

TLmutation: predicting the effects of mutations using transfer learning.

Zahra Shamsi,[†] Matthew Chan,[†] and Diwakar Shukla^{*,†,‡,¶,§,||,⊥}

[†]*Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801*

[‡]*Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801*

[¶]*Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801*

[§]*National Center for Supercomputing Applications, University of Illinois, Urbana, IL, 61801*

^{||}*Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801*

[⊥]*NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801*

E-mail: diwakar@illinois.edu

2 **Abstract**

3 A reoccurring challenge in bioinformatics is predicting the phenotypic consequence
4 of amino acid variation in proteins. With the recent advancements in sequencing tech-
5 niques, sufficient genomic data has become available to train models that predict the
6 evolutionary statistical energies, but there is still inadequate experimental data to di-
7 rectly predict functional effects. One approach to overcome this data scarcity is to
8 apply transfer learning and train more models with available datasets. In this study,

9 we propose a set of transfer learning algorithms we call TLmutation, which implements
10 a supervised transfer learning algorithm that transfers knowledge from survival data of
11 a protein to a particular function of that protein. This is followed by an unsupervised
12 transfer learning algorithm that extends the knowledge to a homologous protein. We
13 explore the application of our algorithms in three cases. First, we test the supervised
14 transfer on 17 previously published deep mutagenesis datasets to complete and refine
15 missing datapoints. We further investigate these datasets to identify which mutations
16 build better predictors of variant functions. In the second case, we apply the algorithm
17 to predict higher-order mutations solely from single point mutagenesis data. Finally,
18 we perform the unsupervised transfer learning algorithm to predict mutational effects
19 of homologous proteins from experimental datasets. These algorithms are generalized
20 to transfer knowledge between Markov random field models. We show the benefit of
21 our transfer learning algorithms to utilize informative deep mutational data and pro-
22 vide new insights into protein variant functions. As these algorithms are generalized to
23 transfer knowledge between Markov random field models, we expect these algorithms
24 to be applicable to other disciplines.

25 Introduction

26 Proteins are intricate molecular machines that regulate all biological processes. The func-
27 tion of a particular protein is intrinsically linked to its structure, which governs its stability
28 and conformational dynamics.^{1,2} Consequently, mutations in protein sequences, in which
29 one amino acid is replaced by another amino acid, can affect a protein's structure, stabil-
30 ity, and inevitably its function. While some mutations may have little to no effect on a
31 protein's function, others have larger implications for disease and antibiotic resistance.^{3,4}
32 Recent advancements in large-scale genomic sequencing have provided tools and resources
33 for both consumers and clinicians to identify disease-potential mutations in one's proteome
34 at an affordable cost. However, due this large influx of genomic data, a recurring challenge

35 is predicting the phenotypic consequence in proteins due to amino acid variations.^{5,6}

36 Several workflows, both experimentally and computationally, have been developed to
37 identify, predict, and model the effects of mutations.⁷⁻¹⁰ Engineering approaches, such as
38 deep mutational scanning, provide a unique glimpse into the sequence-function relationship
39 of proteins by surveying all single-point mutations in the sequence and assessing their altered
40 function.¹¹⁻¹⁴ These methods provide large quantitative datasets of mutational effects for a
41 particular protein. Alternatively, statistical models have been used as standalone approaches
42 or to compliment biophysical experiments. PolyPhen2¹⁵ and SIFT¹⁶ are examples of com-
43 mon frameworks that use multiple sequence and structural-based alignments to characterize
44 variants. Other models, such as SNAP2,¹⁷ CADD,¹⁸ and Envision,¹⁹ employ machine learn-
45 ing algorithms to classify and predict mutations and are popular due to their robustness
46 with large datasets. One successful approach employed for predicting mutational effects is
47 EVmutation which uses evolutionary sequence conservation.²⁰ In addition to applying evo-
48 lutionary conservation to predict the effect of mutations, EVmutation also considers genetic
49 interactions between mutations and the sequence background. By accounting for the inter-
50 actions between all residue pairs, the model predicts the effects of mutations accurately as
51 compared to other predictors.²⁰ Additionally, this method is shown to be able to capture the
52 functionally relevant protein conformations and their dynamics.²¹⁻²⁴ EVmutation utilizes a
53 graph based Markov random field known as the Potts model which is trained on natural
54 sequences.²⁰ This means, for a given sequence, the algorithm searches through the UniProt
55 database,²⁵ locates all natural sequences in its family, and uses these sequences as data to
56 train the Potts model. However, these unsupervised probabilistic models do not directly
57 predict the effects of mutations on the functionality of the protein; rather, they predict if
58 the mutant species are fit to survive, which may not always directly correlate to a specific
59 function.²⁰

60 As genomic sequencing and mutational libraries become readily available, it represents
61 an opportunity to utilize this data-rich regime to enhance predictors of protein mutations.

62 However, training Potts models on specific experimental data is usually not feasible. While
63 mutational libraries of various proteins have been completed due to advancements in deep
64 mutational scanning and directed evolution methods,^{26–28} these datasets are inadequate for
65 training, and we must rely on alternative methods to obtain insights and predictions. In a
66 traditional machine learning approach, different task will be individually learned to build
67 a model. However, in many real-world applications, collecting training data and rebuilding
68 models may be computationally expensive.²⁹ These difficulties are akin to deep mutational
69 scanning and other biophysical approaches. Many experimental methods in characterizing
70 protein variants are susceptible to noise or missing datapoints.⁹ Moreover, it is difficult to
71 infer information about other proteins from a single deep mutational scan.

72 One approach to overcome this data scarcity is to apply transfer learning algorithms in
73 which we apply knowledge from one task to a different, yet related task.²⁹ Transfer learning
74 has been used to tackle various challenges in molecular biology and bioinformatics, including
75 protein function prediction,^{30,31} and protein-protein interactions.^{32,33} Singh *et al.* developed
76 a platform to predict RNA secondary structure from models initially trained on a
77 high-resolution RNA structure database.³⁴ Due to insufficient data on residue contacts in
78 membrane proteins, Wang *et al.* transferred convolutional neural network parameters of non-
79 membrane protein contacts to enhance structure prediction of membrane proteins.³⁵ While
80 the motivation of employing machine learning is to enhance predictions in low data regime,
81 transfer learning can take advantage of the structural and functional similarities between
82 homologous proteins.

83 Here, we propose an algorithm, TLmutation, which is an adaptation of the successful
84 variant effect predictor EVmutation, that utilizes deep mutational datasets to enhance pre-
85 diction of variant effects in proteins. We implement the algorithm in two fashions. First,
86 TLmutation transfers knowledge from a model, trained on natural sequences and deep muta-
87 tional data, to a new protein function for the same protein. We call this algorithm supervised
88 TLmutation. This is followed by an unsupervised transfer learning algorithm that expands

89 the knowledge to a related protein and is referred to as unsupervised TLmutation. We con-
90 ducted multiple experiments using the proposed transfer learning algorithms to evaluate the
91 practical efficiency in predicting the effects of mutations of multiple proteins with differ-
92 ent types of training and test datasets. In the first case, we explore the application of the
93 proposed algorithm on 17 previously published mutagenesis datasets to complete missing
94 datapoints. We further investigate different sampling approaches to delineate which muta-
95 tions provide more accurate predictors of variant functions. In the second case, we apply
96 our algorithm to predict higher order mutations (i.e. double mutations, triple mutations)
97 solely from single point mutatgensis data. Finally, we implement the unsupervised transfer
98 learning algorithm to predict mutational effects of homologous proteins from experimental
99 datasets. Our results show that the incorporation of deep mutational dataset not only en-
100 hances the prediction of variant effects, but also can be transferable to provide new insights
101 where experimental data may be limited.

102 Methods

103 Potts model for protein sequences

104 A Markov random field (MRF) is an undirected, probabilistic graphical model that represents
105 statistical dependencies among a set of random variables, $\sigma = (\sigma_1, \dots, \sigma_N)$, where $\forall \sigma_i \in$
106 $\{1, 2, \dots, l\}$. MRF models have widely been used to tackle large datasets in different disciplines
107 such as genomic biology,³⁶ physics,³⁷ natural language processing,³⁸ and computer vision.³⁹
108 For this study, let $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_N)$ represent the amino acid sequence of a protein with
109 length N . Each σ_i takes on values in $\{1, 2, \dots, 21\}$ (one state for each of the 20 naturally
110 occurring amino acids and one additional state to represent a gap). The probability of
111 $\sigma_1, \dots, \sigma_N$ is then given by:

$$P(\sigma_1, \dots, \sigma_N) = \frac{1}{Z} \exp\left(\sum_{i=1}^N h_i(\sigma_i) + \sum_{i=1}^{N-1} \sum_{j=i+1}^N J_{ij}(\sigma_i, \sigma_j)\right) \quad (1)$$

112 where h_i is the potentials of site i , or fields, J_{ij} is the potentials between residue pair
113 constraints, or couplings of sites i and j ,²⁰ and Z is the partition function.⁴⁰ This form of
114 the MRF is commonly known as the Potts model or Potts Hamiltonian models.⁴¹

115 Assume we have two similar domains, source and target domain, in which we have a base
116 and a new task (Figure 1). The new task must be a subset of the base task. This means
117 the base task has to be the result of multiple smaller tasks, of which the new task is one of
118 them. We define M_d^t be a MRF M of the task t in the domain d . We initially are provided
119 two MRF models for the source domain and the target domain, both trained on the base
120 task, or M_{source}^{base} and M_{target}^{base} , respectively. Our aim is to obtain MRF models on the new
121 task for both source and target domains (M_{source}^{new} and M_{target}^{new}). The training data for the
122 source domain contains a set of n data points for the new task, $X_{source}^{new,train} \in \mathbb{R}^{d_x}$, and its
123 corresponding labels or outputs, $Y_{source}^{new,train} \in \mathbb{R}^{d_x}$. Additionally, we have test datasets for
124 both the source and the target domain ($X_{source}^{new,test}$ and $X_{target}^{new,test}$, with labels as $Y_{source}^{new,test}$ and
125 $Y_{target}^{new,test}$, respectively).

126 The first goal is to utilize the given training data and the MRF model to find a predictive
127 model for the new task in the source domain (M_{source}^{new}). Then, we extend the knowledge from
128 this supervised transfer learning step to learn a model in the target domain (M_{target}^{new}) using
129 an unsupervised transfer learning algorithm. To evaluate the performance of the algorithm,
130 the predictions (\hat{Y}) are ranked and compared to the actual labels (Y) for calculation of
131 the Spearman rank correlation coefficient (ρ).⁴² For this study, ρ accesses the association
132 between two ranked variables, the predicted effect of a point mutation and the experimental
133 effect. The value of ρ ranges from -1 to +1, where +1 indicates one variable is a perfect,
134 monotonically increasing function of the other variable and -1 as a perfect, monotonically

135 decreasing relationship.

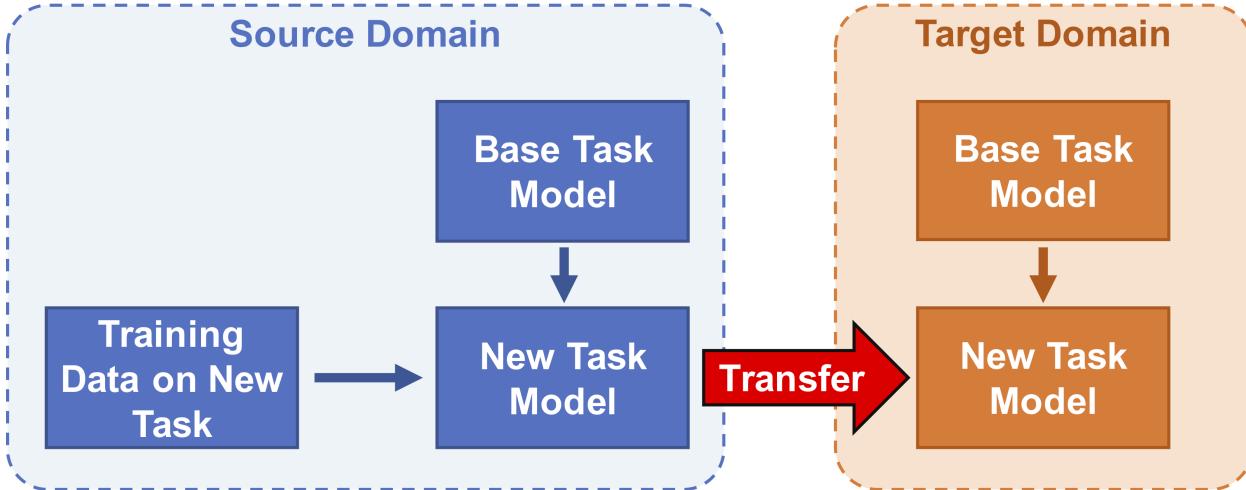


Figure 1: Proposed transfer learning algorithms for MRF models. In each source and target domain, the new task is a subset of the base task. Knowledge is then transferred from the source domain, where training data, is available to the target domain.

136 **Supervised transfer from the evolutionary statistical energy to a
137 functional assay.**

138 We want to modify an existing predictive model that is trained on the base task to be able
139 to predict a new task. In the supervised transfer portion, all the transfer is conducted within
140 a same domain, the source domain, and therefore the subscripts that determine the domains
141 are dropped. First, we train a MRF model on the base task (M^{base}) and calculate the values
142 for the potentials of θ_c^{base} of all residues c using available methods in the literature.²⁰ Then,
143 we introduce a MRF model that can predict the new task as the following:

$$P(\sigma) = \frac{1}{Z} \exp\left(\sum_{c \in C} \theta_c^{new}\right) \quad (2)$$

144 where

$$\theta_c^{new} = w_c \cdot \theta_c^{base} \quad (3)$$

145 w_c is a binary weight matrix ($w \in \{0, 1\}$), which is calculated by maximizing the correlation

146 between the predicted values of labels ($\hat{Y}^{new,train}$) and the actual labels ($Y^{new,train}$) as

$$\max_w |\rho(rg_{\hat{Y}^{new,train}}, rg_{Y^{new,train}})| \quad (4)$$

147 with $rg_{\hat{Y}^{new,train}}$ and $rg_{Y^{new,train}}$ are ranks of $\hat{Y}^{new,train}$ and $Y^{new,train}$, respectively. ρ is the
148 Spearman's rank correlation coefficient. The maximization algorithm is further explained in
149 the Supporting Information.

150 In this particular study, we want to learn a Potts model that can predict the effect of
151 mutations on a particular protein function. We are given a Potts model trained on natural
152 sequences (EVmutation model) and experimental data of the effects of point mutations on
153 a protein's function. In the Potts model of a protein sequence (Eq. 1), each J_{ij} parameter
154 represents the chemical or physical interactions between the corresponding residues i and
155 j .²⁰ Since the model is trained on survival data, J_{ij} 's with large values suggest critical
156 interactions necessary for survival. Such interactions may have roles including, but not
157 limited to, expression, folding, thermal stability, or conformational dynamics. Assuming our
158 function of interest is one of these essential survival functions, we want to decouple the J_{ij}
159 parameters from the overall survival by nullifying J_{ij} 's that do not contribute to the function
160 and retaining the ones that are linked to this function. This forms the basis of the proposed
161 supervised transfer learning algorithm, supervised TLmutation.

162 In the supervised transfer learning section, all the transfer occurs within the same protein
163 (referred to as source protein). First, we train a Potts model on survival (e.g. EVmutation),
164 and calculate the values for the potentials of J_{ij} and h_i .²⁰ Then, we introduce a new Potts
165 model that can predict the function using the following modified potentials:

$$J_{ij}^{function} = w_{ij} \cdot J_{ij}^{survival} \quad (5)$$

166

$$h_i^{function} = w'_i \cdot h_i^{survival} \quad (6)$$

167 Analogous to the generalized modified potential (Eq. 2), $w_{i,j}$ and w'_i are binary weight

168 matrices ($w_c \in \{0, 1\}$) and is calculated by maximizing the correlation between the predicted
169 values of the protein mutant's function (\hat{Y}^{train}) and the actual experimental values in the
170 training set (Y^{train}) (Eq. 4). The binary weights are used in the algorithm due to training
171 data scarcity. The weight matrices for the couplings parameter J_{ij} contains $n * 21 * 21$
172 number of elements, where n is the length of the protein. Likewise, the weight vector for the
173 fields parameter h_i contains $n * 21$ number of elements. The total elements required to train
174 the model is much more than the available experimental data points. Therefore, we decided
175 to constrain the parameter state space using a binary mask. A similar use of the binary
176 mask has recently been implemented for image recognition alogorithm.⁴³ Furthermore, we
177 eliminate potentials which do not contribute to the enhancement in predicting the $Y^{new,train}$.
178 In this way, we eliminate the effects of other functions and focus on the function of interest.

179 Unsupervised transfer between proteins.

180 Now, we want to expand the knowledge gained from the supervised transfer to the target
181 domain, where the training data is not available for the new task. Therefore, we train a
182 MRF model on the base task in the target domain (M_{target}^{base}) and a MRF model on the new
183 task in the source domain (M_{source}^{new}). In our generalization example, using the learned model
184 parameter, w_c , from Equation 3, we define a MRF model for the new task in the target
185 domain (M_{target}^{new}). This model's potential $\theta_{c,target}^{new}$ is calculated using Equation 7.

$$\theta_{c,target}^{new} = w_c \cdot \theta_{c,target}^{base} \quad (7)$$

186 Since the source and target domains are similar, we assume the corresponding potentials
187 have the same effects on predicting the new task. Therefore, we use the same learned weights
188 w to switch the potentials in M_{target}^{base} and obtain M_{target}^{new} while using the same value of $\theta_{c,target}^{base}$
189 for potentials that remain active in the MRF.

190 Here, we extended the supervised and unsupervised TLmutation algorithms to a more

191 generic MRF model. The algorithm transfers knowledge from a well trained MRF model of
192 one task, to other similar tasks when either limited or no training data is available. The
193 proposed supervised and unsupervised transfer algorithms presented can be generalized and
194 applied to other MRF models. For most proteins, we do not have sufficient training data to
195 use a supervised transfer learning algorithm as obtaining mutation data is experimentally
196 challenging and expensive.^{44,45} We want to use the available experimental data of a protein
197 for predicting the mutation effects in other homologous proteins. We expand the knowledge
198 gained from the supervised TLmutation to the target protein, where no training data is
199 available.

200 Assume the EVmutation model for target protein and the TLmutation model for source
201 protein are constructed. Using the parameters of the TLmutation, w and w' , from Equation
202 5, we define a new Potts model for predicting the effects of mutations in the target protein
203 on its function. The new model's potentials are calculated using Equation 8 and 9.

$$J_{ij}^{func.,target} = w_{ij} \cdot J_{ij}^{target} \quad (8)$$

$$h_i^{func.,target} = w'_i \cdot h_i^{target} \quad (9)$$

204 where w_{ij} and w'_i are the binary masks from the TLmutation model of the source protein.
205 J_{ij}^{target} and h_i^{target} are the potentials from the EVmutation model of the target protein, and
206 $J_{ij}^{func.,target}$ and $h_i^{func.,target}$ are the modified potentials for TLmutation model of the tar-
207 get protein. Here, the source and target proteins should be homologs, as the molecular
208 mechanisms leading to a particular function are expected to be conserved among homologous
209 proteins. The residue-residue interactions involved in the function of the source protein also
210 are anticipated to be conserved in the target protein. Similarly, for the unsupervised trans-
211 fer, we eliminate the J_{ij} 's in the target protein that did not contribute to the function in the
212 source protein. However, we used the target's EVmutation model as the preliminary basis

213 and applied the binary masks from source to its potentials.

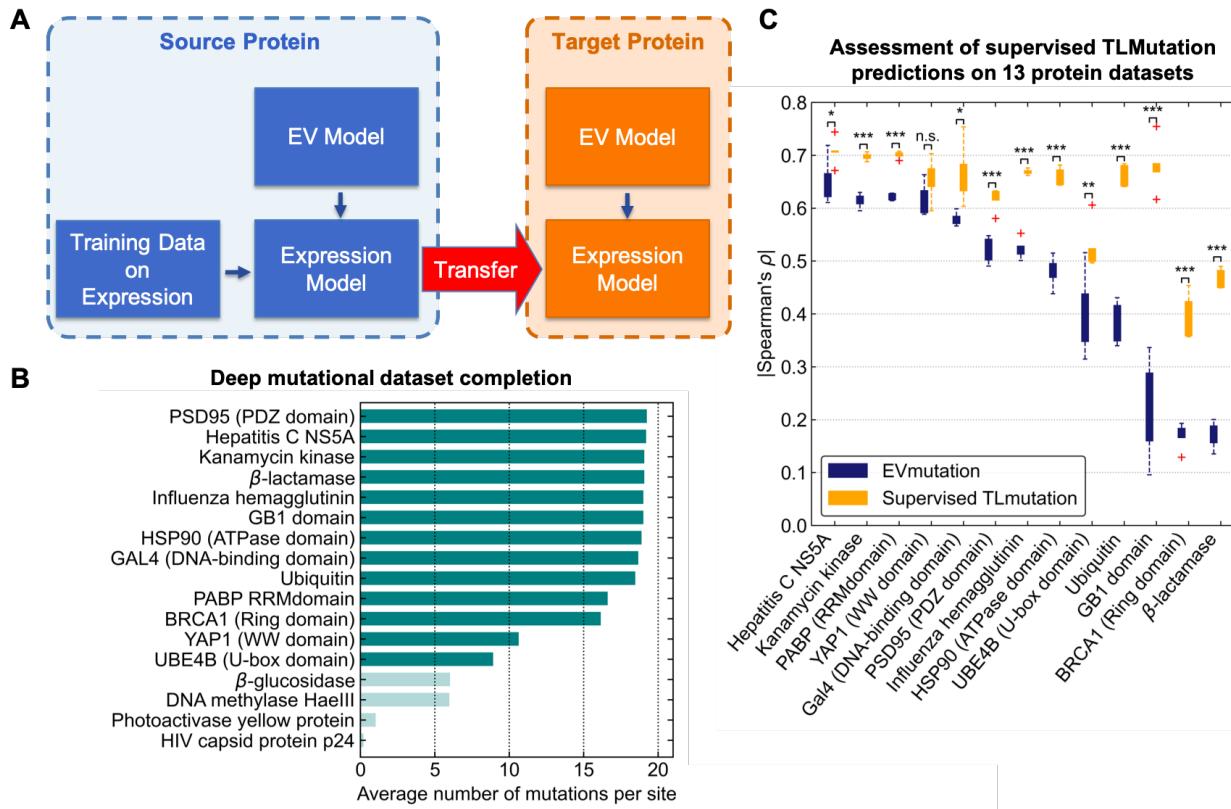


Figure 2: (A) Schematic of the proposed transfer learning algorithms on an example of predicting protein expression. Knowledge is transferred from the source protein where training data is available to the target protein. (B) Completeness of 17 studied mutagenesis datasets is shown. Datasets shown in light teal have less than 35% of all possible variants in the mutagenized region. (C) Effects of mutations computed using EVmutation and supervised TLmutation. These predictions are compared with experimental measurements for 13 proteins are shown for the test set. The agreement is measured by Spearman's rank correlation coefficient ρ . Asterisks indicate statistically significant (*, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$, n.s., not significant). Error bars are calculated from 5-fold cross-validation. Outliers are represented as red crosses.

214 Results

215 Case study 1: Filling gaps in experimental datasets

216 In this first case study, we want to evaluate the performance of TLmutation in refining and
217 filling gaps in the deep mutagenesis datasets. It is common to have incomplete mutage-
218 nesis datasets, where readings of certain variants were unobtainable due to experiemntal
219 difficulties (e.g. expression or purification of protein, poor sequencing). Here, we apply the
220 TLmutation algorithm to predict missing variants of 17 previously published, large-scale mu-
221 tagensises datasets (see SI Table S1 for more details). These datasets include quantitative
222 measurements of variant effects for various protein functions. For each dataset, the available
223 data were randomly divided into test and training sets. 5-fold cross-validation was used to
224 assess the robustness of the supervised TLmutation models. Our initial analysis showed TL-
225 mutation does not significantly improve EVmutation models for incomplete datasets which
226 have less than 6 mutations per site of the mutagenized region. This leads us to enforce an
227 additional constraint on the datasets to include experimental values for at least $\sim 35\%$ of all
228 possible variants of the mutagenized region (Figure S1). As shown in Figure 2 **B**, 12 out of 17
229 datasets contain an adequate numbers of experimental datapoints. In these datasets, super-
230 vised TLmutation improved the correlation coefficient with the actual experimental values
231 for the test set in 12 of the 13 proteins (p -value < 0.05) (Figure 2 **C**). Among these, the
232 largest improvements are observed in systems with a lower correlation between EVmutation
233 and experiments.

234 Which mutations should be experimentally tested to build better predictors of 235 variant function?

236 As there are more than thousands of possible sites on a protein that can be subjected to
237 mutagensis, it is beneficial to understand which datapoints may provide the most gener-
238 alizable information about other variants. Here, we address this question by training the

239 TLmutation model using different sampling methods.

240 Simple random sampling is the most common method as it is efficient and relatively easy
241 to implement. In this approach, samples are randomly selected with a uniform distribution.
242 This sampling method was used in the previous section and showed a significant improve-
243 ment in the performance of the model in all datasets (Figure 2 **C**, training scores are shown
244 in Figure S2). However, mutagenesis datasets are inherently not uniform. More sophisti-
245 cated sampling methods will be more suitable for these types of naturally ordered datasets.
246 Here, we tested two systematic sampling approaches on the same 13 protein datasets. In the
247 first approach, we divided the datasets based on sequence or positions of the proteins. The
248 TLmutation model was trained on all available mutations for 80% of the sequence sites and
249 tested on the remaining data (as shown in Figure 3 **A**). As before, 5-fold cross-validation was
250 used to assess the sampling method. This approach dramatically decreased the performance
251 of the model. In most of the systems, no improvement was observed as compared to EV-
252 mutation (Figure 3 **B**). This observation suggests that the effects of mutations on sites far
253 away from each other may not correlate with the mutations in other sites. This leads us to
254 the second sampling approach, where the test/training splitting occurred for each position,
255 meaning that 80% of available experiments for mutations on each sequence site was labeled
256 as training, and 20% as test (as shown in Figure 3 **C**). Using this sampling, TLmutation
257 outperformed EVmutation in 12 of the 13 systems (Figure 3 **D**). However, the improvement
258 is still comparable with random sampling.

259 **Case study 2: Predicting the effects of multiple point mutations from**
260 **single point mutation experiments.**

261 While a single point mutation may not affect the protein's function, it is possible for mul-
262 tiple mutations to cooperatively affect its function. Datasets of single point mutations have
263 become increasing available over the past decade. However, mutational maps with multiple
264 point mutations remains scarce and are difficult to obtain experimentally. From an experi-

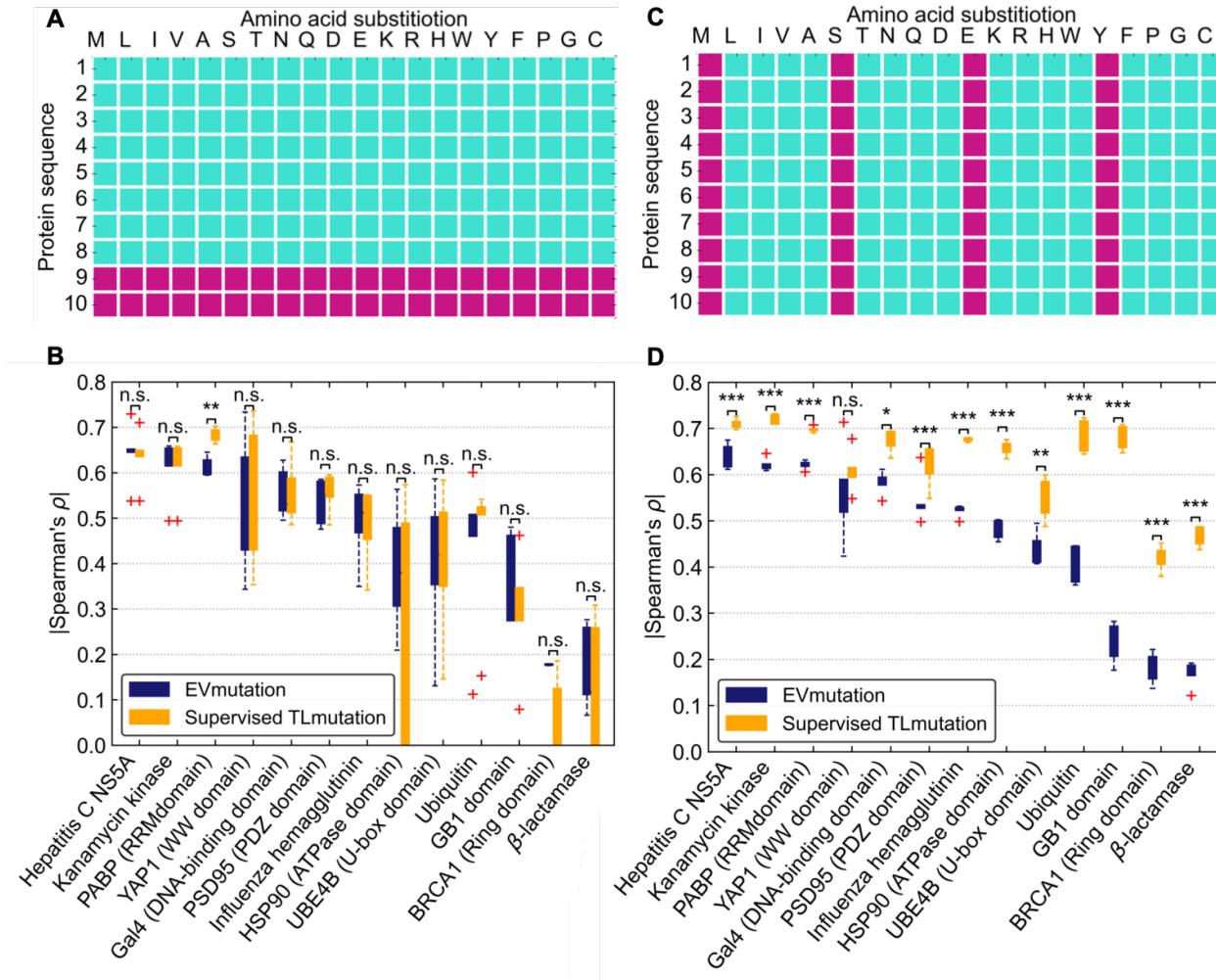


Figure 3: **(A)** A demonstration of train/test split based on sequence positions is shown. Purple points are considered in the test set and teal points in the training set. **(B)** The correlation between computed effects of mutations and experimental measurements for 13 proteins are shown for 5-fold cross validation and site based train/test split. Outliers shown as red crosses. TLmutation using site based train/test split, does not significantly improve the correlation coefficients. Asterisks indicate statistically significant (*, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$, n.s., not significant). **(C)** A demonstration of train/test split based on amino acid substitutions is shown. **(D)** The correlation between computed effects of mutations and experimental measurements for 12 proteins are shown for 5-fold cross validation and substituted amino acid based train/test split. TLmutation improves the correlation coefficients in 12 of the 13 datasets. Asterisks indicate statistically significant (*, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$, n.s., not significant).

265 mental perspective, the number of possible mutants increases exponentially with the increase
266 in number of mutated residues, thus conducting a thorough mutagenesis analysis of large
267 proteins is challenging and expensive. Here, we use the supervised TLmutation algorithm
268 to train on the available single point mutations and predict the effects of multiple point mu-
269 tations. We tested the performance of the algorithm on 4 previously published mutagenesis
270 datasets. These datasets have been employed in the literature to evaluate the performance
271 of EVmutation.²⁰ These datasets contain single and double point mutations (more detail is
272 provided in SI table S2). In these systems, the correlation coefficient was increased for both
273 test and training sets as compared to EVmutation (p -value < 0.05) (Figure 4). Our results
274 show that the incorporation of experimental mutant data combined with couplings derived
275 from the model allows accurate predictions of the effects of higher order mutations. This use
276 of deep mutational data and couplings has also been leveraged to predict three-dimensional
277 structures of proteins.^{46,47}

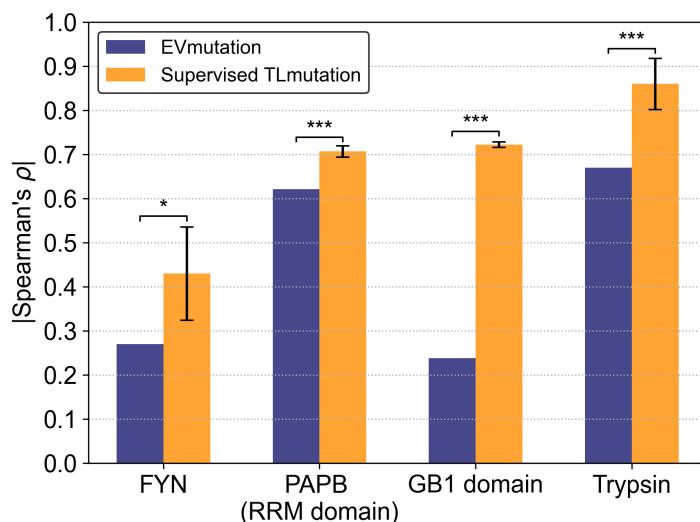


Figure 4: The agreement between predicted effects of double point mutations with experimental measurements is shown for the test datasets. The supervised TLmutation models were first trained on limited available single point mutation data and used to predict double mutation effects. Incorporation of experimental data significantly enhances prediction of double mutants. Asterisks indicate statistically significant (*, $p < 0.05$; ***, $p < 0.001$).

**278 Case study 3: Predicting the effects of mutations using available
279 experimental data on a homologous protein.**

280 Mutagensis datasets provide an opportunity to utilize this data-rich regime and investigate
281 the transferability of mutational effects among homologous proteins. The effectiveness of
282 our transfer algorithms was tested for two chemokine receptors, CXCR4 and CCR5 (Fig-
283 ure 5). Chemokine receptors belong to the class of G-protein coupled receptors (GPCRs)
284 that transmit cellular signals across the cell membrane on the binding of signaling molecules
285 known as chemokines on the extracellular side.⁴⁸ These receptors regulate the movement of
286 immune cells in the body, most notably white blood cells during inflammation.⁴⁹ Chemokine
287 receptors play a vital role in HIV-1 infection and progression,⁵⁰ and hence are considered
288 as major drug targets for treating HIV-1, along with other autoimmune disorders and can-
289 cer.^{51,52} Specifically, both CXCR4 and CCR5 have been identified as co-receptors for HIV-1
290 entry into immune cells. Numerous efforts have been made to understand HIV pathology
291 and to develop new therapeutic approaches. Clinical studies have associated a lack or low
292 expression of CCR5 to provide a natural resistance of HIV infection.⁵³ Mutational analysis,
293 for example the deep mutational scanning of these receptors could provide an invaluable
294 insights into the function of these receptors albeit at a high experimental cost.^{11,45} There are
295 more than 20 chemokine receptors in the human body,⁵⁴ of which only 2 currently have a
296 mostly complete mutational dataset.⁵⁵ Evaluating the TLmutation algorithms on these two
297 datasets would allow us to uncover the sequence-function relationship for other chemokine
298 receptors.

299 In this case study, we utilized available single point mutation datasets for two proteins,
300 CXCR4 and CCR5, and two different experiments, expression level and bimolecular fluores-
301 cence complementation (BiFC) assay.⁵⁵ Sequence identity and similarity between CXCR4
302 and CCR5 are ~ 30% and 50%, respectively (Figure 5). The proposed supervised and
303 unsupervised TLmutation algorithms were implemented and tested for one case of super-
304 vised transfer and four different cases of unsupervised transfer. The EVmutation models for

305 CCR5 and CXCR4 were built using 95619 and 94461 natural sequences using the algorithm
306 as explained in the literature to compare its performance with the TLmutation.²⁰

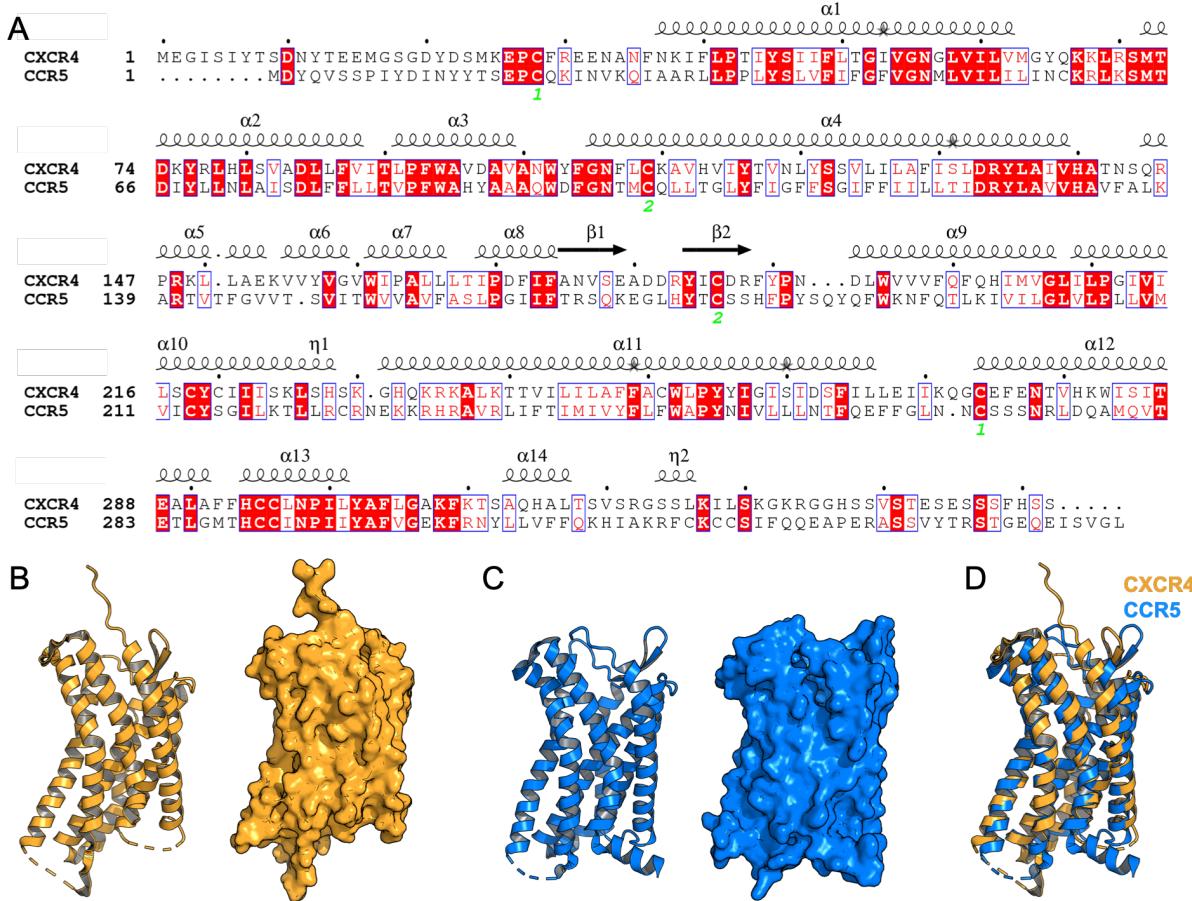


Figure 5: (A) Sequence alignments of chemokine receptors CXCR4 and CCR5. Identical residues colored in red boxes, where similar residues are colored in red letters. Corresponding secondary structure is placed above the aligned sequence. The amino acid sequences of the two receptors share a 30% sequence identity and 50% sequence similarity. Crystal structures, depicted in cartoon and surface representation, of CXCR4 (PDB: 4RWS) (B) and CCR5 (PDB: 4MBS) (C). (D) Cartoon representation of CXCR4 superimposed on CCR5 shows the high structural similarity between these receptors.

307 We want to learn a Potts model that can predict the effects of mutations on expression
308 levels of CXCR4 given a Potts model trained on natural sequences related to CXCR4 and its
309 expression levels for 6994 single point CXCR4 mutants. Using the supervised TLmutation
310 algorithm, a 5-fold cross-validation was performed for the available experimental data on
311 expression levels of CXCR4. The Spearman coefficients for the training data increased from

Table 1: Unsupervised transfer learning between homologous chemokine receptors. Higher Spearman coefficient indicates better match with the actual data. Correlations are an average of 5 replicates obtained by using 90% of the source domain, randomly selected, as the training set followed by prediction of the effect of mutations in the target domain.

Source Protein (Experiment)	New Task (for Source)	EV ρ	Supervised TL ρ (for Source)	Target Protein (for Target)	EV ρ	Unsupervised TL ρ (for Target)
CCR5	BiFC	0.134 \pm 0.006	0.353 \pm 0.003	CXCR4	0.256	0.269 \pm 0.003
CXCR4	BiFC	0.257 \pm 0.005	0.457 \pm 0.005	CCR5	0.135	0.146 \pm 0.001
CCR5	Expression	0.327 \pm 0.002	0.518 \pm 0.004	CXCR4	0.174	0.207 \pm 0.001
CXCR4	Expression	0.175 \pm 0.004	0.397 \pm 0.003	CCR5	0.326	0.367 \pm 0.002

312 0.174 \pm 0.006 to 0.403 \pm 0.005 and the coefficients for the test data increased from 0.174 \pm 0.023
313 to 0.279 \pm 0.041 as it is shown in Figure 6 **C**. For all of the 5 folds, the correlation between
314 predicted ranks and actual experiment is higher compared to EV model. For fold 3, the
315 projection of the combined error for each residue is shown on the 3D structure of CXCR4
316 in Figure 6 **A** and **B**. The overall error is considerably lower for the proposed algorithm as
317 compared to EVmutation model.²⁰

318 The effectiveness of the unsupervised TLmutation algorithm in predicting expression
319 levels and BiFC was evaluated on four different cases: (1) transfer from CXCR4 to CCR5
320 expression, (2) CXCR4 to CCR5 BiFC, (3) CCR5 to CXCR4 expression, and (4) CCR5 to
321 CXCR4 BiFC, as shown in Table 1 and Figure 6 **D**. Spearman coefficients in the third and
322 fourth columns in Table 1 illustrate the improved performance of the supervised transfer on
323 the training data compared to the EV model and Envision. The sixth and seventh columns
324 indicate the Spearman coefficients of test data for EVmutation model and using the unsu-
325 pervised TL, respectively. In all the cases, we observed that the proposed approach shows
326 improvement over the current genomic prediction method (EVmutation model). For the
327 first case (the first row of Table 1), where the supervised transfer is performed on expression
328 levels of CXCR4, and the unsupervised transfer is to CCR5, we project the prediction errors
329 of each residue onto the crystal structure (Figure 6 **E** and **F**). Likewise, the prediction errors
330 are lower for the proposed unsupervised transfer, as compared to the EVmutation model.



Figure 6: Comparison of the CXCR4 expression levels predicted from the EVmutation (**A**) and supervised TLmutation (**B**). Color indicates relative error with respect to experimental value, ranging from low (white) to high (red). Residues of low-confidence predictions (<20 residues) are colored in grey. (**C**) Test Spearman coefficients in 5-fold cross-validation of CXCR4 on predicting the expression levels. Correlation with experimental values is shown on the Y axis, which measures the performance of the predictive model. Higher Spearman coefficient indicates better match with the data. (**D**) Performance of unsupervised TLmutation in regards to predicting different experiments for the target protein is compared with EVmutation and Envision. For these cases, training data sets are unavailable. The knowledge is transferred to the target in order to predict mutagenesis effects. Error in prediction of CCR5 expression as compared to experimental data using (**E**) EVmutation and (**F**) unsupervised TLmutation algorithm.

331 Discussion

332 In this work, we aimed to extract new predictive models of the biological function of proteins
333 from predictive models trained on the evolutionary data and extending it to a new protein
334 via unsupervised transfer learning. We showed that these techniques are efficient for multiple
335 case studies, and compared the results with successful variant predictors EVmutation²⁰ and
336 Envision.¹⁹ Another aspect of the work was focused toward understanding which subsets of
337 data points yielded the most informative predictions. We showed, through our algorithm,
338 that having few single point mutations on each position was sufficient to estimate the effects
339 of other point mutations in the same sites. As these experiments are challenging and the data
340 points may not contain uniform information, one natural followup of our work is to extend
341 the algorithm to an active learning approach. In this scheme, we can suggest which mutations
342 should be tested over few rounds and adaptively strengthen the model. Additionally, as these
343 datasets are susceptible to noise, one approach is to implement the algorithm to enhance
344 low-confidence predictions. By obtaining training data on the parts of the dataset which
345 provide maximum information gained, we can reduce the number of experiments and train
346 more powerful models with limited amounts of data.

347 One of the questions that remains unanswered in this work, is how to define the degree
348 of transferability between domains and tasks. In this application, we compared the proteins
349 based on their sequence and structural similarities. However as we do not have enough
350 datasets to check the transferability between multiple proteins, it is challenging to define
351 a criterion that would allow successful transfer of knowledge between similar proteins. The
352 example in this paper explored the transferability between CXCR4 and CCR5 proteins with
353 ~ 30% sequence identity. When decoupling the survival parameters that do not contribute
354 to a particular function of the protein, we assume that the experimental assay from deep
355 mutagenesis is a measure of this function. However, this may not always be the case and may
356 result in low correlations or differences in correlations between experiments. Additionally,
357 while the functional residues between homologous protein may be similar, we do not account

358 for the differences in the mechanism of these functions that are not represented in the model.

359 For example, Sultan et al.⁵⁶ have shown that a neural network model trained for a protein

360 using molecular dynamics trajectory data can efficiently be transferred to perform enhanced

361 conformational sampling on a related mutant protein. However, Moffett and Shukla have

362 shown that the transferrability of functional dynamics between related proteins is not always

363 high and it depends on the differences between the functional free energy landscapes of

364 protein and its mutants.⁵⁷ Therefore, while we expect systems of high sequence identity or

365 structural similarity to be more transferable, we cannot validate this claim due to the lack

366 of mutational datasets of homologous proteins.

367 Overall, we anticipate supervised TLmutation will be useful in predicting the effects

368 of multiple point mutations and filling out gaps in mutagenesis datasets. Unsupervised

369 TLmutation will help to expand the knowledge to predict the effects of the mutation in

370 many homologous proteins. We expect unsupervised TLmutation to continue to improve as

371 more datasets of homologous proteins become available. Furthermore, the proposed transfer

372 learning algorithms were shown to be generalizable to all MRF models, which could be

373 applicable to other disciplines.

374 Acknowledgement

375 The authors thank the Blue Waters sustained-petascale computing project, which is sup-

376 ported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and

377 the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-

378 Champaign and its National Center for Supercomputing Applications. DS acknowledges

379 support from the NSF Early Career Award, NSF MCB-1845606. All the code needed to

380 generate the models presented in this work are available freely online under the MIT license

381 at <https://github.com/ShuklaGroup/TLMutation>.

382 References

383 (1) Henzler-Wildman, K.; Kern, D. Dynamic personalities of proteins. *Nature* **2007**, *450*,
384 964–972.

385 (2) Shukla, D.; Hernández, C. X.; Weber, J. K.; Pande, V. S. Markov State Models Provide
386 Insights into Dynamic Modulation of Protein Function. *Acc. Chem. Res.* **2015**, *48*, 414–
387 422.

388 (3) Wang, Z.; Moult, J. SNPs, protein structure, and disease. *Hum. Mutat.* **2001**, *17*,
389 263–270.

390 (4) Martinez, J.; Baquero, F. Mutation frequencies and antibiotic resistance. *Antimicrob.*
391 *Agents Chemother* **2000**, *44*, 1771–1777.

392 (5) Shendure, J.; Akey, J. M. The origins, determinants, and consequences of human mu-
393 tations. *Science* **2015**, *349*, 1478–1483.

394 (6) Mann, J. K.; Barton, J. P.; Ferguson, A. L.; Omarjee, S.; Walker, B. D.;
395 Chakraborty, A.; Ndung'u, T. The fitness landscape of HIV-1 gag: advanced mod-
396 eling approaches and validation of model predictions by in vitro testing. *PLoS Comput.*
397 *Biol.* **2014**, *10*, e1003776.

398 (7) Gray, V. E.; Hause, R. J.; Fowler, D. M. Analysis of large-scale mutagenesis data to
399 assess the impact of single amino acid substitutions. *Genetics* **2017**, *207*, 53–61.

400 (8) Stein, A.; Fowler, D. M.; Hartmann-Petersen, R.; Lindorff-Larsen, K. Biophysical and
401 mechanistic models for disease-causing protein variants. *Trends Biochem. Sci.* **2019**,
402 *44*, 575–588.

403 (9) Fowler, D. M.; Stephany, J. J.; Fields, S. Measuring the activity of protein variants on
404 a large scale using deep mutational scanning. *Nat. Protoc.* **2014**, *9*, 2267.

405 (10) Riesselman, A. J.; Ingraham, J. B.; Marks, D. S. Deep generative models of genetic
406 variation capture the effects of mutations. *Nat. Methods* **2018**, *15*, 816–822.

407 (11) Fowler, D. M.; Fields, S. Deep mutational scanning: a new style of protein science. *Nat.*
408 *Methods* **2014**, *11*, 801.

409 (12) Matreyek, K. A.; Stephany, J. J.; Fowler, D. M. A platform for functional assessment
410 of large variant libraries in mammalian cells. *Nucleic Acids Res.* **2017**, *45*, e102–e102.

411 (13) Park, J.; Selvam, B.; Sanematsu, K.; Shigemura, N.; Shukla, D.; Procko, E. Structural
412 architecture of a dimeric class C GPCR based on co-trafficking of sweet taste receptor
413 subunits. *J. Biol. Chem.* **2019**, *294*, 4759–4774.

414 (14) Harris, D. T.; Wang, N.; Riley, T. P.; Anderson, S. D.; Singh, N. K.; Procko, E.;
415 Baker, B. M.; Kranz, D. M. Deep Mutational Scans as a Guide to Engineering High
416 Affinity T Cell Receptor Interactions with Peptide-bound Major Histocompatibility
417 Complex. *J. Biol. Chem.* **2016**, *291*, 24566–24578.

418 (15) Adzhubei, I. A.; Schmidt, S.; Peshkin, L.; Ramensky, V. E.; Gerasimova, A.; Bork, P.;
419 Kondrashov, A. S.; Sunyaev, S. R. A method and server for predicting damaging mis-
420 sense mutations. *Nat. Methods* **2010**, *7*, 248.

421 (16) Ng, P. C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function.
422 *Nucleic Acids Res.* **2003**, *31*, 3812–3814.

423 (17) Hecht, M.; Bromberg, Y.; Rost, B. Better prediction of functional effects for sequence
424 variants. *BMC Genomics* **2015**, *16*, S1.

425 (18) Kircher, M.; Witten, D. M.; Jain, P.; O'roak, B. J.; Cooper, G. M.; Shendure, J. A
426 general framework for estimating the relative pathogenicity of human genetic variants.
427 *Nat. Genet.* **2014**, *46*, 310.

428 (19) Gray, V. E.; Hause, R. J.; Luebeck, J.; Shendure, J.; Fowler, D. M. Quantitative
429 missense variant effect prediction using large-scale mutagenesis data. *Cell Syst.* **2018**,
430 *6*, 116–124.

431 (20) Hopf, T. A.; Ingraham, J. B.; Poelwijk, F. J.; Schärfe, C. P.; Springer, M.; Sander, C.;
432 Marks, D. S. Mutation effects predicted from sequence co-variation. *Nat. Biotechnol.*
433 **2017**, *35*, 128.

434 (21) Shamsi, Z.; Moffett, A. S.; Shukla, D. Enhanced unbiased sampling of protein dynamics
435 using evolutionary coupling information. *Sci. Rep.* **2017**, *7*, 12700.

436 (22) Feng, J.; Shukla, D. Characterizing Conformational Dynamics of Proteins Using Evo-
437 lutionary Couplings. *J. Phys. Chem. B* **2018**, *122*, 1017–1025.

438 (23) Feng, J.; Shukla, D. FingerprintContacts: Predicting Alternative Conformations of
439 Proteins from Coevolution. *J. Phys. Chem. B* **2020**, doi: 10.1021/acs.jpcb.9b11869.

440 (24) Shamsi, Z.; Cheng, K. J.; Shukla, D. Reinforcement Learning Based Adaptive Sampling:
441 REAPing Rewards by Exploring Protein Conformational Landscapes. *J. Phys. Chem.*
442 *B* **2018**, *122*, 8386–8395.

443 (25) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;
444 Shindyalov, I. N.; Bourne, P. E. The protein data bank. *Nucleic Acids Res.* **2000**,
445 *28*, 235–242.

446 (26) Starita, L. M.; Young, D. L.; Islam, M.; Kitzman, J. O.; Gullingsrud, J.; Hause, R. J.;
447 Fowler, D. M.; Parvin, J. D.; Shendure, J.; Fields, S. Massively parallel functional
448 analysis of BRCA1 RING domain variants. *Genetics* **2015**, *200*, 413–422.

449 (27) Starita, L. M.; Pruneda, J. N.; Lo, R. S.; Fowler, D. M.; Kim, H. J.; Hiatt, J. B.;
450 Shendure, J.; Brzovic, P. S.; Fields, S.; Klevit, R. E. Activity-enhancing mutations in

451 an E3 ubiquitin ligase identified by high-throughput mutagenesis. *Proc. Natl. Acad.*
452 *Sci. U.S.A.* **2013**, *110*, E1263–E1272.

453 (28) Heredia, J. D.; Park, J.; Choi, H.; Gill, K. S.; Procko, E. Conformational engineering
454 of HIV-1 Env based on mutational tolerance in the CD4 and PG16 bound states. *J.*
455 *Virol.* **2019**, *93*, e00219–19.

456 (29) Pan, S. J.; Yang, Q. A survey on transfer learning. *IEEE Transactions on knowledge*
457 *and data engineering* **2009**, *22*, 1345–1359.

458 (30) Nauman, M.; Rehman, H. U.; Politano, G.; Benso, A. Beyond homology transfer: deep
459 learning for automated annotation of proteins. *J. Grid Comput.* **2019**, *17*, 225–237.

460 (31) Rao, R.; Bhattacharya, N.; Thomas, N.; Duan, Y.; Chen, P.; Canny, J.; Abbeel, P.;
461 Song, Y. Evaluating protein transfer learning with TAPE. Advances in Neural Infor-
462 mation Processing Systems. 2019; pp 9686–9698.

463 (32) Mei, S. Probability weighted ensemble transfer learning for predicting interactions be-
464 tween HIV-1 and human proteins. *PLOS ONE* **2013**, *8*.

465 (33) Qi, Y.; Tastan, O.; Carbonell, J. G.; Klein-Seetharaman, J.; Weston, J. Semi-supervised
466 multi-task learning for predicting interactions between HIV-1 and human proteins.
467 *Bioinformatics* **2010**, *26*, i645–i652.

468 (34) Singh, J.; Hanson, J.; Paliwal, K.; Zhou, Y. RNA secondary structure prediction us-
469 ing an ensemble of two-dimensional deep neural networks and transfer learning. *Nat.*
470 *Commun.* **2019**, *10*, 1–13.

471 (35) Wang, S.; Li, Z.; Yu, Y.; Xu, J. Folding membrane proteins by deep transfer learning.
472 *Cell Syst.* **2017**, *5*, 202–211.

473 (36) Wei, Z.; Li, H. A Markov random field model for network-based analysis of genomic
474 data. *Bioinformatics* **2007**, *23*, 1537–1544.

475 (37) Chen, W.; Jin, X.; Li, Z.; Zhang, X.; Hong, L. Clock Synchronization for Distributed
476 Multi-hop Wireless Networks Using Markov Random Field. *J. Phys. Conf. Ser.* 2018; p
477 052008.

478 (38) Jernite, Y.; Rush, A.; Sontag, D. A fast variational approach for learning Markov
479 random field language models. *International Conference on Machine Learning*. 2015;
480 pp 2209–2217.

481 (39) Li, S. Z. Markov random field models in computer vision. *Comput. Vis. ECCV*. 1994;
482 pp 361–370.

483 (40) Kindermann, R.; Snell, J. L. *Markov Random Fields and Their Applications*; American
484 Mathematical Society., 1980.

485 (41) Levy, R. M.; Haldane, A.; Flynn, W. F. Potts Hamiltonian models of protein co-
486 variation, free energy landscapes, and evolutionary fitness. *Curr. Opin. Struc. Biol.*
487 **2017**, *43*, 55–62.

488 (42) Myers, L.; Sirois, M. J. Spearman correlation coefficients, differences between. *Ency-
489 clopedia of statistical sciences* **2004**, *12*.

490 (43) Mallya, A.; Davis, D.; Lazebnik, S. Piggyback: Adapting a single network to multi-
491 ple tasks by learning to mask weights. *Proceedings of the European Conference on*
492 *Computer Vision (ECCV)*. 2018; pp 67–82.

493 (44) Zhang, W.; Dourado, D. F.; Fernandes, P. A.; Ramos, M. J.; Mannervik, B. Multidi-
494 mensional epistasis and fitness landscapes in enzyme evolution. *Biochem J.* **2012**, *445*,
495 39–46.

496 (45) Jonson, P. H.; Petersen, S. B. A critical view on conservative mutations. *Protein Eng.*
497 **2001**, *14*, 397–402.

498 (46) Rollins, N. J.; Brock, K. P.; Poelwijk, F. J.; Stiffler, M. A.; Gauthier, N. P.; Sander, C.;
499 Marks, D. S. Inferring protein 3D structure from deep mutation scans. *Nat. Genet.*
500 **2019**, *51*, 1170.

501 (47) Schmiedel, J. M.; Lehner, B. Determining protein structures using deep mutagenesis.
502 *Nat. Genet.* **2019**, *51*, 1177.

503 (48) Proudfoot, A. E. Chemokine receptors: multifaceted therapeutic targets. *Nat. Rev.*
504 *Immunol.* **2002**, *2*, 106.

505 (49) Hughes, C. E.; Nibbs, R. J. A guide to chemokines and their receptors. *FEBS J.* **2018**,
506 *285*, 2944–2971.

507 (50) Wang, Z.; Shang, H.; Jiang, Y. Chemokines and Chemokine Receptors: Accomplices
508 for Human immunodeficiency virus infection and Latency. *Front. Immunol.* **2017**, *8*,
509 1274.

510 (51) Weitzenfeld, P.; Ben-Baruch, A. The chemokine system, and its CCR5 and CXCR4
511 receptors, as potential targets for personalized therapy in cancer. *Cancer Lett.* **2014**,
512 *352*, 36–53.

513 (52) Chow, M. T.; Luster, A. D. Chemokines in cancer. *Cancer Immunol. Res.* **2014**, *2*,
514 1125–1131.

515 (53) Ostrowski, M. A.; Justement, S. J.; Catanzaro, A.; Hallahan, C. A.; Ehler, L. A.;
516 Mizell, S. B.; Kumar, P. N.; Mican, J. A.; Chun, T.-W.; Fauci, A. S. Expression of
517 chemokine receptors CXCR4 and CCR5 in HIV-1-infected and uninfected individuals.
518 *J. Immunol. Res.* **1998**, *161*, 3195–3201.

519 (54) Griffith, J. W.; Sokol, C. L.; Luster, A. D. Chemokines and chemokine receptors: posi-
520 tioning cells for host defense and immunity. *Annu. Rev. Immunol.* **2014**, *32*, 659–702.

521 (55) Heredia, J. D.; Park, J.; Brubaker, R. J.; Szymanski, S. K.; Gill, K. S.; Procko, E. Map-
522 ping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning.
523 *J. Immunol.* **2018**, *200*, 3825–3839.

524 (56) Sultan, M. M.; Wayment-Steele, H. K.; Pande, V. S. Transferable Neural Networks for
525 Enhanced Sampling of Protein Dynamics. *J. Chem. Theo. Comput.* **2018**, *14*, 1887–
526 1894.

527 (57) Moffett, A. S.; Shukla, D. On the transferability of time-lagged independent components
528 between similar molecular dynamics systems. *arXiv:1710.00443* **2017**,

529 **Graphical TOC Entry**

