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SUMMARY

The Columbia Cancer Target Discovery and Development (CTD?) Center has developed PANACEA
(PANcancer Analysis of Chemical Entity Activity), a collection of dose-response curves and
perturbational profiles for 400 clinical oncology drugs in cell lines selected to optimally represent 19
cancer subtypes. This resource, developed to study tumor-specific drug mechanism of action, was
instrumental in hosting a DREAM Challenge to assess computational models for de novo drug
polypharmacology prediction. Dose-response and perturbational profiles for 32 kinase inhibitors were
provided to 21 participating teams, who did not know the identity or nature of the compounds, and they
were asked to predict high-affinity binding among ~1,300 possible protein targets. Best performing
methods leveraged both gene expression profile similarity analysis, and deep-learning methodologies
trained on individual datasets. This study lays the foundation for future integrative analyses of
pharmacogenomic data, reconciliation of polypharmacology effects in different tumor contexts, and

insights into network-based assessment of context-specific drug mechanism of action.
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INTRODUCTION

Non-canonical drug targets are known to contribute to clinical toxicity (off-target effects). More recent
work, however, suggests that off-targets may also drive clinical efficacy (Dar et al., 2012; Lin et al.,
2019). Systematic, de novo elucidation of compound mechanism of action (MoA), including
polypharmacology, is thus emerging as a critical, yet still highly elusive problem in clinical oncology.
Availability of new methodologies for the comprehensive assessment of on- and off-target drug binding
could help discriminate between targets driving efficacy or toxicity, and those producing non-relevant

clinical effects (Hopkins, 2008).

Traditionally, the molecular targets of a drug that comprise its MOA have been defined by detailed
thermodynamic (binding strength) and crystallographic (binding structure) characterization of a drug’s
interaction with individual proteins (Anderson, 2003). This approach is quite effective as it directly
facilitates structure-based drug design. Unfortunately, such a “one-drug/one-target” paradigm is often
insufficient to mechanistically elucidate clinical phenotypes induced by even classical drugs, such as
aspirin (Bedard et al., 2020; Proschak et al.,, 2019). As a result, there is an increasing need to
systematically characterize drugs in terms of their polypharmacology, defined as their binding affinities
across a comprehensive protein landscape (Milletti and Vulpetti, 2010). A complementary and even
more complex issue is the assessment of key secondary effectors, downstream of a drug’s high-affinity
binding targets, which may be highly context-specific and may thus determine the ultimate

pharmacological activity of a compound in specific tissues.

An increasing number of efforts have emerged to leverage large-scale perturbational profiles—i.e.,
MRNA profiles of cell lines and tissues before and after perturbation with a small compound—to predict
both high-affinity binding targets and context-specific effectors (Bansal et al., 2014; lorio et al., 2010;
Shen et al., 2017; Woo et al., 2015). The key assumption behind the use of perturbational profiles for

this purpose is that differential gene expression is controlled by transcription factors and co-factors that
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represent the key downstream effectors of a compound’s high affinity binding targets (Figure 1A)
(Alvarez et al., 2016, 2018). For example, the drug lapatinib inhibits EGFR (target) which induces gene
expression changes via downstream transcription factors, including MYC and E2F family proteins
(effectors) (Blumer and Johnson, 1994; Kolch et al., 2015). As a result, drug-induced differential
expression of MYC and E2F transcriptional targets may help distinguish EGFR inhibitors from inhibitors
with a different downstream effector repertoire (Figure 1A). By extension, compounds targeting the
same proteins should induce similar transcriptional signatures and, vice-versa, the transcriptional

signature of a compound should provide insights into its mechanism of action.

Availability of a compound-matched, tissue-specific dose response curve (DRC) further improves
compound targets assessment. First, it allows perturbational profile generation at high, yet sub-lethal
concentrations, thus preventing emergence of cell-mediated responses, such as apoptosis or cellular
stress that would confound the true mechanism of action. Second, availability of differential cell killing in
multiple molecularly-distinct tissues further informs on compound activity based on availability of

specific proteins and complexes (Schenone et al., 2013).

Protein kinases represent one of the most thoroughly studied drug target classes. The rationale is two-
fold. First, protein kinases comprise some of the most frequently mutated oncogenes; as a result, their
inhibitors have provided critical support for the oncogene addiction hypothesis. Second, ATP-
competitive pull-down assays enable effective and systematic binding affinity measurements across
comprehensive protein kinase repertoires. The most comprehensive such evaluation to date, the
Kinome-Binding Repertoire (KBR), measured the affinity of 230 clinically-relevant kinase inhibitors
across 255 kinases (Klaeger et al., 2017). While restricted to this protein class, this highly informative
and robust dataset is well-suited to benchmarking methods aimed at predicting drug polypharmacology,
thus providing much needed systematic and objective criteria for the evaluation of systems

pharmacology approaches.
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To leverage the KBR in assessing the research community’s ability to predict kinase inhibitors’
mechanism of action from drug perturbation profiles, we designed a DREAM Challenge (Costello et al.,
2014; Saez-Rodriguez et al., 2016) based on PANACEA (Pan-cancer Analysis of Chemical Entity
Activity)—a newly-developed, large-scale resource comprising genome wide RNASeq profiles and
matched DRCs of multiple cell lines, following perturbation with hundreds of clinically relevant
compounds. This extends and complements previous computational and systems pharmacology
DREAM challenges by shifting the question from drug sensitivity to drug MoA. The PANACEA data
used in this challenge includes matched dose-response curves and perturbational RNASeq profiles,
representative of approximately 400 clinical oncology drugs—including FDA approved and late-stage
(phase 2 and 3) compounds—on 11 cell lines, in replicate (Figure 1B). From these, we selected a

subset of 32 kinase inhibitors that were also represented in the KBR (Figure 1C,D).

Challenge participants were provided with perturbational profiles and DRCs (Figure 1E) and were
asked to predict high-affinity binding targets for the 32 drugs by developing and training machine
learning algorithms on these data, on data from public databases such as (Barretina et al., 2012; lorio
et al.,, 2016; Subramanian et al., 2017), as well as by leveraging insights and models developed in
previous DREAM Challenges (Bansal et al., 2014; Cichonska et al., 2020; Costello et al., 2014;
Menden et al., 2019). To make the challenge realistic, participants were not aware that compounds had
been selected from the KBR collection and that they were kinase inhibitors. The Challenge was run
from December 2019 to February 2020, and led to the development and assessment of state-of-the-art

approaches for inferring drug MoA from perturbational profiles, described herein.

Results

Challenge Requirements and Data: In the CTD? Pancancer Drug Activity DREAM Challenge,
participants were asked to use DREAM-provided as well as existing pharmacogenomic datasets—
including cell line-matched dose-response curves (DRCs) and gene expression profiles of drug-naive

and drug-perturbed cells (perturbational profiles)—to predict compound binding proteins (high-affinity
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targets) of 32 anonymized drugs (Figure 1A). More specifically, the DREAM-provided dataset
comprised 704 DCRs and matched perturbational profiles of these 32 drugs in 11 cell-lines
representing molecularly distinct tumor subtypes, in replicate (Figure 1E). The drugs were selected so
that they had molecular profile in PANACEA and experimental characterization of their high affinity

binding targets in the Kinome-Binding Resource (KBR) (Klaeger et al., 2017).

Participants were encouraged to combine these data with additional, publicly available resources to
infer the high-affinity binding targets of the 32 drugs from a repertoire of ~1,300 potential drug-targets.
These were defined as the union of all Drug-Bank reported targets and the 255 kinases profiled in the
KBR. Drug names were obfuscated, to prevent potential trivial training of the algorithm on the KBR data
(Figure 1F), and participants were not aware that the KBR data would be used as a gold standard for

performance assessment.

Consistent with past DREAM studies, the challenge included a leaderboard round followed by a final
validation round (Saez-Rodriguez et al., 2016). During the former, teams were allowed to submit up to
five predictions for the 32 compounds, which were scored and posted to a public leaderboard. The
purpose of this round was to enable experimentation and conceptual flexibility in model development by
providing rapid feedback on the accuracy of the model, while also encouraging competition among
participants. A limit of 5 submissions was chosen to allow model refinement without compromising the
statistical independence of the training and testing model, thus reducing the potential for over-fitting. In
the final validation round, participants were asked to submit their final model's predictions with
accompanying source code, thus allowing objective validation of their methodology. Model performance
was evaluated according to each team’s ability to prioritize bona fide targets of the 32 drugs, with the
latter defined as having a dissociation constant K4 < 1uM in the KBR, according to two complementary

metrics, which were summarized by two sub-challenges:

Sub-challenge 1 (SC1) was designed to assess the ability of each submitted prediction to identify high-

affinity binding targets (Kq < 1uM) of each of the 32 compounds, among the top 10 highest scoring
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predicted targets. The rationale for selecting the top 10 targets was to represent the number of
predictions that could be realistically validated using experimental assays. For each submitted drug
prediction, a p-value was calculated by filtering the prediction list to consider only targets in the KBR,
and comparing the number of bona fide targets (Kq < 1uM in the KBR) in the top 10 predicted targets to
a null model generated from all possible targets, and similarly filtered to consider only targets in the
KBR. A final integrated score was computed by averaging the -log,(p-value) for each drug across all 32

drugs.

Sub-challenge 2 (SC2) was designed to assess the ability of each submitted prediction to accurately
rank all the unknown bona fide targets (K4 < 1JM), by computing their enrichment—and associated
p-value—uwithin the ranked list of predicted targets. The rationale for this second metric was to provide
a more comprehensive and fine-grained comparison of the different methodologies (Figure 1F). Similar
to SC1, a final integrated score was computed by averaging the -log,(p-value) for each drug across all

32 drugs.

Challenge Results: During the leaderboard phase (2 months), 21 teams contributed 86 prediction
matrices of which 39 (45%) showed an average mean p-value of < 0.01 via both SC1 and SC2 (Figure
S1A-B). Interestingly, SC1 & SC2 scores revealed distinct distribution-profiles: on average, most
predictions were statistically significantly enriched on the top-10-target metric (SC1), but not on the

entire list enrichment (SC2) (Figure S1A-B)

Consistent with previous DREAM challenges, we established a performance ranking score for both
sub-challenges by performing a bootstrap analysis of each team’s final submission by calculating a
Bayes factor relative to the bootstrapped best submission for each sub-challenge (see Methods).
Figures S1C and 2D summarize the results of this analysis, with each box showing a team’s
bootstrapped scores and the color of the box indicating the Bayes factor relative to the top performer. A

Bayes factor of 3 or less indicates that models are statistically indistinguishable from the top-ranked

8


https://doi.org/10.1101/2020.12.21.423514
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423514; this version posted December 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

submission. Using this criteria, Team Atom and Team netphar were confirmed as the top-performers in
SC1 and SC2, respectively (Figure S1C-D), while team SBNB was a close second in SC2 (Bayes
factor 3-5). A description of team Atom, Netphar and SBNB algorithms is provided in the STAR

methods section.

To better understand the models and the difference in their performance, we examined sub-challenge
scores on an individual drug basis (Figure S1E-F). Two clusters emerged, which separated teams
based on whether they had used additional training datasets to train their algorithms. (Table 1). In
general, overall performance was positively correlated with the number of additional databases utilized
in the analysis, accounting for 27% of the variance in SC1 and a remarkable 82% of the variance in

SC2.

Contribution of Training Data Sources to Model Performances: Both SC2 winning teams, Netphar
and SBNB, employed multiple highly curated datasets for training their algorithm. Netphar relied on the
multi-database resources DrugComb (cytotoxicity) (Zagidullin et al., 2019) and DrugTargetCommons
(drug targets) (Tang et al., 2018); SBNB relied on the multi-modality ChemicalChecker database
(Duran-Frigola et al., 2020). Figure 2 provides a high-level, conceptual summary of the types of data-

sources included in these meta-databases, organized by data type and source.

Overall, the datasets used to train the algorithms could be divided into two main categories:
experimental screening-based and literature curation-based (Figure 2). Screening approaches have
the advantages of providing measurements that are quantitative, directly comparable, and systematic
(i.e. low sparsity). However, they may suffer from technological platform bias. Literature-curation has
the advantage of reflecting a multi-laboratory consensus but suffers from the disparate, ad hoc nature
of the measurements and from lack of systematic assessment (high sparsity) (Figure 2). Team
performance was further stratified based on whether they relied on (1) drug-target databases, (2) drug-

perturbational databases and/or (3) cytotoxicity databases. As further discussed below, drug-target and
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perturbational databases provided the greatest accuracy boost across all drugs. In contrast, use of

cytotoxicity databases in the training process improved performance only for a few specific drugs.

Critically, all teams chose to use literature-based datasets for identifying candidate drug targets. This is
an important detail because while methods were trained on literature-based “drug-target” definitions,
they were eventually evaluated based on objective, high-accuracy ATP-competitive assays (Figure
1F). To better understand the overlap between literature-based and ATP-based drug targets we
evaluated the overlap between DrugBank and KBR targets (Figure 3). Specifically, we measured the
number of DrugBank-reported protein kinase targets that were recovered across a range of affinity
thresholds from 1 nM to 10 pM in the KBR (Figure 3A). Encouragingly, almost 80% of them were
identified in the KBR using a Ky < 1uM threshold (Figure 3A), consistent with a common “rule-of-
thumb” for drug-lead development (Anderson, 2003). As a result, this threshold was selected to identify

bona fide, high-affinity binding targets in the KBR for method’s performance assessment.

Interestingly, while a 1 uM threshold identified the majority of DrugBank kinase targets, it also revealed
the presence of a significant number of new targets not reported in DrugBank (Figure 3B). Overall, this
shows that, while DrugBank is mostly recapitulated by the KBR, the reverse is not true, suggesting that
DrugBank may not contain all of the high-affinity targets of a drug. A key question raised by this
comparison is whether the winning methods’ performance may have been driven entirely by canonical
DrugBank Targets. To address this question, we evaluated the ratio between the scores of the top
three winning teams when either DrugBank or KBR targets were used as bona fide high-affinity targets
of the 32 drugs used in the challenge (Figure S3). While the scores based on DrugBank targets were
consistently higher (Netphar: 3:2, SBNB: 4:2, Atom: 1.7:1.4) all showed positive enrichment within the
prediction vector (Figure S3). This result implies that literature-curated drug-targets can be
successfully used to bootstrap the polypharmacology analysis of otherwise uncharacterized drugs, thus

further supporting the value of these resources.
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In addition to DrugBank, two additional drug target databases—ChEMBL (Mendez et al., 2019) and
DrugTargetCommons (Tang et al., 2018)—were used by the top performer teams. Plotting the overlap
of all drug-target pairs across all four drug-target databases, only 121 targets (34%) were found to be
unique to the KBR (Figure 3C). Taken together, these databases provided up to 2,386 additional drug-
target interactions, of which 520 (21%) were evaluated in the KBR but were found to have affinities

> 1JM, suggesting that they are false positive drug-target interactions (Figure 3D).

Interestingly, when comparing the overlap of the top 10 targets predicted by the winning teams in each
database, the observed differences strongly reflect the training datasets used by each team (Figure
3E). For instance, as one would expect, SBNB and Netphar results were biased towards DrugBank and

DrugTargetCommons targets, respectively.

Kinase Groups have Distinct Transcriptional Programs: The drivers of model performance by
examining prediction accuracy for individual kinase inhibitor groups, as defined in (Manning et al.,
2002) (Figure 4A-B) was explored next. Significant heterogeneity in methods performance across
individual drugs was observed, suggesting that differences in modeling strategies (see next section)
may be leveraged to predict different drug classes. For instance, all winning methods performed better

on the tyrosine-kinase inhibitors group than on any other kinase group (Figure 4C).

We thus hypothesized that specific kinase groups and families may be associated with distinct
transcriptional programs. To evaluate the general relationships between kinase-targets and mRNA
programs, we assessed the correlation of the KBR-reported Ky with drug-induced pathway expression
values (generated from the PANACEA drug perturbation database) across 84 drugs that overlap in both
databases (Figure 4D). This correlation matrix is plotted with phylogenetic tree based kinase-groups
annotated on top bars. Examining the protein kinase mRNA-program matrix, tyrosine kinases (dark

purple) formed an obvious cluster (Figure 4D columns), showing the strongest association with
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proliferation programs (Figure 4D rows, bottom cluster): E2F targets, MYC targets, G2M checkpoint,

oxidative phosphorylation, mTOR-signaling.

To better understand the nature of the biological pathways underlying this association Figure 4D’s
kinase-dimension was transformed into KEGG-pathway space (Kanehisa et al., 2017) (see Supporting
Information: Method Details for Figures), yielding a matrix of associations between kinase-signaling
pathways and downstream transcriptional programs (Figure 4E). This analysis revealed a distinct
pattern of transcriptional signatures that distinguished tyrosine-kinase inhibitors, from cell-cycle
inhibitors and TGF inhibitors (Figure 4E). This unsupervised analysis is consistent with the current
knowledge of the hierarchical structure of these signaling pathways where RTK-inhibition suppresses
MYC-programs and the cell-cycle, while CDK-inhibitors suppress cell-cycle transcriptional programs but

not MYC (Figure 4F) (Kolch et al., 2015).

Methodological Summary: Overall, the methods submitted to the final validation round could be

broken into three general categories:

1. Methods relying on a weighted average of differential gene expression and Area Under
the Curve (AUC)-based DRC-similarity across drugs and drug-targets. These included
Netphar, SBNB, Xielab, Theragen.

2. Methods relying on neural networks trained on prior information relating differential gene
expression to drug-targets. These included Atom, DMIS_PDA, and TeamAxolotl

3. Methods based on fully unsupervised data transformation combining differential gene

expression and DRC data. These included AMbeRIland, SenthamizhamV, Signal.

Generally, similarity-weighted average methodologies performed best in SC2 (Netphar 1%,SBNB
2" Theragen 3™)—i.e. they were better at predicting the entire range of targets— while Neural
Network-based methodologies performed best in SC1 (Atom 1%, DMIS_PDA 3™)—i.e., they were better
at predicting targets in the range that could lead to realistic experimental validation. Fully unsupervised

methods showed the worst performance. Nonetheless, they still managed to achieve statistical
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significance, without leveraging any prior knowledge, suggesting the potential for novel mechanistic

insight that could be combined with prior knowledge in the future.

In addition, there were differences in the training data sets used by algorithms in the first two
categories. While weighted similarity methods used both transcriptional and cytotoxicity data (Figure
1E & 5A), neural network methods were trained exclusively with transcriptional profile data (see
Sensitivity Data section below). Intriguingly, the winning neural network method (Atom) used protein
structure data to further train their neural network (Figure 5B). This particular prior knowledge, is worth
noting because it underlies several traditional approaches to structure-based drug design (e.g. ligand-
docking to homology models) and off-target discovery (e.g. BLAST searches in DrugBank (Wishart et
al., 2018)). Unfortunately, while such an approach may eventually help distinguish high-affinity binding
targets from key downstream effectors, use of protein sequence information improved Atom’s

performance only by a small, non-statistically significant amount.

Contribution of Drug Sensitivity Data: Previous work (Szalai et al., 2019) has shown that training on
drug-sensitivity profile data can provide comparable prediction performance to training on
transcriptional signatures. As such, we sought to investigate the contributions of drug sensitivity and
drug transcriptional data to the performance of the winning Netphar model (which utilized both). Drug
sensitivity training data was obtained from DrugComb, a curated database that includes batch-
corrected drug sensitivities for both single drugs and drug combinations (Zagidullin et al., 2019). In
addition to the commonly used IC50, DrugComb provides an AUC-based RI (Relative Inhibition) metric

(Malyutina et al., 2019) which captures both the potency and efficacy of drug responses (Figure S4A).

Examining correlations between predicted and gold-standard targets, we found that adding drug
sensitivity data significantly improved prediction accuracy, relative to transcriptional data alone (Figure
S4Db). In particular, performance improvements were driven by several individual drugs whose targets
were poorly predicted based on perturbational profile data only, including sunitinib, crizotinib, and

crenolanib (Figure S4c). Finally, we tested whether the additional efficacy information provided by the
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RI metric improved model performance. Indeed, use of the RI metric in the predictive algorithms
produced statistically significant, albeit marginal overall improvement (median 0.18 compared to 0.19,
paired Wilcoxon test P-value = 0.025), highlighting the potential value of this metric in modeling drug

properties.

DISCUSSION

Mechanism of action elucidation is a critical, yet time-consuming step in the drug development process
(Scannell et al.,, 2012). It helps to identify on- and off-target effects supporting the activity of the
compound (polypharmacology), as well as off-target effects that may cause unwanted toxicity. This
addresses the two major reasons for clinical trial failure, i.e., lack of safety and/or lack of efficacy (Kola
and Landis, 2004; Wehling, 2009). It is reasonable to expect that failure rates may be substantially
reduced if compound MoA could be assessed more accurately and comprehensively, including in terms

of its tissue-specific differences.

Drug MoA is defined as the set of biochemical interactors and effectors through which the drug
produces its pharmacological effects, both positive and negative. These are almost invariably cell-
context specific. Despite its relevance, MoA characterization still represents a significant challenge,
which is only partially addressed by experimental and computational strategies. Most of the
experimental approaches rely on direct binding assays, such as ATP competitive pulldown (Klaeger et
al., 2017), affinity purification (Hirota et al., 2012; Ito et al., 2010) or affinity chromatography assays
(Aebersold and Mann, 2003). These labor-intensive methods are generally limited to the identification
of high-affinity binding targets, rather than the full protein repertoire responsible for compound activity in
a tissue, and are often restricted to a specific protein family, such as protein kinases, for instance. Thus
critically relevant targets outside of these relatively narrow confines may be missed, as shown by the
recent reclassification of the MET tyrosine receptor kinase inhibitor tivantinib as a microtubule inhibitor
(Basilico et al.,, 2013). Indeed, drug polypharmacology is emerging as a critical concept that

increasingly impacts our understanding of how drugs work in disease, for instance via a field-effect
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mediated by multiple targets rather than by their primary, high-affinity binding target. OTS964, for
instance, a compound originally developed as a MELK inhibitor, was recently shown to manifest its
antitumoral activity via an entirely different target, CDK11, which had originally been missed in its MoA

characterization (Lin et al., 2019).

A few computational approaches have also been developed to infer MoA (Keiser et al., 2009; Lomenick
et al., 2009; Miller et al., 2002), including using structural and/or genomic information (Yamanishi et al.,
2008), text-mining algorithms (Li et al., 2009), or data-mining (Hansen et al., 2009; Perlman et al.,
2011). As such, they rely on detailed three-dimensional structures of both the drug molecules and the
target proteins or on prior knowledge (literature or database derived) of related compounds. More
recently, systematic gene expression profiling (GEP) following compound perturbations in cell lines
(Bansal et al., 2014; Lamb et al., 2006; Subramanian et al., 2017; Woo et al., 2015) has furthered the

development of computational methods for MoA analysis.

In this manuscript we report on a DREAM community challenge to assess the ability to predict drug
mechanism of action inference from drug perturbational profiles, using a comprehensive, experimental
protein kinase binding affinity benchmark. This objective benchmark is based on a systematic set of
ATP competitive binding assays assessing the ability of 230 candidate kinase inhibitor molecule to bind
to one of 255 protein kinases. The corresponding Kinome Binding Repertoire (KBR) database

represents the first objective and systematic resource supporting this kind of study.

Drug MoA inference is at best in an embryonic state and the expectation is that this kind of objective
assessment through community challenges will significantly increase both the focus on this important
topic and provide critical resources for the analysis, potentially leading to a new field of investigation.
Consistent with these goals, the results from this study provide unique insight into the approaches that
can be used to understand drug MoA, as well as a comprehensive repertoire of datasets and resources

that can be leveraged in such studies, as reported by the individual participant labs.
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A critical issue emerging from the evaluation of individual prediction performance and individual
databases is that the concept of drug target is still poorly defined and inconsistent. For instance, even
restricting the comparison strictly to protein kinases, comparison of targets defined in DrugBank vs.
KBR shows that the former may be missing data and may contain false positive targets, whose binding
affinity is >1uM (Figure 3). Yet, it is unclear whether there may be a) false negatives in the KBR, for
example if allosteric binding or protein degradation occurred upon drug binding as it would be missed
by an ATP competitive binding assay, or b) false positives in DrugBank. More critically, it is unclear
whether the targets reported in one database but not the other may actually play a relevant

pharmacological role, either in disease treatment or in the emergence of undesirable side effects.

While this was not the main objective of the DREAM Challenge, the study also provides significant
insights on the network of effector proteins downstream of high-affinity binding targets. Indeed, the fact
that the perturbational signature significantly contributed to correct target inference suggests that the
transcriptional regulators that are critical effectors of the high-affinity binding targets represent a
valuable reporter assay that can distinguish the MoA of different compounds. Furthermore, the analysis
shows that availability of matched DRC and perturbational profile data for each drug provided a
statistically significant contribution to the quality of the prediction. Currently, there are databases, such
as CTRP (Basu et al., 2013), that provide a DRC profiles for a large number of drugs and cell lines as
well as databases such as LINCS (Subramanian et al., 2017) that provide access to large-scale
perturbational profile datasets. However, the availability of matched DRC and perturbational profiles,
such as those provided by the PANACEA resource, would be beneficial to the community. For instance,
drugs such as sunitinib, crizotinib and crenolanib produced significantly poorer performance when
analysis was restricted to perturbational profiles but performed significantly better when DRC and
perturbational profile data were integrated. These drugs are known to inhibit multiple targets, which is
often considered the hallmark of a “dirty drug.” Multiple targets generate a complex profile of

downstream effector activation and inactivation, which are harder to deconvolute. To improve these
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predictions, a set of perturbational data from individual targets, for instance following their CRISPRI-

mediated silencing, would be helpful.

Interestingly, tyrosine kinase inhibitors were predicted with higher accuracy by all of the
methods (Figure 4A-C). Examining correlations between binding constants and transcriptional profiles,
we found that, relative to other inhibitors profiled within the KBR, tyrosine kinases inhibitors were mostly
associated with suppression of proliferation signatures (Figure 4D). This is perhaps unsurprising as
growth factor control of the cell cycle is typically mediated by receptor tyrosine kinases. Looking at
enrichment of KEGG-pathways within Figure 4D’s correlation matrix we were able to identify a
decoupling in effects of MYC and the cell-cycle (Figure 4E) that was consistent with hierarchy of known
proliferation pathways (Figure 4F). Taken together, these results provide evidence that drug-perturbed
transcriptional signatures can retain information on the signaling pathways directly downstream of

molecular drug-targets.

While we did not observe major differences between model performance based on modelling strategy,
generally, similarity-weighted average methodologies performed best in SC2, while neural network-
based methodologies performed best in SC1. An important insight arising from the challenge is that
current methodologies are best at identifying similarities between unknown compounds and compounds
already reported in existing databases, rather than at elucidating compound MoA de novo. Indeed, all
of the methodologies that did not rely on prior databases underperformed when compared to those that
did. The fully unsupervised models, without leveraging any prior knowledge, assumed that direct
perturbation of a protein leads to the gene expression change of the same protein. While this
phenomenon cannot be generally assumed, it led to effective prediction in the case of several targets
(e.g.: DRD1, EPHB2 and FYN kinase targeting drugs), suggesting that several proteins can regulate
(indirectly) their own expression, probably via a feedback mechanism (Szalai and Saez-Rodriguez,
2020). The fact that all of the proposed methodologies produced statistically significant results
suggests that genome wide perturbational profiles bring de novo prediction of compound MoA a step

closer to be effectively useful in drug discovery.
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Overall, this work suggests that predictive models can leverage perturbational data to effectively infer
the MoA of small molecules and reveal biological insights about druggable pathways. Future studies
using computational modeling to tackle this problem will be critical to the successful application of these
methods. Specifically, developing a more systematic knowledge of drug targets, particularly for non-
kinase targets, would likely improve the ability of the community to develop accurate models. Additional
development and benchmarking of unsupervised prediction methods may also be required for the
accurate prediction of targets of novel molecules. Finally, future work will be necessary to elucidate the
best practices, limitations, and general applicability of these methods as a step in the drug discovery

pipeline.
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FIGURE LEGENDS:

Figure 1. Underlying data and structure of poly-pharmacology community challenge. (A) Drug
mechanism can be divided into direct binding targets and downstream effectors (B) the PanACEA
database given transcriptional profiles of cell-lines perturbed by clinical oncology drugs (C) Kinome-
binding profiles of 32 kinase inhibitors (D) Transcriptional Hallmark programs induced by 32 kinase

inhibitors (E) Challenge Structure: participants are given perturbed RNAseq and dose response data
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and asked to predict protein-targets. (F) Challenge Evaluation: participant predictions are evaluated

based on the enrichment of < uM binders within each drug-target prediction vector.

Figure 2. The Universe of Training Data used in this Challenge. Drug-perturbation datasets can be

divided into two major categories: technology-based and literature each with distinct limitations.

Figure 3 Comparison of DrugBank and Kinome Drug-Target Definitions. A. An affinity threshold of
1 uM within the kinome database successfully recovered almost 80% of the kinase-targets within
DrugBank B. The Kinome-defined drug-targets appear to reveal a large number of new drug-targets (in
red) in addition to the canonical drug-targets (in black) C. Drug-target pairs overlap across four drug-
target universes D. Drug-target pairs not detected in the kinome database used for PanACEA
evaluation E. Number of successful top-10 predictions for each drug and team across the different drug

target universes.

Figure 4. Different Kinase Pathways show distinct mRNA-signatures when inhibited. A-B. Across
all models tyrosine kinase (TK) targeting drug performed the best C. Distribution of Kinases profiled
across the Human Kinome annotated by kinase group D. Correlation of kinase-binding data with
transcriptional-program. E-F. KEGG-pathway transformation of kinase-space from C revealed pathway-

specific transcriptional signatures

Figure 5. Comparison of the two winning strategies: weighted similarity and neural networks. A.
Team Netphar (who won SC2) used a simple matrix manipulation procedure to predict drug-targets B.

Team Atom (who won SC1) used a protein-sequence trained neural network.
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TABLES:

Table 1. Number of Additional Datasets Used by Participants for Training & Algorithm Class

# drug-AUC | # drug-mRNA | # drug-target | Total Training Algorithm
TEAM SCl | sc2 datasets® datasets® datasets® datasets Class
Netphar 12.6 | 70.9 6 1 4 11 similarity
SBNB 11.7 | 59.2 6 3 2 11 similarity
Xielab 13.8 | 50.3 6 2 1 9 similarity
Atom 17.4 | 49.3 - 2 4 6 NN
DMIS_PDA 13.8 | 35.2 - 2 1 3 NN
Theragen 15.1 | 17.3 - 2 1 3 similarity
Signal 6.3 6.1 - 1 2 4 regressiol
TeamAxolotl 6.2 1.1 - - 2 3 NN
AMbeRland 3.3 1.1 - - - 0 unsup.
SenthamizhaV | 7.4 0.9 - - - 0 unsup.

% drug-sensitivity (AUC) databases include: NCI60 (Shoemaker, 2006), GDSC (lorio et al., 2016), CTRP
(Seashore-Ludlow et al., 2015), gCSI (Haverty et al., 2016), CCLE (Barretina et al., 2012), and other manually

curated data

b drug-mRNA-perturbation databases include: L1000-drugs, L1000-shRNA (Subramanian et al., 2017) and
CREEDS (Wang et al., 2016)
¢ drug-target datasets include: DrugBank (Wishart et al., 2018), ChREMBL (Mendez et al., 2019), KEGG (Kanehisa
et al., 2019), MATADOR (Gunther et al., 2008)

Key Resources Tables

STAR METHODS

REAGENT OR RESOURCE | SOURCE \ IDENTIFIER
Chemicals

AEE788 SelleckChem S1486
Afatinib SelleckChem S1011
AZD5363 SelleckChem S8019
Bafetinib SelleckChem S1369
Bosutinib SelleckChem S1014
Cabozantinib SelleckChem S1119
Cediranib SelleckChem S1017
Crenolanib SelleckChem S2730
Crizotinib SelleckChem S1068
Dacomitinib SelleckChem S2727
Dasatinib SelleckChem S1021
Dovitinib SelleckChem S1018
Foretinib SelleckChem S1111
Gefitinib SelleckChem S1025
Icotinib SelleckChem S2922
Imatinib SelleckChem S2475
KW?2449 SelleckChem S2158
Lapatinib SelleckChem S2111
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Linifanib SelleckChem S1003
MGCD365 SelleckChem S1361
MK2206 SelleckChem S1078
Neratinib SelleckChem S2150
Nilotinib SelleckChem S1033
Osimertinib SelleckChem S7297
Ponatinib SelleckChem S1490
Quizartinib SelleckChem S1526
Regorafenib SelleckChem S1178
Sorafenib SelleckChem S1040
Sunitinib SelleckChem 51042
Tivantinib SelleckChem S2753
Vandetanib SelleckChem S1046
Varlitinib SelleckChem S2755
Commercial Assays

CellTiter-Glo Luminescent Viability Assay | Promega | G7570

Experimental Method Details

The PANACEA database was developed in collaboration between Columbia University Irving Medical
Centers (CUIMC)’s High Throughput Screening Center (HTS), Sulzberger Genome Center and the
Califano Laboratory in the Department of Systems Biology. Briefly, HTS handled cell-culture, cell-
perturbation experiments and RNA extraction; the Genome Center performed RNA sequencing and the
Califano laboratory performed data normalization, quality control, benchmarking and scientific and

statistical analysis.

Cell Line Viability: Cell-lines were obtained from ATCC and cultured using prescribed conditions. To
determine optimal seeding density for compound titrations (i.e. cell-growth is linear for the duration of
experiment), 3.2 million cells of each cell line were plated and viability measured using CelTiter Glo
(Promega Corp.) at 24, 48, 72 and 96 hours. Briefly, 10 mL of 320,000 cells/mL cell-solution was
added to column 11 of a 12w deep-well plate. 5mL from column 11 was then serially diluted 1:1 from
column 11 through column 2. The Hamilton MicroLab automated liquid handling system’s Cell Line
Optimization protocol was used to split the 12 w plates between 4 384 well plates for incubation. 384
well plates were stored in the incubator and at 24, 48, 72 and 96 hours 1 plate was removed and

allowed to sit for 15 minutes at room temperature. 25 uL of Cell Titer Glo was added to each well and
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shaken at 800rpm for 5 min. Finally luminescence was read using the EnVision Multi-Label Reader
(Perkin Elmer Inc.). The seeding density which resulted in linear increase of the cells was used for the

perturbation experiments.

Compound Titration Curves: To determine the 48h ED20 of each drug, cell lines were plated into 96-
well tissue culture plates, in 100 L total volume, and incubated at 37°C. After 16 hours the plates were
removed from the incubator and compounds were transferred into assay wells (1 pL) in triplicate. Plates
were then returned to the incubator. After 48 hours the assay plates were removed from the incubator
and allowed to cool to room temperature prior to the addition of 100 uL of CellTiter-Glo (Promega Inc.)
per well. The plates were then mechanically shaken for 5 minutes prior to readout on the EnVision
Multi-Label Reader (Perkin Elmer Inc.) using the enhanced luminescence module. Relative cell viability
was computed using matched DMSO control wells as reference. ED20 was estimated by fitting a four-

parameter sigmoid model to the titration results.

Perturbational Profile Generation: Using the previously described plating and perturbation procedure
we perturbed each cell-line with each drug at its 48h ED20 value (measured above) or its CMax
concentration. In order to optimize the clinical translation potential of the perturbation databases, we
used the CMax, defined as the maximum plasma concentration after the administration of the drug at
the maximum tolerated dose in patients, (whenever available from published pharmacokinetic studies),
as an upper bound for the perturbation studies (Supp Table 1). The mRNA from these cells was

isolated and profiled by PLATESeq (Nat. Commun. 2017, 8, 105) at 24h after each perturbation.

Computational Method Details

Profile Normalization: RNASeq reads were mapped for each well to the human reference genome
assembly 38 using the STAR aligner. Individual plates counts files were then combined, normalized
and corrected for batch effects. First, individual counts files were combined across genes and ERCC2
spike-in counts removed, yielding the raw counts file for each cell-line experiment. Second, raw counts

were quantile normalized and variance stabilized based on the negative binomial distribution with the
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DESeq R system package (Love et al., 2014). To account for plate-based batch effects (which are
common with drug-perturbed transcriptomic data) normalized expression was batch corrected using

ComBat (Johnson et al., 2007).

Kinome and PANACEA Data Formatting: Kinome-binding data from Klaeger et. al (Science 2017)

was downloaded at https://www.proteomicsdb.org/#projects/4257 via “Supplementary Table 3 Drug

Matrices.” Raw data was transformed to -log10 scale and NA'’s replaced with the matrix maximum -
log10(Kd) of ~4.3 to represent the limit of detection of the technology. PANACEA differential gene
expression data was calculated using a moderated Student’s t-test as implemented in the limma

package from Bioconductor with respect to pooled DMSO controls across all cell-line plates.

Baseline Model: For the baseline model, we used drug perturbation gene expression data from the
LINCS-L1000 project (Subramanian et al.,, 2017) and drug-target information from the Drug
Repurposing Hub (Corsello et al., 2017). We calculated consensus signatures (Szalai et al., 2019) for
each drug with known target molecules. The DREAM-PanACEA gene expression dataset was
standardised using the control measurements, and average signature was calculated for each DREAM-
PanACEA drug. We calculated the similarity (Spearman’s correlation) matrix between the LINCS and
DREAM-PanACEA drug signatures, using only the measured (landmark) genes of LINCS-L1000. For
each DREAM-PanACEA drug, we performed target enrichment (viper R package, (Alvarez et al.,
2016)) using the drug similarity vector and the known targets of the LINCS drugs. The normalised
enrichment scores from target enrichment were further rank normalised for each drug, and submitted

as baseline prediction.

Scoring Algorithms: Participants submitted predictions for a list of 1259 “druggable” targets and 30
drugs, with each prediction being a confidence score between 0 and 1 (where one is most confident
that the target is a true target of a drug). We then filtered each submission to only consider the 255
targets in the gold standard dataset. For the purposes of calculating p-values, we created 1000 null

models by generating 1000 random prediction sets. These random predictions were generated by
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sampling (without replacement) the full set of 1259 “druggable” targets using the dplyr “sample_frac”
function to obtain a randomly-ranked set of targets (this procedure was repeated 1000 times) (Wickham
et al., 2019). For SC1, we scored teams by evaluating the enrichment of their top 10 predictions for
each drug in the gold standard dataset, as well as for one null model prediction, performing a paired
Wilcoxon rank sum test (Mann-Whitney test) to generate a p-value for each prediction. We repeated
this 10,000 times for each null model to generate a distribution of p-values for each submission, and
calculated the mean p-value as the participants’ score. For SC2, the methodology and null models were
identical, but instead of evaluating the enrichment of the top 10 predicted targets in the gold standard
dataset, we assessed the ranks of the true targets within the full vector of 255 predicted targets for
each drug. We again performed a paired Wilcoxon rank sum test (Mann-Whitney test) to generate a p-
value for each submission. We repeated this 1000 times for each null model to generate a distribution

of p-values for each submission, and calculated the mean p-value as the participants’ score.

Winners were determined by calculating a Bayes factor relative to the top-ranked submission in each
category. We bootstrapped all of the submissions that qualified for final scoring by performing 10000
iterations of sampling with replacement for each submission. For each bootstrap, we calculated the p-
values as described above to generate a distribution of scores for each submission. Using this
distribution of p-values, Bayes factors were calculated for each submission relative to the top-scoring
team using the challengescoring R package (https://github.com/sage-bionetworks/challengescoring).

Ties were defined as submissions with a Bayes factor <= 3 relative to the top submission.

Resource Availability

Lead Contact: Further information and requests for resources should be directed to and will be fulfilled

by the Lead Contact, Andrea Califano (ac2248@cumc.columbia.edu).

Materials Availability: This study did not generate new unique reagents.
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Data and Code Availability: Data used in the challenge, submission writeups, and other Challenge
resources can be found at www.doi.org/10.7303/syn20968331. Code for scoring the predictions and for

generating the null models is available here: https://github.com/Sage-Bionetworks-Challenges/CTD2-

Panacea-Challenge, and a Docker container that was used to deploy the scoring algorithm in this

challenge is available to all reqgistered Synapse users via the Synapse Docker reqistry

(docker.synapse.org/syn20968331/scoring_harness:v3). A Docker container for team netphar’'s model
is available at docker.synapse.org/syn21562777/ctd2_netphar_final:final_upd_14March. A Docker
container for team Atom’s model is available at docker.synapse.org/syn21560898/ctd2_atom:vl. A
Docker container for team SBNB'’s model is available at

docker.synapse.org/syn21553207/sbnb:9698788.
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D. Kinase mRNA-program Associations
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F. Pathway Interpretation of Signature
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Figure 5
A. Netphar’'s Weighted-Average Method  B. Atom’s Neural Network Method
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