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Abstract

Structurally complex habitats tend to contain more species and higher total abundances than
simple habitats. This ecological paradigm is grounded in first principles: species richness scales
with area, and surface area and niche density increase with three-dimensional complexity. Here
we present a geometric basis for surface habitats that unifies ecosystems and spatial scales.
The theory is framed by fundamental geometric constraints among three structure
descriptors—surface height, rugosity and fractal dimension—and explains 98% of surface
variation in a structurally complex test system: coral reefs. We then show how coral
biodiversity metrics (species richness, total abundance and probability of interspecific
encounter) vary over the theoretical structure descriptor plane, demonstrating the value of the
theory for predicting the consequences of natural and human modifications of surface

structure.

Main text

Most habitats on the planet are surface habitats—from the abyssal trenches to the tops of
mountains, from coral reefs to the tundra. These habitats exhibit a broad range of structural
complexities, from relatively simple, planar surfaces to highly complex three-dimensional
structures. Currently, human and natural disturbances are changing the complexity of habitats
faster than at any time in history'™. Therefore, understanding and predicting the effects of
habitat complexity changes on biodiversity is of paramount importance®. However, empirical

relationships between commonly-used descriptors of structural complexity and biodiversity are
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variable, often weak or contrary to expectation®°. Moreover, there are no standards for
guantifying structural complexity, precluding general patterns in the relationship between
structure and diversity from being identified in different habitats. We therefore propose a new
geometric basis for surface habitats that integrates and standardises existing surface

descriptorsg’lo.

In theory, species richness scales with surface area according to a power law'". Island
biogeography theory articulates that this relationship arises out of extinction and colonization,
as larger areas provide larger targets for species to colonize and a greater variety of habitats
allowing species to coexist'?. Our geometric theory builds on these ideas by exploring the
notion that habitat surfaces with the same rugosity (defined here as surface area per planar
area) can exhibit a range of different forms (Fig. 1). Total surface area is the integration of
component areas at the smallest scale (i.e., resolution), but it does not explain how these
component areas fold and fill the three-dimensional spaces they occupy. Rather, fractal
dimension quantifies space-filling at different scales*®. Space-filling promotes species co-
existence by dividing surface area into a greater variety of structural elements*®, microhabitats
and niches™ (e.g., high and low irradiance; small and large spaces; fast and slow flow). This

variety of niches allows species to coexist (e.g. different competitors, or predator and prey16)

and therefore enhances biodiversity”’18

. We posit that there is a fundamental geometric
constraint between surface rugosity and fractal dimension: for a given surface rugosity, an

increase in fractal dimension will result in a reduction of the surface’s mean height (Fig. 1). As

the basis for a geometric theory, we mathematically derived the trade-off between surface
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rugosity (R), fractal dimension (D) and surface height range (AH) as (see Methods for

derivation):

%log(R2 —1) + log (i) (3—=D) =log (\/AE_IZO) Eq.1

Where L is the surface linear extent and Lyis the resolution (i.e., the smallest scale of

observation). R and D are both dimensionless, with R >1 and 2 < D £ 3; AH is dimensionless

AH
V2L

when standardised by resolution Ly, with > 0. When rugosity is expressed as R>-1 (with R*-1

AH

NG Eg. 1is a plane equation. Moreover, it is clear that any one of the
0

> 0) and height range as

surface descriptors can easily be expressed in terms of the other two, highlighting that any of
the three variables is required, but not sufficient alone, to describe the structural complexity of

a surface habitat.

Results

To test the theory, we examined associations among surface rugosity, fractal dimension and
height range across coral reef habitat patches. Coral reefs are ideal ecosystems for testing a
theory of surface habitats, because they are structurally complex surface habitats constructed
in large part by the reef-building scleractinian corals that, in turn, live upon the habitat (i.e.,
corals are autogenic ecosystem engineers'®). Structural complexity affects biodiversity in
general® and of coral reefs in particular®. Using Structure from Motion (SfM), we estimated

surface rugosity (expressed as the log of R%-1), fractal dimension (D) and height range (as the
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84  log of \/AE—IZ) from digital elevation models (DEMs) for 591 reef patches of 4 m? at 21 reef sites
0

85  encircling Lizard Island on the Great Barrier Reef, Australia (see Methods). Analyses of the
86  structure of these patches reveal that while rugosity, fractal dimension and surface height
87  range are not independent, they have substantial independent variation (r* for pairwise
88 relationships between surface descriptors ranging between 3% and 30%, Fig. 2a-c). However,
89  when framed together, the three descriptors formed a plane, whereupon the trivially measured
90 surface descriptors, rugosity and height range, captured 98% of the variation in D (Fig. 2d). The
91  remaining 2% of the variation occurs because real surfaces do not necessarily behave like
92  fractals (i.e., are self-similar) across a wide range of scales (Extended Data Fig. 5). The
93  observation that the structure of nearly all measured reef patches fell upon a plane delineated
94 by three simple surface descriptors highlights the fundamental geometric constraints of surface
95 habitats. If fractal dimension increases, then either rugosity increases, or height range
96 decreases, or both. All three descriptors are essential for capturing structural complexity
97  because they explain different elements of surface geometry: height range captures patch scale
98 variation, rugosity captures fine scale variation (which sums to surface area), and fractal
99 dimension captures degree of space filling when transitioning from broad to fine scales

100 (Extended Data Fig. 1a).

101

102 Different reef locations, with different ecological and environmental histories, occupied

103  different regions on the surface descriptor plane (Fig. 3). For example, one site that was

104  stripped of living coral during back-to-back tropical cyclones®* largely occupied the region of the

105 plane where rugosity, fractal dimension and surface height range are all low (Fig. 3a); that is,
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106  the patches at this site were closest to a theoretical flat surface. Another site also impacted by
107 the cyclones but left littered with dead coral branches, had similar levels of rugosity and height
108 range, but fractal dimension was relatively high (Fig. 3b). In contrast, a site containing several
109 large colonies of living branching coral had patches with the highest fractal dimension and

110  rugosity, yet the height range of these patches was low (Fig. 3c) reflecting the approximately
111  uniform height of living branching corals in shallow waters where water depth and tidal range
112  constrains colony growth. Meanwhile, a site containing large hemispherical Porites corals had
113  patches with large height ranges and high rugosity but lower fractal dimension (Fig. 3d). Three
114  sites contained patches with similar distributions of rugosities (Fig. 3b,d,f), and therefore similar
115  surface areas. However, these sites ranged from smooth reef surfaces with large holes (Fig. 3e)
116  to highly bumpy surfaces with no holes (Fig. 3b), demonstrating why rugosity alone does not
117  capture structural complexity and how varying mixtures of structural components dictate

118  habitat complexity™.

119

120  Finally, to connect the geometric variables to biodiversity, we examined how species richness,
121  total abundance and diversity (measured as the probability of interspecific encounter®®) varied
122 across the surface descriptor plane. Strong ecological feedbacks occur between coral reef

123 habitat structure and coral biodiversity metrics. Coral reef structures are largely created by
124  corals, but their structure is mechanistically affected by environmental conditions such as tidal
125  range, currents, storm impacts and wave exposure. For instance, coral larvae are poor

126  swimmers and are more likely to settle in reef patches with small-scale complexity, because

127  they get entrapped by micro-eddies**. At the same time, more intricate coral structures (with
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128 higher fractal dimension, D) are more likely to be damaged or dislodged during storms that

129  flatten reef patches®*®

. Species-area theory predicts that species richness and abundances
130  should be highest in patches with the greatest surface area™ (i.e., highest rugosity). We

131  predicted that higher fractal dimension would also enhance species richness and abundance,
132  because of niche diversity (i.e., increases in surface area at different scales), and that this effect
133  would be additional to overall surface area. The surface descriptor plane allows estimating the
134  combined effects of not just area, but also niche differentiation associated with fractal

135  dimension and height range'®*.

136

137  We examined geometric-biodiversity coupling for a large plot, containing 261 of the 4 m? reef
138  patches, in which 9,264 coral colonies of 171 species were recorded (see Methods). Contrary to
139 expectation, we found that all biodiversity metrics considered peaked in reef patches with

140 intermediate surface rugosities (Fig. 4a shows diversity, and Extended Data Table 2 includes
141  species richness and abundance). Indeed, several recent studies have argued that the

142  relationship should be unimodal because, as complexity increases, the amount of area available

143  for individuals to live declines*’*®

. However, biodiversity metrics also tended to increase

144  monotonically in association with patches with higher fractal dimension and smaller height
145 range (Extended Data Fig. 7). The explanatory power of reef geometry on biodiversity metrics
146  was over 50% (Extended Data Table 1)—5 to 45% higher than any surface descriptor alone.
147  Explaining this much variation in biodiversity is striking, given the number of other, non-

148  geometric processes that govern coral biodiversity, including environmental filtering, dispersal

149  and species interactions”. Because corals are autogenic ecosystem engineers, reciprocal
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150 causality is likely to strengthen and shape geometric-biodiversity coupling. For instance, high
151  rugosity is often generated by large hemispherical corals (e.g., Fig. 3d) that reduce the number
152  of individuals, and hence species, per area™®. Subsequently, geometric-biodiversity coupling
153  may be weaker for other surface-associated taxa, such as fishes and invertebrates, and should
154  be tested. Nonetheless, our findings have implications for resilience following disturbances and
155  for restoration efforts that aim to maximise biodiversityso, specifically identifying the reef

156  structural characteristics that should be maintained (or built) to maximize biodiversity.

157

158 Discussion

159 A general, scale-independent geometric basis for surface habitats provides a much-needed way
160 to quantify habitat complexity across ecosystems and spatial scales. Meanwhile, creating three-
161 dimensional habitat surfaces is becoming increasingly accessible and cost effective, for example
162  using Structure from Motion>"*?, both underwater and on land. The importance of surface

163  complexity as a determinant of habitat condition, biodiversity, and ecosystem function is well
164  recognised*?, yet different metrics are typically used for different ecosystems, or different taxa
165  within the same ecosystem™. The general quantitative approach we propose is applicable

166  across surface habitats in both marine and terrestrial environments, allowing formal

167 comparisons examining whether geometric-biodiversity couplings differ among systems in

168 terms of both pattern and strength. The surface descriptor plane uncovered here clearly

169 defines the fundamental geometric constraints acting to shape surface habitats, and

170  consequently, how changes in surface geometry affect biodiversity. Nonetheless, there remain
171  several unknowns about the surface descriptor plane and its associations with biodiversity

8
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172  metrics that require further exploration. These unknowns range from technical limitations (e.g.,
173  how does the theory translate from digital elevation models that exclude overhanging surfaces

174  to 3D surface meshes?) to ecological patterns (e.g., how do different types of structural

175 components, such as different mixtures of branching and hemispherical corals or live and dead

176 elements'**

, mediate geometric-biodiversity coupling?).

177

178  As powerful ecosystem engineers, humans are modifying the planet through the structures we
179  destroy, both physically and indirectly via environmental change®, and those we construct.
180 Indeed, human-modified structures differ significantly in their geometry from nature-built

181  structures>>. Determining how biodiversity, conservation status and recovery rates relate to
182  habitat complexity measures is paramount in the Anthropocene. The approach we propose
183  here allows for predictions of the biodiversity consequences of these structural changes across

184  land and seascapes.

185

186 Methods

187 Geometric theory for surface habitats. The variation method for calculating fractal dimension

3637 At the broadest scale,

188 D measures the mean height range of a surface at different scales
189  the linear extent L, the surface height range is AH (Extended Data Fig. 1a). At the finest scale,
190 the resolution Ly, the height range (AHy) is the mean of height ranges of all the component

191  areas at that scale. The slope S of the resulting log-log relationship (shown in Extended Data Fig.

192  1a)is:
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__log(AH)—log(AHy)

193 log(L)~10g(Lo) €. 2
194  Where fractal dimension is®’:
195 D = 3-S5 Eq.3
196 Rearranging Eq. 2 gives:

__log(AH/AH,)
197 = e L) Eqg. 4

198  Surface area A can be estimated by summing areas Ap at the finest grain Ly. Given the mean
199  height range AHpat Ly, we assume any finer scale detail is not observable, and we calculate Ay

200 from the minimal surface consistent with AH, (Extended Data Fig. 1b) as:
L
201 Ag =72AH§ + 4L Eq. 5

2
202  And then multiply by the number of component areas (2—2) giving:
0

2
203 A= ZLTO,/ZAHg + 412 Eq. 6
204  Surface rugosity is*%:
205 R=4 Eq. 7

206  Substituting A for Eq. 6 and rearranging gives:

2
207 R= |41 Eq. 8
212

208 Rearranging for AH, gives:
209 AH, =+V2LyWR?2 -1 Eq.9

210  And substituting into Eq. 4 gives:

)
211§ = —— oy

Eq. 10
log(i) 9

10
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212  Leading to:

log<L>

V2LoVRZ-1

D=3—-——1—
log(m)

214  Further rearranging gives a plane as Eqg. 1 in the main text. The boundaries equations for the

213 Eq. 11

215  limits of fractal dimension D are:

216  AHp_, =V2LVRZ -1 Eq. 12
217 AHp_; =V2LyVRZ -1 Eq. 13
218

219  Coral reef surface field study. Twenty-one reef flat sites were selected approximately 1 km

220 apart and encircling Lizard Island on the Great Barrier Reef, Australia (Extended Data Fig. 2). The
221  spatial arrangement of the sites captured a broad range of habitats that were shaped

222  predominantly by wave exposure generated by prevailing southeast trade winds?2. Mean water
223  depth across all study sites range between 2 to 3.5 meters. In 2014, at the Trimodal site, we
224 used an Iver2 Autonomous Underwater Vehicle®® to collect 45,000 georeferenced overlapping,
225  stereo-pair images of an approximately 30 m by 50 m section of the reef crest (Fig. 4c). In 2016,
226  atall 21 sites, we used the spiral method>®, which involves swimming a camera rig that

227  unspools from a central point to capture approximately 3000 overlapping, stereo-pair images of
228  approximately 130 m? of reef crest (Extended Data Fig. 3). We used a simultaneous localisation
229  and mapping approach40 fusing GPS, stereo imagery and altitude information to provide an

230 initial pose estimate for the cameras. We used Agisoft Metashape software to process the

231  images and produce a 3D dense cloud from which we derived a gridded digital elevation model

232  (DEM) and orthographic mosaic for coral annotation per site. The output resolution of all DEMs

11
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233  was 0.002 m. We used DEMs in order to exclude overhanging surfaces (i.e., only one height for
234  each xy combination), because the degree to which overhangs are captured from plan view
235  photographic surveys is biased by the changing lighting conditions of the environment* (e.g.,
236  the sun angle, cloud cover, water turbidity, etc.). On the other hand, plan view surveys were
237  preferred in order to reduce the time costs associated with capturing stereo pairs from multiple
238  view angles over large areas. The use of DEMs will underestimate surface rugosity and fractal
239  dimension; i.e., the reason why D tended to range below 2.6. However, given that overhanging
240  structures were rare at our study sites, R and D measures are likely to exhibit the correct rank
241  order for patches.

242

243 Given the lack of coral cover following the 2016 mass bleaching event on the GBR*?, we used
244  the 2014 Trimodal large plot to quantify geometric-biodiversity relationships (Extended Data
245  Fig. 2). The plot was divided into a contiguous grid of 2 by 2 m reef patches (Fig. 4c, black

246  squares). Patches of the orthographic mosaic were printed on underwater paper and used as
247  reference maps for in situ identification of all coral colonies of diameter >5 cm to species by a
248  team of six researchers over four weeks. We focused on the reef crest and flat (shallower areas
249  in Fig. 4c) but also included reef edge and deeper reef. Colonies of unknown or hard to identify
250 species were photographed and identified in consultation with guide books and other

251  observers. Hemispherical Porites colonies were identified to genus due to the difficulty

252  differentiating among the few known species without collecting samples for microscopy. Colony
253  annotations were digitized over the orthographic mosaic using QGIS software (e.g., Fig. 4c,

254  white points). Only scleractinian corals were included for analyses. In total, 9,264 coral colonies

12
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255  of 171 species were observed within the 255 reef patches censused. Diversity was calculated as
256  the probability of interspecific encounter (PIE), or 1 — Simpson diversity*.

257

258  Each of the circular DEMs had a central point, from which an 8 by 8 m square was centred

259  (Extended Data Fig. 3) and divided into 16 contiguous reef patches of 2 by 2 m. DEMs for each 2
260 by 2 m patch from both the Trimodal large plot (where corals were censused) and the 21

261  circular plots were cropped to calculate surface rugosity R, fractal dimension D and the height
262  range of the patch AH; the latter being the difference between the deepest and shallowest

263 point in a patch. D was calculated using the variation method®’, where each patch was divided
264  into squares with sides lengths (L) of 2, 1, 0.5, 0.25, 0.125, 0.0625 and 0.03125 m capturing

265  approximately two orders of magnitude“. The resolution L, for the theory is the smallest scale
266  (i.e., 0.03125 m). The height range within each grid at each scale were calculated, and then

267  averaged for that scale to avoid weighting the many estimates at smaller scales more than the
268 fewer estimates at larger scales when calculating the slope S. S was calculated for each patch by
269 fitting a linear model to the log of scale (i.e., grid sizes) versus the log of mean height. D was
270  then calculated according to Eq. 3. R was calculated according to Eq. 8. There are many ways to
271  estimate the surface area of a DEM, so we compared surface rugosity calculated from theory
272  (Eq. 8) with estimates based on surface area calculations using the surfaceArea function in the
273  package sp43. The theory underestimated surface rugosity by approximately 5% (Extended Data
274  Fig. 4), because of the minimal area assumption (Extended Data Fig. 1b), but this disparity was
275  consistent across the range of rugosities.

276

13
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277  Analyses. Surface rugosity (expressed as R>-1) and standardised height range (expressed as

\/AE—IZ) were log-transformed (base 10) as per the plane equation (Eg. 1). Species richness and
0

278
279 abundance were sqrt-transformed, and diversity arcsin-transformed, for all analyses to improve
280 model residuals. Coefficients of determination (r square) of pairwise associations of the three
281  geometric variables were estimated by squaring Pearson correlation coefficients. Reef surfaces
282  were not perfectly fractal: mean height ranges at L and Ly anchor the theory (Extended Data Fig.
283  1a), but mean height ranges at scales intermediate to L and L, could shift the overall

284  relationship, albeit subtlety. Therefore, we calculated the r square for the surface descriptor
285  plane based on the deviances of empirically derived D from theory derived D (Extended Data
286  Fig.5) (i.e., by dividing the residual sums of squares by the total sums of squares, and then

287  subtracting this value from one).

288

289  We quantified geometric-biodiversity relationships for the large plot at the Trimodal site using
290 both generalised additive models (GAMs) and linear models (LMs). We applied the default

291  smoother term to each surface descriptor for the GAMs and second-order polynomials for the
292  LMs, to allow for non-linear relationships among predictor and response variables. We

293  quantified the effect of each geometric variable separately on species richness, total abundance
294  and diversity (PIE), and then all together to assess improvement in explained variation as

295  adjusted r square values (Extended Data Fig. 7; Extended Data Table 1). We included the three
296 reef patches with no living coral, but also confirmed that removing these points had no

297  discernible influence on the geometric-biodiversity relationships. We also ran analyses

298 following the removal of the 5-6 highest rugosity patches that appeared to be largely

14
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299 responsible for producing the hump-shaped rugosity-biodiversity relationships (red curves,
300 Extended Data Fig. 7). Smooth terms for rugosity and height range were significant, with

301 reference degrees of freedom much greater than one for all biodiversity metrics, suggesting
302 significant non-linear effects for these surface descriptors**. Fractal dimension showed a linear
303 effect for richness and diversity, and so the smoother term was removed for these analyses.
304 Residuals for all models were approximately normal and were homogeneous when plotted
305 against predictor variables. The linear models with second-order polynomial terms gave the
306 same overall results as GAMs (Extended Data Fig. 7). That is, the polynomial term was

307 significant for the same terms that retained the smoother function in the GAMs. However, the
308 LMs had lower adjusted r square values and so we presented the final results using GAMs (Fig.
309 4a; Extended Data Table 2).

310

311  All analyses, including model selection and diagnostics and figure creation, were conducted in
312  the statistical program language R* and can be downloaded or cloned at GitHub

313  (https://github.com/jmadin/surface geometry).

314

315 Data and code availability

316  Source data and code for data preparation, statistical analyses and figures are available at

317  https://github.com/jmadin/surface geometry.
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452 Figure captions

453  Fig. 1 | Increasing fractal dimension (i.e., space filling) while keeping surface rugosity

454  constant results in a decline in a surface’s mean height range. A two-dimensional

455  representation of three hypothetical surface habitats with the same surface rugosities (a, b and
456  c¢). That s, the lengths of the lines a, b and ¢ are the same and occur over the same planar

457  extent (black points). However, line a fills less of its two-dimensional space (black rectangle)
458 than does line ¢, and therefore has a lower fractal dimension.

459

460  Fig. 2 | Comparison of the geometric theory with field data. (a-c) Pairwise relationships

461  between the descriptors that frame the geometric theory for n=595 reef patches: surface

462  rugosity (as R*-1); fractal dimension D; and surface height range (as \/AE—fLI). Coefficients of
0

463  determination (r’) show the variance explained in the y-axis variable by the x-axis variable. (d)
464  When combined the three descriptors explain more than 98% of the variation in fractal
465 dimension D despite reef surfaces not being perfectly fractal (see Methods). Field data are

466  points, and the surface descriptor plane is coloured by fractal dimension.
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467

468  Fig. 3 | The geometric diversity of coral reef habitats. Reef patches (n=16) from a subset of six
469  sites are superimposed onto a two-dimensional representation of the surface descriptor plane
470  (colour used here to delineate sites). (a) North Reef; (b) Osprey; (c) Lagoon-2; (d) Resort; (e)
471  South Island; and (f) Horseshoe. Patch height range is greater in the top left corner and

472  decreases towards the bottom right corner. The corresponding DEMs and orthographic mosaics
473  show selected patches at each site to help visualise geometric differences.

474

475  Fig. 4 | Geometric-biodiversity coupling of coral reef habitats. (a) Predicted coral species

476  diversity (represented as probability of interspecific encounter) when plotted upon the surface
477  descriptor plane given by rugosity and fractal dimension (height range is greater in the top left
478  and decreases towards the bottom right, as per Eqg. 1). Prediction contours are from the general
479  additive model summarised in Extended Data Table 2. (b) A digital elevation model of the large
480 plot with n=255 contiguous 2 x 2 m reef patches (black squares) capturing 9,264 coral colony

481  annotations (white points) representing 171 species.
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