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Abstract 22 

Microbial inorganic nitrogen (N) immobilization is an important mechanism in the 23 

retention of N in soils. However, as a result of the high diversity and complexity of 24 

soil microorganisms, there is still no effective approach to measuring the respective 25 

immobilization rates of inorganic N by fungi and bacteria, which are the two 26 

dominant microbial communities in soils. We propose a mathematical framework, 27 

combining the experimentally measurable gross inorganic N immobilization rate and 28 

proxies for fungal and bacterial inorganic N immobilization rates, to quantify the 29 

respective immobilization rates of inorganic N by fungal and bacterial communities in 30 

soil. Our approach will help to unravel the mechanisms of N retention in soils. 31 

Keywords:  32 

Amino sugars; fungi; bacteria; microbial inorganic N immobilization; 15N; stable 33 
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 35 

The microbial immobilization of inorganic nitrogen (N) has a vital role in controlling 36 

the size of the soil inorganic N pool and is therefore an important mechanism for the 37 

retention of N in ecosystems (Davidson et al 1992, Stark and Hart 1997, Zhang et al 38 

2013, Zogg et al 2000). Through this immobilization process, inorganic N in soil is 39 

converted to microbial biomass N and subsequently re-mineralized or converted to 40 

stable organic N, eventually reducing the risk of N losses from soil (Recous et al 1990, 41 

Tahovská et al 2013, Zhang et al 2019). As the dominant microorganisms in soil, 42 
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fungi and bacteria are probably the main participants in inorganic N immobilization 43 

(Bottomley et al 2012, Boyle et al 2008, Myrold and Posavatz 2007). Given the 44 

distinct physiologies, morphologies, lifestyles and quantities of these two microbial 45 

groups in soil (Lauber et al 2008, Rousk and Bååth 2011, Six et al 2006, Waring et al 46 

2013), the relative importance of fungi and bacteria in soil inorganic N 47 

immobilization is likely to be unequal (Bottomley et al 2012, Li et al 2019, Myrold 48 

and Posavatz 2007). However, as a result of the high diversity and complexity of soil 49 

microorganisms, quantifying the respective rates of immobilization of inorganic N by 50 

fungal and bacterial communities in soil is challenging (Fierer 2017, Li et al 2019, Li 51 

et al 2020), although the gross inorganic N immobilization rate can be measured using 52 

well-established 15N isotope techniques (e.g.,   the 15N pool dilution method) (Cheng 53 

et al 2017, Murphy et al 2003). 54 

Amino sugars, which are important constituents of microbial cell walls, have different 55 

origins in microorganisms. Among the amino sugars identified in microorganisms, 56 

muramic acid (MurN) originates exclusively from bacterial peptidoglycan, whereas 57 

glucosamine (GlcN) is mainly in the form of chitin in fungal cell walls (Amelung 58 

2001, Parsons 1981, Zhang and Amelung 1996). Based on their microbial source 59 

specificity, stable isotope probing based on amino sugars (15N-AS-SIP) has been 60 

developed to disentangle the immobilization processes of inorganic N by fungi and 61 

bacteria in soils (He et al 2006, He et al 2011a, He et al 2011b, Liang and Balser 2010, 62 

Reay et al 2019a, Reay et al 2019b).  63 

This approach has now been extended to indicate the inorganic N immobilization 64 
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rates of fungal and bacterial communities in soils (Li et al 2019, Li et al 2020). More 65 

specifically, given the relatively long persistence of amino sugars in soils (mean 66 

turnover time >2 years, much longer than that of the living microorganisms) (Derrien 67 

and Amelung 2011, Glaser et al 2006, Liu et al 2016), the newly formed 15N-labeled 68 

amino sugars are considered to be stable in soil even after cell death (Glaser et al 2004, 69 

Gunina et al 2017). The fungal-derived 15N-GlcN and bacterial-derived 15N-MurN 70 

synthesis rates within a short period of incubation after 15N tracer addition have 71 

therefore been used as proxies for the rates of immobilization of inorganic N by fungi 72 

and bacteria, respectively (Li et al 2019, Li et al 2020). However, mainly as a result of 73 

the variation in the composition of tissues of massive microbial species, but also 74 

within each species under different growth conditions, the actual contents of GlcN 75 

and MurN in the respective biomasses of fungi and bacteria in soil are almost 76 

unobtainable (Appuhn and Joergensen 2006, Engelking et al 2007, Glaser et al 2004, 77 

Joergensen 2018). It is also still unclear how fast do the cell N-containing components 78 

turn over intracellularly and extracellularly in soil (Dippold et al 2019, Engelking et al 79 

2007, Gunina et al 2017). As a consequence, converting the synthesis rates of 80 

15N-labeled amino sugars specific for fungi and bacteria to the actual inorganic N 81 

immobilization rates in soil is challenging. 82 

To bypass this intractable problem, we propose a mathematical framework to estimate 83 

the conversion coefficients between fungal and bacterial inorganic N immobilization 84 

rates and their respective proxies by combining the gross inorganic N immobilization 85 

rate with proxies for the respective inorganic N immobilization rates of fungi and 86 
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bacteria. In this way, we can obtain the respective immobilization rates of inorganic N 87 

by fungal and bacterial communities in soil. 88 

Calculation of fungal and bacterial inorganic N immobilization rates 89 

Our proposed calculation is based on the assumption that fungi and bacteria are the 90 

dominant participants in soil microbial inorganic N immobilization. If both the gross 91 

inorganic N immobilization rate and the proxies for inorganic N immobilization rates 92 

of fungi and bacteria have been measured on n soil samples (n≥2), then the respective 93 

immobilization rates of inorganic N by fungal and bacterial communities can be 94 

calculated.  95 

The measured variables are: 96 

� �  ���������: gross microbial inorganic N immobilization rates for n samples (mg N 97 

kg−1 day−1); 98 

F �  ���������: fungal-derived 15N-GlcN synthesis rates for n samples (mg N kg−1 day−1); 99 

B �  ���������: bacterial-derived 15N-MurN synthesis rates for n samples (mg N kg−1 100 

day−1). 101 

The two parameters to be estimated are: 102 

KF: the conversion coefficient from the fungal-derived 15N-GlcN synthesis rate to the 103 

fungal inorganic N immobilization rate; 104 
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KB: the conversion coefficient from the bacterial-derived 15N-MurN synthesis rate to 105 

the bacterial inorganic N immobilization rate. 106 

Using the 15N-labeled amino sugars synthesis rates and conversion coefficients, the 107 

estimated fungal and bacterial inorganic N immobilization rates (mg N kg−1 day−1) are, 108 

respectively, calculated as: 109 

	� � 
� � �          (1) 110 

and  111 

	� � 
� � �          (2) 112 

Their sum is therefore the estimated gross microbial inorganic N immobilization rate 113 

(mg N kg−1 day−1): 114 

�� � 	� 
 	� � 
� � � 
 
� � � 

The measured gross microbial inorganic N immobilization rate results are included in 115 

the equation: 116 

� � �� 
 � � 
� � � 
 
� � � 
 � 

where � is the estimation error. This equation can be rewritten in a matrix format: 117 

� �  �� �� �
�
�

� 
 � 

Alternatively, 118 

��������� �  ��� ���� ��� ��� ��� �
�
�

� 
 ��������� 

 119 

If we let 
 � �
�
�

� and � � ��� ���� ��� ��� ���, we obtain: 120 
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� �  � 
 
 � 

The least-squares estimators that minimize the sum of the squared residuals are given 121 

in the following (see Appendix for the detailed derivation) (Wackerly et al 2014): 122 


� � ����������                            (3) 123 

To illustrate how this approach works, we calculated the soil nitrate (NO3
−) 124 

immobilization rates of fungi and bacteria using the gross NO3
− immobilization rates 125 

reported by Zhang et al (2013) and the 15N-labeled amino sugars synthesis rates 126 

reported by Li et al (2019). Both studies studied the effect of land conversion from 127 

forest to agriculture on the soil NO3
− immobilization in subtropical zones of China. 128 

Ideally, the gross NO3
− immobilization rates and the 15N-labeled amino sugars 129 

synthesis rates should be measured under the same experimental conditions such as 130 

sampling sites. Due to the unavailability of such data, we roughly treat selected 131 

studies as being conducted at the same sites. Therefore, the results in Table 1 are 132 

presented as an illustrative example, rather than as reliable estimates. For simplicity, 133 

only the mean rates for forest and agricultural lands were used in this example (n = 2). 134 

The conversion coefficients were obtained by substituting the measured gross NO3
− 135 

immobilization rates and the 15N-labeled amino sugars synthesis rates into Equation 136 

(3). The fungal and bacterial NO3
− immobilization rates were then calculated using 137 

Equations (1) and (2). A summary of measured data and estimated values is provided 138 

in Table 1. 139 

The results showed that the NO3
− immobilization rates of fungi in woodland and 140 

agricultural soils were about 8.4 and four times those of bacteria, indicating that fungi 141 
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dominated the microbial NO3
− immobilization in the studied soil (Table 1). 142 

Conversion to agricultural use led to decreases in the fungal and bacterial NO3
− 143 

immobilization rates of 0.34 and 0.03 mg N kg−1 day−1, respectively, which suggests 144 

that the decrease in the fungal NO3
− immobilization rate dominates the decrease in the 145 

gross soil microbial NO3
− immobilization caused by the land use change. 146 

 147 

Table 1. An illustration of the method of calculating soil fungal and bacterial NO3
− 148 

immobilization rates under different land use scenarios. The gross NO3
− 149 

immobilization rates (G) were obtained from Zhang et al (2013). The synthesis rates 150 

of fungal-derived 15N-GlcN (F) and bacterial-derived 15N-MurN (B) were obtained 151 

from Li et al (2019) (see Table S1 for detailed calculations). These values are 152 

presented as an illustrative example, rather than as reliable estimates. 153 

Land use 
G F B KF KB RF RB 

mg N kg−1 day−1     mg N kg−1 day−1 

Woodland 0.47 0.0303 0.0022 13.78 23.83 0.42 0.05 

Agriculture 0.10 0.0057 0.0009 13.78 23.83 0.08 0.02 

Note: KF and KB are the conversion coefficients between F, B and the NO3
− 154 

immobilization rates of fungi (RF) and bacteria (RB), respectively. 155 

Advantages and limitations of this approach 156 

Understanding the microbially mediated N cycling processes in soil is central to 157 
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unraveling soil N retention mechanisms and has ramifications for reducing N losses 158 

and managing ecosystem productivity. As a result of the high diversity and 159 

complexity of microbial communities, quantifying the process rates of different 160 

microbial groups has been a great challenge, especially in soil (Bardgett and Van Der 161 

Putten 2014, Fierer 2017, Stres and Tiedje 2006). Our approach provides an effective 162 

way to mathematically, rather than mechanically, quantify the relative importance of 163 

fungal and bacterial communities in soil inorganic N immobilization. It circumvents 164 

the bottleneck of directly measuring or estimating the inorganic N immobilization 165 

rates of fungi and bacteria in soil. The experimentally accessible gross inorganic N 166 

immobilization rate and proxies of fungal and bacterial inorganic N immobilization 167 

rates are used to estimate the conversion coefficients between fungal and bacterial 168 

inorganic N immobilization rates and their respective proxies. The conversion 169 

coefficients obtained inherently take into account both the actual contents of GlcN 170 

and MurN in the respective biomasses of fungi and bacteria and the turnover of cell 171 

N-containing components in the studied soil. Because the rationale and mathematical 172 

derivation are universal, our method may also be applicable to other environmental 173 

systems, such as freshly colonized organic substrates (Appuhn and Joergensen 2006). 174 

This approach relies on the simplifying assumption that only fungi and bacteria are 175 

involved in soil microbial inorganic N immobilization. This assumption may not quite 176 

hold true, because Archaea may also contribute to inorganic N immobilization 177 

(Laughlin et al 2009). Considering that Archaea contain GlcN, but not MurN 178 

(Joergensen 2018), the contribution of Archaea, if any, is included in the fungal 179 
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inorganic N immobilization rates by adopting our approach. Nevertheless, considering 180 

that Archaea account for less than <1% of the soil microbial biomass (Fierer 2017), 181 

the errors caused by this assumption are probably trivial. 182 

Conclusions 183 

We propose a mathematical approach that combines the mechanically accessible gross 184 

inorganic N immobilization rate and proxies for fungal and bacterial inorganic N 185 

immobilization rates (measured by 15N-AS-SIP) to quantify the inorganic N 186 

immobilization rates of fungal and bacterial communities in soil. This approach, 187 

although not without its limitations, allows us for the first time to disentangle the 188 

actual contribution of fungi and bacteria to the immobilization of N-containing 189 

substrates in soil. Promisingly, integrating both fungal and bacterial inorganic N 190 

immobilization rates into terrestrial ecosystem models (e.g., microbial models) will 191 

improve our ability to understand, predict and manage the N retention capacity in 192 

soils under different scenarios (Waring et al 2013). 193 
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