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Highlights

e scTenifoldNet is a machine learning workflow built upon principal component regression,
low-rank tensor approximation, and manifold alignment

e scTenifoldNet uses single-cell RNA sequencing (ScRNAseq) data to construct single-cell
gene regulatory networks (SCGRNS)

e scTenifoldNet compares scGRNs of different samples to identify differentially regulated
genes

o Real-data applications demonstrate that scTenifoldNet accurately detects specific
signatures of gene expression relevant to the cellular systems tested.

Short abstract

We present scTenifoldNet—a machine learning workflow built upon principal component
regression, low-rank tensor approximation, and manifold alignment—for constructing and
comparing single-cell gene regulatory networks (SCGRNSs) using data from single-cell RNA
sequencing (scRNAseq). scTenifoldNet reveals regulatory changes in gene expression between
samples by comparing the constructed scGRNs. With real data, scTenifoldNet identifies specific
gene expression programs associated with different biological processes, providing critical
insights into the underlying mechanism of regulatory networks governing cellular transcriptional
activities.

Abstract

Constructing and comparing gene regulatory networks (GRNs) from single-cell RNA sequencing
(scRNAseq) data has the potential to reveal critical components in the underlying regulatory
networks regulating different cellular transcriptional activities. Here, we present a robust and
powerful machine learning workflow—scTenifoldNet—for comparative GRN analysis of single
cells. The scTenifoldNet workflow, consisting of principal component regression, low-rank tensor
approximation, and manifold alignment, constructs and compares transcriptome-wide single-cell
GRNs (scGRNs) from different samples to identify gene expression signatures shifting with
cellular activity changes such as those associated with pathophysiological processes and
responses to environmental perturbations. We used simulated data to benchmark
scTenifoldNet’s performance, and then applied scTenifoldNet to several real data sets. In real-
data applications, scTenifoldNet identified highly specific changes in gene regulation in
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response to acute morphine treatment, an antibody anticancer drug, gene knockout, double-
stranded RNA stimulus, and amyloid-beta plaques in various types of mouse and human cells.
We anticipate that scTenifoldNet can help achieve breakthroughs through constructing and
comparing scGRNs in poorly characterized biological systems, by deciphering the full cellular
and molecular complexity of the data.

Main

A gene regulatory network (GRN) is a graph depicting the intricate interactions between
transcription factors (TFs), associated proteins and their target genes, reflecting the
physiological condition of the cells in question. The analysis of GRNs promotes the
interpretation of cell states, cell functions, and regulatory mechanisms that underlie the
dynamics of cell behaviors. Multiple methods have been developed to build GRNs from data of
gene expression [1-4]. It is important to compare GRNs constructed using data sets from
different samples because the comparison may reveal regulatory mechanisms leading to
transcriptomic changes. In particular, the comparison results may help understand what is the
most significant shift in regulatory mechanisms between samples, as well as how genetic and
environmental signals are integrated to regulate a cell population’s physiological responses and
how cell behavior is affected by various perturbations. All of these are key questions in the study
of the functional participation of given GRNs. Despite the critical importance of comparative
GRN analysis, relatively few methods have been established to compare GRNs [5].

Single-cell RNAseq (scRNAseq) technology has been revolutionizing the biomedical sciences in
recent years. New research provides an unparalleled degree of precision to analyze
transcriptional regulation, cell history, and cell interactions with rich knowledge. It transforms
previous entire tissue-based assays into transcriptomic single-cell measurements and greatly
enhances our understanding of cell development, homeostasis and disease. Current sScCRNAseq
systems (e.g., 10x Genomics) can profile transcriptomes for thousands of cells per experiment.
This sheer number of measured cells can be leveraged to construct GRNs. Advanced
computational methods can facilitate such an effort to reach unprecedented resolution and
accuracy, revealing the network state of given cells [6-8]. Furthermore, comparative analyses
among GRNs of different samples will be extremely powerful in revealing fundamental changes
in regulatory networks and unraveling the transcriptional programs that govern the behaviors of
cells. Since our ability to generate scRNAseq data has outpaced our ability to extract
information from it, there is a clear need to develop effective computational algorithms and novel
statistical methods for analyzing and exploiting information embedded within GRNs [9].

Constructing single-cell GRNs (scGRNSs) using data from scRNAseq and then effectively
comparing constructed scGRNs present great analytical challenges [9, 10]. A meaningful
comparison of sScGRNSs first requires a robust construction of GRN from scRNAseq data.
Comparing scGRNs built via an unstable solution would cause misleading results and
inappropriate conclusions. The vast number of different cellular states in a sample, technical
and biological noise, as well as the sparsity of ScRNAseq data, complicate the process of
scGRN construction. Often, the expression of a gene is governed by stochastic processes and
also influenced by transcriptional activities of many other genes. Thus, it is difficult to tease out
subtle signals and infer true connections between genes. Furthermore, a direct comparison
between two scGRNs is difficult—e.g., comparing each edge of the graph between scGRNs
would be ill-powered when scGRNSs involve thousands of genes. Taken together, the key
challenge in conducting comparative sScGRN analysis is to extract meaningful information from
noisy and sparse scRNAseq data, since the information is deeply embedded in the differences
between highly complex scGRNs of two samples.
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In this paper, we introduce a workflow for constructing and comparing scGRNs using data from
the scRNAseq of different samples. The workflow, which we call scTenifoldNet, is built upon
several machine learning algorithms, including principal component regression, low-rank tensor
approximation, and manifold alignment. Through several examples, we show that scTenifoldNet
is a sensitive tool to detect specific changes in gene expression signatures and the regulatory
network rewiring events. scTenifoldNet inputs are a pair of matrices of SCRNAseq expression
from two different samples. For instance, one sample may come from a healthy donor and the
other from a diseased donor. In scTenifoldNet, the two input expression matrices are
simultaneously processed through a multistep procedure. The final output is a list of ranked
genes sorted by their significance, assessed by a specifically designed, differential regulation
(DR) test. The ranked gene list can be used to perform functional enrichment analysis to detect
the enriched molecular functions and involved biological processes. The constructed scGRN
can also be used for the identification of functionally significant modules, i.e., subsets of tightly
regulated genes.

scTenifoldNet is an innovative method in terms of its SCGRN comparison function. We are not
aware of any prior work using a similar design to achieve the same analytical goal.
scTenifoldNet overcomes several technological challenges in implementing an effective and
efficient scGRN comparison method. Here, we first benchmarked and demonstrated the utility of
scTenifoldNet across synthetic data sets and then applied scTenifoldNet to real data sets. Our
real data analyses showed scTenifoldNet’s power in identifying significant genes and network
modules whose regulatory patterns are shifting greatly between samples. Some of these
findings have not been reported in the respective original studies, in which the data sets were
generated.

Results

The scTenifoldNet architecture

To enable comparative scGRN analysis in a robust and scalable manner, we base our method
on a series of machine learning methods. A key challenge of our comparative analysis is to
extract meaningful differences in regulatory relationships between two samples from noisy and
sparse data. Specifically, we seek to contrast sScGRNs constructed from different ScRNAseq
expression matrices. Fig. 1 shows the main components of scTenifoldNet architecture. The
whole workflow contains five key steps: subsampling cells, constructing multilayer scGRNSs,
denoising, manifold alignment, and differential regulation (DR) test. In order to produce
biologically meaningful results, we made dedicated design decisions for the task in each of
these steps. Next, we briefly describe the numerical methods implemented in scTenifoldNet.
More technical details are presented in Methods.
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Fig. 1. Overview of the scTenifoldNet workflow. scTenifoldNet is a machine learning framework that
uses a comparative network approach with scRNAseq data to identify regulatory changes between
samples. scTenifoldNet is composed of five major steps. (A) Cell subsampling. scTenifoldNet starts with
subsampling cells in the scRNAseq expression matrices. When two samples are analyzed, each of the
two samples is subsampled either randomly or following a pseudotime trajectory of cells. The
subsampling is repeated multiple times to create a series of subsampled cell populations, which are
subject to network construction and form a multilayer scGRN. (B) Network construction. Principal
component (PC) regression is used for sScGRN construction; each scGRN is represented as a weighted
adjacency matrix. (C) Tensor denoising. Two samples produce two multilayer GRNs, form two three-order
tensors, which are subsequently decomposed into multiple components. Top components of tensor
decomposition are then used to reconstruct two denoised multilayer scGRNs. Then, two denoised
multilayer scGRNs are collapsed by taking average weight across layers, respectively. (D) Manifold
alignment. The two single-layer average scGRNs are then aligned with respect to common genes using a
nonlinear manifold alignment algorithm. Each gene is projected to a low-rank manifold space as two data
points, one from each sample. (E) Differential regulation test. The distance between the two data points is
the relative difference of the gene in its regulatory relationships in the two scGRNs. Ranked genes are
subject to tests for their significance in differential regulation between scGRNSs.

Numerical methods
The numerical methods used to construct and compare scGRNSs involve the following five steps:

Step 1. Pre-processing data and subsampling cells: The input data are two sScCRNAseq
expression data matrices, X and Y, containing expression values for n genes in m; and m; cells
from two different samples, respectively. Next, m cells in X and Y are randomly sampled to form
X' and Y’. This subsampling process is repeated t times to create two collections of subsampled
cells {X;} and{Y;}, wherei =1, 2,..., t.

Step 2. Constructing initial networks: For each X; € {X;}, i = 1, 2,..., t, principal component
regression is used to construct a GRN. The constructed GRN from X; is stored as a weighted
graph represented with an nxn weighted adjacency matrix W7. Similarly, for each Y; € {Y}},
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i=1,2, .., t, we construct a GRN using principal component regression and represent it with
an nxn weighted adjacency matrix Wf. Diagonal values of each adjacency matrix are set to
zeros, and other values are normalized by dividing by their maximal absolute value. Each
normalized adjacency matrix is then filtered by retaining only the top 5% of edges ranked using
the absolute egde weight, resulting in a sparse adjacency matrix.

Step 3. Denoising: Tensor decomposition [11] is used to denoise the adjacency matrices
obtained in Step 2. The collection of t sScGRNSs for each sample, {W;} or {Wf’} is processed
separately as a third-order tensor, denoted as I* or ¥, each containing nxnxt elements. The
CANDECOMP/PARAFAC (CP) decomposition is applied to decompose T* and I¥ into
components. Next, T* and I¥ are reconstructed using top r components to obtain denoised
tensors: I and ¥ . Denoised {W7} and {W?} in ¥% and I are collapsed by taking the
average of edge weights for each edge to form two denoised, averaged matrices, W} and W3d’ ,
which are subsequently normalized as in step 2 and then symmetrized.

Step 4. Aligning genes onto a manifold: The weighted adjacency matrices W3 and Wfi’ are
regarded as two similarity matrices for a nonlinear manifold alignment procedure. The alignment
is done by solving an eigenvalue problem with a Laplacian matrix derived from the joint matrices:
W = W%, A1/2; 217 /2, WY, where 1 is a tuning parameter and I is the identity matrix that
reflects the binary correspondence between genes in the samples, X and Y. As the result of
manifold alignment, all genes in the samples, X and Y, are projected on a shared, low
dimensional manifold with a dimension k., << n. The projections of each gene j from the
samples, X and Y, are two ky-dimensional vectors, F;* and ij.

Step 5. Ranking genes: For each gene j, let d; be the Euclidean distance between the gene’s
two projections ij and ij on the shared manifold: one is from the sample X, and the other is

from the sample Y. Genes are sorted according to this distance. The greater the distance, the
greater the regulatory shift.

In the following sections, we explain the rationale behind each step, the selection of machine
learning methods, and implementation details.

Subsampling of cells

The rationale for randomly subsampling cells is close to that of ensemble learning, a technique
where multi-model decisions are merged to improve overall performance. Instead of attempting
to build a single scGRN, scTenifoldNet focuses on subsampling cells from a given scRNAseq
expression matrix, building a number of ‘low-precision’ sScGRNs from subsampled data sets, and
then combining these scGRNs to obtain a high-precision scGRN. As mentioned above, current
scRNAseq technology can produce the transcriptome profiles of thousands of cells from each
sample. It is fundamentally difficult to process high-dimensionality and large-scale scRNAseq
data, especially given that there can be substantial variation between cells even in a group of
cells of the same type. For example, the presence of outlying cells, i.e., cells showing profiles of
expression deviate from those of most other cells, can influence the construction of SCGRNSs.
Therefore, subsampling offers promise as a technique for handling the noise in the input data
sets. When the number of cells is small, the input data matrix may be resampled with
replacement [12].

Constructing scGRNs using principal component regression

Although many GRN construction methods have been developed [1, 2, 4], it is unclear which
one is suitable for constructing a large number of sScGRNs from the subsampled data [9]. When
dealing with multiple sets of input data, both the accuracy and computational efficiency of these
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algorithms have to be considered. We opted to use the PCNet method [5], which is based on
principal component regression [13], after conducting a thorough review of the current methods.
The principal component regression method extracts the first few (e.g., k = 3) principal
components and then uses these components as the predictors in a linear regression model
fitted using ordinary least squares. The values of the transformed coefficients of genes are
treated as the strength and regulatory effect between genes to generate the network. The main
use of principal component regression in scTenifoldNet lies in its ability to surpass the
multicollinearity problem that arises when two or more explanatory variables are linearly
correlated.

Denoising via low-rank tensor approximation

Removing the noise from constructed scGRNSs is an important step of scTenifoldNet. Here the
term noise is used in a broad sense to refer to any outlier or interference that is not the quantity
of interest, i.e., the true regulatory relationship between genes. For each sample, the multilayer
scGRN constructed from multiple subsampled data sets is regarded as a rank-three tensor. To
reduce the noise in the multilayer scGRN, we decompose the tensor and reconstruct the
multilayer scGRN using leading components. The idea is similar to that of denoising using
truncated singular value decomposition (SVD). After cutting a larger portion of the noise spread
over the lowest singular value components, the reconstructed data matrix based on the
truncated SVD would, therefore, represent the original data with reduced noise. Indeed, tensor
decomposition has been used in video data analyses for denoising and information extracting
purposes [14]. It has also been used to impute missing data [15]. We use the
CANDECOMP/PARAFAC (CP) algorithm [16] to factorize the two multilayer scGRNs separately
and regenerate all adjacency matrices using leading components. The number of components
used for reconstruction can be specified and is set to 3 by default. In the real data applications,
we find the tensor GRN regeneration serves for two purposes: denoising and enhancing, i.e.,
making main signals stronger and making less important signals weaker.

Manifold alignment of two SCGRNs

For a gene, its position in one of the two scGRNSs (i.e., denoised adjacency matrices from the
two samples) is determined by its regulatory relationships with all other genes. Here we regard
each gene as a data point in a high-dimensional space where components of the data point are
the features, i.e., weights between the gene and all other genes in the scGRN adjacency matrix.
To compare the same gene’s positions in the two scGRNSs, we first align the two scGRNs. To do
so, we take a popular and effective approach for processing high-dimensional data, intuitively
modeling the intrinsic geometry of the data as being sampled from a low-dimensional
manifold—i.e., commonly referred to as the manifold assumption [17]. This assumption
essentially means that local regions in the data can be mapped to low-dimensional coordinates,
while the nonlinearity and high dimensionality in the data come from the curvature of the
manifold. Manifold alignment produces projections between sets of data, given that the original
data sets lie on a common manifold [18-21]. Manifold alignment matches the local and nonlinear
structures among the data points from multiple sources and projects them to the same low-
dimensional space while maintaining their local manifold structure of each source. The ability to
flexibly learn and accurately represent the structure in the data with manifold alignment has
been demonstrated in applications in automatic machine translation, face recognition, and so on
[22, 23]. Here, we use manifold alignment to match genes in the two denoised scGRNs, one
from each sample, to identify cross-network linkages. Consequently, the information of genes
stored in two scGRNs is aligned, meaning points close together in the low-dimensional space
are more similar than points that are farther apart.
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Ranking genes and reporting DR genes

To identify genes whose regulatory status differs between the two samples, we calculate the
distance between projected data points in the manifold alignment subspace. For each gene, if
the gene appears in sScGRNs of both samples, there are two data points for the same genes,
one from each sample. We compute the Euclidean distance between the two data points of the
gene and used the distance to measure the dissimilarity in the gene’s regulatory status in two
scGRNs [24]. We do this for all genes shared between two samples and then rank genes by the
distance. The larger the distance, the more different the gene in two samples. In this way, we
obtain a list of ranked genes. These ranked genes are subject to functional annotation, such as
using the pre-ranked Gene Set Enrichment Analysis (GSEA) [25] to assess the enriched
functions associated with the top genes. To avoid choosing the number of selected genes
arbitrarily, we compute p-values for genes using Chi-square tests, adjust p-values with a
multiple testing correction, and select significant genes using the 10% FDR cutoff.

Benchmarking the performance of scTenifoldNet using simulated data

Precision and recall of the network construction method adopted in scTenifoldNet

To show the effectiveness of principal component regression, we simulated scRNAseq data
using a parametric method with a predefined scGRN model (see Methods for details). With
these simulated data whose generating parameters are known, we compared the scGRNs
constructed using principal component regression against the predefined scGRN (i.e., ground
truth) to estimate the accuracy of principal component regression. Similarly, we tested the
accuracy of other methods, including the Spearman correlation coefficient (SCC), mutual
information (MI) [1], and GENIES (a random forest-based method [2, 7]). SCC and MI methods
are computationally efficient, whereas GENIES is not, but GENIE3 is the top-performing method
for network inference in the DREAM challenges [3]. For each method, their performances in
recovering gene regulatory relationships were compared. Using the ground-truth interactions
between genes generated according to pre-setting parameters, we found that the principal
component regression method tended to produce more specific (better accuracy) and more
sensitive (better recall) scGRNs than the other three methods across a wide range of settings of
cell numbers in the input scRNAseq expression matrix (Fig. 2A). Principal component
regression is also much faster than GENIE3. For instance, on a typical workstation, our
implementation of principal component regression can construct a GRN for all-by-all 15,000
genes in less than 50 minutes, whereas GENIE3 requires more than 24 hours (data is available
in Supplementary Table S1). This simulation study suggests that the principal component
regression method is preferred to all other methods tested.

Effect of denoising with tensor decomposition

To show the effect of tensor denoising, we simulated scRNAseq data (see Methods) and
processed the data using the first two steps of scTenifoldNet, i.e., cell subsampling followed by
the construction of scGRNSs using principal component regression. We subsampled 500 cells
each time and generated ten scGRNs. The ten scGRNSs are treated as a multilayer network or a
tensor to be denoised. For each scGRN, we kept the top 20% of the links. The presence and
absence of links in each scGRN were compared with those in the simulated, ground-truth
scGRN to estimate the accuracy of recovery and the rate of recall. Fig. 2B contains the
heatmaps of adjacency matrices of the ten scGRNs before and after denoising (small panels).
We also show two collapsed scGRNs (Fig. 2B, large panels), which were generated by
averaging link weights across the ten scGRNs before and after denoising. These results
illustrate the ability of scTenifoldNet to denoise multilayer scGRNs. For instance, tensor
denoising improves the recall rate of regulatory relationships between genes by 25%. This
simulation study suggests that tensor denoising could be useful for removing impacts of random
dropout and other noise issues affecting the scGRN construction using scRNAseq data.
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Detecting power illustrated with a simulated data set

We used simulated data to show the capability of scTenifoldNet in detecting differentially
regulated (DR) genes. We first used the negative binomial distribution to generate a sparse
synthetic sScRNAseq data set (an expression matrix including 67% zeros in its values). This toy
data set includes 2,000 cells and 100 genes. We called it sample 1. We then duplicated the
expression matrix of sample 1 to make sample 2. We modified the expression matrix of sample
2 by swapping expression values of three randomly selected genes with those of another three
randomly selected genes. Thus, the differences between samples 1 and 2 are restricted in
these six genes. Using scTenifoldNet with the default parameter setting, we compared the
originally generated expression matrix (sample 1) against itself (sample 1 vs. sample 1) and
also against the manually perturbed version (sample 1 vs. sample 2). As expected, when
comparing the original matrix against itself, none of the genes was identified to be significant.
However, when samples 1 and 2 were compared, the six genes whose expression values were
swapped were identified as significant DR genes (Fig. 2C, FDR < 0.05). These results are
expected and support the sensitivity of scTenifoldNet in identifying subtly shifted gene
expression programs.
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Fig. 2. Benchmarking the performance of scTenifoldNet using simulated data. (A) The accuracy and
recall of sScGRN construction using different methods: principal component regression, SCC, Ml, and
GENIE3, as functions of the number of cells used in the analysis. Error bar is the standard deviation of
the computed values after 10 bootstrapped evaluations. Accuracy is defined as =
(TP+TN)/(TP+TN+FP+FN), and recall = TP/(TP+FN), where T, P, F, and N stands for true, positive, false
and negative, respectively. PCR — principal component regression; SCC — Spearman correlation
coefficient; Ml — mutual information; GENIE3 — a random forest-based network construction method. (B)
Visualization of the effect of tensor denoising on accuracy and recall of multilayer scGRNs. Each
subpanel is a heatmap of a 100x100 adjacency matrix constructed using principal component regression
over the counts of 500 randomly subsampled cells. Grayscale indicates the relative strength of regulatory
relationships between genes. Top part includes networks before tensor denoising (adjacency matrices in
heatmap with red box); bottom part includes corresponding networks after tensor denoising (adjacency
matrices in heatmap with green box). In each part, adjacency matrices of networks of 10 subsamples (10
small heatmaps) and their average adjacency matrix (one large heatmap) are shown. (C) Evaluation of
the sensitivity of scTenifoldNet in identifying punctual changes in the regulatory profiles. Top panel:
evaluation of the original data matrix against itself; bottom panel: evaluation of the original matrix against
the perturbed matrix. Significant genes identified using the differential regulation test (FDR < 0.05, the B—
H correction) are indicated in red. All significant genes are perturbed in simulation and thus are expected
to be identified.


https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.12.931469; this version posted July 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Real data analyses

Practical considerations of real data analysis using scTenifoldNet

First of all, we address several practical questions regarding the application of scTenifoldNet to
real sScRNAseq data. (1) What are the input expression matrices to be compared? The input to
scTenifoldNet is two matrices of gene expression values (e.g., UMI counts) as measured in two
samples to be compared. In each matrix, columns represent cells, and rows represent genes.
We assume that each input matrix contains a sizable number of cells. For example, a typical
input matrix may contain UMI counts for 5,000 genes and 2,000 cells. Whether a gene is
expressed among cells can be determined by examining if this gene has a nonzero UMI count
in more than 5% of cells. (2) How does scTenifoldNet handle cell heterogeneity? Heterogeneity
in expression among cells is inevitable. scTenifoldNet is designed to tolerate a certain level of
such heterogeneity as long as cells are of the same type. scTenifoldNet is not a data
preparation tool. It also does not perform any clustering analysis for cells; it does not assign
cells into cell types. We assume all cells in both input matrices are of the same type. Otherwise,
the results would be difficult to interpret. (3) What if the number of cells is too small? We expect
that each input matrix contains a sizable number of cells (e.g., n>2,000). If this is the case, the
jackknife method (subsampling without replacement) is adapted by default: m=500 cells are
subsampled each time. Alternatively, an m-out-of-n bootstrap method (subsampling with
replacement) can be used [12]. When the number of cells is small (e.g., n=500), a full bootstrap
method can be used, i.e., resampling 500 cells each time out of 500 given cells with
replacement [12, 26]. (4) What is the relationship between scTenifoldNet analysis and DE
analysis? scTenifoldNet analysis should be used as a complementary analysis method in
addition to DE analysis, rather than replacing DE analysis. DE analysis is still the most widely
used method for understanding the difference between two scRNAseq samples. scTenifoldNet
is designed based on a different principle from that is underlying DE analysis. Thus, the results
of scTenifoldNet analysis and DE analysis are not supposed to be compared side by side. It is
not uncommon that scTenifoldNet and DE analyses report same genes to be significant. This is
because the change of the regulatory pattern of a gene in sScGRNs may be associated with the
change of the gene’s expression level.

Analysis of transcriptional responses of neurons to acute morphine treatment

To illustrate the use of scTenifoldNet, we first applied scTenifoldNet to a scRNAseq data set
from [27]. This is a study on transcriptional responses of mouse neural cells to morphine (Fig.
3A). In the study [27], Avey and colleagues performed scRNAseq experiments with the nucleus
accumbens (NAc) of mice after four hours of the morphine treatment, using mice treated with
saline as mock controls. Single-cell expression data was obtained for 11,171 and 12,105 cells
from four morphine- and four mock-treated mice, respectively [27]. The measured cells were
clustered to identify neurons (7,972 and 8,912 from morphine- and mock-treated samples,
respectively); the identified neurons were then sub-grouped into 11 clusters, including major
clusters of D1 and D2 medium spiny neurons (MSNSs), comprising ~95% of the neurons in the
NAc. Using differential expression (DE) analysis implemented in SCDE [28], Avey et al.
identified several hundred genes that are differentially expressed between morphine- and mock-
treated samples (Supplementary Table S2 of [27]). Although this result is intriguing, we argue
that it seems that when so many genes are identified as ‘significant players,’ it is difficult to
interpret the result and to pinpoint the specific regulatory mechanism underlying the true
response. Indeed, instead of performing functional enrichment analysis with identified DE genes,
the subsequent analyses in the study of [27] were re-focused on a tiny portion of D1 MSNs,
called activated MSNSs. It is only when activated MSNs were compared to all other D1 MSNs
that 256 DE genes were identified (SCDE, P < 0.001, Supplementary Table S2 of [27]). These
genes were then found to be associated with several terms related to opioid addiction, including
morphine dependence and opioid-related disorders (Supplementary Table S3 of [27]). In the
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morphine-treated sample, less than 4.5% of D1 MSNs are activated MSNs; in the mock-treated
sample, less than 2% (see Fig. 2B of [27]). In view of these, we point out here that while
relevant signals can be detected using traditional DE analysis, the analytical method involves
extensive human intervention—i.e., an iterative clustering procedure is needed to identify a final
population of cells (in this case, activated MSNs). The cell population size is small, making the
analysis result potentially variable.

We were motivated by these considerations and set out to re-analyze the data. We first
reproduce the results of the DE analysis. We found that the mock- and morphine-treated
neurons indeed exhibited a striking similarity. For example, mock- and morphine-treated
neurons are indistinguishable in a tSNE plot (Fig. 3B); expression levels of several known
morphine responsive genes, e.g., Adcy5, Ppplrlb, and Ppp3ca, show no difference (Fig. 3C).
Thus, a direct comparison of gene expression between neurons using the DE method may have
limited power to identify relevant genes involved in the morphine response.

Next, using scTenifoldNet, we identified 56 genes showing significant differences in their
transcriptional regulation between mock- and morphine-treated neurons, indicated by greater
distances between genes’ positions in the aligned manifold of two scGRNs (FDR < 0.05, Chi-
square test with B-H multiple test adjustment, see Methods for details). These genes are:
Ppp3ca, Hpca, Pcp4ll, Rgs7bp, Akap5, Slc24a2, Atp2a2, Atp2bl, Ppplrlb, Foxpl, Spock3,
Arppl19, Gpr88, Rgs9, Adcy5, Gnal, Ubb, Scn4b, Actb, Calm2, Penk, mt-Rnrl, Arpp21,
Phactrl, Cck, Eif1, mt-Nd1, mt-Cytb, Spred1, mt-Nd2, mt-Col, Hspa4l, Nrn1, Scn8a, Chn1,
Diras2, Cpe, Rampl, B3galt2, Chstl15, Grin2b, Lampl, Rasd2, Gabrgl, Chst1,
3110035E14Rik, Nfia, Samd4, Sacs, Nrxnl, D3Bwg0562e, Akap9, Rtnl, Ahsal,
D430041DO05Rik, and Syn2 (genes sorted according to the significance level, see also Fig. 3D).
The pre-ranked GSEA analysis [25] showed that these genes are enriched for opioid signaling,
signaling by G protein-coupled receptors, reduction of cytosolic Calcium levels, and morphine
addiction (Fig. 3D inserts). It is known that morphine binds to the opioid receptors on the
neuronal membrane. The signal is then transmitted through the G-protein signaling system,
inhibiting the adenylyl cyclase in the cytoplasm and decreasing the levels of CAMP and the
calcium-channel conduction [29-31]. Furthermore, 21 (highlighted in bold) of the 56 identified
DR genes were found to be targets of RARB (38%, adjusted P-value < 0.01, enrichment test by
Enrichr [32, 33] based on results of ChiP-seq studies [34]). RARB encodes for a plastic TF
playing a role in synaptic transmission in dopaminergic neurons and the adenylate cyclase-
activating dopamine receptor signaling pathway [35, 36]. Thus, these enriched functions are
relevant to the morphine stimulus, which is known to induce the disinhibition of dopaminergic
neurons by GABA transmission, enhance dopamine release, and cause addiction [37, 38].
Using the constructed scGRN, we were able to trace DR genes back to their topological
positions in the network and examine their interacting genes. Fig. 3E shows such a network
module, including multiple DR genes.

In this case, scTenifoldNet is used as an unsupervised tool, and no human interference is
needed to operate. This feature is critical when referring to this specific set of data because
where the signal is limited to rare types of cells, there is a chance that a less sensitive approach
would miss the signal, especially when human interference is not provided. It is ideal to have an
unsupervised tool that is sensitive to signals, and robust to variation between cells at the same
time. We note that scTenifoldNet is a different tool to conventional DE analysis tool—
scTenifoldNet reported less DR genes in terms of the number of genes, compared with DE
genes identified in the original study [27]. Among the 56 DR genes that scTenifoldNet detected,
11 (Actb, Adcy5, Akap9, D430041DO05RIk, Eifl, Pcp4ll, Penk, Phactrl, Rasd2, Scn4b and Ubb)
are among the 256 DE genes reported in [27](see Supplementary Table S2 of [27]). The
number of overlap genes is not significantly higher than expected by random according to a
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hypergeometric test (P = 0.29) with a total of 1,432 genes (from Supplementary Table S2 of
[27]) included in the test. Fig. 3C shows expression levels of three representative genes: Pdelb,
Adcy5 and Gabrgl, in neurons from mock- and morphine-treated mice. All three genes are
known to be involved in morphine response [39-41], but only when DE and DR tests are applied
jointly, all three genes are identified: Pdelb is a DE but not a DR gene, Adcy5 a DR and DE
gene, and Gabrgl a DR but not DE gene.
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Fig. 3. Analysis of transcriptional responses to morphine in mouse cortical neurons. (A) lllustration of
experimental design and data collection of the morphine response study [27]. (B) A t-SNE plot of 7,972
and 8,912 neurons from morphine-treated (blue) and mock-treated (red) mice, respectively. (C) Violin
plots show the log-normalized expression levels of representative DR and/or DE genes in four (M)
morphine- and four (C) mock-treated mice. (D) Quantile-quantile (Q-Q) plot for observed and expected p-
values of the 8,138 genes tested. Genes (n=65) with FDR < 0.1 are shown in red; genes (n=56) with FDR
< 0.05 are labeled with asterisk. Inset shows results of the GSEA analysis for genes ranked by their
distances in manifold aligned scGRNs from morphine- and mock-treated mice. (E) The module enriched
with DR genes and the corresponding subnetworks in two scGRNSs. For illustrative purposes, the module
is centered on the DR gene, Ppp3ca. Significant DR genes (FDR<0.05) in the module are highlighted in
green. Edges are color-coded: red indicates a positive association, and blue indicates negative. Weak
edges are filtered out by thresholding for clear visualization, and the background shadow indicates the
shared portion of the module in the two scGRNSs.

Analysis of transcriptional responses of a carcinoma cell line to cetuximab

To further illustrate the power of scTenifoldNet in identifying genes associated with specific
perturbations, we applied scTenifoldNet to another published scRNAseq data [42]. In this study,
Kagohara et al. [42] use scRNAseq to study mechanisms that lead the development of
resistance to cetuximab in head and neck squamous cell carcinoma (HNSCC)(Fig. 4A).
Cetuximab is a human-murine chimeric monoclonal antibody used for the treatment of
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metastatic colorectal cancer, metastatic non-small cell lung cancer, and head and neck cancer.
In conjunction with the radiotherapy, cetuximab improves the objective response rate in first-line
treatment of recurrent or metastatic squamous cell carcinoma of the head and neck [43].
Cetuximab binds to the extracellular domain of the epidermal growth factor receptor (EGFR) on
both normal and tumor cells [44]. EGFR is over-expressed in many cancers. Competitive
binding of cetuximab to EGFR blocks the phosphorylation and activation of receptor-associated
kinases and their downstream targets, e.g., MAPK, PI3K/Akt, and Jak/Stat pathways [45],
thereby reducing their effects on cell growth and metastatic spread. It is known that blocking
EGFR activation also affects cellular processes such as apoptosis, cell growth, and vascular
endothelial growth factor (VEGF) production [46]. Cetuximab is also known to cause
degradation of the antibody-receptor complex and the downregulation of EGFR1 expression
[47].

Kagohara et al. [42] sequenced the transcriptome profile of cells before and after Cetuximab
treatment for 120 hours in three different HNSCC cell lines: SCC1, SCC6, SCC25. They found
that SCC6 is the most sensitive to the cetuximab treatment, reporting 8,389 genes as
differentially expressed (including 4,166 upregulated and 4,223 downregulated ones with P <
0.05; Supplementary Table S4 of [42]). Such a large number of differentially expressed genes
makes it difficult to identify genes directly associated with the molecular mechanism through
which cetuximab acts.

We extracted scRNAseq data for 4,507 and 5,217 SCC6 cells treated with and without
cetuximab, respectively (Fig. 4B). Expression levels of three genes, DuSP4, TIGA3 and LIF, in
cells of two treatment groups, are shown in Fig. 4C. All three genes are in the EGFR pathway.
We used scTenifoldNet to re-analyze the data and identified 125 differentially regulated genes
(FDR<0.05, Fig. 4D). These genes are: EEF1A1, HMGAL, EEF1D, ACTG1, PHLDA1, HBEGF,
EEF1B2, COTL1, TNFRSF12A, DDIT3, MYC, FOSL1, PAWR, YBX1, CYTOR, EIF4A2,
PTP4A1l, IER2, MIR4435-2HG, AKAP12, SSFA2, ERRFI1, EEF2, ITGA3, SLC38A2, LUC7L3,
AHCY, GAPDH, PROSER2, RICTOR, MARCKSL1, DUSP4, MRPL51, HDGF, EREG, PIM1,
RND3, PIM3, GPRC5A, UQCRB, MAFF, FERMT2, SRSF5, SH2D3A, NDUFS5, SLC25A5,
COX6C, AREG, ASAP1, MIF, C190rf33, CDV3, DDX21, RBX1, AVPI1, POLR2F, KLF3,
TMSB4X, FTL, TPM4, NME4, SNRPE, ARHGAP29, PPP1R15A, AP1S1, ATP5PF, HSP90AB1,
POLR1D, DYNLL1, CNPY2, BACH1, TXNIP, ELL2, VMP1, VDAC1, H3F3A, IMP3, VAMPS,
SLC25A6, SNRNP35, METRN, DYNLT1, HSPA5, HNRNPA1, NDUFB3, S100A11, ATP5MF,
NDUFC2, STK17A, TXN, COASY, TAF1D, NDUFA13, P4HB, PPM1G, HSPA1A, HERPUD1,
ATP5MD, PFDN4, SOX4, TRAPPC1, TRAF4, F3, WDR830S, HSPE1, CCNBL1IP1, MINOS1,
OTUD6B-AS1, ATP5IF1, CTNNAL1, CLDN1, PDCD6, FOSL2, SEC61B, ABL2, CITED4,
SEM1, ATP5MPL, NEAT1, CFL1, NDUFS6, CLDN4, SMIM13, LIF, and DKK1.

This gene list is enriched with genes (39/125, names shown in bold) that are under the
regulation of TFs: SMAD2 and SMAD3. The pre-ranked GSEA analysis [25] shows that these
DR genes are associated with EGFR1 pathway (DUSP4, ITGA3, LIF, DDX21, AREG, EREG,
CLDN4, MYC, COTL1, TXNIP, LUC7L3, PHLDA1, HBEGF), regulation of apoptosis
(HSP90AB1, HSPA5, MIF, YBX1, EEF2, DYNLL1, COX6C, HSPE1, MYC, DDIT3, PIM1,
VDAC1, SEC61B, SLC25A5, PFDN4, HNRNPA1, GAPDH, IER2, HSPA1A, EEF1A1, DUSP4,
MAFF, CITED4, CLDN1, PHLDAL, AREG, RBX1), cell cycle checkpoints, and G1 cell cycle
arrest (Fig. 4D, inserts; due to limited space, GSEA result of regulation of apoptosis is not
shown). Once again, scTenifoldNet identified a much smaller set of significant genes compared
to those reported in the original paper [42]: 125 DR genes vs. 8,389 DE genes. Nevertheless,
functional analyses show that scTenifoldNet identified a more specific gene set relevant to
cetuximab’s mechanism of action. Further scrutinization of enriched molecular functions of
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these DR genes will help to identify more regulatory targets induced by cetuximab in HNSCC
cells.
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Fig. 4. Analysis of transcriptional responses of a carcinoma cell line to cetuximab. (A) lllustration of
experimental design, including sample groups and the known mechanism of drug action, in the study of
cetuximab resistance of HNSCC cell lines [42]. (B) t-SNE plot of 5,217 and 4,507 HNSCC-SCCE6 cells
treated with cetuximab (red) and PBS (blue), respectively. (C) Violin plots show the log-normalized
expression levels of selected DR genes in SCC6 cells with and without cetuximab treatment. (D) Q-Q plot
for observed and expected p-values of the 7,503 genes tested. Genes (n = 25) with FDR < 0.05 are
labeled with asterisk. Inset shows the results of the GSEA analysis for genes ranked by their distances in
manifold aligned scGRNSs from young and old mice. (E) A representative module with DR genes and
corresponding subnetworks in two sScGRNs. The module is enriched with DR genes and the
corresponding subnetworks in two scGRNSs. For illustrative purposes, the module is centered on the DR
gene, H2AFZ. The colors, edges, and marks are presented as in Fig. 3E.

Analysis of transcriptional responses of alveolar type 1 cells to Nkx2-1 gene knockout

In the third example, we applied scTenifoldNet to another published scRNAseq data from type 1
alveolar (AT1) cells [48]. AT1 cells are responsible for gas exchange, the physiological function
of the lung [49]. Little et al., [48] found that NK homeobox 2-1 (Nkx2-1) is expressed in AT1 cells
and thought Nkx2-1 might be essential to the development and maintenance of AT1 cells. To
determine the function of NKX2-1 during the development of AT1 cells, they performed
scRNAseq experiment to obtain the transcriptome profile of cells from lungs of Nkx2-1<®/¢C;
Agp5°™* mutant mice (i.e., the knockout [KO] mice) and littermate controls (i.e., the wild-type
[WT] mice). They used early infant mice (postnatal day 10, P10) because P10 represents an
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intermediate time point when individual AT1 cells in the mutant lung are expected to collectively
feature the full range of transcriptomic phenotypes. They reported 3,622 DE genes (2,105
upregulated and 1,517 downregulated, Supplementary Dataset S1 of [48]) between the KO
and WT mice. Their analyses suggest that, without Nkx2-1, developing AT1 cells lose their
molecular markers, morphology, and cellular quiescence, leading to aberrant expression of
gastrointestinal (Gl) genes, alveolar simplification and lethality (Fig. 5A).

To evaluate the power of scTenifoldNet in identifying regulatory changes caused by gene KO,
we re-analyzed the transcriptional profiles of 2,397 mutant AT1 cells from the Nkx2-1<9/¢<®:
Agp5°"* mice and 638 AT1 cells from the WT mice (Fig. 5B). Expression levels of Cd24a, Fau
and Eeflal in AT1 cells of KO and WT mice are shown in Fig. 5C. Cd24a is a marker gene for
AT1 cells; Fau and Eeflal are Gl genes, known to be highly expressed in the Gl tissues. Using
scTenifoldNet, we identified 29 genes exhibiting significant difference in their regulation between
the two samples: KO vs. WT (FDR < 0.05; Cd24a, Clu, Muc1, Stard10, Glul, Fxyd3, Gstol,
Eeflal, Bagl, Atplb1l, Txnip, Csrp2, Tspanl, Nr2f2, EIf3, Seppl, Pabpcl, Lurapll, Gnb2I1,
Eef2, Smim6, Cox7a2l, Tptl, Fau, Eeflb2, Eif3f, Atpifl, 0610040J01Rik, Krt19)(Fig. 5D). This
gene list is enriched with genes under regulation of TF, Sox2 (FDR < 0.05; labeled in bold) [50].
The gene list is also enriched with genes highly expressed in the intestine (FDR < 0.05; Gstol,
Stard10, Atpifl, Atplbl, Eef2, Clu, Gnb2l1, Eeflb2, Eeflal, Mucl, Cox7a2l, Krtl9, EIf3, Fxyd3,
Bagl, Txnip, Pabpcl, Fau, Eif3f, Glul, Tspanl, Tptl) and the gut (FDR < 0.05; Gstol, Stard10,
Atpifl, Nr2f2, Atplbl, Eef2, Clu, Gnb2I1, Eeflb2, Eeflal, Mucl, Cox7a2l, Krt19, Csrp2, Lurapll,
Fxyd3, Pabpcl, Fau, Eif3f, Glul, Tspanl, Tptl), which is in agreement with the reported by the
authors of the data set [48]. Using pre-ranked GSEA analysis [25], we were able to detect the
effect of Nkx2-1 KO on the cellular identity of AT1 cells, shown by the significant enrichment of
gastrointestinal marker genes (Ager, Col4a4, Col4a3, Agp5, Emp2, Crlfl, lcaml, Egfl6, Vegfa,
Gprc5a, Pdpn, Cldn18, Scnnlg, Akap5, Hopx, Scnnlb, Scnnla, Sec14I3, Sema3e, Krt7,
Gramdz2, Clic5, Mmp1l1, Ctgf, Rtkn2, Pxdcl1, Sema3b, Fstl3) [51] (Fig. 5D, inserts).
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Fig. 5. Analysis of transcriptional responses of alveolar type 1 cells to Nkx2-1 gene knockout. (A)
lllustration of experimental design and data collection of the KO experiment [48]. (B) t-SNE plot of 2,397
and 638 AT1 cells from Nkx2-1 KO mice (red) and WT mice (blue). (C) Violin plots show the log-
normalized expression levels of selected DR genes in KO (red) and WT (blue) mice. (D) Q-Q plot for
observed and expected p-values of tested genes. Genes (n=29) with FDR < 0.05 are labeled with asterisk.
Inset shows the results of the GSEA analysis for genes ranked by their distances in manifold aligned
ScGRNs. (E) A representative module that contains DR gene, Tptl, in the WT mice. Most parts of the
module disappear in the KO mice. The colors, edges and marks are presented as in Fig. 3E.

Analysis of transcriptional responses of human dermal fibroblasts to the double-
stranded RNA stimulus

Next, we show the use of scTenifoldNet to a scRNAseq data set from human dermal fibroblasts
[52]. In the original paper, Hagai et. al. [52] focused on single-cell transcriptional responses
induced by the stimulus of polyinosinic-polycytidylic acid (polyl:C), a synthetic double-stranded
RNA (dsRNA)(Fig. 6A). They obtained and compared transcriptomes of 2,553 unstimulated and
2,130 stimulated cells and identified 875 DE genes (Table S3 of [52]). These DE genes include
IFNB, TNF, IL1A, and CCL5, encoding antiviral and inflammatory gene products, and are
enriched for inflammatory response, positive regulation of immune system process, and
response to cytokine, among many others biological processes and pathways. We found the
original sScRNAseq data has a batch effect between two samples, but the global batch effect can
be removed using Harmony [53], as shown in the tSNE-plot of cells of two samples (Fig. 6B).
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Nevertheless, the differences in the expression level between samples can still be detected in
selected genes with Harmony-processed data (Fig. 6B).

Applying scTenifoldNet to the processed data, we identified 29 DR genes: SOD2, GBP1, WARS,
ZC3HAV1, EGR1, BBC3, ISG15, HLA-B, ZFP36, PPP1R15A, JUN, IFI6, JUNB, B2M, APOL2,
HLA-A, IER3, SAT1, NFKBIA, NNMT, FN1, IFITM3, MEG3, NEAT1, COL1Al, PLEKHA4,
EEF1A1, SOCS1, and SERF2 (Fig. 6D). Among them, 14 (highlighted in bold) are targets of TF,
RELA [54] (48%, adjusted p-value < 0.01, enrichment test by Enrichr [32, 33]). These DR genes
are functionally enriched for interferon signaling (IFITM3, EGR1, SOCS1, IFI6, HLA-B, ISG15,
HLA-A, GBP1, B2M), immune system (IFITM3, NFKBIA, EGR1, JUN, SOCS1, IFI6, HLA-B,
ISG15, HLA-A, GBP1, B2M), interleukin-1 regulation of extracellular matrix (NFKBIA, ZFP36,
JUN, HLA-B, SOD2), and among others.

Once again, scTenifoldNet reports fewer genes than DE analysis does in the original paper [52].
Through comparing DR genes with the DE genes, we found that enriched functions of DE genes
reflect a final status of cells after cells responding to the dsRNA stimulus, whereas the enriched
functions of DR genes reflect the activities associated with ongoing regulatory processes and
immune responses to the stimulus. In this sense, DR genes are valuable for informing of
mechanisms, through which the dsRNA acts to induce immunological responses [55-57]. For
example, it is known that the dsRNA inhibits the translation of mMRNA to proteins [56] and leads
the synthesis of interferon, which induces the synthesis of ribosomal units that are able to
distinguish between cell MRNA and viral RNA [57]. Interferon also promotes cytokine production
that activates the immune responses and induces inflammation [55]. To further illustrate the
changes in the regulatory patterns between samples, we plotted the GRN module around the
EEF1A1 gene. It can be seen that, before and after the dsRNA treatment, the interacting
partnership of the genes is changed substantially (Fig. 6E). Two scatter plots show the change
of correlation between TPT1 and ANXA2, as an example (Fig. 6F). The negative correlation
between the two genes’ expression among cells disappears after the dsRNA treatment and,
thus, the two genes are not linked in the scGRN constructed using the after-treatment data.
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Fig. 6. Analysis of transcriptional responses of human dermal fibroblasts to the double-stranded RNA
stimulus. (A) lllustration of experimental design and tested mechanism of transcriptional responses [52].
(B) t-SNE plot of human dermal fibroblasts before (blue) and after (red) dsRNA stimulus. (C) Violin plots
show the log-normalized expression levels of selected DR genes before (blue) and after (red) stimulus. (D)
Q-Q plot for observed and expected p-values of tested genes. Genes (n = 29) with FDR < 0.05 are

labeled with asterisk. Inset shows the results of GSEA analysis for genes ranked by their distances in
manifold aligned scGRNs. (E) Comparison of a representative module that contains three DR genes in

the control sample. The colors, edges and marks are presented as in Fig. 3E. (F) Scatter plots show the
correlation between TPT1 and ANXA2 before (top) and after (bottom) dsRNA stimulus.

Analysis of transcriptional responses of mouse neurons in Alzheimer’s disease

Lastly, we applied scTenifoldNet to scRNAseq data of isolated single nuclei from the brains of
the WT and 5xFAD mice [58]. The 5xFAD strain recapitulates the major features of Alzheimer’s
disease amyloid pathology. The genotype of these mice contains several Familial Alzheimer's
Disease (FAD) mutations in APP and PSENL1, causing the overexpression of mutant human
amyloid-beta (AB) precursor protein and human presenilin 1. The 5xFAD model rapidly develops
amyloid pathology, with high levels of intraneuronal AR accumulation beginning around 1.5
months of age, and extracellular AR deposition beginning around two months [59].

In the original paper [58], Zhou et al. compared single-cell gene expression between 6-month-
old WT mice with 6-month-old_5xFAD mice. They found that neurons show limited responses to
AP peptides—compared to microglia and oligodendrocytes, neurons show minimal
transcriptional changes (149 DE genes) between WT and 5xFAD mice. To test whether
scTenifoldNet can detect genes whose expression is differentially regulated between WT and
5xFAD mice, we decided to apply our method to this scRNAseq data, exclusively in neurons.
We downloaded expression data matrices from the GEO database using accession number
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GSE140511 and extracted expression data of neurons from two samples: GSM4173505 (WT2)
and GSM4173511 (WT_5XFAD2)(Fig. 7A).

After re-analyzing the data using scTenifoldNet, we identified 18 DR genes: Zdhhc17, Chl1,
Abhd17b, Rchyl, Stmn2, Tjpl, Nrbp2, Ly6h, Smarcdl, Rhbdd2, Ndfip1, Mark2, lcam5, Fam92a,
Rgll, Gmcll, Daaml, and Fxrl (sorted by significance, FDR<0.05, Fig. 7D). For functional
enrichment analysis, we relaxed the significant-gene cutoff to include 57 additional genes with
FDR>=0.05 but nominal P-value<0.05. These additional genes include: Apoe and Binl. Binl
encodes the bridging integrator 1, also known as amphiphysin 2, is the second most important
risk locus for late onset Alzheimer’s disease, after apolipoprotein E (Apoe) [60, 61]. The two
genes, Apoe and Binl, rank 25th and 61th in the list of a total of 75 genes (18 genes with
FDR<0.05 followed by 57 genes with nominal P-value<0.05). Both play a role in the negative
regulation of amyloid precursor protein catabolic process (G0:1902992) and tau protein binding
(G0O:0048156). The Enrichr analysis [32, 33] reported following top GO terms: regulation of
neuron projection development (GO:0010975; Stmn2, Crmpl, Apoe, Cx3cll, mark2), positive
regulation of cell projection organization (GO:0031346; Stmn2, Crmp1, Apoe, Cx3cl1, mark2),
phosphatidylserine metabolic process (GO:0006658; Lpcat4, Serincl, Serinc5), and protein
acylation (G0O:0043543; Ing4, Abhd17b, Zdhhcl7), potassium channel activity (GO:0005267;
Kent2, Kenh7, Kecnmal, Grikl) and methylation-dependent protein binding (GO:0140034; Ing4,
Cbx5, Zmynd8). The pre-ranked GSEA analysis [25] shows that regulatory changes are
associated with integrin signaling pathway, serotonin HTR1 group and FOS pathway, and
glutamate neurotransmitter release cycle (Fig. 7D inserts).

D

Integrin Serotonin HTR1 group Zdhhel?|
signaling pathway and FOS pathway
P ciocos P oo

A

Glutamate neurotrans-
mitter release cycle
re

Cchit

w
H
-
?
®
H
-
£
e
3
g

! B LT e VT Y | Aphd17
% Q &:;V 3 2 Renyt

254 = P - M Lysh  Stmn2
ot VA 'Q}‘ \r A jcam  Rhbad2 Tipt

: k e BERL Y Rgl1 Mark2 » » Nibp2
* Smarcd1

t-SNE 2
(=]
E
-

i

VR
e
3
o
£
2

T v
25 50

Mark2

18


https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.12.931469; this version posted July 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Fig. 7. Analysis of transcriptional responses of neurons to amyloid-beta (AB) peptides in the 5xFAD mice,
a model of Alzheimer’s disease. (A) lllustration of experimental design and data collection of the 5xFAD
mice study [58]. (B) t-SNE plot of neurons of the 5XxFAD (red) and WT (blue) mice. (C) Violin plots show
the log-normalized expression levels of selected DR genes in neurons of the 5xFAD (red) and WT (blue)
mice. (D) Q-Q plot for observed and expected p-values of tested genes. Genes (n=18) with FDR < 0.05
are labeled with asterisk. Inset shows the results of the GSEA analysis for genes ranked by their
distances in manifold aligned scGRNs. (E) Comparison of a representative module that contains top-
ranked DR genes between the two sScGRNs. The colors, edges and marks are presented as in Fig. 3E.

Discussion

We present scTenifoldNet, a robust, unsupervised machine learning workflow that streamlines
comparative GRN analyses with data from scRNAseq. The key feature of scTenifoldNet is to
apply comparative network analysis with sScCRNAseq data. It detects differences in the cell
population’s state between two samples in a sensitive and scalable manner. It provides the
function of differential regulation (DR) analysis, which can be used to reveal subtle regulatory
shifts of genes.

Today, differential expression (DE) analysis is still the primary method for the purpose of
comparative analysis between scRNAseq samples (see, e.g., [27, 52, 62]). As scRNAseq data
sets are becoming widely available, there will be more and more interest in comparing between
samples. The scTenifoldNet-based DR analysis is expected to be adapted in more scenarios
wherever DE analysis is applicable. scTenifoldNet learns and contrasts high-dimensional
features of genes in sScGRNs by examining global interactions between the genes.
scTenifoldNet is more suitable for comparing highly similar samples, such as two populations of
cells of the same type. scTenifoldNet is built as a robust, sensitive tool that can capture signals
that are even confined to rare cell types.

To achieve technical requirements, we overcome several analytical barriers in developing
scTenifoldNet. First, constructing scGRN from scRNAseq data, which consists of cells in many
different states, is challenging at present. It is also difficult to control for technical noise in the
data. To address these issues, we let scTenifoldNet begin with random cell subsampling. It is
worthy noting that random cell subsampling can not only help dealing with the problem of cell
heterogeneity, additional information of cells can be incorporated into subsampling schema.
More specifically, in addition to the random subsampling using jackknife and bootstrap methods,
we can adapt a semi-random subsampling schema, if cells in an input matrix are sorted
according to pseudotime [63]. These cells can be subsampled using a pseudotime-guided
method, with which sorted cells are sampled along the pseudotime trajectory. In such a way, the
subsamples contain pseudotime information, and the multilayer scGRN constructed from these
subsamples will contain the pseudotime-series information. In machine learning, many
multilayer network analysis algorithms have been proposed [64-66]. With our pseudotime-series
scGRN data, these algorithms will be relevant and applicable. Second, regulatory relationships
between genes from scRNAseq data are difficult to establish, even though the data may
theoretically capture a complete picture of the regulatory gene landscape. We consider principal
component regression to stand out as a crucial method of building scGRNs. Principal
component regression significantly outperforms the other GRN construction algorithms in all
aspects of methodology metrics, including specificity, sensitivity, computational efficiency, and
the required minimum number of cells. Importantly, principal component regression explicitly
projects thousands of gene expression measurements into a low dimensional space to capture
much of the observed variation. Principal component regression, therefore, establishes the
relationship for each pair of genes after controlling for the most important background
interactions. Third, in scTenifoldNet, the tensor denoising procedure effectively smooths edge
weights across all networks in multilayer scGRNSs. Third, scTenifoldNet performs nonlinear
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manifold alignment to align two networks. As such, two networks can be contrasted directly, and
DR genes could be detected using distance in new coordinates of data in a low-dimensional
space.

We validate the power of scTenifoldNet using real data sets coming from various studies and
demonstrate that scTenifoldNet is sensitive to signals. Five real sScRNAseq data sets are
involved. These five data sets have one thing in common: they all have two sets of sSCRNAseq
data—one from a treated group and the other from a control/untreated group. More importantly,
in all five cases, we have sufficient prior knowledge about the biological system, from which the
data is collected. Therefore, we have hypotheses about what transcriptional changes are
expected to see before doing the analysis. For example, in the morphine response analysis, the
causal factor of transcriptional responses, i.e., the morphine stimulus, is known and thus, we
know what should be recovering through the analysis. Similarly, we had some clues in the
examples of cetuximab and fibroblasts about what transcriptional changes we might be able to
retrieve. By compiling all the findings from scTenifoldNet applications, we tested scTenifoldNet
and showed that scTenifoldNet provides findings that are precise, specific and relevant to the
biological systems and questions in the test. It is of significance to building a specific and
sensitive tool like scTenifoldNet for the purpose of molecular mechanism studies using
scRNAseq. This is because causal factors and their target genes remain unknown in many
biological systems studied. If this is the case, it is crucial to apply the sensitive approach like
scTenifoldNet, which may be in addition to the DE analysis, to unveil more gene candidates.
Only then will we be able to scrutinize identified genes further to learn the mechanisms behind
their actions in the whole system. We face such a challenge in many studies from unknown
factors that cause the disorder. It is therefore critical that we adopt tools such as scTenifoldNet,
instead of relying solely on conventional DE analysis, to tackle this big data analysis problem.

In summary, scRNAseq enables the study of cellular, molecular components, and dynamics of
complex biological systems at single-cell resolution. To unravel the regulatory mechanisms
underlying cell behaviors, novel computational methods are essential for understanding the
complexity in scRNAseq data (e.g., SCGRNSs) that surpasses human interpretative ability. We
anticipate that, when applied to real scRNAseq data, our machine learning workflow
implemented in scTenifoldNet, can help achieve breakthroughs by deciphering the full cellular
and molecular complexity of the data through constructing and comparing sScGRNs.

Methods

The scTenifoldNet workflow takes two sScCRNAseq expression matrices as inputs. The two
matrices are supposed to be obtained from the same type of cells of two samples, such as
those of different treatments or from diseased and healthy subjects. The purpose of the analysis
is to identify genes whose transcriptional regulation is shifted between the two samples. The
whole workflow consists of five steps: cell subsampling, network construction, network
denoising, manifold alignment, and module detection.

Cell subsampling

Instead of using all cells of each sample to construct a single GRN, we randomly subsample
cells multiple times to obtain a set of subsampled cell populations. This subsampling strategy is
to ensure the robustness of results against cell heterogeneity in samples. Subsampling of each
sample is performed as follows: assuming the sample has M cells, m cells (m < M) are
randomly selected to form a subsampled cell population. The process is repeated with cell
replacement for t times to produce a set of t subsampled cell populations.
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Network construction

For a given expression matrix, a principal component regression-based network construction
method [5] is adopted to construct scGRN. Principal component regression is a popular multiple
regression method, where the original explanatory variables are the first subject to a principal
component analysis (PCA) and then the response variable is regressed on the few leading
principal components. By regressing on M principal components (M « n, where n is the total
number of genes in the expression matrix), principal component regression mitigates the over-
fitting and reduces the computation time. To build an scGRN, each time we focus on one gene
(referred to as the target gene) and apply the principal component regression method, treating
the expression level of the target gene as the response variable and the expression levels of
other genes as the explanatory variables. The regression coefficients from principal component
regression are then used to measure the strength of the association of the target gene and
other genes and to construct the scGRN. We repeat this process n times, each time with one
gene as the target gene. At the end, the interaction strengths between all possible gene pairs
are obtained and an adjacency matrix is formed. The details of applying the principal component
regression method to a scRNAseq expression data matrix are described as follows.

More specifically, suppose X € R™*P? s the gene expression matrix with n genes and p cells.
The i row of X , denoted by X; € RP represents the gene expression level of the i gene in the
p cells. We construct a data matrix X_; € R®~DxP py deleting X; from X. To estimate the effects
of the other n — 1 genes to the i™ gene, we build a principal component regression model for X;.
First, we apply PCA to X”; and take the first M leading principal components to construct

Zt = (Z%,-,Z};) e RP*M where Z}, € RP is the m‘* principal component of X" ;,;m = 1,2, ..., M.
Mathematically, Z{ = X7, V!, where Vi € R®~D*M js the PC loading matrix for the first M leading
principal components, satisfying (Vi)TVi = I,,. Secondly, the principal component regression
method regresses X; on Z! and solves the following optimization problem:

pt = argmingicpm |1x; - Zi[’)i”;'

Then, &' = V!B' € R*! quantifies the effects of the other n — 1 genes to the i gene. After
performing principal component regression on each gene, we collect {&‘}~, together and
construct an n x n weighted adjacency matrix W of the gene-gene interaction network. The i™"
row of W is @', and the diagonal entries of W are all 0. Then we retain interactions with top a%
(=5% by default) absolute value in the matrix to obtain the scGRN adjacency matrix.

Tensor decomposition
For each of the t subsamples of cells obtained in the cell subsampling step, we construct a
network using principal component regression, as described above. Each network is
represented as a n X n adjacency matrix; the adjacency matrices of the t networks can be
stacked to form a third-order tensor T € R(»™*9_To remove the noise in the adjacency
matrices and extract important latent factors, the CANDECOMP/PARAFAC (CP) tensor
decomposition is applied. Similar to the truncated singular value decomposition (SVD) of a
matrix, the CP decomposition approximates the tensor by a summation of multiple rank-one
tensors [11]. More specifically, for our problem:

d

T~ Ty =Zxrar ob,oc,

r=1

where o denotes the outer product, a, € R", b, € R", and ¢, € R* are unit-norm vectors, and A,
is a scalar. In the CP decomposition, I is the denoised tensor of I, which assumes that the
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valid information of ¥ can be described by d rank-one tensors, and the rest part ¥ — I is
mostly noise.

We use the function cp in the R package ‘rTensor’ to do the CP decomposition. For each
sample, the reconstructed tensor I; includes t denoised scGRNs. We then calculate the
average of associated t denoised networks to obtain the overall stable network. We further
normalize entries by dividing them by their maximum absolute value to obtain the final scGRNs
for the given sample. For later use, denote the denoised adjacency matrices for the two
samples as W% and W?,.

Manifold alignment
After obtaining W% and W3d’, we compare them to identify the regulatory changes and associated
genes and modules. Instead of directly comparing the two n X n adjacency matrices, we apply
manifold alignment to build comparable low-dimensional features and compare these features
of genes between two samples, while maintaining the structural information of the two scGRNs
[19]. Manifold alignment is used here to match the local and no-linear structures among the data
points of Wi and Wﬂi’ and project them to the same low-dimensional space. Specifically, we use
% and Wfi’ to denote the pairwise similarity matrices obtained by applying the principal
component regression-based network construction method, and then denoising through tensor
decomposition on the two initial expression matrices, X and Y. These similarity matrices serve
as the input for manifold alignment to find the low-dimensional projections F* € R"*¢ and
FY € R™4 of genes from each sample, where d « n. In terms of the underlying matrix
representation, we use F* € R% and F” € R? to denote the i row of F* and F” that reflect the
features of the i gene in X and Y, respectively.

We note that W% and W2, may include negative values, which means genes are negatively
correlated. When the similarity matrix contains negative edge weights, the properties of the
corresponding Laplacian are not entirely well understood [67]. We propose two methods to deal
with this problem. The first method is to directly take the absolute value of W} and Wﬂi’ as the
similarity matrices, in which we regard that the highly-negative correlated genes also support a
strong functional relationship. In the second method, we add 1 to all entries

in W and Wii’, transforming the range of W} and Wii’ from [—1,1] to [0,2]. As a result, all original
negative relationships have a transformed value in [0,1) and all original positive relationships
have a transformed value in (1,2]. In this case, the projected features of two genes with a
positive correlation will be closer than those with a negative correlation. For convenience, we
still use W% and W?; to denote the transformed similarity matrices of two data sets.

Now we propose a specific manifold alignment method to find appropriate low-dimensional
projections of each gene. Our manifold alignment should trade off the following two
requirements: (1) the projections of the same i'" gene in two samples should be relatively close
in the projected space; and (2) if i" gene and j" gene in sample 1 are functionally related, their
projections F* and ij should be close in the projected space, and the same is true for sample 2.

We minimize the following loss function:

n n n
Loss(F*,FY) = xZ”a" - Fiy||§ + z |F* - ij||§ Wi + Z |
i=1

ij=1 ij=1

Fiy_F}'y”zWy'

where ¥, and WL’J’ denote the(i, j) entry of W% and W?, respectively. The first term of the loss
function requires the similarity between corresponding genes across two samples; the second
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and third terms are regularizers preserving the local similarity of genes in each of the two
networks. A is an allocation parameter to balance the effects of two requirements.

One way to minimize the loss function is by using an algorithm similar to Laplacian eigenmaps
[68], which requires the adjacency matrix to be symmetry, but in our case both W7 and WZ are
asymmetric. Notice that if we symmetrize W% and W by W* = %((Wﬁ)T + W) and WY =
%((Wz’)T +W}), and again denote W;; and W;’; as the (i, j) entry of W* and W, then the value

of the loss function won't be changed. Thus, minimizing the loss function based on the
symmetrized adjacency matrices, W* and W7, is equivalent to using the original adjacency
matrices, W% and Wfi’. Based on this observation, using linear algebra, we can write the loss

X
function into the matrix form as Loss(F*, F¥) = 2trace(FTLF), where: F = [::y] L= %(D -Ww),

2
w* =I

W = ¥ I/ZVV , and D is a diagonal matrix with D;; = ¥,; W;;. L is called a graph Laplacian
2

matrix. The default selection of 1 is 0.9 times the mean value of the row sums of W* and W”.
By further adding the constraint FTF = I to remove the arbitrary scaling factor, minimizing
Loss(F*, FY) is equivalent to solving an eigenvalue problem. The solution for F = [f3, f5,*, fal IS
given by d eigenvectors corresponding to the d smallest nonzero eigenvalues of L [69].

Determination of p-value of DR genes
X
With F = [iy] = |f1 f>, -+, f4] obtained in manifold alignment, we calculate the distance

d; between projected data points of two samples for each gene. One may declare significant
genes according to the ranking of d;’s. To avoid arbitrariness in deciding the number of selected
genes, we propose to use the Chi-square distribution to determine significant genes. Specifically,
djz is derived from the summation of squares of the differences of projected representations of
gene j for two samples, whose distribution could be approximately Chi-square. To adjust the
scale of the distribution, we compute the scaled fold-change defined as df - df/? for each

gene j, where d? denotes the average of d]-2 among all the tested genes. The scaled fold-

change approximately follows the Chi-square distribution with the degree of freedom df if the
gene does not perform differently in the two samples. By using the upper tail (P[X > x]) of the
Chi-square distribution, we assign the P-values for genes and adjust them for multiple testing
using the Benjamini-Hochberg (B-H) FDR correction [70]. To determine df, since the number of
the significant genes will increase as df increases, we use df = 1 to make a conservative
selection of genes with high precision.

Functional enrichment analyses

Functional enrichment analysis of gene sets was performed using Enrichr [32, 33], which is a
web-based, integrative enrichment analysis application based on more than 100 curated gene
set libraries. The test of enriched TF targets was performed using the ChIP-X enrichment
analysis (ChEA) [34] based on comprehensive results from ChlP-seq studies. Finally,
predefined gene sets from the REACTOME, BioPlanet and KEGG databases were tested for
the enriched functions using the pre-ranked Gene Set Enrichment Analysis (GSEA) [25].

Simulations of scRNAseq data and benchmarking of network methods

To test the performance of our workflow, we generated synthetic data sets using SERGIO, a
single-cell expression simulator guided by gene regulatory networks (GRNs) [71]. SERGIO
allows for the simulation of scRNAseq data while considering the linear and nonlinear influences
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of regulatory interactions between genes. SERGIO takes a user-provided GRN to define the
interactions and generates expression profiles of genes in steady-state using systems of
stochastic differential equations derived from the chemical Langevin equation. The time-course
of MRNA concentration of gene i is modeled by:

o0X:
% = Pi(0) — hix; () + g (W)

where x; is the expression of gene i, P; is its production rate, which reflects the influence of its
regulators as identified by the given GRN, 2; is the decay rate, g; is the noise amplitude in the
transcription of gene i, and a is an independent Gaussian white noise process. In order to
obtain the mRNA concentrations as a function of time, the above stochastic differential equation
is integrated for all genes as follows:

X = (Xide, + ft(Pi(t) — Nx; (D) ot + ftQi (\/ Pi(t)) oWy

The simulation was focused on testing and comparing the performance of principal component
regression and several other methods (SCC, MI, GENIE3) using sparse data without imputation.
The relationships between 100 genes were simulated as they belong to two major modules
containing 40 and 60 genes, respectively. Each module is under the influence of one TF. We
used the steady-state simulations to synthesize data to generate expression profiles of 100
genes, according to the parameter setting for two modules.

For each one of the tested methods, we randomly select n = {10,50,100,500,1000,2000,3000}
cells from the simulated data for ten times and build ten scGRN. For each n, relevance
measurements (accuracy and recall) were evaluated for each of the ten networks using the
match of the sign of the relationships between genes to compute the following formulas:
Accuracy = (TP +TN)/(TP +TN + FP + FN), and Recall = TP/(TP + FN), where T, P, F,
and N stands for true, positive, false and negative, respectively. For the Ml and GENIE3
methods that only provide positive values, the median value was used as the center point and
then the values were scaled to [-1,1] by dividing them over the maximum absolute value.

Code availability

scTenifoldNet has been implemented in R. The source code is available at
https://github.com/cailab-tamu/scTenifoldNet, which also includes the code of the benchmarking
method, auxiliary functions, and example datasets (including the simulated data used to
generate Fig. 2). The scTenifoldNet R package is available at the CRAN repository
https://cran.r-project.org/web/packages/scTenifoldNet/.

Acknowledgments

This research was funded by Texas A&M University 2019 X-Grants and the NIH grant
R21AI1126219 for J.J.C.

References

1. Margolin, A.A., et al., ARACNE: an algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context. BMC Bioinformatics, 2006. 7 Suppl 1: p. S7.

2. Huynh-Thu, V.A_, et al., Inferring regulatory networks from expression data using tree-
based methods. PLoS One, 2010. 5(9).

3. Marbach, D., et al., Wisdom of crowds for robust gene network inference. Nat Methods,

2012. 9(8): p. 796-804.

24


https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.12.931469; this version posted July 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4. Friedman, N., et al., Using Bayesian networks to analyze expression data. J Comput Biol,
2000. 7(3-4): p. 601-20.

5. Gill, R., S. Datta, and S. Datta, A statistical framework for differential network analysis
from microarray data. BMC Bioinformatics, 2010. 11: p. 95.

6. Todorov, H., et al., Network Inference from Single-Cell Transcriptomic Data. Methods
Mol Biol, 2019. 1883: p. 235-249.

7. Aibar, S., et al., SCENIC: single-cell regulatory network inference and clustering. Nat
Methods, 2017. 14(11): p. 1083-1086.

8. Fiers, M., et al., Mapping gene regulatory networks from single-cell omics data. Brief
Funct Genomics, 2018. 17(4): p. 246-254.

9. Chen, S. and J.C. Mar, Evaluating methods of inferring gene regulatory networks

highlights their lack of performance for single cell gene expression data. BMC
Bioinformatics, 2018. 19(1): p. 232.

10. Pratapa, A., et al., Benchmarking algorithms for gene regulatory network inference from
single-cell transcriptomic data. bioRxiv, 2019: p. 642926.
11. Rabanser, S., O. Shchur, and S. Ginnemann Introduction to Tensor Decompositions

and their Applications in Machine Learning. arXiv e-prints, 2017.

12. Beasley, W.H. and J. Rodgers, Resampling methods, in The Sage Handbook of
Quantitative Methods in Psychology, R.E. Millsap and A. Maydeu-Olivares, Editors. 2019,
Sage. p. 60-71.

13. Kendall, M.G., A course in multivariate analysis. Griffin's statistical monographs &
courses,. 1957, New York,: Hafner Pub. Co. 185 p.

14, Baburaj, M. and S.N. George, Reweighted Low-Rank Tensor Decomposition based on t-
SVD and its Applications in Video Denoising. arXiv, 2016. 1611: p. 05963.

15. Yuan, L., et al., High-dimension Tensor Completion via Gradient-based Optimization
Under Tensor-train Format. arXiv:1804.01983, 2018.

16. Battaglino, C., G. Ballard, and T.G. Kolda, A Practical Randomized CP Tensor
Decomposition. arXiv:1701.06600, 2017.

17. Moon, K.R., et al., Manifold learning-based methods for analyzing single-cell RNA-
sequencing data. Current Opinion in Systems Biology, 2018. 7: p. 36-46.
18. Roscher, R., F. Schindler, and W. F, High dimensional correspondences from low

dimensional manifolds: an empirical comparison of graph-based dimensionality
reduction algorithms, in Proceedings of the 2010 international conference on Computer
vision - Volume part Il. 2011, Springer-Verlag: Queenstown, New Zealand. p. 334-343.

19. Vu, H.T., C.J. Carey, and S. Mahadevan, Manifold warping: manifold alignment over
time, in Proceedings of the Twenty-Sixth AAAI Conference on Atrtificial Intelligence. 2012,
AAAI Press: Toronto, Ontario, Canada. p. 1155-1161.

20. Wang, C. and S. Mahadevan, A General Framework for Manifold Alignment, in AAAI Fall
Symposium: Manifold Learning and Its Applications. 2009, Association for the
Advancement of Artificial Intelligence. p. FS-09-04.

21. Nguyen, N.D., I.K. Blaby, and D. Wang, ManiNetCluster: a novel manifold learning
approach to reveal the functional links between gene networks. BMC Genomics, 2019.
20(Suppl 12): p. 1003.

22. Diaz, F. and D. Metzler, Pseudo-aligned multilingual corpora, in Proceedings of the 20th
international joint conference on Artifical intelligence. 2007, Morgan Kaufmann
Publishers Inc.: Hyderabad, India. p. 2727-2732.

23. Wang, C. and S. Mahadevan, Manifold alignment using Procrustes analysis, in
Proceedings of the 25th international conference on Machine learning - ICML '08. 2008,
ACM: Helsinki, Finland. p. 1120-1127.

24, Wilson, R.C. and P. Zhu, A study of graph spectra for comparing graphs and trees.
Pattern Recognition, 2008. 41(9): p. 2833-2841.

25


https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.12.931469; this version posted July 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

available under aCC-BY-NC-ND 4.0 International license.

Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43):
p. 15545-50.

Rodgers, J.L., The Bootstrap, the Jackknife, and the Randomization Test: A Sampling
Taxonomy. Multivariate Behav Res, 1999. 34(4): p. 441-56.

Avey, D, et al., Single-Cell RNA-Seq Uncovers a Robust Transcriptional Response to
Morphine by Glia. Cell Rep, 2018. 24(13): p. 3619-3629 e4.

Kharchenko, P.V., L. Silberstein, and D.T. Scadden, Bayesian approach to single-cell
differential expression analysis. Nat Methods, 2014. 11(7): p. 740-2.

Goodsell, D.S., The molecular perspective: morphine. Oncologist, 2004. 9(6): p. 717-8.
Tso, P.H. and Y.H. Wong, Molecular basis of opioid dependence: role of signal
regulation by G-proteins. Clin Exp Pharmacol Physiol, 2003. 30(5-6): p. 307-16.
Jalabert, M., et al., Neuronal circuits underlying acute morphine action on dopamine
neurons. Proc Natl Acad Sci U S A, 2011. 108(39): p. 16446-50.

Kuleshov, M.V, et al., Enrichr: a comprehensive gene set enrichment analysis web
server 2016 update. Nucleic Acids Res, 2016. 44(W1): p. W90-7.

Chen, E.Y., et al., Enrichr: interactive and collaborative HTML5 gene list enrichment
analysis tool. BMC Bioinformatics, 2013. 14: p. 128.

Lachmann, A., et al., ChEA: transcription factor regulation inferred from integrating
genome-wide ChIP-X experiments. Bioinformatics, 2010. 26(19): p. 2438-44.

Krezel, W., et al., Impaired locomotion and dopamine signaling in retinoid receptor
mutant mice. Science, 1998. 279(5352): p. 863-7.

Tafti, M. and N.B. Ghyselinck, Functional implication of the vitamin A signaling pathway
in the brain. Arch Neurol, 2007. 64(12): p. 1706-11.

Morikawa, H. and C.A. Paladini, Dynamic regulation of midbrain dopamine neuron
activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience, 2011. 198: p. 95-
111.

Johnson, S.W. and R.A. North, Opioids excite dopamine neurons by hyperpolarization of
local interneurons. J Neurosci, 1992. 12(2): p. 483-8.

Laakso, A., et al., Experimental genetic approaches to addiction. Neuron, 2002. 36(2): p.
213-28.

Kim, K.S., et al., Adenylyl cyclase type 5 (AC5) is an essential mediator of morphine
action. Proc Natl Acad Sci U S A, 2006. 103(10): p. 3908-13.

Korostynski, M., et al., Morphine effects on striatal transcriptome in mice. Genome Biol,
2007. 8(6): p. R128.

Kagohara, L.T., et al., Integrated single-cell and bulk gene expression and ATAC-seq
reveals heterogeneity and early changes in pathways associated with resistance to
cetuximab in HNSCC-sensitive cell lines. Br J Cancer, 2020.

Blick, S.K. and L.J. Scott, Cetuximab: a review of its use in squamous cell carcinoma of
the head and neck and metastatic colorectal cancer. Drugs, 2007. 67(17): p. 2585-607.
Harding, J. and B. Burtness, Cetuximab: an epidermal growth factor receptor chemeric
human-murine monoclonal antibody. Drugs Today (Barc), 2005. 41(2): p. 107-27.
Vincenzi, B., et al., Cetuximab: from bench to bedside. Curr Cancer Drug Targets, 2010.
10(2): p. 80-95.

Herbst, R.S. and D.M. Shin, Monoclonal antibodies to target epidermal growth factor
receptor-positive tumors: a new paradigm for cancer therapy. Cancer, 2002. 94(5): p.
1593-611.

Burtness, B., The role of cetuximab in the treatment of squamous cell cancer of the head
and neck. Expert Opin Biol Ther, 2005. 5(8): p. 1085-93.

26


https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.12.931469; this version posted July 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

available under aCC-BY-NC-ND 4.0 International license.

Little, D.R., et al., Transcriptional control of lung alveolar type 1 cell development and
maintenance by NK homeobox 2-1. Proc Natl Acad Sci U S A, 2019. 116(41): p. 20545-
20555.

Desai, T.J., D.G. Brownfield, and M.A. Krasnow, Alveolar progenitor and stem cells in
lung development, renewal and cancer. Nature, 2014. 507(7491): p. 190-4.

Tompkins, D.H., et al., Sox2 activates cell proliferation and differentiation in the
respiratory epithelium. Am J Respir Cell Mol Biol, 2011. 45(1): p. 101-10.

Franzen, O., L.M. Gan, and J.L.M. Bjorkegren, PanglaoDB: a web server for exploration
of mouse and human single-cell RNA sequencing data. Database (Oxford), 2019. 2019.
Hagai, T., et al., Gene expression variability across cells and species shapes innate
immunity. Nature, 2018. 563(7730): p. 197-202.

Korsunsky, 1., et al., Fast, sensitive and accurate integration of single-cell data with
Harmony. Nat Methods, 2019. 16(12): p. 1289-1296.

Li, M., et al., The Rela(p65) subunit of NF-kappaB is essential for inhibiting double-
stranded RNA-induced cytotoxicity. J Biol Chem, 2001. 276(2): p. 1185-94.
Kopitar-Jerala, N., The Role of Interferons in Inflammation and Inflammasome Activation.
Front Immunol, 2017. 8: p. 873.

Gantier, M.P. and B.R. Williams, The response of mammalian cells to double-stranded
RNA. Cytokine Growth Factor Rev, 2007. 18(5-6): p. 363-71.

Levy, H.B., LW. Law, and A.S. Rabson, Inhibition of tumor growth by polyinosinic-
polycytidylic acid. Proc Natl Acad Sci U S A, 1969. 62(2): p. 357-61.

Zhou, Y., et al., Human and mouse single-nucleus transcriptomics reveal TREM2-
dependent and TREMZ2-independent cellular responses in Alzheimer's disease. Nat Med,
2020. 26(1): p. 131-142.

Oakley, H., et al., Intraneuronal beta-amyloid aggregates, neurodegeneration, and
neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential
factors in amyloid plaque formation. J Neurosci, 2006. 26(40): p. 10129-40.

Tan, M.S., J.T. Yu, and L. Tan, Bridging integrator 1 (BIN1): form, function, and
Alzheimer's disease. Trends Mol Med, 2013. 19(10): p. 594-603.

Holler, C.J., et al., Bridging integrator 1 (BIN1) protein expression increases in the
Alzheimer's disease brain and correlates with neurofibrillary tangle pathology. J
Alzheimers Dis, 2014. 42(4): p. 1221-7.

Ximerakis, M., et al., Single-cell transcriptomic profiling of the aging mouse brain. Nat
Neurosci, 2019. 22(10): p. 1696-1708.

Kester, L. and A. van Oudenaarden, Single-Cell Transcriptomics Meets Lineage Tracing.
Cell Stem Cell, 2018. 23(2): p. 166-179.

Zheng, X., Y. Huang, and X. Zou, scPADGRN: A preconditioned ADMM approach for
reconstructing dynamic gene regulatory network using single-cell RNA sequencing data.
2019: p. 799189.

Ma, X., P. Sun, and G. Qin, Identifying condition-specific modules by clustering multiple
networks. IEEE/ACM Trans Comput Biol Bioinform, 2017. 15(5): p. 1636-1648.

Ma, X.K., D. Dong, and Q. Wang, Community Detection in Multi-Layer Networks Using
Joint Nonnegative Matrix Factorization. leee Transactions on Knowledge and Data
Engineering, 2019. 31(2): p. 273-286.

Chen, Y.X., S.Z. Khong, and T.T. Georgiou, On the definiteness of graph Laplacians
with negative weights: Geometrical and passivity-based approaches. 2016 American
Control Conference (Acc), 2016: p. 2488-2493.

Belkin, M. and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation, 2003. 15(6): p. 1373-1396.

von Luxburg, U. A Tutorial on Spectral Clustering. arXiv e-prints, 2007.

27


https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.12.931469; this version posted July 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

70. Benjamini, Y. and Y. Hochberg, Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J Roy Statist Soc Ser B (Methodological), 1995.
57: p. 289-300.

71. Dibaeinia, P. and S. Sinha, A single-cell expression simulator guided by gene regulatory

networks. bioRxiv, 2019: p. 716811.

28


https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

scRMAseq data

(r=m, m<my)

Adjacency matrices
(m=nxf)

s

(Sample 1) A B ( :
[ ] 2x(n=nxf)
Randurr_1 or MNetwark CANDECOMPY
{n=my gene-cell matrix) pseudotime- construction L» PARAFAC (CP)
—F gu'dl‘:d e PC — tensor
o ce — —* regression — decomposition
aample 2) subsampling
(n=ms gene-cell matrix)
(r=m, m<mjz) rxnxt)
[ner]‘ D [:2 ¢ I(m} E
t
Ct Cz C i
& / Honlinear = differential
5 e ifferentia -
O + 0t .. + O __, manifold / 5 1 “—— regulaon —» enrichment
b bz b; alignment // o - test analyses
| g _ GO, GSEA,
) List of genes KEGG, enrichr
a az ar ranked by distance
r components used to reconstruct networks !

Denoised weight-
averaged networks

Aligned network
manifold

Distance between

each gene's two

projections onthe
manifald



https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

Accuracy

B m.vn.u|m-c.zs gfmmlvn.gum-o.n .Au:\rm'n.ﬂlﬁr.cd"-\}.ﬂ : m.zm.vn.gum-o.n - Amnq-- u:9|n:c.u-.o‘z1 AQCUFECY = 09 | REO&“ = 059 Qriginal VS Qriginal
0.80- AR T R noaf .- e 5 ' bers C
E F3a ::;IIFH Y e =y * :‘-i-- K B : od—
0,75~ } i % ol } «‘H
W o
0.70— z
I ———— i =
0.65- / A1 i i— ¢ g
d &
g/i heoracy Ancoracy = .55 | Recal = 0.37 Acogracy = 054 | Recal = 035 g
0.60- %‘ T R | W - £
¥ PR L e H H [ B
i - .k w -
0.5 pLEY
" PCR & Ml s i
0.50- * SCC  + GENE3I TR o
T T T 1 T T T i « P<005
0 500 1500 2500 I T T T T
Number of Cells -2 -1 0 1 2
Normal Quantiles
Aeowracy = 0.9 | Recal = 0.78 Arcuracy = 057 | Recal = 0.65 Ascuracy = (.58 | Recall = 0.8 Arcuracy = 057 | Recall = 0.8 ..
= Original vs Perturbed
1.0 S — . i+ ] S
i— ] il
/ iR
0.8- a—nm" o=
" . 8
0.6 /i e ] i § |
/ Anciracy = 097 | Rncal = 0.7% Ancracy = 088 | Rncal = 0.72 Anceracy = 0098 | Rscal = 08T 0
- o " ©
& Ee FiECAER e ok |
0.4— __,t—-—'—"_'_'_I gy ey - - Ee
| - im0 niiE 3
i " PCR 4 MI ST
0.27% * SCC  * GENIE3
T T T T T T i .
0 500 1500 2500 -‘ |

Number of Cells ' = ' 2 4 0 i 2
Mormal Quantiles


https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1004
D Morphine Opioid Ppp3ca
addiction signaling
P =192e-05 P =199e-06
i e T T o L LLLLIE T
w34 l.-‘,,-f;'ar . 9 ] o IJI i "
E 02 .‘\f 3 9 E | ;;..,.' ", iL-l Pea
734 ‘g ard A\‘\\‘ .g 11 W
wo| \ W '
e it o0t - F'cp4?1
o 2000 4000 B000 BOOD 1] 2000 4000 G000 BOOD
Rank Rank
> GABA A and B G-protein
2 receptor activation signaling pathways
o 5 T P=1.99e-06 P = 1.99-06
r_f-"-':f.‘l":f-._'u'P z .;:;-'517-9g % TS e G4t - - ==~ e o e % RESpr
o = .-\\‘ -\ e I f W
= r N | - P ',
% " E ™ " _":'.\.ﬁ.\hl: \\\'\\ E | ;:‘;‘ J .'e \ Akaps
B E i' L \\\ E’ 025 4 " SLC2432
Q 5 021 { N 5., :; s i
= s |4 e T Atp2a2
g o0 TH———H X —
I (1} 2000 4000 H000 00 1]} 2000 4000 (] 00
Rank Rank
Athl:_.ﬂ
25+ Spock3 qupﬁ;l Pppirib
Arpp21 ** "Gpras Arpp19
. Rasd2 Eif1 Phactrl Rgs9 Calm?2
3110035E14Rk ooty Gringb Cok Penk . +Adcy5 Gnal
Akap9 “g: oo Gabig . mtRnrf*Ubb Scndb Actd
Rtn1 Samda Chst15,.# mt-Cytb mt-Nd1- Spred1
Synz D430041D05Rik Ahsal o Hspadl _ mt-Cot mtNd2 .o
- 0+ -- " "D3Bwg0562e- 97 Cpe Chn1  Scn8a Nrn1
Ll ! ! Nmxn1 . Lamp1 Ramp1 Diras2
= 0 1 2 3 4
w —logig (Expected P-values)
1
-
Prkcb
E Vsnl1 4 Rasd2

Gabrg1

Expression Leval
[Expression Leval
= - .
Expression Level

€1 G2 C3 C& M1 M2 M3 Ma

Sample



https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

bioRxiv preprint doi: https://doi.org/1G4E@/2020.02.12:931469; this version posted July 21, 2020. The copyright holder for this preprint (whi¢
uthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

was not certified by peer review).is tl
available under aCC-BY-NC-ND 4.0 Internationaklicense.
EGFR Proliferation

Invasion and

Metastasis
signal Transduction Sonal
‘/- M PIIK/AKT, JAK/STAT Transduction
Apoptosis l T \
Angiogenesis
EGFR// Apoptosis
Cell Invasion and ’
Proliferation pjetastasis S
Cetuximab &
@® EGF
@ ~PBS @2 CETUXIMAB

Angiogenesis

t-SNE 2

C 'DUSPf:l

hy
de

Expression Level
Expression Level
Expression Level

Cetuximab Cantrol

Sample

Cetuximahb
Sample

Cantrol Caluximab

Sample

Contrel

D

~logyg (Observed P-values)

304

204

>

ABL2 PDCD6 ATPSIF1 — TRAPPG1HSP90AB1

EGFR1 pathway Cell Cycle Checkpoints ~ G1 Cell Cycle Arrest EEF1A1
P=262e-05 P=577e-05 P = 0.00848
A padrale btk o e L "’_:1:_ """"""" 05:' """" e R e S %
e VAN . HMGA1
[ ol "_ o3 by [ -,
8 | ; 8|/ § oo
b f EH { s g 01 f
&' ha e 5 J
B | I : 7 LB LU
1] 3000 BOO0 SO00 * [i] i) BOOO S0
Rank Rank
ACTG1
PHLDA1* *EEF1D
NDUFS5  FOSL1 w
COASY ATPSPRRHGAP28180rf3C0OX6C SsEA2? TNFRSF12A HBEGF
TXN HNRNPA1 = AVPH  MIF GPRCS5A COTL1 EEF1B2 cyTOR
NDUFA13 STK17A . AP1S1 RBX1 ASAP1 SRSFS MYC, » DDIT3 yBx1
F3 HERPUD1 ATP5MFPPP1R15A CDV3 SH2D3A AKAP12,. PAWR EIF4A2
WDR830S ATP5MD - S100A11" POLR2F AREG RND3 «*PTP4A1 |ER2 MIR4435-2HG
CLDN1 OTUD6B-AS1HSPE1 PFDN4. NDUFB3. DDX21  PiM3#* ERRFI1 EEF2 SLC38A2
FOSL2 CTNNAL1 CCNB1IP1 SOX4~. POLR1D | SLC25A5 .« I TGA3 LUC7L3 - AHCY GAPDH

SEM1 CITED4 SEC81B TRAF4. CNPY;LHFTL UQCRB
NEAT1 ATPSMPL s £
CLDN4 CFLE”: SMIM13 - HSPAS N S TXNIP-SNRPE

DKK1

NDUFS&PM1G TAF1D METRN VAMP8 VDAC1T BACH1
HSPA1A P4HB DYNLT1 SNRNP35 IMP3  H3F3A ELL2

DUSP4AMARCKSLRICTOR PROSER2

FERMT2 MAFF- £tV T
TPM4 TMSB4X

EREG HDGF MRPL51

NME4

1

2
—logyg (Expected P-values)

3

TYMS



https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

B

Y

t-SNE 2

Expression Level

D

i itps-//doi-ergli0,1101/2020.02.12.931469 {his yers] July 21,2020 Th ight holder for thi int (which Cd24a
i%ld/tl])t;p; 'r?(Iaeirgijj'i§§ll-:|elauthor/funlder, vz\ll-ﬁo rﬁfk@éﬁrs bi[())os’t&d aJIlijc}(,ense to di gTIa)s3 t%%pgrrtlegprtint?n S{erg(re'ruiltsy.p Irte ig”gggé i PUlmonary alveolar
T e‘ " ‘-._I_Iavailable under aCC-BY-NC-ND 4.0 International licens type | CE”S
|I e AT ll J 1' P = 6.38¢-19
» | b y | L | || 0.8 -"__“r’?\_\_\ __________________ *Clu
{“ \ AT2 -".-" £“ .f\ / I ) e Muc1
< T A . \ g 1004 6 | f . *
~ S/ z N Stard10
H-.--\'"-- — _,-—-‘/ g I \\\
Nkx2-1 | A Glgenes . 5] 1.7 Glul
| 2 B
| =
' AT1 marker genes S 5 ww  am e oo Fxyd3
o rank * astim
o
> Gl tract Bag1 «Eeflat
ﬁ P=5.31e-08 Atp1b_|1_* .
O JFeees e D Ta e Xnip
o G v ,F"'W\‘-.w. EIf3 Csr‘_’fﬁ* Tspan
o& g g 4 \ Sepp‘lﬂﬁ*hlr?f‘}.’
3:3" ? A N | G oz Lurap1l . '
{'3:? o] e : Pabpci,”Gnba2!1
i ,""y%.-;;,’@’- E}q oo £, Smimé Eef2
p wb P $ e - £
20 4 gw‘%&i ok ¥ %, i Cox7a2l
L g }'.-U’Itx_ 3, s ¥ N -\; 001 Fau_Tpt1
o w . Mﬁ' 0 2000 4000 6000 8000 Eef1b2’
’ oy = Rank o
s = . g tiog Atpif1 * Eif3f
i Flohe ‘; e _“""ﬁ % .é,: <1 0810040J01RIK
o RV T A A O S "l SN SO
.8 o The L X ! . . : :
‘& B (W 2 o "'i 0 : 3 : 7
?p . cﬁc‘- . —logyp (Expected P-values)
'l= .‘-rﬁ * it :1 ‘ﬁ
Xk ot RS
AR 74 v,oiae b 3
s - ot Y "a E ' i
-20 1 { “.' T N\ . o Igfbp7 Stmn1 Tinagl1
et . ¥ "
ven’ a0 o lcam1
fake Sfta
) Sftpb
401 k.
] ] ] I
-20 0 20 40
t-SNE 1 /e
p1
4 :
'@ E a4 SﬂpC ‘I; Gprcsa,__A"Fbln5
g | 8
01 0 ’
= = R W % " NKX2-1 WT  Lipap1 NKX2-1 KO
Sample Sample Sample


https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

D 1251

11

A Interferon alpha/beta Sob2 - =0
signaling GBP1 8 | ‘
T P =5.548.06 ZC3HAV1 WARS <
~_PolyllC_. T R e B * S -
Acti'l'ﬂtﬁd. -)a;l;;:', - 100 4 @ 0.6 [ \\.‘-.‘\- BBCS* EGR1 % g
Fibroblast) 23 | _ V. g || S ISG15 el
bioRxiv preprint doi: https://doi.org/10.1101/20 12:12.¢ 9; this version posted July 21, 2020. The copyright holder for this preprint fivhich ~, ¥ «w
was not certified by peer review) is the aUt'I b/I g g'\rlacl:nted BI%RI)#V a Ilqensclelpo display the preprint in perpetuity. It is maj Y HLA'Q ZFP36 g -
| avallable un A o 2 d ternational license.
B, T - £ PPP1R15A Z 9
" A Cytokines .+ A B b BN JUNB * IFIB -
A .. ' e ] = 0 2000 4000 6000 I 8000 . DN o o adat-
B U a Rank APOL2 | S N — =T
5 ’ = ) & 0 2000 4000 6000
\ : Translation HLA-A RPS12 (CPM)
" P = 1.24e-05 IER3 o
Resting Fibroblast ! — = = = = = == - # S _|
= 50+ Y - d B p=-0.05
&oa ;7 041 r’ W SAT1 —
i 2 g F \‘..
.’ | ‘E 0.3 f ™ :E"‘ §
Bozy / NFKBIA 5E
E g il NNMT 3
. 25 4 w J- N =
. o i FN1 Z o
o ooty Dy s 23
| E JCHS 0 2000 4000 6000 8000 MEG3 PLEKHA4 i -
g e 4"”{} g Rank NEAT1 “COL1AT | "
25 T ‘ﬁ = -.“.‘.l L&:: l% EEF1A1 S0CSs1 o— I : l
5 "i( "ﬂ. by T ,'s: . '.1“ 01 - - - ——————————————————————— . SERFZ oo 0 1000 3000 5000
O WY ,P"“‘ P) RPS12 (CPM)
.= '# '.:::: i{. "*J. .I or " T # 0 1 2 é 4
(Y] 3~ e t';"' "- ‘,‘E .;*. ( :{:l::"ft'. 'G ~logyg (Expected P-values)
w - A MR ) "-:‘qq‘-
Z 01 Sph - Hoal FEE
D RO S AR D e E
I R
[ ] b'. .q‘ - o ..~
4}“":?‘!‘-;.&:: £ S CLICT
thtedg ¢ w e Fhes s b A
ool '-"-"',.: > ~ ) MYL12A
-25 - B2 f 8 by SF, 0 aKDA
5 ol {0 TR _ ENO1 )\ SKP1
R w,e oy *{ '\g_ EHIS (
 RERERY )
“ -
. 2 » ‘ I o
' ' : ' y /H
-40 -20 0 20 40 | A “ / =
t-SNE 1 L& :“1\ |" //( LGALS3
TPI 1& E\ 4 f_______.f---""'-f
( : ' ANXAZ _ >rApPTMAA
NFKBIA SOD2 ~

I
L

Expression Level
Expression Level
i
Expression Level
L%

Unstimulated Stimulated
Sample

L..lnslln:lu[ated' $1|rnijllated

Sample

Unshmulated 51|rnl.i|laled
Sample

Control

dsRNA-treated


https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

A D

i i Zdhhct7:
bioRxiv prepyidigar: httpsT/doi. .1184/2020.08j¢ 223 6%t sion posted July 21, 2020. The copyright holder for this preprint|(which Ir]tegrl_n Serotomn HTR1 grOUp
was notgertified by peer review) is the thor/fgdgﬁg@;lw g granted broRxivaitensétodisplayth@meptint in perpetuity. It is made 5|gnallng pathway and FOS paihway
avahabl FCCEA D4.0/Internyional license. P = 0.000361 P = 0.00035
s Tau aggregaton | Fee------- Ll LT E EREt CEEEE T
0.34 0 0.6 1 M ™
z z N
A FOS pathway ‘?3 oo | § 22l
A clutamate accumulation 25 & £
g o [\ \ 2% 15
& & L ETRTTARTTEA B e
= 5 ey 0 1000 2000 3001 0 000 2000 300
% Rank Rank
WT mouse brain SXFAD mouse brain Neuronal cell death 'g? Glutamate neurotrans-
o mitter release cycle
o P=
E 5{} i O i, :.‘-' ““““““““““
B AR
8] g %1 N
= o hi1
50 1 ';_ ozl E
M = 5o
» = A
| (=
WD & . Abhd17b
- -
' i . = e ;
25 0 000 Rank 2000 300 R*.Chy‘l
25 1 . . "". s . " Lysh  Stmn2
-5 s 2.7 g ﬂ ’ lcam5 Rhbdd2 Tjp1
. é g PO e . Y Rgl1 Mark2 Nrbp2
e .\fn . M SePe_ o . ) )" o M A Gmcgftﬂ**** ’ : Smarcd1
LLJ gﬁﬁ 3 %rt.('f-' 2 o o8 o Ndfip1
R WG ST oy I Fa
@
et

251 gﬁf‘i-t AR, A

'S
v

i
5

B
A

Expression Level
Expression Level
Expression Level

(=3
i



https://doi.org/10.1101/2020.02.12.931469
http://creativecommons.org/licenses/by-nc-nd/4.0/

