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Highlights 
• scTenifoldNet is a machine learning workflow built upon principal component regression, 

low-rank tensor approximation, and manifold alignment 
• scTenifoldNet uses single-cell RNA sequencing (scRNAseq) data to construct single-cell 

gene regulatory networks (scGRNs)  
• scTenifoldNet compares scGRNs of different samples to identify differentially regulated 

genes  
• Real-data applications demonstrate that scTenifoldNet accurately detects specific 

signatures of gene expression relevant to the cellular systems tested. 

Short abstract 
We present scTenifoldNet—a machine learning workflow built upon principal component 
regression, low-rank tensor approximation, and manifold alignment—for constructing and 
comparing single-cell gene regulatory networks (scGRNs) using data from single-cell RNA 
sequencing (scRNAseq). scTenifoldNet reveals regulatory changes in gene expression between 
samples by comparing the constructed scGRNs. With real data, scTenifoldNet identifies specific 
gene expression programs associated with different biological processes, providing critical 
insights into the underlying mechanism of regulatory networks governing cellular transcriptional 
activities. 

Abstract 
Constructing and comparing gene regulatory networks (GRNs) from single-cell RNA sequencing 
(scRNAseq) data has the potential to reveal critical components in the underlying regulatory 
networks regulating different cellular transcriptional activities. Here, we present a robust and 
powerful machine learning workflow—scTenifoldNet—for comparative GRN analysis of single 
cells. The scTenifoldNet workflow, consisting of principal component regression, low-rank tensor 
approximation, and manifold alignment, constructs and compares transcriptome-wide single-cell 
GRNs (scGRNs) from different samples to identify gene expression signatures shifting with 
cellular activity changes such as those associated with pathophysiological processes and 
responses to environmental perturbations. We used simulated data to benchmark 
scTenifoldNet’s performance, and then applied scTenifoldNet to several real data sets. In real-
data applications, scTenifoldNet identified highly specific changes in gene regulation in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.02.12.931469doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

response to acute morphine treatment, an antibody anticancer drug, gene knockout, double-
stranded RNA stimulus, and amyloid-beta plaques in various types of mouse and human cells. 
We anticipate that scTenifoldNet can help achieve breakthroughs through constructing and 
comparing scGRNs in poorly characterized biological systems, by deciphering the full cellular 
and molecular complexity of the data. 

Main 
A gene regulatory network (GRN) is a graph depicting the intricate interactions between 
transcription factors (TFs), associated proteins and their target genes, reflecting the 
physiological condition of the cells in question. The analysis of GRNs promotes the 
interpretation of cell states, cell functions, and regulatory mechanisms that underlie the 
dynamics of cell behaviors. Multiple methods have been developed to build GRNs from data of 
gene expression [1-4]. It is important to compare GRNs constructed using data sets from 
different samples because the comparison may reveal regulatory mechanisms leading to 
transcriptomic changes. In particular, the comparison results may help understand what is the 
most significant shift in regulatory mechanisms between samples, as well as how genetic and 
environmental signals are integrated to regulate a cell population’s physiological responses and 
how cell behavior is affected by various perturbations. All of these are key questions in the study 
of the functional participation of given GRNs. Despite the critical importance of comparative 
GRN analysis, relatively few methods have been established to compare GRNs [5]. 

Single-cell RNAseq (scRNAseq) technology has been revolutionizing the biomedical sciences in 
recent years. New research provides an unparalleled degree of precision to analyze 
transcriptional regulation, cell history, and cell interactions with rich knowledge. It transforms 
previous entire tissue-based assays into transcriptomic single-cell measurements and greatly 
enhances our understanding of cell development, homeostasis and disease. Current scRNAseq 
systems (e.g., 10x Genomics) can profile transcriptomes for thousands of cells per experiment. 
This sheer number of measured cells can be leveraged to construct GRNs. Advanced 
computational methods can facilitate such an effort to reach unprecedented resolution and 
accuracy, revealing the network state of given cells [6-8]. Furthermore, comparative analyses 
among GRNs of different samples will be extremely powerful in revealing fundamental changes 
in regulatory networks and unraveling the transcriptional programs that govern the behaviors of 
cells. Since our ability to generate scRNAseq data has outpaced our ability to extract 
information from it, there is a clear need to develop effective computational algorithms and novel 
statistical methods for analyzing and exploiting information embedded within GRNs [9]. 

Constructing single-cell GRNs (scGRNs) using data from scRNAseq and then effectively 
comparing constructed scGRNs present great analytical challenges [9, 10]. A meaningful 
comparison of scGRNs first requires a robust construction of GRN from scRNAseq data. 
Comparing scGRNs built via an unstable solution would cause misleading results and 
inappropriate conclusions. The vast number of different cellular states in a sample, technical 
and biological noise, as well as the sparsity of scRNAseq data, complicate the process of 
scGRN construction. Often, the expression of a gene is governed by stochastic processes and 
also influenced by transcriptional activities of many other genes. Thus, it is difficult to tease out 
subtle signals and infer true connections between genes. Furthermore, a direct comparison 
between two scGRNs is difficult—e.g., comparing each edge of the graph between scGRNs 
would be ill-powered when scGRNs involve thousands of genes. Taken together, the key 
challenge in conducting comparative scGRN analysis is to extract meaningful information from 
noisy and sparse scRNAseq data, since the information is deeply embedded in the differences 
between highly complex scGRNs of two samples. 
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In this paper, we introduce a workflow for constructing and comparing scGRNs using data from 
the scRNAseq of different samples. The workflow, which we call scTenifoldNet, is built upon 
several machine learning algorithms, including principal component regression, low-rank tensor 
approximation, and manifold alignment. Through several examples, we show that scTenifoldNet 
is a sensitive tool to detect specific changes in gene expression signatures and the regulatory 
network rewiring events. scTenifoldNet inputs are a pair of matrices of scRNAseq expression 
from two different samples. For instance, one sample may come from a healthy donor and the 
other from a diseased donor. In scTenifoldNet, the two input expression matrices are 
simultaneously processed through a multistep procedure. The final output is a list of ranked 
genes sorted by their significance, assessed by a specifically designed, differential regulation 
(DR) test. The ranked gene list can be used to perform functional enrichment analysis to detect 
the enriched molecular functions and involved biological processes. The constructed scGRN 
can also be used for the identification of functionally significant modules, i.e., subsets of tightly 
regulated genes. 

scTenifoldNet is an innovative method in terms of its scGRN comparison function. We are not 
aware of any prior work using a similar design to achieve the same analytical goal. 
scTenifoldNet overcomes several technological challenges in implementing an effective and 
efficient scGRN comparison method. Here, we first benchmarked and demonstrated the utility of 
scTenifoldNet across synthetic data sets and then applied scTenifoldNet to real data sets. Our 
real data analyses showed scTenifoldNet’s power in identifying significant genes and network 
modules whose regulatory patterns are shifting greatly between samples. Some of these 
findings have not been reported in the respective original studies, in which the data sets were 
generated. 

Results 
The scTenifoldNet architecture 
To enable comparative scGRN analysis in a robust and scalable manner, we base our method 
on a series of machine learning methods. A key challenge of our comparative analysis is to 
extract meaningful differences in regulatory relationships between two samples from noisy and 
sparse data. Specifically, we seek to contrast scGRNs constructed from different scRNAseq 
expression matrices. Fig. 1 shows the main components of scTenifoldNet architecture. The 
whole workflow contains five key steps: subsampling cells, constructing multilayer scGRNs, 
denoising, manifold alignment, and differential regulation (DR) test. In order to produce 
biologically meaningful results, we made dedicated design decisions for the task in each of 
these steps. Next, we briefly describe the numerical methods implemented in scTenifoldNet. 
More technical details are presented in Methods. 
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Fig. 1. Overview of the scTenifoldNet workflow. scTenifoldNet is a machine learning framework that 
uses a comparative network approach with scRNAseq data to identify regulatory changes between 
samples. scTenifoldNet is composed of five major steps. (A) Cell subsampling. scTenifoldNet starts with 
subsampling cells in the scRNAseq expression matrices. When two samples are analyzed, each of the 
two samples is subsampled either randomly or following a pseudotime trajectory of cells. The 
subsampling is repeated multiple times to create a series of subsampled cell populations, which are 
subject to network construction and form a multilayer scGRN. (B) Network construction. Principal 
component (PC) regression is used for scGRN construction; each scGRN is represented as a weighted 
adjacency matrix. (C) Tensor denoising. Two samples produce two multilayer GRNs, form two three-order 
tensors, which are subsequently decomposed into multiple components. Top components of tensor 
decomposition are then used to reconstruct two denoised multilayer scGRNs. Then, two denoised 
multilayer scGRNs are collapsed by taking average weight across layers, respectively. (D) Manifold 
alignment. The two single-layer average scGRNs are then aligned with respect to common genes using a 
nonlinear manifold alignment algorithm. Each gene is projected to a low-rank manifold space as two data 
points, one from each sample. (E) Differential regulation test. The distance between the two data points is 
the relative difference of the gene in its regulatory relationships in the two scGRNs. Ranked genes are 
subject to tests for their significance in differential regulation between scGRNs. 

Numerical methods 
The numerical methods used to construct and compare scGRNs involve the following five steps: 

Step 1. Pre-processing data and subsampling cells: The input data are two scRNAseq 
expression data matrices, X and Y, containing expression values for n genes in m1 and m2 cells 
from two different samples, respectively. Next, m cells in X and Y are randomly sampled to form �� and ��. This subsampling process is repeated t times to create two collections of subsampled 
cells ���

��  and���
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� � 1, 
2, … , 

, we construct a GRN using principal component regression and represent it with 
an n×n weighted adjacency matrix ��

�. Diagonal values of each adjacency matrix are set to 
zeros, and other values are normalized by dividing by their maximal absolute value. Each 
normalized adjacency matrix is then filtered by retaining only the top 5% of edges ranked using 
the absolute egde weight, resulting in a sparse adjacency matrix. 

Step 3. Denoising: Tensor decomposition [11] is used to denoise the adjacency matrices 
obtained in Step 2. The collection of 
 scGRNs for each sample, ���

�� or ���
��, is processed 

separately as a third-order tensor, denoted as �� or ��, each containing n×n×t elements. The 
CANDECOMP/PARAFAC (CP) decomposition is applied to decompose �� 
and �� 
into 
components. Next, �� 
and �� are reconstructed using top r components to obtain denoised 
tensors: ��

� 
and ��
� 
. Denoised ���

�� and ���
�� in ��

� 
and ��
� 
 are collapsed by taking the 

average of edge weights for each edge to form two denoised, averaged matrices, ��
� and ��

� , 
which are subsequently normalized as in step 2 and then symmetrized. 

Step 4. Aligning genes onto a manifold: The weighted adjacency matrices ��
� and ��

� are 
regarded as two similarity matrices for a nonlinear manifold alignment procedure. The alignment 
is done by solving an eigenvalue problem with a Laplacian matrix derived from the joint matrices: � � ���

� , 
��/2; ���/2, 
��
��, where � is a tuning parameter and � is the identity matrix that 

reflects the binary correspondence between genes in the samples, X and Y. As the result of 
manifold alignment, all genes in the samples, X and Y, are projected on a shared, low 
dimensional manifold with a dimension km << n. The projections of each gene � from the 
samples, X and Y, are two km-dimensional vectors, ��� and ���. 

Step 5. Ranking genes: For each gene �, let �� be the Euclidean distance between the gene’s 
two projections ��� and ��� on the shared manifold: one is from the sample X, and the other is 
from the sample Y. Genes are sorted according to this distance. The greater the distance, the 
greater the regulatory shift. 

In the following sections, we explain the rationale behind each step, the selection of machine 
learning methods, and implementation details. 

Subsampling of cells 
The rationale for randomly subsampling cells is close to that of ensemble learning, a technique 
where multi-model decisions are merged to improve overall performance. Instead of attempting 
to build a single scGRN, scTenifoldNet focuses on subsampling cells from a given scRNAseq 
expression matrix, building a number of ‘low-precision’ scGRNs from subsampled data sets, and 
then combining these scGRNs to obtain a high-precision scGRN. As mentioned above, current 
scRNAseq technology can produce the transcriptome profiles of thousands of cells from each 
sample. It is fundamentally difficult to process high-dimensionality and large-scale scRNAseq 
data, especially given that there can be substantial variation between cells even in a group of 
cells of the same type. For example, the presence of outlying cells, i.e., cells showing profiles of 
expression deviate from those of most other cells, can influence the construction of scGRNs. 
Therefore, subsampling offers promise as a technique for handling the noise in the input data 
sets. When the number of cells is small, the input data matrix may be resampled with 
replacement [12]. 

Constructing scGRNs using principal component regression 
Although many GRN construction methods have been developed [1, 2, 4], it is unclear which 
one is suitable for constructing a large number of scGRNs from the subsampled data [9]. When 
dealing with multiple sets of input data, both the accuracy and computational efficiency of these 
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algorithms have to be considered. We opted to use the PCNet method [5], which is based on 
principal component regression [13], after conducting a thorough review of the current methods. 
The principal component regression method extracts the first few (e.g., k = 3) principal 
components and then uses these components as the predictors in a linear regression model 
fitted using ordinary least squares. The values of the transformed coefficients of genes are 
treated as the strength and regulatory effect between genes to generate the network. The main 
use of principal component regression in scTenifoldNet lies in its ability to surpass the 
multicollinearity problem that arises when two or more explanatory variables are linearly 
correlated. 

Denoising via low-rank tensor approximation 
Removing the noise from constructed scGRNs is an important step of scTenifoldNet. Here the 
term noise is used in a broad sense to refer to any outlier or interference that is not the quantity 
of interest, i.e., the true regulatory relationship between genes. For each sample, the multilayer 
scGRN constructed from multiple subsampled data sets is regarded as a rank-three tensor. To 
reduce the noise in the multilayer scGRN, we decompose the tensor and reconstruct the 
multilayer scGRN using leading components. The idea is similar to that of denoising using 
truncated singular value decomposition (SVD). After cutting a larger portion of the noise spread 
over the lowest singular value components, the reconstructed data matrix based on the 
truncated SVD would, therefore, represent the original data with reduced noise. Indeed, tensor 
decomposition has been used in video data analyses for denoising and information extracting 
purposes [14]. It has also been used to impute missing data [15]. We use the 
CANDECOMP/PARAFAC (CP) algorithm [16] to factorize the two multilayer scGRNs separately 
and regenerate all adjacency matrices using leading components. The number of components 
used for reconstruction can be specified and is set to 3 by default. In the real data applications, 
we find the tensor GRN regeneration serves for two purposes: denoising and enhancing, i.e., 
making main signals stronger and making less important signals weaker. 

Manifold alignment of two scGRNs 
For a gene, its position in one of the two scGRNs (i.e., denoised adjacency matrices from the 
two samples) is determined by its regulatory relationships with all other genes. Here we regard 
each gene as a data point in a high-dimensional space where components of the data point are 
the features, i.e., weights between the gene and all other genes in the scGRN adjacency matrix. 
To compare the same gene’s positions in the two scGRNs, we first align the two scGRNs. To do 
so, we take a popular and effective approach for processing high-dimensional data, intuitively 
modeling the intrinsic geometry of the data as being sampled from a low-dimensional 
manifold—i.e., commonly referred to as the manifold assumption [17]. This assumption 
essentially means that local regions in the data can be mapped to low-dimensional coordinates, 
while the nonlinearity and high dimensionality in the data come from the curvature of the 
manifold. Manifold alignment produces projections between sets of data, given that the original 
data sets lie on a common manifold [18-21]. Manifold alignment matches the local and nonlinear 
structures among the data points from multiple sources and projects them to the same low-
dimensional space while maintaining their local manifold structure of each source. The ability to 
flexibly learn and accurately represent the structure in the data with manifold alignment has 
been demonstrated in applications in automatic machine translation, face recognition, and so on 
[22, 23]. Here, we use manifold alignment to match genes in the two denoised scGRNs, one 
from each sample, to identify cross-network linkages. Consequently, the information of genes 
stored in two scGRNs is aligned, meaning points close together in the low-dimensional space 
are more similar than points that are farther apart. 
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Ranking genes and reporting DR genes 
To identify genes whose regulatory status differs between the two samples, we calculate the 
distance between projected data points in the manifold alignment subspace. For each gene, if 
the gene appears in scGRNs of both samples, there are two data points for the same genes, 
one from each sample. We compute the Euclidean distance between the two data points of the 
gene and used the distance to measure the dissimilarity in the gene’s regulatory status in two 
scGRNs [24]. We do this for all genes shared between two samples and then rank genes by the 
distance. The larger the distance, the more different the gene in two samples. In this way, we 
obtain a list of ranked genes. These ranked genes are subject to functional annotation, such as 
using the pre-ranked Gene Set Enrichment Analysis (GSEA) [25] to assess the enriched 
functions associated with the top genes. To avoid choosing the number of selected genes 
arbitrarily, we compute p-values for genes using Chi-square tests, adjust p-values with a 
multiple testing correction, and select significant genes using the 10% FDR cutoff.  

Benchmarking the performance of scTenifoldNet using simulated data 
Precision and recall of the network construction method adopted in scTenifoldNet 
To show the effectiveness of principal component regression, we simulated scRNAseq data 
using a parametric method with a predefined scGRN model (see Methods for details). With 
these simulated data whose generating parameters are known, we compared the scGRNs 
constructed using principal component regression against the predefined scGRN (i.e., ground 
truth) to estimate the accuracy of principal component regression. Similarly, we tested the 
accuracy of other methods, including the Spearman correlation coefficient (SCC), mutual 
information (MI) [1], and GENIE3 (a random forest-based method [2, 7]). SCC and MI methods 
are computationally efficient, whereas GENIE3 is not, but GENIE3 is the top-performing method 
for network inference in the DREAM challenges [3]. For each method, their performances in 
recovering gene regulatory relationships were compared. Using the ground-truth interactions 
between genes generated according to pre-setting parameters, we found that the principal 
component regression method tended to produce more specific (better accuracy) and more 
sensitive (better recall) scGRNs than the other three methods across a wide range of settings of 
cell numbers in the input scRNAseq expression matrix (Fig. 2A). Principal component 
regression is also much faster than GENIE3. For instance, on a typical workstation, our 
implementation of principal component regression can construct a GRN for all-by-all 15,000 
genes in less than 50 minutes, whereas GENIE3 requires more than 24 hours (data is available 
in Supplementary Table S1). This simulation study suggests that the principal component 
regression method is preferred to all other methods tested. 

Effect of denoising with tensor decomposition 
To show the effect of tensor denoising, we simulated scRNAseq data (see Methods) and 
processed the data using the first two steps of scTenifoldNet, i.e., cell subsampling followed by 
the construction of scGRNs using principal component regression. We subsampled 500 cells 
each time and generated ten scGRNs. The ten scGRNs are treated as a multilayer network or a 
tensor to be denoised. For each scGRN, we kept the top 20% of the links. The presence and 
absence of links in each scGRN were compared with those in the simulated, ground-truth 
scGRN to estimate the accuracy of recovery and the rate of recall. Fig. 2B contains the 
heatmaps of adjacency matrices of the ten scGRNs before and after denoising (small panels). 
We also show two collapsed scGRNs (Fig. 2B, large panels), which were generated by 
averaging link weights across the ten scGRNs before and after denoising. These results 
illustrate the ability of scTenifoldNet to denoise multilayer scGRNs. For instance, tensor 
denoising improves the recall rate of regulatory relationships between genes by 25%. This 
simulation study suggests that tensor denoising could be useful for removing impacts of random 
dropout and other noise issues affecting the scGRN construction using scRNAseq data. 
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Detecting power illustrated with a simulated data set 
We used simulated data to show the capability of scTenifoldNet in detecting differentially 
regulated (DR) genes. We first used the negative binomial distribution to generate a sparse 
synthetic scRNAseq data set (an expression matrix including 67% zeros in its values). This toy 
data set includes 2,000 cells and 100 genes. We called it sample 1. We then duplicated the 
expression matrix of sample 1 to make sample 2. We modified the expression matrix of sample 
2 by swapping expression values of three randomly selected genes with those of another three 
randomly selected genes. Thus, the differences between samples 1 and 2 are restricted in 
these six genes. Using scTenifoldNet with the default parameter setting, we compared the 
originally generated expression matrix (sample 1) against itself (sample 1 vs. sample 1) and 
also against the manually perturbed version (sample 1 vs. sample 2). As expected, when 
comparing the original matrix against itself, none of the genes was identified to be significant. 
However, when samples 1 and 2 were compared, the six genes whose expression values were 
swapped were identified as significant DR genes (Fig. 2C, FDR < 0.05). These results are 
expected and support the sensitivity of scTenifoldNet in identifying subtly shifted gene 
expression programs. 

 

Fig. 2. Benchmarking the performance of scTenifoldNet using simulated data. (A) The accuracy and 
recall of scGRN construction using different methods: principal component regression, SCC, MI, and 
GENIE3, as functions of the number of cells used in the analysis. Error bar is the standard deviation of 
the computed values after 10 bootstrapped evaluations. Accuracy is defined as = 
(TP+TN)/(TP+TN+FP+FN), and recall = TP/(TP+FN), where T, P, F, and N stands for true, positive, false 
and negative, respectively. PCR – principal component regression; SCC – Spearman correlation 
coefficient; MI – mutual information; GENIE3 – a random forest-based network construction method. (B) 
Visualization of the effect of tensor denoising on accuracy and recall of multilayer scGRNs. Each 
subpanel is a heatmap of a 100×100 adjacency matrix constructed using principal component regression 
over the counts of 500 randomly subsampled cells. Grayscale indicates the relative strength of regulatory 
relationships between genes. Top part includes networks before tensor denoising (adjacency matrices in 
heatmap with red box); bottom part includes corresponding networks after tensor denoising (adjacency 
matrices in heatmap with green box). In each part, adjacency matrices of networks of 10 subsamples (10 
small heatmaps) and their average adjacency matrix (one large heatmap) are shown. (C) Evaluation of 
the sensitivity of scTenifoldNet in identifying punctual changes in the regulatory profiles. Top panel: 
evaluation of the original data matrix against itself; bottom panel: evaluation of the original matrix against 
the perturbed matrix. Significant genes identified using the differential regulation test (FDR < 0.05, the B–
H correction) are indicated in red. All significant genes are perturbed in simulation and thus are expected 
to be identified. 

A B C
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Real data analyses 
Practical considerations of real data analysis using scTenifoldNet 
First of all, we address several practical questions regarding the application of scTenifoldNet to 
real scRNAseq data. (1) What are the input expression matrices to be compared? The input to 
scTenifoldNet is two matrices of gene expression values (e.g., UMI counts) as measured in two 
samples to be compared. In each matrix, columns represent cells, and rows represent genes. 
We assume that each input matrix contains a sizable number of cells. For example, a typical 
input matrix may contain UMI counts for 5,000 genes and 2,000 cells. Whether a gene is 
expressed among cells can be determined by examining if this gene has a nonzero UMI count 
in more than 5% of cells. (2) How does scTenifoldNet handle cell heterogeneity? Heterogeneity 
in expression among cells is inevitable. scTenifoldNet is designed to tolerate a certain level of 
such heterogeneity as long as cells are of the same type. scTenifoldNet is not a data 
preparation tool. It also does not perform any clustering analysis for cells; it does not assign 
cells into cell types. We assume all cells in both input matrices are of the same type. Otherwise, 
the results would be difficult to interpret. (3) What if the number of cells is too small? We expect 
that each input matrix contains a sizable number of cells (e.g., n>2,000). If this is the case, the 
jackknife method (subsampling without replacement) is adapted by default: m=500 cells are 
subsampled each time. Alternatively, an m-out-of-n bootstrap method (subsampling with 
replacement) can be used [12]. When the number of cells is small (e.g., n=500), a full bootstrap 
method can be used, i.e., resampling 500 cells each time out of 500 given cells with 
replacement [12, 26]. (4) What is the relationship between scTenifoldNet analysis and DE 
analysis? scTenifoldNet analysis should be used as a complementary analysis method in 
addition to DE analysis, rather than replacing DE analysis. DE analysis is still the most widely 
used method for understanding the difference between two scRNAseq samples. scTenifoldNet 
is designed based on a different principle from that is underlying DE analysis. Thus, the results 
of scTenifoldNet analysis and DE analysis are not supposed to be compared side by side. It is 
not uncommon that scTenifoldNet and DE analyses report same genes to be significant. This is 
because the change of the regulatory pattern of a gene in scGRNs may be associated with the 
change of the gene’s expression level. 

Analysis of transcriptional responses of neurons to acute morphine treatment 
To illustrate the use of scTenifoldNet, we first applied scTenifoldNet to a scRNAseq data set 
from [27]. This is a study on transcriptional responses of mouse neural cells to morphine (Fig. 
3A). In the study [27], Avey and colleagues performed scRNAseq experiments with the nucleus 
accumbens (NAc) of mice after four hours of the morphine treatment, using mice treated with 
saline as mock controls. Single-cell expression data was obtained for 11,171 and 12,105 cells 
from four morphine- and four mock-treated mice, respectively [27]. The measured cells were 
clustered to identify neurons (7,972 and 8,912 from morphine- and mock-treated samples, 
respectively); the identified neurons were then sub-grouped into 11 clusters, including major 
clusters of D1 and D2 medium spiny neurons (MSNs), comprising ~95% of the neurons in the 
NAc. Using differential expression (DE) analysis implemented in SCDE [28], Avey et al. 
identified several hundred genes that are differentially expressed between morphine- and mock-
treated samples (Supplementary Table S2 of [27]). Although this result is intriguing, we argue 
that it seems that when so many genes are identified as ‘significant players,’ it is difficult to 
interpret the result and to pinpoint the specific regulatory mechanism underlying the true 
response. Indeed, instead of performing functional enrichment analysis with identified DE genes, 
the subsequent analyses in the study of [27] were re-focused on a tiny portion of D1 MSNs, 
called activated MSNs. It is only when activated MSNs were compared to all other D1 MSNs 
that 256 DE genes were identified (SCDE, P < 0.001, Supplementary Table S2 of [27]). These 
genes were then found to be associated with several terms related to opioid addiction, including 
morphine dependence and opioid-related disorders (Supplementary Table S3 of [27]). In the 
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morphine-treated sample, less than 4.5% of D1 MSNs are activated MSNs; in the mock-treated 
sample, less than 2% (see Fig. 2B of [27]). In view of these, we point out here that while 
relevant signals can be detected using traditional DE analysis, the analytical method involves 
extensive human intervention—i.e., an iterative clustering procedure is needed to identify a final 
population of cells (in this case, activated MSNs). The cell population size is small, making the 
analysis result potentially variable. 

We were motivated by these considerations and set out to re-analyze the data. We first 
reproduce the results of the DE analysis. We found that the mock- and morphine-treated 
neurons indeed exhibited a striking similarity. For example, mock- and morphine-treated 
neurons are indistinguishable in a tSNE plot (Fig. 3B); expression levels of several known 
morphine responsive genes, e.g., Adcy5, Ppp1r1b, and Ppp3ca, show no difference (Fig. 3C). 
Thus, a direct comparison of gene expression between neurons using the DE method may have 
limited power to identify relevant genes involved in the morphine response. 

Next, using scTenifoldNet, we identified 56 genes showing significant differences in their 
transcriptional regulation between mock- and morphine-treated neurons, indicated by greater 
distances between genes’ positions in the aligned manifold of two scGRNs (FDR < 0.05, Chi-
square test with B-H multiple test adjustment, see Methods for details). These genes are: 
Ppp3ca, Hpca, Pcp4l1, Rgs7bp, Akap5, Slc24a2, Atp2a2, Atp2b1, Ppp1r1b, Foxp1, Spock3, 
Arpp19, Gpr88, Rgs9, Adcy5, Gnal, Ubb, Scn4b, Actb, Calm2, Penk, mt-Rnr1, Arpp21, 
Phactr1, Cck, Eif1, mt-Nd1, mt-Cytb, Spred1, mt-Nd2, mt-Co1, Hspa4l, Nrn1, Scn8a, Chn1, 
Diras2, Cpe, Ramp1, B3galt2, Chst15, Grin2b, Lamp1, Rasd2, Gabrg1, Chst1, 
3110035E14Rik, Nfia, Samd4, Sacs, Nrxn1, D3Bwg0562e, Akap9, Rtn1, Ahsa1, 
D430041D05Rik, and Syn2 (genes sorted according to the significance level, see also Fig. 3D). 
The pre-ranked GSEA analysis [25] showed that these genes are enriched for opioid signaling, 
signaling by G protein-coupled receptors, reduction of cytosolic Calcium levels, and morphine 
addiction (Fig. 3D inserts). It is known that morphine binds to the opioid receptors on the 
neuronal membrane. The signal is then transmitted through the G-protein signaling system, 
inhibiting the adenylyl cyclase in the cytoplasm and decreasing the levels of cAMP and the 
calcium-channel conduction [29-31]. Furthermore, 21 (highlighted in bold) of the 56 identified 
DR genes were found to be targets of RARB (38%, adjusted P-value < 0.01, enrichment test by 
Enrichr [32, 33] based on results of ChIP-seq studies [34]). RARB encodes for a plastic TF 
playing a role in synaptic transmission in dopaminergic neurons and the adenylate cyclase-
activating dopamine receptor signaling pathway [35, 36]. Thus, these enriched functions are 
relevant to the morphine stimulus, which is known to induce the disinhibition of dopaminergic 
neurons by GABA transmission, enhance dopamine release, and cause addiction [37, 38]. 
Using the constructed scGRN, we were able to trace DR genes back to their topological 
positions in the network and examine their interacting genes. Fig. 3E shows such a network 
module, including multiple DR genes. 

In this case, scTenifoldNet is used as an unsupervised tool, and no human interference is 
needed to operate. This feature is critical when referring to this specific set of data because 
where the signal is limited to rare types of cells, there is a chance that a less sensitive approach 
would miss the signal, especially when human interference is not provided. It is ideal to have an 
unsupervised tool that is sensitive to signals, and robust to variation between cells at the same 
time. We note that scTenifoldNet is a different tool to conventional DE analysis tool—
scTenifoldNet reported less DR genes in terms of the number of genes, compared with DE 
genes identified in the original study [27]. Among the 56 DR genes that scTenifoldNet detected, 
11 (Actb, Adcy5, Akap9, D430041D05Rik, Eif1, Pcp4l1, Penk, Phactr1, Rasd2, Scn4b and Ubb) 
are among the 256 DE genes reported in [27](see Supplementary Table S2 of [27]). The 
number of overlap genes is not significantly higher than expected by random according to a 
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hypergeometric test (P = 0.29) with a total of 1,432 genes (from Supplementary Table S2 of 
[27]) included in the test. Fig. 3C shows expression levels of three representative genes: Pde1b, 
Adcy5 and Gabrg1, in neurons from mock- and morphine-treated mice. All three genes are 
known to be involved in morphine response [39-41], but only when DE and DR tests are applied 
jointly, all three genes are identified: Pde1b is a DE but not a DR gene, Adcy5 a DR and DE 
gene, and Gabrg1 a DR but not DE gene. 

 

Fig. 3. Analysis of transcriptional responses to morphine in mouse cortical neurons. (A) Illustration of 
experimental design and data collection of the morphine response study [27]. (B) A t-SNE plot of 7,972 
and 8,912 neurons from morphine-treated (blue) and mock-treated (red) mice, respectively. (C) Violin 
plots show the log-normalized expression levels of representative DR and/or DE genes in four (M) 
morphine- and four (C) mock-treated mice. (D) Quantile-quantile (Q-Q) plot for observed and expected p-
values of the 8,138 genes tested. Genes (n=65) with FDR < 0.1 are shown in red; genes (n=56) with FDR 
< 0.05 are labeled with asterisk. Inset shows results of the GSEA analysis for genes ranked by their 
distances in manifold aligned scGRNs from morphine- and mock-treated mice. (E) The module enriched 
with DR genes and the corresponding subnetworks in two scGRNs. For illustrative purposes, the module 
is centered on the DR gene, Ppp3ca. Significant DR genes (FDR<0.05) in the module are highlighted in 
green. Edges are color-coded: red indicates a positive association, and blue indicates negative. Weak 
edges are filtered out by thresholding for clear visualization, and the background shadow indicates the 
shared portion of the module in the two scGRNs. 

Analysis of transcriptional responses of a carcinoma cell line to cetuximab 
To further illustrate the power of scTenifoldNet in identifying genes associated with specific 
perturbations, we applied scTenifoldNet to another published scRNAseq data [42]. In this study, 
Kagohara et al. [42] use scRNAseq to study mechanisms that lead the development of 
resistance to cetuximab in head and neck squamous cell carcinoma (HNSCC)(Fig. 4A). 
Cetuximab is a human-murine chimeric monoclonal antibody used for the treatment of 
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metastatic colorectal cancer, metastatic non-small cell lung cancer, and head and neck cancer. 
In conjunction with the radiotherapy, cetuximab improves the objective response rate in first-line 
treatment of recurrent or metastatic squamous cell carcinoma of the head and neck [43]. 
Cetuximab binds to the extracellular domain of the epidermal growth factor receptor (EGFR) on 
both normal and tumor cells [44]. EGFR is over-expressed in many cancers. Competitive 
binding of cetuximab to EGFR blocks the phosphorylation and activation of receptor-associated 
kinases and their downstream targets, e.g., MAPK, PI3K/Akt, and Jak/Stat pathways [45], 
thereby reducing their effects on cell growth and metastatic spread. It is known that blocking 
EGFR activation also affects cellular processes such as apoptosis, cell growth, and vascular 
endothelial growth factor (VEGF) production [46]. Cetuximab is also known to cause 
degradation of the antibody-receptor complex and the downregulation of EGFR1 expression 
[47]. 

Kagohara et al. [42] sequenced the transcriptome profile of cells before and after Cetuximab 
treatment for 120 hours in three different HNSCC cell lines: SCC1, SCC6, SCC25. They found 
that SCC6 is the most sensitive to the cetuximab treatment, reporting 8,389 genes as 
differentially expressed (including 4,166 upregulated and 4,223 downregulated ones with P < 
0.05; Supplementary Table S4 of [42]). Such a large number of differentially expressed genes 
makes it difficult to identify genes directly associated with the molecular mechanism through 
which cetuximab acts. 

We extracted scRNAseq data for 4,507 and 5,217 SCC6 cells treated with and without 
cetuximab, respectively (Fig. 4B). Expression levels of three genes, DuSP4, TIGA3 and LIF, in 
cells of two treatment groups, are shown in Fig. 4C. All three genes are in the EGFR pathway. 
We used scTenifoldNet to re-analyze the data and identified 125 differentially regulated genes 
(FDR<0.05, Fig. 4D). These genes are: EEF1A1, HMGA1, EEF1D, ACTG1, PHLDA1, HBEGF, 
EEF1B2, COTL1, TNFRSF12A, DDIT3, MYC, FOSL1, PAWR, YBX1, CYTOR, EIF4A2, 
PTP4A1, IER2, MIR4435-2HG, AKAP12, SSFA2, ERRFI1, EEF2, ITGA3, SLC38A2, LUC7L3, 
AHCY, GAPDH, PROSER2, RICTOR, MARCKSL1, DUSP4, MRPL51, HDGF, EREG, PIM1, 
RND3, PIM3, GPRC5A, UQCRB, MAFF, FERMT2, SRSF5, SH2D3A, NDUFS5, SLC25A5, 
COX6C, AREG, ASAP1, MIF, C19orf33, CDV3, DDX21, RBX1, AVPI1, POLR2F, KLF3, 
TMSB4X, FTL, TPM4, NME4, SNRPE, ARHGAP29, PPP1R15A, AP1S1, ATP5PF, HSP90AB1, 
POLR1D, DYNLL1, CNPY2, BACH1, TXNIP, ELL2, VMP1, VDAC1, H3F3A, IMP3, VAMP8, 
SLC25A6, SNRNP35, METRN, DYNLT1, HSPA5, HNRNPA1, NDUFB3, S100A11, ATP5MF, 
NDUFC2, STK17A, TXN, COASY, TAF1D, NDUFA13, P4HB, PPM1G, HSPA1A, HERPUD1, 
ATP5MD, PFDN4, SOX4, TRAPPC1, TRAF4, F3, WDR83OS, HSPE1, CCNB1IP1, MINOS1, 
OTUD6B-AS1, ATP5IF1, CTNNAL1, CLDN1, PDCD6, FOSL2, SEC61B, ABL2, CITED4, 
SEM1, ATP5MPL, NEAT1, CFL1, NDUFS6, CLDN4, SMIM13, LIF, and DKK1. 

This gene list is enriched with genes (39/125, names shown in bold) that are under the 
regulation of TFs: SMAD2 and SMAD3. The pre-ranked GSEA analysis [25] shows that these 
DR genes are associated with EGFR1 pathway (DUSP4, ITGA3, LIF, DDX21, AREG, EREG, 
CLDN4, MYC, COTL1, TXNIP, LUC7L3, PHLDA1, HBEGF), regulation of apoptosis 
(HSP90AB1, HSPA5, MIF, YBX1, EEF2, DYNLL1, COX6C, HSPE1, MYC, DDIT3, PIM1, 
VDAC1, SEC61B, SLC25A5, PFDN4, HNRNPA1, GAPDH, IER2, HSPA1A, EEF1A1, DUSP4, 
MAFF, CITED4, CLDN1, PHLDA1, AREG, RBX1), cell cycle checkpoints, and G1 cell cycle 
arrest (Fig. 4D, inserts; due to limited space, GSEA result of regulation of apoptosis is not 
shown). Once again, scTenifoldNet identified a much smaller set of significant genes compared 
to those reported in the original paper [42]: 125 DR genes vs. 8,389 DE genes. Nevertheless, 
functional analyses show that scTenifoldNet identified a more specific gene set relevant to 
cetuximab’s mechanism of action. Further scrutinization of enriched molecular functions of 
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these DR genes will help to identify more regulatory targets induced by cetuximab in HNSCC 
cells. 

 

Fig. 4. Analysis of transcriptional responses of a carcinoma cell line to cetuximab. (A) Illustration of 
experimental design, including sample groups and the known mechanism of drug action, in the study of 
cetuximab resistance of HNSCC cell lines [42]. (B) t-SNE plot of 5,217 and 4,507 HNSCC-SCC6 cells 
treated with cetuximab (red) and PBS (blue), respectively. (C) Violin plots show the log-normalized 
expression levels of selected DR genes in SCC6 cells with and without cetuximab treatment. (D) Q-Q plot 
for observed and expected p-values of the 7,503 genes tested. Genes (n = 25) with FDR < 0.05 are 
labeled with asterisk. Inset shows the results of the GSEA analysis for genes ranked by their distances in 
manifold aligned scGRNs from young and old mice. (E) A representative module with DR genes and 
corresponding subnetworks in two scGRNs. The module is enriched with DR genes and the 
corresponding subnetworks in two scGRNs. For illustrative purposes, the module is centered on the DR 
gene, H2AFZ. The colors, edges, and marks are presented as in Fig. 3E. 

Analysis of transcriptional responses of alveolar type 1 cells to Nkx2-1 gene knockout 
In the third example, we applied scTenifoldNet to another published scRNAseq data from type 1 
alveolar (AT1) cells [48]. AT1 cells are responsible for gas exchange, the physiological function 
of the lung [49]. Little et al., [48] found that NK homeobox 2-1 (Nkx2-1) is expressed in AT1 cells 
and thought Nkx2-1 might be essential to the development and maintenance of AT1 cells. To 
determine the function of NKX2-1 during the development of AT1 cells, they performed 
scRNAseq experiment to obtain the transcriptome profile of cells from lungs of Nkx2-1CKO/CKO; 
Aqp5Cre/+ mutant mice (i.e., the knockout [KO] mice) and littermate controls (i.e., the wild-type 
[WT] mice). They used early infant mice (postnatal day 10, P10) because P10 represents an 
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intermediate time point when individual AT1 cells in the mutant lung are expected to collectively 
feature the full range of transcriptomic phenotypes. They reported 3,622 DE genes (2,105 
upregulated and 1,517 downregulated, Supplementary Dataset S1 of [48]) between the KO 
and WT mice. Their analyses suggest that, without Nkx2-1, developing AT1 cells lose their 
molecular markers, morphology, and cellular quiescence, leading to aberrant expression of 
gastrointestinal (GI) genes, alveolar simplification and lethality (Fig. 5A). 

To evaluate the power of scTenifoldNet in identifying regulatory changes caused by gene KO, 
we re-analyzed the transcriptional profiles of 2,397 mutant AT1 cells from the Nkx2-1CKO/CKO; 
Aqp5Cre/+ mice and 638 AT1 cells from the WT mice (Fig. 5B). Expression levels of Cd24a, Fau 
and Eef1a1 in AT1 cells of KO and WT mice are shown in Fig. 5C. Cd24a is a marker gene for 
AT1 cells; Fau and Eef1a1 are GI genes, known to be highly expressed in the GI tissues. Using 
scTenifoldNet, we identified 29 genes exhibiting significant difference in their regulation between 
the two samples: KO vs. WT (FDR < 0.05; Cd24a, Clu, Muc1, Stard10, Glul, Fxyd3, Gsto1, 
Eef1a1, Bag1, Atp1b1, Txnip, Csrp2, Tspan1, Nr2f2, Elf3, Sepp1, Pabpc1, Lurap1l, Gnb2l1, 
Eef2, Smim6, Cox7a2l, Tpt1, Fau, Eef1b2, Eif3f, Atpif1, 0610040J01Rik, Krt19)(Fig. 5D). This 
gene list is enriched with genes under regulation of TF, Sox2 (FDR < 0.05; labeled in bold) [50]. 
The gene list is also enriched with genes highly expressed in the intestine (FDR < 0.05; Gsto1, 
Stard10, Atpif1, Atp1b1, Eef2, Clu, Gnb2l1, Eef1b2, Eef1a1, Muc1, Cox7a2l, Krt19, Elf3, Fxyd3, 
Bag1, Txnip, Pabpc1, Fau, Eif3f, Glul, Tspan1, Tpt1) and the gut (FDR < 0.05; Gsto1, Stard10, 
Atpif1, Nr2f2, Atp1b1, Eef2, Clu, Gnb2l1, Eef1b2, Eef1a1, Muc1, Cox7a2l, Krt19, Csrp2, Lurap1l, 
Fxyd3, Pabpc1, Fau, Eif3f, Glul, Tspan1, Tpt1), which is in agreement with the reported by the 
authors of the data set [48]. Using pre-ranked GSEA analysis [25], we were able to detect the 
effect of Nkx2-1 KO on the cellular identity of AT1 cells, shown by the significant enrichment of 
gastrointestinal marker genes (Ager, Col4a4, Col4a3, Aqp5, Emp2, Crlf1, Icam1, Egfl6, Vegfa, 
Gprc5a, Pdpn, Cldn18, Scnn1g, Akap5, Hopx, Scnn1b, Scnn1a, Sec14l3, Sema3e, Krt7, 
Gramd2, Clic5, Mmp11, Ctgf, Rtkn2, Pxdc1, Sema3b, Fstl3) [51] (Fig. 5D, inserts). 
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Fig. 5. Analysis of transcriptional responses of alveolar type 1 cells to Nkx2-1 gene knockout. (A) 
Illustration of experimental design and data collection of the KO experiment [48]. (B) t-SNE plot of 2,397 
and 638 AT1 cells from Nkx2-1 KO mice (red) and WT mice (blue). (C) Violin plots show the log-
normalized expression levels of selected DR genes in KO (red) and WT (blue) mice. (D) Q-Q plot for 
observed and expected p-values of tested genes. Genes (n=29) with FDR < 0.05 are labeled with asterisk. 
Inset shows the results of the GSEA analysis for genes ranked by their distances in manifold aligned 
scGRNs. (E) A representative module that contains DR gene, Tpt1, in the WT mice. Most parts of the 
module disappear in the KO mice. The colors, edges and marks are presented as in Fig. 3E. 

Analysis of transcriptional responses of human dermal fibroblasts to the double-
stranded RNA stimulus 
Next, we show the use of scTenifoldNet to a scRNAseq data set from human dermal fibroblasts 
[52]. In the original paper, Hagai et. al. [52] focused on single-cell transcriptional responses 
induced by the stimulus of polyinosinic-polycytidylic acid (polyI:C), a synthetic double-stranded 
RNA (dsRNA)(Fig. 6A). They obtained and compared transcriptomes of 2,553 unstimulated and 
2,130 stimulated cells and identified 875 DE genes (Table S3 of [52]). These DE genes include 
IFNB, TNF, IL1A, and CCL5, encoding antiviral and inflammatory gene products, and are 
enriched for inflammatory response, positive regulation of immune system process, and 
response to cytokine, among many others biological processes and pathways. We found the 
original scRNAseq data has a batch effect between two samples, but the global batch effect can 
be removed using Harmony [53], as shown in the tSNE-plot of cells of two samples (Fig. 6B). 
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Nevertheless, the differences in the expression level between samples can still be detected in 
selected genes with Harmony-processed data (Fig. 6B). 

Applying scTenifoldNet to the processed data, we identified 29 DR genes: SOD2, GBP1, WARS, 
ZC3HAV1, EGR1, BBC3, ISG15, HLA-B, ZFP36, PPP1R15A, JUN, IFI6, JUNB, B2M, APOL2, 
HLA-A, IER3, SAT1, NFKBIA, NNMT, FN1, IFITM3, MEG3, NEAT1, COL1A1, PLEKHA4, 
EEF1A1, SOCS1, and SERF2 (Fig. 6D). Among them, 14 (highlighted in bold) are targets of TF, 
RELA [54] (48%, adjusted p-value < 0.01, enrichment test by Enrichr [32, 33]). These DR genes 
are functionally enriched for interferon signaling (IFITM3, EGR1, SOCS1, IFI6, HLA-B, ISG15, 
HLA-A, GBP1, B2M), immune system (IFITM3, NFKBIA, EGR1, JUN, SOCS1, IFI6, HLA-B, 
ISG15, HLA-A, GBP1, B2M), interleukin-1 regulation of extracellular matrix (NFKBIA, ZFP36, 
JUN, HLA-B, SOD2), and among others.  

Once again, scTenifoldNet reports fewer genes than DE analysis does in the original paper [52]. 
Through comparing DR genes with the DE genes, we found that enriched functions of DE genes 
reflect a final status of cells after cells responding to the dsRNA stimulus, whereas the enriched 
functions of DR genes reflect the activities associated with ongoing regulatory processes and 
immune responses to the stimulus. In this sense, DR genes are valuable for informing of 
mechanisms, through which the dsRNA acts to induce immunological responses [55-57]. For 
example, it is known that the dsRNA inhibits the translation of mRNA to proteins [56] and leads 
the synthesis of interferon, which induces the synthesis of ribosomal units that are able to 
distinguish between cell mRNA and viral RNA [57]. Interferon also promotes cytokine production 
that activates the immune responses and induces inflammation [55]. To further illustrate the 
changes in the regulatory patterns between samples, we plotted the GRN module around the 
EEF1A1 gene. It can be seen that, before and after the dsRNA treatment, the interacting 
partnership of the genes is changed substantially (Fig. 6E). Two scatter plots show the change 
of correlation between TPT1 and ANXA2, as an example (Fig. 6F). The negative correlation 
between the two genes’ expression among cells disappears after the dsRNA treatment and, 
thus, the two genes are not linked in the scGRN constructed using the after-treatment data. 
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Fig. 6. Analysis of transcriptional responses of human dermal fibroblasts to the double-stranded RNA 
stimulus. (A) Illustration of experimental design and tested mechanism of transcriptional responses [52]. 
(B) t-SNE plot of human dermal fibroblasts before (blue) and after (red) dsRNA stimulus. (C) Violin plots 
show the log-normalized expression levels of selected DR genes before (blue) and after (red) stimulus. (D) 
Q-Q plot for observed and expected p-values of tested genes. Genes (n = 29) with FDR < 0.05 are 
labeled with asterisk. Inset shows the results of GSEA analysis for genes ranked by their distances in 
manifold aligned scGRNs. (E) Comparison of a representative module that contains three DR genes in 
the control sample. The colors, edges and marks are presented as in Fig. 3E. (F) Scatter plots show the 
correlation between TPT1 and ANXA2 before (top) and after (bottom) dsRNA stimulus. 

Analysis of transcriptional responses of mouse neurons in Alzheimer’s disease 
Lastly, we applied scTenifoldNet to scRNAseq data of isolated single nuclei from the brains of 
the WT and 5xFAD mice [58]. The 5xFAD strain recapitulates the major features of Alzheimer’s 
disease amyloid pathology. The genotype of these mice contains several Familial Alzheimer's 
Disease (FAD) mutations in APP and PSEN1, causing the overexpression of mutant human 
amyloid-beta (Aβ) precursor protein and human presenilin 1. The 5xFAD model rapidly develops 
amyloid pathology, with high levels of intraneuronal Aβ accumulation beginning around 1.5 
months of age, and extracellular Aβ deposition beginning around two months [59]. 

In the original paper [58], Zhou et al. compared single-cell gene expression between 6-month-
old WT mice with 6-month-old_5xFAD mice. They found that neurons show limited responses to 
Aβ peptides—compared to microglia and oligodendrocytes, neurons show minimal 
transcriptional changes (149 DE genes) between WT and 5xFAD mice. To test whether 
scTenifoldNet can detect genes whose expression is differentially regulated between WT and 
5xFAD mice, we decided to apply our method to this scRNAseq data, exclusively in neurons. 
We downloaded expression data matrices from the GEO database using accession number 
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GSE140511 and extracted expression data of neurons from two samples: GSM4173505 (WT2) 
and GSM4173511 (WT_5XFAD2)(Fig. 7A). 

After re-analyzing the data using scTenifoldNet, we identified 18 DR genes: Zdhhc17, Chl1, 
Abhd17b, Rchy1, Stmn2, Tjp1, Nrbp2, Ly6h, Smarcd1, Rhbdd2, Ndfip1, Mark2, Icam5, Fam92a, 
Rgl1, Gmcl1, Daam1, and Fxr1 (sorted by significance, FDR<0.05, Fig. 7D). For functional 
enrichment analysis, we relaxed the significant-gene cutoff to include 57 additional genes with 
FDR>=0.05 but nominal P-value<0.05. These additional genes include: Apoe and Bin1. Bin1 
encodes the bridging integrator 1, also known as amphiphysin 2, is the second most important 
risk locus for late onset Alzheimer’s disease, after apolipoprotein E (Apoe) [60, 61]. The two 
genes, Apoe and Bin1, rank 25th and 61th in the list of a total of 75 genes (18 genes with 
FDR<0.05 followed by 57 genes with nominal P-value<0.05). Both play a role in the negative 
regulation of amyloid precursor protein catabolic process (GO:1902992) and tau protein binding 
(GO:0048156). The Enrichr analysis [32, 33] reported following top GO terms: regulation of 
neuron projection development (GO:0010975; Stmn2, Crmp1, Apoe, Cx3cl1, mark2), positive 
regulation of cell projection organization (GO:0031346; Stmn2, Crmp1, Apoe, Cx3cl1, mark2), 
phosphatidylserine metabolic process (GO:0006658; Lpcat4, Serinc1, Serinc5), and protein 
acylation (GO:0043543; Ing4, Abhd17b, Zdhhc17), potassium channel activity (GO:0005267; 
Kcnt2, Kcnh7, Kcnma1, Grik1) and methylation-dependent protein binding (GO:0140034; Ing4, 
Cbx5, Zmynd8). The pre-ranked GSEA analysis [25] shows that regulatory changes are 
associated with integrin signaling pathway, serotonin HTR1 group and FOS pathway, and 
glutamate neurotransmitter release cycle (Fig. 7D inserts). 
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Fig. 7. Analysis of transcriptional responses of neurons to amyloid-beta (Aβ) peptides in the 5xFAD mice, 
a model of Alzheimer’s disease. (A) Illustration of experimental design and data collection of the 5xFAD 
mice study [58]. (B) t-SNE plot of neurons of the 5xFAD (red) and WT (blue) mice. (C) Violin plots show 
the log-normalized expression levels of selected DR genes in neurons of the 5xFAD (red) and WT (blue) 
mice. (D) Q-Q plot for observed and expected p-values of tested genes. Genes (n=18) with FDR < 0.05 
are labeled with asterisk. Inset shows the results of the GSEA analysis for genes ranked by their 
distances in manifold aligned scGRNs. (E) Comparison of a representative module that contains top-
ranked DR genes between the two scGRNs. The colors, edges and marks are presented as in Fig. 3E. 

Discussion 
We present scTenifoldNet, a robust, unsupervised machine learning workflow that streamlines 
comparative GRN analyses with data from scRNAseq. The key feature of scTenifoldNet is to 
apply comparative network analysis with scRNAseq data. It detects differences in the cell 
population’s state between two samples in a sensitive and scalable manner. It provides the 
function of differential regulation (DR) analysis, which can be used to reveal subtle regulatory 
shifts of genes.  

Today, differential expression (DE) analysis is still the primary method for the purpose of 
comparative analysis between scRNAseq samples (see, e.g., [27, 52, 62]). As scRNAseq data 
sets are becoming widely available, there will be more and more interest in comparing between 
samples. The scTenifoldNet-based DR analysis is expected to be adapted in more scenarios 
wherever DE analysis is applicable. scTenifoldNet learns and contrasts high-dimensional 
features of genes in scGRNs by examining global interactions between the genes. 
scTenifoldNet is more suitable for comparing highly similar samples, such as two populations of 
cells of the same type. scTenifoldNet is built as a robust, sensitive tool that can capture signals 
that are even confined to rare cell types. 

To achieve technical requirements, we overcome several analytical barriers in developing 
scTenifoldNet. First, constructing scGRN from scRNAseq data, which consists of cells in many 
different states, is challenging at present. It is also difficult to control for technical noise in the 
data. To address these issues, we let scTenifoldNet begin with random cell subsampling. It is 
worthy noting that random cell subsampling can not only help dealing with the problem of cell 
heterogeneity, additional information of cells can be incorporated into subsampling schema. 
More specifically, in addition to the random subsampling using jackknife and bootstrap methods, 
we can adapt a semi-random subsampling schema, if cells in an input matrix are sorted 
according to pseudotime [63]. These cells can be subsampled using a pseudotime-guided 
method, with which sorted cells are sampled along the pseudotime trajectory. In such a way, the 
subsamples contain pseudotime information, and the multilayer scGRN constructed from these 
subsamples will contain the pseudotime-series information. In machine learning, many 
multilayer network analysis algorithms have been proposed [64-66]. With our pseudotime-series 
scGRN data, these algorithms will be relevant and applicable. Second, regulatory relationships 
between genes from scRNAseq data are difficult to establish, even though the data may 
theoretically capture a complete picture of the regulatory gene landscape. We consider principal 
component regression to stand out as a crucial method of building scGRNs. Principal 
component regression significantly outperforms the other GRN construction algorithms in all 
aspects of methodology metrics, including specificity, sensitivity, computational efficiency, and 
the required minimum number of cells. Importantly, principal component regression explicitly 
projects thousands of gene expression measurements into a low dimensional space to capture 
much of the observed variation. Principal component regression, therefore, establishes the 
relationship for each pair of genes after controlling for the most important background 
interactions. Third, in scTenifoldNet, the tensor denoising procedure effectively smooths edge 
weights across all networks in multilayer scGRNs. Third, scTenifoldNet performs nonlinear 
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manifold alignment to align two networks. As such, two networks can be contrasted directly, and 
DR genes could be detected using distance in new coordinates of data in a low-dimensional 
space. 

We validate the power of scTenifoldNet using real data sets coming from various studies and 
demonstrate that scTenifoldNet is sensitive to signals. Five real scRNAseq data sets are 
involved. These five data sets have one thing in common: they all have two sets of scRNAseq 
data—one from a treated group and the other from a control/untreated group. More importantly, 
in all five cases, we have sufficient prior knowledge about the biological system, from which the 
data is collected. Therefore, we have hypotheses about what transcriptional changes are 
expected to see before doing the analysis. For example, in the morphine response analysis, the 
causal factor of transcriptional responses, i.e., the morphine stimulus, is known and thus, we 
know what should be recovering through the analysis. Similarly, we had some clues in the 
examples of cetuximab and fibroblasts about what transcriptional changes we might be able to 
retrieve. By compiling all the findings from scTenifoldNet applications, we tested scTenifoldNet 
and showed that scTenifoldNet provides findings that are precise, specific and relevant to the 
biological systems and questions in the test. It is of significance to building a specific and 
sensitive tool like scTenifoldNet for the purpose of molecular mechanism studies using 
scRNAseq. This is because causal factors and their target genes remain unknown in many 
biological systems studied. If this is the case, it is crucial to apply the sensitive approach like 
scTenifoldNet, which may be in addition to the DE analysis, to unveil more gene candidates. 
Only then will we be able to scrutinize identified genes further to learn the mechanisms behind 
their actions in the whole system. We face such a challenge in many studies from unknown 
factors that cause the disorder. It is therefore critical that we adopt tools such as scTenifoldNet, 
instead of relying solely on conventional DE analysis, to tackle this big data analysis problem. 

In summary, scRNAseq enables the study of cellular, molecular components, and dynamics of 
complex biological systems at single-cell resolution. To unravel the regulatory mechanisms 
underlying cell behaviors, novel computational methods are essential for understanding the 
complexity in scRNAseq data (e.g., scGRNs) that surpasses human interpretative ability. We 
anticipate that, when applied to real scRNAseq data, our machine learning workflow 
implemented in scTenifoldNet, can help achieve breakthroughs by deciphering the full cellular 
and molecular complexity of the data through constructing and comparing scGRNs. 

Methods 
The scTenifoldNet workflow takes two scRNAseq expression matrices as inputs. The two 
matrices are supposed to be obtained from the same type of cells of two samples, such as 
those of different treatments or from diseased and healthy subjects. The purpose of the analysis 
is to identify genes whose transcriptional regulation is shifted between the two samples. The 
whole workflow consists of five steps: cell subsampling, network construction, network 
denoising, manifold alignment, and module detection. 

Cell subsampling 
Instead of using all cells of each sample to construct a single GRN, we randomly subsample 
cells multiple times to obtain a set of subsampled cell populations. This subsampling strategy is 
to ensure the robustness of results against cell heterogeneity in samples. Subsampling of each 
sample is performed as follows: assuming the sample has � cells, � cells (� � �) are 
randomly selected to form a subsampled cell population. The process is repeated with cell 
replacement for t times to produce a set of t subsampled cell populations. 
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Network construction 
For a given expression matrix, a principal component regression-based network construction 
method [5] is adopted to construct scGRN. Principal component regression is a popular multiple 
regression method, where the original explanatory variables are the first subject to a principal 
component analysis (PCA) and then the response variable is regressed on the few leading 
principal components. By regressing on � principal components (� �  , where   is the total 
number of genes in the expression matrix), principal component regression mitigates the over-
fitting and reduces the computation time. To build an scGRN, each time we focus on one gene 
(referred to as the target gene) and apply the principal component regression method, treating 
the expression level of the target gene as the response variable and the expression levels of 
other genes as the explanatory variables. The regression coefficients from principal component 
regression are then used to measure the strength of the association of the target gene and 
other genes and to construct the scGRN. We repeat this process n times, each time with one 
gene as the target gene. At the end, the interaction strengths between all possible gene pairs 
are obtained and an adjacency matrix is formed. The details of applying the principal component 
regression method to a scRNAseq expression data matrix are described as follows. 

More specifically, suppose � � !�	
 is the gene expression matrix with   genes and " cells. 
The �th row of � , denoted by #� � !
 represents the gene expression level of the �th gene in the " cells. We construct a data matrix �
� � !��
��	
 by deleting #� from �. To estimate the effects 
of the other  $ 1 genes to the �th gene, we build a principal component regression model for #�. 
First, we apply PCA to �
�

�  and take the first � leading principal components to construct %� � &'�� , ( , '�� ) � !
	�, where '�� � !
 is the ��� principal component of �
�
� , � � 1, 2, … , �. 

Mathematically, %� � �
�
� *�, where *� � !��
��	� is the PC loading matrix for the first � leading 

principal components, satisfying &*�)�*� � ��. Secondly, the principal component regression 
method regresses �� on %� and solves the following optimization problem: 

+, � � arg �� ����� 0�� $ %�+�0
�

�. 
Then,  23� � *�+, � � !�
� quantifies the effects of the other  $ 1 genes to the �th gene. After 
performing principal component regression on each gene, we collect �α5������  together and 
construct an  6   weighted adjacency matrix � of the gene-gene interaction network. The �th 
row of � is α5�, and the diagonal entries of � are all 0. Then we retain interactions with top 2% 
(=5% by default) absolute value in the matrix to obtain the scGRN adjacency matrix. 

Tensor decomposition 
For each of the 
 subsamples of cells obtained in the cell subsampling step, we construct a 
network using principal component regression, as described above. Each network is 
represented as a  6   adjacency matrix; the adjacency matrices of the t networks can be 
stacked to form a third-order tensor � � !��	�	��. To remove the noise in the adjacency 
matrices and extract important latent factors, the CANDECOMP/PARAFAC (CP) tensor 
decomposition is applied. Similar to the truncated singular value decomposition (SVD) of a 
matrix, the CP decomposition approximates the tensor by a summation of multiple rank-one 
tensors [11]. More specifically, for our problem: 

� 7 �� � 8 λ�:��

���

; <� ; =� , 
where ; denotes the outer product, :� � !� , <� � !�, and =� � !� are unit-norm vectors, and λ� 
is a scalar. In the CP decomposition, �� is the denoised tensor of �, which assumes that the 
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valid information of � can be described by � rank-one tensors, and the rest part � $ �� is 
mostly noise. 

We use the function cp in the R package ‘rTensor’ to do the CP decomposition. For each 
sample, the reconstructed tensor �� includes 
 denoised scGRNs. We then calculate the 
average of associated 
 denoised networks to obtain the overall stable network. We further 
normalize entries by dividing them by their maximum absolute value to obtain the final scGRNs 
for the given sample. For later use, denote the denoised adjacency matrices for the two 
samples as ��

� 
and ��
�. 

Manifold alignment 
After obtaining ��

� 
and ��
�, we compare them to identify the regulatory changes and associated 

genes and modules. Instead of directly comparing the two  6   adjacency matrices, we apply 
manifold alignment to build comparable low-dimensional features and compare these features 
of genes between two samples, while maintaining the structural information of the two scGRNs 
[19]. Manifold alignment is used here to match the local and no-linear structures among the data 
points of ��

� 
and ��
� and project them to the same low-dimensional space. Specifically, we use ��

� 
and ��
� to denote the pairwise similarity matrices obtained by applying the principal 

component regression-based network construction method, and then denoising through tensor 
decomposition on the two initial expression matrices, � and �. These similarity matrices serve 
as the input for manifold alignment to find the low-dimensional projections >� � !�	� and >� � !�	� of genes from each sample, where � �  . In terms of the underlying matrix 
representation, we use ��� � !� and ��� � !� to denote the �th row of >� and >� that reflect the 
features of the �th gene in � and �, respectively. 

We note that ��
� 
and ��

� may include negative values, which means genes are negatively 
correlated. When the similarity matrix contains negative edge weights, the properties of the 
corresponding Laplacian are not entirely well understood [67]. We propose two methods to deal 
with this problem. The first method is to directly take the absolute value of ��

� 
and ��
� as the 

similarity matrices, in which we regard that the highly-negative correlated genes also support a 
strong functional relationship. In the second method, we add 1 to all entries 
in ��

� 
and ��
� , transforming the range of ��

� 
and ��
� from A$1,1B to A0,2B. As a result, all original 

negative relationships have a transformed value in A0,1D and all original positive relationships 
have a transformed value in E1,2B. In this case, the projected features of two genes with a 
positive correlation will be closer than those with a negative correlation. For convenience, we 
still use ��

� 
and ��
� to denote the transformed similarity matrices of two data sets. 

Now we propose a specific manifold alignment method to find appropriate low-dimensional 
projections of each gene. Our manifold alignment should trade off the following two 
requirements: (1) the projections of the same �th gene in two samples should be relatively close 
in the projected space; and (2) if �th gene and �th gene in sample 1 are functionally related, their 
projections ��� and ��� should be close in the projected space, and the same is true for sample 2. 
We minimize the following loss function: 

FGHHE>� , >�D � λ 80��� $ ���0
�

� I�

���

8 0��� $ ���0
�

�
�

�,���

J�,�
� I 8 K��� $ ���K

�

�
�

�,���

J�,�
� , 

where J�,�
�  and J�,�

� denote theE�, �D entry of ��
� 
and ��

� respectively. The first term of the loss 
function requires the similarity between corresponding genes across two samples; the second 
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and third terms are regularizers preserving the local similarity of genes in each of the two 
networks. λ is an allocation parameter to balance the effects of two requirements. 

One way to minimize the loss function is by using an algorithm similar to Laplacian eigenmaps 
[68], which requires the adjacency matrix to be symmetry, but in our case both ��

� and ��
� are 

asymmetric. Notice that if we symmetrize ��
� and ��

� by �� � �

�
EE��

�D� I ��
�D and �� �

�

�
E&��

�)� I ��
�D, and again denote J�,�

�  and J�,�
� as the E�, �D entry of �� and ��, then the value 

of the loss function won’t be changed. Thus, minimizing the loss function based on the 
symmetrized adjacency matrices, �� and ��, is equivalent to using the original adjacency 
matrices, ��

� and ��
�. Based on this observation, using linear algebra, we can write the loss 

function into the matrix form as FGHHE>� , >�D � 2
L:=ME>�N>D, where: > �  O>�>�P, N � �

�
EQ $ �D, 

� �  R�� �

�
�

�

�
� ��

S, and Q is a diagonal matrix with T�� � ∑ J��� . N is called a graph Laplacian 

matrix. The default selection of � is 0.9 times the mean value of the row sums of �� and ��. 
By further adding the constraint >�> � � to remove the arbitrary scaling factor, minimizing FGHHE>� , >�D is equivalent to solving an eigenvalue problem. The solution for > � AV�, V�, ( , V�B is 
given by � eigenvectors corresponding to the � smallest nonzero eigenvalues of N [69]. 

Determination of p-value of DR genes 
With > �  O>�>�P � AV�, V�, ( , V�B obtained in manifold alignment, we calculate the distance ��  between projected data points of two samples for each gene. One may declare significant 
genes according to the ranking of ��’s. To avoid arbitrariness in deciding the number of selected 
genes, we propose to use the Chi-square distribution to determine significant genes. Specifically, ��� is derived from the summation of squares of the differences of projected representations of 
gene � for two samples, whose distribution could be approximately Chi-square. To adjust the 
scale of the distribution, we compute the scaled fold-change defined as �V W ��� ��XXX⁄  for each 
gene �, where ��XXX denotes the average of ��� among all the tested genes. The scaled fold-
change approximately follows the Chi-square distribution with the degree of freedom �V if the 
gene does not perform differently in the two samples. By using the upper tail ���� � ��	 of the 
Chi-square distribution, we assign the P-values for genes and adjust them for multiple testing 
using the Benjamini-Hochberg (B-H) FDR correction [70]. To determine �V, since the number of 
the significant genes will increase as �V increases, we use �V � 1 to make a conservative 
selection of genes with high precision. 

Functional enrichment analyses 
Functional enrichment analysis of gene sets was performed using Enrichr [32, 33], which is a 
web-based, integrative enrichment analysis application based on more than 100 curated gene 
set libraries. The test of enriched TF targets was performed using the ChIP-X enrichment 
analysis (ChEA) [34] based on comprehensive results from ChIP-seq studies. Finally, 
predefined gene sets from the REACTOME, BioPlanet and KEGG databases were tested for 
the enriched functions using the pre-ranked Gene Set Enrichment Analysis (GSEA) [25]. 

Simulations of scRNAseq data and benchmarking of network methods 
To test the performance of our workflow, we generated synthetic data sets using SERGIO, a 
single-cell expression simulator guided by gene regulatory networks (GRNs) [71]. SERGIO 
allows for the simulation of scRNAseq data while considering the linear and nonlinear influences 
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of regulatory interactions between genes. SERGIO takes a user-provided GRN to define the 
interactions and generates expression profiles of genes in steady-state using systems of 
stochastic differential equations derived from the chemical Langevin equation. The time-course 
of mRNA concentration of gene � is modeled by:  ∂#�∂
 � [�E
D $ λ�\�E
D I ]� ^_[�E
Dα`, 
where \�  is the expression of gene �, [� is its production rate, which reflects the influence of its 
regulators as identified by the given GRN, λ� is the decay rate, ]� is the noise amplitude in the 
transcription of gene �, and α is an independent Gaussian white noise process. In order to 
obtain the mRNA concentrations as a function of time, the above stochastic differential equation 
is integrated for all genes as follows: 

E#�D� � E#�D�� I a &[�E
D $ λ�\�E
D) ∂
�

��

I a ]� ^_[�E
D` ∂J�

�

��

. 
The simulation was focused on testing and comparing the performance of principal component 
regression and several other methods (SCC, MI, GENIE3) using sparse data without imputation. 
The relationships between 100 genes were simulated as they belong to two major modules 
containing 40 and 60 genes, respectively. Each module is under the influence of one TF. We 
used the steady-state simulations to synthesize data to generate expression profiles of 100 
genes, according to the parameter setting for two modules. 

For each one of the tested methods, we randomly select  � �10, 50, 100, 500, 1000, 2000, 3000� 
cells from the simulated data for ten times and build ten scGRN. For each  , relevance 
measurements (accuracy and recall) were evaluated for each of the ten networks using the 
match of the sign of the relationships between genes to compute the following formulas: d==eL:=f �  Eg[ I ghD/Eg[ I gh I �[ I �hD, and iM=:jj �  g[/Eg[ I �hD, where g, [, �, 
and h stands for true, positive, false and negative, respectively. For the MI and GENIE3 
methods that only provide positive values, the median value was used as the center point and 
then the values were scaled to [-1,1] by dividing them over the maximum absolute value. 

Code availability 
scTenifoldNet has been implemented in R. The source code is available at 
https://github.com/cailab-tamu/scTenifoldNet, which also includes the code of the benchmarking 
method, auxiliary functions, and example datasets (including the simulated data used to 
generate Fig. 2). The scTenifoldNet R package is available at the CRAN repository 
https://cran.r-project.org/web/packages/scTenifoldNet/. 
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