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ABSTRACT  

The genome of the SARS-CoV-2 coronavirus contains 29 proteins, of which 15 are nonstructural. 

Nsp10 and Nsp16 form a complex responsible for the capping of mRNA at the 5′ terminus. In the 

methylation reaction the S-adenosyl-L-methionine serves as the donor of the methyl group that is 

transferred to Cap-0 at the first transcribed nucleotide to create Cap-1. The presence of Cap-1 

makes viral RNAs mimic the host transcripts and prevents their degradation. To investigate the 2′-

O methyltransferase activity of SARS-CoV-2 Nsp10/16, we applied fixed-target serial synchrotron 

crystallography (SSX) which allows for physiological temperature  data collection from thousands 

of crystals, significantly reducing the x-ray dose while maintaining a biologically relevant 

temperature. We determined crystal structures of Nsp10/16 that revealed the states before and after 

the methylation reaction, for the first time illustrating coronavirus Nsp10/16 complexes with the 
m7GpppAm2′-O Cap-1, where 2′OH of ribose is methylated. We compare these structures with 

structures of Nsp10/16 at 297 K and 100 K collected from a single crystal. This data provide 

important mechanistic insight and can be used to design small molecules that inhibit viral RNA 

maturation making SARS-CoV-2 sensitive to host innate response. 
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INTRODUCTION  

 Five coronaviruses can induce clusters of severe respiratory diseases in humans: 229E, OC43, 

SARS, MERS and SARS-CoV-2 1,2. The outbreak of Severe Acute Respiratory Syndrome (SARS-

CoV) in 2003 and Middle East Respiratory Syndrome (MERS-CoV) in 2012, showed a high 

fatality rate of 11% and 34%, respectively, but had limited geographical spread 3,4. In contrast, 

in the past 7 months SARS-CoV-2 (the cause of COVID-19) has spread rapidly around the world 

and infected millions of people, killing over half a million. Though, it has a significantly lower 

fatality rate (estimated at 0.5 – 2%)  than MERS and SARS the amount of people infected is 

hundreds of times higher, and it caused significant economic hardship and extraordinary social 

restrictions. In many countries, after six months from the first reports of COVID-19, the number 

of cases is still increasing 5. In the absence of herd immunity, vaccines, or drugs against the virus, 

the situation is frightful. Since the beginning of the worldwide outbreak of COVID-19, 

the scientific community has joined efforts to understand SARS-CoV-2 biology and to find 

chemical compounds that either block virus replication or enhance human immunological 

response. Initial focus on repurposing existing drugs that potentially could provide immediate 

treatment has thus far resulted only in limited success. Finding inhibitors of a biological cycle of 

SARS-CoV-2 or vaccines is, therefore, critical for global health, safety, and wellbeing. 

 SARS-CoV-2 β-coronavirus has a large (~ 30 kb) and complex (29 proteins)  (+) sense single-

stranded RNA genome 6. The RNA present in the mature virion resembles human mRNA: (i) it is 

capped on its 5′-end, (ii) contains a 3′-poly-A tail, and (iii) after infection can be directly translated 

to the two polyproteins Pp1a and Pp1ab using host machinery. These polyproteins are then matured 

into 15 non-structural proteins (Nsp), that assemble into a large replication-transcription complex. 

The RNA is also used as a template for biosynthesis of (-) sense RNA that serves to make 

additional copies of (+) sense RNA and several sub-genomic RNAs for the translation of four 

structural and 9-10 accessory proteins 6. For these RNAs to serve as mRNAs, they must undergo 

post-transcription modifications to resemble human mRNA. The RNA maturation involves several 

enzymatic steps performed by viral Nsps; Nsp13 is a bifunctional RNA/NTP triphosphatase 

(TPase) and helicase; Nsp14 is a bifunctional 3′-5′ exonuclease and guanine N7 methyltransferase; 

and Nsp16 is Mg2+ dependent ribose 2′-O methyltransferase and an elusive guanylyltransferase. 
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In eukaryotes, the attachment of the m7G Cap at the 5′-end of RNA protects the transcript from 

mRNA turnover in the pathway dependent on 5′ → 3′ exoribonucleases activity, such as XRNs 7, 

and is required for several cellular processes: maturation of mRNA, pre-mRNA nuclear export, 

and protein synthesis 8. The Cap at the 5′ terminus of eukaryotic transcripts starts with 7-

methylguanosine at the reversed position and is connected through an uncommon 5′ to 5′ 

triphosphate bridge, which is attached to a nucleotide that undergoes methylation at 2′-O-ribose. 

The canonical pathway of the mRNA capping mechanism requires the subsequent action 

of multiple enzymes 8. At first, RNA 5′-triphosphatase (RTPase) cleaves the 5′-terminal γ-β 

phosphoanhydride bond of the nascent mRNA and enables further modification of the newly 

synthesized transcript at its 5′-terminus. Secondly, the diphosphate mRNA is capped using GMP 

by guanylyltransferase (GTase). Next, the (guanine-N7)-methyltransferase adds the methyl group 

to the 5′-terminal guanosine creating a precursor: Cap-0. Additionally, the 2′-O methyltransferase 

transfers the methyl group to the 2′-O-ribose of the first transcribed nucleotide at mRNA, making 

the m7GpppNm2′-O (Cap-1) structure 9. S-adenosyl-L-methionine (SAM) is a donor of the methyl 

group and is converted to S-adenosyl-L-homocysteine (SAH) during the reaction 10. In humans 

and other higher eukaryotes, the second nucleotide of mRNA then undergoes methylation 

to produce Cap-2 11.  

 The post-transcriptional modification of RNA is also essential for efficient translation of viral 

transcript in a eukaryotic host 12. Influenza, Ebola, measles, poxvirus, and coronaviruses attach 

Cap to their genomic and sub-genomic RNA transcripts to mimic host molecules and escape from 

the innate immunological response 13. Studies done in the last decade show that the 2′-O 

methylation of the Cap-0 facilitates this process by preventing activation of type I interferon that 

is induced by the cytoplasmic RNA sensors, melanoma differentiation-associated protein 5 

(MDA5), and retinoic acid inducible gene-I (RIG-1) 14–16. Mutations in 2′-O methyltransferase 

render the viruses sensitive to the interferon-inducible immunological pathways 17.  

Methyltransferases (MTases) are common in all metazoan and viral genomes 18. SARS-CoV-

2 possesses two MTases, Nsp14 and Nsp16, both of which form a heterodimer complex with 

Nsp10 19,20, which is a critical protein for virus replication and fidelity 21. The sequence similarity 

of viral 2′-O MTases is high, suggesting common origin. Sequence identity of Nsp16 between 

SARS-CoV-2 and  SARS-CoV-1 is 95%, while the identity of SARS-CoV-2 Nsp16 to the MERS-
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CoV enzyme is 66% 20. The active site of Nsp16 MTase is conserved in the Coronaviridae family; 

they all utilize a Lys-Asp-Lys-Glu catalytic tetrad essential for the enzymatic activity 22,23.  

It has been shown that the Nsp10/16 complex methylates the Cap-0 (m7GpppA2′-OH) to form 

Cap-1 (m7GpppAm2′-O) by adding a methyl group to the ribose 2′-O of the first nucleotide (usually 

adenosine, in CoVs) of the nascent mRNA using SAM as the methyl group donor 24. The Nsp16 

activity is necessary for Nsps’ translation from new copies of viral (+) sense RNA as well as 

structural and accessory proteins translation from sub-genomic RNA which are all transcribed 

from the viral (-) sense RNA template. Vaccination with Nsp16 defective SARS-CoV or an 

immunogenic disruption of the Nsp10/16 interface protects mice from a lethal SARS challenge 25. 

Therefore, blocking Nsp16 activity should reduce viral proliferation, making the protein 

an attractive drug target. 

While several structures of Nsp10/16 in a complex with Cap-0 have been determined 

by crystallography (PDB entries: 6WQ3, 6WRZ, 6WVN, 6WKS), none have captured the post-

methylation state. We conducted serial synchrotron crystallography (SSX) experiments at 297 K 

to test whether low radiation dose could help uncover the structure of Nsp10/16 in a complex with 

Cap-1. Previously, x-ray free-electron laser (XFEL) serial crystallography (SFX) had established 

methods to study molecular dynamics and chemical reactions in protein crystals occurring 

at femtosecond to millisecond timescales 26–28. The XFEL-based protocol enabled to analyze 

protein structures with no radiation damage, in the so-called “diffraction before destruction” mode 
29,30. SFX has been successfully applied to determine the structure of the membrane protein 

complex of photosystem I and of several other macromolecules using time-resolved approach 29. 

The synchrotron equivalent, SSX, uses a similar approach to SFX but can access longer, 

biologically relevant time scales. Moreover SSX is a much more accessible technique at a number 

of light sources and less sample consuming than SFX 31. Nonetheless, delivering hundreds of 

thousands of batch-grown crystals to the x-ray beam still presents challenges. Two approaches are 

common: the first uses a liquid injector of microcrystals 29,32,33, and the second uses a fixed-target 

system where crystals are deposited on a chip and scanned through the x-ray beam 34,35. Here we 

present three crystal structures of the Nsp10/16 complex determined by fixed-target SSX at 297 K: 

in the presence of SAM, Cap-0/SAM, and with Cap-1/SAH generated by metal-dependent 

conversion of Cap-0/SAM substrates. We compare these structures with structures of Nsp10/16 at 
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297 K and 100 K collected from a single crystal. We observe the state of the molecules in the 

crystal before and after methylation. The uniqueness of the Cap-1 structure shows the advantages 

of the SSX method in structural studies: allowing the use of larger crystals, reducing radiation 

damage, and being closer to physiological temperatures.  

 

RESULTS AND DISCUSSION 

 

Serial crystallography for the Nsp10/16 2′-O MTase from SARS-CoV-2 

We collected SSX data for the Nsp10/16 crystals using the fixed-target SSX system (Advanced 

Lightweight Encapsulation Crystallography (ALEX) mesh-holder) as depicted in Figure 1A and 

Extended Data Fig. 1. A crystal slurry is deposited on a nylon mesh, which immobilizes the 

crystals; they are then encapsulated between two polyester films 36. A representative diffraction 

image recorded from a single Nsp10/16 crystal illustrates the quality of the obtained data 

(Extended Data Fig. 2B). We collected data from seven chips with ~ 36,100 images per chip with 

an exposure time of 50 ms at 100% x-ray transmission. Including overheads, motor acceleration, 

deceleration, and settling time, each mesh was in the beam for approximately 90 minutes, 

collecting images at a rate of 7 Hz. SSX experiments were conducted on three separate days: first 

to collect data on Nsp10/16/SAM complex. Second for Nsp10/16/SAM crystals with SAM that 

were soaked with Cap-0 in the presence of EDTA. Third to collect data for the Nsp10/16/Cap-

1/SAH complex, resulting from the in crystallo reaction converting Cap-0/SAM to Cap-1/SAH 

(Fig. 1B). As discussed below, this process occurred in the crystals in the presence of 1 mM Mg2+ 

and the reaction is significantly slowed down by addition of EDTA.  

For initial data processing, we used the Kanzus automated data pipeline. Kanzus integrates the 

19-ID data collection system with the Argonne Leadership Computing Facility (ALCF), using the 

Theta supercomputer for high-speed on-demand data analysis. Extended Figure 3A presents 

an image with labeled indexed reflections and shows that most observed reflections of Nsp10/16 

crystals were indexed. PRIME identified inadequate low-resolution statistics from the integration 

files, thus we subjected them to outlier rejection. Integration files with resolution lower than 3.5 Å, 

containing less than 90 reflections, or with a unit cell volume 4.5% different from the average were 
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removed from the scaling process (Extended Data Tab. 1, Fig. 2C, 2D). The total number of 

integrated files that went into PRIME for Nsp10/16 bound with SAM, Cap-1/SAH, and Cap-

0/SAM  were 7,951; 5,038 and 4,704 respectively. The overall hit-rate (images used for structure 

divided by images taken) for the five meshes was 7%. Some positions on the mesh had multiple 

crystals, 11% of ‘hits’ had two lattices, and fewer than 1% had three (Extended Data Tab. 1, 

Fig. 3B). For structure determination we used all indexed lattices in each diffraction image. 

Two structures from SSX were solved at 2.25 Å (Nsp10/16/SAM and Nsp10/16/Cap-1/SAH), and 

a third at 2.18 Å (Nsp10/16/Cap-0/SAM) (Extended Data Tab. 1). The highest resolution shell in 

PRIME analysis was specified using a CC1/2 cut-off below 0.40. Completeness for the SSX data 

was close to 100% and Rwork was 20.65%, 22.31%, and 21.70% for Nsp10/16/SAM, 

Nsp10/16/Cap-1/SAH, and Nsp10/16/Cap-0/SAM, respectively (Extended Data Tab. 2). For a 

comparison to SSX data, we also collected data from a single crystal of the Nsp10/16 with Cap-

0/SAM and Cap-1/SAH in a capillary at 297 K. These data could only beprocessed to 2.65 Å with 

reasonable statistics (Extended Data Tab. 1, 2). Using RADDOSE-3D 37, we estimated the 

accumulated dose of x-ray for Nsp10/16 from SSX to be 0.12 MGy, whereas the dose for the 

capillary-mounted crystal was 4.97 MGy over 40 times higher.  

 

297 K structure of the Nsp10/16 heterodimer from SARS-CoV-2 

The Nsp10/16 complex is an a/b heterodimer (Fig. 2). The 139 amino acid long Nsp10 has 

unique fold formed by 5 α-helices and a pair of antiparallel β-strands which are facing Nsp16 in 

the complex. Nsp10 possesses two zinc ions coordinated by the CCHC and CCCC motifs that are 

100% conserved in β-coronaviruses 20. Nsp10 is involved in forming the complexes with multiple 

SARS-CoV-1 and -2 proteins. The best characterized is the complex with Nsp14 3′-5′ 

exoribonuclease (and guanine N7 methyltransferase) and Nsp16 that is 2′-O-ribose methylase. 

Previous research showed that Nsp16 is only active in the presence of Nsp10 19. Interestingly, the 

activity of 2′-O MTase of the Nsp10/16 complex was reduced by using a peptide compound based 

on the Nsp10 sequence 38. Nsp10 is a molecular co-factor for various SARS-CoV-2 enzymes and 

therefore a good candidate for design of molecules that will affect its structure or disrupt the 

interaction with Nsp14 or Nsp16 2′-O MTases.  
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 The structure of Nsp16 is characterized by a Rossmann fold, with a large β-sheet surrounded 

by α-helices,  β-strands and loops. Nsp16 contains 11 α-helices, 12 β-strands and 7 loops. Nsp16 

has a centrally positioned β-sheet (β3↑,β2↑,β1↑,β4↑,β5↑,β7↓,β6↑) with only one antiparallel 

strand β7. The SAM and the Cap binding sites are located at the surface of Nsp16. None of the 

Nsp10 residues have a direct connection with the ligands’ binding sites (Fig. 2A, 2C), but Nsp10 

is required for Nsp16 MTase activity 21. Additionally, we observed partial electron density for the 

7-methyl-guanosite-5′-triphosphate (m7Gppp) of the Cap in the possible allosteric site of the 

Nsp10/16 complex (Fig. 2B). Analysis of the surface electrostatic charges of the Nsp10/16 

structure shows positively charged residues that form an elongated binding pocket for Cap, with 

approximate length of 21 Å (Fig. 2C). In proximity of the Cap-0 methylation site there is an 

elongated positively charged surface that can potentially bind longer RNA (Fig. 2C). Moreover, 

there are reports that two zinc fingers of Nsp10 contribute to non-specific binding of nucleic 

acids 24, which could further indicate that Nsp10/16 not only binds the Cap, but also interacts with 

longer RNA fragments. 

The SSX experiments on the Nsp10/16 crystals revealed three states: one with SAM bound, 

second with SAM and Cap-0 in the active site prior reaction occurring, and the third state after 

methyl transfer with Cap-1 and SAH. The electron density clearly showed the methyl group 

present on the adenosine moiety at the 2′-O-ribose position of the Cap-0 and no methyl present on 

SAH (Fig. 4C). Moreover, the 297 K single crystal structure has also clear electron density for the 

methylation site of the Cap-0 2′-O-ribose, but with partial occupancy. 

The structures determined at 100 K using single crystal and at 297 K using SSX obtained in 

the same crystal forms are very similar, as illustrated by superpositions of our Nsp10/16/Cap-

1/SAH structure with the complex of Cap-0/SAH (PDB entry 6WQ3) (Extended Data Fig. 4). 

For these structures, the overall root mean square deviation (RMSD) of Cα atoms is 0.43 Å. 

We observed less than an 1.1 Å shift of the loops that form the binding sites for the Cap and zinc 

ions. Comparison of the SSX structures of Nsp10/16 with Cap-0/SAM and Cap-1/SAH does not 

reveal any significant changes in protein backbone (Cα RMSD: 0.52 Å) (Extended Data Fig. 4B).  

On the other hand, the comparison of Nsp10/16/SAM and Nsp10/16/Cap-1/SAH complexes 

determined using SSX indicate larger conformation changes in the Nsp16 that are induced by the 

Cap-0 binding and Cap-1 formation. We observed movement of two loops (comprising 28-35 and 
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131-145 residues of Nsp16) which form the mRNA Cap binding groove; positions of some 

residues are shifted as much as 3.0 Å, with an overall Cα RMSD of 0.40 Å (Fig. 2D, 2E; Extended 

Data Fig. 4C). At the same time, the Cap binding did not significantly affect the structure of Nsp10. 

We also compared the two structures of Nsp10/16/SAM determined at 297 K (this work PDB entry 

7JIB) and 100 K (PDB entry 6W4H) (Cα RMSD: 0.35 Å) and observed significant differences: 

one loop from the Cap binding pocket is shifted approximately 1.4 Å in 297 K structures, which 

makes the Cap binding site more accessible (Extended Data Fig. 4D). Therefore, the 297 K 

structures of Nsp10/16 in a complex with SAM, Cap-0/SAM, and Cap-1/SAH, as determined by 

SSX, depict states important for molecular modeling studies and structure-based drug design.  

To better understand Nsp16 activity from SARS-CoV-2, we compared it with NS5 2′-O MTase 

from Dengue virus (PDB entry 5DTO) (Fig. 3). We aligned the structure of Nsp16 with the N-

terminal domain of NS5 that spans 298 residues from N-terminus. Both Nsp16 and NS5 2′-O 

MTases assume a Rossmann fold with a large β-sheet decorated with α-helices (Fig. 3B, D). 

MTases contain a central β-sheet that is composed of six parallel and one antiparallel strands. 

Despite low sequence identity (13.6%) the RMSD between the two MTases is reasonable (3.01 Å). 

Both enzymes possess a canonical 2′-O MTase catalytic tetrad Lys-Asp-Lys-Glu with the aspartic 

acid residue forming a hydrogen bond with a water molecule potentially relevant for catalysis 

(Fig. 3A, C). The SAM binding sites share high similarity but there are major differences in the 

mRNA Cap binding sites. The Mg2+ or Mn2+ ion is necessary for Nsp16 activity 39, however is not 

localized near the active site in the currently available structures of Nsp10/16 from SARS-CoV-1 

and SARS-CoV-2. The Mg2+ ion in the N-terminal domain of NS5 2′-O MTase is coordinated by 

the phosphate oxygens of the Cap 5′ to 5′ triphosphate linker and three water molecules that bridge 

to three bases (A1-G2-U3) on the 5′-end. 

 

2′-O methylation of the SARS-CoV-2 transcripts 

The SARS-CoV-2 Nsp10/16 2′-O MTase complex provides a molecular arrangement for 

binding of the mRNA Cap-0 and subsequent methylation of the first transcribed nucleotide. 

The catalytic core is in the center of the Rossmann fold and it binds the SAM molecule in the deep, 

narrow grove that is buried inside the Nsp16 active site. We observed that Nsp16 had recruited 

SAM during expression in E. coli (PDB entry 6W61) 20. However, addition of 2 mM SAM to the 
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crystallization solution improves crystallization efficiency, reduces crystallization time, and 

increases the number of crystals - three highly desirable traits for SSX batch crystallization. 

The SAM binding site is negatively charged and is formed by several Nsp16 residues: Asn43, 

Tyr47, Gly71, Ala72, Gly73, Ser 74, Gly81, Thr82, Asp99, Leu100, Asn101, Asp114, Cys115, 

Asp130, Met131, and Phe149 (Fig. 2, 4, Extended Data Fig. 5B). The SAM carboxylate moiety 

binds to the positively charged N-terminus of the third a-helix spanning Pro80-Trp88. This 

interaction provides additional electrostatic stabilization. Nsp16 directly interacts with Cap-1 

through several residues that form a positively charged, elongated binding groove accommodating 

the mRNA Cap-0 (Fig. 2, 4, Extended Data 5A). The N7-metyl guanosine binding pocket is 

formed by Cys25, Asp26, Leu27, Tyr30, Thr172, Glu173, and Ser202. The 5′ to 5′ triphosphate 

bridge of the Cap is stabilized through interaction with Tyr30, Lys137, Thr172, His174, Ser201, 

Ser202, and Glu203. The first nucleotide of the mRNA Cap (adenosine in the presented structure) 

is bound through Lys46, Asp130, Tyr132, Pro134, Lys170, Asn198, and Glu203.  

SAM-dependent MTases share a conserved catalytic mechanism wherein the methyl group 

is transferred to the acceptor substrate via an SN2 reaction 40, which requires a linear alignment of 

the acceptor substrate (nucleophile), methyl group (electrophile), and the sulfur atom (leaving 

group) of the SAH product 41. It was proposed that Nsp16 2′-O MTases follow the same general 

mechanism 42. In these enzymes, the reaction is facilitated by the catalytic tetrad Lys-Asp-Lys-

Glu, where Lys170 sandwiched between the two acidic residues (Asp130 and Glu203) serves as 

a proton abstractor (Fig. 4A, B). It was shown previously in biochemical studies that substitution 

to Ala of any residue of the 2′O-MTase catalytic tetrad results in an inactive enzyme 10,43. In SARS-

CoV-2 Nsp16 the catalytic tetrad Lys46-Asp130-Lys170-Glu203, is superposing well with Lys61-

D146-Lys180-Glu216 of the Dengue virus homolog (Fig. 3A, C). In the 3D context, Lys46 binds 

to Glu203 which then binds to Lys170 interacting with Asp130, which further links to the amino 

group of SAM. In this network, a proton can be transferred between multiple residues, occupying 

different sites potentially depending on the reaction state (Fig. 4). Lys170 is well-positioned to act 

as a general base deprotonating 2′-OH. Asp130 may serve multiple functions  - as an acid 

deprotonating Lys170 (alternating with Glu203), and an anchoring point for the cofactor via 

interaction with its amino group, and as a stabilization for the sulfonium cation. However, the 

reaction does not occur in a presence of EDTA, as demonstrated by the ability to capture the Cap-

0/SAM complex. It was reported previously using biochemical assays that the activity of Nsp10/16 
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2′-O MTase is magnesium dependent 39. Though, we did not observe any trace of metal near the 

active site in the 297 K structures reported in this work, and any other CoV-2 Nsp10/16 structures 

reported to date, despite the presence of magnesium in the crystallization buffer. We hypothesize 

that the magnesium ion (or other metal ion) can transiently bind to the active site possibly replacing 

one of the water molecules (for example water 38) and promoting formation of a reactive 

conformation by changing electrostatics and geometry of the catalytic residues to stimulate 

methylation reaction. Magnesium has a compact and tight coordination sphere with strict 

octahedral geometry and a typically short Mg—O distance of 2.08 Å 44. By coordinating 2′ oxygen 

and several water molecules magnesium could shortened the distance between 2′ oxygen and SAM 

methyl moiety thus promoting formation of transition state and methyl transfer. During the 

reaction a positively charged, sp2 planar transition state is formed and the methyl group inverts its 

stereochemistry. 

After the  methyl-transfer  reaction  is  completed the product  is released from the active site. 

This is consistent with the structure of Cap-1/SAH where several active site residues move, these 

include Tyr132, the entire α-helix spanning Pro134-Lys137, and Tyr30 on the opposite site 

(Fig. 4A, Extended Data Fig. 4C). All these residues are involved in interactions with Cap-0 and 

observed changes perhaps allow Cap-1 to leave. Interestingly, the SAM/SAH binding site remains 

virtually unchanged in all three structures (Extended Data Fig. 4), suggesting that the SAH 

exchange with SAM may require dissociation of Nsp10 that controls conformation of important 

loop Gly73-Gly77. Opening this loop may help SAH to leave and then a new SAM molecule can 

bind.  

The biochemical assays show that optimal pH for MERS-CoV Nsp10/16 activity is 

approximately 8 - 8.5 39. Additionally, the 2′-O MTase activity of Nsp10/16 from the MERS is 

significantly reduced at pH below 7. Assuming that Nsp10/16 2′-O MTase efficiency is pH 

dependent, we performed the 297 K SSX data collection using a buffer with pH 6.5 that could 

potentially slow down the reaction. Comparison of the 100 K and the 297 K structures revealed 

clear methylation only at 297 K, we hypothesize that Cap-1 could be sensitive to radiation damage 

and thus can be only observed in low x-ray dose experiments. Interestingly, the 297 K structure of 

Nsp10/16 obtained from a single crystal has a mixture of states with 30% of the Cap-1/SAH 

products and 70% of the Cap-0/SAM substrates. It is well known that radiation damage can impact 
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redox systems. High x-ray dose could affect electron density around amino acid residues and lead 

to photoreduction of metalloproteins 45,46,47. These free radical reactions can occur in crystals under 

cryogenic conditions 48. 

 

CONCLUSIONS 

Enzymes that catalyze transmethylation reactions using SAM as the methyl group donor have 

been described in many cellular processes involving nucleic acids, proteins, phospholipids, and 

small molecules 49. SARS-CoV-2 Nsp16 methyltransferase is one representative of this large 

family of proteins, which, together with Nsp10, participates in the post-transcriptional 

modification of the viral RNA. This multi-step process is a prerequisite to yield fully functional 

mRNA that (i) would not be recognized as foreign genetic element and, as such, be directed for 

degradation 50 and (ii) could undergo translation in the human host 12,51. 2′-O Methylation of the 

mRNA Cap facilitated by the Nsp10/16 is the last reaction in the mRNA assembly. Given the 

indispensable role of the RNA modification for the survival of the virus, the disturbance of this 

pathway, including the 2′-O methylation of Cap, is a field for development of inhibitors that affect 

SARS-CoV-2 replication. To that end, understating structure-function relationship of the enzymes 

catalyzing these process is critical.  

Six months after the beginning of the COVID-19 outbreak we reported here the first structure 

for the SARS-CoV-2 Nsp10/16 complex revealing the post-reaction state with 2′-O methylated 

ribose of the Cap-1 bound to the protein. Despite several previous trials to visualize the product 

binding by traditional crystallography, no such state could be captured. Here we applied SSX as 

another attempt to fill the knowledge gaps in the 2′-O methylation process. The SSX experiments 

on the Nsp10/16 crystals revealed three states: with SAM bound, with SAM and Cap-0 prior 

reaction occurring, and, finally with Cap-1 and SAH after methyl transfer. These experiments were 

done at 297 K under low x-ray radiation dose to the crystal. In comparison, the 297 K single crystal 

structure shows methylation of the 2′-O-ribose of the Cap-0, but with partial occupancy. 

Interestingly, the methylation was not observed previously in any of the Nsp10/16 structures 

determined at 100 K 20,24,42,52,53. Is this reaction sensitive to radiation damage or free radical 

effects? It seems that the most elusive may be the formation of the metal-dependent state resulting 

in establishing the electrostatic/geometric conditions prior activation or destabilization of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2020. ; https://doi.org/10.1101/2020.08.14.251421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.251421
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

transition state as there is no depletion of the methyl group on SAM in any reported structures.  

This clearly needs further investigation because SSX low radiation dose may be advantageous in 

helping reveal subtle and diverse chemical transformations in enzymes that otherwise may be 

degraded during x-ray or electron diffraction experiments.  Therefore, the structure of Nsp10/16 

with Cap-1 presented here provides unique information for understanding the mechanism that 

allows SARS-CoV-2 to mimic mature eukaryotic mRNA and escape recognition by human innate 

immune response.    

The recent developments in micro focusing x-ray beams at synchrotron light sources and 

improvement in sample delivery technology, data collection, detectors, and computing will allow 

rapid determination of new structures using SSX and revealing significant biological information. 

The further development of SSX and implementation of time-resolved SSX crystallography is an 

approach that could visualize chemical processes and protein molecular dynamics - such as of the 

transfer of the methyl group catalyzed by Nsp10/16 2′O-MTase from SARS-CoV-2. Thus far the 

Cap-1 was only observed in the structure obtained using SSX. For diffraction experiments 

conducted at 297 K, SSX provides significant advantages over data collected using a single crystal  

as it considerably increases resolution, use less sample  in comparison with a liquid jet delivery 

system and reduces levels of x-ray dose. Studies of other enzymes can also significantly benefit 

from using this approach.  

 

METHODS 

Crystallization of Nsp10/16 complex 

The recombinant proteins Nsp10 and Nsp16 from SARS-CoV-2 were expressed in E. coli and 

purified as described by Rosas-Lemus 20. The freshly purified Nsp10 and Nsp16 were mixed in 

a 1:1 molar ratio to the final concentration of the complex as 2 mg/ml. Subsequently, the Nsp10/16 

sample was dialyzed overnight at 297 K in a buffer containing 10 mM Tris-HCl, 150 mM NaCl, 

2 mM MgCl2, 1 mM TCEP, 5% w/v glycerol. The Nsp10/16 heterodimer was supplemented with 

2 mM SAM (Sigma Aldrich) and concentrated at 21°C to 4.0 mg/ml using a 30 kDa cut-off 

centrifugal concentrator Amicon Ultra-15 (Millipore). Two criteria for preliminary selection for 

batch crystallization were getting crystals with the highest possible symmetry as well as having 
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one Nsp10/16 heterodimer in the asymmetric unit. Such conditions were met by crystals with 

hexagonal space group P3121. The complex was initially crystallized in a buffer 0.1 M MES pH 

6.5 and 0.6 M sodium fluoride from Anions Suite crystallization screen (Qiagen). After 

optimization of crystallization conditions, we used 0.1 M MES pH 6.5, 0.9 M NaF for batch 

crystallizations. For each batch of crystals 100 µl of the Nsp10/16 complex was mixed with 100 µl 

of the precipitant buffer and crystallization was performed in 500 µl Eppendorf polypropylene 

tube. These volumes allowed us to get the number of crystals suitable for data collection from one 

chip. We have prepared several batches using same conditions to get reproducible data collection 

and have the ability to merge data from multiple chips. The crystals grew to optimum sizes in 

10 days at 21°C before the SSX data collection. To obtain the structure of Nsp10/16/Cap-0/SAM, 

the crystal batch was supplemented with 1 mM EDTA two days before data collection. 

Preparation of the sample for data collection 

The crystals from batch crystallization were centrifuged at 100 RCF for 2 minutes at 297 K. 

The excess solution was removed with a pipette, until 15 µl was left. Crystals sedimented on the 

walls of Eppendorf polypropylene tube were gently resuspended using 20 µl pipette tips with a cut 

end to increase the diameter of the tip to minimize mechanical damage to crystals. Then 1.5 µl of 

10 mM stock of the m7GpppA (S1405L, New England Biolabs) was added to crystal slurry and the 

mix was loaded on a 60 µm grid made from nylon (NY6004700, Millipore) which was placed on 

a 6 µm layer of mylar polyester film. The nylon mesh was covered on the top with a second layer 

of 6 µm mylar and sealed with the ALEX magnetic holder, such that sample is hermetically sealed 

from the outside environment. Data collection was started approximately 20 minutes after 

assembly of the chip.  

Serial crystallography data collection 

We collected SSX data for the Nsp10/16 crystals at the 19-ID beamline at the Advanced Photon 

Source using the fixed-target SSX (ALEX) mesh-holder developed at the Structural Biology Center 

(SBC) as depicted in Figure 1A and Extended Data Fig. 1. A crystal slurry is deposited on a nylon 

mesh, which immobilizes the crystals; they are then encapsulated between two polyester films 36. 

The rod-shape crystals grew without seeding and the average crystal size was 120x25x25 µm 

(Extended Data Fig. 2A).  Serial data collection was collected using three SmarAct SLC-17 stages 

configured in an XYZ geometry, with each having sufficient movement range to cover the sample 
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area of the specially designed ALEX holder (patent application serial #16/903,601). The beamline 

was configured at an energy of 12,662 eV, with collimator slit sizes set to 75 x 75 µm, and step 

size (distance between exposures) of 50 µm: overlapping exposed area to maximize crystal hits. 

The five mesh-covered samples used a grid of 170 steps in the x-direction (columns) by 210 steps 

in the y-direction (rows), covering a total area of approximately 8.5 x 10.5 mm. The number of 

steps and the resulting area varied slightly per sample depending on the chip mount position or 

possible false-starts. Extended Data Table 1 contains details of number of chips and detector 

distances used for data collection for Nsp10/16 SSX structures. 

Crispy, the data acquisition GUI for serial collection at sector 19, allows for quick alignment 

and acts as a source of information for downstream processing. Metadata in the form of JSON files 

and beamline/collection strategy parameters are input and passed into the system before collection. 

These parameters include grid dimensions, detector distance/resolution, unit cell dimension, 

protein PDB coordinates, and a handful of others. 

Serial crystallography data processing 

The Kanzus pipeline orchestrates SSX data acquisition, analysis, cataloging, and publishes 

processing metrics. Kanzus uses a cloud-hosted research automation system called Globus 

Automate to manage these multi-step data “flows” 54. The first phase of the pipeline is integrated 

with the APS Data Management System at the beamline, which deposits each newly acquired 

image into an Globus-accessible storage system at the APS. As new images are acquired, Globus 

Automate “flows” are launched to process them as follow: 1) moves new files from APS to Theta 

by using the Globus Transfer service 55; 2) performs DIALS stills_process 56 on batches of 256 

images by using funcX 57, a function-as-a-service computation system (funcX uses Parsl 58 

to abstract and acquire nodes on Theta as needed, and dispatches tasks to available nodes); 3) 

extracts metadata from files regarding identified diffractions, and generates visualizations (funcX) 

showing the locations of positive hits on the mesh; and 4) publishes raw data, metadata, and 

visualizations to a portal on the ALCF Petrel data system 59. The result of this automated process 

is an indexed, searchable data collection that provides full traceability from data acquisition to 

processed data, and that can be used to inspect and update the running experiment.  

Images were collected at 7 Hz, meaning that a 256-image batch totaling 1.56 GB, was 

generated every 35 seconds. The data transfers to ALCF ran at up to 700 MB/s via Globus, and 30 
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Theta nodes processed images by using DIALS stills_process at 22 images per second in steady-

state. As experimental configuration values were refined, reprocessing tasks were submitted as 

required. FuncX managed these tasks by expanding the number of Theta nodes being used to a 

maximum of 250, which enabled a processing rate of greater than 200 images a second. 

Successfully processed images with diffraction-produced integration files were returned to the 

beamline computers and later refined and merged using PRIME 60.  

Structure solution and refinement 

The crystal structures of the Nsp10/16 complex were solved by molecular replacement using 

MolRep 61 from the CCP4 package. The structures were refined by multiple cycles in REFMAC 

v. 5.8.0258 62 followed by manual edition of the model using Coot 63. Ligands: Cap-1, Cap-0, 
m7Gppp, m7Gpp, SAM, SAH, and Zn2+ were manually placed in to electron density at the beginning 

of the refinements. The stereochemistry of structures were analyzed using MolProbity and the 

Ramachandran plot. The atomic coordinates and structure factors for Nsp10/16 structures 

determined with SSX were deposited to PDB with assigned accession codes: 6XKM –  SAM, 

7JPE – Cap-0/SAM, 7JHE – Cap-1/SAH. Nsp10/16 complex with mixture of Cap-0/Cap-1 and 

SAH/SAM determined from single crystal at 297 K has PDB entry 7JIB. Figures were prepared 

with PyMol and UCSF Chimera 64. 
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FIGURES 

Figure 1. Fixed-target serial crystallography data collection on Nsp10/16 crystals from 

SARS-CoV-2. System for SSX with moving crystal holder developed at APS beamline 19-ID (A). 

Chemical formula of reaction done by Nsp10/16 2′-O methyltransferase, transfer of methyl group 

labeled as blue oval (B).  

Figure 2. 297 K crystal structure of the Nsp10/16 in a complex with m7GpppAm2′-O (Cap-1) 

and SAH determined using fixed-target SSX. The heterodimer assembly of the Nsp10/16 

complex (A, B); Nsp10 (pink), Nsp16 (blue). The 2′-O MTase active site with Cap-1 and SAH (A). 

The potential allosteric site of Nsp16 with bound m7Gppp (B). The Coulombic electrostatic 

potential on the surface of the Nsp10/16 heterodimer in complex with Cap-1/SAH calculated at 

298 K using default settings in UCSF Chimera (C). Comparison of 297 K crystal structures of the 

Nsp10/16 complex with Cap-1 and SAH (blue – PDB entry 7JHE) superimposed to the structure 

with SAM (pink – PDB entry 6XKM) (D). Binding of mRNA Cap to Nsp16, plots of RMSD (top) 

and B factor between structures with SAM and Cap-1/SAH (E). 

Figure 3. The Nsp16 from SARS-CoV-2 shares structural similarity with the N-terminal 

fragment of NS5 MTase from Dengue virus. Active site of Nsp16 from SARS-CoV-2 with 

catalytic tetrad Lys46-Asp130-Lys170-Glu203 (A). Structure of Nsp16 from SARS-CoV-2 in  

complex with m7GpppAm2′-O (Cap-1) and SAH (PDB entry 7JHE) (B). Active site of the N terminal 

fragment of NS5 from Dengue virus in a complex with m7GpppAGUU and SAH shares conserved 

catalytic residues Lys61-Asp146-Lys180-Glu216 (C). The structure of the N terminal fragment of 

NS5 from Dengue virus (PDB entry 5DTO) (D).  

Figure 4. Methylation of the 2′-O-ribose of the m7GpppA catalyzed by activity of the Nsp10/16 

heterodimer from SARS-CoV-2. Active site of Nsp16 2′-O methyltransferase (yellow) in a 

complex with m7GpppAm2′-O (Cap-1) and SAH (A). Magnification of the active site depicts key 

residues Lys46-Asp130-Lys170-Glu203 essential for the 2′-O MTase activity (B). The 2Fo - Fc 

maps (σ = 1.2) contoured around ligands of the structures determined by SSX. The maps for 
m7GpppAm2′-O with SAH are colored on blue and red respectively. The map for the SAM structure 

is depicted as green (C).  
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EXTENDED DATA 

Extended Data Table 1. Data collection and processing statistics for Nsp10/16 297 K 

structures. Comparison of data collected using fixed-target serial crystallography and using single 

crystal mounted in capillary.   

 
Nsp10/16 

SAM 

Nsp10/16 

Cap-1 + SAH 

Nsp10/16 

Cap-0 + SAM 

Nsp10/16 

Cap-0/Cap-1 + 
SAM/SAH 

 

Data Collection fixed-target SSX fixed-target SSX fixed-target SSX single crystal  

Crystal holder 
60 µm nylon mesh              
between 2 layers of 

mylar 

60 µm nylon mesh              
between 2 layers of 

mylar 

60 µm nylon mesh              
between 2 layers of 

mylar 

MiTeGen microRT 
capillary 

 

Crystal size (µm) 120x25x25 120x25x25 120x25x25 250x50x50  

Diffraction source APS beamline 19-ID APS beamline 19-ID APS beamline 19-ID APS beamline 19-ID  

Wavelength (Å) 0.9792 0.9792 0.9792 0.9792  

Temperature (K) 297 297 297 297  

Detector PILATUS3 X 6M PILATUS3 X 6M PILATUS3 X 6M PILATUS3 X 6M  

Beam size (µm) 75 x 75 75 x 75 75 x 75 50 x 50  

Exposure time per image (s) 0.05 0.05 0.05 0.2  

Beam attenuation 1 1 1 2.2  

Crystal – detector distance (mm) 
540 (1st chip) 

319 (2nd chip) 

319 (1st and 2nd chip) 

446 (3rd chip) 
422 (1st and 2nd) 470 

 

Number of chips 2 3 2 -  

Number of collected images 73100 105740 74120 180 (90°)  

Number of indexed images 10990 7725 5734 180  

Indexing hit rate (%) 15.0 7.3 7.8 -  

Diffraction images resolution lower than 3.5Å 1622 1654 976 -  

Diffraction images < 90 reflections 635 428 187 -  

Diffraction images with deviation from the 
crystal unit cell volume > 4.5% 2009 1831 1362 -  

Number of images after rejection of outliers  7951 5038 4704 -  

Images with indexed single lattice 6985 4522 4098 180  

Images with indexed two lattices 900 488 555 -  

Images with indexed three lattices 66 28 51 -  

Lattices merged for structure determination 7267 4548 4274 180  

Total time of data collection (min) 180 270 180 < 1  

Dose of X-ray per crystal (MGy) 0.12 0.12 0.12 4.97  
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Extended Data Table 2. Crystallographic data and refinement statistics. 

 Nsp10/16 
SAM 

Nsp10/16 
Cap-1 + SAH 

Nsp10/16 
Cap-0 + SAM 

Nsp10/16 
Cap-0/Cap-1 + 

SAM/SAH 

 

Data Collection fixed-target SSX fixed-target SSX fixed-target SSX single crystal in capillary  

Space group P3121 P3121 P3121 P3121  

a, b, c (Å) 170.41, 170.41, 52.63  170.86, 170.86, 52.80   170.93, 170.93, 52.79 170.83, 170.83, 52.74    

a , b , g  (º) 90.0, 90.0, 120.0 90.0, 90.0, 120.0 90.0, 90.0, 120.0 90.0, 90.0, 120.0  
Resolution range (Å) a 49.57 – 2.25 (2.29 - 2.25) 49.73 – 2.25 (2.29 - 2.25) 49.72 – 2.18 (2.22 – 2.18) 50.00 – 2.65 (2.70 – 2.65)  

No. of unique reflections 41,770 (2,090) a 42,145 (2,126) a 46,273 (2,290)a 25,799 (1,263) a  

Completeness (%) 100.0 (99.7) 100.0 (99.8) 100.0 (99.7) 99.6 (99.8)  

Data redundancy 82.41 (10.24) 42.94 (9.28) 50.51 (11.42) 5.2 (4.9)  

Rsplit (%) b 18.75 (96.45) 26.96 (87.30) 23.44 (98.03) -  

Rp.i.m. (%) c - - - 0.071 (0.507)  

CC/1/2 d 0.968 (0.449) 0.930 (0.473) 0.950 (0.398) 0.981 (0.537)  

áI/σ(I)ñ 2.68 (0.58) 2.45 (0.66) 2.55 (0.53) 15.0 (1.87)  

Wilson B factor 23.2 21.4 22.8 49.9  

Structure Determination      

MR initial model (PDB ID) 6W4H 6WQ3 6WQ3 6WQ3  

Refinement      

Resolution range (Å) 49.57 – 2.25 (2.31 – 2.25) 49.73 – 2.25 (2.31 – 2.25) 49.72 – 2.18 (2.22 – 2.18) 29.59 – 2.65 (2.72 – 2.65)  

Completeness (%) 99.9 (98.8) 99.9 (99.5) 99.97 (99.74) 99.0 (98.9)  

No. of unique reflections 39,686 (2,893) 40,062 (2,962) 46273 (2290) 24,366 (1,751)  

Rwork/Rfree
e (%) 20.65/21.26 (36.3/33.4) 22.31/24.85 (37.4/36.0) 21.70/23.70 (37.9/34.1) 15.49/18.09 (31.2/30.2)  

Protein chains/atoms 2/3,204 2/3,210 2/3,210 2/3,244  

Ligand/Solvent atoms 30/129 114/160 109/131 189/141  

Mean temperature factor (Å2) 37.6 37.1 40.0 55.9  

Coordinate Deviations      

R.m.s.d. bonds (Å) 0.004 0.005 0.005 0.004  

R.m.s.d. angles (º) 1.213 1.363 1.351 1.291  

Ramachandran plot f      

Favored (%) 96.0 95.0 97.0 95.0  

Allowed (%) 4.0 5.0 3.0 5.0  

Outside allowed (%) 0.0 0.0 0.0 0.0  

PDB Accession Code 6XKM 7JHE 7JPE 7JIB  
      

aValues in parentheses correspond to the highest resolution shell. 
bRsplit as defined by White 65. 
cRp.i.m as defined by Weiss 66. 
dCC/1/2 as defined by Karplus and Diederichs 67. 
eR = Σh|Fo|–|Fc|/Σh|Fo| for all reflections, where Fo and Fc are observed and calculated structure factors, respectively. Rfree is 
calculated analogously for the test reflections, randomly selected and excluded from the refinement. 
fAs defined by Molprobity 68. 
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Extended Data Figure 1. Fixed-target SSX system at Structural Biology Center beamline 19-

ID at APS. The serial crystallography chip holds nylon mesh between the two layers of mylar. 

Extended Data Figure 2. Processing of SSX data for Nsp10/16. Representative crystal of 

Nsp10/16 used for 297 K SSX data collection (A). Diffraction image of one of the Nsp10/16 

crystals obtained during SSX data collection, detector edge at 2.1 Å. The fiber diffraction pattern 

visible at ~ 4 Å originates from the nylon mesh scattering.  (B). Processing of SSX data with 

DIALS, histograms illustrates number of reflections, resolution and unit cell volume obtained for 

integrated images. Depicted integration statistics for Nsp10/16/SAM (C) and Nsp10/16/Cap-

1/SAH (D). The blue bars show data before rejections of outliers (unit cell deviation > 4.5%, 

resolution < 3.5 Å, number of reflections < 90), orange bars depict data used for scaling and 

refinement of the Nsp10/16 structures.  

Extended Data Figure 3. Fixed-target serial crystallography data collection for Nsp10/16 

crystals. Diffraction image of Nsp10/16 crystals obtained from fixed-target SSX, image processed 

with DIALS viewer, red dots represents indexed crystal reflections (A). Hit map illustrates images 

integrated using DIALS, red dots – single lattice, orange dots – two lattices, yellow dots – three 

lattices determined on integrated crystal diffraction image (B).  

Extended Data Figure 4. Comparison of 297 K crystal structures of the Nsp10/16 with 

structures determined at 100 K. Crystal structure of the Nsp10/16 complex with Cap-1 and SAH 

(blue – 7JHE) determined using SSX superimposed with Nsp10/16 complex with Cap-0 and SAH 

(red - 6WQ3) determined at 100 K (A). Comparison of 297 K crystal structures of Nsp10/16/Cap-

1/SAH (blue – 7JHE) superimposed to structure of Nsp10/16/Cap-0/SAM (black – 7JPE) (B). 

Comparison of 297 K crystal structures of the Nsp10/16/Cap-1/SAH (blue – 7JHE) superimposed 

to structure of Nsp10/16/SAM (pink – 6XKM) (C). Comparison of the Nsp10/16 crystal structures 

with SAM determined respectively using SSX (pink – 6XKM) and standard data collection at 

100 K (white - 6W4H) (D). 

Extended Data Figure 5. Hydrogen bonds and hydrophobic interactions that stabilize 

binding of m7GpppAm2′-O and SAH by Nsp10/16 2′-O MTase from SARS-CoV-2. Schematic 

diagrams of Nsp10/16 interactions with ligand made using LIGPLOT v.4.5.3 software 69. 
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