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Abstract

Apolipoprotein A-I (apoA-I) has a key function in the reverse cholesterol transport me-

diated by the high density lipoprotein (HDL) particles. However, aggregation of apoA-I

single point mutants can lead to hereditary amyloid pathology. Although several studies

have tackled the biophysical and structural impacts introduced by these mutations, there

is little information addressing the relationship between the evolutionary and structural

features that contribute to the amyloid behavior of apoA-I. We combined evolutionary

studies, in silico mutagenesis and molecular dynamics (MD) simulations to provide a

comprehensive analysis of the conservation and pathogenic role of the aggregation-prone

regions (APRs) present in apoA-I. Sequence analysis demonstrated that among the four

amyloidogenic regions described for human apoA-I, only two (APR1 and APR4) are evo-

lutionary conserved across different species of Sarcopterygii. Moreover, stability analysis

carried out with the FoldX engine showed that APR1 contributes to the marginal stability

of apoA-I. Structural properties of the full-length apoA-I model suggest that aggregation

is avoided by placing APRs into highly packed and rigid portions of its native fold. Fol-

lowing we set up to study the effect of natural mutations on protein conformation and

stability. Compared to natural silent variants extracted from the gnomAD database, the

thermodynamic and pathogenic impact of apoA-I amyloid mutations showed evidence of

a higher destabilizing effect. MD simulations of the amyloid variant G26R evidenced the

partial unfolding of the alpha-helix bundle with the concomitant exposure of APR1 to

the solvent and the formation of beta-sheet segments at the C-terminus of apoA-I, giving

a possible hint about the early steps involved in its aggregation. Our findings highlight

APR1 as a relevant component for apoA-I structural integrity and emphasize a destabiliz-

ing effect of amyloid variants that leads to the exposure of this region. This information

contributes to our understanding of how apoA-I, with its high degree of structural flexibil-

ity, maintains a delicate equilibrium between its monomeric native structure and intrinsic

tendency to form amyloid aggregates. In addition, our stability measurements could be

used as a proxy to interpret the structural impact of new mutations.

Keywords: ApoA-I, aggregation-prone, conserved, flexibility, stability.
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Introduction

Apolipoprotein A-I (apoA-I) is the most abundant protein component of high-density

lipoproteins (HDL) and is responsible for the reverse cholesterol transport from extracel-

lular tissues back to the liver (Lund-Katz and Phillips 2010; Rader et al. 2009), which

has been associated with a protective function against cardiac disease and atherosclerosis

(Navab et al. 2009; Rosenson et al. 2015). The scaffolding functions of apoA-I in the HDL

particle and its multiple protein-protein interactions, mainly with the lecithin:cholesterol

acyltransferase and the ATP-binding cassette A1 transporter (Chroni et al. 2003; Man-

thei et al. 2020), forces it to maintain a dynamical and flexible conformation (Gursky

and Atkinson 1996).

In contrast to these physiological functions, several point mutations affecting apoA-I have

been associated with hereditary amyloid pathology (Sipe et al. 2016). These mutations

are mainly distributed into two “hot spots,” located at the N-terminal region and the C-

terminus of the protein, each one with a typical clinical manifestation (Das and Gursky

2015). Mutations that occur at the N-terminal region (residues 26–100) are characterized

by amyloid deposits in the liver and kidney (Mucchiano et al. 2001; Obici et al. 2006),

while those located at a short C-terminus domain (residues 170–178) are mainly described

as inducing heart, larynx and skin deposits (Gaglione et al. 2018). In non-hereditary

amyloidosis, full-length apoA-I is detected deposited in the intima of severe atherosclerotic

plaques or as diffuse patches as senile forms of amyloid. This process has been associated

with aging, but it has also been described in chronic pathologies such as Alzheimer’s

disease and type 2 diabetes mellitus (Westermark et al. 1995).

Amyloid behavior of some apoA-I N-terminal fragments has been attributed to the pres-

ence of aggregation-prone regions (APRs) in its sequence and, specifically, to an APR

located at the N-terminus (Obici et al. 2006). A recent study has proved that four re-

gions of human apoA-I sequence are capable of forming cross-beta structures (Louros et

al. 2015). It has been hypothesized that amyloidogenic mutations or post-translational

modifications could promote aggregation through destabilization of the partially disorga-

nized structure of apoA-I, described as a molten globular state, followed by the exposure

of APRs. In this sense, most studies addressing the effect of amyloid variants have fo-

cused on the biophysical and physiological consequences of specific mutants. However,
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our understanding of the relationship between apoA-I sequence determinants and its

aggregation process remains limited.

In this study, through an evolutionary analysis we characterized the conservation of

aggregation-prone regions in a broad dataset of vertebrates apoA-I sequences. Using

the recently described full-length consensus structure (Melchior et al. 2017), we exam-

ined the structural properties of apoA-I that contribute to minimize the exposure of

its constituent APRs. In silico saturation mutagenesis analysis of apoA-I demonstrated

that the evolutionary-conserved APR1, comprising residues 14-19, contributes to the

thermodynamic stability of the N-terminus and revealed a common destabilizing effect

for amyloid-associated variants. Using molecular dynamics simulations, we studied the

conformational and dynamical impact of different amyloid variants on the structure of

full-length apoA-I. Altogether, our results suggest that APR1 is an evolutionary and

structural conserved component that contributes to the stability of apoA-I structure.

Mutagenesis data emphasizes the destabilizing effect of amyloid variants, which in the

case of the G26R natural variant is linked to the solvent exposure of APR1 and the

formation of a beta-sheet element at the C-terminus of the protein. This information is

relevant to understand how a marginally stable, but metabolically active protein manages

to initiate the formation of an amyloid structure and develops a severe pathology.

Results

Molecular evolution of apoA-I aggregating regions within Sarcopterygii

Given that apoA-I has four previously characterized APRs (residues 14-19 for APR1, 53-

58 for APR2, 67-72 for APR3 and 227-232 for APR4), we asked if these amyloid regions

could be relevant to the protein functionality in spite of their known pathogenic role

(Louros et al. 2015). To tackle this question, first of all we decided to explore the evolu-

tionary conservation of these motifs within apoA-I sequences of sarcopterygian organisms.

Our analysis was restricted to this group in order to cover a wide range of species across

the evolutionary history of apoA-I but excluding groups with large divergence times that

could confound the results (Yousaf, Raza, and Abbasi 2015). Sequences were collected

from the Ensembl database and a multiple sequence alignment (MSA) was constructed

in order to identify the APRs present in other species based on the previously reported
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sequences for humans. We employed the Tango software to predict the sequence-based

aggregation propensity of each one of the APRs and also computed the sequence conser-

vation from the MSA based on the Shannon entropy (H). Our results suggest that the

APR1 and APR4 has retained their amyloid propensity in more than 60% and 40% of the

sequences of the dataset, respectively. On the other hand, APR2 and APR3 presented

a non aggregation behavior in virtually all the sequences (Figure 1A). Regarding the

sequence conservation of aggregation-prone regions, our data showed that the sequence

entropy of APRs residues was statistically higher than the average H value for apoA-I (P

value = 0.018, Mann-Whitney U Test). This suggest that apoA-I APRs can retain their

aggregating behavior despite a lower sequence conservation (Figure 1B). Interestingly,

the H values for the APRs seemed to be different from each other, with APR1 having

the higher sequence conservation (Supplementary figure 1).

Figure 1: Evolutionary conservation of APRs within apoA-I sequences. A Percentage
of sequences in our dataset that are described are amyloidogenic according to Tango
(average score over 5%). B Sequence entropy (H) calculated for each residue inside the
corresponding APR (P value = 0.018, Mann-Whitney U Test).

Motivated by the higher sequence diversity of APRs, we decided to investigate the selec-

tion constraints affecting apoA-I as a way to gain further insight into the conservation

of its APRs motifs. A maximum likelihood phylogeny reflecting the evolutionary rela-

tionships between sequences was reconstructed from the MSA (Supplementary figure 2).

Using this phylogeny as framework, we computed the site-wise evolutionary rates at the

codon level (dN/dS, ratio of nonsynonymous to synonymous mutations) and evaluated

its statistical significance in order to evidence the presence of selection constraints acting

on the apoA-I sequence. In particular, we employed different methods from the HyPhy

package in order to detect both pervasive and episodic selection events. In general terms,
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the evolutionary rate profile of apoA-I revealed that most of the protein sequence dis-

played dN/dS values between 0 and 1, indicating a predominance of negative and neutral

selection regimes (Supplementary figure 3A). To depict the statistical evidence for the dif-

ferent types of selection constraints acting on apoA-I at residue-level, we used a cartoon

representation for each of the HyPhy frameworks tested (FEL and FUBAR for pervasive

selection, and MEME for episodic selection). In accordance with the entropy results, the

residues corresponding to the APRs showed evidence of both purifying and neutral selec-

tion, implying that some APR residues tend to be conserved during evolution but others

subject to sequence substitutions, either due a neutral or diversifying selection regime

(Supplementary figure 3B).

Structural modeling of apoA-I extant sequences

Prompted by the conserved amyloid behaviour of APR1 and APR4 albeit their not so

strong sequence conservation, we decided to expand these results with information derived

from protein structural data. We implemented an homology modeling approach to com-

pare apoA-I structures corresponding to several extant sequences, including amphibians

(Xenopus tropicalis), reptiles (Crocodilus porosus and Chelonoidis abingdonii), birds (Gal-

lus gallus) and mammals (Bos taurus, Canis lupus and Mus musculus). To date, the most

comprehensive and complete structure available for apoA-I corresponds to Dr. David-

son’s lab (ApoA-I consensus structure link), thus we used it as the template for our

homology-based modeling pipeline. Modeller was used to generate a structural model for

each target sequence and then we performed a step of energy minimization based on the

FastRelax protocol from PyRosetta. An alignment of these modeled structures showed

that the overall structure of apoA-I has been conserved among extant species. However,

the alignment also displayed a significant conformational variability, mainly outside the

helix bundle region (Figure 2A). Interestingly, all the modeled structures conserved sim-

ilar profiles of intrinsic dynamics (represented by the mean squared fluctuation (MSF)

of the alpha carbons of the protein backbone) and weighted contact number (WCN), a

measure of how crowded is the molecular environment of a residue (Supplementary figure

4). This suggests that besides its conformational heterogeneity, apoA-I structures have

conserved their overall intrinsic dynamics.

We used these structural models to further explore the intrinsic fluctuations levels and
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Figure 2: Dynamic and structural properties of apoA-I homologous structures. A Align-
ment of modeled structures corresponding to three extant apoA-I sequences. B Mean
squared fluctuation (MSF; P value = 1.69 x 10-4) and C weighted contact number (WCN;
P value = 1.23 x 10-3) corresponding to the APR and non-APR residues. D Network of
residue contacts involving APRs, as computed by the Protein Contact Atlas and RING2
servers (APR1 in blue, APR2 in yellow, APR3 in green and APR4 in pink). E Structural
mapping of apoA-I APRs contacts.
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packaging numbers of the residue sites composing apoA-I APRs. Our results showed sig-

nificantly lower MSF values for APRs residues when compared with the value distribution

for the non-APR residues of apoA-I (Figure 2B, P value = 1.69 x 10-4, Mann-Whitney

U Test). In a similar trend, the WCN values for APR residues were higher than non-

APR regions on average (Figure 2C, P value = 1.25 x 10-3, Mann-Whitney U Test). In

this structural context, APRs residues are integrated into relatively rigid and densely

packaged portions of apoA-I, a hallmark of functionally relevant sites for the protein

structure (Liu and Bahar 2012). To gain a deeper understanding about the molecular

interactions that stabilized each APRs inside apoA-I structure, we used Protein Contact

Atlas and RING2 servers to reconstruct the residue interaction network of each APR

(Figure 2D and 2E). Based on this data, APR1 displayed the greater number of residues

contacts, establishing interactions with helix H3 (residues 54-64) and 2 different regions

of the C terminus (residues 183-195 and 235-239); this cluster of interactions are deeply

buried inside the alpha-helix bundle of apoA-I. In contrast, the other APRs showed a

smaller number of contacts, comprising more localized and solvent-exposed residues. Tak-

ing all these data together, although all APRs were characterized by low mobility and

highly crowned molecular environment, APR1 seemed to be the greater contributor to

the molecular interactions stabilizing the alpha-helix bundle region of apoA-I.

Amyloid-associated variants have a destabilizing effect on apoA-I monomer

structure

In order to better understand the contribution of APRs to apoA-I structural stability, we

profiled the thermodynamic and pathological effect of every possible single point muta-

tion in apoA-I sequence through in silico saturation mutagenesis. Destabilizing effect of

each possible mutation in apoA-I sequence, represented by the difference in free energy

(ΔΔG) between wild type and mutant structure, was measured using the FoldX empirical

force field and the MutateX automation pipeline. To complement this approach, variant

impact on protein function was estimated using Rhapsody. We noticed from the ΔΔGs

distribution that most of the variants had a moderate impact on apoA-I stability (-1

kcal/mol < ΔΔG < 1 kcal/mol) (Figure 3A). Further examination revealed, as shown

in Figure 3B, that apoA-I structure is highly sensitive to mutations in the region 7-28,

which comprises APR1. (Complete FoldX results are available with Supplementary Fig-
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ure 5). Rhapsody predictions also support this region as a mutation-sensible segment

of apoA-I structure (Supplementary Figure 6). This result suggests that conservation of

APR1 in apoA-I could be necessary to maintain the marginal thermodynamic stability

of the alpha-helix bundle despite the risk to undergo aggregation. In line with our obser-

vations, APRs have been recently proposed to play a stabilizing role on protein structure

(Langenberg et al. 2020).

Figure 3: APR1 contributes to the stability of the alpha-helix bundle in apoA-I. The
protein structural stability was quantified using the FoldX engine. The free energy differ-
ence (ΔΔG) was calculated by comparison between the ΔG of the mutant and wild type
sequence A ΔΔG values distribution corresponding to all possible mutations. B Heatmap
of ΔΔG values for the first 40 residues of apoA-I N-terminal region.

Given the observation that amyloidogenic variants do not modify the intrinsic aggrega-

tion tendency of APRs (Supplementary Table 1), as evidenced from TANGO predictions

for the different apoA-I mutant sequences, we decided to investigate the impact of these

variants on apoA-I stability. We used ΔΔG values to highlight differences between

pathogenic variants associated with amyloid disease (Gogonea 2016) and natural vari-

ants reported by the gnomAD project (Karczewski et al. 2020). Our results evidenced

that amyloid mutations had a destabilizing effect and a pathogenicity score significantly
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greater when compared with non-amyloid natural variants (Figure 4A and 4B), suggest-

ing a close link between structural destabilization of apoA-I native conformation and the

onset of amyloid pathology. As it was observed that a small group of variants in the

gnomAD database showed an elevated impact on protein stability (> 2 ΔΔG kcal/mol),

we decided to investigate how frequently they occur at population level. Figure 4C shows

that variants with a severe impact on protein stability were present at low frequencies,

thus minimizing their deleterious effect on the population. In contrast, variants with the

higher frequency in our dataset had a nearly neutral effect on stability. It is worth not-

ing that although gnomAD excluded subjects with mendelian and pediatric diseases from

its cohorts, we cannot rule out the possibility that some of these destabilizing variants

correspond to non diagnosed pathologies.

To complement our previous results showing the destabilizing effect of amyloid variants,

we decided to study the dynamic properties of apoA-I amyloid mutants by conducting

coarse-grain molecular dynamics simulations under the SIRAH force field. We selected

four amyloid mutants (G26R, L60R, Δ107 and R173P) previously characterized by our

group (Gaddi et al. 2020; Gisonno et al. 2020; Ramella et al. 2012; Rosú et al. 2015),

plus the wild type protein, to prepare our simulation systems. Our selection also ensured

that mutations were distributed throughout the apoA-I sequence. In the first place, we ex-

plored the overall dynamics of our systems by means of their root mean square deviation

(RMSD). The recently described consensus structure for apoA-I was used as reference

coordinates for RMSD calculations. We observed a great variability in the RMSD values

for all simulated systems (5.4-10 angstrom) during our 1 microsecond simulation, which

could be related with the highly dynamic and marginally stable structure proposed for

apoA-I and is in agreement with the structural alignment of our modeled structures. We

did not evidence any significant differences between the RMSD values of the different

systems (Supplementary Table 2), suggesting that the impact of point mutations is neg-

ligible when compared against the intrinsic backbone dynamics.

Given the structural variability evidenced by RMSD, MD observables were computed

over the last 100 ns of the simulations. Position-specific RMSF for each of the systems

studied showed that loop regions 120-150 and 180-200 were the most flexible regions in

apoA-I, while the N-terminal domain maintained a more compact structure during the

simulation time (Supplementary Figure 7). These results are in good agreement with the
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Figure 4: Impact of apoA-I variants on protein stability and function A-B Free energy
difference (ΔΔG) and Rhapsody pathogenicity distributions for amyloid and gnomAD
variant classes (P value < 0.01, Mann-Whitney U Test). C Allele frequency distribu-
tion for gnomAD variants as a function of their predicted effect on protein stability. D
Molecular dynamics simulations of full-length apoA-I mutants. Solvent accessible surface
area (SASA) calculated for the APR1 (residues 14-19). The SASA calculation for G26R
displayed a higher APR1 exposure when compared with the wild type system (P value <
0.05 Student’s Test).
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MSF values computed with the GNM model, reinforcing the dynamic profile obtained

for apoA-I. The similar fluctuation profiles between the wild type apoA-I and the above-

mentioned mutants suggest that mutations do not introduce major dynamical changes,

at least during the simulation time frame. We explored the possible role of mutations in

amyloid aggregation of full length apoA-I by analyzing the solvent accessible surface area

(SASA) of each APR in our five systems. A significant increase in the solvent exposure of

the APR1 was detected in the G26R system when compared against the wild type system,

which suggests that some amyloid variants could lead to the solvent exposure of the ag-

gregating regions (Figure 4D). Additionally, the formation of a beta-sheet structure was

observed at the APR4 during the simulations of the system G26R (Supplementary figure

8). The low impact of the L60P, Δ107 and R173P variants on APRs exposure suggest

that these mutants could affect other regions of apoA-I structure or may require further

post-translational modifications in order to undergo amyloid aggregation.

Discussion

Molecular mechanism of amyloid aggregation linked to apoA-I remains largely unknown,

due in part to the limited structural information given its inherent conformational plas-

ticity (Gursky and Atkinson 1996). This work builds upon evolutionary, dynamical and

structural features of apoA-I in order to provide a comprehensive characterization of the

amyloid phenomena in this protein, complementing the extensive experimental evidence

available. Collectively, our results suggest an intimate relationship between aggregating

regions and structural stability in apoA-I. Additionally, MD simulations of full-length

apoA-I mutants shed light on the first steps of the aggregation process in some amyloid

mutants.

The fact that apoA-I has conserved aggregating segments (APR1 and APR4) consistently

along its evolutionary history raises questions about their structural relevance. Amyloid

motifs have been proposed to contribute to protein structural stability through extensive

interactions inside protein hydrophobic cores (Tartaglia and Vendruscolo 2010; Langen-

berg et al. 2020), which establish a trade-off between protein environment, foldability

and aggregation propensity (Linding et al. 2004; Monsellier et al. 2008). Based on its

conserved nature and FoldX stability results, it is possible to hypothesize that APR1 is
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necessary to ensure the marginal stability of apoA-I alpha-helix bundle, even though this

region could trigger aggregation upon solvent exposure or proteolytic cleavage (Arciello,

Piccoli, and Monti 2016). In addition, APR2 can act as a synergizing factor that ag-

gravates the amyloid behaviour of apoA-I N-terminal peptide, albeit it low aggregation

propensity (Wong et al. 2012; Mizuguchi et al. 2019). In this context, the structural fea-

tures of APR1 (low intrinsic flexibility, highly packaged environment and several residue

interactions) are likely to control its exposure to solvent and prevent aggregation events.

Hydrogen-deuterium exchange experiments (Das et al. 2016) support the highly packaged

nature of the alpha-helix bundle and the low solvent exposure of APR1 in apoA-I.

Amyloidogenic variants are primarily located towards the N-terminus of apoA-I, whereas

variants associated with HDL deficiencies are clustered in the H5-H7 region (Gogonea

2016; Matsunaga et al. 2010). Through a comprehensive evaluation of the destabilizing

effect and pathogenicity of each possible mutation affecting apoA-I we demonstrated that

amyloid variants have a significant destabilizing effect on the monomer structure. The

fact that TANGO aggregation tendency of APRs was not modified by the introduction

of amyloid mutations, supports the hypothesis that aggregation propensity per se has a

limited impact on the aggregation process of full-length apoA-I and certain destabilizing

factors are required to initiate the amyloid process (Raimondi et al. 2011). In addition,

we believe that ΔΔG values derived from our in silico saturation mutagenesis would

be useful as a proxy for the initial study of novel apoA-I mutants. Taking advantage

of the recently described consensus model of apoA-I (Melchior et al. 2017), our MD

simulations of mutant G26R revealed a partial unfolding of the N-terminal alpha-helix

bundle and a significant increase in the exposure of APR1, which is also congruent with

the destabilizing effect predicted from our ΔΔG calculations. This partial unfolding is

in line with the experimental reports of increased susceptibility to proteases (Adachi et

al. 2012) and greater hydrogen-deuterium exchange rate of the alpha-helix bundle (Das

et al. 2016) for this mutant. Moreover, beta-sheet secondary structures present at APR4

could provide a template for the aggregation of full-length apoA-I (Das et al. 2014).

Altogether, our results obtained from full-lenght protein support the current hypothesis

that unfolding of the helix bundle and exposure of aggregating regions represents the

first steps of apoA-I-mediated amyloidosis (Mizuguchi et al. 2019). The mild effect
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of L60R, Δ107 and R173P variants on apoA-I structure and APRs exposure suggest

that further modifications could be required to promote protein aggregation of these mu-

tants, like oxidation or proteolytic cleavage (Witkowski et al. 2018; Chan et al. 2015).

Recently, the connection between the pro-inflammatory microenvironment and the for-

mation of aggregation-prone species has been deeply characterized, reinforcing this hy-

pothesis (Gisonno et al. 2020). Moreover, the presence of the N-terminal proteolytic

fragment (residues 1-93) within patients’ lesions raises the hypothesis that mutations

may facilitate the cleavage of apoA-I by circulating proteases (Cavigiolio and Jayaraman

2014; Kareinen et al. 2018). In agreement with the late onset of the hereditary apoA-I

amyloidosis in patients, it may be hypothesized that mild chronic events may be required

to induce the protein unfolding.

Materials and Methods

Evolutionary analysis of apoA-I sequences

A comprehensive dataset of sequences was generated by collating apoA-I orthologs avail-

able at Ensembl and Refseq databases (O�Leary et al. 2015; Yates et al. 2019). To

exclude low quality data, only sequences which did not contain ambiguous characters,

had a proper methionine (M) starting codon and were longer than 200 amino acids were

kept. Additionally, as both Ensembl and Refseq have overlapping data for some species,

CD-HIT clustering tool (Fu et al. 2012) was employed to generate groups of similar se-

quences with an identity cut-off value of 0.98. Our final dataset comprised 104 protein

sequences covering the Sarcopterygii lineage of Vertebrata.

In order to reconstruct a maximum likelihood phylogeny, a multiple sequence alignment

(MSA) was built from the protein sequences using ClustalO with default parameters

(Sievers et al. 2011) and the phylogenetic inference was carried out with the IQ-TREE

software (Bui Quang Minh et al. 2020). The substitution model was selected based on

the ModelFinder evolutionary model fitting tool (Kalyaanamoorthy et al. 2017) and the

ultrafast bootstrap implemented in IQ-TREE was used to calculate the support values

for phylogeny branches (B. Q. Minh, Nguyen, and Haeseler 2013). A supplementary phy-

logeny was reconstructed using a MSA generate with MAFFT in order to verify that the

results obtained are independent of the aligning tool (Katoh 2002). Treefiles are available
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at the GitHub repository.

Visualization of the resulting phylogeny was carried out using the iTOL server (Letunic

and Bork 2019).

Selective pressure acting on apoA-I sequence

Nucleotide coding sequences were retrieved for each protein in our dataset using the NCBI

Entrez eutils tools for Refseq sequences and the Ensembl orthologs dataset. Because the

evolutionary rate estimation requires a codon-level alignment, the software PAL2NAL

was used to align codons in nucleotide sequence using a protein alignment as a guide

(Suyama, Torrents, and Bork 2006). The Hypothesis Testing using Phylogenies (HyPhy)

package was used to conduct evolutionary analysis on the codon-based alignment. Before

testing for evidence of selective pressure, we conducted a recombination analysis using

the Genetic Algorithm Recombination Detection (GARD) method, (Pond et al. 2006) in

order to screen for possible recombination events in our alignment; it is known that the

presence of recombination leads to a larger number of false positives in selection analysis.

We inferred the natural selection strength (Omega, dN/dS) for each alignment position

using our phylogeny as framework. We employed the Fixed Effects Likelihood (FEL)

(Pond and Frost 2005) and the Fast Unconstrained Bayesian Approximation (FUBAR)

methods (Murrell et al. 2013) to quantify the dN/dS ratio for each codon in the alignment.

Although both methods provide similar information, FEL provides support for negative

selection (dN/dS < 1) whereas FUBAR has more statistical power to detect positive

selection (dN/dS > 1). Because codon alignment positions are difficult to put in structural

context, data were extracted for codons occurring in wild type human apoA-I.

Comparative structural modeling of apoA-I extant sequences

Structural models of apoA-I based on extant sequences were obtained with the Modeller

software (Šali and Blundell 1993). A MSA between the target and template sequences

was used to guide the modeling process and the consensus structure of the human apoA-I

was selected as reference (Melchior et al. 2017). The raw models obtained with Modeller

were subjected to a step of energy minimization using FastRelax from the PyRosetta

suite in order to sample low-energy conformations that could potentially resemble the

native state of the protein (Chaudhury, Lyskov, and Gray 2010). The resulting structures
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were visualized and aligned with the PyMol Molecular Graphics System, Version 2.0

Schrödinger, LLC.

Packaging level for residue i was represented by its Weighted Contact Number (WCN),

which was calculated as follows:

𝑊𝐶𝑁𝑖 = ∑
𝑖≠𝑗

1
𝑟2

𝑖𝑗

Where, 𝑟𝑖𝑗 is the distance between the geometric center of the side-chain atoms for residue

i and residue j. Calculations were carried out using a custom script developed by Sydykova

et al. (Sydykova et al. 2018).

Protein intrinsic dynamics was characterized using a coarse-grained simulation model

based solely on protein topological information represented as a Gaussian Network Model

(GNM). In this approach, protein structure is modeled as a network of nodes (alpha car-

bons) connected by springs. Numerical resolution of this model allows the calculation of

the equilibrium displacement for all nodes (Mean Square Fluctuation, MSF), describing

the global motions of the system. The ProDy package (Bakan, Meireles, and Bahar 2011)

was used to adjust a GNM to the apoA-I consensus structure. We selected the first ten

slow modes for analysis and plotting, since they have been reported previously as the

main determinants of the global dynamics of protein structure (Kitao and Go 1999).

Residue interactions present within apoA-I structure were computed using two different

approaches, RING2 and Protein Contact Atlas (Piovesan, Minervini, and Tosatto 2016;

Kayikci et al. 2018). Briefly, both methods compute all non-covalent atom contacts

between residues and use them to create a residue contact network were each node rep-

resents a residue of the protein and the edges between residues indicate the presence of

at least one atomic contact.

Conservation of Aggregation Prone Regions (APRs)

Signal peptide sequences were trimmed and removed from the MSA to retain only the

mature protein sequence. TANGO software (Fernandez-Escamilla et al. 2004) was used to

detect APRs in the protein sequences dataset. This algorithm predicts beta-aggregation

using a space phase where the unfolded protein can adopt one of five states: random coil,
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alpha-helix, beta-turn, alpha-helical aggregation or beta-sheet aggregation. Importantly,

TANGO is based on the assumption that the core regions of an aggregate are fully buried.

Predictions were carried out using default settings: no protection for the C-terminus

and N-terminus, pH 7, temperature of 310° K and ionic strength of 0.1. Output files

provide an aggregation score per position; as suggested in the TANGO manual and

elsewhere, contiguous regions comprising five or more residues with a score of at least

five were annotated as an APR. To address the impact of single point mutations in apoA-

I aggregation tendency we ran TANGO for each mutant sequence and compared the

scores profile against the wild type sequence. TANGO software was downloaded from

http://tango.crg.es using an academic license.

Thermodynamics impact of missense variants

The FoldX engine (Guerois, Nielsen, and Serrano 2002) implements an empirical energy

function based on terms significant for protein structure stability. The free energy of

unfolding (ΔG) of the protein includes terms for van der Waals interactions, solvation

of apolar and polar residues, intra and intermolecular hydrogen bonds, water bridges,

electrostatic interactions and entropic cost for fixed backbone and side chains. Changes

in free energy of folding upon mutation is calculated as the difference between the folding

energy (ΔΔG) estimated for the mutants and the wild type variants. Although FoldX

seems to be more accurate for the prediction of destabilizing mutations and less accurate

for the prediction of stabilizing mutations, in both cases it was shown that FoldX is a

valuable tool to infer putative relevant sites for structural stability. FoldX 5 suite was

downloaded from http://foldxsuite.crg.eu/academic-license-info.

We employed MutateX software (Tiberti et al. 2019) to automate the prediction of ΔΔGs

associated with the systematic mutation of each available residue within apoA-I, by em-

ploying the FoldX energy function. At the heart of MutateX lies an automated pipeline

engine that handles input preparation and performs parallel runs with FoldX. Basic steps

involve protein data bank (PDB) structure repair (involving energy minimization to re-

move unfavorable interactions), model building for the mutant variants, energy calcula-

tions for both mutant and wild type structures and summarizing the estimated average

free energy differences.
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Pathogenicity scoring of missense variants

The Rhapsody prediction tool (Ponzoni et al. 2020) consists of a random forest classifier

that combines sequence, structure, and dynamics-based features associated with a given

amino acid variant and is trained over a comprehensive dataset of annotated human mis-

sense variants. Dynamical features include: mean-square fluctuations of the residue at

the mutation site, which estimates local conformational flexibility; perturbation-response

scanning effectiveness/sensitivity, accounting for potential allosteric responses involving

the mutation site, and the mechanical stiffness at the sequence position of the mu-

tated residue. These properties are computed from Elastic Network Models (ENM)

representations of protein structures that describe inter-residue contact topology in a

compact and computationally-efficient format that lends itself to a unique analytical

solution for each structure. The algorithm was recently upgraded to include coevolu-

tionary features calculated on conserved Pfam domains, and the training dataset was

further expanded and refined. The latter combines annotated human variants from

several publicly available datasets (Humvar, ExoVar, predictSNP, VariBench, SwissVar,

Uniprot’s Humsavar and ClinVar). All analyses were performed using the Rhapsody

server http://rhapsody.csb.pitt.edu/

Molecular Dynamics Simulations

Coarse grained Molecular Dynamics simulations were performed with the SIRAH force

field (Machado et al. 2019) and GROMACS 2018.4 software package (Abraham et al.

2015). We employed the consensus model of human apoA-I in its monomeric and lipid-free

state, proposed by Davidson et al. (Melchior et al. 2017). The PDB file was downloaded

from Davidson Lab homepage (http://homepages.uc.edu/~davidswm/structures.html).

Mapping atomic to coarse-grained representations was done with a Perl script included

in SIRAH Tools (Machado and Pantano 2016). G26R, L60R, R173P and Δ107 mu-

tants were generated with Chimera (Pettersen et al. 2004), editing the coordinates of

the consensus model pdb file. For the case of the deletion mutant, we removed Lys107

and connected residues Lys106 and Trp108 with an unstructured segment using Modloop

(Fiser and Sali 2003). Wild type apoA-I and the mutant systems were assembled using

the following setup: The protein was placed inside an octahedron simulation box defined

by setting a distance of 1.5 nm between the solute and the edges of the box. Systems
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were solvated setting a 150 mM NaCl concentration following the protocol proposed by

Machado et. al. (Machado and Pantano 2020). Energy minimization and heating steps

were done following the protocol recommended by Machado et al. (Machado et al. 2019)

using positional restraints in the protein backbone to ensure side-chain relaxation, espe-

cially in the mutant models. Production runs were performed by quintuplicate in the

absence of any positional restraint, generating 1 microsecond trajectories at 310 K using

a 1 bar NPT ensemble. Structural analysis was performed with GROMACS tools gmx

rmsf, gmx gyrate and gmx sasa. Root mean square fluctuation was calculated for each

residue aligning the full trajectory APOA-1 coordinates with the initial models. Radius of

gyration and Solvent accessible surface areas (SASA) were obtained averaging the values

corresponding to the last 0.1 microsecond of simulation. The SASA calculations were

measured over three amyloid prone regions, comprising residues 14-19 (APR1), 53-58

(APR2), 67-72 (APR3) and 227-232 (APR4).

Code and Files Availability

All Python packages used were installed through the Conda environment manager into

a single environment. A requirements file is available in the repository of this project

in order to install dependencies used in our analysis. The workflow manager Snakemake

was used in the evolutionary analysis in order to gain reproducibility and consistency of

the results (Koster and Rahmann 2012). The data, Snakefile and Python scripts used in

this work are available at https://github.com/tomasMasson/APOA1_evolution.

Statistical Analyses and Visualizations

Scipy Python library was used for data manipulation and all statistical analyses (Virtanen

et al. 2020). Statistical significance was determined using Mann-Whitney U Test for

variant’s impact comparison and Student’s Test for MD observables. MD graphs are

reported as means ± standard deviation derived from five independent experiments. All

visualizations were prepared with the Seaborn library (Waskom et al. 2020).
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