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Abstract  

Background 

Existing computational methods for studying miRNA regulation are mostly based on 

bulk miRNA and mRNA expression data. However, bulk data only allows the 

analysis of miRNA regulation regarding a group of cells, rather than the miRNA 

regulation unique to individual cells. Recent advance in single-cell miRNA-mRNA 

co-sequencing technology has opened a way for investigating miRNA regulation at 

single-cell level. However, as currently single-cell miRNA-mRNA co-sequencing 

data is just emerging and only available at small-scale, there is a strong need of novel 

methods to exploit existing single-cell data for the study of cell-specific miRNA 

regulation. 

Results 

In this work, we propose a new method, CSmiR (Cell-Specific miRNA regulation) to 

use single-cell miRNA-mRNA co-sequencing data to identify miRNA regulatory 

networks at the resolution of individual cells. We apply CSmiR to the miRNA-mRNA 

co-sequencing data in 19 K562 single-cells to identify cell-specific miRNA-mRNA 

regulatory networks for understanding miRNA regulation in each K562 single-cell. 

By analyzing the obtained cell-specific miRNA-mRNA regulatory networks, we 

observe that the miRNA regulation in each K562 single-cell is unique. Moreover, we 

conduct detailed analysis on the cell-specific miRNA regulation associated with the 

miR-17/92 family as a case study. Finally, through exploring cell-cell similarity 

matrix characterized by cell-specific miRNA regulation, CSmiR provides a novel 

strategy for clustering single-cells to help understand cell-cell crosstalk. 
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Conclusions 

To the best of our knowledge, CSmiR is the first method to explore miRNA regulation 

at a single-cell resolution level, and we believe that it can be a useful method to 

enhance the understanding of cell-specific miRNA regulation. 
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Background 
As an abundant class of small, conserved and non-coding RNAs, microRNAs 

(miRNAs) play an important role in regulating gene expression through post-

transcriptional repression or messenger RNA (mRNA) degradation [1]. In a cell, it is 

estimated that miRNAs can regulate the expression of up to one-third of the encoded 

human genes [2]. Such cellular effects of miRNAs influence a wide range of basic 

cellular functions, including cell proliferation, cell differentiation, and cell death [3]. 

Just as each individual cell is unique in the context of its microenvironment, miRNA 

regulation would tend to be unique in each individual cell accordingly. Previously, 

based on bulk RNA sequencing expression data from large populations of cells, many 

computational methods have been developed for exploring miRNA regulation [4, 5], 

but at the resolution of groups of cells. This may have obscured the heterogeneity of 

miRNA regulation across individual cells within these populations. Fortunately, 

single-cell RNA sequencing technology has now provided us the opportunity to study 

miRNA regulation at the single-cell level. 

To investigate miRNA regulation at the single-cell level, Wang et al. [6] used a half-

cell genomics approach to generate single-cell miRNA-mRNA co-sequencing 
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expression data of 19 K562 half cells, and then applied Pearson correlation method to 

identify miRNA targets. By using the half-cell genomics method, a single cell is lysed 

and the lysate is split evenly into two half-cell fractions. Then, each half-cell fraction 

can be used for either miRNA or mRNA transcriptome sequencing. They have found 

that miRNA expression variability alone may cause non-genetic intercellular 

heterogeneity. However, the identification of the miRNA targets by their work was in 

the grouped 19 K562 half cells rather than individual K562 half cells, consequently 

ignoring the heterogeneity of miRNA regulation between single-cells. To investigate 

the heterogeneity of miRNA regulation between different single-cells, it is necessary 

to explore cell-specific miRNA regulation (i.e. one miRNA regulatory network for 

one cell). 

Although single-cell miRNA-mRNA co-sequencing data is emerging, the number of 

single-cells included in each single-cell dataset is still small mainly due to the lack of 

mature single-cell RNA sequencing technology for genome-wide profiling of both 

mRNAs and miRNAs [7]. To explore cell-specific miRNA regulation using single-

cell miRNA-mRNA co-sequencing data, in this work, we adapt the cell-specific 

network (CSN) method proposed in [8] to infer cell-specific miRNA-mRNA 

regulatory networks. Given a single-cell gene expression data set including g genes 

and n cells, CSN infers n cell-specific networks. Each cell-specific network is an 

undirected gene association network, and consists of g nodes corresponding to g 

genes and the edges representing undirected gene-gene associations. CSN uses a 

statistic (see Eq. (2) in the “Methods” section) to calculate the strength of a gene-gene 

association in each cell. To identify the gene-gene associations in each cell by using 

the statistic, CSN takes a one-sided hypothesis test. The null hypothesis is that two 

genes are independent in cell k, and the alternative hypothesis is that two genes are 
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associated with each other in cell k. If the statistic of a gene-gene association in cell k 

is larger than a significant level (e.g. 0.01), the gene-gene association in cell k exists. 

Although CSN can infer cell-specific gene regulatory networks consisting of cell-

specific gene-gene associations, it can’t be directly utilized to identify cell-specific 

miRNA regulatory network as described below. 

To explore cell-specific miRNA regulation, our method CSmiR extends CSN from the 

following two aspects. Firstly, CSN is only applicable to single-cell gene expression 

data with more than 100 single-cells. To address the issue, we introduce pseudo-cells 

to enlarge the number of single-cells in a single-cell miRNA-mRNA co-sequencing 

data set with less than 100 single-cells. Secondly, CSN is developed to infer all types 

of gene-gene interactions from single-cell RNA sequencing data. For single-cell 

miRNA-mRNA co-sequencing data, we focus on identifying the interactions between 

miRNAs and mRNAs rather than all the types of interactions (including miRNA-

miRNA, miRNA-mRNA and mRNA-mRNA interactions). 

We have applied the proposed CSmiR method to single-cell miRNA-mRNA co-

sequencing expression data across 19 K562 half cells, and the analysis results indicate 

that CSmiR can help with the investigation of miRNA regulation at the resolution of 

individual cells. 

Results and discussion 

The miRNA regulation in each K562 cell is unique 

As discussed above, to investigate cell-specific miRNA regulation using single-cell 

miRNA-mRNA co-sequencing data with a small number of samples, we propose to 

interpolate pseudo-cells to the data before inferring the miRNA-mRNA interactions of 

interest (see the “Methods” section). Accordingly, as shown in Fig. 1, our proposed 

method CSmiR consists of three main components, Interpolating pseudo-cells by 
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sampling with replacement, identifying cell-specific miRNA-mRNA regulatory 

networks, and downstream analysis with cell-specific networks. Following the 

workflow of CSmiR, we have identified 19 cell-specific miRNA-mRNA regulatory 

networks for the 19 K562 cells. In this section, we present the results on the 

investigation of the uniqueness of each K562 cell in terms of cell-specific miRNA-

mRNA interactions and hub miRNAs. 

Firstly, we have investigated the identified cell-specific miRNA-mRNA regulatory 

networks and hub miRNAs in four aspects: i) the number of predicted cell-specific 

miRNA-mRNA interactions, ii) the percentage of validated cell-specific miRNA-

mRNA interactions, iii) the percentage of CML-related cell-specific miRNA-mRNA 

interactions, iv) the percentage of CML-related hub miRNAs. In the case of the four 

aspects, the miRNA regulation is different in each of the 19 K562 cells (see Fig. S1 in 

Additional file 1). Furthermore, we have discovered that the percentage of conserved 

and rewired miRNA-mRNA interactions is 20.47% (529998 out of 2588860) and 

30.44% (787993 out of 2588860), respectively, indicating that the miRNA-mRNA 

interactions are more likely to be rewired across K562 cells. In terms of the similarity 

of the miRNA-mRNA interactions between these cell-specific regulatory networks, 

the range of cell similarity is [0.61, 0.86]. As shown in Fig. 2A, the cell similarity 

between any pair of the 19 K562 cells is less than 90%. In addition, the percentage of 

conserved and rewired hub miRNAs is 0% (0 out of 138) and 26.09% (36 out of 138) 

respectively, indicating the hub miRNAs tend to be rewired across K562 cells. In 

terms of hub miRNAs in the cell-specific regulatory networks, the range of cell 

similarity is [0.33, 0.62]. As shown in Fig. 2B, the cell similarity between any pair of 

the19 K562 cells is less than 70%. 
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Comparing with the conserved miRNA regulation (conserved miRNA-mRNA 

interactions and hub miRNAs) across the 19 K562 single-cells, our work highlights a 

remarkable rewiring in the miRNA regulation (rewired miRNA-mRNA interactions 

and hub miRNAs) between the K562 cells, just like ‘on/off’ switches from cell to cell. 

The higher rewiring of miRNA regulation may be explained in part by the cell-

specific expression of miRNAs and mRNAs, and it may be the reason of single-cell 

uniqueness. The detailed information of conserved and rewired miRNA-mRNA 

regulatory networks and hub miRNAs can be seen at 

https://github.com/zhangjunpeng411/CSmiR. Moreover, in terms of cell-specific 

miRNA-mRNA regulatory networks and cell-specific hub miRNAs, the above 

observations show that the miRNA regulation in any two different K562 cells are not 

completely the same, demonstrating the uniqueness of miRNA regulation in each cell. 

The miR-17/92 family regulation across K562 single-cells 

To further understand the miRNA family regulation across K562 single-cells, we 

conduct a case study to investigate cell-specific regulation of the miR-17/92 family. 

The miR-17/92 family includes six members: miR-17 (miR-17-3p, miR-17-5p), miR-

18a (miR-18a-3p, miR-18a-5p), miR-19a (miR-19a-3p, miR-19a-5p), miR-19b-1 

(miR-19b-3p, miR-19b-1-5p), miR-20a (miR-20a-3p, miR-20a-5p) and miR-92a-1 

(miR-92a-3p, miR-92a-1-5p). They play important roles in cell cycle, cell 

proliferation, cell apoptosis and other pivotal biological processes [9]. Previous 

studies [10-13] have also shown that the miR-17/92 cluster is in association with 

chronic myelogenous leukemia (CML). Out of the six members, miR-18a (miR-18a-

3p and miR-18a-5p) with constant expression values across the 19 K562 single-cells 

is removed after data pre-processing. Hence in this section, we will focus on the 
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regulation of the other five members (miR-17, miR-19a, miR-19b-1, miR-20a and 

miR-92a-1) from the miR-17/92 family. 

To evaluate whether there is significant difference in the regulation of miR-17/92 

family between each pair of the 19 K562 single-cells, we compare the distributions of 

the number of predicted targets, the distributions of the percentages of validated 

targets and the distributions of the percentages of CML-related targets of miR-17/92 

family in different K562 single-cells using a two-sample Kolmogorov–Smirnov (KS) 

test [14]. The KS test is non-parametric, and can be used to assess whether the 

distribution of the number of predicted targets, the distribution of the percentages of 

validated targets or the distribution of the percentages of CML-related targets of miR-

17/92 family in one K562 single-cell is significantly shifted compared with the 

distribution in another K562 single-cell. To estimate the distributions, we calculate 

the number of predicted targets, the percentage of validated targets and the percentage 

of CML-related targets of miR-17/92 family respectively in each K562 single-cell for 

each run of bootstrapping. As shown in Fig. 3A-3C, in the case of predicted targets, 

validated targets and CML-related targets, the regulations of miR-17/92 family 

between most of pairs of the 19 K562 single-cells are significantly different (p-value 

< 0.05). This result indicates that the regulation of miR-17/92 family is likely to be 

cell-specific. From Fig. 3D, the number of rewired targets of miR-17/92 family is 

larger than the number of conserved targets of them. This difference shows that the 

dominant miRNA regulation type (conserved or rewired) across cells may be rewired 

miRNA regulation. The detailed information of conserved and rewired targets 

associated with miR-17/92 family can be seen in Additional file 2. 

Generally, through regulating target genes, miRNAs implement a specific biological 

function in the form of communities or modules. Therefore, based on the conserved 
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and rewired miRNA-mRNA regulatory interactions associated with miR-17/92 family, 

we identify the conserved and rewired miRNA-mRNA modules associated with miR-

17/92 family. We discover that most of the conserved and rewired miRNA-mRNA 

modules are significantly enriched in at least one term of Gene Ontology (GO), Kyoto 

Encyclopedia of Genes and Genomes Pathway (KEGG), Reactome, Hallmark or Cell 

marker (see Table S1 in Additional file 1). Several significant terms, e.g. the GO 

biological process “cellular response to leukemia inhibitory factor”, KEGG pathway 

“Chronic myeloid leukemia”, Reactome pathway “Regulation of mitotic cell cycle” 

[15], Hallmark “HALLMARK_TGF_BETA_SIGNALING” [16] and Cell marker 

“Peripheral blood, Leukemia, Cancer stem cell”, are closely associated with leukemia. 

This result shows that the identified conserved and rewired miRNA-mRNA modules 

associated with miR-17/92 family are functional modules. The detailed enrichment 

analysis results of conserved and rewired miRNA-mRNA modules can be seen in 

Additional file 3.   

CSmiR provides a novel strategy for clustering single-cells 

Existing methods for clustering single-cells are mainly based on cluster analysis of 

single-cell RNA expression data. Different from these methods, we propose to cluster 

single-cells based on the interaction similarity and hub miRNA similarity as 

mentioned in the “Methods” section. We compare the proposed clustering method 

with the result of the clustering based on the Euclidean distance (normalized to the 

range of [0, 1]) between cells calculated using the expression data of single-cells (see 

the “Methods” section).  

As shown in Fig. 4, we use hierarchical clustering to perform clustering analysis of 

the 19 K562 single-cells based on interaction similarity (Fig. 4A) and hub miRNA 

similarity (Fig. 4B) respectively, in comparison with the clustering based Euclidean 
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distance (Fig. 4C). The clustering results differ due to different similarity/distance 

measures used. However, our method (either using the interaction similarity or hub 

miRNA similarity) gives rather distinct clusters, whereas the conventional cluster 

analysis directly based on the difference in gene expression does not produce any 

clear clusters. This result can be explained by previous studies [17, 18] showing that 

gene regulatory networks are more ‘stable’ than gene expressions to characterize the 

status of the biological process or cell. Although our clustering analysis results should 

be further validated by wet-lab experiments, CSmiR provides a novel strategy to help 

biologists discover clusters of cells which may indicate novel cell subtypes. 

CSmiR helps to understand cell-cell crosstalk 
It is known that cell-cell communication or crosstalk is crucial for multicellular 

organisms (i.e. human) because it allows multiple cells to communicate and 

coordinate to perform important life activity [19, 20]. Here, if the similarity value 

between celli and cellj is larger than the median similarity value, celli and cellj have a 

crosstalk relationship. In terms of interaction similarity or hub miRNA similarity, we 

assemble the cell-cell crosstalk relationships to generate cell-cell crosstalk network. 

Based on the interaction and hub miRNA similarity matrices, we obtain two cell-cell 

crosstalk networks (details in Additional file 4). 

By analyzing the identified cell-cell crosstalk networks, we can understand which 

cells frequently communicate with other cells. We call these frequently 

communicated cells as hub cells or active cells. Similar to identifying cell-specific 

hub miRNAs, we also regard the top 20% of cells in terms of node degrees in each 

cell-cell crosstalk network as hub cells. These hub cells may act as pivots to link 

different subtypes of K562 single-cells (see Table S2 in Additional file 1). Moreover, 

we can also understand which cells tend to form a module in the process of 
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communication. By using the Markov Clustering Algorithm (MCL) [21] implemented 

in the miRspongeR R package [22], we identify cell-cell crosstalk modules from the 

identified cell-cell crosstalk networks. For each module, the number of K562 single-

cells is at least 3. We have discovered that most of the K562 single-cells only form a 

single module to communicate with each other (see Table S3 in Additional file 1). 

This observation can be explained that the 19 K562 single-cells used are 

phenotypically identical, and most of them are more likely form a module in cell-cell 

crosstalk. 

Conclusions 
It is well known that miRNA regulation is essential to a wide range of important 

biological processes, including RNA silencing, transcriptional regulation of gene 

expression, cellular functions, signaling pathways and human cancers. Previous 

studies [23-25] have shown that miRNA regulation is condition-specific, implying 

that the miRNA regulation is cell-specific even these single-cells are phenotypically 

identical. Fortunately, single-cell RNA sequencing technology provides us an 

opportunity to gain insights into miRNA regulation at single-cell level. In this work, 

we have proposed CSmiR, a novel method to construct cell-specific miRNA-mRNA 

regulatory networks for each single-cell and use the networks to investigate cell-

specific miRNA regulation. When identifying cell-specific miRNA-mRNA regulatory 

networks, since the cell-specific miRNA-mRNA regulatory networks are identified 

only from single-cell miRNA-mRNA co-sequencing expression data without using 

prior knowledge, CSmiR is an unsupervised method. 

Our proposed method can be enhanced in several areas. Firstly, the identified cell-

specific miRNA-mRNA networks are all correlation networks. Actually, to uncover 

miRNA causal regulation in single-cells, it is our future plan to identify cell-specific 
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miRNA causal regulatory networks. Secondly, to improve the accuracy of the 

predicted cell-specific miRNA-mRNA regulatory networks, we can incorporate 

putative miRNA-mRNA binding information as prior knowledge into CSmiR. Finally, 

the miRNA regulation can be generally classified into two types: miRNA-directed 

regulation and miRNA-indirected regulation. In this work, we only consider the type 

of miRNA-directed regulation where miRNAs directly regulate the expression of 

mRNAs, and have not considered the type of miRNA-indirected regulation where 

miRNAs act as mediators to involve in gene regulation. According to the competing 

endogenous RNA (ceRNA) hypothesis [25], miRNAs act as mediators to involve in 

the crosstalk between different RNA transcripts (e.g. mRNAs, transcribed 

pseudogenes, circular RNAs and long noncoding RNAs). We also plan to infer cell-

specific miRNA sponge interaction networks in future. 

Although CSmiR can be improved as suggested above, it provides a new way to 

explore the heterogeneity of miRNA regulation in each single-cell. Especially, CSmiR 

can be applied in the study of germ cells or reproductive development [27], in which 

few cells could be profiled. We believe that CSmiR can be a useful method to speed 

up non-coding RNA (e.g. miRNA) research at single-cell level. 

Methods 
In the following, we will describe the details about the single-cell miRNA-mRNA co-

sequencing data used, interpolating pseudo-cells in small-scale single-cell 

transcriptomics data, the identification of cell-specific miRNA-mRNA regulatory 

networks, and subsequent analysis of the identified single-cell miRNA regulation. 

Single-cell miRNA-mRNA co-sequencing data 

We obtain matched miRNA and mRNA co-sequencing expression data in 19 half 

K562 cells from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 
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with accession number GSE114071. The K562 cells used are the first human chronic 

myelogenous leukemia (CML) cell line. For the duplicate miRNAs or mRNAs with 

the same gene symbols in the dataset, we compute the average expression values of 

them as their final expression values. Since gene expression variability may be a 

reason of non-genetic cell-to-cell heterogeneity [6], as a feature selection, we remove 

all the miRNAs and mRNAs with constant expression values (the standard deviation 

of their expression values in all single-cells is 0) across the 19 half K562 cells. The 

matched miRNA and mRNA expression data are then pre-processed by 

using 2log ( 1)+x transformation. As a result, we have the matched expression profiles 

of 212 miRNAs and 15361 mRNAs in the 19 half K562 cells. 

Interpolating pseudo-cells in small-scale single-cell transcriptomics data 

When the number of samples in a dataset is small, it is not guaranteed that a good 

representation of the population can be inferred from the data. It is required in [8] that 

when applying the CSN method, to estimate the association of each miRNA-mRNA 

pair, the number of cells in the single-cell transcriptomics dataset used should be more 

than 100. Since the proposed CSmiR method is adapted from the CSN method, for 

small-scale single-cell transcriptomics dataset like the one with 19 K562 half cells, it 

is necessary to enlarge the number of cells. 

After interpolating pseudo-cells into original single-cell transcriptomics data, the main 

challenge is that the distribution of each gene (miRNA or mRNA) and joint 

distribution of each miRNA-mRNA pair will not be changed. To tackle this problem, 

we need to guarantee that the proportion of each cell type in the interpolated pseudo-

cells is the same as that in the real single-cells. That is to say, the cell-type of the 

interpolated pseudo-cells should be the same as that in the real single-cells, and the 

number of the interpolated pseudo-cells of each cell-type also increases with the same 
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probability. Based on this, for each pseudo-cell, we sample from the original single-

cell transcriptomics data, i.e. the 19 single-cells uniformly with replacement, to 

generate it. To meet the requirement of having at least 100 single-cells, the number of 

interpolated pseudo-cells between two adjacent half K562 cells is set to 5. Here, two 

K562 single-cells with adjacent sample IDs (generated by half-cell genomics method) 

are regarded as adjacent single-cells. As a result, for each run of bootstrapping, we 

obtain the expression profiles of 212 miRNAs and 15361 mRNAs in 109 half K562 

cells (including both real and pseudo half K562 cells). All the B bootstrapping 

datasets are used for subsequent analysis. In this work, the number of bootstrapping B 

is set to 100. 

Identifying cell-specific miRNA-mRNA regulatory networks 

To reconstruct cell-specific miRNA-mRNA regulatory networks for real cells from 

the given single-cell dataset (including both real cells and interpolated pseudo-cells), 

it is necessary to construct a reliable statistic to evaluate the association between 

miRNAs and mRNAs. By using the statistic, the identified cell-specific miRNA-

mRNA regulatory networks should be robust in the case of high dropout rate (also 

called technical noise from single-cell sequencing technology) and adding new cells 

(pseudo-cells in this work). Based on this, for each cell (including both real cells and 

interpolated pseudo-cells) in the given single-cell dataset, we apply the statistic used 

in the CSN method [8] to build a miRNA-mRNA regulatory network. In the case of 

high dropout rate and adding new cells, it is demonstrated that the CSN method is 

robust in identifying cell-specific networks. Therefore, when building the network, we 

adapt the CSN method for the discovery of miRNA-mRNA regulation. Specifically, 

for each miRNA-mRNA pair miRr and mRt in cell k, we evaluate the association 
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between the miRNA and mRNA using the statistical test as described in the 

following. 

To estimate the association between miRr and mRt in cell k, the CSN method draws a 

scatter diagram using the expression values of miRr and mRt. As shown in Fig. 5, rk 

and tk denote expression values of miRr and mRt in cell k respectively, and the 

medium, light and dark grey boxes represent the neighborhood of rk, tk and (rk, tk) 

respectively. The number of points in the medium, light and dark grey boxes are nr
(k), 

nt
(k) and nrt

(k) respectively. Then we construct the statistic, ( )k
rtρ  as: 

                                              
( ) ( )( )

( )
k kk

k rt tr
rt

n nn

n n n
ρ = − g                                                      (1) 

where n is the total number of cells in the given dataset, 
( )k
rn

n
and

( )k
tn

n
are the marginal 

probabilities of the expression levels of miRr and mRt respectively (
( )( )

0.1= =
kk

tr nn

n n
as 

empirically suggested by the CSN method), and 
( )k
rtn

n
is the joint probability of miRr 

and mRt. 

It has been proved in [8] that ( )k
rtρ approximately follows a normal distribution, and 

the normalized statistic ( )k
rtz is: 

                                              

( ) ( )
( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 ( )

( )( )

k k
k rt rt

rt k
rt

k k k
rt r t

k k k k
r t r t

z

n n n n n

n n n n n n

ρ μ
σ

−
=

− ⋅ ⋅ −=
− −

                                 (2) 

where ( ) 0=k
rtμ and 

( ) ( ) ( ) ( )
( )

4

( )( )

( 1)

− −=
−

k k k k
k r t r t

rt

n n n n n n

n n
σ are the mean value and standard 

deviation of ( )k
rtρ , respectively. ( )k

rtz obeys standard normal distribution with mean 
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value of 0 and standard deviation of 1. Each ( )k
rtz  value corresponds to a p-value for 

evaluating the significance of the association between miRr and mRt. The smaller p-

value indicates that the miRNA miRr and the mRNA mRt are more likely to be 

associated with each other in cell k. Here, the significant p-value cutoff is set to 0.01. 

For example, if we have a single-cell transcriptomics dataset containing 100 cells, the 

association between miRr and mRt in cell k is calculated as follows. Fig. 5 is the 

scatter diagram using the expression values of miRr and mRt. Then, we draw the two 

boxes near rk and tk based on the predetermined nr
(k) and nt

(k) ( ( ) ( ) 0.1 =10= =k k
r tn n n ). 

The value of ( )k
rtn is 4 by counting the red points in the third box which is the 

intersection between the drawn two boxes. According to Eq. (1) and Eq. (2), the 

association ( )k
rtρ  and normalized association ( )k

rtz between miRr and mRt in cell k is 0.03 

and 11 . By using pnorm R function, the corresponding significance p-value of 

( ) = 11k
rtz is 4.56E-04 (1 ( 11)− pnorm ). Given the significant p-value cutoff of 0.01, 

the miRNA miRr and the mRNA mRt are regarded as to be associated with each other 

in cell k. 

Unstable estimation between the miRNA miRr and the mRNA mRt in cell k caused by 

small number of samples is a challenge to CSmiR. It is known that bootstrapping is a 

re-sampling technique used to obtain a reasonably accurate estimate of the population, 

and can be used to tackle the small sample problem. Therefore, to tackle this issue, we 

regard the median value of all the normalized associations ( )k
rtz calculated in all the B 

runs of booststrapping as the final estimation of the asscociation between miRr and 

mRt in cell k. If the final association corresponds a small significance p-value (i.e. less 

than 0.01), the miRNA miRr and the mRNA mRt are associated with each other in cell 

k. As we are only interested in the miRNA-mRNA regulatory networks for each of the 
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real cells (in the K562 dataset, they are the 19 real half K562 cells in the original 

dataset), at the end of this stage, we only keep the cell-specific miRNA-mRNA 

regulatory networks for the real cells. It is noted that each cell-specific miRNA-

mRNA regulatory network is a bipartite graph where nodes are miRNAs and mRNAs 

and an edges is pointing from a miRNA to a mRNA. 

Downstream analysis with cell-specific networks 
At the network level, it is known that gene regulatory network provides an insight into 

investigating gene regulation. In the same vein, the discovered cell-specific miRNA-

mRNA regulatory networks in the previous step could also help to explore miRNA 

regulation. To explore cell-specific miRNA regulation, based on the identified cell-

specific miRNA-mRNA regulatory networks, CSmiR conduct the following types of 

downstream analyses: i) Discovering conserved and rewired miRNA regulation, ii) 

Single-cell clustering analysis, iii) Cell-cell crosstalk analysis, and iv) Functional 

analysis of miRNA regulation. 

Discovering conserved and rewired miRNA regulation 
In a cell, the regulation of some miRNAs is “on” whereas the regulation of some 

miRNAs is “off” [27], indicated by having outgoing edges from the miRNAs or 

having no outgoing edges in the cell-specific network, respectively. It is possible that 

the regulation of some miRNAs is “on” in multiple cells and some miRNA 

regulations only maintain “on” in one cell. This “on/off state” phenomenon could help 

reveal the heterogeneity and commonality of miRNA regulation across different cells. 

Assuming that each cell is characterized by miRNA regulation, the conserved and 

rewired miRNA regulation across different cells can reflect the commonality and 

heterogeneity of cells, respectively. In this work, we discover conserved and rewired 

miRNA regulation in terms of both miRNA-mRNA regulatory network and hub 

miRNAs. Previous studies [28, 29] have shown that nearly 20% of the nodes in a 
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biological network are regarded as essential nodes. The essential nodes in a biological 

network are subject to several topological properties (e.g. node degree) or biological 

relevance. Here, for simplicity, we select the top 20% of miRNAs based on node 

degrees in each cell-specific miRNA-mRNA regulatory network as hub miRNAs. 

Normally, if a miRNA-mRNA interaction or hub miRNA exists in more single-cells, 

the miRNA-mRNA interaction or hub miRNA tends to be more conservative. Here, 

the miRNA-mRNA interactions or hub miRNAs that are always “on” in at least 17 

real K562 cells (~90%, generally ranked as a highly conservative level) are defined as 

conserved interactions or hubs, and the miRNA-mRNA interactions or hub miRNAs 

that are “on” in only one K562 cell are defined as rewired interactions or hubs. By 

assembling the conserved and rewired miRNA-mRNA interactions or hubs, we can 

obtain conserved and rewired miRNA-mRNA regulatory networks or hub miRNAs, 

respectively. These networks and hubs could provide insights into the heterogeneity 

and similarity of miRNA regulation across different single-cells. 

Single-cell clustering analysis 
Clustering single-cells based on single-cell RNA sequencing data is a fundamental 

task to understand tissue complexity, e.g. the number of subtypes [31]. In this paper, 

instead of directly using single-cell RNA sequencing data, we can use cell-cell 

similarity matrices for clustering single-cells, i.e. clustering cells based on their 

similarities on miRNA-mRNA interactions or hub miRNAs. 

To reveal the heterogeneity of miRNA regulation across different cells, we investigate 

cell-cell similarity in terms of their miRNA-mRNA regulatory networks. The smaller 

the similarity between two single-cells is, the more heterogeneous they are. 

We consider two types of similarities between two single-cells: the similarity on 

miRNA-mRNA interactions in their networks and the similarity on hub miRNAs in 
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their networks. Following the similarity calculation method in [32], we calculate the 

interaction similarity and hub miRNA similarity using Eq. (3) below. 

                                             
( , )

( , )
i j

ij
i j

intersect term term
sim

min term term
=                                           (3) 

where termi and termj denote the numbers of interactions or numbers of hub miRNAs 

in the cell-specific miRNA-mRNA regulatory networks  of cells i and j, 

respectively, ( , )i jintersect term term denotes the number of miRNA-mRNA 

interactions or hub miRNAs common to the cell-specific miRNA-mRNA regulatory 

networks of cells i and j, and ( , )i jmin term term returns  the  smaller value out of termi 

and termj, i.e. the smaller value out of  the numbers of miRNA-mRNA interactions or 

the numbers of hub miRNAs in the cell-specific miRNA-mRNA regulatory networks 

of cells i and j. 

For comparison, we also calculate the similarity between two single-cells based on 

single-cell expression data. The normalized Euclidean distance _ ijnor dis between 

cells i and j is calculated as follows: 
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                     (4) 

where ike and jke denote the expression levels of gene k in cells i and j respectively, g 

is the total number of genes (miRNAs and mRNAs), m is the number of real K562 

single-cells. 

After calculating the similarity and the distance between each pair of real half K562 

cells, we obtain two similarity matrices m mSI × and m mSH ×  (where m is the number of 

real cells) in terms of cell-specific miRNA-mRNA interactions and cell-specific hub 
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miRNAs respectively, and one distance matrix m mdis × in terms of single-cell 

expression data. Based on the similarity and distance matrices, we can conduct single-

cell clustering analysis, e.g. hierarchical clustering analysis. 

Cell-cell crosstalk analysis 
In addition to single-cell clustering analysis, the similarity matrices can also be used 

for cell-cell crosstalk analysis. The cell-cell crosstalk is an indirect cell-cell 

communication and plays an important role in biological systems. For instance, cell-

cell crosstalk can influence gene expression patterns [33], and involve in the 

development and regeneration of the respiratory system as well [34]. For each cell-

cell pair, a higher similarity means sharing more number of miRNA-mRNA 

interactions or hub miRNAs between two cells. Previous studies [35, 36] have shown 

that miRNAs and their targets play important roles in cell signaling pathways. 

Therefore, when the shared miRNA-mRNA interactions or hub miRNAs involve in 

cell signaling pathways, a higher similarity between the cell pair implies that the two 

cells share more common cell signaling pathways and have a higher probability of 

signaling with each other (crosstalk). Based on this assumption, empirically, we use 

the median similarity value of all cell-cell pairs in the interaction or hub miRNA 

similarity matrix as the cutoff to evaluate whether two cells have crosstalk 

relationship or not. That is, if the similarity value between celli and cellj is larger than 

the median similarity value, celli and cellj have a crosstalk relationship. Following the 

empirical principle, we can evaluate whether each cell-cell pair has a crosstalk 

relationship or not. After assembling the cell-cell crosstalk relationships in terms of 

miRNA-mRNA interactions or hub miRNAs, we can obtain a cell-cell crosstalk 

network. 
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Functional analysis of miRNA regulation 
To validate and apply the identified cell-specific miRNA regulatory networks, we also 

conduct functional analysis of miRNA regulation at both network and module levels. 

At the network level, we conduct functional validation of the cell-specific miRNA-

mRNA regulatory networks by using third-party databases. Since there are no 

experimentally validated databases at single-cell level, we use two well-known 

experimentally validated databases named miRTarBase v8.0 [37] and TarBase v8.0 

[38] at bulk-cell level for validation. Meanwhile, since the K562 cells used are closely 

associated with chronic myelogenous leukemia (CML), we collect a list of miRNAs 

and mRNAs associated with CML to investigate CML-related miRNA regulation. 

The list of CML-related miRNAs is from Human MicroRNA Disease Database 

HMDD v3.0 [39], and the list of CML-related mRNAs is from DisGeNET v5.0 [40], 

which is one of the largest publicly available collections of genes and variants 

associated to human diseases. We focus on identifying CML-related miRNA-mRNA 

pairs where the miRNAs and mRNAs individually are in the list of CML-related 

miRNAs and mRNAs. 

At the module level, we discover miRNA-mRNA regulatory modules by using the 

biclique R package [41]. We consider each miRNA-mRNA regulatory module is a 

complete bipartite graph or a biclique, and the numbers of miRNAs and mRNAs in 

each module are at least 2 and 3, respectively. Here, a complete bipartite graph or a 

biclique is a special type of bipartite graph where every miRNA is connected to every 

mRNA. To understand potential biological implications associated with the identified 

miRNA-mRNA regulatory modules, we perform Gene Ontology (GO) [42], Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [43], Reactome [44], Cancer hallmark 

[45], and Cell marker [46] enrichment analysis by using the clusterProfiler R package 

[47]. A GO, KEGG, Reactome, Hallmark or Cell marker term with adjusted p-value < 
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0.05 (adjusted by Benjamini-Hochberg method) is regarded as a significant term. We 

also conduct CML enrichment analysis by using a hyper-geometric test to evaluate 

whether the miRNAs and mRNAs in each module are significantly enriched in CML 

or not. The significance p-value of each module enriched in CML is calculated as: 

1

0

1
s

x

Q N Q

x M x
p value

N

M

−

=

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠− = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑                                        (5) 

where N is the total number of genes (miRNAs and mRNAs) expressed in the dataset, 

Q represents the number of CML-related genes in the dataset, M is the total number of 

genes in each module, and s is the number of CML-related genes in each module. The 

cutoff of p-value is set as 0.05. 
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Figures 

Figure 1 - Workflow of CSmiR. 
For each pseudo-cell, we sample from the original dataset (i.e. the 19 single-cells 

uniformly with replacement) to generate it. Based on the B bootstrapping datasets 

(matched miRNA and mRNA expression data in the single-cells of the original 

dataset and interpolated pseudo-cells), we identify m cell-specific miRNA-mRNA 

regulatory networks for the real m cells (one miRNA-mRNA regulatory network for 

one cell). Finally, we conduct downstream analysis with the identified m cell-specific 

miRNA-mRNA regulatory networks. 

Figure 2 - Single-cell similarity plot. 
(A) Similarity plot in terms of cell-specific miRNA-mRNA interactions. (B) 

Similarity plot in terms of cell-specific hub miRNAs. Colored areas indicate higher 

similarity between single-cells. 

Figure 3 - The miR-17/92 family regulation. 
(A) Difference in predicted targets of miR-17/92 family. (B) Difference in validated 

targets of miR-17/92 family. (C) Difference in CML-related targets of miR-17/92 

family. (D) Number of conserved and rewired targets of miR-17/92 family. Empty 

square shapes denote p-values > 0.05. 

Figure 4 - Hierarchical cluster analysis of the 19 K562 single-cells. 
(A) Hierarchical cluster analysis by using interaction similarity. (B) Hierarchical 

cluster analysis by using hub miRNA similarity. (C) Hierarchical cluster analysis by 

using expression similarity. Each color denotes a cluster. 

Figure 5 - Statistic model for regulation between miRr and mRt in cell k. 
In the scatter diagram, rk and tk denote expression values of miRr and mRt in cell k 

respectively. The medium and light grey boxes denote the neighbourhood of rk and tk, 
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respectively. The dark grey box (the intersection between the medium and light grey 

boxes) is the neighbourhood of (rk, tk). The number of points in the medium, light and 

dark grey boxes is nr
(k), nt

(k) and nrt
(k) respectively. 
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Additional files 

Additional file 1 – Supplementary figure S1 and tables S1-S2. 

Additional file 2 – Conserved and rewired targets associated with miR-17/92 
family. 

Additional file 3 – Enrichment analysis of conserved and rewired miRNA-mRNA 
modules associated with miR-17/92 family. 

Additional file 4 – Cell-cell crosstalk networks. 
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