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Abstract  20 

Structurally complex habitats tend to contain more species and higher total abundances than 21 

simple habitats. This ecological paradigm is grounded in first principles: species richness scales 22 

with area, and surface area and niche density increase with three-dimensional complexity. Here 23 

we present a geometric basis for surface habitats that unifies ecosystems and spatial scales. 24 

The theory is framed by fundamental geometric constraints among three structure 25 

descriptors—surface height, rugosity and fractal dimension—and explains 98% of surface 26 

variation in a structurally complex test system: coral reefs. We then show how coral 27 

biodiversity metrics (species richness, total abundance and probability of interspecific 28 

encounter) vary over the theoretical structure descriptor plane, demonstrating the value of the 29 

theory for predicting the consequences of natural and human modifications of surface 30 

structure. 31 

 32 

Main text  33 

Most habitats on the planet are surface habitats—from the abyssal trenches to the tops of 34 

mountains, from coral reefs to the tundra. These habitats exhibit a broad range of structural 35 

complexities, from relatively simple, planar surfaces to highly complex three-dimensional 36 

structures. Currently, human and natural disturbances are changing the complexity of habitats 37 

faster than at any time in history1-4. Therefore, understanding and predicting the effects of 38 

habitat complexity changes on biodiversity is of paramount importance5. However, empirical 39 

relationships between commonly-used descriptors of structural complexity and biodiversity are 40 
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variable, often weak or contrary to expectation6-10. Moreover, there are no standards for 41 

quantifying structural complexity, precluding general patterns in the relationship between 42 

structure and diversity from being identified in different habitats. We therefore propose a new 43 

geometric basis for surface habitats that integrates and standardises existing surface 44 

descriptors8,10. 45 

 46 

In theory, species richness scales with surface area according to a power law11. Island 47 

biogeography theory articulates that this relationship arises out of extinction and colonization, 48 

as larger areas provide larger targets for species to colonize and a greater variety of habitats 49 

allowing species to coexist12.  Our geometric theory builds on these ideas by exploring the 50 

notion that habitat surfaces with the same rugosity (defined here as surface area per planar 51 

area) can exhibit a range of different forms (Fig. 1). Total surface area is the integration of 52 

component areas at the smallest scale (i.e., resolution), but it does not explain how these 53 

component areas fold and fill the three-dimensional spaces they occupy. Rather, fractal 54 

dimension quantifies space-filling at different scales13. Space-filling promotes species co-55 

existence by dividing surface area into a greater variety of structural elements14, microhabitats 56 

and niches15 (e.g., high and low irradiance; small and large spaces; fast and slow flow). This 57 

variety of niches allows species to coexist (e.g. different competitors, or predator and prey16) 58 

and therefore enhances biodiversity17,18. We posit that there is a fundamental geometric 59 

constraint between surface rugosity and fractal dimension: for a given surface rugosity, an 60 

increase in fractal dimension will result in a reduction of the surface’s mean height (Fig. 1). As 61 

the basis for a geometric theory, we mathematically derived the trade-off between surface 62 
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rugosity (R), fractal dimension (D) and surface height range (∆H) as (see Methods for 63 

derivation): 64 

 65 

ଵ
ଶ
ሺܴଶ݃݋݈ െ ͳሻ ൅ ݃݋݈ ቀ ௅

௅బ
ቁ ሺ͵ െ ሻܦ ൌ ݃݋݈ ቀ 'ு

ξଶ௅బ
ቁ    Eq. 1 66 

 67 

Where L is the surface linear extent and L0 is the resolution (i.e., the smallest scale of 68 

observation). R and D are both dimensionless, with R ш 1 and 2 ч D ч 3; ∆H is dimensionless 69 

when standardised by resolution L0, with 'ு
ξଶ௅బ

 ш 0. When rugosity is expressed as R2-1 (with R2-1 70 

ш 0) and height range as  'ு
ξଶ௅బ

, Eq. 1 is a plane equation. Moreover, it is clear that any one of the 71 

surface descriptors can easily be expressed in terms of the other two, highlighting that any of 72 

the three variables is required, but not sufficient alone, to describe the structural complexity of 73 

a surface habitat.  74 

 75 

Results 76 

To test the theory, we examined associations among surface rugosity, fractal dimension and 77 

height range across coral reef habitat patches. Coral reefs are ideal ecosystems for testing a 78 

theory of surface habitats, because they are structurally complex surface habitats constructed 79 

in large part by the reef-building scleractinian corals that, in turn, live upon the habitat (i.e., 80 

corals are autogenic ecosystem engineers19). Structural complexity affects biodiversity in 81 

general20 and of coral reefs in particular21. Using Structure from Motion (SfM), we estimated 82 

surface rugosity (expressed as the log of R2-1), fractal dimension (D) and height range (as the 83 
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log of 'ு
ξଶ௅బ

) from digital elevation models (DEMs) for 591 reef patches of 4 m2 at 21 reef sites 84 

encircling Lizard Island on the Great Barrier Reef, Australia (see Methods). Analyses of the 85 

structure of these patches reveal that while rugosity, fractal dimension and surface height 86 

range are not independent, they have substantial independent variation (r2 for pairwise 87 

relationships between surface descriptors ranging between 3% and 30%, Fig. 2a-c). However, 88 

when framed together, the three descriptors formed a plane, whereupon the trivially measured 89 

surface descriptors, rugosity and height range, captured 98% of the variation in D (Fig. 2d). The 90 

remaining 2% of the variation occurs because real surfaces do not necessarily behave like 91 

fractals (i.e., are self-similar) across a wide range of scales (Extended Data Fig. 5). The 92 

observation that the structure of nearly all measured reef patches fell upon a plane delineated 93 

by three simple surface descriptors highlights the fundamental geometric constraints of surface 94 

habitats. If fractal dimension increases, then either rugosity increases, or height range 95 

decreases, or both. All three descriptors are essential for capturing structural complexity 96 

because they explain different elements of surface geometry: height range captures patch scale 97 

variation, rugosity captures fine scale variation (which sums to surface area), and fractal 98 

dimension captures degree of space filling when transitioning from broad to fine scales 99 

(Extended Data Fig. 1a).  100 

 101 

Different reef locations, with different ecological and environmental histories, occupied 102 

different regions on the surface descriptor plane (Fig. 3). For example, one site that was 103 

stripped of living coral during back-to-back tropical cyclones22 largely occupied the region of the 104 

plane where rugosity, fractal dimension and surface height range are all low (Fig. 3a); that is, 105 
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the patches at this site were closest to a theoretical flat surface. Another site also impacted by 106 

the cyclones but left littered with dead coral branches, had similar levels of rugosity and height 107 

range, but fractal dimension was relatively high (Fig. 3b). In contrast, a site containing several 108 

large colonies of living branching coral had patches with the highest fractal dimension and 109 

rugosity, yet the height range of these patches was low (Fig. 3c) reflecting the approximately 110 

uniform height of living branching corals in shallow waters where water depth and tidal range 111 

constrains colony growth. Meanwhile, a site containing large hemispherical Porites corals had 112 

patches with large height ranges and high rugosity but lower fractal dimension (Fig. 3d). Three 113 

sites contained patches with similar distributions of rugosities (Fig. 3b,d,f), and therefore similar 114 

surface areas. However, these sites ranged from smooth reef surfaces with large holes (Fig. 3e) 115 

to highly bumpy surfaces with no holes (Fig. 3b), demonstrating why rugosity alone does not 116 

capture structural complexity and how varying mixtures of structural components dictate 117 

habitat complexity14. 118 

 119 

Finally, to connect the geometric variables to biodiversity, we examined how species richness, 120 

total abundance and diversity (measured as the probability of interspecific encounter23) varied 121 

across the surface descriptor plane. Strong ecological feedbacks occur between coral reef 122 

habitat structure and coral biodiversity metrics. Coral reef structures are largely created by 123 

corals, but their structure is mechanistically affected by environmental conditions such as tidal 124 

range, currents, storm impacts and wave exposure. For instance, coral larvae are poor 125 

swimmers and are more likely to settle in reef patches with small-scale complexity, because 126 

they get entrapped by micro-eddies24. At the same time, more intricate coral structures (with 127 
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higher fractal dimension, D) are more likely to be damaged or dislodged during storms that 128 

flatten reef patches25,26. Species-area theory predicts that species richness and abundances 129 

should be highest in patches with the greatest surface area11 (i.e., highest rugosity). We 130 

predicted that higher fractal dimension would also enhance species richness and abundance, 131 

because of niche diversity (i.e., increases in surface area at different scales), and that this effect 132 

would be additional to overall surface area. The surface descriptor plane allows estimating the 133 

combined effects of not just area, but also niche differentiation associated with fractal 134 

dimension and height range10,15.  135 

 136 

We examined geometric-biodiversity coupling for a large plot, containing 261 of the 4 m2 reef 137 

patches, in which 9,264 coral colonies of 171 species were recorded (see Methods). Contrary to 138 

expectation, we found that all biodiversity metrics considered peaked in reef patches with 139 

intermediate surface rugosities (Fig. 4a shows diversity, and Extended Data Table 2 includes 140 

species richness and abundance). Indeed, several recent studies have argued that the 141 

relationship should be unimodal because, as complexity increases, the amount of area available 142 

for individuals to live declines27,28. However, biodiversity metrics also tended to increase 143 

monotonically in association with patches with higher fractal dimension and smaller height 144 

range (Extended Data Fig. 7). The explanatory power of reef geometry on biodiversity metrics 145 

was over 50% (Extended Data Table 1)—5 to 45% higher than any surface descriptor alone. 146 

Explaining this much variation in biodiversity is striking, given the number of other, non-147 

geometric processes that govern coral biodiversity, including environmental filtering, dispersal 148 

and species interactions29. Because corals are autogenic ecosystem engineers, reciprocal 149 
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causality is likely to strengthen and shape geometric-biodiversity coupling. For instance, high 150 

rugosity is often generated by large hemispherical corals (e.g., Fig. 3d) that reduce the number 151 

of individuals, and hence species, per area14. Subsequently, geometric-biodiversity coupling 152 

may be weaker for other surface-associated taxa, such as fishes and invertebrates, and should 153 

be tested. Nonetheless, our findings have implications for resilience following disturbances and 154 

for restoration efforts that aim to maximise biodiversity30, specifically identifying the reef 155 

structural characteristics that should be maintained (or built) to maximize biodiversity. 156 

 157 

Discussion 158 

A general, scale-independent geometric basis for surface habitats provides a much-needed way 159 

to quantify habitat complexity across ecosystems and spatial scales. Meanwhile, creating three-160 

dimensional habitat surfaces is becoming increasingly accessible and cost effective, for example 161 

using Structure from Motion31,32, both underwater and on land. The importance of surface 162 

complexity as a determinant of habitat condition, biodiversity, and ecosystem function is well 163 

recognised33, yet different metrics are typically used for different ecosystems, or different taxa 164 

within the same ecosystem10. The general quantitative approach we propose is applicable 165 

across surface habitats in both marine and terrestrial environments, allowing formal 166 

comparisons examining whether geometric-biodiversity couplings differ among systems in 167 

terms of both pattern and strength. The surface descriptor plane uncovered here clearly 168 

defines the fundamental geometric constraints acting to shape surface habitats, and 169 

consequently, how changes in surface geometry affect biodiversity. Nonetheless, there remain 170 

several unknowns about the surface descriptor plane and its associations with biodiversity 171 
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metrics that require further exploration. These unknowns range from technical limitations (e.g., 172 

how does the theory translate from digital elevation models that exclude overhanging surfaces 173 

to 3D surface meshes?) to ecological patterns (e.g., how do different types of structural 174 

components, such as different mixtures of branching and hemispherical corals or live and dead 175 

elements14,34, mediate geometric-biodiversity coupling?).   176 

 177 

As powerful ecosystem engineers, humans are modifying the planet through the structures we 178 

destroy, both physically and indirectly via environmental change4, and those we construct. 179 

Indeed, human-modified structures differ significantly in their geometry from nature-built 180 

structures35. Determining how biodiversity, conservation status and recovery rates relate to 181 

habitat complexity measures is paramount in the Anthropocene. The approach we propose 182 

here allows for predictions of the biodiversity consequences of these structural changes across 183 

land and seascapes. 184 

 185 

Methods 186 

Geometric theory for surface habitats. The variation method for calculating fractal dimension 187 

D measures the mean height range of a surface at different scales36,37. At the broadest scale, 188 

the linear extent L, the surface height range is ∆H (Extended Data Fig. 1a). At the finest scale, 189 

the resolution L0, the height range (∆H0) is the mean of height ranges of all the component 190 

areas at that scale. The slope S of the resulting log-log relationship (shown in Extended Data Fig. 191 

1a) is: 192 
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ܵ ൌ ௟௢௚ሺ'ுሻି௟௢௚ሺ'ுబሻ
௟௢௚ሺ௅ሻି௟௢௚ሺ௅బሻ

       Eq. 2 193 

Where fractal dimension is37: 194 

�ܦ ൌ �͵�Ȃ �ܵ        Eq. 3 195 

Rearranging Eq. 2 gives: 196 

ܵ ൌ ௟௢௚ሺ'ுȀ'ுబሻ
௟௢௚ሺ௅Ȁ௅బሻ

       Eq. 4 197 

Surface area A can be estimated by summing areas A0 at the finest grain L0. Given the mean 198 

height range ∆H0 at L0, we assume any finer scale detail is not observable, and we calculate A0 199 

from the minimal surface consistent with ∆H0 (Extended Data Fig. 1b) as: 200 

଴ܣ ൌ
௅బ
ଶ
ඥʹ'ܪ଴ଶ ൅ Ͷܮ଴ଶ       Eq. 5 201 

And then multiply by the number of component areas (௅
మ

௅బమ
) giving: 202 

ܣ ൌ ௅మ

ଶ௅బ
ඥʹ'ܪ଴ଶ ൅ Ͷܮ଴ଶ       Eq. 6 203 

Surface rugosity is32: 204 

ܴ ൌ ஺
௅మ

         Eq. 7 205 

Substituting A for Eq. 6 and rearranging gives: 206 

ܴ ൌ ට'ுబమ

ଶ௅బమ
൅ ͳ        Eq. 8 207 

Rearranging for ∆H0 gives: 208 

଴ܪ' ൌ ξʹܮ଴ξܴଶ െ ͳ       Eq. 9 209 

And substituting into Eq. 4 gives: 210 

ܵ ൌ
௟௢௚�ቆ 'ಹ

ξమಽబඥೃమషభ
ቇ

௟௢௚ቀ ಽಽబ
ቁ

       Eq. 10 211 
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Leading to: 212 

ܦ ൌ ͵ െ
௟௢௚ቆ 'ಹ

ξమಽబඥೃమషభ
ቇ

௟௢௚ቀ ಽಽబ
ቁ

      Eq. 11 213 

Further rearranging gives a plane as Eq. 1 in the main text. The boundaries equations for the 214 

limits of fractal dimension D are: 215 

஽ୀଶܪ' ൌ ξʹܮξܴଶ െ ͳ       Eq. 12 216 

஽ୀଷܪ' ൌ ξʹܮ଴ξܴଶ െ ͳ        Eq. 13 217 

 218 

Coral reef surface field study. Twenty-one reef flat sites were selected approximately 1 km 219 

apart and encircling Lizard Island on the Great Barrier Reef, Australia (Extended Data Fig. 2). The 220 

spatial arrangement of the sites captured a broad range of habitats that were shaped 221 

predominantly by wave exposure generated by prevailing southeast trade winds22.  Mean water 222 

depth across all study sites range between 2 to 3.5 meters. In 2014, at the Trimodal site, we 223 

used an Iver2 Autonomous Underwater Vehicle38 to collect 45,000 georeferenced overlapping, 224 

stereo-pair images of an approximately 30 m by 50 m section of the reef crest (Fig. 4c). In 2016, 225 

at all 21 sites, we used the spiral method39, which involves swimming a camera rig that 226 

unspools from a central point to capture approximately 3000 overlapping, stereo-pair images of 227 

approximately 130 m2 of reef crest (Extended Data Fig. 3). We used a simultaneous localisation 228 

and mapping approach40 fusing GPS, stereo imagery and altitude information to provide an 229 

initial pose estimate for the cameras. We used Agisoft Metashape software to process the 230 

images and produce a 3D dense cloud from which we derived a gridded digital elevation model 231 

(DEM) and orthographic mosaic for coral annotation per site. The output resolution of all DEMs 232 
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was 0.002 m. We used DEMs in order to exclude overhanging surfaces (i.e., only one height for 233 

each xy combination), because the degree to which overhangs are captured from plan view 234 

photographic surveys is biased by the changing lighting conditions of the environment41 (e.g., 235 

the sun angle, cloud cover, water turbidity, etc.). On the other hand, plan view surveys were 236 

preferred in order to reduce the time costs associated with capturing stereo pairs from multiple 237 

view angles over large areas. The use of DEMs will underestimate surface rugosity and fractal 238 

dimension; i.e., the reason why D tended to range below 2.6. However, given that overhanging 239 

structures were rare at our study sites, R and D measures are likely to exhibit the correct rank 240 

order for patches. 241 

 242 

Given the lack of coral cover following the 2016 mass bleaching event on the GBR22, we used 243 

the 2014 Trimodal large plot to quantify geometric-biodiversity relationships (Extended Data 244 

Fig. 2). The plot was divided into a contiguous grid of 2 by 2 m reef patches (Fig. 4c, black 245 

squares). Patches of the orthographic mosaic were printed on underwater paper and used as 246 

reference maps for in situ identification of all coral colonies of diameter >5 cm to species by a 247 

team of six researchers over four weeks. We focused on the reef crest and flat (shallower areas 248 

in Fig. 4c) but also included reef edge and deeper reef. Colonies of unknown or hard to identify 249 

species were photographed and identified in consultation with guide books and other 250 

observers. Hemispherical Porites colonies were identified to genus due to the difficulty 251 

differentiating among the few known species without collecting samples for microscopy. Colony 252 

annotations were digitized over the orthographic mosaic using QGIS software (e.g., Fig. 4c, 253 

white points). Only scleractinian corals were included for analyses. In total, 9,264 coral colonies 254 
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of 171 species were observed within the 255 reef patches censused. Diversity was calculated as 255 

the probability of interspecific encounter (PIE), or 1 – Simpson diversity23.  256 

 257 

Each of the circular DEMs had a central point, from which an 8 by 8 m square was centred 258 

(Extended Data Fig. 3) and divided into 16 contiguous reef patches of 2 by 2 m. DEMs for each 2 259 

by 2 m patch from both the Trimodal large plot (where corals were censused) and the 21 260 

circular plots were cropped to calculate surface rugosity R, fractal dimension D and the height 261 

range of the patch ∆H; the latter being the difference between the deepest and shallowest 262 

point in a patch. D was calculated using the variation method37, where each patch was divided 263 

into squares with sides lengths (L) of 2, 1, 0.5, 0.25, 0.125, 0.0625 and 0.03125 m capturing 264 

approximately two orders of magnitude42. The resolution L0 for the theory is the smallest scale 265 

(i.e., 0.03125 m). The height range within each grid at each scale were calculated, and then 266 

averaged for that scale to avoid weighting the many estimates at smaller scales more than the 267 

fewer estimates at larger scales when calculating the slope S. S was calculated for each patch by 268 

fitting a linear model to the log of scale (i.e., grid sizes) versus the log of mean height. D was 269 

then calculated according to Eq. 3. R was calculated according to Eq. 8. There are many ways to 270 

estimate the surface area of a DEM, so we compared surface rugosity calculated from theory 271 

(Eq. 8) with estimates based on surface area calculations using the surfaceArea function in the 272 

package sp43. The theory underestimated surface rugosity by approximately 5% (Extended Data 273 

Fig. 4), because of the minimal area assumption (Extended Data Fig. 1b), but this disparity was 274 

consistent across the range of rugosities.  275 

 276 
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Analyses. Surface rugosity (expressed as R2-1) and standardised height range (expressed as 277 

'ு
ξଶ௅బ

) were log-transformed (base 10) as per the plane equation (Eq. 1). Species richness and 278 

abundance were sqrt-transformed, and diversity arcsin-transformed, for all analyses to improve 279 

model residuals. Coefficients of determination (r square) of pairwise associations of the three 280 

geometric variables were estimated by squaring Pearson correlation coefficients. Reef surfaces 281 

were not perfectly fractal: mean height ranges at L and L0 anchor the theory (Extended Data Fig. 282 

1a), but mean height ranges at scales intermediate to L and L0 could shift the overall 283 

relationship, albeit subtlety. Therefore, we calculated the r square for the surface descriptor 284 

plane based on the deviances of empirically derived D from theory derived D (Extended Data 285 

Fig. 5) (i.e., by dividing the residual sums of squares by the total sums of squares, and then 286 

subtracting this value from one). 287 

 288 

We quantified geometric-biodiversity relationships for the large plot at the Trimodal site using 289 

both generalised additive models (GAMs) and linear models (LMs). We applied the default 290 

smoother term to each surface descriptor for the GAMs and second-order polynomials for the 291 

LMs, to allow for non-linear relationships among predictor and response variables. We 292 

quantified the effect of each geometric variable separately on species richness, total abundance 293 

and diversity (PIE), and then all together to assess improvement in explained variation as 294 

adjusted r square values (Extended Data Fig. 7; Extended Data Table 1). We included the three 295 

reef patches with no living coral, but also confirmed that removing these points had no 296 

discernible influence on the geometric-biodiversity relationships. We also ran analyses 297 

following the removal of the 5-6 highest rugosity patches that appeared to be largely 298 
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responsible for producing the hump-shaped rugosity-biodiversity relationships (red curves, 299 

Extended Data Fig. 7). Smooth terms for rugosity and height range were significant, with 300 

reference degrees of freedom much greater than one for all biodiversity metrics, suggesting 301 

significant non-linear effects for these surface descriptors44. Fractal dimension showed a linear 302 

effect for richness and diversity, and so the smoother term was removed for these analyses. 303 

Residuals for all models were approximately normal and were homogeneous when plotted 304 

against predictor variables. The linear models with second-order polynomial terms gave the 305 

same overall results as GAMs (Extended Data Fig. 7). That is, the polynomial term was 306 

significant for the same terms that retained the smoother function in the GAMs. However, the 307 

LMs had lower adjusted r square values and so we presented the final results using GAMs (Fig. 308 

4a; Extended Data Table 2).  309 

 310 

All analyses, including model selection and diagnostics and figure creation, were conducted in 311 

the statistical program language R45 and can be downloaded or cloned at GitHub 312 

(https://github.com/jmadin/surface_geometry). 313 

 314 

Data and code availability 315 

Source data and code for data preparation, statistical analyses and figures are available at 316 

https://github.com/jmadin/surface_geometry. 317 

 318 
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 451 

Figure captions 452 

Fig. 1 | Increasing fractal dimension (i.e., space filling) while keeping surface rugosity 453 

constant results in a decline in a surface’s mean height range. A two-dimensional 454 

representation of three hypothetical surface habitats with the same surface rugosities (a, b and 455 

c). That is, the lengths of the lines a, b and c are the same and occur over the same planar 456 

extent (black points). However, line a fills less of its two-dimensional space (black rectangle) 457 

than does line c, and therefore has a lower fractal dimension.  458 

 459 

Fig. 2 | Comparison of the geometric theory with field data.  (a-c) Pairwise relationships 460 

between the descriptors that frame the geometric theory for n=595 reef patches: surface 461 

rugosity (as R2-1); fractal dimension D; and surface height range (as 'ு
ξଶ௅బ

). Coefficients of 462 

determination (r2) show the variance explained in the y-axis variable by the x-axis variable. (d) 463 

When combined the three descriptors explain more than 98% of the variation in fractal 464 

dimension D despite reef surfaces not being perfectly fractal (see Methods). Field data are 465 

points, and the surface descriptor plane is coloured by fractal dimension.  466 
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 467 

Fig. 3 | The geometric diversity of coral reef habitats. Reef patches (n=16) from a subset of six 468 

sites are superimposed onto a two-dimensional representation of the surface descriptor plane 469 

(colour used here to delineate sites). (a) North Reef; (b) Osprey; (c) Lagoon-2; (d) Resort; (e) 470 

South Island; and (f) Horseshoe. Patch height range is greater in the top left corner and 471 

decreases towards the bottom right corner. The corresponding DEMs and orthographic mosaics 472 

show selected patches at each site to help visualise geometric differences.  473 

 474 

Fig. 4 |Geometric-biodiversity coupling of coral reef habitats. (a) Predicted coral species 475 

diversity (represented as probability of interspecific encounter) when plotted upon the surface 476 

descriptor plane given by rugosity and fractal dimension (height range is greater in the top left 477 

and decreases towards the bottom right, as per Eq. 1). Prediction contours are from the general 478 

additive model summarised in Extended Data Table 2. (b) A digital elevation model of the large 479 

plot with n=255 contiguous 2 x 2 m reef patches (black squares) capturing 9,264 coral colony 480 

annotations (white points) representing 171 species. 481 
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