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Abstract2

A reoccurring challenge in bioinformatics is predicting the phenotypic consequence3

of amino acid variation in proteins. With the recent advancements in sequencing tech-4

niques, sufficient genomic data has become available to train models that predict the5

evolutionary statistical energies, but there is still inadequate experimental data to di-6

rectly predict functional effects. One approach to overcome this data scarcity is to7

apply transfer learning and train more models with available datasets. In this study,8
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we propose a set of transfer learning algorithms we call TLmutation, which implements9

a supervised transfer learning algorithm that transfers knowledge from survival data of10

a protein to a particular function of that protein. This is followed by an unsupervised11

transfer learning algorithm that extends the knowledge to a homologous protein. We12

explore the application of our algorithms in three cases. First, we test the supervised13

transfer on 17 previously published deep mutagenesis datasets to complete and refine14

missing datapoints. We further investigate these datasets to identify which mutations15

build better predictors of variant functions. In the second case, we apply the algorithm16

to predict higher-order mutations solely from single point mutagenesis data. Finally,17

we perform the unsupervised transfer learning algorithm to predict mutational effects18

of homologous proteins from experimental datasets. These algorithms are generalized19

to transfer knowledge between Markov random field models. We show the benefit of20

our transfer learning algorithms to utilize informative deep mutational data and pro-21

vide new insights into protein variant functions. As these algorithms are generalized to22

transfer knowledge between Markov random field models, we expect these algorithms23

to be applicable to other disciplines.24

Introduction25

Proteins are intricate molecular machines that regulate all biological processes. The func-26

tion of a particular protein is intrinsically linked to its structure, which governs its stability27

and conformational dynamics.1,2 Consequently, mutations in protein sequences, in which28

one amino acid is replaced by another amino acid, can affect a protein’s structure, stabil-29

ity, and inevitably its function. While some mutations may have little to no effect on a30

protein’s function, others have larger implications for disease and antibiotic resistance.3,431

Recent advancements in large-scale genomic sequencing have provided tools and resources32

for both consumers and clinicians to identify disease-potential mutations in one’s proteome33

at an affordable cost. However, due this large influx of genomic data, a recurring challenge34
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is predicting the phenotypic consequence in proteins due to amino acid variations.5,635

Several workflows, both experimentally and computationally, have been developed to36

identify, predict, and model the effects of mutations.7–10 Engineering approaches, such as37

deep mutational scanning, provide a unique glimpse into the sequence-function relationship38

of proteins by surveying all single-point mutations in the sequence and assessing their altered39

function.11–14 These methods provide large quantitative datasets of mutational effects for a40

particular protein. Alternatively, statistical models have been used as standalone approaches41

or to compliment biophysical experiments. PolyPhen215 and SIFT16 are examples of com-42

mon frameworks that use multiple sequence and structural-based alignments to characterize43

variants. Other models, such as SNAP2,17 CADD,18 and Envision,19 employ machine learn-44

ing algorithms to classify and predict mutations and are popular due to their robustness45

with large datasets. One successful approach employed for predicting mutational effects is46

EVmutation which uses evolutionary sequence conservation.20 In addition to applying evo-47

lutionary conservation to predict the effect of mutations, EVmutation also considers genetic48

interactions between mutations and the sequence background. By accounting for the inter-49

actions between all residue pairs, the model predicts the effects of mutations accurately as50

compared to other predictors.20 Additionally, this method is shown to be able to capture the51

functionally relevant protein conformations and their dynamics.21–24 EVmutation utilizes a52

graph based Markov random field known as the Potts model which is trained on natural53

sequences.20 This means, for a given sequence, the algorithm searches through the UniProt54

database,25 locates all natural sequences in its family, and uses these sequences as data to55

train the Potts model. However, these unsupervised probabilistic models do not directly56

predict the effects of mutations on the functionality of the protein; rather, they predict if57

the mutant species are fit to survive, which may not always directly correlate to a specific58

function.2059

As genomic sequencing and mutational libraries become readily available, it represents60

an opportunity to utilize this data-rich regime to enhance predictors of protein mutations.61
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However, training Potts models on specific experimental data is usually not feasible. While62

mutational libraries of various proteins have been completed due to advancements in deep63

mutational scanning and directed evolution methods,26–28 these datasets are inadequate for64

training, and we must rely on alternative methods to obtain insights and predictions. In a65

traditional machine learning approach, different task will be individually learned to build66

a model. However, in many real-world applications, collecting training data and rebuilding67

models may be computationally expensive.29 These difficulties are akin to deep mutational68

scanning and other biophysical approaches. Many experimental methods in characterizing69

protein variants are susceptible to noise or missing datapoints.9 Moreover, it is difficult to70

infer information about other proteins from a single deep mutational scan.71

One approach to overcome this data scarcity is to apply transfer learning algorithms in72

which we apply knowledge from one task to a different, yet related task.29 Transfer learning73

has been used to tackle various challenges in molecular biology and bioinformatics, including74

protein function prediction,30,31 and protein-protein interactions.32,33 Singh et al. devel-75

oped a platform to predict RNA secondary structure from models initially trained on a76

high-resolution RNA structure database.34 Due to insufficient data on residue contacts in77

membrane proteins, Wang et al. transferred convolutional neural network parameters of non-78

membrane protein contacts to enhance structure prediction of membrane proteins.35 While79

the motivation of employing machine learning is to enhance predictions in low data regime,80

transfer learning can take advantage of the structural and functional similarities between81

homologous proteins.82

Here, we propose an algorithm, TLmutation, which is an adaptation of the successful83

variant effect predictor EVmutation, that utilizes deep mutational datasets to enhance pre-84

dictions of variant effects in proteins. We implement the algorithm in two fashions. First,85

TLmutation transfers knowledge from a model, trained on natural sequences and deep muta-86

tional data, to a new protein function for the same protein. We call this algorithm supervised87

TLmutation. This is followed by an unsupervised transfer learning algorithm that expands88
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the knowledge to a related protein and is referred to as unsupervised TLmutation. We con-89

ducted multiple experiments using the proposed transfer learning algorithms to evaluate the90

practical efficiency in predicting the effects of mutations of multiple proteins with differ-91

ent types of training and test datasets. In the first case, we explore the application of the92

proposed algorithm on 17 previously published mutagenesis datasets to complete missing93

datapoints. We further investigate different sampling approaches to delineate which muta-94

tions provide more accurate predictors of variant functions. In the second case, we apply95

our algorithm to predict higher order mutations (i.e. double mutations, triple mutations)96

solely from single point mutatgensis data. Finally, we implement the unsupervised transfer97

learning algorithm to predict mutational effects of homologous proteins from experimental98

datasets. Our results show that the incorporation of deep mutational dataset not only en-99

hances the prediction of variant effects, but also can be transferable to provide new insights100

where experimental data may be limited.101

Methods102

Potts model for protein sequences103

AMarkov random field (MRF) is an undirected, probabilistic graphical model that represents104

statistical dependencies among a set of random variables, σ = (σ1, ..., σN), where ∀ σi ∈105 {
1, 2, .., l

}
. MRF models have widely been used to tackle large datasets in different disciplines106

such as genomic biology,36 physics,37 natural language processing,38 and computer vision.39107

For this study, let σ = (σ1, σ2, ..., σN) represent the amino acid sequence of a protein with108

length N . Each σi takes on values in
{
1, 2, ..., 21

}
(one state for each of the 20 naturally109

occurring amino acids and one additional state to represent a gap). The probability of110

σ1, ..., σN is then given by:111
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P (σ1, ..., σN) =
1

Z
exp(

N∑
i=1

hi(σi) +
N−1∑
i=1

N∑
j=i+1

Jij(σi, σj)) (1)

where hi is the potentials of site i, or fields, Jij is the potentials between residue pair112

constraints, or couplings of sites i and j,20 and Z is the partition function.40 This form of113

the MRF is commonly known as the Potts model or Potts Hamiltonian models.41114

Assume we have two similar domains, source and target domain, in which we have a base115

and a new task (Figure 1). The new task must be a subset of the base task. This means116

the base task has to be the result of multiple smaller tasks, of which the new task is one of117

them. We define M t
d be a MRF M of the task t in the domain d. We initially are provided118

two MRF models for the source domain and the target domain, both trained on the base119

task, or M base
source and M base

target, respectively. Our aim is to obtain MRF models on the new120

task for both source and target domains (Mnew
source and Mnew

target). The training data for the121

source domain contains a set of n data points for the new task, Xnew,train
source ∈ <dx , and its122

corresponding labels or outputs, Y new,train
source ∈ <dx . Additionally, we have test datasets for123

both the source and the target domain (Xnew,test
source and Xnew,test

target , with labels as Y new,test
source and124

Y new,test
target , respectively).125

The first goal is to utilize the given training data and the MRF model to find a predictive126

model for the new task in the source domain (Mnew
source). Then, we extend the knowledge from127

this supervised transfer learning step to learn a model in the target domain (Mnew
target) using128

an unsupervised transfer learning algorithm. To evaluate the performance of the algorithm,129

the predictions (Ŷ ) are ranked and compared to the actual labels (Y ) for calculation of130

the Spearman rank correlation coefficient (ρ).42 For this study, ρ accesses the association131

between two ranked variables, the predicted effect of a point mutation and the experimental132

effect. The value of ρ ranges from -1 to +1, where +1 indicates one variable is a perfect,133

monotonically increasing function of the other variable and -1 as a perfect, monotonically134
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decreasing relationship.135

Figure 1: Proposed transfer learning algorithms for MRF models. In each source and target
domain, the new task is a subset of the base task. Knowledge is then transferred from the
source domain, where training data, is available to the target domain.

Supervised transfer from the evolutionary statistical energy to a136

functional assay.137

We want to modify an existing predictive model that is trained on the base task to be able138

to predict a new task. In the supervised transfer portion, all the transfer is conducted within139

a same domain, the source domain, and therefore the subscripts that determine the domains140

are dropped. First, we train a MRF model on the base task (M base) and calculate the values141

for the potentials of θbasec of all residues c using available methods in the literature.20 Then,142

we introduce a MRF model that can predict the new task as the following:143

P (σ) =
1

Z
exp(

∑
c∈C

θnewc ) (2)

where144

θnewc = wc.θ
base
c (3)

wc is a binary weight matrix (w ∈
{
0, 1
}
), which is calculated by maximizing the correlation145
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between the predicted values of labels (Ŷ new,train) and the actual labels (Y new,train) as146

max
w
| ρ(rgŶ new,train , rgY new,train) | (4)

with rgŶ new,train and rgY new,train are ranks of Ŷ new,train and Y new,train, respectively. ρ is the147

Spearman’s rank correlation coefficient. The maximization algorithm is further explained in148

the Supporting Information.149

In this particular study, we want to learn a Potts model that can predict the effect of150

mutations on a particular protein function. We are given a Potts model trained on natural151

sequences (EVmutation model) and experimental data of the effects of point mutations on152

a protein’s function. In the Potts model of a protein sequence (Eq. 1), each Jij parameter153

represents the chemical or physical interactions between the corresponding residues i and154

j.20 Since the model is trained on survival data, Jij’s with large values suggest critical155

interactions necessary for survival. Such interactions may have roles including, but not156

limited to, expression, folding, thermal stability, or conformational dynamics. Assuming our157

function of interest is one of these essential survival functions, we want to decouple the Jij158

parameters from the overall survival by nullifying Jij’s that do not contribute to the function159

and retaining the ones that are linked to this function. This forms the basis of the proposed160

supervised transfer learning algorithm, supervised TLmutation.161

In the supervised transfer learning section, all the transfer occurs within the same protein162

(referred to as source protein). First, we train a Potts model on survival (e.g. EVmutation),163

and calculate the values for the potentials of Jij and hi.20 Then, we introduce a new Potts164

model that can predict the function using the following modified potentials:165

Jfunction
ij = wij.J

survival
ij (5)

166

hfunctioni = w′i.h
survival
i (6)

Analogous to the generalized modified potential (Eq. 2), wi.j and w′i are binary weight167
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matrices (wc ∈
{
0, 1
}
) and is calculated by maximizing the correlation between the predicted168

values of the protein mutant’s function (Ŷ train) and the actual experimental values in the169

training set (Y train) (Eq. 4). The binary weights are used in the algorithm due to training170

data scarcity. The weight matrices for the couplings parameter Jij contains n * 21 *21171

number of elements, where n is the length of the protein. Likewise, the weight vector for the172

fields parameter hi contains n * 21 number of elements. The total elements required to train173

the model is much more than the available experimental data points. Therefore, we decided174

to constrain the parameter state space using a binary mask. A similar use of the binary175

mask has recently been implemented for image recognition alogorithm.43 Furthermore, we176

eliminate potentials which do not contribute to the enhancement in predicting the Y new,train.177

In this way, we eliminate the effects of other functions and focus on the function of interest.178

Unsupervised transfer between proteins.179

Now, we want to expand the knowledge gained from the supervised transfer to the target180

domain, where the training data is not available for the new task. Therefore, we train a181

MRF model on the base task in the target domain (M base
target) and a MRF model on the new182

task in the source domain (Mnew
source). In our generalization example, using the learned model183

parameter, wc, from Equation 3, we define a MRF model for the new task in the target184

domain (Mnew
target). This model’s potential θnewc,target is calculated using Equation 7.185

θnewc,target = wc.θ
base
c,target (7)

Since the source and target domains are similar, we assume the corresponding potentials186

have the same effects on predicting the new task. Therefore, we use the same learned weights187

w to switch the potentials in M base
target and obtain Mnew

target while using the same value of θbasec,target188

for potentials that remain active in the MRF.189

Here, we extended the supervised and unsupervised TLmutation algorithms to a more190
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generic MRF model. The algorithm transfers knowledge from a well trained MRF model of191

one task, to other similar tasks when either limited or no training data is available. The192

proposed supervised and unsupervised transfer algorithms presented can be generalized and193

applied to other MRF models. For most proteins, we do not have sufficient training data to194

use a supervised transfer learning algorithm as obtaining mutation data is experimentally195

challenging and expensive.44,45 We want to use the available experimental data of a protein196

for predicting the mutation effects in other homologous proteins. We expand the knowledge197

gained from the supervised TLmutation to the target protein, where no training data is198

available.199

Assume the EVmutation model for target protein and the TLmutation model for source200

protein are constructed. Using the parameters of the TLmutation, w and w′, from Equation201

5, we define a new Potts model for predicting the effects of mutations in the target protein202

on its function. The new model’s potentials are calculated using Equation 8 and 9.203

Jfunc.,target
ij = wij.J

target
ij (8)

hfunc.,targeti = w′i.h
target
i (9)

where wij and w′i are the binary masks from the TLmutation model of the source protein.204

J target
ij and htargeti are the potentials from the EVmutation model of the target protein, and205

Jfunc.,target
ij and hfunc.,targeti are the modified potentials for TLmutation model of the tar-206

get protein. Here, the source and target proteins should be homologs, as the molecular207

mechanisms leading to a particular function are expected to be conserved among homologus208

proteins. The residue-residue interactions involved in the function of the source protein also209

are anticipated to be conserved in the target protein. Similarly, for the unsupervised trans-210

fer, we eliminate the Jij’s in the target protein that did not contribute to the function in the211

source protein. However, we used the target’s EVmutation model as the preliminary basis212
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and applied the binary masks from source to its potentials.213

Figure 2: (A) Schematic of the proposed transfer learning algorithms on an example of pre-
dicting protein expression. Knowledge is transferred from the source protein where training
data is available to the target protein. (B) Completeness of 17 studied mutagenesis datasets
is shown. Datasets shown in light teal have less than 35% of all possible variants in the
mutagenized region. (C) Effects of mutations computed using EVmutation and supervised
TLmutation. These predictions are compared with experimental measurements for 13 pro-
teins are shown for the test set. The agreement is measured by Spearman’s rank correlation
coefficient ρ. Asterisks indicate statistically significant (*, p < 0.05; **, p < 0.01; ***, p <
0.001, n.s., not significant). Error bars are calculated from 5-fold cross-validation. Outliers
are represented as red crosses.
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Results214

Case study 1: Filling gaps in experimental datasets215

In this first case study, we want to evaluate the performance of TLmutation in refining and216

filling gaps in the deep mutagenesis datasets. It is common to have incomplete mutage-217

nesis datasets, where readings of certain variants were unobtainable due to experiemntal218

difficulties (e.g. expression or purification of protein, poor sequencing). Here, we apply the219

TLmutation algorithm to predict missing variants of 17 previously published, large-scale mu-220

tagensises datasets (see SI Table S1 for more details). These datasets include quantitative221

measurements of variant effects for various protein functions. For each dataset, the available222

data were randomly divided into test and training sets. 5-fold cross-validation was used to223

assess the robustness of the supervised TLmutation models. Our initial analysis showed TL-224

mutation does not significantly improve EVmutation models for incomplete datasets which225

have less than 6 mutations per site of the mutagenized region. This leads us to enforce an226

additional constraint on the datasets to include experimental values for at least ∼ 35% of all227

possible variants of the mutagenized region (Figure S1). As shown in Figure 2 B, 12 out of 17228

datasets contain an adequate numbers of experimental datapoints. In these datasets, super-229

vised TLmutation improved the correlation coefficient with the actual experimental values230

for the test set in 12 of the 13 proteins (p-value < 0.05) (Figure 2 C). Among these, the231

largest improvements are observed in systems with a lower correlation between EVmutation232

and experiments.233

Which mutations should be experimentally tested to build better predictors of234

variant function?235

As there are more than thousands of possible sites on a protein that can be subjected to236

mutagensis, it is beneficial to understand which datapoints may provide the most gener-237

alizable information about other variants. Here, we address this question by training the238
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TLmutation model using different sampling methods.239

Simple random sampling is the most common method as it is efficient and relatively easy240

to implement. In this approach, samples are randomly selected with a uniform distribution.241

This sampling method was used in the previous section and showed a significant improve-242

ment in the performance of the model in all datasets (Figure 2 C, training scores are shown243

in Figure S2). However, mutagenesis datasets are inherently not uniform. More sophisti-244

cated sampling methods will be more suitable for these types of naturally ordered datasets.245

Here, we tested two systematic sampling approaches on the same 13 protein datasets. In the246

first approach, we divided the datasets based on sequence or positions of the proteins. The247

TLmutation model was trained on all available mutations for 80% of the sequence sites and248

tested on the remaining data (as shown in Figure 3 A). As before, 5-fold cross-validation was249

used to assess the sampling method. This approach dramatically decreased the performance250

of the model. In most of the systems, no improvement was observed as compared to EV-251

mutation (Figure 3 B). This observation suggests that the effects of mutations on sites far252

away from each other may not correlate with the mutations in other sites. This leads us to253

the second sampling approach, where the test/training splitting occurred for each position,254

meaning that 80% of available experiments for mutations on each sequence site was labeled255

as training, and 20% as test (as shown in Figure 3 C). Using this sampling, TLmutation256

outperformed EVmutation in 12 of the 13 systems (Figure 3 D). However, the improvement257

is still comparable with random sampling.258

Case study 2: Predicting the effects of multiple point mutations from259

single point mutation experiments.260

While a single point mutation may not affect the protein’s function, it is possible for mul-261

tiple mutations to cooperatively affect its function. Datasets of single point mutations have262

become increasing available over the past decade. However, mutational maps with multiple263

point mutations remains scare and are difficult to obtain experimentally. From an experi-264
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Figure 3: (A) A demonstration of train/test split based on sequence positions is shown.
Purple points are considered in the test set and teal points in the training set. (B) The
correlation between computed effects of mutations and experimental measurements for 13
proteins are shown for 5-fold cross validation and site based train/test split. Outliers shown
as red crosses. TLmutation using site based train/test split, does not significantly improve
the correlation coefficients. Asterisks indicate statistically significant (*, p < 0.05; **, p
< 0.01; ***, p < 0.001, n.s., not significant). (C) A demonstration of train/test split
based on amino acid substitutions is shown. (D) The correlation between computed effects
of mutations and experimental measurements for 12 proteins are shown for 5-fold cross
validation and substituted amino acid based train/test split. TLmutation improves the
correlation coefficients in 12 of the 13 datasets. Asterisks indicate statistically significant (*,
p < 0.05; **, p < 0.01; ***, p < 0.001, n.s., not significant).
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mental perspective, the number of possible mutants increases exponentially with the increase265

in number of mutated residues, thus conducting a thorough mutagenesis analysis of large266

proteins is challenging and expensive. Here, we use the supervised TLmutation algorithm267

to train on the available single point mutations and predict the effects of multiple point mu-268

tations. We tested the performance of the algorithm on 4 previously published mutagenesis269

datasets. These datasets have been employed in the literature to evaluate the performance270

of EVmutation.20 These datasets contain single and double point mutations (more detail is271

provided in SI table S2). In these systems, the correlation coefficient was increased for both272

test and training sets as compared to EVmutation (p-value < 0.05) (Figure 4). Our results273

show that the incorporation of experimental mutant data combined with couplings derived274

from the model allows accurate predictions of the effects of higher order mutations. This use275

of deep mutational data and couplings has also been leveraged to predict three-dimensional276

structures of proteins.46,47277

Figure 4: The agreement between predicted effects of double point mutations with exper-
imental measurements is shown for the test datasets. The supervised TLmutation models
were first trained on limited available single point mutation data and used to predict double
mutation effects. Incorporation of experimental data significantly enhances prediction of
double mutants. Asterisks indicate statistically significant (*, p < 0.05; ***, p < 0.001).
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Case study 3: Predicting the effects of mutations using available278

experimental data on a homologous protein.279

Mutagensis datasets provide an opportunity to utilize this data-rich regime and investigate280

the transferability of mutational effects among homologous proteins. The effectiveness of281

our transfer algorithms was tested for two chemokine receptors, CXCR4 and CCR5 (Fig-282

ure 5). Chemokine receptors belong to the class of G-protein coupled receptors (GPCRs)283

that transmit cellular signals across the cell membrane on the binding of signaling molecules284

known as chemokines on the extracellular side.48 These receptors regulate the movement of285

immune cells in the body, most notably white blood cells during inflammation.49 Chemokine286

receptors play a vital role in HIV-1 infection and progression,50 and hence are considered287

as major drug targets for treating HIV-1, along with other autoimmune disorders and can-288

cer.51,52 Specifically, both CXCR4 and CCR5 have been identified as co-receptors for HIV-1289

entry into immune cells. Numerous efforts have been made to understand HIV pathology290

and to develop new therapeutic approaches. Clinical studies have associated a lack or low291

expression of CCR5 to provide a natural resistance of HIV infection.53 Mutational analysis,292

for example the deep mutational scanning of these receptors could provide an invaluable293

insights into the function of these receptors albiet at a high experimental cost.11,45 There are294

more than 20 chemokine receptors in the human body,54 of which only 2 currently have a295

mostly complete mutational dataset.55 Evaluating the TLmutation algorithms on these two296

datasets would allow us to uncover the sequence-function relationship for other chemokine297

receptors.298

In this case study, we utilized available single point mutation datasets for two proteins,299

CXCR4 and CCR5, and two different experiments, expression level and bimolecular fluores-300

cence complementation (BiFC) assay.55 Sequence identity and similarity between CXCR4301

and CCR5 are ∼ 30% and 50%, respectively (Figure 5). The proposed supervised and302

unsupervised TLmutation algorithms were implemented and tested for one case of super-303

vised transfer and four different cases of unsupervised transfer. The EVmutation models for304
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CCR5 and CXCR4 were built using 95619 and 94461 natural sequences using the algorithm305

as explained in the literature to compare its performance with the TLmutation.20306

Figure 5: (A) Sequence alignments of chemokine receptors CXCR4 and CCR5. Identical
residues colored in red boxes, where similar residues are colored in red letters. Corresponding
secondary structure is placed above the aligned sequence. The amino acid sequences of the
two receptors share a 30% sequence identity and 50% sequence similarity. Crystal structures,
depicted in cartoon and surface representation, of CXCR4 (PDB: 4RWS) (B) and CCR5
(PDB: 4MBS) (C). (D) Cartoon representation of CXCR4 superimposed on CCR5 shows
the high structural similarity between these receptors.

We want to learn a Potts model that can predict the effects of mutations on expression307

levels of CXCR4 given a Potts model trained on natural sequences related to CXCR4 and its308

expression levels for 6994 single point CXCR4 mutants. Using the supervised TLmutation309

algorithm, a 5-fold cross-validation was performed for the available experimental data on310

expression levels of CXCR4. The Spearman coefficients for the training data increased from311
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Table 1: Unsupervised transfer learning between homologous chemokine receptors. Higher
Spearman coefficient indicates better match with the actual data. Correlations are an average
of 5 replicates obtained by using 90% of the source domain, randomly selected, as the training
set followed by prediction of the effect of mutations in the target domain.

Source New Task EV ρ Supervised TL Target EV ρ Unsupervised TL
Protein (Experiment) (for Source) ρ (for Source) Protein (for Target) ρ (for Target)

CCR5 BiFC 0.134±0.006 0.353±0.003 CXCR4 0.256 0.269±0.003
CXCR4 BiFC 0.257±0.005 0.457±0.005 CCR5 0.135 0.146±0.001
CCR5 Expression 0.327±0.002 0.518±0.004 CXCR4 0.174 0.207±0.001
CXCR4 Expression 0.175±0.004 0.397±0.003 CCR5 0.326 0.367±0.002

0.174±0.006 to 0.403±0.005 and the coefficients for the test data increased from 0.174±0.023312

to 0.279± 0.041 as it is shown in Figure 6 C. For all of the 5 folds, the correlation between313

predicted ranks and actual experiment is higher compared to EV model. For fold 3, the314

projection of the combined error for each residue is shown on the 3D structure of CXCR4315

in Figure 6 A and B. The overall error is considerably lower for the proposed algorithm as316

compared to EVmutation model.20317

The effectiveness of the unsupervised TLmutation algorithm in predicting expression318

levels and BiFC was evaluated on four different cases: (1) transfer from CXCR4 to CCR5319

expression, (2) CXCR4 to CCR5 BiFC, (3) CCR5 to CXCR4 expression, and (4) CCR5 to320

CXCR4 BiFC, as shown in Table 1 and Figure 6 D. Spearman coefficients in the third and321

fourth columns in Table 1 illustrate the improved performance of the supervised transfer on322

the training data compared to the EV model and Envision. The sixth and seventh columns323

indicate the Spearman coefficients of test data for EVmutation model and using the unsu-324

pervised TL, respectively. In all the cases, we observed that the proposed approach shows325

improvement over the current genomic prediction method (EVmutation model). For the326

first case (the first row of Table 1), where the supervised transfer is performed on expression327

levels of CXCR4, and the unsupervised transfer is to CCR5, we project the prediction errors328

of each residue onto the crystal structure (Figure 6 E and F). Likewise, the prediction errors329

are lower for the proposed unsupervised transfer, as compared to the EVmutation model.330
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Figure 6: Comparison of the CXCR4 expression levels predicted from the EVmutation (A)
and supervised TLmutation (B). Color indicates relative error with respect to experimental
value, ranging from low (white) to high (red). Residues of low-confidence predictions (<20
residues) are colored in grey. (C) Test Spearman coefficients in 5-fold cross-validation of
CXCR4 on predicting the expression levels. Correlation with experimental values is shown
on the Y axis, which measures the performance of the predictive model. Higher Spearman co-
efficient indicates better match with the data. (D) Performance of unsupervised TLmutation
in regards to predicting different experiments for the target protein is compared with EVmu-
tation and Envision. For these cases, training data sets are unavailable. The knowledge is
transferred to the target in order to predict mutagenesis effects. Error in prediction of CCR5
expression as compared to experimental data using (E) EVmutation and (F) unsupervised
TLmutation algorithm.
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Discussion331

In this work, we aimed to extract new predictive models of the biological function of proteins332

from predictive models trained on the evolutionary data and extending it to a new protein333

via unsupervised transfer learning. We showed that these techniques are efficient for multiple334

case studies, and compared the results with successful variant predictors EVmutation20 and335

Envision.19 Another aspect of the work was focused toward understanding which subsets of336

data points yielded the most informative predictions. We showed, through our algorithm,337

that having few single point mutations on each position was sufficient to estimate the effects338

of other point mutations in the same sites. As these experiments are challenging and the data339

points may not contain uniform information, one natural followup of our work is to extend340

the algorithm to an active learning approach. In this scheme, we can suggest which mutations341

should be tested over few rounds and adaptively strengthen the model. Additionally, as these342

datasets are susceptible to noise, one approach is to implement the algorithm to enhance343

low-confidence predictions. By obtaining training data on the parts of the dataset which344

provide maximum information gained, we can reduce the number of experiments and train345

more powerful models with limited amounts of data.346

One of the questions that remains unanswered in this work, is how to define the degree347

of transferability between domains and tasks. In this application, we compared the proteins348

based on their sequence and structural similarities. However as we do not have enough349

datasets to check the transferability between multiple proteins, it is challenging to define350

criterion that would allow successful transfer of knowledge between similar proteins. The351

example in this paper explored the transferability between CXCR4 and CCR5 proteins with352

∼ 30% sequence identity. When decoupling the survival parameters that do not contribute353

to a particular function of the protein, we assume that the experimental assay from deep354

mutagenesis is a measure of this function. However, this may not always be the case and may355

result in low correlations or differences in correlations between experiments. Additionally,356

while the functional residues between homologous protein may be similar, we do not account357
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for the differences in the mechanism of these functions that are not represented in the model.358

For example, Sultan et al.56 have shown that the a neural network model trained for a protein359

using molecular dynamics trajectory data can efficiently be transferred to perform enhanced360

conformational sampling on a related mutant protein. However, Moffett and Shukla have361

shown that the transferrability of functional dynamics between related proteins is not always362

high and it depends on the differences between the functional free energy landscapes of363

protein and its mutants.57 Therefore, while we expect systems of high sequence identity or364

structural similarity to be more transferable, we cannot validate this claim due to the lack365

of mutational datasets of homologous proteins.366

Overall, we anticipate supervised TLmutation will be useful in predicting the effects367

of multiple point mutations and filling out gaps in mutagenesis datasets. Unsupervised368

TLmutation will help to expand the knowledge to predict the effects of the mutation in369

many homologous proteins. We expect unsupervised TLmutation to continue to improve as370

more datasets of homologous proteins become available. Furthermore, the proposed transfer371

learning algorithms were shown to be generalizable to all MRF models, which could be372

applicable to other disciplines.373
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