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ABSTRACT 
Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed 
structural connectome development in a large longitudinal sample ranging from late child- to young 
adulthood. Using novel techniques that project high-dimensional connectomes into compact manifold 
spaces, we could identify a marked expansion of structural connectomes with the strongest effects in 
transmodal regions during adolescence. Findings were reflected increased within-module 
connectivity together with increased segregation, indicating an increasing differentiation of higher 
order association networks from the rest of the brain. Projection of subcortico-cortical connectivity 
patterns into these manifolds showed parallel alterations in pathways centered on the caudate and 
thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, 
highlighting genes enriched in cortex, thalamus, and striatum. Finally, we could show with statistical 
learning that cortico-subcortical manifold features at baseline and their maturational change predicted 
measures of intelligence at follow-up, supporting utility of connectome manifolds to bridge structural 
network reconfigurations and cognitive outcomes in adolescent development.  
 
KEYWORDS: neurodevelopment; adolescence; connectome manifold; longitudinal; MRI; cognition; 
multi-scale 
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INTRODUCTION 
Adolescence is a time of profound and genetically mediated changes in whole-brain network 
organization (Larsen and Luna, 2018; Menon, 2013). Adolescent development is important for overall 
maturation in cognitive and educational functions and brain health more generally, a notion reinforced 
by the overlapping onset of several neurodevelopmental and psychiatric disorders (Hong et al., 2019; 
Khundrakpam et al., 2017). With increased capacity to carry out longitudinal studies in large samples, 
it is now possible to track changes in brain network organization within subjects, providing 
mechanistic insights into maturational processes, their biological underpinnings, and their effects on 
behavior and cognition. 
By offering an in vivo window into brain organization, neuroimaging techniques such as magnetic 
resonance imaging (MRI) offer the ability to track adolescent development over time, and to explore 
associations to cognitive functions. Early cross-sectional and longitudinal studies focused on the 
analysis of morphological changes (Gogtay et al., 2004; Shaw et al., 2006; Tamnes et al., 2017), 
including cortical thickness (Shaw et al., 2006; Tamnes et al., 2017) and volume measures (Gogtay 
et al., 2004; Tamnes et al., 2017), with initial grey matter increases until late childhood followed by 
a decline for the rest of the lifespan. More recent work explored changes in intracortical 
microstructure, capitalizing on myelin-sensitive contrasts such as magnetization transfer ratio (MT) 
mapping, which generally suggest overall increases in adolescence (Paquola et al., 2019a; Whitaker 
et al., 2016) together with depth dependent shifts in intracortical myelin profiles (Paquola et al., 
2019a). Besides the increasingly recognized changes in cortico-cortical connectivity, additionally 
studying subcortical regions offer additional insights for understanding brain maturation during 
adolescence. Indeed, an increasing body of connectome level studies emphasizes that subcortical 
structures contribute significantly to patterns of whole-brain organization, dynamics, and cognition 
(Hwang et al., 2017; Müller et al., 2020; Shine et al., 2019). In prior neurodevelopmental studies, it 
has been shown that the volumes of the striatum and thalamus decrease between adolescence and 
adulthood, potentially paralleling processes resulting in cortical grey matter reduction during this time 
window (Herting et al., 2018). A close inter-relationship between cortical and subcortical 
development is also suggested by recent functional connectivity work suggesting that cortico-
subcortical pathways are intrinsically remodeled during adolescence (Váša et al., 2020), and these 
changes affect cognitive functioning. Collectively, these prior findings suggest measurable 
trajectories of cortical and subcortical structural organization and support associations to cognitive 
development (Baum et al., 2020; Shaw et al., 2006). 
Recent conceptual and methodological advances have increasingly emphasized the analysis of brain 
networks as being the way forward to study brain organization, development, and substrates 
underlying cognitive trajectories in humans. One key modality to track developmental changes in 
structural connectivity is diffusion MRI (dMRI), a technique sensitive to the displacement of water 
in tissue that allows for the non-invasive approximation of inter-regional white matter tracts. Prior 
cross-sectional and longitudinal studies in children and adolescents outlined changes in the 
microstructure of major white matter tracts during development based on the analysis of dMRI 
derived tissue parameters (Lebel and Beaulieu, 2011; Schmithorst and Yuan, 2010). These findings 
have been complemented by assessments of brain network topology using graph-theoretical analysis 
(Oldham and Fornito, 2019), which reported a relatively preserved spatial layout of structural hubs 
across adolescent development on the one hand (Hagmann et al., 2010), yet with a continued 
strengthening of their connectivity profiles, likely underpinned by the ongoing maturation of long-
range association fibers (Lebel and Beaulieu, 2011; Oldham and Fornito, 2019). One emerging 
approach to synoptically address connectome organization and development comes from the 
application of manifold learning techniques to connectivity datasets. By decomposing whole-brain 
structural and functional connectomes into a series of lower dimensional axes capturing spatial 
gradients of connectivity variations (Margulies et al., 2016; Vos de Wael et al., 2020), these techniques 
allow for the analysis of local connectivity changes within the context of macroscale motifs of brain 
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wiring. Gradients derived from a variety of techniques have been shown to be genetically determined 
and relatively conserved across primate evolution (Valk et al., 2020). Furthermore, functional 
connectome findings suggest their promise to serve as spatial axes aligned with the cortical hierarchy 
(Margulies et al., 2016; Mesulam, 1998) and to capture functional activation patterns across different 
task states (Karapanagiotidis et al., 2020; Mckeown et al., 2020). A recent study furthermore 
demonstrated that the application of manifold learning techniques to whole-brain dMRI connectomes 
is feasible, and that these gradients provide a coordinate system to interrogate the coupling between 
brain structure and functional dynamics (Park et al., 2021). Still, the application of manifold 
techniques to dMRI connectomes in children and adolescents to track their longitudinal maturations 
has not been performed. In a recent assessment by our team, manifold learning techniques have been 
applied to myelin sensitive intracortical MT data, showing an increasing myeloarchitectural 
differentiation of association cortex throughout adolescence (Paquola et al., 2019a). 
Here, we charted developmental changes in structural connectome organization, based on an 
accelerated longitudinal neuroimaging study from late childhood to early adulthood, covering the 
entire adolescent time period involving a total of 208 participants investigated between 14 to 26 years 
of age (Kiddle et al., 2018; Whitaker et al., 2016). Compared to cross-sectional designs, longitudinal 
studies track within-subject change, separating developmental effects from between-subject 
variability (Louis et al., 1986). We first estimated longitudinal changes in structural connectome 
manifolds across age. The compact and lower dimensional space furthermore allowed for the 
integration of connectome level findings with changes in MRI-based measures of cortical 
morphology and intracortical myelin. We furthermore projected subcortico-cortical connectivity 
patterns into the manifold space, to assessed parallel developmental shifts of these pathways in the 
studied time window. Connectome-manifold changes were contextualized at the molecular level via 
transcriptomic association and developmental enrichment analyses based on post-mortem datasets, 
which furthermore allowed for data-driven exploration of time windows of spatially co-localized gene 
sets. To also assess behavioral associations of connectome manifold changes, we harnessed 
supervised machine learning to predict future measures of cognitive function. Multiple sensitivity 
analyses were conducted at several steps to verify the robustness of our findings, and analytical code 
is made fully accessible to allow for independent replication of our findings.  

 

RESULTS 

These findings were based on the Neuroscience in Psychiatry Network (NSPN) 2400 cohort (Kiddle 
et al., 2018; Whitaker et al., 2016). In brief, we studied 208 healthy individuals enrolled in an 
accelerated longitudinal study, where several age-stratified cohorts were enrolled to span the time 
period from adolescence and young adulthood. Participants (48% female) had a mean age of 18.82 
years (range = 14–25 years) at baseline and 19.95 years (15–26 years) at follow-up. The average 
interval between baseline and follow-up scan was 11.28 months (range = 6–12 months). See the 
Methods for details on participant selection, image processing, and analysis.  

 

Macroscale structural connectome manifold 
For every participant, we built cortex-wide structural connectome manifolds formed by the 
eigenvectors displaying spatial gradients in structural connectome organization using non-linear 
dimensionality reduction techniques (https://github.com/MICA-MNI/BrainSpace) (Vos de Wael et al., 
2020). Individual manifolds were aligned to a template manifold estimated from a hold-out dataset 
(see Methods) (Langs et al., 2015; Vos de Wael et al., 2020). Three eigenvectors (E1, E2, and E3) 
explained approximately 50% of variance in the template affinity matrix, with each eigenvector 
showing a different axis of spatial variation across the cortical mantle (Fig. 1A). Eigenvectors 
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depicted a continuous differentiation between medial and lateral cortices (E1), between inferior and 
superior cortices (E2), and between anterior and posterior areas (E3). For each participant and time 
point, we calculated manifold eccentricity, which depicts how far each node is located from the center 
of the template manifold (see Methods). It thus simply quantifies the changes in eigenvectors between 
the time points in terms of expansion and contraction instead of comparing multi-dimensional 
connectome manifolds (Bethlehem et al., 2020). The manifold eccentricity showed high values in 
frontal and somatomotor regions, while temporoparietal, visual, and limbic regions showed low 
values (Fig. 1B).  

 
Fig. 1 | Structural connectome manifolds. (A) Systematic fiber tracking based on dMRI generated a cortex-wide 
structural connectome, which was subjected to diffusion map embedding. As shown in the scree plot, three eigenvectors 
(E1, E2, E3) explained approximately 50% connectome variance, and each depicted a different gradual transition across 
the cortical mantle. (B) Manifold eccentricity measured by Euclidean distance between the template center and each data 
point. Arrows depict average positional change in connectivity space from baseline to follow-up. The color of each arrow 
represents each brain region mapped on the surface on the bottom. (C) The histogram represents age distribution of all 
subjects at baseline and follow-up. The colors on brain surfaces indicate t-statistics of regions showing significant 
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longitudinal changes in manifold eccentricity across age, following multiple comparisons correction with a false 
discovery rate (FDR) procedure. Datapoint colors in the scatter plot represent t-statistics. Identified regions are 
represented with arrows that originate from baseline to follow-up. (D) Stratification of age-related changes in manifold 
eccentricity along cortical hierarchy (Mesulam, 1998) and functional community (Yeo et al., 2011).  

 

Changes in manifold eccentricity across age 
Leveraging linear mixed effect models that additionally controlled for effects of sex, site, head motion, 
and subject-specific random intercepts (Worsley et al., 2009), we assessed changes in manifold 
eccentricity across age (see Methods). Manifold eccentricity expanded as age increased, especially in 
bilateral prefrontal and temporal areas, as well as left early visual and right lateral parietal cortices 
(false discovery rate (FDR) < 0.05 (Benjamini and Hochberg, 1995); Fig. 1C). Stratifying these 
effects along four cortical hierarchical levels, defined using an established taxonomy based on 
patterns of laminar differentiation and tract-tracing data in non-human primates (Mesulam, 1998), we 
identified peak effects in heteromodal association and paralimbic areas (Fig. 1D). Convergent 
findings were observed when analyzing the effects with respect to intrinsic functional communities 
(Yeo et al., 2011), showing highest effects in default mode and limbic areas followed by visual and 
frontoparietal cortices. No significant contraction of manifold eccentricity was observed. In addition, 
we could not find any significant effects when we fitted the model with a quadratic form of age (i.e., 
age2), indicating the manifold eccentricity linearly increases across age. 

To conceptualize the findings derived from manifold eccentricity with respect to conventional 
network topologies, we correlated manifold eccentricity changes with several graph-theoretical 
measures of structural connectome (Fig. S1) (Rubinov and Sporns, 2010). We first defined six 
spatially contiguous clusters within the regions that showed significant age-related changes in 
manifold eccentricity (see Fig. 1C) and correlated within-subject changes in manifold eccentricity 
with those in degree centrality, connectivity distance, and modular parameters (i.e., within-module 
degree and participation coefficient based on modules defined via Louvain’s community detection 
algorithm (Blondel et al., 2008); see Methods; Fig. S2). We found significant positive associations 
for degree centrality and within-module degree, suggesting that connectome manifold expansion 
reflects a concurrent increase of overall connectivity, particularly within modules. Stratifying changes 
in manifold eccentricity as well as connectome topology measures according to the discretized age 
bins confirmed these age-related trends (Fig. S3). Indeed, except for participation coefficient, values 
in general increased from childhood to young adulthood.  
 

Effects of cortical morphology and microstructure 
Previous studies demonstrated significant changes in cortical morphology and microstructure during 
adolescence, showing co-occurring reductions in cortical thickness and MT skewness, the latter being 
an index of depth dependent intracortical myelin changes in multiple lobes (Gogtay et al., 2004; 
Khundrakpam et al., 2017; Paquola et al., 2019a; Shaw et al., 2006). We replicated these findings by 
showing cortical thinning in almost all brain regions across the studied age window as well as 
reductions in depth dependent MT skewness, suggestive of supragranular enrichment of myelin (Fig. 
2A). To evaluate whether the age-related changes in manifold eccentricity were robust above and 
beyond these regional changes in cortical thickness and MT, we implemented linear mixed effect 
models after correcting for cortical thickness and MT from the manifold eccentricity (Fig. 2B). While 
we observed virtually identical spatial patterns of manifold eccentricity changes in models that 
controlled for thickness, MT skewness, and both, effects in clusters of manifold eccentricity findings 
were reduced in models that additionally controlled for these values (average reduction of t-value in 
models controlling for thickness/MT skewness/both = 42/18/68%).  
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Fig. 2 | Association to morphological and microstructural effects. (A) The t-statistics of identified regions that showed 
significant age-related changes in cortical thickness (upper row) and MT (bottom row), and stratification of t-statistics 
according to cortical hierarchy (Mesulam, 1998) and functional community (Yeo et al., 2011). (B) Age-related changes 
in manifold eccentricity after controlling for cortical thickness and MT.  

 

Age-related changes in subcortico-cortical connectivity 
Besides visualizing these changes in cortico-cortical connectivity, we also capitalized on the manifold 
representation to assess adolescent changes in the connectivity of subcortical regions, to obtain a more 
holistic insight into whole-brain connectome reconfigurations during this time period, and to examine 
whether subcortical connectivity patterns undergo parallel developmental trajectories (Hwang et al., 
2017; Shine et al., 2019). Specifically, we assessed changes in subcortical-weighted manifolds across 
age, defined by projecting the streamline strength of subcortical regions to cortical targets to the 
manifold space (see Methods). Such an analysis situates changes in subcortico-cortical pathways in 
the macroscale context of cortico-cortical connectivity identified in the previous analyses. After 
multiple comparison correction, the caudate and thalamus showed significant effects of subcortical-
weighted manifolds (FDR < 0.05; Fig. 3), and marginal effects were observed in the putamen, 
pallidum, and hippocampus (FDR < 0.1).  

  
Fig. 3 | Longitudinal changes in subcortical-weighted manifolds. The t-statistics of age-related changes in subcortical-
weighted manifolds. The effects of each subcortical region are reported on the radar plot. Abbreviation: FDR, false 
discovery rate. 
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Transcriptomic association analysis 
Connectome organization more generally, and macroscale gradients more specifically, have been 
argued to reflect genetic expression profiles, underscoring the close link between the physical layout 
of the brain and innate molecular factors (Buckner and Krienen, 2013; Fornito et al., 2019). Here, we 
carried out a transcriptomic association and developmental enrichment analyses to contextualize the 
age-related manifold eccentricity changes with respect to patterns of post-mortem gene expression 
from a sample of independent adults (Fig. 4A). Specifically, leveraging mixed effect models, we 
associated the spatial patterns of manifold change across age that controlled for cortical thickness and 
MT in the NSPN sample with cortical maps of post-mortem gene expression data from the Allen 
Institute for Brain Sciences (Arnatkeviciute et al., 2019; Gorgolewski et al., 2015, 2014; Hawrylycz 
et al., 2012; Markello et al., 2020). Among the list of most strongly associated genes (FDR < 0.05), 
we selected only genes that were consistently expressed across different donors (r > 0.5) 
(Arnatkeviciute et al., 2019) (Data S1). We fed those into a developmental gene enrichment analysis, 
which highlights developmental time windows across macroscopic brain regions in which genes are 
strongly expressed (see Methods) (Dougherty et al., 2010). This analysis highlighted marked 
associations between the spatial pattern of longitudinal change in connectome manifold eccentricity 
and the expression of genes that were found enriched from childhood onwards in the cortex, thalamus, 
and cerebellum (FDR < 0.001; Fig. 4B). Although signal was reduced, genes were also showing an 
enrichment for expression in the striatum at the transition from childhood to adolescence (FDR < 
0.05). On the other hand, identified genes were not found to be expressed in the hippocampus and 
amygdala. 

      
Fig. 4 | Transcriptomic analysis. (A) Gene decoding process by associating t-statistics from the linear mixed effect 
model with post-mortem gene expression maps. (B) We identified genes that were spatially correlated with the input t-
statistic map (false discovery rate (FDR) < 0.05) and selected only those that were furthermore consistently expressed 
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across different donors (r > 0.5). These genes were fed into a developmental enrichment analysis, showing strong 
associations with cortex, thalamus, striatum, and cerebellum during childhood-to-adulthood time window. The degree of 
gene expression for developmental windows is reported on the bottom. The curve represents log transformed FDR 
corrected p-values, averaged across the brain regions reported as on the bottom. ***FDR < 0.001, ** FDR < 0.01, *FDR 
< 0.05. 

 

Association between connectome manifold and cognitive function 
To finally establish associations between connectome reconfigurations and cognitive functioning, we 
utilized a supervised machine learning to predict full intelligence quotient (IQ) at follow-up using 
manifold eccentricity features. Independent variables were combinations of cortical and subcortical 
manifold features at baseline and their age-related trajectory data. We used elastic net regularization 
(Zou and Hastie, 2005) with ten-fold cross-validation (see Methods), and repeated the prediction 100 
times with different training and test dataset compositions to mitigate subject selection bias. The 
manifold eccentricity of cortical regions at baseline significantly predicted future IQ score (mean ± 
SD r = 0.21 ± 0.03; mean absolute error (MAE) = 8.76 ± 0.10). Prediction performance was slightly 
improved when we combined the manifold eccentricity both at baseline and differences between 
follow-up and baseline (r = 0.26 ± 0.02; MAE = 8.44 ± 0.10) (Fig. 5A). Notably, prediction accuracy 
was improved if we additionally considered subcortical manifold features (baseline: r = 0.27 ± 0.02; 
MAE = 8.59 ± 0.12; baseline and maturational change: r = 0.34 ± 0.03; MAE = 8.74 ± 0.17) (Fig. 
5B). The regions showing strongest predictive validity for IQ were prefrontal, parietal, and temporal 
cortices, as well as the caudate and thalamus. The probability map of the selected brain regions 
(bottom right of Fig. 5B) was further decoded using Neurosynth (Yarkoni et al., 2011), revealing 
strong associations with higher order cognitive and social terms (Fig. S4).  

  
Fig. 5 | IQ prediction. (A) Probability of selected brain regions across ten-fold cross-validation and 100 repetitions for 
predicting future IQ using only baseline manifold eccentricity (left), and both baseline and maturational change in the 
feature (right). Correlations between actual and predicted IQ are reported. Black lines indicate mean correlation and gray 
lines represent 95% confidence interval for 100 iterations with different training/test dataset. (B) The prediction 
performance when both cortical and subcortical features were considered. Abbreviations: IQ, intelligence quotient; MAE, 
mean absolute error.  
 
Sensitivity analysis 
Repeating the longitudinal modeling with a different spatial scale (i.e., 300 parcels), findings were 
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highly consistent (Fig. S5). Furthermore, manifold eccentricity of the identified cortical regions and 
age consistently correlated positively in the different sites and within both biological sexes, yielding 
non-significant interaction effects (Fig. S6). When we changed parameters of diffusion map 
embedding for generating connectome manifolds (see Methods), t-statistic maps of age-related 
changes in manifold eccentricity were largely consistent (mean ± SD linear correlation r = 0.92 ± 
0.10). 

 

DISCUSSION 
The current study tracked whole-brain structural connectome maturation from adolescence to young 
adulthood in an accelerated longitudinal imaging cohort (Kiddle et al., 2018; Whitaker et al., 2016). 
Capitalizing on advanced manifold learning techniques applied to diffusion MRI derived 
connectomes, we established that higher order association cortices in prefrontal, medial and superior 
temporal, as well as parieto-occipital regions expanded in their connectome manifold representation 
indicative of an increased differentiation of these systems from the rest of the brain in adolescence. 
Parallel topological fingerprinting based on graph theory indicated that these changes co-occurred 
alongside increases in the within-module connectivity of transmodal cortices. Findings were 
consistent across the different acquisition sites and biological sexes, and similar albeit slightly weaker 
when correcting connectivity manifolds for MRI-based measures of cortical morphology and 
microstructure. In addition to the cortical manifold expansion, we found parallel reconfigurations of 
subcortical pathways , particularly for connectivity patterns of the caudate and thalamus. Decoding 
of our findings with post-mortem gene expression maps highlighted an implication of genes enriched 
in adolescence and young adulthood, again pointing to both cortical as well as subcortical targets. 
Finally, the combination of both cortical and subcortical manifold measures predicted behavioral 
measures of intelligence at follow-up, with higher performance than cortical or subcortical data alone. 
Collectively, our findings provide new insights into adolescent structural connectome maturation, and 
how multiple scales of cortical and subcortical organizations interact in typical neurodevelopment. 

Leveraging advanced manifold learning, we depicted macroscale connectome organization along 
continuous cortical axes. Similar approaches have previously been harnessed to decompose 
microstructural (Paquola et al., 2019b, 2019a) and functional MRI (Bethlehem et al., 2020; Hong et 
al., 2019; Margulies et al., 2016; Murphy et al., 2019; Vos de Wael et al., 2020). These techniques are 
appealing, as they offer a low dimensional perspective on connectome reconfigurations in a data-
driven and spatially unconstrained manner. In our longitudinal study, we could identify marked 
connectome expansion during adolescence, mainly encompassing transmodal and heteromodal 
association cortex in prefrontal, temporal, and posterior regions, the territories known to mature late 
in development (Gogtay et al., 2004; Shaw et al., 2006). Connectome expansion can be understood 
as an overall greater differentiation of the connectivity of these areas from the rest of the brain, as 
they would then cover wider portions of the corresponding manifold space. Manifold expansion in 
higher order areas correlated with an increase in their within-module connectivity, but not with 
participation coefficient and connectivity distance measures that would be more reflective of their 
between-module connectivity. Our findings, thus, extend prior dMRI studies that have focused on 
specific tract groups and that have indicated considerable developmental shifts in diffusion 
parameters, such as increases in fractional anisotropy and decreases in mean diffusivity in early and 
late adolescence (Olson et al., 2009). Other studies have furthermore reported increased streamline 
count estimates (Genc et al., 2020). In this context, our macroscale manifold findings likely reflect 
an ongoing consolidation of transmodal communities. These findings align with prior graph-
theoretical studies, which have pointed to concurrent increases in network integration and 
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consolidation of network hubs from late childhood to early adulthood (Oldham and Fornito, 2019). 
Considering their distributed regional substrate, these network effects are likely driven by the ongoing 
maturation of fiber bundles that interconnect these higher order cortices, including superior 
longitudinal fascicules, but also thalamic and basal ganglia pathways (Tamnes et al., 2010), 
throughout adolescence.   

Projecting manifold solutions back onto cortical surfaces allowed us to integrate our connectome 
manifold results with morphometric and intracortical intensity indices obtained via structural and 
quantitative MRI contrasts in the same participants. We were thus able to balance the network level 
effects against trajectories of intracortical remodeling. Longitudinal changes in these cortical features 
were overall in agreement with prior work, suggesting marked reductions in cortical thickness in 
adolescence (Khundrakpam et al., 2017; Shaw et al., 2006), possibly reflecting synaptic pruning 
processes (Petanjek et al., 2011) together with decreases in the skewness of intracortical MT profiles, 
a feature sensitive to preferential myelination of supragranular layers (Paquola et al., 2019a). 
Although we still observed significant age-related changes in manifold eccentricity after controlling 
for these intracortical and morphological measures, the effect sizes of our findings were reduced. This 
effect was particularly evident when running a parallel analysis that additionally controlled for depth 
dependent shifts in cortical microstructure, a finding in line with more generally demonstrated links 
between cortical microstructural context and inter-regional connectivity (Paquola et al., 2019b). In 
the context of adolescence and prior findings in the NSPN dataset (Paquola et al., 2019a), these results 
thus suggest a coupled process that affects depth-dependent shifts in cortical myeloarchitecture on 
the one hand, and adolescent shifts in macroscale connectome organization as shown by our 
longitudinal manifold analyses on the other.  

In addition to emphasizing a distributed set of association cortices and their cortico-cortical 
connections, analysis of subcortico-cortical connectivity patterns highlighted parallel developmental 
processes in several subcortical structures and their connections, particularly the caudate and 
thalamus. These findings were independently supported by transcriptomic association studies and 
developmental enrichment analyses, which implicated genes expressed in cortical regions and these 
subcortical structures during late childhood, adolescence, and young adulthood. The caudate in the 
striatum has long been recognized to play an important role in mediating large-scale cortical network 
organization (Aglioti, 1997; Alexander and Crutcher, 1990; Graybiel, 1995), a finding also 
increasingly recognized in the connectome literature (Hwang et al., 2017; Müller et al., 2020; Shine 
et al., 2019). It is known to modulate activity in prefrontal association areas during memory-driven 
internal thought processes (Aglioti, 1997), and higher order cognitive functions, notably motivational 
processes, decision making, as well as cognitive control and executive functions more generally 
(Aglioti, 1997; Graybiel, 1995). The other structure that our analyses pointed to, striatum, participates 
in dense cortico-subcortical feedback loops, and exchanges neural activity through dense connections 
with adjacent basal ganglia structures as well as the thalamus (Aglioti, 1997; Alexander and Crutcher, 
1990). These cortico-subcortical interactions likely involve the interplay of multiple neurotransmitter 
systems, including dopaminergic as well as GABA/Glutamate signaling. On the other hand, 
perturbations in cortico-striatal connections and neurotransmitter imbalances have been reported in 
multiple neurodevelopmental disorders, including schizophrenia (Tziortzi et al., 2014), autism (Sohal 
and Rubenstein, 2019), and attention deficit/hyperactivity disorder (Bonaventura et al., 2017; Hong 
et al., 2015). 

Higher order cognitive function implicates functionally relevant whole-brain network mechanisms, 
and its prediction may thus leverage structurally governed principles of network integration and 
segregation. Application of a supervised machine learning framework with cross-validation and 
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regularization to our cohort demonstrated that it is possible to predict inter-individual variations in 
future IQ from structural connectome manifold data. These findings complement conceptual accounts 
linking brain organization to cognitive function (Margulies et al., 2016; Mesulam, 1998), and earlier 
efforts to predict IQ measures from inter-regional measures of connectivity and graph-theoretical 
indices of network topology (Greene et al., 2018). Notably, evaluations of several feature 
combinations highlighted that predictive performance was highest when including both baseline and 
trajectory data, and when complementing cortical and subcortical manifold features. These findings 
reemphasize the benefits of incorporating subcortical nodes in the characterization of large-scale 
cortical network organization and overall cognitive function (Alves et al., 2019; Müller et al., 2020; 
Shine et al., 2019). 

Adolescence is a time characterized by ongoing brain changes (Baum et al., 2020; Gogtay et al., 2004; 
Larsen and Luna, 2018; Menon, 2013; Shaw et al., 2006), gradually increasing independence from 
caregivers, and strong increments in knowledge and our ability to think more abstractly and to 
cooperate with our peers to achieve common goals. On the other hand, adolescence is also a sensitive 
time window for risk taking, the development of addictions, and hosts the onset of several prevalent 
psychiatric disorders (Hong et al., 2019; Khundrakpam et al., 2017). Our study has shown that 
structural brain network organization continues to mature significantly during this time period, with 
particularly higher order association cortices in prefrontal and posterior regions showing an expansion 
of their corresponding connectome manifold signature. Findings were related to an increased 
strengthening of intra-community connectivity as well as cortico-subcortical connectivity patterns to 
thalamo-striatal regions. Although the current work was restricted to a longitudinal sample of 
typically developing adolescents, our framework may be useful to explore multi-scale network 
perturbations in cohorts with a psychiatric diagnosis or those at risk for addiction or atypical 
neurodevelopment.  

 

METHODS 

Participants 
We obtained imaging and phenotypic data from the NSPN 2400 cohort, which contains questionnaire 
data on 2,402 individuals (with MRI data on a subset of ~300) from adolescence to young adulthood 
in a longitudinal setting (Kiddle et al., 2018; Whitaker et al., 2016). Included participants completed 
quality-controlled (see Data preprocessing section) multimodal MRI scans consisting of T1-weighted, 
MT, and dMRI for at least two time points. Our final sample consisted of a total of 208 participants 
(48% female; mean (range) age = 18.82 (14–25) years at baseline and 19.95 (15–26) at follow-up; 
inter-scan interval of 11.28 (6–12) months), collected from three different UK sites: Wolfson Brain 
Imaging Centre and MRC Cognition and Brain Sciences Unit in Cambridge; and University College 
London. We divided the participants into template and non-template cohorts with matched age, sex, 
and site ratio. The template dataset (n = 30; 50% female; mean (range) age = 18.69 (15–24) years at 
baseline and 19.84 ± 2.66 (16–25) at follow-up) was used for constructing template structural 
connectome manifold and the non-template dataset (n = 178; 47% female; mean (range) age = 18.84 
(14–25) years at baseline and 19.97 (15–26) at follow-up) was used for conducting main analyses. Of 
note, changing the template dataset composition did not markedly affect main findings (Fig. S7).  

 
MRI acquisition 
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Imaging data were obtained using a Siemens Magnetom TIM Trio 3T scanner. T1-weighted and MT 
sequences were acquired using a quantitative multiparameter mapping (MPM) sequence (repetition 
time (TR)/flip angle = 18.7ms/20º for T1-weighted and 23.7ms/6º for MT; six equidistance echo times 
(TE) = 2.2–14.7ms; voxel size = 1mm3; 176 slices; field of view (FOV) = 256 × 240mm; matrix size 
= 256 × 240 × 176) (Weiskopf et al., 2013). The dMRI data were acquired using a spin-echo echo-
planar imaging (EPI) sequence (TR = 8,700ms; TE = 90ms; flip angle = 90º; voxel size = 2mm3; 70 
slices; FOV = 192 × 192mm2; matrix size = 96 × 96 × 70; b-value = 1,000s/mm2; 63 diffusion 
directions; and 6 b0 images). 

 

Data preprocessing 
T1-weighted data were processed using the fusion of neuroimaging preprocessing (FuNP) pipeline 
integrating AFNI, FSL, FreeSurfer, ANTs, and Workbench (Avants et al., 2011; Cox, 1996; Fischl, 
2012; Glasser et al., 2013; Jenkinson et al., 2012; Park et al., 2019), which is similar to the minimal 
preprocessing pipeline for the Human Connectome Project (Glasser et al., 2013). Gradient 
nonlinearity and b0 distortion correction, non-brain tissue removal, and intensity normalization were 
performed. The white and pial surfaces were generated by following the boundaries between different 
tissues (Dale et al., 1999), and they were averaged to generate the midthickness surface, which was 
used to generate the inflated surface. The spherical surface was registered to the Conte69 template 
with 164k vertices (Van Essen et al., 2012) and downsampled to a 32k vertex mesh. Quality control 
involved visual inspection of surface reconstruction of T1-weighted data, and cases with faulty 
cortical segmentation were excluded. Surface-based co-registration between T1-weighted and MT 
weighted scans were performed. We generated 14 equivolumetric cortical surfaces within the cortex 
and sampled MT intensity along these surfaces (Paquola et al., 2019a). The vertex-wise MT profiles 
for each surface depth were averaged based on the Schaefer atlas with 200 parcels (Schaefer et al., 
2018). The dMRI data were processed using MRtrix3 (Tournier et al., 2019), including correction for 
susceptibility distortions, head motion, and eddy currents. We visually inspected the quality of co-
registration between the adolescence data and adult-driven surface template as well as parcellation 
atlas, and all data showed reasonable registration results.  

 

Structural connectome manifold identification 
Structural connectomes were generated from preprocessed dMRI data (Tournier et al., 2019). 
Anatomically constrained tractography was performed using different tissue types derived from the 
T1-weighted image, including cortical and subcortical grey matter, white matter, and cerebrospinal 
fluid (Smith et al., 2012). Multi-shell and multi-tissue response functions were estimated (Christiaens 
et al., 2015), and constrained spherical-deconvolution and intensity normalization were performed 
(Jeurissen et al., 2014). The tractogram was generated with 40 million streamlines, with a maximum 
tract length of 250 and a fractional anisotropy cutoff of 0.06. Subsequently, spherical-deconvolution 
informed filtering of tractograms (SIFT2) was applied to reconstruct whole-brain streamlines 
weighted by the cross-section multipliers, which considers the fiber bundle’s total intra-axonal space 
across its full cross-sectional extent (Smith et al., 2015). The structural connectome was built by 
mapping the reconstructed cross-section streamlines onto the Schaefer 7-network based atlas with 
200 parcels (Schaefer et al., 2018) then log-transformed to adjust for the scale (Fornito et al., 2016). 

Cortex-wide structural connectome manifolds were identified using BrainSpace 
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(https://github.com/MICA-MNI/BrainSpace) (Vos de Wael et al., 2020). First, a template manifold 
was estimated using a group representative structural connectome of the template dataset. The group 
representative structural connectome was defined using a distance-dependent thresholding that 
preserves long-range connections (Betzel et al., 2019). An affinity matrix was constructed with a 
kernel of normalized angle and eigenvectors were estimated via diffusion map embedding (Fig. 1A), 
which is robust to noise and computationally efficient compared to other non-linear manifold learning 
techniques (Tenenbaum et al., 2000). It is controlled by two parameters α and t, where α controls the 
influence of the density of sampling points on the manifold (α = 0, maximal influence; α = 1, no 
influence) and t controls the scale of eigenvalues of the diffusion operator. We set α = 0.5 and t = 0 to 
retain the global relations between data points in the embedded space, following prior applications 
(Hong et al., 2019; Margulies et al., 2016; Paquola et al., 2019a, 2019b; Vos de Wael et al., 2020). In 
this new manifold, interconnected brain regions are closely located, and regions with weak inter-
connectivity located farther apart. After generating the template manifold, individual-level manifolds 
were estimated from the non-template dataset and aligned to the template manifold via Procrustes 
alignment (Langs et al., 2015; Vos de Wael et al., 2020). To analyze how the multi-dimensional 
manifold structures change in the low dimensional manifold space, we simplified the multivariate 
eigenvectors into a single scalar value by calculating the Euclidean distance between the center of 
template manifold and all data points (i.e., brain regions) in the manifold space, which was referred 
to as manifold eccentricity (Fig. 1B) (Bethlehem et al., 2020). The template center was defined as the 
centroid of the first three eigenvectors, which explained 50% variance. Specifically, manifold 
eccentricity was defined as follows: 

𝐶! =
"
#
[∑ 𝑇(𝐸1)$#

$%" , ∑ 𝑇(𝐸2)$#
$%" , ∑ 𝑇(𝐸3)$#

$%" ]   (1) 

𝑀𝐸 = /∑ {𝐼(𝐸&) − 𝐶!(𝑒)}'(
&%"      (2) 

𝐶!  is the template center; 𝑁  number of brain regions; 𝑇(∙) template manifold; 𝑀𝐸  manifold 
eccentricity; 𝐼(∙) individual manifold; 𝐶!(𝑒) template center of eth manifold. 

 

Age-related changes in structural manifolds 
We assessed changes in manifold eccentricity across age using a linear mixed effect model (Worsley 
et al., 2009), controlling for effects of sex, site, head motion, and subject-specific random intercept 
to improve model fit in accelerated longitudinal designs. The t-statistics of each brain region were 
computed and we corrected for multiple comparisons by using a FDR threshold of q < 0.05 (Fig. 1C) 
(Benjamini and Hochberg, 1995). We stratified age-related effects based on a seminal model of neural 
organization and laminar differentiation that contains four cortical hierarchical levels (Mesulam, 
1998), as well as seven intrinsic functional communities (Yeo et al., 2011) (Fig. 1D). To assess the 
effects with respect to age2, we repeated implementing a linear mixed effect model by adding a 
quadratic term of age to the model.  

To provide the underlying structure of manifold eccentricity, we compared the changes in manifold 
eccentricity with those in connectome topology measures. We first defined clusters within the 
identified regions based on their spatial boundaries (Fig. S1A). Then, we calculated degree centrality, 
as well as modular measures of within-module degree and participation coefficient using the Brain 
Connectivity Toolbox (https://sites.google.com/site/bctnet/) (Rubinov and Sporns, 2010) and 
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connectivity distance using a recently published approach (Larivière et al., 2020). Degree centrality 
is defined as the row-wise sum of the weighted connectivity matrix, representing the connection 
strength of a given node (Rubinov and Sporns, 2010). Connectivity distance is a given brain region’s 
geodesic distance to its structurally connected brain areas within the cortex (Oligschläger et al., 2019), 
and it is defined as the multiplication between the geodesic distance and the binarized structural 
connectome (Hong et al., 2019; Oligschläger et al., 2019). Within-module degree and participation 
coefficient are nodal measures reflecting different facets of community organization (Rubinov and 
Sporns, 2010). For each individual subject, community structure was defined using Louvain’s 
algorithm (Blondel et al., 2008) and a consistency matrix was constructed, where each element of the 
matrix represents whether the two different nodes are involved in the same community (i.e., 1) or not 
(i.e., 0) (Fig. S2A). We constructed the group-wise consistency matrix by averaging the consistency 
matrix of all subjects and applied k-means clustering (Fig. S2B). The optimal number of clusters was 
determined using the silhouette coefficient, i.e., the k that maximized the silhouette coefficient 
(Kannan et al., 2010). We calculated within-module degree and participation coefficient based on 
these modules. Within-module degree is the degree centrality within a community, indicating intra-
community connection strength, while participation coefficient represents inter-community 
connectivity (Rubinov and Sporns, 2010). We calculated linear correlations between changes in 
manifold eccentricity and those in each graph theoretical measure for each cluster (Fig. S1B). The 
significance of the correlation was corrected using 1,000 permutation tests by randomly shuffling 
subject indices in one of the data vectors, and we corrected for multiple comparisons across clusters 
using an FDR procedure (Benjamini and Hochberg, 1995). To visualize age-related changes in these 
parameters, we stratified each measure according to discretized age bins (< 17, 17-19, 19-21, 21-23, 
≥ 23; Fig. S3). 

 

Cortical morphology and microstructure 
It has been shown that cortical morphology and microstructure significantly change during 
development (Gogtay et al., 2004; Khundrakpam et al., 2017; Paquola et al., 2019a; Shaw et al., 2006). 
Here, we confirmed these changes by assessing age-related changes in MRI-based cortical thickness 
measures and intracortical measures of MT, an index sensitive to myelin content (Weiskopf et al., 
2013), using linear mixed effect models (Fig. 2A) (Worsley et al., 2009). We further regressed out 
cortical thickness and MT from the connectome manifold eccentricity metric. We then implemented 
linear mixed effect models using the residuals of manifold measures to assess whether age-related 
connectome manifold effects exist above and beyond age-related effects on cortical morphology and 
microstructure (Fig. 2B).  

 

Subcortico-cortical connectivity 
To assess age-related changes in subcortical manifold organizations in addition to cortical manifold 
structures, we first parcellated the accumbens, amygdala, caudate, hippocampus, pallidum, putamen, 
and thalamus for each individual (Patenaude et al., 2011), and approximated cross-section streamlines 
connect each subcortical region to the rest of the brain. For each individual and each subcortical 
region, we projected the streamline strength to cortical manifold space by weighting the cortical 
manifolds with the streamline strength of the connection between each subcortical region and cortical 
parcels, yielding a matrix with the form of (number of brain regions × number of cortical manifolds). 
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We averaged the matrix across the axis of cortical manifolds to construct subcortical-weighted 
manifold vector. We assessed age-related changes in the subcortical-weighted manifold using a linear 
mixed effect model (Worsley et al., 2009), controlling for sex, site, head motion, and subject-specific 
random intercept, and FDR corrected for multiple comparisons (Fig. 3) (Benjamini and Hochberg, 
1995).  

 

Transcriptomic analysis 
We performed spatial correlation analysis to post-mortem gene expression data and carried out a 
developmental enrichment analysis (Fig. 4). In brief, we first correlated the t-statistics map, which 
represents age-related changes in manifold eccentricity that controlled for cortical morphology and 
microstructure, with the post-mortem gene expression maps provided by the Allen Institute using the 
Neurovault gene decoding tool (Gorgolewski et al., 2015, 2014; Hawrylycz et al., 2012). Leveraging 
mixed effect models to associate the input t-statistic map with the genes of six donor brains, 
Neurovault yields the gene symbols associated with the input spatial map. Gene symbols that passed 
for a significance level of FDR < 0.05 were further tested whether they are consistently expressed 
across different donors using abagen toolbox (https://github.com/rmarkello/abagen) (Arnatkeviciute 
et al., 2019). For each gene, we estimated whole-brain gene expression map and correlated it between 
all pairs of donors. Only genes showing consistent whole-brain expression pattern across donors 
(FDR < 0.05) were fed into enrichment analysis, which involved comparison against developmental 
expression profiles from the additional BrainSpan dataset (http://www.brainspan.org) using the cell-
type specific expression analysis (CSEA) developmental expression tool 
(http://genetics.wustl.edu/jdlab/csea- tool-2) (Dougherty et al., 2010). As the Allen Brain Institute 
repository is composed of adult post-mortem datasets, it should be noted that the associated gene 
symbols represent indirect associations with the input t-statistic map derived from the developmental 
data.  

 

Association with the development of cognitive function 
Leveraging a supervised machine learning with ten-fold cross-validation, we predicted full IQ score 
measured by Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999) at follow-up using cortical 
and subcortical features. Four different feature sets were evaluated: (1) manifold eccentricity of the 
identified cortical regions at baseline and (2) manifold eccentricity at baseline and its longitudinal 
change (i.e., differences between follow-up and baseline), and (3) cortical manifold eccentricity and 
subcortical-weighted manifold of the identified regions at baseline and (4) manifold eccentricity and 
subcortical-weighted manifold at baseline and their longitudinal changes. For each evaluation, a 
subset of features that could predict future IQ was identified using elastic net regularization (𝜌 = 0.5) 
with optimized regularization parameters (L1 and L2 penalty terms) via ten-fold cross-validation 
(Zou and Hastie, 2005). Feature selection procedure was conducted using the training data (9/10 
segments), and it was repeated 10 times with different training and test dataset. The features that were 
most frequently identified across the cross-validation iterations (>50%) were selected and fed into a 
linear regression model for predicting IQ scores. Here, the actual feature values were considered, not 
multiplied by the regression weights. The model was controlled for effects of age, sex, site, and head 
motion. The IQ prediction using linear regression was performed with a ten-fold cross-validation by 
training the model with the training data (9/10 segments) and applying it to the test data (1/10 
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segment). The prediction procedure was repeated 100 times with different training and test sets to 
reduce bias. Prediction accuracy was indexed by computing linear correlations between the actual 
and predicted IQ scores as well as mean absolute error (MAE). A 95% confidence interval of the 
accuracy measures was also reported. Permutation-based correlations across 1,000 tests were 
conducted by randomly shuffling subject indices to check whether the prediction performance 
exceeded chance levels. 

 

Sensitivity analysis 
a) Spatial scale. To assess the consistency of our findings across spatial scales, we additionally 
performed the linear mixed effect modeling using a finer parcellation scheme of 300 parcels (Fig. S5) 
(Schaefer et al., 2018).  

b) Site effect. Participants were recruited from three different sites. To assess whether the longitudinal 
changes in manifold eccentricity across age are consistent across different sites, we calculated 
interaction effects of the relationship between age and manifold eccentricity of the identified regions 
across sites (Fig. S6B). 

c) Sex effect. We repeated computing interaction effect of the relationship between age and manifold 
eccentricity across male and female subjects to assess whether the age-related changes are affected 
by sex (Fig. S6C).  

d) Different parameters for diffusion map embedding. To assess the sensitivity of our findings, we 
generated connectome manifolds with different parameters for diffusion map embedding (α = 0.25, 
0.5, 0.75; t = 0, 1, 2, 3). We assessed age-related changes of the newly defined manifold eccentricity 
and calculated linear correlation with t-statistic map of the default setting (α = 0.5; t = 0; Fig. 1C). 
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Supporting Information 

 
Fig. S1 | Association between structural connectome manifold and connectome topology 
measures. (A) Six clusters defined within the identified regions that showed significant age-related 
changes in manifold eccentricity (see Fig. 1C). (B) Associations between within-subject changes in 
manifold eccentricity and those of each connectome topology measure. Brain surfaces on the right 
side represent changes in each measure between baseline and follow-up. Significance was calculated 
using a false discovery rate (FDR). 
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Fig. S2 | Modular structures. (A) Pipeline for constructing consistency matrix. We constructed 
individual subject-wise consistency matrix by considering whether two different nodes were involved 
in the same module. (B) Group-wise consistency matrix was constructed by averaging subject-wise 
consistency matrices. The k-means clustering with silhouette coefficient was used for defining 
modules. Seven modules on the brain surface are reported on the right side. 
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Fig. S3 | Age-related trends in connectome topology measures. Age-related changes in manifold 
eccentricity, degree centrality, connectivity distance, within-module degree, and participation 
coefficient. Abbreviation: y, years. 
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Fig. S4 | Cognitive decoding of the selected regions for IQ prediction. (A) Probability of selected 
cortical and subcortical regions for predicting future IQ using both baseline and maturational changes 
(see Fig. 5). (B) A word cloud derived by cognitive decoding using NeuroSynth (Yarkoni et al., 2011). 
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Fig. S5 | Structural connectome manifolds using Schaefer 300 atlas. (A-D) Main findings were 
replicated using a different parcellation scale. For details, see Fig. 1. 
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Fig. S6 | Sensitivity analysis for site and sex. (A) The t-statistics of identified regions that showed 
significant age-related changes in manifold eccentricity. (B) Interaction effects of the relationship 
between age and manifold eccentricity for sites and (C) biological sexes. Abbreviations: WIBC, 
Wolfson Brain Imaging Centre; CBU, MRC Cognition and Brain Sciences Unit; UCL, University 
College London. 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.06.22.165621doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.165621
http://creativecommons.org/licenses/by-nc-nd/4.0/


Park et al. | Structural connectome maturation during adolescence  

32 

32 

 

Fig. S7 | Structural connectome manifolds using different template dataset. (A-C) Structural 
connectome manifolds and association to age using different template cohort. Three representative 
cases are reported. For details, see Figure 1. 
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Data S1 | Significant gene lists correlated with patterns of manifold eccentricity changes across 
age. Gene symbol with name and t-statistic as well as false discover rate (FDR) corrected p-value are 
reported in the Supplementary Data file (Supplementary_Data1.xlsx). 
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