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Abstract

Assigning new sequences to known protein families and subfamilies is a prerequisite for many
functional, comparative and evolutionary genomics analyses. Such assignment is commonly achieved
by looking for the closest sequence in a reference database, using a method such as BLAST. However,
ignoring the gene phylogeny can be misleading because a query sequence does not necessarily belong
to the same subfamily as its closest sequence. For example, a hemoglobin which branched out prior
to the hemoglobin alpha/beta duplication could be closest to a hemoglobin alpha or beta sequence,
whereas it is neither. To overcome this problem, phylogeny-driven tools have emerged but rely on
gene trees, whose inference is computationally expensive.

Here, we first show that in multiple animal datasets, 19 to 68% of assignments by closest sequence
are misassigned, typically to an over-specific subfamily. Then, we introduce OMAmer, a novel
alignment-free protein subfamily assignment method, which limits over-specific subfamily
assignments and is suited to phylogenomic databases with thousands of genomes. OMAmer is based
on an innovative method using subfamily-informed k-mers for alignment-free mapping to ancestral
protein subfamilies. Whilst able to reject non-homologous family-level assignments, we show that
OMAmer provides better and quicker subfamily-level assignments than approaches relying on the
closest sequence, whether inferred exactly by Smith-Waterman or by the fast heuristic DIAMOND.
OMAmer is available from the Python Package Index (as omamer), with the source code and a

precomputed database available at https://github.com/DessimozLab/omamer.

Introduction

Assigning new sequences to known protein families is a prerequisite for many comparative and
evolutionary analyses (Glover et al., 2019). Functional knowledge can also be transferred from

reference to new sequences assigned in the same family (Gabaldén and Koonin, 2013).
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However, when gene duplication events have resulted in multiple copies per species, multiple
“subfamilies” are generated, which can make placing a protein sequence into the correct subfamily
challenging. Gene subfamilies are nested gene families defined after duplication events and organized
hierarchically into gene trees. For example, the epsilon and gamma hemoglobin subfamilies are
defined at the placental level, and nested in the adult hemoglobin beta subfamily at the mammal level
(Opazo et al., 2008). Both belong to the globin family that originated in the LUCA (last universal
common ancestor of cellular life).

Gene subfamily assignment is commonly achieved by looking for the most similar (“closest”) sequence
in a reference database, using a method such as BLAST or DIAMOND (Altschul et al., 1990; Buchfink et
al., 2015), before assigning the query to the subfamily of the closest sequence identified. For example,
EggNOG mapper uses reference subfamilies from EggNOG to functionally annotate millions of
unknown proteins of genomes and metagenomes (Huerta-Cepas et al., 2017, 2019). Briefly, each
query is assigned to the most specific gene subfamily of its closest sequence, inferred using DIAMOND,

with functional annotations then transferred accordingly.

A. True subfamily B. Under-specific

closest

closest

Fig. 1. The closest sequence to a query does not necessarily belong to the same subfamily. This figure
conceptualizes the four possible closest sequence locations relative to the query. On each tree, the true position
of the query is indicated by a dashed branch, while its closest sequence in the family is indicated by a star. The

circle represents a duplication event leading to two subfamilies depicted as color boxes.

However, ignoring the protein family tree can be misleading because a query sequence does not

necessarily belong to the same subfamily as its closest sequence (Fig. 1). For instance, if the query
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branched out from a fast evolving subtree, its closest sequence might not belong to that subtree, but
to a more general subfamily, or even not be classifiable in any known subfamily (Fig. 1. B). Or, in case
of asymmetric evolutionary rates between sister subfamilies, the closest sequence might belong to a
different subfamily altogether (Fig. 1. C). The prospect of observing these two scenarios is sustained
by the long-standing observation that duplicated proteins experience accelerated and often
asymmetric evolution (Conant and Wolfe, 2008; Sémon and Wolfe, 2007).

Moreover, the closest sequence to the query can belong to an over-specific subfamily even without
any departure from the molecular clock in the family tree (Fig. 1. D). Such cases may occur
stochastically when the query branched out before the emergence of nested subfamilies. Indeed, each
protein descending from the query divergence has, all else being equal, the same chance of being the
closest sequence to the query. Since duplications are common in evolution (Conant and Wolfe, 2008),
finding such nested subfamilies as close relatives to the query divergence is expected to be common.
To avoid such errors, protein subfamily assignment tools relying on gene trees have been proposed
(Schreiber et al., 2014; Tang et al., 2019). In short, these start by assigning queries to families with
pairwise alignments against Hidden Markov profiles of reference families. Then, fine-grained
assignments to subfamilies are performed with tree placement tools, which typically attempt to graft
the query on every branch of the tree until maximizing a likelihood or parsimony score (Barbera et al.,
2018). However, gene tree inference is computationally expensive and therefore not scalable to the
exponentially growing number of available sequences.

As a more scalable alternative to gene trees, the concept of hierarchical orthologous groups (HOGs)
(Altenhoff et al., 2013) provides a precise definition of the intuitive notion of protein families and
subfamilies. Each HOG is a group of proteins descending from a single speciation event and organized
hierarchically. Moreover, they collectively provide the evolutionary history of protein families and
subfamilies, like gene trees. While the oldest HOG in the family hierarchy (“root-HOG") is the family
itself, the other nested HOGs are its subfamilies. Thus, HOGs up to 100,000 members and covering
thousands of species are available in large-scale phylogenomic databases (Altenhoff et al., 2018;
Huerta-Cepas et al., 2019; Kriventseva et al., 2019).

Here, we first demonstrate on three animal genomes that 19 to 68% of assignments by closest
sequence go to the incorrect, mostly over-specific, subfamilies. To overcome this problem, we
introduce OMAmer, a novel alignment-free protein subfamily assignment method, which limits over-
specific subfamily assignments and is suited to phylogenomic databases with thousands of genomes.
We show that OMAmer is able to assign proteins to subfamilies more accurately than approaches
relying on the closest sequence, whether inferred exactly by Smith-Waterman or by the fast heuristic

DIAMOND. Furthermore, we show that by adopting efficient alignment-free k-mer based analyses
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pioneered by metagenomic taxonomic classifiers, and adapting them to protein subfamily-level

classification, OMAmer is computationally faster and more scalable than DIAMOND.

Materials and methods

The OMAmer algorithm

In this section, we describe the two main algorithmic steps which make OMAmer more precise and
faster than closest sequence approaches. First, to speed-up the protein assignment step, OMAmer
preprocesses reference hierarchical orthologous groups (HOGs) into a k-mer table (Fig. 2). For each
family (root-HOG), this table stores the most likely ancestral subfamily (HOG) of each k-mer (the most
specific subfamily containing all occurrences of the given k-mer within the family). Then, these
subfamily-informed k-mers are used to yield more precise subfamily assignments by reducing over-

specific subfamily assignments (Fig. 3).

k-mer table precomputation

A. Build suffix array B. Compute LCA HOGs
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Fig. 2. OMAmer algorithm for compact k-mer table precomputation. A. To efficiently preprocess the k-mer
table, a suffix array is first built from concatenated protein sequences of reference hierarchical orthologous
groups (HOGs), encoding families (root-HOGs) and subfamilies (nested HOGs). Note, only suffixes starting with
a 2-mer are displayed. B. The last common ancestral HOG (LCA HOG) is computed for each k-mer and each root-
HOG. For example, since both HOG 1.1 and 1.2 contain the “AC” 2-mer, the LCA HOG for that 2-mer in root-HOG

1is root-HOG 1 itself. C. The final k-mer table includes two related arrays: the k-mer index that stores offsets of
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the LCA HOG buffer at indexes corresponding to each k-mer integer encoding (e.g. AA =0, AC = 1, etc.) and the
LCA HOG buffer that stores the LCA HOGs of each k-mer.

To achieve a memory and time efficient preprocessing of reference HOGs, the k-mer table is built from
the suffix array (Manber and Myers, 1993) of all concatenated reference proteins (Fig. 2. A.). Indeed,
since suffix arrays are sorted alphabetically, all suffixes starting with a given k-mer are stored
consecutively. This feature enables the identification of all proteins containing a given k-mer using
binary search, without having to consider every single reference protein.

Then, the most likely ancestral HOG of each k-mer is approximated within each family (root-HOG) as
the last common ancestor HOG (LCA HOG) among all proteins with the given k-mer (Fig. 2. B).
Essentially, this is the most specific HOG comprising all occurrences of the given k-mer within the
family. Indeed, we assume that occurrences of the same k-mer in different members of a family mostly
result from homology (i.e. same k-mer due to shared ancestry) rather than homoplasy (i.e. same k-
mer arising independently). In the instances where the latter is true, the LCA HOG approximation will
favor overly general assignments. Thus, compared to the homoplasy assumption that would favor
over-specific assignments, this approach is more conservative.

Finally, to enable fast and memory efficient subfamily assignments, the resulting k-mer table is stored
in the compressed sparse row (CSR) format, consisting of two related arrays (Fig. 2. C). The k-mer index
that stores offsets of the LCA HOG buffer array at indexes corresponding to each k-mer integer
encoding (e.g. AA =0, AC = 1, etc.) and the LCA HOG buffer that stores the LCA HOGs of each k-mer
(one per root-HOG). For example, in Figure 2. C, the k-mer AC is specific to HOGs 1 and 2. Moreover,
retaining a single LCA HOG per k-mer and family further reduces the memory footprint of the k-mer

table and the assignment runtime.
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Family and subfamily assignment

A. Search k-mer table B. Family assignment
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Fig. 3. OMAmer algorithm for protein family and subfamily assignment. A. Each query k-mer adds a count to
each last common ancestor hierarchical orthologous group (LCA HOG, precomputed in a k-mer table [e.g. Fig.
2]) containing the given k-mer. B. Simultaneously, family k-mer counts are computed as the sum of
corresponding LCA HOG counts (for clarity, the transformation of family k-mer counts to family-scores is not
shown here). Then, the query is assigned to the highest scoring family above a given threshold. C. Within that
family, the highest scoring root-to-leaf path is computed from the LCA HOG counts formerly cumulated from
leaves to root (again, the transformation to subfamily-scores is not shown here). D. Finally, the query is assigned

to the most specific subfamily on that path with a score above a given threshold.

To avoid redundant accesses to the k-mer table, LCA HOG and family (root-HOG) k-mer counts are
collected simultaneously by searching query k-mers (ignoring multiple occurrences of the same k-mer)
in the precomputed k-mer table (Fig. 3. A and B). In particular, root-HOG counts are the sum of
corresponding LCA HOG counts.

Then, the family-score is calculated as the root-HOG counts divided by the number of k-mers in the
query to make the same family-score threshold comparable across queries. Finally, to further reduce
unnecessary computation, each query is assigned to at most a single root-HOG before being placed in
more specific HOGs (Fig. 3. B). Specifically, the root-HOG with the highest family-score above a given
threshold is selected. Thus, queries without homologous reference families can be rejected,
dependent on an appropriate choice of family-score threshold.

Then, refining the query assignment to nested HOGs starts by computing subfamily-scores (Fig. 3. C).

First, LCA HOG k-mer counts are cumulated from leaves to root by adding the count of the highest
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scoring subtree to the current LCA HOG count at each multifurcation. Second, subfamily-scores are
computed by dividing each HOG k-mer count by the number of k-mers in the query, from which was
subtracted the number of k-mers already matched in parent LCA HOGs. Finally, the query is assigned
to the most specific HOG on the highest scoring root-to-leaf path within the family with a score above
agiventhreshold (Fig. 3. D). Thus, a higher threshold on the subfamily-score increases the requirement

to choose a more specific subfamily and can avoid over-specific assignments.

Accuracy experiments

In this section, we describe the experiments conducted to evaluate the accuracy of OMAmer
compared to closest (most similar) sequence baseline methods: Smith-Waterman (Smith and
Waterman, 1981) and DIAMOND (Buchfink et al., 2015). Since placement in subfamilies initially
requires accurate family-level assignments, we started by evaluating OMAmer at the family level.
Second, to evaluate the impact of ignoring the phylogeny on subfamily assignments by closest
sequences, we estimated the frequency of each closest sequence configuration (“true subfamily”,
“under-specific”, “wrong-path” and “over-specific” [Fig. 1]). Third, we benchmarked subfamily-level
assignments against closest sequence baselines. Finally, we broke down the validation results of

OMAmer by closest sequence configuration. The datasets and software parameters used in these

experiments are described in supplementary materials.

Family-level validation

To simulate newly sequenced genomes, positive query sets were constructed as the sets of proteins
from a given species contained in reference hierarchical orthologous groups (HOGs). The proteins of
that species were hidden in the reference database used, before the k-mer index precomputation.
Since query proteins do not necessarily have homologous counterparts in the reference families (e.g.
“orphan” genes, contamination, horizontal gene transfer), validating family assignments also required
negative sets of non-homologous queries. Therefore, negative query sets were built with two
approaches, while always matching the size of their corresponding positive set. In the first approach,
random proteins were simply simulated with UniProtkKB amino acid frequencies (release 2020_01)
(UniProt Consortium, 2019) and sequence lengths of positive queries. The second approach was
designed to resemble events of contamination or of horizontal gene transfer. Each negative query was
randomly selected from a unique clade-specific family lying outside the taxonomic scope of reference
families. In practice, clade-specific families were randomly selected among HOGs without parent
(root-HOGs) at a given taxonomic level.

The resulting family assignments were compared with the truth set, and classified into true positives

(TPs), false negatives (FNs) and false positives (FPs) for various family-score thresholds. FPs included
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negative queries assigned to a family as well as positive queries assigned to the wrong family. The
remaining positive queries were divided into TPs and FNs depending on whether the score for their
family of origin passed the threshold, or not. Finally, precision, recall and accuracy (F1) were computed
from TPs, FNs and FPs (Supp. Table. 1), defined according to the family-score threshold.

In the following experiments, to assess subfamily-level assignment separately from family-level
assignment, we focused on the query sequences assigned to the correct family (i.e. the set of TPs at
the threshold where F1 is maximal [Flnax] for family assignment). Moreover, non-overlapping family-
level TPs between methods being compared were further filtered out (sets of overlapping TPs are

shown in Supp. Fig. 1.).

Quantification of subfamily assignment errors by closest sequences

As a reference to find the closest sequence, we used Smith-Waterman local alignments (Smith and
Waterman, 1981). Being an exact algorithm, Smith-Waterman is guaranteed to find the highest scoring
match. Although there are cases where the closest sequence does not have the highest score, these
cases typically arise when a query has only few detectable homologs (Koski and Golding, 2001). But
since we only used Smith-Waterman alignments to identify the closest sequence within a subfamily,
this case does not apply. Thus, in the present context, we consider matches with highest scoring Smith-
Waterman alignment to be reasonable proxies of the closest sequences.

Then, we classified each query according to the location of its closest sequence (Fig. 1.) as follows: a
“true subfamily” configuration arises when the most specific HOG of the closest sequence is the same
as the query one. An “over-specific” configuration arises when the most specific HOG of the query is
ancestral to the most specific HOG of the closest sequence. Conversely, an “under-specific”
configuration arises when the most specific HOG of the closest sequence is ancestral to that of the
guery. The last case is the “wrong-path” configuration, in which the most specific HOG of the query

and of the closest sequence are in different parts of the family tree.

Subfamily-level validation

TPs, FNs and FPs were assessed at this level using two different approaches. The first approach takes

|”

the view that an assignment to a subfamily also implies assignment to its “parental” subfamilies (if
there are any). For instance, let us consider a nested gene family of alcohol dehydrogenases. Under
this view, an assighment to the specific “alcohol dehydrogenase 1C” is also implicitly an assignment
to “alcohol dehydrogenase 1”, as well as to “alcohol dehydrogenase”. In this case, if a method
incorrectly assigns the protein to the subfamily “alcohol dehydrogenase 1B”, in addition to counting a
FP (the gene is not a true member of subfamily “B”) and a FN (the gene is missing from subfamily “C”),

we also count one TP for correctly assigning to the parental sub-HOG “alcohol dehydrogenase 1”. In
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effect, the prediction is regarded as being only partially wrong. Note that there is no TP counted for
correctly implying an assignment to the root-HOG (alcohol dehydrogenase), because the present
analysis only seeks to assess within-family placement.

The second approach takes the more stringent view that there are no implicit predictions of parental
subfamilies, therefore no reward is given for partial correctness. Thus, in the previous example, there
would be no TP counted—only one FP and one FN.

For both validation approaches, precision, recall and accuracy (F1) were computed from TPs, FPs, and

FNs using the same formulae as at the family-level (Supp. Table 1).

Performance experiments

To benchmark the computational performance of OMAmer and DIAMOND, we measured real and
CPU time, as well as the maximum resident set size (memory) using the GNU time command. All timing
was performed on machines containing identical hardware (dual-socket Intel Xeon E5-2660, 64GB of
RAM), with sole-use at the time of computation. Single threaded versions of both methods were used,
with timing repeated 10 times in order to ensure stability.

Databases of increasing size (20 to 200 proteomes, in steps of 20) were generated from Metazoan
proteomes, with each including all of the previous and an extra 20 randomly selected species. The full
proteomes of the initial 20 were used to query the databases of increasing size in order to gauge the

scaling characteristics.

Software availability

OMAmer is available from the Python Package Index (as omamer), with the source code and a

precomputed database available at https://github.com/DessimozLab/omamer.

Results

Before addressing the problem of subfamily placement, we first consider the problem of sequence
placement at the overall family level (i.e. identifying the correct root hierarchical orthologous group,
or “root-HOG”). Then, we present our analyses of the subfamily placement problem in four parts: First,
we quantify the different types of errors resulting from the closest protein criterion. Second, we show
that OMAmer overcomes many of these errors, resulting in higher accuracy than closest sequence
approaches. Third, we show that this accuracy improvement is mainly achieved by avoiding over-
specific sequence classification. And fourth, we compare the computational cost and scaling of

OMAmer and DIAMOND.
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At the overall family level, efficient sequence placement is a largely solved problem

Before placing sequences within subfamilies, queries must first be assigned to families. We evaluated
this using DIAMOND and OMAmer, assessing the ability of the methods to either correctly place a
protein in its correct family, or refrain from placing a sequence for which no homologous family is
present in the reference database (see Methods).

Both methods delivered near perfect results in placing platypus and spotted gar proteins (F1max > 0.97;
Supp. Fig. 2). The methods did not perform as well on the amphioxus genome (OMAmer Fly.x = 0.83-
0.88; DIAMOND F1max = 0.91-0.93; Supp. Fig. 2), but this is an outgroup to all other chordates in OMA,
with a divergence of more than 500 MY (Peterson and Eernisse, 2016) to the closest species sampled
(i.e. all vertebrates and urochordates) and with high levels of polymorphism which can result in alleles
being misannotated as paralogs (Putnam et al., 2008; Huang et al., 2017; Kajitani et al., 2019).
Amphioxus, thus, presents a worst-case scenario relative to placement of a new genome in an already
sampled clade. Still, this first analysis indicates that, with reference genomes within the same phylum,

assigning protein sequences at the family-level is a largely solved problem.

The closest sequence to a query is often not in the same subfamily

A_ 10 Platypus Spotted gar Amphioxus
0.8
%]
2
806 B True subfamily
..g B Over-specific
5 B Under-specific
.?; 04 B Wrong path
I
0.2
0.0 - — _-
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c —— Over-specific
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§ —— Wrong path
a —— OMAmer
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Recall

Fig. 4. Frequency of closest sequence configurations defined in Fig. 1 and OMAmer accuracy for each. A. The
closest sequence to a query was often found in another subfamily. Smith-Waterman alignments were used as
proxies for closest sequences. B. “Over-specific” configurations were especially well dealt with by OMAmer. Each

curve displays the range of trade-offs between precision and recall when varying a score threshold. They were
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computed by breaking down queries by closest sequence configurations as in panel A, before the validation
procedure itself (the relaxed one). These results are consistent with the stringent validation procedure (Supp.

Fig. 4). Crosses indicate the location of Flnyax values. Over-specific F1max values are specifically annotated.

For a large proportion of query sequences (19-68%), the closest counterpart (inferred as the highest
scoring Smith-Waterman match, see Methods) belongs to a different subfamily (Fig. 4. A). In such
cases, the closest sequence most often belongs to a more specific subfamily (15-50% of all queries).
These results highlight the need to account for the phylogeny, especially in the presence of many

nested subfamilies.

OMAmer is more precise in subfamily placement
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Fig. 5. Comparison of subfamily assignments with OMAmer and by closest sequence (DIAMOND and Smith-
Waterman). Each curve displays the range of trade-offs between precision and recall when varying a subfamily-
score threshold. These results were computed using a relaxed validation procedure and are consistent with the

stringent procedure (Supp. Fig. 3). Flmax values are annotated at their locations indicated by crosses.

Solving this problem is the primary aim of OMAmer. We compared OMAmer with closest sequence
methods (DIAMOND and Smith-Waterman) using two validation procedures: relaxed and stringent.

OMAmer systematically achieved, or equaled, the highest accuracy (F1max) across species, with both
relaxed (Fig. 5.) and stringent (Supp. Fig. 3) validation procedures. Specifically, increases in F1max values

between OMAmer and closest sequence methods ranged from 0.00 to 0.09 with the relaxed
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procedure and from 0.01 to 0.22 with the stringent one. Moreover, OMAmer Flm. values were
obtained from large precision gains for limited recall costs compared to closest sequence baselines.
Finally, score thresholds at F1ma.x between platypus and spotted gar were highly congruent (0.13, 0.12
for both relaxed and stringent validation procedures), while amphioxus displayed lower optimal score
thresholds (relaxed: 0.05, stringent:0.07).

Furthermore, OMAmer provides a genuine precision-recall trade-off, providing users with the
possibility of obtaining very high precision, at the cost of lower recall. Such trade-off is not possible
with closest sequence methods: varying the E-value and alignment-score thresholds has very limited

impact on precision (Fig. 5 and Supp. Fig. 3).

OMAmer deals especially well with over-specific closest sequences

As previously mentioned, over-specific placement is the most frequent mistake when only relying on
assignments by closest sequences (Fig. 4. A). Since OMAmer was specifically designed to deal with
such cases using subfamily-informed k-mers mapping toward ancestral subfamilies, we investigated
whether this feature would explain OMAmer performance. Therefore, we reproduced the subfamily-
level validation procedure with queries partitioned between the types of closest sequence
configuration (“true subfamily”, “under-specific”, “wrong path” and “over-specific”) depicted in Fig.
1. and quantified in Fig. 4 A.

As expected, OMAmer was especially accurate (compared to DIAMOND) for queries in the “over-
specific” configuration across species, with both the relaxed (Fig. 4. B) and stringent (Supp. Fig. 4)
validation procedures. Specifically, for these queries, increases in Flmax values between OMAmer and
DIAMOND ranged from 0.03 to 0.12 with the relaxed procedure and from 0.45 to 0.51 with the
stringent one. Finally, OMAmer displayed a proportion of over-specific assignments (defined at Flmax
and between validation approaches) 0.07 to 0.37 lower than Smith-Waterman and DIAMOND (Supp.
Fig. 5).

This performance for queries in the “over-specific” configuration was achieved while sacrificing very
little accuracy for queries in the “true subfamily” configuration (Fig. 4. B and Supp. Fig. 4). Thus, the
specificity of the OMAmer algorithm (subfamily-informed k-mers mapping toward ancestral
subfamilies) probably explains its overall higher accuracy compared to closest sequence baselines (Fig.
5 and Supp. Fig. 3.).

Finally, despite their small number, queries in the “wrong-path” configuration were also placed more

accurately by OMAmer. “Under-specific” configurations were too few to draw any conclusion.
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OMAmer displays near-constant run time with the number of reference genomes

Scaling with Increasing Number of Reference Genomes in the Database
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Fig. 6. Comparison of the computational performance of family and subfamily assignments between OMAmer
and DIAMOND. (Left) run time (CPU and real) showing a sub-linear increase in run time for DIAMOND and near-
constant time for OMAmer. (Middle) maximum memory usage of the two methods. (Right) number of queries

processed per second. Error bars shown for 95% confidence interval, estimated using 10,000 bootstraps.

In an empirical scaling analysis, we varied the number of reference genomes in the database whilst
guerying a number of full-proteomes (see Methods for details). DIAMOND achieved sub-linear scaling,
whereas OMAmer exhibited near-constant run time when increasing the number of reference
genomes in the database (Fig. 6, left). Both methods, however, exhibited a similar increase in
maximum memory usage (Fig. 6, middle), with OMAmer initially using over 2GB and DIAMOND using
less than 256MB on a database of 20 reference genomes. In order to achieve this performance,
OMAmer only stores k-mers once per LCA HOG. This does require extra computation, with the
overhead being reflected in its memory usage and time to build the database (Supp. Fig. 6), taking
between 15-20 minutes in comparison to 1-2 minutes for DIAMOND.

To put the timing into context, OMAmer is processing more than 200 query sequences per second
(Fig. 6, right). DIAMOND starts with similar performance, before trailing off to less than 50 with the

largest number of reference genomes

Discussion

In this study, we demonstrate that considering the phylogenetic relations between orthologous
groups is essential for the problem of subfamily assignment. Indeed, although alignment-free,
OMAmer generally outperforms closest (most similar) sequence approaches, even when inferred by
the exact Smith-Waterman algorithm. In particular, OMAmer systematically achieved, or equaled

Smith-Waterman, for the best precision-recall trade-off (F1may).
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However, the main advantage of OMAmer is its control over assignment precision through the setting
of specific thresholds that refrain over-specific placements. By contrast, relying on the closest
sequence does not provide the ability for any precision-recall trade-off. Each assignment is bound to
the most specific subfamily of the closest sequence, and varying the E-value threshold has a large
impact on recall but almost none on precision. Thus, while closest sequence approaches are useful for
cases where high recall is the overriding priority, OMAmer is more flexible and applicable in a broad
range of contexts.

In addition to providing robust subfamily assignments, OMAmer scales in near-constant run time with
the number of reference genomes. This is achieved with alignment-free sequence comparisons against
hierarchical orthologous groups (HOGs) instead of exact or even approximate alignments against
protein sequences. Indeed, in addition to removing the computational burden of sequence alighment,
merging sequence information in HOGs drastically reduces the number of comparisons. This is
especially true since the number of reference HOGs increases more slowly than proteins with the
number of reference genomes.

Large-scale sequencing projects of genomes or metagenomes add difficulties such as chimeric
assemblies or contaminations, thus mixing gene families from different species. OMAmer was
designed as a starting point for the integration of such heterogeneous data. Thus, instead of
constraining subfamily assignments along the known taxonomy of query genomes, OMAmer performs
taxonomically blind assignments. We hope that this feature will enable diverse applications of
OMAmer: the detection of contamination and horizontal gene transfers, the binning of protein level
metagenomic assemblies (Steinegger et al., 2019), and with some algorithmic adaptations, directly
placing reads to skip genome assembly and annotation.

The OMAmer algorithm builds upon some key ideas of the metagenomic software Kraken, which
classifies reads into the species taxonomy (Wood and Salzberg, 2014). Indeed, this task is analogous
to protein subfamily assignments for two reasons. First, some prior knowledge, shaped as labelled
reference sequences, is preprocessed before the assignment itself. Second, this prior knowledge is
organized hierarchically in a tree graph. Thus, instead of relying on closest sequences, such methods
of taxonomic classification exploit semi-phylogenetic information to improve their predictions. While
MEGAN introduced the key idea of taking the LCA taxon among significant BLAST hits (Huson et al.,
2007), Kraken scaled up the approach by preprocessing LCA taxa in a database of taxonomically-
informed k-mers (Wood and Salzberg, 2014).

While inspired by Kraken, the OMAmer algorithm features some key algorithmic innovations to fit the
case of assigning proteins to subfamilies. One difference lies in the types of events used to define

clades or subtrees. Indeed, while taxa are defined by speciation nodes in Kraken, subfamilies are
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defined by duplication nodes in OMAmer. This is an important difference because duplication patterns
are variable across protein families, whereas the reference taxonomy is the same for different genes
and genomes in Kraken. Second, the dual problem of first placing sequences within families, followed
by subfamily-level assignment is specific to OMAmer. Finally, by breaking down the computation of
subfamily-informed k-mers by family, OMAmer indirectly overcomes one of Kraken’s main
weaknesses: its high memory footprint (Breitwieser et al., 2018).

Beside closest sequence approaches, alignments to Hidden Markov Models (HMMs) have been
extensively used for sequence to family or subfamily comparisons with tools such as HMMER3 (EI-
Gebali et al., 2019; Mi et al., 2019; Huerta-Cepas et al., 2019; Ebersberger et al., 2009). However, the
use of HMMs is revealing a lack of scalability to phylogenomic database size. For instance, the
developers of the EggNOG database reported that DIAMOND is considerably faster and achieves
similar results to HMMERS3, and have discontinued the use of HMMs in the latest EggNOG mapper
release (Huerta-Cepas et al., 2017, 2019). Moreover, maintaining subfamily HMM models can be
problematic because it relies on ad-hoc criteria for subfamily delineation (e.g. curated, family-specific
E-value thresholds in PFam (El-Gebali et al., 2019)). Finally, HMMs are tailored to detect remote
homology rather than discriminating between specific subfamilies. Although this has benefited from
hierarchically organized HMMs (Nguyen et al., 2016), the family breakdown is used to improve family
assignments rather than finding specific subfamilies.

Due to the rapid emergence of alignment-free methods, covering various biological problems ranging
from phylogenetic inference to metagenomic taxonomic profiling (reviewed in: (Zielezinski et al.,
2017)), the AFproject was launched to unite the benchmarking of these tools (Zielezinski et al., 2019).
However, the available datasets to benchmark protein sequence classification in that project are
organized according to the SCOPE database (Fox et al., 2014). There, each hierarchical level is either
based on a degree of belief in homology among sets of proteins (families and superfamilies) or on
structural similarities (folds and classes). By contrast, in this work, we seek to distinguish all subfamilies
resulting from gene duplications, even recent ones yielding quite similar subfamilies. Of note, recent
subfamilies can diverge in function (Naseeb et al., 2017) and thus be important for annotation .
Although placing proteins at the overall family level appears to be a generally solved problem in our
analyses, we start to see some degradation with the amphioxus sequences (last common ancestor to
vertebrates >500MY [Peterson and Eernisse, 2016]). We expect further degradation for cases where
query genomes are even farther from the reference genomes, because relying on k-mer exact matches
is likely to be less sensitive than Smith-Waterman alignments to detect distant homologs. Some
avenues to increase OMAmer sensitivity in absence of closely related reference species could be

explored: the use of a reduced alphabet, which compresses the mutual information of sequences
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being compared (Edgar, 2004); or spaced seeds, i.e. non-contiguous k-mers, that have shown an
increased sensitivity in metagenomics classification (Bfinda et al., 2015). On the other hand, adding
such very distant genomes is expected to be much rarer than adding genomes to an already sampled
clade. This is especially true for the increase of sequences through projects such as i5k (insect
genomes) (i5K Consortium, 2013) or the Vertebrate Genomes Project (Koepfli et al., 2015), where
duplications and thus subfamilies are common and a solid backbone of reference genomes are
available. OMAmer is especially well positioned to help classify the genes from such projects, which
will present a challenge for slower or less precise methods.

Another avenue to improve OMAmer accuracy will be the development of a probabilistic score which
can control for variation in the size of gene families and subfamilies, as well as their k-mer frequencies.
For instance, the taxonomic classifier RAPPAS weights each k-mer by the probability of its presence in
an hypothetical extant gene descending from the taxon branch (Linard et al., 2019). Although requiring
the computation of reference gene trees, RAPPAS provides inspiration for developing probabilistic
scores with stronger discriminative power between families, as well as a finer-grain criterion to stop
placement within the hierarchy of subfamilies.

Meanwhile, one compelling application of OMAmer will be processing the large number of genomes
which will be produced by initiatives under the Earth BioGenome project (Lewin et al., 2018), which

collectively aims to sequence all 1.5 million known eukaryotic species within the coming decade.
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Supplementary material

Datasets and software parameters

OMAmer was compared with two closest sequence methods lying at different extremes of the speed-
accuracy tradeoff: DIAMOND (v0.9.24.125) and Smith-Waterman, respectively. Due to the

computational cost of performing Smith-Waterman alignments, we used pre-computed alignments
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from OMA (June 2019) (Altenhoff et al.,, 2018). DIAMOND databases were built with default
parameters, and searches for the most similar sequence were performed with effectively no
significance requirement (E-value set to 1e6). The OMAmer k-mer table was built with a k-mer size of
6.

OMAmer directly yields family and subfamily predictions. For Smith-Waterman and DIAMOND, each
query was assigned to the family and most specific subfamily of its most similar reference protein. To
obtain multiple precision-recall values, predictions were computed for multiple score thresholds: E-
values of 1le-322 to 1le6 for DIAMOND, alignment scores of 1 to 5,000 for Smith-Waterman and
family/subfamily-scores of 0.001 to 0.996 for OMAmer.

To make family-level assignments comparable and well differentiated from subfamily-assignments,
we selected HOGs from OMA (June 2019) defined at the Metazoa taxonomic level as families, and
their nested HOGs as subfamilies. To avoid low-confidence families, we further filtered out Metazoa
HOGs with less than six proteins. We picked Metazoa because it is one of the largest clades in OMA.
Then, we selected three species as experiment targets. Platypus, spotted gar and amphioxus were
picked because they stand as outgroups of large clades in OMA and thus display some variability in
divergence ages to reference species (Supp. Table 2). Clade-specific root-HOGs used to build the
negative query set were picked at the Bacteria taxonomic level.

The reference dataset included 603,607 proteins from 188 species organized in 115,782 HOGs and
including 5,296 root-HOGs (families). The query datasets included 2,948, 3,985 and 3,920 proteins of
platypus, spotted gar, and amphioxus species, respectively. 2,616, 3,421 and 3,267 queries belonged
to a subfamily (a nested HOG) in addition to the family (root-HOG).

Platypus Spotted gar Amphioxus
sSw DIAMOND S DIAMOND sw DIAMOND
29 52
371
15 14 2 92
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Supp. Fig. 1. Overlaps of family-level TP queries between methods. TP sets were defined at F1y.x for DIAMOND
and OMAmer and at the minimum score (1) for Smith-Waterman alignments. These queries were used to assess

subfamily assignment.
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Supp. Fig. 2. Comparison of family assignments between OMAmer and DIAMOND across negative datasets.
Each curve displays the range of trade-offs between precision and recall when varying a score threshold. The
curves labeled Bacteria refer to analyses using bacteria-specific sequences as negatives whereas those labeled

Random refer to using random sequences as negatives. Crosses indicate the location of Fimax values.
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Supp. Fig. 3. Comparison of subfamily assignments with OMAmer and by closest sequence (Smith-Waterman
and DIAMOND). Each curve displays the range of trade-offs between precision and recall when varying a score
threshold. These results were computed using a stringent validation procedure. Flma values are annotated with

their locations indicated by crosses.
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Supp. Figure 5. Comparison of placement configurations between subfamily assignments of OMAmer,
DIAMOND and Smith-Waterman and OMAmer at Fln.. “Relaxed” and “stringent” refers to validation

procedures (see Methods).

Database Build with Increasing Number of Reference Genomes
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Supp. Figure 6. Run time (left) and maximum memory usage (right) during database build for DIAMOND and
OMAmer. Whilst OMAmer is slower due to the increased pre-processing to enable constant lookup time, the

increase in time is sublinear with the number of reference genomes in the resulting database.

Supp. Table 1. Formulae of validation measures

Measure Formula

Precision #TPs
(#TP + #FPs)

Recall #TPs
(#TP + #FNs)

Accuracy 5 (precision * rec
X -
(precision + rec

#: number, TPs: true positives, FPs: false positives, FNs: false negatives.

Supp. Table 2. Species used as queries in accuracy experiments.

Species Scientificname | LCA clade Divergence age Genome N50 (kb)
(mya)
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Spotted Gar | Lepisosteus Neopterygii | 320 68
oculatus (Betancur-R et al., (Ensembl LepOcul
2017) assembly)
Platypus Ornithorhynchus | Mammalia | 250 612
anatinus (Upham et al., 2019) | (Ensembl OANAS
assembly)
Amphioxus Branchiostoma Chordata 600 2600
floridae (Peterson and (Putnam et al., 2008)
Eernisse, 2016)
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