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SUMMARY 

The Columbia Cancer Target Discovery and Development (CTD2) Center has developed PANACEA 

(PANcancer Analysis of Chemical Entity Activity), a collection of dose-response curves and 

perturbational profiles for 400 clinical oncology drugs in cell lines selected to optimally represent 19 

cancer subtypes. This resource, developed to study tumor-specific drug mechanism of action, was 

instrumental in hosting a DREAM Challenge to assess computational models for de novo drug 

polypharmacology prediction. Dose-response and perturbational profiles for 32 kinase inhibitors were 

provided to 21 participating teams, who did not know the identity or nature of the compounds, and they 

were asked to predict high-affinity binding among ~1,300 possible protein targets. Best performing 

methods leveraged both gene expression profile similarity analysis, and deep-learning methodologies 

trained on individual datasets.  This study lays the foundation for future integrative analyses of 

pharmacogenomic data, reconciliation of polypharmacology effects in different tumor contexts, and 

insights into network-based assessment of context-specific drug mechanism of action. 

KEY WORDS 

Polypharmacology, pharmacogenomics, DREAM challenge, community challenge,   

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.21.423514doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423514
http://creativecommons.org/licenses/by/4.0/


4 
 

 

INTRODUCTION 

Non-canonical drug targets are known to contribute to clinical toxicity (off-target effects). More recent 

work, however, suggests that off-targets may also drive clinical efficacy (Dar et al., 2012; Lin et al., 

2019). Systematic, de novo elucidation of compound mechanism of action (MoA), including 

polypharmacology, is thus emerging as a critical, yet still highly elusive problem in clinical oncology. 

Availability of new methodologies for the comprehensive assessment of on- and off-target drug binding 

could help discriminate between targets driving efficacy or toxicity, and those producing non-relevant 

clinical effects (Hopkins, 2008). 

Traditionally, the molecular targets of a drug that comprise its MoA have been defined by detailed 

thermodynamic (binding strength) and crystallographic (binding structure) characterization of a drug’s 

interaction with individual proteins (Anderson, 2003). This approach is quite effective as it directly 

facilitates structure-based drug design. Unfortunately, such a “one-drug/one-target” paradigm is often 

insufficient to mechanistically elucidate clinical phenotypes induced by even classical drugs, such as 

aspirin (Bedard et al., 2020; Proschak et al., 2019). As a result, there is an increasing need to 

systematically characterize drugs in terms of their polypharmacology, defined as their binding affinities 

across a comprehensive protein landscape (Milletti and Vulpetti, 2010). A complementary and even 

more complex issue is the assessment of key secondary effectors, downstream of a drug’s high-affinity 

binding targets, which may be highly context-specific and may thus determine the ultimate 

pharmacological activity of a compound in specific tissues.  

An increasing number of efforts have emerged to leverage large-scale perturbational profiles—i.e., 

mRNA profiles of cell lines and tissues before and after perturbation with a small compound—to predict 

both high-affinity binding targets and context-specific effectors (Bansal et al., 2014; Iorio et al., 2010; 

Shen et al., 2017; Woo et al., 2015). The key assumption behind the use of perturbational profiles for 

this purpose is that differential gene expression is controlled by transcription factors and co-factors that 
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represent the key downstream effectors of a compound’s high affinity binding targets (Figure 1A) 

(Alvarez et al., 2016, 2018). For example, the drug lapatinib inhibits EGFR (target) which induces gene 

expression changes via downstream transcription factors, including MYC and E2F family proteins 

(effectors) (Blumer and Johnson, 1994; Kolch et al., 2015). As a result, drug-induced differential 

expression of MYC and E2F transcriptional targets may help distinguish EGFR inhibitors from inhibitors 

with a different downstream effector repertoire (Figure 1A). By extension, compounds targeting the 

same proteins should induce similar transcriptional signatures and, vice-versa, the transcriptional 

signature of a compound should provide insights into its mechanism of action. 

Availability of a compound-matched, tissue-specific dose response curve (DRC) further improves 

compound targets assessment. First, it allows perturbational profile generation at high, yet sub-lethal 

concentrations, thus preventing emergence of cell-mediated responses, such as apoptosis or cellular 

stress that would confound the true mechanism of action. Second, availability of differential cell killing in 

multiple molecularly-distinct tissues further informs on compound activity based on availability of 

specific proteins and complexes (Schenone et al., 2013). 

Protein kinases represent one of the most thoroughly studied drug target classes. The rationale is two-

fold. First, protein kinases comprise some of the most frequently mutated oncogenes; as a result, their 

inhibitors have provided critical support for the oncogene addiction hypothesis. Second, ATP-

competitive pull-down assays enable effective and systematic binding affinity measurements across 

comprehensive protein kinase repertoires. The most comprehensive such evaluation to date, the 

Kinome-Binding Repertoire (KBR), measured the affinity of 230 clinically-relevant kinase inhibitors 

across 255 kinases (Klaeger et al., 2017). While restricted to this protein class, this highly informative 

and robust dataset is well-suited to benchmarking methods aimed at predicting drug polypharmacology, 

thus providing much needed systematic and objective criteria for the evaluation of systems 

pharmacology approaches. 
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To leverage the KBR in assessing the research community’s ability to predict kinase inhibitors’ 

mechanism of action from drug perturbation profiles, we designed a DREAM Challenge (Costello et al., 

2014; Saez-Rodriguez et al., 2016) based on PANACEA (Pan-cancer Analysis of Chemical Entity 

Activity)—a newly-developed, large-scale resource comprising genome wide RNASeq profiles and 

matched DRCs of multiple cell lines, following perturbation with hundreds of clinically relevant 

compounds. This extends and complements previous computational and systems pharmacology 

DREAM challenges by shifting the question from drug sensitivity to drug MoA. The PANACEA data 

used in this challenge includes matched dose-response curves and perturbational RNASeq profiles, 

representative of approximately 400 clinical oncology drugs—including FDA approved and late-stage 

(phase 2 and 3) compounds—on 11 cell lines, in replicate (Figure 1B). From these, we selected a 

subset of 32 kinase inhibitors that were also represented in the KBR (Figure 1C,D). 

Challenge participants were provided with perturbational profiles and DRCs (Figure 1E) and were 

asked to predict high-affinity binding targets for the 32 drugs by developing and training machine 

learning algorithms on these data, on data from public databases such as (Barretina et al., 2012; Iorio 

et al., 2016; Subramanian et al., 2017), as well as by leveraging insights and models developed in 

previous DREAM Challenges (Bansal et al., 2014; Cichonska et al., 2020; Costello et al., 2014; 

Menden et al., 2019). To make the challenge realistic, participants were not aware that compounds had 

been selected from the KBR collection and that they were kinase inhibitors. The Challenge was run 

from December 2019 to February 2020, and led to the development and assessment of state-of-the-art 

approaches for inferring drug MoA from perturbational profiles, described herein. 

Results 

Challenge Requirements and Data: In the CTD2 Pancancer Drug Activity DREAM Challenge, 

participants were asked to use DREAM-provided as well as existing pharmacogenomic datasets—

including cell line-matched dose-response curves (DRCs) and gene expression profiles of drug-naïve 

and drug-perturbed cells (perturbational profiles)—to predict compound binding proteins (high-affinity 
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targets) of 32 anonymized drugs (Figure 1A). More specifically, the DREAM-provided dataset 

comprised 704 DCRs and matched perturbational profiles of these 32 drugs in 11 cell-lines 

representing molecularly distinct tumor subtypes, in replicate (Figure 1E). The drugs were selected so 

that they had molecular profile in PANACEA and experimental characterization of their high affinity 

binding targets in the Kinome-Binding Resource (KBR) (Klaeger et al., 2017).  

Participants were encouraged to combine these data with additional, publicly available resources to 

infer the high-affinity binding targets of the 32 drugs from a repertoire of ~1,300 potential drug-targets. 

These were defined as the union of all Drug-Bank reported targets and the 255 kinases profiled in the 

KBR. Drug names were obfuscated, to prevent potential trivial training of the algorithm on the KBR data 

(Figure 1F), and participants were not aware that the KBR data would be used as a gold standard for 

performance assessment. 

Consistent with past DREAM studies, the challenge included a leaderboard round followed by a final 

validation round (Saez-Rodriguez et al., 2016). During the former, teams were allowed to submit up to 

five predictions for the 32 compounds, which were scored and posted to a public leaderboard. The 

purpose of this round was to enable experimentation and conceptual flexibility in model development by 

providing rapid feedback on the accuracy of the model, while also encouraging competition among 

participants. A limit of 5 submissions was chosen to allow model refinement without compromising the 

statistical independence of the training and testing model, thus reducing the potential for over-fitting. In 

the final validation round, participants were asked to submit their final model’s predictions with 

accompanying source code, thus allowing objective validation of their methodology. Model performance 

was evaluated according to each team’s ability to prioritize bona fide targets of the 32 drugs, with the 

latter defined as having a dissociation constant Kd < 1μM in the KBR, according to two complementary 

metrics, which were summarized by two sub-challenges: 

Sub-challenge 1 (SC1) was designed to assess the ability of each submitted prediction to identify high-

affinity binding targets (Kd < 1μM) of each of the 32 compounds, among the top 10 highest scoring 
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predicted targets. The rationale for selecting the top 10 targets was to represent the number of 

predictions that could be realistically validated using experimental assays. For each submitted drug 

prediction, a p-value was calculated by filtering the prediction list to consider only targets in the KBR, 

and comparing the number of bona fide targets (Kd < 1μM in the KBR) in the top 10 predicted targets  to 

a null model generated from all possible targets, and similarly filtered to consider only targets in the 

KBR. A final integrated score was computed by averaging the -log2(p-value) for each drug across all 32 

drugs. 

Sub-challenge 2 (SC2) was designed to assess the ability of each submitted prediction to accurately 

rank all the unknown bona fide targets (Kd < 1μM), by computing their enrichment—and associated 

p-value—within the ranked list of predicted targets. The rationale for this second metric was to provide 

a more comprehensive and fine-grained comparison of the different methodologies (Figure 1F). Similar 

to SC1, a final integrated score was computed by averaging the -log2(p-value) for each drug across all 

32 drugs. 

 

Challenge Results: During the leaderboard phase (2 months), 21 teams contributed 86 prediction 

matrices of which 39 (45%) showed an average mean p-value of < 0.01 via both SC1 and SC2 (Figure 

S1A-B). Interestingly, SC1 & SC2 scores revealed distinct distribution-profiles: on average, most 

predictions were statistically significantly enriched on the top-10-target metric (SC1), but not on the 

entire list enrichment (SC2) (Figure S1A-B)  

Consistent with previous DREAM challenges, we established a performance ranking score for both 

sub-challenges by performing a bootstrap analysis of each team’s final submission by calculating a 

Bayes factor relative to the bootstrapped best submission for each sub-challenge (see Methods). 

Figures S1C and 2D summarize the results of this analysis, with each box showing a team’s 

bootstrapped scores and the color of the box indicating the Bayes factor relative to the top performer. A 

Bayes factor of 3 or less indicates that models are statistically indistinguishable from the top-ranked 
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submission. Using this criteria, Team Atom and Team netphar were confirmed as the top-performers in 

SC1 and SC2, respectively (Figure S1C-D), while team SBNB was a close second in SC2 (Bayes 

factor 3-5).  A description of team Atom, Netphar and SBNB algorithms is provided in the STAR 

methods section. 

To better understand the models and the difference in their performance, we examined sub-challenge 

scores on an individual drug basis (Figure S1E-F).  Two clusters emerged, which separated teams 

based on whether they had used additional training datasets to train their algorithms. (Table 1). In 

general, overall performance was positively correlated with the number of additional databases utilized 

in the analysis, accounting for 27% of the variance in SC1 and a remarkable 82% of the variance in 

SC2. 

 
Contribution of Training Data Sources to Model Performances: Both SC2 winning teams, Netphar 

and SBNB, employed multiple highly curated datasets for training their algorithm. Netphar relied on the 

multi-database resources DrugComb (cytotoxicity) (Zagidullin et al., 2019) and DrugTargetCommons 

(drug targets) (Tang et al., 2018); SBNB relied on the multi-modality ChemicalChecker database 

(Duran-Frigola et al., 2020). Figure 2 provides a high-level, conceptual summary of the types of data-

sources included in these meta-databases, organized by data type and source. 

Overall, the datasets used to train the algorithms could be divided into two main categories: 

experimental screening-based and literature curation-based (Figure 2). Screening approaches have 

the advantages of providing measurements that are quantitative, directly comparable, and systematic 

(i.e. low sparsity). However, they may suffer from technological platform bias.  Literature-curation has 

the advantage of reflecting a multi-laboratory consensus but suffers from the disparate, ad hoc nature 

of the measurements and from lack of systematic assessment (high sparsity) (Figure 2). Team 

performance was further stratified based on whether they relied on (1) drug-target databases, (2) drug-

perturbational databases and/or (3) cytotoxicity databases. As further discussed below, drug-target and 
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perturbational databases provided the greatest accuracy boost across all drugs. In contrast, use of 

cytotoxicity databases in the training process improved performance only for a few specific drugs. 

Critically, all teams chose to use literature-based datasets for identifying candidate drug targets. This is 

an important detail because while methods were trained on literature-based “drug-target” definitions, 

they were eventually evaluated based on objective, high-accuracy ATP-competitive assays (Figure 

1F). To better understand the overlap between literature-based and ATP-based drug targets we 

evaluated the overlap between DrugBank and KBR targets (Figure 3). Specifically, we measured the 

number of DrugBank-reported protein kinase targets that were recovered across a range of affinity 

thresholds from 1 nM to 10 µM in the KBR (Figure 3A). Encouragingly, almost 80% of them were 

identified in the KBR using a Kd < 1μM threshold (Figure 3A), consistent with a common “rule-of-

thumb” for drug-lead development (Anderson, 2003). As a result, this threshold was selected to identify 

bona fide, high-affinity binding targets in the KBR for method’s performance assessment. 

Interestingly, while a 1 µM threshold identified the majority of DrugBank kinase targets, it also revealed 

the presence of a significant number of new targets not reported in DrugBank (Figure 3B). Overall, this 

shows that, while DrugBank is mostly recapitulated by the KBR, the reverse is not true, suggesting that 

DrugBank may not contain all of the high-affinity targets of a drug. A key question raised by this 

comparison is whether the winning methods’ performance may have been driven entirely by canonical 

DrugBank Targets. To address this question, we evaluated the ratio between the scores of the top 

three winning teams when either DrugBank or KBR targets were used as bona fide high-affinity targets 

of the 32 drugs used in the challenge (Figure S3). While the scores based on DrugBank targets were 

consistently higher (Netphar: 3:2, SBNB: 4:2, Atom: 1.7:1.4) all showed positive enrichment within the 

prediction vector (Figure S3).   This result implies that literature-curated drug-targets can be 

successfully used to bootstrap the polypharmacology analysis of otherwise uncharacterized drugs, thus 

further supporting the value of these resources. 
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In addition to DrugBank, two additional drug target databases—ChEMBL (Mendez et al., 2019) and 

DrugTargetCommons (Tang et al., 2018)—were used by the top performer teams. Plotting the overlap 

of all drug-target pairs across all four drug-target databases, only 121 targets (34%) were found to be 

unique to the KBR (Figure 3C). Taken together, these databases provided up to 2,386 additional drug-

target interactions, of which 520 (21%) were evaluated in the KBR but were found to have affinities 

> 1μM, suggesting that they are false positive drug-target interactions (Figure 3D).  

Interestingly, when comparing the overlap of the top 10 targets predicted by the winning teams in each 

database, the observed differences strongly reflect the training datasets used by each team (Figure 

3E). For instance, as one would expect, SBNB and Netphar results were biased towards DrugBank and 

DrugTargetCommons targets, respectively.  

 

Kinase Groups have Distinct Transcriptional Programs: The drivers of model performance by 

examining prediction accuracy for individual kinase inhibitor groups, as defined in (Manning et al., 

2002) (Figure 4A-B) was explored next. Significant heterogeneity in methods performance across 

individual drugs was observed, suggesting that differences in modeling strategies (see next section) 

may be leveraged to predict different drug classes. For instance, all winning methods performed better 

on the tyrosine-kinase inhibitors group than on any other kinase group (Figure 4C). 

We thus hypothesized that specific kinase groups and families may be associated with distinct 

transcriptional programs. To evaluate the general relationships between kinase-targets and mRNA 

programs, we assessed the correlation of the KBR-reported Kd with drug-induced pathway expression 

values (generated from the PANACEA drug perturbation database) across 84 drugs that overlap in both 

databases (Figure 4D). This correlation matrix is plotted with phylogenetic tree based kinase-groups 

annotated on top bars. Examining the protein kinase mRNA-program matrix, tyrosine kinases (dark 

purple) formed an obvious cluster (Figure 4D columns), showing the strongest association with 
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proliferation programs (Figure 4D rows, bottom cluster): E2F targets, MYC targets, G2M checkpoint, 

oxidative phosphorylation, mTOR-signaling. 

To better understand the nature of the biological pathways underlying this association Figure 4D’s 

kinase-dimension was transformed into KEGG-pathway space (Kanehisa et al., 2017) (see Supporting 

Information: Method Details for Figures), yielding a matrix of associations between kinase-signaling 

pathways and downstream transcriptional programs (Figure 4E).  This analysis revealed a distinct 

pattern of transcriptional signatures that distinguished tyrosine-kinase inhibitors, from cell-cycle 

inhibitors and TGFβ inhibitors (Figure 4E).  This unsupervised analysis is consistent with the current 

knowledge of the hierarchical structure of these signaling pathways where RTK-inhibition suppresses 

MYC-programs and the cell-cycle, while CDK-inhibitors suppress cell-cycle transcriptional programs but 

not MYC (Figure 4F) (Kolch et al., 2015). 

Methodological Summary: Overall, the methods submitted to the final validation round could be 

broken into three general categories: 

1. Methods relying on a weighted average of differential gene expression and Area Under 

the Curve (AUC)-based DRC-similarity across drugs and drug-targets. These included 

Netphar, SBNB, Xielab, Theragen. 

2. Methods relying on neural networks trained on prior information relating differential gene 

expression to drug-targets. These included Atom, DMIS_PDA, and TeamAxolotl 

3. Methods based on fully unsupervised data transformation combining differential gene 

expression and DRC data. These included AMbeRland, SenthamizhamV, Signal. 

Generally, similarity-weighted average methodologies performed best in SC2 (Netphar 1st,SBNB 

2nd,Theragen 3rd)—i.e. they were better at predicting the entire range of targets— while Neural 

Network-based methodologies performed best in SC1 (Atom 1st, DMIS_PDA 3rd)—i.e., they were better 

at predicting targets in the range that could lead to realistic experimental validation. Fully unsupervised 

methods showed the worst performance.  Nonetheless, they still managed to achieve statistical 
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significance, without leveraging any prior knowledge, suggesting the potential for novel mechanistic 

insight that could be combined with prior knowledge in the future. 

In addition, there were differences in the training data sets used by algorithms in the first two 

categories. While weighted similarity methods used both transcriptional and cytotoxicity data (Figure 

1E & 5A), neural network methods were trained exclusively with transcriptional profile data (see 

Sensitivity Data section below). Intriguingly, the winning neural network method (Atom) used protein 

structure data to further train their neural network (Figure 5B). This particular prior knowledge, is worth 

noting because it underlies several traditional approaches to structure-based drug design (e.g. ligand-

docking to homology models) and off-target discovery (e.g. BLAST searches in DrugBank (Wishart et 

al., 2018)). Unfortunately, while such an approach may eventually help distinguish high-affinity binding 

targets from key downstream effectors, use of protein sequence information improved Atom’s 

performance only by a small, non-statistically significant amount. 

Contribution of Drug Sensitivity Data: Previous work (Szalai et al., 2019)  has shown that training on 

drug-sensitivity profile data can provide comparable prediction performance to training on 

transcriptional signatures. As such, we sought to investigate the contributions of drug sensitivity and 

drug transcriptional data to the performance of the winning Netphar model (which utilized both).  Drug 

sensitivity training data was obtained from DrugComb, a curated database that includes batch-

corrected drug sensitivities for both single drugs and drug combinations (Zagidullin et al., 2019). In 

addition to the commonly used IC50, DrugComb provides an AUC-based RI (Relative Inhibition) metric 

(Malyutina et al., 2019) which captures both the potency and efficacy of drug responses (Figure S4A). 

Examining correlations between predicted and gold-standard targets, we found that adding drug 

sensitivity data significantly improved prediction accuracy, relative to transcriptional data alone (Figure 

S4b). In particular, performance improvements were driven by several individual drugs whose targets 

were poorly predicted based on perturbational profile data only, including sunitinib, crizotinib, and 

crenolanib (Figure S4c). Finally, we tested whether the additional efficacy information provided by the 
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RI metric improved model performance. Indeed, use of the RI metric in the predictive algorithms 

produced statistically significant, albeit marginal overall improvement (median 0.18 compared to 0.19, 

paired Wilcoxon test P-value = 0.025), highlighting the potential value of this metric in modeling drug 

properties. 

DISCUSSION 

Mechanism of action elucidation is a critical, yet time-consuming step in the drug development process 

(Scannell et al., 2012). It helps to identify on- and off-target effects supporting the activity of the 

compound (polypharmacology), as well as off-target effects that may cause unwanted toxicity. This 

addresses the two major reasons for clinical trial failure, i.e., lack of safety and/or lack of efficacy (Kola 

and Landis, 2004; Wehling, 2009). It is reasonable to expect that failure rates may be substantially 

reduced if compound MoA could be assessed more accurately and comprehensively, including in terms 

of its tissue-specific differences. 

Drug MoA is defined as the set of biochemical interactors and effectors through which the drug 

produces its pharmacological effects, both positive and negative. These are almost invariably cell-

context specific. Despite its relevance, MoA characterization still represents a significant challenge, 

which is only partially addressed by experimental and computational strategies. Most of the 

experimental approaches rely on direct binding assays, such as ATP competitive pulldown (Klaeger et 

al., 2017), affinity purification (Hirota et al., 2012; Ito et al., 2010) or affinity chromatography assays 

(Aebersold and Mann, 2003). These labor-intensive methods are generally limited to the identification 

of high-affinity binding targets, rather than the full protein repertoire responsible for compound activity in 

a tissue, and are often restricted to a specific protein family, such as protein kinases, for instance. Thus 

critically relevant targets outside of these relatively narrow confines may be missed, as shown by the 

recent reclassification of the MET tyrosine receptor kinase inhibitor tivantinib as a microtubule inhibitor 

(Basilico et al., 2013). Indeed, drug polypharmacology is emerging as a critical concept that 

increasingly impacts our understanding of how drugs work in disease, for instance via a field-effect 
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mediated by multiple targets rather than by their primary, high-affinity binding target. OTS964, for 

instance, a compound originally developed as a MELK inhibitor, was recently shown to manifest its 

antitumoral activity via an entirely different target, CDK11, which had originally been missed in its MoA 

characterization (Lin et al., 2019).  

A few computational approaches have also been developed to infer MoA (Keiser et al., 2009; Lomenick 

et al., 2009; Miller et al., 2002), including using structural and/or genomic information (Yamanishi et al., 

2008), text-mining algorithms (Li et al., 2009), or data-mining (Hansen et al., 2009; Perlman et al., 

2011). As such, they rely on detailed three-dimensional structures of both the drug molecules and the 

target proteins or on prior knowledge (literature or database derived) of related compounds. More 

recently, systematic gene expression profiling (GEP) following compound perturbations in cell lines 

(Bansal et al., 2014; Lamb et al., 2006; Subramanian et al., 2017; Woo et al., 2015) has furthered the 

development of computational methods for MoA analysis.  

In this manuscript we report on a DREAM community challenge to assess the ability to predict drug 

mechanism of action inference from drug perturbational profiles, using a comprehensive, experimental 

protein kinase binding affinity benchmark. This objective benchmark is based on a systematic set of 

ATP competitive binding assays assessing the ability of 230 candidate kinase inhibitor molecule to bind 

to one of 255 protein kinases. The corresponding Kinome Binding Repertoire (KBR) database 

represents the first objective and systematic resource supporting this kind of study.  

Drug MoA inference is at best in an embryonic state and the expectation is that this kind of objective 

assessment through community challenges will significantly increase both the focus on this important 

topic and provide critical resources for the analysis, potentially leading to a new field of investigation. 

Consistent with these goals, the results from this study provide unique insight into the approaches that 

can be used to understand drug MoA, as well as a comprehensive repertoire of datasets and resources 

that can be leveraged in such studies, as reported by the individual participant labs.  
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A critical issue emerging from the evaluation of individual prediction performance and individual 

databases is that the concept of drug target is still poorly defined and inconsistent. For instance, even 

restricting the comparison strictly to protein kinases, comparison of targets defined in DrugBank vs. 

KBR shows that the former may be missing data and may contain false positive targets, whose binding 

affinity is >1μM (Figure 3). Yet, it is unclear whether there may be a) false negatives in the KBR, for 

example if  allosteric binding or protein degradation occurred upon drug binding as it would be missed 

by an ATP competitive binding assay, or b) false positives in DrugBank. More critically, it is unclear 

whether the targets reported in one database but not the other may actually play a relevant 

pharmacological role, either in disease treatment or in the emergence of undesirable side effects. 

While this was not the main objective of the DREAM Challenge, the study also provides significant 

insights on the network of effector proteins downstream of high-affinity binding targets. Indeed, the fact 

that the perturbational signature significantly contributed to correct target inference suggests that the 

transcriptional regulators that are critical effectors of the high-affinity binding targets represent a 

valuable reporter assay that can distinguish the MoA of different compounds. Furthermore, the analysis 

shows that availability of matched DRC and perturbational profile data for each drug provided a 

statistically significant contribution to the quality of the prediction. Currently, there are databases, such 

as CTRP (Basu et al., 2013), that provide a DRC profiles for a large number of drugs and cell lines as 

well as databases such as LINCS (Subramanian et al., 2017) that provide access to large-scale 

perturbational profile datasets. However, the availability of matched DRC and perturbational profiles, 

such as those provided by the PANACEA resource, would be beneficial to the community. For instance, 

drugs such as sunitinib, crizotinib and crenolanib produced significantly poorer performance when 

analysis was restricted to perturbational profiles but performed significantly better when DRC and 

perturbational profile data were integrated. These drugs are known to inhibit multiple targets, which is 

often considered the hallmark of a “dirty drug.” Multiple targets generate a complex profile of 

downstream effector activation and inactivation, which are harder to deconvolute. To improve these 
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predictions, a set of perturbational data from individual targets, for instance following their CRISPRi-

mediated silencing, would be helpful.   

 Interestingly, tyrosine kinase inhibitors were predicted with higher accuracy by all of the 

methods (Figure 4A-C). Examining correlations between binding constants and transcriptional profiles, 

we found that, relative to other inhibitors profiled within the KBR, tyrosine kinases inhibitors were mostly 

associated with suppression of proliferation signatures (Figure 4D). This is perhaps unsurprising as 

growth factor control of the cell cycle is typically mediated by receptor tyrosine kinases. Looking at 

enrichment of KEGG-pathways within Figure 4D’s correlation matrix we were able to identify a 

decoupling in effects of MYC and the cell-cycle (Figure 4E) that was consistent with hierarchy of known 

proliferation pathways (Figure 4F). Taken together, these results provide evidence that drug-perturbed 

transcriptional signatures can retain information on the signaling pathways directly downstream of 

molecular drug-targets. 

While we did not observe major differences between model performance based on modelling strategy, 

generally, similarity-weighted average methodologies performed best in SC2, while neural network-

based methodologies performed best in SC1. An important insight arising from the challenge is that 

current methodologies are best at identifying similarities between unknown compounds and compounds 

already reported in existing databases, rather than at elucidating compound MoA de novo. Indeed, all 

of the methodologies that did not rely on prior databases underperformed when compared to those that 

did. The fully unsupervised models, without leveraging any prior knowledge, assumed that direct 

perturbation of a protein leads to the gene expression change of the same protein. While this 

phenomenon cannot be generally assumed, it led to effective prediction in the case of several targets 

(e.g.: DRD1, EPHB2 and FYN kinase targeting drugs), suggesting that several proteins can regulate 

(indirectly) their own expression, probably via a feedback mechanism (Szalai and Saez-Rodriguez, 

2020).  The fact that all of the proposed methodologies produced statistically significant results 

suggests that genome wide perturbational profiles bring de novo prediction of compound MoA a step 

closer to be effectively useful in drug discovery.  
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Overall, this work suggests that predictive models can leverage perturbational data to effectively infer 

the MoA of small molecules and reveal biological insights about druggable pathways. Future studies 

using computational modeling to tackle this problem will be critical to the successful application of these 

methods. Specifically, developing a more systematic knowledge of drug targets, particularly for non-

kinase targets, would likely improve the ability of the community to develop accurate models. Additional 

development and benchmarking of unsupervised prediction methods may also be required for the 

accurate prediction of targets of novel molecules.  Finally, future work will be necessary to elucidate the 

best practices, limitations, and general applicability of these methods as a step in the drug discovery 

pipeline.  
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FIGURE LEGENDS: 

Figure 1. Underlying data and structure of poly-pharmacology community challenge. (A) Drug 

mechanism can be divided into direct binding targets and downstream effectors (B) the PanACEA 

database given transcriptional profiles of cell-lines perturbed by clinical oncology drugs (C) Kinome-

binding profiles of 32 kinase inhibitors (D) Transcriptional Hallmark programs induced by 32 kinase 

inhibitors (E) Challenge Structure: participants are given perturbed RNAseq and dose response data 
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and asked to predict protein-targets. (F) Challenge Evaluation: participant predictions are evaluated 

based on the enrichment of < μM binders within each drug-target prediction vector. 

 

Figure 2. The Universe of Training Data used in this Challenge. Drug-perturbation datasets can be 

divided into two major categories: technology-based and literature each with distinct limitations. 

 

Figure 3 Comparison of DrugBank and Kinome Drug-Target Definitions. A. An affinity threshold of 

1 µM within the kinome database successfully recovered almost 80% of the kinase-targets within 

DrugBank B. The Kinome-defined drug-targets appear to reveal a large number of new drug-targets (in 

red) in addition to the canonical drug-targets (in black) C. Drug-target pairs overlap across four drug-

target universes D. Drug-target pairs not detected in the kinome database used for PanACEA 

evaluation E. Number of successful top-10 predictions for each drug and team across the different drug 

target universes. 

Figure 4. Different Kinase Pathways show distinct mRNA-signatures when inhibited. A-B. Across 

all models tyrosine kinase (TK) targeting drug performed the best C. Distribution of Kinases profiled 

across the Human Kinome annotated by kinase group D. Correlation of kinase-binding data with 

transcriptional-program. E-F. KEGG-pathway transformation of kinase-space from C revealed pathway-

specific transcriptional signatures 

Figure 5. Comparison of the two winning strategies: weighted similarity and neural networks. A. 

Team Netphar (who won SC2) used a simple matrix manipulation procedure to predict drug-targets B. 

Team Atom (who won SC1) used a protein-sequence trained neural network. 
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TABLES: 

Table 1. Number of Additional Datasets Used by Participants for Training & Algorithm Class  

TEAM SC1 SC2 
# drug-AUC 

datasetsa 
# drug-mRNA 

datasetsb 
# drug-target 

datasetsc 
Total Training 

datasets 
Algorithm

Class 
Netphar 12.6 70.9 6 1 4 11 similarity
SBNB 11.7 59.2 6 3 2 11 similarity
Xielab 13.8 50.3 6 2 1 9 similarity
Atom 17.4 49.3 - 2 4 6 NN 
DMIS_PDA 13.8 35.2 - 2 1 3 NN 
Theragen 15.1 17.3 - 2 1 3 similarity
Signal 6.3 6.1 - 1 2 4 regression
TeamAxolotl 6.2 1.1 - - 2 3 NN 
AMbeRland 3.3 1.1 - - - 0 unsup. 
SenthamizhaV 7.4 0.9 - - - 0 unsup. 
a drug-sensitivity (AUC) databases include: NCI60 (Shoemaker, 2006), GDSC (Iorio et al., 2016), CTRP 
(Seashore-Ludlow et al., 2015), gCSI (Haverty et al., 2016), CCLE (Barretina et al., 2012), and other manually 
curated data  
b drug-mRNA-perturbation databases include: L1000-drugs, L1000-shRNA (Subramanian et al., 2017) and 
CREEDS (Wang et al., 2016) 
c drug-target datasets include: DrugBank (Wishart et al., 2018), ChEMBL (Mendez et al., 2019), KEGG (Kanehisa 
et al., 2019), MATADOR (Günther et al., 2008) 
 

STAR METHODS 

Key Resources Tables 

REAGENT OR RESOURCE SOURCE IDENTIFIER 
Chemicals 
AEE788 SelleckChem S1486 
Afatinib SelleckChem S1011 
AZD5363 SelleckChem S8019 
Bafetinib SelleckChem S1369 
Bosutinib SelleckChem S1014 
Cabozantinib SelleckChem S1119 
Cediranib SelleckChem S1017 
Crenolanib SelleckChem S2730 
Crizotinib SelleckChem S1068 
Dacomitinib SelleckChem S2727 
Dasatinib SelleckChem S1021 
Dovitinib SelleckChem S1018 
Foretinib SelleckChem S1111 
Gefitinib SelleckChem S1025 
Icotinib SelleckChem S2922 
Imatinib SelleckChem S2475 
KW2449 SelleckChem S2158 
Lapatinib SelleckChem S2111 
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Linifanib SelleckChem S1003 
MGCD365 SelleckChem S1361 
MK2206 SelleckChem S1078 
Neratinib SelleckChem S2150 
Nilotinib SelleckChem S1033 
Osimertinib SelleckChem S7297 
Ponatinib SelleckChem S1490 
Quizartinib SelleckChem S1526 
Regorafenib SelleckChem S1178 
Sorafenib SelleckChem S1040 
Sunitinib SelleckChem S1042 
Tivantinib SelleckChem S2753 
Vandetanib SelleckChem S1046 
Varlitinib SelleckChem S2755 
Commercial Assays 
CellTiter-Glo Luminescent Viability Assay Promega G7570 

 

Experimental Method Details 

The PANACEA database was developed in collaboration between Columbia University Irving Medical 

Centers (CUIMC)’s High Throughput Screening Center (HTS), Sulzberger Genome Center and the 

Califano Laboratory in the Department of Systems Biology. Briefly, HTS handled cell-culture, cell-

perturbation experiments and RNA extraction; the Genome Center performed RNA sequencing and the 

Califano laboratory performed data normalization, quality control, benchmarking and scientific and 

statistical analysis. 

Cell Line Viability: Cell-lines were obtained from ATCC and cultured using prescribed conditions.  To 

determine optimal seeding density for compound titrations (i.e. cell-growth is linear for the duration of 

experiment), 3.2 million cells of each cell line were plated and viability measured using CelTiter Glo 

(Promega Corp.) at 24, 48, 72 and 96 hours.  Briefly, 10 mL of 320,000 cells/mL cell-solution was 

added to column 11 of a 12w deep-well plate.   5mL from column 11 was then serially diluted 1:1 from 

column 11 through column 2. The Hamilton MicroLab automated liquid handling system’s Cell Line 

Optimization protocol was used to split the 12 w plates between 4 384 well plates for incubation.  384 

well plates were stored in the incubator and at 24, 48, 72 and 96 hours 1 plate was removed and 

allowed to sit for 15 minutes at room temperature.  25 uL of Cell Titer Glo was added to each well and 
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shaken at 800rpm for 5 min.  Finally luminescence was read using the EnVision Multi-Label Reader 

(Perkin Elmer Inc.).  The seeding density which resulted in linear increase of the cells was used for the 

perturbation experiments.   

Compound Titration Curves: To determine the 48h ED20 of each drug, cell lines were plated into 96-

well tissue culture plates, in 100 µL total volume, and incubated at 37°C. After 16 hours the plates were 

removed from the incubator and compounds were transferred into assay wells (1 µL) in triplicate. Plates 

were then returned to the incubator. After 48 hours the assay plates were removed from the incubator 

and allowed to cool to room temperature prior to the addition of 100 µL of CellTiter-Glo (Promega Inc.) 

per well. The plates were then mechanically shaken for 5 minutes prior to readout on the EnVision 

Multi-Label Reader (Perkin Elmer Inc.) using the enhanced luminescence module.  Relative cell viability 

was computed using matched DMSO control wells as reference. ED20 was estimated by fitting a four-

parameter sigmoid model to the titration results. 

Perturbational Profile Generation: Using the previously described plating and perturbation procedure 

we perturbed each cell-line with each drug at its 48h ED20 value (measured above) or its CMax 

concentration. In order to optimize the clinical translation potential of the perturbation databases, we 

used the CMax, defined as the maximum plasma concentration after the administration of the drug at 

the maximum tolerated dose in patients, (whenever available from published pharmacokinetic studies), 

as an upper bound for the perturbation studies (Supp Table 1). The mRNA from these cells was 

isolated and profiled by PLATESeq (Nat. Commun.  2017, 8, 105) at 24h after each perturbation.   

Computational Method Details 

Profile Normalization: RNASeq reads were mapped for each well to the human reference genome 

assembly 38 using the STAR aligner. Individual plates counts files were then combined, normalized 

and corrected for batch effects.   First, individual counts files were combined across genes and ERCC2 

spike-in counts removed, yielding the raw counts file for each cell-line experiment. Second, raw counts 

were quantile normalized and variance stabilized based on the negative binomial distribution with the 
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DESeq R system package (Love et al., 2014).  To account for plate-based batch effects (which are 

common with drug-perturbed transcriptomic data) normalized expression was batch corrected using 

ComBat (Johnson et al., 2007).   

Kinome and PANACEA Data Formatting: Kinome-binding data from Klaeger et. al (Science 2017) 

was downloaded at https://www.proteomicsdb.org/#projects/4257  via “Supplementary Table 3 Drug 

Matrices.”   Raw data was transformed to -log10 scale and NA’s replaced with the matrix maximum -

log10(Kd) of ~4.3 to represent the limit of detection of the technology.  PANACEA differential gene 

expression data was calculated using a moderated Student’s t-test as implemented in the limma 

package from Bioconductor with respect to pooled DMSO controls across all cell-line plates. 

Baseline Model:  For the baseline model, we used drug perturbation gene expression data from the 

LINCS-L1000 project (Subramanian et al., 2017) and drug-target information from the Drug 

Repurposing Hub (Corsello et al., 2017). We calculated consensus signatures (Szalai et al., 2019) for 

each drug with known target molecules. The DREAM-PanACEA gene expression dataset was 

standardised using the control measurements, and average signature was calculated for each DREAM-

PanACEA drug. We calculated the similarity (Spearman’s correlation) matrix between the LINCS and 

DREAM-PanACEA drug signatures, using only the measured (landmark) genes of LINCS-L1000. For 

each DREAM-PanACEA drug, we performed target enrichment (viper R package, (Alvarez et al., 

2016)) using the drug similarity vector and the known targets of the LINCS drugs. The normalised 

enrichment scores from target enrichment were further rank normalised for each drug, and submitted 

as baseline prediction.  

Scoring Algorithms: Participants submitted predictions for a list of 1259 “druggable” targets and 30 

drugs, with each prediction being a confidence score between 0 and 1 (where one is most confident 

that the target is a true target of a drug). We then filtered each submission to only consider the 255 

targets in the gold standard dataset. For the purposes of calculating p-values, we created 1000 null 

models by generating 1000 random prediction sets. These random predictions were generated by 
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sampling (without replacement) the full set of 1259 “druggable” targets using the dplyr “sample_frac” 

function to obtain a randomly-ranked set of targets (this procedure was repeated 1000 times) (Wickham 

et al., 2019). For SC1, we scored teams by evaluating the enrichment of their top 10 predictions for 

each drug in the gold standard dataset, as well as for one null model prediction, performing a paired 

Wilcoxon rank sum test (Mann-Whitney test) to generate a p-value for each prediction. We repeated 

this 10,000 times for each null model to generate a distribution of p-values for each submission, and 

calculated the mean p-value as the participants’ score. For SC2, the methodology and null models were 

identical, but instead of evaluating the enrichment of the top 10 predicted targets in the gold standard 

dataset, we assessed the ranks of the true targets within the full vector of 255 predicted targets for 

each drug. We again performed a paired Wilcoxon rank sum test (Mann-Whitney test) to generate a p-

value for each submission. We repeated this 1000 times for each null model to generate a distribution 

of p-values for each submission, and calculated the mean p-value as the participants’ score.  

Winners were determined by calculating a Bayes factor relative to the top-ranked submission in each 

category. We bootstrapped all of the submissions that qualified for final scoring by performing 10000 

iterations of sampling with replacement for each submission. For each bootstrap, we calculated the p-

values as described above to generate a distribution of scores for each submission. Using this 

distribution of p-values, Bayes factors were calculated for each submission relative to the top-scoring 

team using the challengescoring R package (https://github.com/sage-bionetworks/challengescoring). 

Ties were defined as submissions with a Bayes factor <= 3 relative to the top submission.  

Resource Availability 

Lead Contact: Further information and requests for resources should be directed to and will be fulfilled 

by the Lead Contact, Andrea Califano (ac2248@cumc.columbia.edu). 

Materials Availability: This study did not generate new unique reagents. 
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Data and Code Availability: Data used in the challenge, submission writeups, and other Challenge 

resources can be found at www.doi.org/10.7303/syn20968331. Code for scoring the predictions and for 

generating the null models is available here: https://github.com/Sage-Bionetworks-Challenges/CTD2-

Panacea-Challenge, and a Docker container that was used to deploy the scoring algorithm in this 

challenge is available to all registered Synapse users via the Synapse Docker registry 

(docker.synapse.org/syn20968331/scoring_harness:v3).  A Docker container for team netphar’s model 

is available at docker.synapse.org/syn21562777/ctd2_netphar_final:final_upd_14March. A Docker 

container for team Atom’s model is available at docker.synapse.org/syn21560898/ctd2_atom:v1. A 

Docker container for team SBNB’s model is available at 

docker.synapse.org/syn21553207/sbnb:9698788.  
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