains scare and are difficult to obtain experimentally. From an experi-

13
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Figure 3: (A) A demonstration of train/test split based on sequence positions is shown.
Purple points are considered in the test set and teal points in the training set. (B) The
correlation between computed effects of mutations and experimental measurements for 13
proteins are shown for 5-fold cross validation and site based train/test split. Outliers shown
as red crosses. TLmutation using site based train/test split, does not significantly improve
the correlation coefficients. Asterisks indicate statistically significant (*, p < 0.05; ** p
< 0.01; *** p < 0.001, n.s., not significant). (C) A demonstration of train/test split
based on amino acid substitutions is shown. (D) The correlation between computed effects
of mutations and experimental measurements for 12 proteins are shown for 5-fold cross
validation and substituted amino acid based train/test split. TLmutation improves the
correlation coefficients in 12 of the 13 datasets. Asterisks indicate statistically significant (*,
p < 0.05; % p < 0.01; *** p < 0.001, n.s., not significant).
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mental perspective, the number of possible mutants increases exponentially with the increase
in number of mutated residues, thus conducting a thorough mutagenesis analysis of large
proteins is challenging and expensive. Here, we use the supervised TLmutation algorithm
to train on the available single point mutations and predict the effects of multiple point mu-
tations. We tested the performance of the algorithm on 4 previously published mutagenesis
datasets. These datasets have been employed in the literature to evaluate the performance
of EVmutation.? These datasets contain single and double point mutations (more detail is
provided in SI table S2). In these systems, the correlation coefficient was increased for both
test and training sets as compared to EVmutation (p-value < 0.05) (Figure 4). Our results
show that the incorporation of experimental mutant data combined with couplings derived
from the model allows accurate predictions of the effects of higher order mutations. This use
of deep mutational data and couplings has also been leveraged to predict three-dimensional

structures of proteins. 4647

1.0
HE EVmutation
0.9 Supervised TLmutation

0.8 I

_ 071 I =
Q
_2 0.6 1 *
©
£ 0.5
©
2 0.4
0.3
0.2-

0.1
0.0-

FYN PAPB

(RRM domain)

GB1 domain Trypsin

Figure 4: The agreement between predicted effects of double point mutations with exper-
imental measurements is shown for the test datasets. The supervised TLmutation models
were first trained on limited available single point mutation data and used to predict double
mutation effects. Incorporation of experimental data significantly enhances prediction of
double mutants. Asterisks indicate statistically significant (*, p < 0.05; *** p < 0.001).
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s Case study 3: Predicting the effects of mutations using available

2o experimental data on a homologous protein.

280 Mutagensis datasets provide an opportunity to utilize this data-rich regime and investigate
21 the transferability of mutational effects among homologous proteins. The effectiveness of
22 our transfer algorithms was tested for two chemokine receptors, CXCR4 and CCR5 (Fig-
253 ure H). Chemokine receptors belong to the class of G-protein coupled receptors (GPCRs)
8¢ that transmit cellular signals across the cell membrane on the binding of signaling molecules
25 known as chemokines on the extracellular side.*® These receptors regulate the movement of
286 immune cells in the body, most notably white blood cells during inflammation.*® Chemokine
267 Teceptors play a vital role in HIV-1 infection and progression,® and hence are considered
g8 as major drug targets for treating HIV-1, along with other autoimmune disorders and can-
280 cer.”b92 Specifically, both CXCR4 and CCR5 have been identified as co-receptors for HIV-1
200 entry into immune cells. Numerous efforts have been made to understand HIV pathology
200 and to develop new therapeutic approaches. Clinical studies have associated a lack or low
202 expression of CCR5 to provide a natural resistance of HIV infection.?® Mutational analysis,
203 for example the deep mutational scanning of these receptors could provide an invaluable
204 insights into the function of these receptors albiet at a high experimental cost. !> There are
25 more than 20 chemokine receptors in the human body,?* of which only 2 currently have a
206 mostly complete mutational dataset.?® Evaluating the TLmutation algorithms on these two
207 datasets would allow us to uncover the sequence-function relationship for other chemokine
208 receptors.

209 In this case study, we utilized available single point mutation datasets for two proteins,
300 CXCR4 and CCRb5, and two different experiments, expression level and bimolecular fluores-
s cence complementation (BiFC) assay.?® Sequence identity and similarity between CXCR4
52 and CCR)H are ~ 30% and 50%, respectively (Figure 5). The proposed supervised and
303 unsupervised TLmutation algorithms were implemented and tested for one case of super-

304 vised transfer and four different cases of unsupervised transfer. The EVmutation models for
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305 CCRbH and CXCR4 were built using 95619 and 94461 natural sequences using the algorithm

s06  as explained in the literature to compare its performance with the TLmutation.?°
ol
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Figure 5: (A) Sequence alignments of chemokine receptors CXCR4 and CCR5. Identical
residues colored in red boxes, where similar residues are colored in red letters. Corresponding
secondary structure is placed above the aligned sequence. The amino acid sequences of the
two receptors share a 30% sequence identity and 50% sequence similarity. Crystal structures,
depicted in cartoon and surface representation, of CXCR4 (PDB: 4RWS) (B) and CCR5
(PDB: 4MBS) (C). (D) Cartoon representation of CXCR4 superimposed on CCR5 shows
the high structural similarity between these receptors.

307 We want to learn a Potts model that can predict the effects of mutations on expression
308 levels of CXCR4 given a Potts model trained on natural sequences related to CXCR4 and its
300 expression levels for 6994 single point CXCR4 mutants. Using the supervised TLmutation
s0 algorithm, a 5-fold cross-validation was performed for the available experimental data on

s expression levels of CXCR4. The Spearman coefficients for the training data increased from
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Table 1: Unsupervised transfer learning between homologous chemokine receptors. Higher
Spearman coefficient indicates better match with the actual data. Correlations are an average
of 5 replicates obtained by using 90% of the source domain, randomly selected, as the training
set followed by prediction of the effect of mutations in the target domain.

Source New Task EV p  Supervised TL Target EV p  Unsupervised TL
Protein (Experiment) (for Source) p (for Source) Protein (for Target) p (for Target)

CCRb) BiFC 0.134£0.006 0.353+£0.003 CXCR4  0.256 0.269£0.003
CXCR4 BiFC 0.257£0.005 0.457£0.005 CCRb 0.135 0.146+0.001
CCR5  Expression 0.327+0.002 0.518+0.004 CXCR4  0.174 0.207+0.001
CXCR4 Expression 0.1754+0.004 0.397+0.003 CCR5 0.326 0.367+0.002

sz 0.17420.006 to 0.403£0.005 and the coefficients for the test data increased from 0.17440.023
sz t0 0.279 £ 0.041 as it is shown in Figure 6 C. For all of the 5 folds, the correlation between
s1a predicted ranks and actual experiment is higher compared to EV model. For fold 3, the
sis projection of the combined error for each residue is shown on the 3D structure of CXCR4
a6 in Figure 6 A and B. The overall error is considerably lower for the proposed algorithm as
si7 - compared to EVmutation model.2°

318 The effectiveness of the unsupervised TLmutation algorithm in predicting expression
a0 levels and BiFC was evaluated on four different cases: (1) transfer from CXCR4 to CCR5
s20 expression, (2) CXCR4 to CCR5 BiFC, (3) CCR5 to CXCR4 expression, and (4) CCR5 to
21 CXCR4 BiFC, as shown in Table 1 and Figure 6 D. Spearman coefficients in the third and
32 fourth columns in Table 1 illustrate the improved performance of the supervised transfer on
323 the training data compared to the EV model and Envision. The sixth and seventh columns
324 indicate the Spearman coefficients of test data for EVmutation model and using the unsu-
35 pervised TL, respectively. In all the cases, we observed that the proposed approach shows
26 improvement over the current genomic prediction method (EVmutation model). For the
227 first case (the first row of Table 1), where the supervised transfer is performed on expression
38 levels of CXCR4, and the unsupervised transfer is to CCR5, we project the prediction errors
229 of each residue onto the crystal structure (Figure 6 E and F). Likewise, the prediction errors

330 are lower for the proposed unsupervised transfer, as compared to the EVmutation model.
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Figure 6: Comparison of the CXCR4 expression levels predicted from the EVmutation (A)
and supervised TLmutation (B). Color indicates relative error with respect to experimental
value, ranging from low (white) to high (red). Residues of low-confidence predictions (<20
residues) are colored in grey. (C) Test Spearman coefficients in 5-fold cross-validation of
CXCR4 on predicting the expression levels. Correlation with experimental values is shown
on the Y axis, which measures the performance of the predictive model. Higher Spearman co-
efficient indicates better match with the data. (D) Performance of unsupervised TLmutation
in regards to predicting different experiments for the target protein is compared with EVmu-
tation and Envision. For these cases, training data sets are unavailable. The knowledge is
transferred to the target in order to predict mutagenesis effects. Error in prediction of CCR5
expression as compared to experimental data using (E) EVmutation and (F) unsupervised
TLmutation algorithm.
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= 1D1scussion

32 In this work, we aimed to extract new predictive models of the biological function of proteins
;33 from predictive models trained on the evolutionary data and extending it to a new protein
;3¢ via unsupervised transfer learning. We showed that these techniques are efficient for multiple
s case studies, and compared the results with successful variant predictors EVmutation?® and
s3s  Envision.'® Another aspect of the work was focused toward understanding which subsets of
;37 data points yielded the most informative predictions. We showed, through our algorithm,
s that having few single point mutations on each position was sufficient to estimate the effects
330 of other point mutations in the same sites. As these experiments are challenging and the data
sa0 points may not contain uniform information, one natural followup of our work is to extend
sa1 the algorithm to an active learning approach. In this scheme, we can suggest which mutations
sz should be tested over few rounds and adaptively strengthen the model. Additionally, as these
;a3 datasets are susceptible to noise, one approach is to implement the algorithm to enhance
sas  low-confidence predictions. By obtaining training data on the parts of the dataset which
a5 provide maximum information gained, we can reduce the number of experiments and train
sss  more powerful models with limited amounts of data.

347 One of the questions that remains unanswered in this work, is how to define the degree
ag  of transferability between domains and tasks. In this application, we compared the proteins
39 based on their sequence and structural similarities. However as we do not have enough
30 datasets to check the transferability between multiple proteins, it is challenging to define
351 criterion that would allow successful transfer of knowledge between similar proteins. The
352 example in this paper explored the transferability between CXCR4 and CCR5 proteins with
553~ 30% sequence identity. When decoupling the survival parameters that do not contribute
354 t0 a particular function of the protein, we assume that the experimental assay from deep
35 mutagenesis is a measure of this function. However, this may not always be the case and may
16 result in low correlations or differences in correlations between experiments. Additionally,

357 while the functional residues between homologous protein may be similar, we do not account
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sss  for the differences in the mechanism of these functions that are not represented in the model.
;50 For example, Sultan et al.?® have shown that the a neural network model trained for a protein
360 using molecular dynamics trajectory data can efficiently be transferred to perform enhanced
1 conformational sampling on a related mutant protein. However, Moffett and Shukla have
32 shown that the transferrability of functional dynamics between related proteins is not always
33 high and it depends on the differences between the functional free energy landscapes of
e« protein and its mutants.®” Therefore, while we expect systems of high sequence identity or
365 structural similarity to be more transferable, we cannot validate this claim due to the lack
36 Of mutational datasets of homologous proteins.

367 Overall, we anticipate supervised TLmutation will be useful in predicting the effects
ses  of multiple point mutations and filling out gaps in mutagenesis datasets. Unsupervised
30 TLmutation will help to expand the knowledge to predict the effects of the mutation in
sro - many homologous proteins. We expect unsupervised TLmutation to continue to improve as
sn more datasets of homologous proteins become available. Furthermore, the proposed transfer
sz learning algorithms were shown to be generalizable to all MRF models, which could be

sz applicable to other disciplines.
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