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Abstract 

Assigning new sequences to known protein families and subfamilies is a prerequisite for many 

functional, comparative and evolutionary genomics analyses. Such assignment is commonly achieved 

by looking for the closest sequence in a reference database, using a method such as BLAST. However, 

ignoring the gene phylogeny can be misleading because a query sequence does not necessarily belong 

to the same subfamily as its closest sequence. For example, a hemoglobin which branched out prior 

to the hemoglobin alpha/beta duplication could be closest to a hemoglobin alpha or beta sequence, 

whereas it is neither. To overcome this problem, phylogeny-driven tools have emerged but rely on 

gene trees, whose inference is computationally expensive. 

Here, we first show that in multiple animal datasets, 19 to 68% of assignments by closest sequence 

are misassigned, typically to an over-specific subfamily. Then, we introduce OMAmer, a novel 

alignment-free protein subfamily assignment method, which limits over-specific subfamily 

assignments and is suited to phylogenomic databases with thousands of genomes. OMAmer is based 

on an innovative method using subfamily-informed k-mers for alignment-free mapping to ancestral 

protein subfamilies. Whilst able to reject non-homologous family-level assignments, we show that 

OMAmer provides better and quicker subfamily-level assignments than approaches relying on the 

closest sequence, whether inferred exactly by Smith-Waterman or by the fast heuristic DIAMOND. 

OMAmer is available from the Python Package Index (as omamer), with the source code and a 

precomputed database available at https://github.com/DessimozLab/omamer. 

Introduction 

Assigning new sequences to known protein families is a prerequisite for many comparative and 

evolutionary analyses (Glover et al., 2019). Functional knowledge can also be transferred from 

reference to new sequences assigned in the same family (Gabaldón and Koonin, 2013). 
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However, when gene duplication events have resulted in multiple copies per species, multiple 

“subfamilies” are generated, which can make placing a protein sequence into the correct subfamily 

challenging. Gene subfamilies are nested gene families defined after duplication events and organized 

hierarchically into gene trees. For example, the epsilon and gamma hemoglobin subfamilies are 

defined at the placental level, and nested in the adult hemoglobin beta subfamily at the mammal level 

(Opazo et al., 2008). Both belong to the globin family that originated in the LUCA (last universal 

common ancestor of cellular life). 

Gene subfamily assignment is commonly achieved by looking for the most similar (“closest”) sequence 

in a reference database, using a method such as BLAST or DIAMOND (Altschul et al., 1990; Buchfink et 

al., 2015), before assigning the query to the subfamily of the closest sequence identified. For example, 

EggNOG mapper uses reference subfamilies from EggNOG to functionally annotate millions of 

unknown proteins of genomes and metagenomes (Huerta-Cepas et al., 2017, 2019). Briefly, each 

query is assigned to the most specific gene subfamily of its closest sequence, inferred using DIAMOND, 

with functional annotations then transferred accordingly. 

 
Fig. 1. The closest sequence to a query does not necessarily belong to the same subfamily. This figure 

conceptualizes the four possible closest sequence locations relative to the query. On each tree, the true position 

of the query is indicated by a dashed branch, while its closest sequence in the family is indicated by a star. The 

circle represents a duplication event leading to two subfamilies depicted as color boxes. 

 

However, ignoring the protein family tree can be misleading because a query sequence does not 

necessarily belong to the same subfamily as its closest sequence (Fig. 1). For instance, if the query 
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branched out from a fast evolving subtree, its closest sequence might not belong to that subtree, but 

to a more general subfamily, or even not be classifiable in any known subfamily (Fig. 1. B). Or, in case 

of asymmetric evolutionary rates between sister subfamilies, the closest sequence might belong to a 

different subfamily altogether (Fig. 1. C). The prospect of observing these two scenarios is sustained 

by the long-standing observation that duplicated proteins experience accelerated and often 

asymmetric evolution (Conant and Wolfe, 2008; Sémon and Wolfe, 2007). 

Moreover, the closest sequence to the query can belong to an over-specific subfamily even without 

any departure from the molecular clock in the family tree (Fig. 1. D). Such cases may occur 

stochastically when the query branched out before the emergence of nested subfamilies. Indeed, each 

protein descending from the query divergence has, all else being equal, the same chance of being the 

closest sequence to the query. Since duplications are common in evolution (Conant and Wolfe, 2008), 

finding such nested subfamilies as close relatives to the query divergence is expected to be common. 

To avoid such errors, protein subfamily assignment tools relying on gene trees have been proposed 

(Schreiber et al., 2014; Tang et al., 2019). In short, these start by assigning queries to families with 

pairwise alignments against Hidden Markov profiles of reference families. Then, fine-grained 

assignments to subfamilies are performed with tree placement tools, which typically attempt to graft 

the query on every branch of the tree until maximizing a likelihood or parsimony score (Barbera et al., 

2018). However, gene tree inference is computationally expensive and therefore not scalable to the 

exponentially growing number of available sequences. 

As a more scalable alternative to gene trees, the concept of hierarchical orthologous groups (HOGs) 

(Altenhoff et al., 2013) provides a precise definition of the intuitive notion of protein families and 

subfamilies. Each HOG is a group of proteins descending from a single speciation event and organized 

hierarchically. Moreover, they collectively provide the evolutionary history of protein families and 

subfamilies, like gene trees. While the oldest HOG in the family hierarchy (“root-HOG”) is the family 

itself, the other nested HOGs are its subfamilies. Thus, HOGs up to 100,000 members and covering 

thousands of species are available in large-scale phylogenomic databases (Altenhoff et al., 2018; 

Huerta-Cepas et al., 2019; Kriventseva et al., 2019). 

Here, we first demonstrate on three animal genomes that 19 to 68% of assignments by closest 

sequence go to the incorrect, mostly over-specific, subfamilies. To overcome this problem, we 

introduce OMAmer, a novel alignment-free protein subfamily assignment method, which limits over-

specific subfamily assignments and is suited to phylogenomic databases with thousands of genomes. 

We show that OMAmer is able to assign proteins to subfamilies more accurately than approaches 

relying on the closest sequence, whether inferred exactly by Smith-Waterman or by the fast heuristic 

DIAMOND. Furthermore, we show that by adopting efficient alignment-free k-mer based analyses 
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pioneered by metagenomic taxonomic classifiers, and adapting them to protein subfamily-level 

classification, OMAmer is computationally faster and more scalable than DIAMOND. 

Materials and methods 

The OMAmer algorithm 

In this section, we describe the two main algorithmic steps which make OMAmer more precise and 

faster than closest sequence approaches. First, to speed-up the protein assignment step, OMAmer 

preprocesses reference hierarchical orthologous groups (HOGs) into a k-mer table (Fig. 2). For each 

family (root-HOG), this table stores the most likely ancestral subfamily (HOG) of each k-mer (the most 

specific subfamily containing all occurrences of the given k-mer within the family). Then, these 

subfamily-informed k-mers are used to yield more precise subfamily assignments by reducing over-

specific subfamily assignments (Fig. 3). 

k-mer table precomputation 

 
Fig. 2. OMAmer algorithm for compact k-mer table precomputation. A. To efficiently preprocess the k-mer 

table, a suffix array is first built from concatenated protein sequences of reference hierarchical orthologous 

groups (HOGs), encoding families (root-HOGs) and subfamilies (nested HOGs). Note, only suffixes starting with 

a 2-mer are displayed. B. The last common ancestral HOG (LCA HOG) is computed for each k-mer and each root-

HOG. For example, since both HOG 1.1 and 1.2 contain the “AC” 2-mer, the LCA HOG for that 2-mer in root-HOG 

1 is root-HOG 1 itself. C. The final k-mer table includes two related arrays: the k-mer index that stores offsets of 
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the LCA HOG buffer at indexes corresponding to each k-mer integer encoding (e.g. AA = 0, AC = 1, etc.) and the 

LCA HOG buffer that stores the LCA HOGs of each k-mer. 

 

To achieve a memory and time efficient preprocessing of reference HOGs, the k-mer table is built from 

the suffix array (Manber and Myers, 1993) of all concatenated reference proteins (Fig. 2. A.). Indeed, 

since suffix arrays are sorted alphabetically, all suffixes starting with a given k-mer are stored 

consecutively. This feature enables the identification of all proteins containing a given k-mer using 

binary search, without having to consider every single reference protein. 

Then, the most likely ancestral HOG of each k-mer is approximated within each family (root-HOG) as 

the last common ancestor HOG (LCA HOG) among all proteins with the given k-mer (Fig. 2. B). 

Essentially, this is the most specific HOG comprising all occurrences of the given k-mer within the 

family. Indeed, we assume that occurrences of the same k-mer in different members of a family mostly 

result from homology (i.e. same k-mer due to shared ancestry) rather than homoplasy (i.e. same k-

mer arising independently). In the instances where the latter is true, the LCA HOG approximation will 

favor overly general assignments. Thus, compared to the homoplasy assumption that would favor 

over-specific assignments, this approach is more conservative. 

Finally, to enable fast and memory efficient subfamily assignments, the resulting k-mer table is stored 

in the compressed sparse row (CSR) format, consisting of two related arrays (Fig. 2. C). The k-mer index 

that stores offsets of the LCA HOG buffer array at indexes corresponding to each k-mer integer 

encoding (e.g. AA = 0, AC = 1, etc.) and the LCA HOG buffer that stores the LCA HOGs of each k-mer 

(one per root-HOG). For example, in Figure 2. C, the k-mer AC is specific to HOGs 1 and 2. Moreover, 

retaining a single LCA HOG per k-mer and family further reduces the memory footprint of the k-mer 

table and the assignment runtime. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.04.30.068296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.30.068296
http://creativecommons.org/licenses/by/4.0/


Family and subfamily assignment 

 
Fig. 3. OMAmer algorithm for protein family and subfamily assignment. A. Each query k-mer adds a count to 

each last common ancestor hierarchical orthologous group (LCA HOG, precomputed in a k-mer table [e.g. Fig. 

2]) containing the given k-mer. B. Simultaneously, family k-mer counts are computed as the sum of 

corresponding LCA HOG counts (for clarity, the transformation of family k-mer counts to family-scores is not 

shown here). Then, the query is assigned to the highest scoring family above a given threshold. C. Within that 

family, the highest scoring root-to-leaf path is computed from the LCA HOG counts formerly cumulated from 

leaves to root (again, the transformation to subfamily-scores is not shown here). D. Finally, the query is assigned 

to the most specific subfamily on that path with a score above a given threshold. 

 

To avoid redundant accesses to the k-mer table, LCA HOG and family (root-HOG) k-mer counts are 

collected simultaneously by searching query k-mers (ignoring multiple occurrences of the same k-mer) 

in the precomputed k-mer table (Fig. 3. A and B). In particular, root-HOG counts are the sum of 

corresponding LCA HOG counts.  

Then, the family-score is calculated as the root-HOG counts divided by the number of k-mers in the 

query to make the same family-score threshold comparable across queries. Finally, to further reduce 

unnecessary computation, each query is assigned to at most a single root-HOG before being placed in 

more specific HOGs (Fig. 3. B). Specifically, the root-HOG with the highest family-score above a given 

threshold is selected. Thus, queries without homologous reference families can be rejected, 

dependent on an appropriate choice of family-score threshold. 

Then, refining the query assignment to nested HOGs starts by computing subfamily-scores (Fig. 3. C). 

First, LCA HOG k-mer counts are cumulated from leaves to root by adding the count of the highest 
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scoring subtree to the current LCA HOG count at each multifurcation. Second, subfamily-scores are 

computed by dividing each HOG k-mer count by the number of k-mers in the query, from which was 

subtracted the number of k-mers already matched in parent LCA HOGs. Finally, the query is assigned 

to the most specific HOG on the highest scoring root-to-leaf path within the family with a score above 

a given threshold (Fig. 3. D). Thus, a higher threshold on the subfamily-score increases the requirement 

to choose a more specific subfamily and can avoid over-specific assignments. 

Accuracy experiments 

In this section, we describe the experiments conducted to evaluate the accuracy of OMAmer 

compared to closest (most similar) sequence baseline methods: Smith-Waterman (Smith and 

Waterman, 1981) and DIAMOND (Buchfink et al., 2015). Since placement in subfamilies initially 

requires accurate family-level assignments, we started by evaluating OMAmer at the family level. 

Second, to evaluate the impact of ignoring the phylogeny on subfamily assignments by closest 

sequences, we estimated the frequency of each closest sequence configuration (“true subfamily”, 

“under-specific”, “wrong-path” and “over-specific” [Fig. 1]). Third, we benchmarked subfamily-level 

assignments against closest sequence baselines. Finally, we broke down the validation results of 

OMAmer by closest sequence configuration. The datasets and software parameters used in these 

experiments are described in supplementary materials.  

Family-level validation 

To simulate newly sequenced genomes, positive query sets were constructed as the sets of proteins 

from a given species contained in reference hierarchical orthologous groups (HOGs). The proteins of 

that species were hidden in the reference database used, before the k-mer index precomputation. 

Since query proteins do not necessarily have homologous counterparts in the reference families (e.g. 

“orphan” genes, contamination, horizontal gene transfer), validating family assignments also required 

negative sets of non-homologous queries. Therefore, negative query sets were built with two 

approaches, while always matching the size of their corresponding positive set. In the first approach, 

random proteins were simply simulated with UniProtKB amino acid frequencies (release 2020_01) 

(UniProt Consortium, 2019) and sequence lengths of positive queries. The second approach was 

designed to resemble events of contamination or of horizontal gene transfer. Each negative query was 

randomly selected from a unique clade-specific family lying outside the taxonomic scope of reference 

families. In practice, clade-specific families were randomly selected among HOGs without parent 

(root-HOGs) at a given taxonomic level. 

The resulting family assignments were compared with the truth set, and classified into true positives 

(TPs), false negatives (FNs) and false positives (FPs) for various family-score thresholds. FPs included 
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negative queries assigned to a family as well as positive queries assigned to the wrong family. The 

remaining positive queries were divided into TPs and FNs depending on whether the score for their 

family of origin passed the threshold, or not. Finally, precision, recall and accuracy (F1) were computed 

from TPs, FNs and FPs (Supp. Table. 1), defined according to the family-score threshold. 

In the following experiments, to assess subfamily-level assignment separately from family-level 

assignment, we focused on the query sequences assigned to the correct family (i.e. the set of TPs at 

the threshold where F1 is maximal [F1max] for family assignment). Moreover, non-overlapping family-

level TPs between methods being compared were further filtered out (sets of overlapping TPs are 

shown in Supp. Fig. 1.). 

Quantification of subfamily assignment errors by closest sequences 

As a reference to find the closest sequence, we used Smith-Waterman local alignments (Smith and 

Waterman, 1981). Being an exact algorithm, Smith-Waterman is guaranteed to find the highest scoring 

match. Although there are cases where the closest sequence does not have the highest score, these 

cases typically arise when a query has only few detectable homologs (Koski and Golding, 2001). But 

since we only used Smith-Waterman alignments to identify the closest sequence within a subfamily, 

this case does not apply. Thus, in the present context, we consider matches with highest scoring Smith-

Waterman alignment to be reasonable proxies of the closest sequences.  

Then, we classified each query according to the location of its closest sequence (Fig. 1.) as follows: a 

“true subfamily” configuration arises when the most specific HOG of the closest sequence is the same 

as the query one. An “over-specific” configuration arises when the most specific HOG of the query is 

ancestral to the most specific HOG of the closest sequence. Conversely, an “under-specific” 

configuration arises when the most specific HOG of the closest sequence is ancestral to that of the 

query. The last case is the “wrong-path” configuration, in which the most specific HOG of the query 

and of the closest sequence are in different parts of the family tree. 

Subfamily-level validation 

TPs, FNs and FPs were assessed at this level using two different approaches. The first approach takes 

the view that an assignment to a subfamily also implies assignment to its “parental” subfamilies (if 

there are any). For instance, let us consider a nested gene family of alcohol dehydrogenases. Under 

this view, an assignment to the specific “alcohol dehydrogenase 1C” is also implicitly an assignment 

to “alcohol dehydrogenase 1”, as well as to “alcohol dehydrogenase”.  In this case, if a method 

incorrectly assigns the protein to the subfamily “alcohol dehydrogenase 1B”, in addition to counting a 

FP (the gene is not a true member of subfamily “B”) and a FN (the gene is missing from subfamily “C”), 

we also count one TP for correctly assigning to the parental sub-HOG “alcohol dehydrogenase 1”. In 
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effect, the prediction is regarded as being only partially wrong. Note that there is no TP counted for 

correctly implying an assignment to the root-HOG (alcohol dehydrogenase), because the present 

analysis only seeks to assess within-family placement. 

The second approach takes the more stringent view that there are no implicit predictions of parental 

subfamilies, therefore no reward is given for partial correctness. Thus, in the previous example, there 

would be no TP counted—only one FP and one FN.  

For both validation approaches, precision, recall and accuracy (F1) were computed from TPs, FPs, and 

FNs using the same formulae as at the family-level (Supp. Table 1). 

Performance experiments 

To benchmark the computational performance of OMAmer and DIAMOND, we measured real and 

CPU time, as well as the maximum resident set size (memory) using the GNU time command. All timing 

was performed on machines containing identical hardware (dual-socket Intel Xeon E5-2660, 64GB of 

RAM), with sole-use at the time of computation. Single threaded versions of both methods were used, 

with timing repeated 10 times in order to ensure stability. 

Databases of increasing size (20 to 200 proteomes, in steps of 20) were generated from Metazoan 

proteomes, with each including all of the previous and an extra 20 randomly selected species. The full 

proteomes of the initial 20 were used to query the databases of increasing size in order to gauge the 

scaling characteristics. 

Software availability 

OMAmer is available from the Python Package Index (as omamer), with the source code and a 

precomputed database available at https://github.com/DessimozLab/omamer. 

Results 

Before addressing the problem of subfamily placement, we first consider the problem of sequence 

placement at the overall family level (i.e. identifying the correct root hierarchical orthologous group, 

or “root-HOG”). Then, we present our analyses of the subfamily placement problem in four parts: First, 

we quantify the different types of errors resulting from the closest protein criterion. Second, we show 

that OMAmer overcomes many of these errors, resulting in higher accuracy than closest sequence 

approaches. Third, we show that this accuracy improvement is mainly achieved by avoiding over-

specific sequence classification. And fourth, we compare the computational cost and scaling of 

OMAmer and DIAMOND. 
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At the overall family level, efficient sequence placement is a largely solved problem 

Before placing sequences within subfamilies, queries must first be assigned to families. We evaluated 

this using DIAMOND and OMAmer, assessing the ability of the methods to either correctly place a 

protein in its correct family, or refrain from placing a sequence for which no homologous family is 

present in the reference database (see Methods). 

Both methods delivered near perfect results in placing platypus and spotted gar proteins (F1max > 0.97; 

Supp. Fig. 2). The methods did not perform as well on the amphioxus genome (OMAmer F1max = 0.83-

0.88; DIAMOND F1max = 0.91-0.93; Supp. Fig. 2), but this is an outgroup to all other chordates in OMA, 

with a divergence of more than 500 MY (Peterson and Eernisse, 2016) to the closest species sampled 

(i.e. all vertebrates and urochordates) and with high levels of polymorphism which can result in alleles 

being misannotated as paralogs (Putnam et al., 2008; Huang et al., 2017; Kajitani et al., 2019). 

Amphioxus, thus, presents a worst-case scenario relative to placement of a new genome in an already 

sampled clade. Still, this first analysis indicates that, with reference genomes within the same phylum, 

assigning protein sequences at the family-level is a largely solved problem. 

The closest sequence to a query is often not in the same subfamily 

 
Fig. 4. Frequency of closest sequence configurations defined in Fig. 1 and OMAmer accuracy for each. A. The 

closest sequence to a query was often found in another subfamily. Smith-Waterman alignments were used as 

proxies for closest sequences. B. “Over-specific” configurations were especially well dealt with by OMAmer. Each 

curve displays the range of trade-offs between precision and recall when varying a score threshold. They were 
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computed by breaking down queries by closest sequence configurations as in panel A, before the validation 

procedure itself (the relaxed one). These results are consistent with the stringent validation procedure (Supp. 

Fig. 4). Crosses indicate the location of F1max values. Over-specific F1max values are specifically annotated.  

 

For a large proportion of query sequences (19-68%), the closest counterpart (inferred as the highest 

scoring Smith-Waterman match, see Methods) belongs to a different subfamily (Fig. 4. A). In such 

cases, the closest sequence most often belongs to a more specific subfamily (15-50% of all queries). 

These results highlight the need to account for the phylogeny, especially in the presence of many 

nested subfamilies. 

OMAmer is more precise in subfamily placement 

 
Fig. 5. Comparison of subfamily assignments with OMAmer and by closest sequence (DIAMOND and Smith-

Waterman). Each curve displays the range of trade-offs between precision and recall when varying a subfamily-

score threshold. These results were computed using a relaxed validation procedure and are consistent with the 

stringent procedure (Supp. Fig. 3). F1max values are annotated at their locations indicated by crosses. 

 

Solving this problem is the primary aim of OMAmer. We compared OMAmer with closest sequence 

methods (DIAMOND and Smith-Waterman) using two validation procedures: relaxed and stringent.  

OMAmer systematically achieved, or equaled, the highest accuracy (F1max) across species, with both 

relaxed (Fig. 5.) and stringent (Supp. Fig. 3) validation procedures. Specifically, increases in F1max values 

between OMAmer and closest sequence methods ranged from 0.00 to 0.09 with the relaxed 
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procedure and from 0.01 to 0.22 with the stringent one. Moreover, OMAmer F1max values were 

obtained from large precision gains for limited recall costs compared to closest sequence baselines. 

Finally, score thresholds at F1max between platypus and spotted gar were highly congruent (0.13, 0.12 

for both relaxed and stringent validation procedures), while amphioxus displayed lower optimal score 

thresholds (relaxed: 0.05, stringent:0.07). 

Furthermore, OMAmer provides a genuine precision-recall trade-off, providing users with the 

possibility of obtaining very high precision, at the cost of lower recall. Such trade-off is not possible 

with closest sequence methods: varying the E-value and alignment-score thresholds has very limited 

impact on precision (Fig. 5 and Supp. Fig. 3). 

OMAmer deals especially well with over-specific closest sequences  

As previously mentioned, over-specific placement is the most frequent mistake when only relying on 

assignments by closest sequences (Fig. 4. A). Since OMAmer was specifically designed to deal with 

such cases using subfamily-informed k-mers mapping toward ancestral subfamilies, we investigated 

whether this feature would explain OMAmer performance. Therefore, we reproduced the subfamily-

level validation procedure with queries partitioned between the types of closest sequence 

configuration (“true subfamily”, “under-specific”, “wrong path” and “over-specific”) depicted in Fig. 

1. and quantified in Fig. 4 A. 

As expected, OMAmer was especially accurate (compared to DIAMOND) for queries in the “over-

specific” configuration across species, with both the relaxed (Fig. 4. B) and stringent (Supp. Fig. 4) 

validation procedures. Specifically, for these queries, increases in F1max values between OMAmer and 

DIAMOND ranged from 0.03 to 0.12 with the relaxed procedure and from 0.45 to 0.51 with the 

stringent one. Finally, OMAmer displayed a proportion of over-specific assignments (defined at F1max 

and between validation approaches) 0.07 to 0.37 lower than Smith-Waterman and DIAMOND (Supp. 

Fig. 5). 

This performance for queries in the “over-specific” configuration was achieved while sacrificing very 

little accuracy for queries in the “true subfamily” configuration (Fig. 4. B and Supp. Fig. 4). Thus, the 

specificity of the OMAmer algorithm (subfamily-informed k-mers mapping toward ancestral 

subfamilies) probably explains its overall higher accuracy compared to closest sequence baselines (Fig. 

5 and Supp. Fig. 3.). 

Finally, despite their small number, queries in the “wrong-path” configuration were also placed more 

accurately by OMAmer. “Under-specific” configurations were too few to draw any conclusion. 
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OMAmer displays near-constant run time with the number of reference genomes 

 
Fig. 6. Comparison of the computational performance of family and subfamily assignments between OMAmer 

and DIAMOND. (Left) run time (CPU and real) showing a sub-linear increase in run time for DIAMOND and near-

constant time for OMAmer. (Middle) maximum memory usage of the two methods. (Right) number of queries 

processed per second. Error bars shown for 95% confidence interval, estimated using 10,000 bootstraps. 

 

In an empirical scaling analysis, we varied the number of reference genomes in the database whilst 

querying a number of full-proteomes (see Methods for details). DIAMOND achieved sub-linear scaling, 

whereas OMAmer exhibited near-constant run time when increasing the number of reference 

genomes in the database (Fig. 6, left). Both methods, however, exhibited a similar increase in 

maximum memory usage (Fig. 6, middle), with OMAmer initially using over 2GB and DIAMOND using 

less than 256MB on a database of 20 reference genomes. In order to achieve this performance, 

OMAmer only stores k-mers once per LCA HOG. This does require extra computation, with the 

overhead being reflected in its memory usage and time to build the database (Supp. Fig. 6), taking 

between 15-20 minutes in comparison to 1-2 minutes for DIAMOND. 

To put the timing into context, OMAmer is processing more than 200 query sequences per second 

(Fig. 6, right). DIAMOND starts with similar performance, before trailing off to less than 50 with the 

largest number of reference genomes 

Discussion 

In this study, we demonstrate that considering the phylogenetic relations between orthologous 

groups is essential for the problem of subfamily assignment. Indeed, although alignment-free, 

OMAmer generally outperforms closest (most similar) sequence approaches, even when inferred by 

the exact Smith-Waterman algorithm. In particular, OMAmer systematically achieved, or equaled 

Smith-Waterman, for the best precision-recall trade-off (F1max). 
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However, the main advantage of OMAmer is its control over assignment precision through the setting 

of specific thresholds that refrain over-specific placements. By contrast, relying on the closest 

sequence does not provide the ability for any precision-recall trade-off. Each assignment is bound to 

the most specific subfamily of the closest sequence, and varying the E-value threshold has a large 

impact on recall but almost none on precision. Thus, while closest sequence approaches are useful for 

cases where high recall is the overriding priority, OMAmer is more flexible and applicable in a broad 

range of contexts. 

In addition to providing robust subfamily assignments, OMAmer scales in near-constant run time with 

the number of reference genomes. This is achieved with alignment-free sequence comparisons against 

hierarchical orthologous groups (HOGs) instead of exact or even approximate alignments against 

protein sequences. Indeed, in addition to removing the computational burden of sequence alignment, 

merging sequence information in HOGs drastically reduces the number of comparisons. This is 

especially true since the number of reference HOGs increases more slowly than proteins with the 

number of reference genomes. 

Large-scale sequencing projects of genomes or metagenomes add difficulties such as chimeric 

assemblies or contaminations, thus mixing gene families from different species. OMAmer was 

designed as a starting point for the integration of such heterogeneous data. Thus, instead of 

constraining subfamily assignments along the known taxonomy of query genomes, OMAmer performs 

taxonomically blind assignments. We hope that this feature will enable diverse applications of 

OMAmer: the detection of contamination and horizontal gene transfers, the binning of protein level 

metagenomic assemblies (Steinegger et al., 2019), and with some algorithmic adaptations, directly 

placing reads to skip genome assembly and annotation. 

The OMAmer algorithm builds upon some key ideas of the metagenomic software Kraken, which 

classifies reads into the species taxonomy (Wood and Salzberg, 2014). Indeed, this task is analogous 

to protein subfamily assignments for two reasons. First, some prior knowledge, shaped as labelled 

reference sequences, is preprocessed before the assignment itself. Second, this prior knowledge is 

organized hierarchically in a tree graph. Thus, instead of relying on closest sequences, such methods 

of taxonomic classification exploit semi-phylogenetic information to improve their predictions. While 

MEGAN introduced the key idea of taking the LCA taxon among significant BLAST hits (Huson et al., 

2007), Kraken scaled up the approach by preprocessing LCA taxa in a database of taxonomically-

informed k-mers (Wood and Salzberg, 2014). 

While inspired by Kraken, the OMAmer algorithm features some key algorithmic innovations to fit the 

case of assigning proteins to subfamilies. One difference lies in the types of events used to define 

clades or subtrees. Indeed, while taxa are defined by speciation nodes in Kraken, subfamilies are 
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defined by duplication nodes in OMAmer. This is an important difference because duplication patterns 

are variable across protein families, whereas the reference taxonomy is the same for different genes 

and genomes in Kraken. Second, the dual problem of first placing sequences within families, followed 

by subfamily-level assignment is specific to OMAmer. Finally, by breaking down the computation of 

subfamily-informed k-mers by family, OMAmer indirectly overcomes one of Kraken’s main 

weaknesses: its high memory footprint (Breitwieser et al., 2018). 

Beside closest sequence approaches, alignments to Hidden Markov Models (HMMs) have been 

extensively used for sequence to family or subfamily comparisons with tools such as HMMER3 (El-

Gebali et al., 2019; Mi et al., 2019; Huerta-Cepas et al., 2019; Ebersberger et al., 2009). However, the 

use of HMMs is revealing a lack of scalability to phylogenomic database size. For instance, the 

developers of the EggNOG database reported that DIAMOND is considerably faster and achieves 

similar results to HMMER3, and have discontinued the use of HMMs in the latest EggNOG mapper 

release (Huerta-Cepas et al., 2017, 2019). Moreover, maintaining subfamily HMM models can be 

problematic because it relies on ad-hoc criteria for subfamily delineation (e.g. curated, family-specific 

E-value thresholds in PFam (El-Gebali et al., 2019)). Finally, HMMs are tailored to detect remote 

homology rather than discriminating between specific subfamilies. Although this has benefited from 

hierarchically organized HMMs (Nguyen et al., 2016), the family breakdown is used to improve family 

assignments rather than finding specific subfamilies. 

Due to the rapid emergence of alignment-free methods, covering various biological problems ranging 

from phylogenetic inference to metagenomic taxonomic profiling (reviewed in: (Zielezinski et al., 

2017)), the AFproject was launched to unite the benchmarking of these tools (Zielezinski et al., 2019). 

However, the available datasets to benchmark protein sequence classification in that project are 

organized according to the SCOPE database (Fox et al., 2014). There, each hierarchical level is either 

based on a degree of belief in homology among sets of proteins (families and superfamilies) or on 

structural similarities (folds and classes). By contrast, in this work, we seek to distinguish all subfamilies 

resulting from gene duplications, even recent ones yielding quite similar subfamilies. Of note, recent 

subfamilies can diverge in function (Naseeb et al., 2017) and thus be important for annotation . 

Although placing proteins at the overall family level appears to be a generally solved problem in our 

analyses, we start to see some degradation with the amphioxus sequences (last common ancestor to 

vertebrates >500MY [Peterson and Eernisse, 2016]). We expect further degradation for cases where 

query genomes are even farther from the reference genomes, because relying on k-mer exact matches 

is likely to be less sensitive than Smith-Waterman alignments to detect distant homologs. Some 

avenues to increase OMAmer sensitivity in absence of closely related reference species could be 

explored: the use of a reduced alphabet, which compresses the mutual information of sequences 
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being compared (Edgar, 2004); or spaced seeds, i.e. non-contiguous k-mers, that have shown an 

increased sensitivity in metagenomics classification (Břinda et al., 2015). On the other hand, adding 

such very distant genomes is expected to be much rarer than adding genomes to an already sampled 

clade. This is especially true for the increase of sequences through projects such as i5k (insect 

genomes) (i5K Consortium, 2013) or the Vertebrate Genomes Project (Koepfli et al., 2015), where 

duplications and thus subfamilies are common and a solid backbone of reference genomes are 

available. OMAmer is especially well positioned to help classify the genes from such projects, which 

will present a challenge for slower or less precise methods. 

Another avenue to improve OMAmer accuracy will be the development of a probabilistic score which 

can control for variation in the size of gene families and subfamilies, as well as their k-mer frequencies. 

For instance, the taxonomic classifier RAPPAS weights each k-mer by the probability of its presence in 

an hypothetical extant gene descending from the taxon branch (Linard et al., 2019). Although requiring 

the computation of reference gene trees, RAPPAS provides inspiration for developing probabilistic 

scores with stronger discriminative power between families, as well as a finer-grain criterion to stop 

placement within the hierarchy of subfamilies. 

Meanwhile, one compelling application of OMAmer will be processing the large number of genomes 

which will be produced by initiatives under the Earth BioGenome project (Lewin et al., 2018), which 

collectively aims to sequence all 1.5 million known eukaryotic species within the coming decade. 
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Supplementary material 

Datasets and software parameters 

OMAmer was compared with two closest sequence methods lying at different extremes of the speed-

accuracy tradeoff: DIAMOND (v0.9.24.125) and Smith-Waterman, respectively. Due to the 

computational cost of performing Smith-Waterman alignments, we used pre-computed alignments 
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from OMA (June 2019) (Altenhoff et al., 2018). DIAMOND databases were built with default 

parameters, and searches for the most similar sequence were performed with effectively no 

significance requirement (E-value set to 1e6). The OMAmer k-mer table was built with a k-mer size of 

6. 

OMAmer directly yields family and subfamily predictions. For Smith-Waterman and DIAMOND, each 

query was assigned to the family and most specific subfamily of its most similar reference protein. To 

obtain multiple precision-recall values, predictions were computed for multiple score thresholds: E-

values of 1e-322 to 1e6 for DIAMOND, alignment scores of 1 to 5,000 for Smith-Waterman and 

family/subfamily-scores of 0.001 to 0.996 for OMAmer. 

To make family-level assignments comparable and well differentiated from subfamily-assignments, 

we selected HOGs from OMA (June 2019) defined at the Metazoa taxonomic level as families, and 

their nested HOGs as subfamilies. To avoid low-confidence families, we further filtered out Metazoa 

HOGs with less than six proteins. We picked Metazoa because it is one of the largest clades in OMA. 

Then, we selected three species as experiment targets. Platypus, spotted gar and amphioxus were 

picked because they stand as outgroups of large clades in OMA and thus display some variability in 

divergence ages to reference species (Supp. Table 2). Clade-specific root-HOGs used to build the 

negative query set were picked at the Bacteria taxonomic level. 

The reference dataset included 603,607 proteins from 188 species organized in 115,782 HOGs and 

including 5,296 root-HOGs (families). The query datasets included 2,948, 3,985 and 3,920 proteins of 

platypus, spotted gar, and amphioxus species, respectively. 2,616, 3,421 and 3,267 queries belonged 

to a subfamily (a nested HOG) in addition to the family (root-HOG). 

 

 
Supp. Fig. 1. Overlaps of family-level TP queries between methods. TP sets were defined at F1max for DIAMOND 

and OMAmer and at the minimum score (1) for Smith-Waterman alignments. These queries were used to assess 

subfamily assignment. 
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Supp. Fig. 2. Comparison of family assignments between OMAmer and DIAMOND across negative datasets. 

Each curve displays the range of trade-offs between precision and recall when varying a score threshold. The 

curves labeled Bacteria refer to analyses using bacteria-specific sequences as negatives whereas those labeled 

Random refer to using random sequences as negatives. Crosses indicate the location of F1max values. 

 
Supp. Fig. 3. Comparison of subfamily assignments with OMAmer and by closest sequence (Smith-Waterman 

and DIAMOND). Each curve displays the range of trade-offs between precision and recall when varying a score 

threshold. These results were computed using a stringent validation procedure. F1max values are annotated with 

their locations indicated by crosses. 
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Supp. Fig. 4. “Over-specific” configurations were especially well dealt with by OMAmer. Each curve displays 

the range of trade-offs between precision and recall when varying a score threshold. They were computed by 

breaking down queries by closest sequence configurations as in panel A, before the validation procedure itself 

(stringent one). Crosses indicate the location of F1max values. 
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Supp. Figure 5. Comparison of placement configurations between subfamily assignments of OMAmer, 

DIAMOND and Smith-Waterman and OMAmer at F1max. “Relaxed” and “stringent” refers to validation 

procedures (see Methods). 

 

Supp. Figure 6. Run time (left) and maximum memory usage (right) during database build for DIAMOND and 

OMAmer. Whilst OMAmer is slower due to the increased pre-processing to enable constant lookup time, the 

increase in time is sublinear with the number of reference genomes in the resulting database. 

 

Supp. Table 1. Formulae of validation measures 

 

Measure Formula 

Precision #𝑇𝑃𝑠
(#𝑇𝑃	 + 	#𝐹𝑃𝑠) 

Recall #𝑇𝑃𝑠
(#𝑇𝑃	 + 	#𝐹𝑁𝑠) 

Accuracy 2𝑥	
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ∗ 	𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑟𝑒𝑐𝑎𝑙𝑙) 

#: number, TPs: true positives, FPs: false positives, FNs: false negatives. 

 

Supp. Table 2. Species used as queries in accuracy experiments.  

Species Scientific name LCA clade Divergence age 
(mya) 

Genome N50 (kb) 
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Spotted Gar Lepisosteus 
oculatus 

Neopterygii 320  
(Betancur-R et al., 
2017) 

68 
(Ensembl LepOcu1 
assembly) 

Platypus Ornithorhynchus 
anatinus 

Mammalia 250 
(Upham et al., 2019) 

612 
(Ensembl OANA5 
assembly) 

Amphioxus Branchiostoma 
floridae 

Chordata 600 
(Peterson and 
Eernisse, 2016) 

2600 
(Putnam et al., 2008) 
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