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ABSTRACT

Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed
structural connectome development in a large longitudinal sample ranging from late child- to young
adulthood. Using novel techniques that project high-dimensional connectomes into compact manifold
spaces, we could identify a marked expansion of structural connectomes with the strongest effects in
transmodal regions during adolescence. Findings were reflected increased within-module
connectivity together with increased segregation, indicating an increasing differentiation of higher
order association networks from the rest of the brain. Projection of subcortico-cortical connectivity
patterns into these manifolds showed parallel alterations in pathways centered on the caudate and
thalamus. Connectome findings were contextualized via spatial transcriptome association analysis,
highlighting genes enriched in cortex, thalamus, and striatum. Finally, we could show with statistical
learning that cortico-subcortical manifold features at baseline and their maturational change predicted
measures of intelligence at follow-up, supporting utility of connectome manifolds to bridge structural
network reconfigurations and cognitive outcomes in adolescent development.

KEYWORDS: neurodevelopment; adolescence; connectome manifold; longitudinal; MRI; cognition;
multi-scale
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INTRODUCTION

Adolescence is a time of profound and genetically mediated changes in whole-brain network
organization (Larsen and Luna, 2018; Menon, 2013). Adolescent development is important for overall
maturation in cognitive and educational functions and brain health more generally, a notion reinforced
by the overlapping onset of several neurodevelopmental and psychiatric disorders (Hong et al., 2019;
Khundrakpam et al., 2017). With increased capacity to carry out longitudinal studies in large samples,
it is now possible to track changes in brain network organization within subjects, providing
mechanistic insights into maturational processes, their biological underpinnings, and their effects on
behavior and cognition.

By offering an in vivo window into brain organization, neuroimaging techniques such as magnetic
resonance imaging (MRI) offer the ability to track adolescent development over time, and to explore
associations to cognitive functions. Early cross-sectional and longitudinal studies focused on the
analysis of morphological changes (Gogtay et al., 2004; Shaw et al., 2006; Tamnes et al., 2017),
including cortical thickness (Shaw et al., 2006; Tamnes et al., 2017) and volume measures (Gogtay
et al., 2004; Tamnes et al., 2017), with initial grey matter increases until late childhood followed by
a decline for the rest of the lifespan. More recent work explored changes in intracortical
microstructure, capitalizing on myelin-sensitive contrasts such as magnetization transfer ratio (MT)
mapping, which generally suggest overall increases in adolescence (Paquola et al., 2019a; Whitaker
et al., 2016) together with depth dependent shifts in intracortical myelin profiles (Paquola et al.,
2019a). Besides the increasingly recognized changes in cortico-cortical connectivity, additionally
studying subcortical regions offer additional insights for understanding brain maturation during
adolescence. Indeed, an increasing body of connectome level studies emphasizes that subcortical
structures contribute significantly to patterns of whole-brain organization, dynamics, and cognition
(Hwang et al., 2017; Miiller et al., 2020; Shine et al., 2019). In prior neurodevelopmental studies, it
has been shown that the volumes of the striatum and thalamus decrease between adolescence and
adulthood, potentially paralleling processes resulting in cortical grey matter reduction during this time
window (Herting et al., 2018). A close inter-relationship between cortical and subcortical
development is also suggested by recent functional connectivity work suggesting that cortico-
subcortical pathways are intrinsically remodeled during adolescence (Vasa et al., 2020), and these
changes affect cognitive functioning. Collectively, these prior findings suggest measurable
trajectories of cortical and subcortical structural organization and support associations to cognitive
development (Baum et al., 2020; Shaw et al., 2006).

Recent conceptual and methodological advances have increasingly emphasized the analysis of brain
networks as being the way forward to study brain organization, development, and substrates
underlying cognitive trajectories in humans. One key modality to track developmental changes in
structural connectivity is diffusion MRI (dMRI), a technique sensitive to the displacement of water
in tissue that allows for the non-invasive approximation of inter-regional white matter tracts. Prior
cross-sectional and longitudinal studies in children and adolescents outlined changes in the
microstructure of major white matter tracts during development based on the analysis of dMRI
derived tissue parameters (Lebel and Beaulieu, 2011; Schmithorst and Yuan, 2010). These findings
have been complemented by assessments of brain network topology using graph-theoretical analysis
(Oldham and Fornito, 2019), which reported a relatively preserved spatial layout of structural hubs
across adolescent development on the one hand (Hagmann et al., 2010), yet with a continued
strengthening of their connectivity profiles, likely underpinned by the ongoing maturation of long-
range association fibers (Lebel and Beaulieu, 2011; Oldham and Fornito, 2019). One emerging
approach to synoptically address connectome organization and development comes from the
application of manifold learning techniques to connectivity datasets. By decomposing whole-brain
structural and functional connectomes into a series of lower dimensional axes capturing spatial
gradients of connectivity variations (Margulies et al., 2016; Vos de Wael et al., 2020), these techniques
allow for the analysis of local connectivity changes within the context of macroscale motifs of brain
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wiring. Gradients derived from a variety of techniques have been shown to be genetically determined
and relatively conserved across primate evolution (Valk et al., 2020). Furthermore, functional
connectome findings suggest their promise to serve as spatial axes aligned with the cortical hierarchy
(Margulies et al., 2016; Mesulam, 1998) and to capture functional activation patterns across different
task states (Karapanagiotidis et al., 2020; Mckeown et al., 2020). A recent study furthermore
demonstrated that the application of manifold learning techniques to whole-brain dMRI connectomes
is feasible, and that these gradients provide a coordinate system to interrogate the coupling between
brain structure and functional dynamics (Park et al., 2021). Still, the application of manifold
techniques to dMRI connectomes in children and adolescents to track their longitudinal maturations
has not been performed. In a recent assessment by our team, manifold learning techniques have been
applied to myelin sensitive intracortical MT data, showing an increasing myeloarchitectural
differentiation of association cortex throughout adolescence (Paquola et al., 2019a).

Here, we charted developmental changes in structural connectome organization, based on an
accelerated longitudinal neuroimaging study from late childhood to early adulthood, covering the
entire adolescent time period involving a total of 208 participants investigated between 14 to 26 years
of age (Kiddle et al., 2018; Whitaker et al., 2016). Compared to cross-sectional designs, longitudinal
studies track within-subject change, separating developmental effects from between-subject
variability (Louis et al., 1986). We first estimated longitudinal changes in structural connectome
manifolds across age. The compact and lower dimensional space furthermore allowed for the
integration of connectome level findings with changes in MRI-based measures of cortical
morphology and intracortical myelin. We furthermore projected subcortico-cortical connectivity
patterns into the manifold space, to assessed parallel developmental shifts of these pathways in the
studied time window. Connectome-manifold changes were contextualized at the molecular level via
transcriptomic association and developmental enrichment analyses based on post-mortem datasets,
which furthermore allowed for data-driven exploration of time windows of spatially co-localized gene
sets. To also assess behavioral associations of connectome manifold changes, we harnessed
supervised machine learning to predict future measures of cognitive function. Multiple sensitivity
analyses were conducted at several steps to verify the robustness of our findings, and analytical code
is made fully accessible to allow for independent replication of our findings.

RESULTS

These findings were based on the Neuroscience in Psychiatry Network (NSPN) 2400 cohort (Kiddle
et al., 2018; Whitaker et al., 2016). In brief, we studied 208 healthy individuals enrolled in an
accelerated longitudinal study, where several age-stratified cohorts were enrolled to span the time
period from adolescence and young adulthood. Participants (48% female) had a mean age of 18.82
years (range = 14-25 years) at baseline and 19.95 years (15-26 years) at follow-up. The average
interval between baseline and follow-up scan was 11.28 months (range = 6—12 months). See the
Methods for details on participant selection, image processing, and analysis.

Macroscale structural connectome manifold
For every participant, we built cortex-wide structural connectome manifolds formed by the
eigenvectors displaying spatial gradients in structural connectome organization using non-linear
dimensionality reduction techniques (https://github.com/MICA-MNI/BrainSpace) (Vos de Wael et al.,
2020). Individual manifolds were aligned to a template manifold estimated from a hold-out dataset
(see Methods) (Langs et al., 2015; Vos de Wael et al., 2020). Three eigenvectors (E1, E2, and E3)
explained approximately 50% of variance in the template affinity matrix, with each eigenvector
showing a different axis of spatial variation across the cortical mantle (Fig. 1A). Eigenvectors
4
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depicted a continuous differentiation between medial and lateral cortices (E1), between inferior and
superior cortices (E2), and between anterior and posterior areas (E3). For each participant and time
point, we calculated manifold eccentricity, which depicts how far each node is located from the center
of the template manifold (see Methods). It thus simply quantifies the changes in eigenvectors between
the time points in terms of expansion and contraction instead of comparing multi-dimensional
connectome manifolds (Bethlehem et al., 2020). The manifold eccentricity showed high values in
frontal and somatomotor regions, while temporoparietal, visual, and limbic regions showed low
values (Fig. 1B).
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Fig. 1 | Structural connectome manifolds. (A) Systematic fiber tracking based on dMRI generated a cortex-wide
structural connectome, which was subjected to diffusion map embedding. As shown in the scree plot, three eigenvectors
(E1, E2, E3) explained approximately 50% connectome variance, and each depicted a different gradual transition across
the cortical mantle. (B) Manifold eccentricity measured by Euclidean distance between the template center and each data
point. Arrows depict average positional change in connectivity space from baseline to follow-up. The color of each arrow
represents each brain region mapped on the surface on the bottom. (C) The histogram represents age distribution of all
subjects at baseline and follow-up. The colors on brain surfaces indicate t-statistics of regions showing significant
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longitudinal changes in manifold eccentricity across age, following multiple comparisons correction with a false
discovery rate (FDR) procedure. Datapoint colors in the scatter plot represent t-statistics. Identified regions are
represented with arrows that originate from baseline to follow-up. (D) Stratification of age-related changes in manifold
eccentricity along cortical hierarchy (Mesulam, 1998) and functional community (Yeo et al., 2011).

Changes in manifold eccentricity across age

Leveraging linear mixed effect models that additionally controlled for effects of sex, site, head motion,
and subject-specific random intercepts (Worsley et al., 2009), we assessed changes in manifold
eccentricity across age (see Methods). Manifold eccentricity expanded as age increased, especially in
bilateral prefrontal and temporal areas, as well as left early visual and right lateral parietal cortices
(false discovery rate (FDR) < 0.05 (Benjamini and Hochberg, 1995); Fig. 1C). Stratifying these
effects along four cortical hierarchical levels, defined using an established taxonomy based on
patterns of laminar differentiation and tract-tracing data in non-human primates (Mesulam, 1998), we
identified peak effects in heteromodal association and paralimbic areas (Fig. 1D). Convergent
findings were observed when analyzing the effects with respect to intrinsic functional communities
(Yeo et al., 2011), showing highest effects in default mode and limbic areas followed by visual and
frontoparietal cortices. No significant contraction of manifold eccentricity was observed. In addition,
we could not find any significant effects when we fitted the model with a quadratic form of age (i.e.,
age?), indicating the manifold eccentricity linearly increases across age.

To conceptualize the findings derived from manifold eccentricity with respect to conventional
network topologies, we correlated manifold eccentricity changes with several graph-theoretical
measures of structural connectome (Fig. S1) (Rubinov and Sporns, 2010). We first defined six
spatially contiguous clusters within the regions that showed significant age-related changes in
manifold eccentricity (see Fig. /() and correlated within-subject changes in manifold eccentricity
with those in degree centrality, connectivity distance, and modular parameters (i.e., within-module
degree and participation coefficient based on modules defined via Louvain’s community detection
algorithm (Blondel et al., 2008); see Methods; Fig. S2). We found significant positive associations
for degree centrality and within-module degree, suggesting that connectome manifold expansion
reflects a concurrent increase of overall connectivity, particularly within modules. Stratifying changes
in manifold eccentricity as well as connectome topology measures according to the discretized age
bins confirmed these age-related trends (Fig. S3). Indeed, except for participation coefficient, values
in general increased from childhood to young adulthood.

Effects of cortical morphology and microstructure

Previous studies demonstrated significant changes in cortical morphology and microstructure during
adolescence, showing co-occurring reductions in cortical thickness and MT skewness, the latter being
an index of depth dependent intracortical myelin changes in multiple lobes (Gogtay et al., 2004;
Khundrakpam et al., 2017; Paquola et al., 2019a; Shaw et al., 2006). We replicated these findings by
showing cortical thinning in almost all brain regions across the studied age window as well as
reductions in depth dependent MT skewness, suggestive of supragranular enrichment of myelin (Fig.
2A). To evaluate whether the age-related changes in manifold eccentricity were robust above and
beyond these regional changes in cortical thickness and MT, we implemented linear mixed effect
models after correcting for cortical thickness and MT from the manifold eccentricity (Fig. 2B). While
we observed virtually identical spatial patterns of manifold eccentricity changes in models that
controlled for thickness, MT skewness, and both, effects in clusters of manifold eccentricity findings
were reduced in models that additionally controlled for these values (average reduction of t-value in
models controlling for thickness/MT skewness/both = 42/18/68%).
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Fig. 2 | Association to morphological and microstructural effects. (A) The t-statistics of identified regions that showed
significant age-related changes in cortical thickness (upper row) and MT (bottom row), and stratification of t-statistics
according to cortical hierarchy (Mesulam, 1998) and functional community (Yeo et al., 2011). (B) Age-related changes
in manifold eccentricity after controlling for cortical thickness and MT.

Age-related changes in subcortico-cortical connectivity

Besides visualizing these changes in cortico-cortical connectivity, we also capitalized on the manifold
representation to assess adolescent changes in the connectivity of subcortical regions, to obtain a more
holistic insight into whole-brain connectome reconfigurations during this time period, and to examine
whether subcortical connectivity patterns undergo parallel developmental trajectories (Hwang et al.,
2017; Shine et al., 2019). Specifically, we assessed changes in subcortical-weighted manifolds across
age, defined by projecting the streamline strength of subcortical regions to cortical targets to the
manifold space (see Methods). Such an analysis situates changes in subcortico-cortical pathways in
the macroscale context of cortico-cortical connectivity identified in the previous analyses. After
multiple comparison correction, the caudate and thalamus showed significant effects of subcortical-
weighted manifolds (FDR < 0.05; Fig. 3), and marginal effects were observed in the putamen,
pallidum, and hippocampus (FDR < 0.1).
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Fig. 3 | Longitudinal changes in subcortical-weighted manifolds. The t-statistics of age-related changes in subcortical-
weighted manifolds. The effects of each subcortical region are reported on the radar plot. Abbreviation: FDR, false
discovery rate.
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Transcriptomic association analysis

Connectome organization more generally, and macroscale gradients more specifically, have been
argued to reflect genetic expression profiles, underscoring the close link between the physical layout
of the brain and innate molecular factors (Buckner and Krienen, 2013; Fornito et al., 2019). Here, we
carried out a transcriptomic association and developmental enrichment analyses to contextualize the
age-related manifold eccentricity changes with respect to patterns of post-mortem gene expression
from a sample of independent adults (Fig. 4A). Specifically, leveraging mixed effect models, we
associated the spatial patterns of manifold change across age that controlled for cortical thickness and
MT in the NSPN sample with cortical maps of post-mortem gene expression data from the Allen
Institute for Brain Sciences (Arnatkeviciute et al., 2019; Gorgolewski et al., 2015, 2014; Hawrylycz
et al., 2012; Markello et al., 2020). Among the list of most strongly associated genes (FDR < 0.05),
we selected only genes that were consistently expressed across different donors (r > 0.5)
(Arnatkeviciute et al., 2019) (Data S1). We fed those into a developmental gene enrichment analysis,
which highlights developmental time windows across macroscopic brain regions in which genes are
strongly expressed (see Methods) (Dougherty et al., 2010). This analysis highlighted marked
associations between the spatial pattern of longitudinal change in connectome manifold eccentricity
and the expression of genes that were found enriched from childhood onwards in the cortex, thalamus,
and cerebellum (FDR < 0.001; Fig. 4B). Although signal was reduced, genes were also showing an
enrichment for expression in the striatum at the transition from childhood to adolescence (FDR <
0.05). On the other hand, identified genes were not found to be expressed in the hippocampus and
amygdala.
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Fig. 4 | Transcriptomic analysis. (A) Gene decoding process by associating t-statistics from the linear mixed effect
model with post-mortem gene expression maps. (B) We identified genes that were spatially correlated with the input t-
statistic map (false discovery rate (FDR) < 0.05) and selected only those that were furthermore consistently expressed
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across different donors (r > 0.5). These genes were fed into a developmental enrichment analysis, showing strong
associations with cortex, thalamus, striatum, and cerebellum during childhood-to-adulthood time window. The degree of
gene expression for developmental windows is reported on the bottom. The curve represents log transformed FDR
corrected p-values, averaged across the brain regions reported as on the bottom. ***FDR < 0.001, ** FDR < 0.01, *FDR
<0.05.

Association between connectome manifold and cognitive function

To finally establish associations between connectome reconfigurations and cognitive functioning, we
utilized a supervised machine learning to predict full intelligence quotient (IQ) at follow-up using
manifold eccentricity features. Independent variables were combinations of cortical and subcortical
manifold features at baseline and their age-related trajectory data. We used elastic net regularization
(Zou and Hastie, 2005) with ten-fold cross-validation (see Methods), and repeated the prediction 100
times with different training and test dataset compositions to mitigate subject selection bias. The
manifold eccentricity of cortical regions at baseline significantly predicted future IQ score (mean +
SD r=0.21 £ 0.03; mean absolute error (MAE) = 8.76 + 0.10). Prediction performance was slightly
improved when we combined the manifold eccentricity both at baseline and differences between
follow-up and baseline (r = 0.26 £ 0.02; MAE = 8.44 + 0.10) (Fig. 5A). Notably, prediction accuracy
was improved if we additionally considered subcortical manifold features (baseline: r = 0.27 £ 0.02;
MAE = 8.59 £ 0.12; baseline and maturational change: r = 0.34 + 0.03; MAE = 8.74 + 0.17) (Fig.
5B). The regions showing strongest predictive validity for IQ were prefrontal, parietal, and temporal
cortices, as well as the caudate and thalamus. The probability map of the selected brain regions
(bottom right of Fig. 5B) was further decoded using Neurosynth (Yarkoni et al., 2011), revealing
strong associations with higher order cognitive and social terms (Fig. S4).
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Fig. 5 | IQ prediction. (A) Probability of selected brain regions across ten-fold cross-validation and 100 repetitions for
predicting future IQ using only baseline manifold eccentricity (left), and both baseline and maturational change in the
feature (right). Correlations between actual and predicted 1Q are reported. Black lines indicate mean correlation and gray
lines represent 95% confidence interval for 100 iterations with different training/test dataset. (B) The prediction
performance when both cortical and subcortical features were considered. Abbreviations: 1Q, intelligence quotient; MAE,
mean absolute error.

Sensitivity analysis
Repeating the longitudinal modeling with a different spatial scale (i.e., 300 parcels), findings were
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highly consistent (Fig. S5). Furthermore, manifold eccentricity of the identified cortical regions and
age consistently correlated positively in the different sites and within both biological sexes, yielding
non-significant interaction effects (Fig. S6). When we changed parameters of diffusion map
embedding for generating connectome manifolds (see Methods), t-statistic maps of age-related
changes in manifold eccentricity were largely consistent (mean + SD linear correlation r = 0.92 +
0.10).

DISCUSSION

The current study tracked whole-brain structural connectome maturation from adolescence to young
adulthood in an accelerated longitudinal imaging cohort (Kiddle et al., 2018; Whitaker et al., 2016).
Capitalizing on advanced manifold learning techniques applied to diffusion MRI derived
connectomes, we established that higher order association cortices in prefrontal, medial and superior
temporal, as well as parieto-occipital regions expanded in their connectome manifold representation
indicative of an increased differentiation of these systems from the rest of the brain in adolescence.
Parallel topological fingerprinting based on graph theory indicated that these changes co-occurred
alongside increases in the within-module connectivity of transmodal cortices. Findings were
consistent across the different acquisition sites and biological sexes, and similar albeit slightly weaker
when correcting connectivity manifolds for MRI-based measures of cortical morphology and
microstructure. In addition to the cortical manifold expansion, we found parallel reconfigurations of
subcortical pathways , particularly for connectivity patterns of the caudate and thalamus. Decoding
of our findings with post-mortem gene expression maps highlighted an implication of genes enriched
in adolescence and young adulthood, again pointing to both cortical as well as subcortical targets.
Finally, the combination of both cortical and subcortical manifold measures predicted behavioral
measures of intelligence at follow-up, with higher performance than cortical or subcortical data alone.
Collectively, our findings provide new insights into adolescent structural connectome maturation, and
how multiple scales of cortical and subcortical organizations interact in typical neurodevelopment.

Leveraging advanced manifold learning, we depicted macroscale connectome organization along
continuous cortical axes. Similar approaches have previously been harnessed to decompose
microstructural (Paquola et al., 2019b, 2019a) and functional MRI (Bethlehem et al., 2020; Hong et
al., 2019; Margulies et al., 2016; Murphy et al., 2019; Vos de Wael et al., 2020). These techniques are
appealing, as they offer a low dimensional perspective on connectome reconfigurations in a data-
driven and spatially unconstrained manner. In our longitudinal study, we could identify marked
connectome expansion during adolescence, mainly encompassing transmodal and heteromodal
association cortex in prefrontal, temporal, and posterior regions, the territories known to mature late
in development (Gogtay et al., 2004; Shaw et al., 2006). Connectome expansion can be understood
as an overall greater differentiation of the connectivity of these areas from the rest of the brain, as
they would then cover wider portions of the corresponding manifold space. Manifold expansion in
higher order areas correlated with an increase in their within-module connectivity, but not with
participation coefficient and connectivity distance measures that would be more reflective of their
between-module connectivity. Our findings, thus, extend prior dAMRI studies that have focused on
specific tract groups and that have indicated considerable developmental shifts in diffusion
parameters, such as increases in fractional anisotropy and decreases in mean diffusivity in early and
late adolescence (Olson et al., 2009). Other studies have furthermore reported increased streamline
count estimates (Genc et al., 2020). In this context, our macroscale manifold findings likely reflect
an ongoing consolidation of transmodal communities. These findings align with prior graph-

theoretical studies, which have pointed to concurrent increases in network integration and
10
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consolidation of network hubs from late childhood to early adulthood (Oldham and Fornito, 2019).
Considering their distributed regional substrate, these network effects are likely driven by the ongoing
maturation of fiber bundles that interconnect these higher order cortices, including superior
longitudinal fascicules, but also thalamic and basal ganglia pathways (Tamnes et al., 2010),
throughout adolescence.

Projecting manifold solutions back onto cortical surfaces allowed us to integrate our connectome
manifold results with morphometric and intracortical intensity indices obtained via structural and
quantitative MRI contrasts in the same participants. We were thus able to balance the network level
effects against trajectories of intracortical remodeling. Longitudinal changes in these cortical features
were overall in agreement with prior work, suggesting marked reductions in cortical thickness in
adolescence (Khundrakpam et al., 2017; Shaw et al., 2006), possibly reflecting synaptic pruning
processes (Petanjek et al., 2011) together with decreases in the skewness of intracortical MT profiles,
a feature sensitive to preferential myelination of supragranular layers (Paquola et al., 2019a).
Although we still observed significant age-related changes in manifold eccentricity after controlling
for these intracortical and morphological measures, the effect sizes of our findings were reduced. This
effect was particularly evident when running a parallel analysis that additionally controlled for depth
dependent shifts in cortical microstructure, a finding in line with more generally demonstrated links
between cortical microstructural context and inter-regional connectivity (Paquola et al., 2019b). In
the context of adolescence and prior findings in the NSPN dataset (Paquola et al., 2019a), these results
thus suggest a coupled process that affects depth-dependent shifts in cortical myeloarchitecture on
the one hand, and adolescent shifts in macroscale connectome organization as shown by our
longitudinal manifold analyses on the other.

In addition to emphasizing a distributed set of association cortices and their cortico-cortical
connections, analysis of subcortico-cortical connectivity patterns highlighted parallel developmental
processes in several subcortical structures and their connections, particularly the caudate and
thalamus. These findings were independently supported by transcriptomic association studies and
developmental enrichment analyses, which implicated genes expressed in cortical regions and these
subcortical structures during late childhood, adolescence, and young adulthood. The caudate in the
striatum has long been recognized to play an important role in mediating large-scale cortical network
organization (Aglioti, 1997; Alexander and Crutcher, 1990; Graybiel, 1995), a finding also
increasingly recognized in the connectome literature (Hwang et al., 2017; Miiller et al., 2020; Shine
et al., 2019). It is known to modulate activity in prefrontal association areas during memory-driven
internal thought processes (Aglioti, 1997), and higher order cognitive functions, notably motivational
processes, decision making, as well as cognitive control and executive functions more generally
(Aglioti, 1997; Graybiel, 1995). The other structure that our analyses pointed to, striatum, participates
in dense cortico-subcortical feedback loops, and exchanges neural activity through dense connections
with adjacent basal ganglia structures as well as the thalamus (Aglioti, 1997; Alexander and Crutcher,
1990). These cortico-subcortical interactions likely involve the interplay of multiple neurotransmitter
systems, including dopaminergic as well as GABA/Glutamate signaling. On the other hand,
perturbations in cortico-striatal connections and neurotransmitter imbalances have been reported in
multiple neurodevelopmental disorders, including schizophrenia (Tziortzi et al., 2014), autism (Sohal
and Rubenstein, 2019), and attention deficit/hyperactivity disorder (Bonaventura et al., 2017; Hong
et al., 2015).

Higher order cognitive function implicates functionally relevant whole-brain network mechanisms,
and its prediction may thus leverage structurally governed principles of network integration and
segregation. Application of a supervised machine learning framework with cross-validation and

1
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regularization to our cohort demonstrated that it is possible to predict inter-individual variations in
future IQ from structural connectome manifold data. These findings complement conceptual accounts
linking brain organization to cognitive function (Margulies et al., 2016; Mesulam, 1998), and earlier
efforts to predict IQ measures from inter-regional measures of connectivity and graph-theoretical
indices of network topology (Greene et al., 2018). Notably, evaluations of several feature
combinations highlighted that predictive performance was highest when including both baseline and
trajectory data, and when complementing cortical and subcortical manifold features. These findings
reemphasize the benefits of incorporating subcortical nodes in the characterization of large-scale
cortical network organization and overall cognitive function (Alves et al., 2019; Miiller et al., 2020;
Shine et al., 2019).

Adolescence is a time characterized by ongoing brain changes (Baum et al., 2020; Gogtay et al., 2004;
Larsen and Luna, 2018; Menon, 2013; Shaw et al., 2006), gradually increasing independence from
caregivers, and strong increments in knowledge and our ability to think more abstractly and to
cooperate with our peers to achieve common goals. On the other hand, adolescence is also a sensitive
time window for risk taking, the development of addictions, and hosts the onset of several prevalent
psychiatric disorders (Hong et al., 2019; Khundrakpam et al., 2017). Our study has shown that
structural brain network organization continues to mature significantly during this time period, with
particularly higher order association cortices in prefrontal and posterior regions showing an expansion
of their corresponding connectome manifold signature. Findings were related to an increased
strengthening of intra-community connectivity as well as cortico-subcortical connectivity patterns to
thalamo-striatal regions. Although the current work was restricted to a longitudinal sample of
typically developing adolescents, our framework may be useful to explore multi-scale network
perturbations in cohorts with a psychiatric diagnosis or those at risk for addiction or atypical
neurodevelopment.

METHODS

Participants
We obtained imaging and phenotypic data from the NSPN 2400 cohort, which contains questionnaire

data on 2,402 individuals (with MRI data on a subset of ~300) from adolescence to young adulthood
in a longitudinal setting (Kiddle et al., 2018; Whitaker et al., 2016). Included participants completed
quality-controlled (see Data preprocessing section) multimodal MRI scans consisting of T1-weighted,
MT, and dMRI for at least two time points. Our final sample consisted of a total of 208 participants
(48% female; mean (range) age = 18.82 (14-25) years at baseline and 19.95 (15-26) at follow-up;
inter-scan interval of 11.28 (6—12) months), collected from three different UK sites: Wolfson Brain
Imaging Centre and MRC Cognition and Brain Sciences Unit in Cambridge; and University College
London. We divided the participants into template and non-template cohorts with matched age, sex,
and site ratio. The template dataset (n = 30; 50% female; mean (range) age = 18.69 (15-24) years at
baseline and 19.84 + 2.66 (16-25) at follow-up) was used for constructing template structural
connectome manifold and the non-template dataset (n = 178; 47% female; mean (range) age = 18.84
(14-25) years at baseline and 19.97 (15-26) at follow-up) was used for conducting main analyses. Of
note, changing the template dataset composition did not markedly affect main findings (Fig. S7).

MRI acquisition
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Imaging data were obtained using a Siemens Magnetom TIM Trio 3T scanner. T1-weighted and MT
sequences were acquired using a quantitative multiparameter mapping (MPM) sequence (repetition
time (TR)/flip angle = 18.7ms/20° for T1-weighted and 23.7ms/6° for MT; six equidistance echo times
(TE) = 2.2-14.7ms; voxel size = Imm?; 176 slices; field of view (FOV) = 256 x 240mm; matrix size
=256 x 240 x 176) (Weiskopf et al., 2013). The dMRI data were acquired using a spin-echo echo-
planar imaging (EPI) sequence (TR = 8,700ms; TE = 90ms; flip angle = 90°; voxel size = 2mm?; 70
slices; FOV = 192 x 192mm?; matrix size = 96 x 96 x 70; b-value = 1,000s/mm?; 63 diffusion
directions; and 6 b0 images).

Data preprocessing

T1-weighted data were processed using the fusion of neuroimaging preprocessing (FuNP) pipeline
integrating AFNI, FSL, FreeSurfer, ANTs, and Workbench (Avants et al., 2011; Cox, 1996; Fischl,
2012; Glasser et al., 2013; Jenkinson et al., 2012; Park et al., 2019), which is similar to the minimal
preprocessing pipeline for the Human Connectome Project (Glasser et al., 2013). Gradient
nonlinearity and b0 distortion correction, non-brain tissue removal, and intensity normalization were
performed. The white and pial surfaces were generated by following the boundaries between different
tissues (Dale et al., 1999), and they were averaged to generate the midthickness surface, which was
used to generate the inflated surface. The spherical surface was registered to the Conte69 template
with 164k vertices (Van Essen et al., 2012) and downsampled to a 32k vertex mesh. Quality control
involved visual inspection of surface reconstruction of T1-weighted data, and cases with faulty
cortical segmentation were excluded. Surface-based co-registration between T1-weighted and MT
weighted scans were performed. We generated 14 equivolumetric cortical surfaces within the cortex
and sampled MT intensity along these surfaces (Paquola et al., 2019a). The vertex-wise MT profiles
for each surface depth were averaged based on the Schaefer atlas with 200 parcels (Schaefer et al.,
2018). The dMRI data were processed using MRtrix3 (Tournier et al., 2019), including correction for
susceptibility distortions, head motion, and eddy currents. We visually inspected the quality of co-
registration between the adolescence data and adult-driven surface template as well as parcellation
atlas, and all data showed reasonable registration results.

Structural connectome manifold identification

Structural connectomes were generated from preprocessed dMRI data (Tournier et al., 2019).
Anatomically constrained tractography was performed using different tissue types derived from the
T1-weighted image, including cortical and subcortical grey matter, white matter, and cerebrospinal
fluid (Smith et al., 2012). Multi-shell and multi-tissue response functions were estimated (Christiaens

et al., 2015), and constrained spherical-deconvolution and intensity normalization were performed
(Jeurissen et al., 2014). The tractogram was generated with 40 million streamlines, with a maximum
tract length of 250 and a fractional anisotropy cutoff of 0.06. Subsequently, spherical-deconvolution
informed filtering of tractograms (SIFT2) was applied to reconstruct whole-brain streamlines
weighted by the cross-section multipliers, which considers the fiber bundle’s total intra-axonal space
across its full cross-sectional extent (Smith et al., 2015). The structural connectome was built by
mapping the reconstructed cross-section streamlines onto the Schaefer 7-network based atlas with
200 parcels (Schaefer et al., 2018) then log-transformed to adjust for the scale (Fornito et al., 2016).

Cortex-wide  structural connectome manifolds were identified using BrainSpace
13
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(https://github.com/MICA-MNI/BrainSpace) (Vos de Wael et al., 2020). First, a template manifold
was estimated using a group representative structural connectome of the template dataset. The group
representative structural connectome was defined using a distance-dependent thresholding that

preserves long-range connections (Betzel et al., 2019). An affinity matrix was constructed with a
kernel of normalized angle and eigenvectors were estimated via diffusion map embedding (Fig. 1A),
which is robust to noise and computationally efficient compared to other non-linear manifold learning
techniques (Tenenbaum et al., 2000). It is controlled by two parameters a and ¢, where a controls the
influence of the density of sampling points on the manifold (a0 = 0, maximal influence; a = 1, no
influence) and ¢ controls the scale of eigenvalues of the diffusion operator. We set o = 0.5 and t = 0 to
retain the global relations between data points in the embedded space, following prior applications
(Hong et al., 2019; Margulies et al., 2016; Paquola et al., 2019a, 2019b; Vos de Wael et al., 2020). In
this new manifold, interconnected brain regions are closely located, and regions with weak inter-
connectivity located farther apart. After generating the template manifold, individual-level manifolds
were estimated from the non-template dataset and aligned to the template manifold via Procrustes
alignment (Langs et al., 2015; Vos de Wael et al., 2020). To analyze how the multi-dimensional
manifold structures change in the low dimensional manifold space, we simplified the multivariate
eigenvectors into a single scalar value by calculating the Euclidean distance between the center of
template manifold and all data points (i.e., brain regions) in the manifold space, which was referred
to as manifold eccentricity (Fig. 1B) (Bethlehem et al., 2020). The template center was defined as the
centroid of the first three eigenvectors, which explained 50% variance. Specifically, manifold
eccentricity was defined as follows:

Cr = 5 [T, T(ED;, T, T(E2);, XL, T(E3),] (1)

ME = ¥3_{I(E,) — Cr(e)}? 2)

Cr is the template center; N number of brain regions; T(-) template manifold;, ME manifold
eccentricity; I(+) individual manifold; Cr(e) template center of e manifold.

Age-related changes in structural manifolds

We assessed changes in manifold eccentricity across age using a linear mixed effect model (Worsley
et al., 2009), controlling for effects of sex, site, head motion, and subject-specific random intercept
to improve model fit in accelerated longitudinal designs. The t-statistics of each brain region were

computed and we corrected for multiple comparisons by using a FDR threshold of q < 0.05 (Fig. 1C)
(Benjamini and Hochberg, 1995). We stratified age-related effects based on a seminal model of neural
organization and laminar differentiation that contains four cortical hierarchical levels (Mesulam,
1998), as well as seven intrinsic functional communities (Yeo et al., 2011) (Fig. 1D). To assess the
effects with respect to age?, we repeated implementing a linear mixed effect model by adding a
quadratic term of age to the model.

To provide the underlying structure of manifold eccentricity, we compared the changes in manifold
eccentricity with those in connectome topology measures. We first defined clusters within the
identified regions based on their spatial boundaries (Fig. S1A). Then, we calculated degree centrality,
as well as modular measures of within-module degree and participation coefficient using the Brain
Connectivity Toolbox (https://sites.google.com/site/bctnet/) (Rubinov and Sporns, 2010) and
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connectivity distance using a recently published approach (Lariviere et al., 2020). Degree centrality
is defined as the row-wise sum of the weighted connectivity matrix, representing the connection
strength of a given node (Rubinov and Sporns, 2010). Connectivity distance is a given brain region’s
geodesic distance to its structurally connected brain areas within the cortex (Oligschldger et al., 2019),
and it is defined as the multiplication between the geodesic distance and the binarized structural
connectome (Hong et al., 2019; Oligschliger et al., 2019). Within-module degree and participation
coefficient are nodal measures reflecting different facets of community organization (Rubinov and
Sporns, 2010). For each individual subject, community structure was defined using Louvain’s
algorithm (Blondel et al., 2008) and a consistency matrix was constructed, where each element of the
matrix represents whether the two different nodes are involved in the same community (i.e., 1) or not
(i.e., 0) (Fig. S2A). We constructed the group-wise consistency matrix by averaging the consistency
matrix of all subjects and applied k-means clustering (Fig. S2B). The optimal number of clusters was
determined using the silhouette coefficient, i.e.,, the k that maximized the silhouette coefficient
(Kannan et al., 2010). We calculated within-module degree and participation coefficient based on
these modules. Within-module degree is the degree centrality within a community, indicating intra-
community connection strength, while participation coefficient represents inter-community
connectivity (Rubinov and Sporns, 2010). We calculated linear correlations between changes in
manifold eccentricity and those in each graph theoretical measure for each cluster (Fig. S1B). The
significance of the correlation was corrected using 1,000 permutation tests by randomly shuffling
subject indices in one of the data vectors, and we corrected for multiple comparisons across clusters
using an FDR procedure (Benjamini and Hochberg, 1995). To visualize age-related changes in these
parameters, we stratified each measure according to discretized age bins (< 17, 17-19, 19-21, 21-23,
> 23; Fig. S3).

Cortical morphology and microstructure

It has been shown that cortical morphology and microstructure significantly change during
development (Gogtay et al., 2004; Khundrakpam et al., 2017; Paquola et al., 2019a; Shaw et al., 2006).
Here, we confirmed these changes by assessing age-related changes in MRI-based cortical thickness
measures and intracortical measures of MT, an index sensitive to myelin content (Weiskopf et al.,
2013), using linear mixed effect models (Fig. 2A) (Worsley et al., 2009). We further regressed out
cortical thickness and MT from the connectome manifold eccentricity metric. We then implemented
linear mixed effect models using the residuals of manifold measures to assess whether age-related
connectome manifold effects exist above and beyond age-related effects on cortical morphology and
microstructure (Fig. 2B).

Subcortico-cortical connectivity

To assess age-related changes in subcortical manifold organizations in addition to cortical manifold
structures, we first parcellated the accumbens, amygdala, caudate, hippocampus, pallidum, putamen,
and thalamus for each individual (Patenaude et al., 2011), and approximated cross-section streamlines
connect each subcortical region to the rest of the brain. For each individual and each subcortical
region, we projected the streamline strength to cortical manifold space by weighting the cortical
manifolds with the streamline strength of the connection between each subcortical region and cortical

parcels, yielding a matrix with the form of (number of brain regions x number of cortical manifolds).
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We averaged the matrix across the axis of cortical manifolds to construct subcortical-weighted
manifold vector. We assessed age-related changes in the subcortical-weighted manifold using a linear
mixed effect model (Worsley et al., 2009), controlling for sex, site, head motion, and subject-specific
random intercept, and FDR corrected for multiple comparisons (Fig. 3) (Benjamini and Hochberg,
1995).

Transcriptomic analysis

We performed spatial correlation analysis to post-mortem gene expression data and carried out a
developmental enrichment analysis (Fig. 4). In brief, we first correlated the t-statistics map, which
represents age-related changes in manifold eccentricity that controlled for cortical morphology and

microstructure, with the post-mortem gene expression maps provided by the Allen Institute using the
Neurovault gene decoding tool (Gorgolewski et al., 2015, 2014; Hawrylycz et al., 2012). Leveraging
mixed effect models to associate the input t-statistic map with the genes of six donor brains,
Neurovault yields the gene symbols associated with the input spatial map. Gene symbols that passed
for a significance level of FDR < 0.05 were further tested whether they are consistently expressed
across different donors using abagen toolbox (https://github.com/rmarkello/abagen) (Arnatkeviciute
etal., 2019). For each gene, we estimated whole-brain gene expression map and correlated it between
all pairs of donors. Only genes showing consistent whole-brain expression pattern across donors
(FDR < 0.05) were fed into enrichment analysis, which involved comparison against developmental

expression profiles from the additional BrainSpan dataset (http://www.brainspan.org) using the cell-
type specific expression  analysis (CSEA) developmental expression  tool
(http://genetics.wustl.edu/jdlab/csea- tool-2) (Dougherty et al., 2010). As the Allen Brain Institute
repository is composed of adult post-mortem datasets, it should be noted that the associated gene
symbols represent indirect associations with the input t-statistic map derived from the developmental
data.

Association with the development of cognitive function

Leveraging a supervised machine learning with ten-fold cross-validation, we predicted full 1Q score
measured by Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999) at follow-up using cortical
and subcortical features. Four different feature sets were evaluated: (1) manifold eccentricity of the
identified cortical regions at baseline and (2) manifold eccentricity at baseline and its longitudinal
change (i.e., differences between follow-up and baseline), and (3) cortical manifold eccentricity and
subcortical-weighted manifold of the identified regions at baseline and (4) manifold eccentricity and
subcortical-weighted manifold at baseline and their longitudinal changes. For each evaluation, a

subset of features that could predict future IQ was identified using elastic net regularization (p = 0.5)
with optimized regularization parameters (L1 and L2 penalty terms) via ten-fold cross-validation
(Zou and Hastie, 2005). Feature selection procedure was conducted using the training data (9/10
segments), and it was repeated 10 times with different training and test dataset. The features that were
most frequently identified across the cross-validation iterations (>50%) were selected and fed into a
linear regression model for predicting 1Q scores. Here, the actual feature values were considered, not
multiplied by the regression weights. The model was controlled for effects of age, sex, site, and head
motion. The IQ prediction using linear regression was performed with a ten-fold cross-validation by
training the model with the training data (9/10 segments) and applying it to the test data (1/10
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segment). The prediction procedure was repeated 100 times with different training and test sets to
reduce bias. Prediction accuracy was indexed by computing linear correlations between the actual
and predicted IQ scores as well as mean absolute error (MAE). A 95% confidence interval of the
accuracy measures was also reported. Permutation-based correlations across 1,000 tests were
conducted by randomly shuffling subject indices to check whether the prediction performance
exceeded chance levels.

Sensitivity analysis

a) Spatial scale. To assess the consistency of our findings across spatial scales, we additionally
performed the linear mixed effect modeling using a finer parcellation scheme of 300 parcels (Fig. S5)
(Schaefer et al., 2018).

b) Site effect. Participants were recruited from three different sites. To assess whether the longitudinal
changes in manifold eccentricity across age are consistent across different sites, we calculated
interaction effects of the relationship between age and manifold eccentricity of the identified regions
across sites (Fig. S6B).

¢) Sex effect. We repeated computing interaction effect of the relationship between age and manifold
eccentricity across male and female subjects to assess whether the age-related changes are affected
by sex (Fig. S6C).

d) Different parameters for diffusion map embedding. To assess the sensitivity of our findings, we
generated connectome manifolds with different parameters for diffusion map embedding (o = 0.25,
0.5,0.75;t=0, 1, 2, 3). We assessed age-related changes of the newly defined manifold eccentricity
and calculated linear correlation with t-statistic map of the default setting (a = 0.5; t = 0; Fig. 1C).
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Fig. S1 | Association between structural connectome manifold and connectome topology
measures. (A) Six clusters defined within the identified regions that showed significant age-related
changes in manifold eccentricity (see Fig. /C). (B) Associations between within-subject changes in
manifold eccentricity and those of each connectome topology measure. Brain surfaces on the right
side represent changes in each measure between baseline and follow-up. Significance was calculated
using a false discovery rate (FDR).
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A. Consistency matrix construction
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Fig. S2 | Modular structures. (A) Pipeline for constructing consistency matrix. We constructed
individual subject-wise consistency matrix by considering whether two different nodes were involved
in the same module. (B) Group-wise consistency matrix was constructed by averaging subject-wise
consistency matrices. The k-means clustering with silhouette coefficient was used for defining
modules. Seven modules on the brain surface are reported on the right side.
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Fig. S3 | Age-related trends in connectome topology measures. Age-related changes in manifold
eccentricity, degree centrality, connectivity distance, within-module degree, and participation
coefficient. Abbreviation: y, years.
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A. Selected cortical and subcortical regions

Using baseline and A features

Lateral

Medial

[ Tl
Probability

Lateral

" reward tom SOClaI mind belief ozl

29

B. Cognitive decoding
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Fig. S4 | Cognitive decoding of the selected regions for 1Q prediction. (A) Probability of selected
cortical and subcortical regions for predicting future IQ using both baseline and maturational changes
(see Fig. 5). (B) A word cloud derived by cognitive decoding using NeuroSynth (Yarkoni et al., 2011).

29


https://doi.org/10.1101/2020.06.22.165621
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.165621; this version posted November 17, 2020. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Park et al. | Structural connectome maturation during adolescence

A. Connectome manifolds B. Manifold eccentricity
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Fig. S5 | Structural connectome manifolds using Schaefer 300 atlas. (A-D) Main findings were

replicated using a different parcellation scale. For details, see Fig. /.
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A. Longitudinal changes in manifold eccentricity according to age

/ ) o PR 4
f ) L
2
8
9
-
0
B. Site interaction C. Sex interaction
t=0.7060 + 0.2959, p > 0.1 t=-0.2164, p > 0.5
0.12 0.12 Female
2 2
S S Male
= =
o o
@ Q
Q Q
(%] (%]
@ @ |
T k]
(<} [}
= =
c c
© ©
= =
0.07 0.07
13 27 13 27
Age Age

Fig. S6 | Sensitivity analysis for site and sex. (A) The t-statistics of identified regions that showed
significant age-related changes in manifold eccentricity. (B) Interaction effects of the relationship
between age and manifold eccentricity for sites and (C) biological sexes. Abbreviations: WIBC,
Wolfson Brain Imaging Centre; CBU, MRC Cognition and Brain Sciences Unit; UCL, University
College London.
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Fig. S7 | Structural connectome manifolds using different template dataset. (A-C) Structural
connectome manifolds and association to age using different template cohort. Three representative

cases are reported. For details, see Figure 1.
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Data S1 | Significant gene lists correlated with patterns of manifold eccentricity changes across
age. Gene symbol with name and t-statistic as well as false discover rate (FDR) corrected p-value are
reported in the Supplementary Data file (Supplementary Datal.xlsx).
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