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Abstract

Background
Existing computational methods for studying miRNA regulation are mostly based on

bulk mIRNA and mRNA expression data However, bulk data only alows the
analysis of miRNA regulation regarding a group of cells, rather than the miRNA
regulation unique to individual cells. Recent advance in single-cell miRNA-mRNA
co-sequencing technology has opened a way for investigating miRNA regulation at
single-cell level. However, as currently single-cell miRNA-mRNA co-sequencing
dataisjust emerging and only available at small-scale, there is a strong need of novel
methods to exploit existing single-cell data for the study of cell-specific miRNA
regulation.

Results

In this work, we propose a new method, CSmiR (Cell-Specific miRNA regulation) to
use single-cell miRNA-mRNA co-sequencing data to identify miRNA regulatory
networks at the resolution of individual cells. We apply CSmiR to the miRNA-mRNA
co-sequencing data in 19 K562 single-cells to identify cell-specific miIRNA-mRNA
regulatory networks for understanding miRNA regulation in each K562 single-cell.
By analyzing the obtained cell-specific miIRNA-mRNA regulatory networks, we
observe that the miRNA regulation in each K562 single-cell is unique. Moreover, we
conduct detailed analysis on the cell-specific miRNA regulation associated with the
miR-17/92 family as a case study. Finaly, through exploring cell-cell similarity
matrix characterized by cell-specific miRNA regulation, CSmiR provides a novel

strategy for clustering single-cells to help understand cell-cell crosstalk.
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Conclusions
To the best of our knowledge, CSmiR is the first method to explore miRNA regulation

at a single-cell resolution level, and we believe that it can be a useful method to

enhance the understanding of cell-specific miRNA regulation.
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Chronic myelogenous leukemia

Background
As an abundant class of small, conserved and non-coding RNAS, microRNAs

(miRNAs) play an important role in regulating gene expression through post-
transcriptional repression or messenger RNA (mMRNA) degradation [1]. Inacdll, it is
estimated that miRNAs can regulate the expression of up to one-third of the encoded
human genes [2]. Such cellular effects of miRNAs influence a wide range of basic
cellular functions, including cell proliferation, cell differentiation, and cell death [3].
Just as each individual cell is unique in the context of its microenvironment, miRNA
regulation would tend to be unique in each individual cell accordingly. Previously,
based on bulk RNA sequencing expression data from large populations of cells, many
computational methods have been developed for exploring miRNA regulation [4, 5],
but at the resolution of groups of cells. This may have obscured the heterogeneity of
MiRNA regulation across individual cells within these populations. Fortunately,
single-cell RNA sequencing technology has now provided us the opportunity to study
miRNA regulation at the single-cell level.

To investigate miRNA regulation at the single-cell level, Wang et al. [6] used a half-

cell genomics approach to generate single-cell mMiRNA-mRNA co-sequencing
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expression data of 19 K562 half cells, and then applied Pearson correlation method to
identify miRNA targets. By using the half-cell genomics method, asingle cell is lysed
and the lysate is split evenly into two half-cell fractions. Then, each half-cell fraction
can be used for either miRNA or mRNA transcriptome sequencing. They have found
that miRNA expression variability alone may cause non-genetic intercellular
heterogeneity. However, the identification of the miRNA targets by their work was in
the grouped 19 K562 half cells rather than individual K562 half cells, consequently
ignoring the heterogeneity of miRNA regulation between single-cells. To investigate
the heterogeneity of miRNA regulation between different single-cells, it is necessary
to explore cell-specific miRNA regulation (i.e. one miRNA regulatory network for
one cell).

Although single-cell mMiIRNA-mRNA co-sequencing data is emerging, the number of
single-cells included in each single-cell dataset is still small mainly due to the lack of
mature single-cell RNA sequencing technology for genome-wide profiling of both
MRNAs and miRNAs [7]. To explore cell-specific miRNA regulation using single-
cell mMIRNA-mRNA co-sequencing data, in this work, we adapt the cell-specific
network (CSN) method proposed in [8] to infer cell-specific mIRNA-MRNA
regulatory networks. Given a single-cell gene expression data set including g genes
and n cells, CSN infers n cell-specific networks. Each cell-specific network is an
undirected gene association network, and consists of g nodes corresponding to g
genes and the edges representing undirected gene-gene associations. CSN uses a
statistic (see Eq. (2) in the “Methods” section) to calculate the strength of a gene-gene
association in each cell. To identify the gene-gene associations in each cell by using
the statistic, CSN takes a one-sided hypothesis test. The null hypothesis is that two

genes are independent in cell k, and the alternative hypothesis is that two genes are


https://doi.org/10.1101/2020.10.14.340299
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.14.340299; this version posted June 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

associated with each other in cell k. If the statistic of a gene-gene association in cell k
is larger than a significant level (e.g. 0.01), the gene-gene association in cell k exists.
Although CSN can infer cell-specific gene regulatory networks consisting of cell-
specific gene-gene associations, it can’'t be directly utilized to identify cell-specific
miRNA regulatory network as described below.

To explore cell-specific miRNA regulation, our method CSmiR extends CSN from the
following two aspects. Firstly, CSN is only applicable to single-cell gene expression
data with more than 100 single-cells. To address the issue, we introduce pseudo-cells
to enlarge the number of single-cells in a single-cell mMiIRNA-mRNA co-sequencing
data set with less than 100 single-cells. Secondly, CSN is developed to infer all types
of gene-gene interactions from single-cell RNA sequencing data. For single-cell
miRNA-MRNA co-segquencing data, we focus on identifying the interactions between
mMiRNAs and mRNAs rather than all the types of interactions (including miRNA-
mMiRNA, miRNA-MRNA and mRNA-mRNA interactions).

We have applied the proposed CSmiR method to single-cell miRNA-mRNA co-
seguencing expression data across 19 K562 half cells, and the analysis results indicate
that CSmiR can help with the investigation of miRNA regulation at the resolution of

individual cells.

Results and discussion

The miRNA regulation in each K562 cell is unique
As discussed above, to investigate cell-specific miRNA regulation using single-cell

miRNA-MRNA co-sequencing data with a small number of samples, we propose to
interpolate pseudo-cells to the data before inferring the miRNA-mRNA interactions of
interest (see the “Methods” section). Accordingly, as shown in Fig. 1, our proposed

method CSmMIR consists of three main components, Interpolating pseudo-cells by
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sampling with replacement, identifying cell-specific miRNA-mRNA regulatory
networks, and downstream analysis with cell-specific networks. Following the
workflow of CSmiR, we have identified 19 cell-specific mMIRNA-mRNA regulatory
networks for the 19 K562 cells. In this section, we present the results on the
investigation of the uniqueness of each K562 cell in terms of cell-specific miRNA-
MRNA interactions and hub miRNAs.

Firstly, we have investigated the identified cell-specific mIRNA-mRNA regulatory
networks and hub miRNAs in four aspects: i) the number of predicted cell-specific
mMiRNA-MRNA interactions, ii) the percentage of validated cell-specific miRNA-
MRNA interactions, iii) the percentage of CML-related cell-specific miRNA-MRNA
interactions, iv) the percentage of CML-related hub miRNAS. In the case of the four
aspects, the miRNA regulation is different in each of the 19 K562 cells (see Fig. S1in
Additional file 1). Furthermore, we have discovered that the percentage of conserved
and rewired miIRNA-mRNA interactions is 20.47% (529998 out of 2588860) and
30.44% (787993 out of 2588860), respectively, indicating that the miRNA-mRNA
interactions are more likely to be rewired across K562 cells. In terms of the similarity
of the miIRNA-mRNA interactions between these cell-specific regulatory networks,
the range of cell similarity is [0.61, 0.86]. As shown in Fig. 2A, the cell similarity
between any pair of the 19 K562 cells is less than 90%. In addition, the percentage of
conserved and rewired hub miRNAs is 0% (0 out of 138) and 26.09% (36 out of 138)
respectively, indicating the hub miRNAs tend to be rewired across K562 cells. In
terms of hub miRNAs in the cell-specific regulatory networks, the range of cell
similarity is[0.33, 0.62]. As shown in Fig. 2B, the cell similarity between any pair of

thel9 K562 cellsisless than 70%.
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Comparing with the conserved miRNA regulation (conserved miRNA-mRNA
interactions and hub miRNAS) across the 19 K562 single-cells, our work highlights a
remarkable rewiring in the miRNA regulation (rewired miRNA-mRNA interactions
and hub miRNAS) between the K562 cells, just like ‘on/off’ switches from cell to cell.
The higher rewiring of miRNA regulation may be explained in part by the cell-
specific expression of miRNAs and mRNAs, and it may be the reason of single-cell
uniqueness. The detailed information of conserved and rewired miRNA-mRNA

regulatory networks and hub miRNAs can be seen at

https://github.com/zhangjunpeng411/CSmiR. Moreover, in terms of cell-specific
MiRNA-MRNA regulatory networks and cell-specific hub miRNAs, the above
observations show that the miIRNA regulation in any two different K562 cells are not
completely the same, demonstrating the uniqueness of miRNA regulation in each cell.
The miR-17/92 family regulation across K562 single-cells

To further understand the miRNA family regulation across K562 single-cells, we
conduct a case study to investigate cell-specific regulation of the miR-17/92 family.
The miR-17/92 family includes six members: miR-17 (miR-17-3p, miR-17-5p), miR-
18a (miR-18a-3p, MiR-18a-5p), MiR-19a (MiR-19a-3p, mMiR-19a-5p), MiR-19b-1
(miR-19b-3p, MiR-19b-1-5p), miR-20a (MiR-20a-3p, MiR-20a-5p) and miR-92a-1
(miR-92a-3p, mMiR-92a-1-5p). They play important roles in cell cycle, cell
proliferation, cell apoptosis and other pivotal biological processes [9]. Previous
studies [10-13] have also shown that the miR-17/92 cluster is in association with
chronic myelogenous leukemia (CML). Out of the six members, miR-18a (miR-18a-
3p and miR-18a-5p) with constant expression values across the 19 K562 single-cells

is removed after data pre-processing. Hence in this section, we will focus on the
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regulation of the other five members (miR-17, miR-19a, miR-19b-1, miR-20a and
miR-92a-1) from the miR-17/92 family.

To evaluate whether there is significant difference in the regulation of miR-17/92
family between each pair of the 19 K562 single-cells, we compare the distributions of
the number of predicted targets, the distributions of the percentages of validated
targets and the distributions of the percentages of CML-related targets of miR-17/92
family in different K562 single-cells using a two-sample Kolmogorov—Smirnov (KS)
test [14]. The KS test is non-parametric, and can be used to assess whether the
distribution of the number of predicted targets, the distribution of the percentages of
validated targets or the distribution of the percentages of CML-related targets of miR-
17/92 family in one K562 single-cell is significantly shifted compared with the
distribution in another K562 single-cell. To estimate the distributions, we calculate
the number of predicted targets, the percentage of validated targets and the percentage
of CML-related targets of miR-17/92 family respectively in each K562 single-cell for
each run of bootstrapping. As shown in Fig. 3A-3C, in the case of predicted targets,
validated targets and CML-related targets, the regulations of miR-17/92 family
between most of pairs of the 19 K562 single-cells are significantly different (p-value
< 0.05). This result indicates that the regulation of miR-17/92 family is likely to be
cell-specific. From Fig. 3D, the number of rewired targets of miR-17/92 family is
larger than the number of conserved targets of them. This difference shows that the
dominant miRNA regulation type (conserved or rewired) across cells may be rewired
mMiRNA regulation. The detailed information of conserved and rewired targets
associated with miR-17/92 family can be seen in Additional file 2.

Generally, through regulating target genes, miRNAs implement a specific biological

function in the form of communities or modules. Therefore, based on the conserved
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and rewired miRNA-mRNA regulatory interactions associated with miR-17/92 family,
we identify the conserved and rewired miRNA-mRNA modules associated with miR-
17/92 family. We discover that most of the conserved and rewired miRNA-mRNA
modules are significantly enriched in at least one term of Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes Pathway (KEGG), Reactome, Hallmark or Cell
marker (see Table S1 in Additional file 1). Several significant terms, e.g. the GO
biological process “cellular response to leukemia inhibitory factor”, KEGG pathway
“Chronic myeloid leukemia’, Reactome pathway “Regulation of mitotic cell cycle”
[15], Halmark “HALLMARK_TGF_BETA_SIGNALING” [16] and Cell marker
“Peripheral blood, Leukemia, Cancer stem cell”, are closely associated with leukemia.
This result shows that the identified conserved and rewired miRNA-mRNA modules
associated with miR-17/92 family are functional modules. The detailed enrichment
analysis results of conserved and rewired miRNA-mRNA modules can be seen in
Additiona file 3.

CSmiR provides a novel strategy for clustering single-cells

Existing methods for clustering single-cells are mainly based on cluster analysis of
single-cell RNA expression data. Different from these methods, we propose to cluster
single-cells based on the interaction similarity and hub miRNA similarity as
mentioned in the “Methods’ section. We compare the proposed clustering method
with the result of the clustering based on the Euclidean distance (normalized to the
range of [0, 1]) between cells calculated using the expression data of single-cells (see
the “Methods’ section).

As shown in Fig. 4, we use hierarchical clustering to perform clustering analysis of
the 19 K562 single-cells based on interaction similarity (Fig. 4A) and hub miRNA

similarity (Fig. 4B) respectively, in comparison with the clustering based Euclidean
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distance (Fig. 4C). The clustering results differ due to different similarity/distance
measures used. However, our method (either using the interaction similarity or hub
mMiRNA similarity) gives rather distinct clusters, whereas the conventional cluster
analysis directly based on the difference in gene expression does not produce any
clear clusters. This result can be explained by previous studies [17, 18] showing that
gene regulatory networks are more ‘stable’ than gene expressions to characterize the
status of the biological process or cell. Although our clustering analysis results should
be further validated by wet-lab experiments, CSmiR provides a novel strategy to help
biologists discover clusters of cells which may indicate novel cell subtypes.

CSmiR helps to understand cell-cell crosstalk

It is known that cell-cell communication or crosstalk is crucial for multicellular
organisms (i.e. human) because it alows multiple cells to communicate and
coordinate to perform important life activity [19, 20]. Here, if the similarity value
between cell; and cell; is larger than the median similarity value, cell; and cell; have a
crosstalk relationship. In terms of interaction similarity or hub miRNA similarity, we
assemble the cell-cell crosstalk relationships to generate cell-cell crosstalk network.
Based on the interaction and hub miRNA similarity matrices, we obtain two cell-cell
crosstalk networks (details in Additional file 4).

By analyzing the identified cell-cell crosstalk networks, we can understand which
cells frequently communicate with other cells. We cal these frequently
communicated cells as hub cells or active cells. Similar to identifying cell-specific
hub miRNAS, we also regard the top 20% of cells in terms of node degrees in each
cell-cell crosstalk network as hub cells. These hub cells may act as pivots to link
different subtypes of K562 single-cells (see Table S2 in Additional file 1). Moreover,

we can also understand which cells tend to form a module in the process of
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communication. By using the Markov Clustering Algorithm (MCL) [21] implemented
in the miRspongeR R package [22], we identify cell-cell crosstalk modules from the
identified cell-cell crosstalk networks. For each module, the number of K562 single-
cellsis at least 3. We have discovered that most of the K562 single-cells only form a
single module to communicate with each other (see Table S3 in Additiona file 1).
This observation can be explained that the 19 K562 single-cells used are
phenotypically identical, and most of them are more likely form a module in cell-cell

crosstalk.

Conclusions
It is well known that miRNA regulation is essential to a wide range of important

biological processes, including RNA silencing, transcriptional regulation of gene
expression, cellular functions, signaling pathways and human cancers. Previous
studies [23-25] have shown that miRNA regulation is condition-specific, implying
that the miRNA regulation is cell-specific even these single-cells are phenotypically
identical. Fortunately, single-cell RNA sequencing technology provides us an
opportunity to gain insights into miRNA regulation at single-cell level. In this work,
we have proposed CSmiR, a novel method to construct cell-specific mIRNA-MRNA
regulatory networks for each single-cell and use the networks to investigate cell-
specific miRNA regulation. When identifying cell-specific miRNA-mRNA regulatory
networks, since the cell-specific mMIRNA-mRNA regulatory networks are identified
only from single-cell miRNA-mRNA co-sequencing expression data without using
prior knowledge, CSmiR is an unsupervised method.

Our proposed method can be enhanced in severa aress. Firstly, the identified cell-
specific mMIRNA-mRNA networks are al correlation networks. Actually, to uncover

miRNA causal regulation in single-cells, it is our future plan to identify cell-specific
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miRNA causal regulatory networks. Secondly, to improve the accuracy of the
predicted cell-specific mMIRNA-mRNA regulatory networks, we can incorporate
putative miRNA-mRNA binding information as prior knowledge into CSmiR. Finally,
the miRNA regulation can be generally classified into two types: miRNA-directed
regulation and miRNA-indirected regulation. In this work, we only consider the type
of miRNA-directed regulation where miRNAs directly regulate the expression of
MRNAs, and have not considered the type of miRNA-indirected regulation where
mMiRNAs act as mediators to involve in gene regulation. According to the competing
endogenous RNA (ceRNA) hypothesis [25], miIRNASs act as mediators to involve in
the crosstak between different RNA transcripts (e.g. mRNAS, transcribed
pseudogenes, circular RNAs and long noncoding RNAS). We also plan to infer cell-
specific mMiRNA sponge interaction networks in future.

Although CSmiR can be improved as suggested above, it provides a new way to
explore the heterogeneity of miRNA regulation in each single-cell. Especialy, CSmiR
can be applied in the study of germ cells or reproductive development [27], in which
few cells could be profiled. We believe that CSmiR can be a useful method to speed

up non-coding RNA (e.g. miRNA) research at single-cell level.

Methods

In the following, we will describe the details about the single-cell miRNA-mRNA co-
sequencing data used, interpolating pseudo-cells in small-scale single-cell
transcriptomics data, the identification of cell-specific miRNA-mRNA regulatory
networks, and subsequent analysis of the identified single-cell miRNA regulation.
Single-cell mMiIRNA-mRNA co-sequencing data

We obtain matched miRNA and mRNA co-sequencing expression data in 19 half

K562 cells from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
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with accession number GSE114071. The K562 cells used are the first human chronic
myelogenous leukemia (CML) cell line. For the duplicate miRNAs or mRNAs with
the same gene symbols in the dataset, we compute the average expression values of
them as their final expression values. Since gene expression variability may be a
reason of non-genetic cell-to-cell heterogeneity [6], as a feature selection, we remove
all the miRNAs and mRNAs with constant expression values (the standard deviation
of their expression values in all single-cells is 0) across the 19 half K562 cells. The
matched mMIRNA and mMRNA expression data are then pre-processed by

usinglog, (x + 1) transformation. As a result, we have the matched expression profiles

of 212 miRNAs and 15361 mRNAs in the 19 half K562 cells.

Interpolating pseudo-cells in small-scale single-cell transcriptomics data

When the number of samples in a dataset is small, it is not guaranteed that a good
representation of the population can be inferred from the data. It is required in [8] that
when applying the CSN method, to estimate the association of each miRNA-mRNA
pair, the number of cellsin the single-cell transcriptomics dataset used should be more
than 100. Since the proposed CSmMiR method is adapted from the CSN method, for
small-scale single-cell transcriptomics dataset like the one with 19 K562 half cells, it
is necessary to enlarge the number of cells.

After interpolating pseudo-cells into original single-cell transcriptomics data, the main
challenge is that the distribution of each gene (MiRNA or mRNA) and joint
distribution of each miRNA-mRNA pair will not be changed. To tackle this problem,
we need to guarantee that the proportion of each cell type in the interpolated pseudo-
cells is the same as that in the rea single-cells. That is to say, the cell-type of the
interpolated pseudo-cells should be the same as that in the real single-cells, and the

number of the interpolated pseudo-cells of each cell-type also increases with the same

-13-


https://doi.org/10.1101/2020.10.14.340299
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.14.340299; this version posted June 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

probability. Based on this, for each pseudo-cell, we sample from the original single-
cell transcriptomics data, i.e. the 19 single-cells uniformly with replacement, to
generate it. To meet the requirement of having at least 100 single-cells, the number of
interpolated pseudo-cells between two adjacent half K562 cells is set to 5. Here, two
K562 single-cells with adjacent sample IDs (generated by half-cell genomics method)
are regarded as adjacent single-cells. As a result, for each run of bootstrapping, we
obtain the expression profiles of 212 miRNAs and 15361 mRNAs in 109 half K562
cells (including both real and pseudo half K562 cells). All the B bootstrapping
datasets are used for subsequent analysis. In this work, the number of bootstrapping B
is set to 100.

Identifying cell-specific miRNA-mRNA regulatory networks

To reconstruct cell-specific miRNA-mRNA regulatory networks for real cells from
the given single-cell dataset (including both real cells and interpolated pseudo-cells),
it is necessary to construct a reliable statistic to evaluate the association between
mMiRNAs and mRNAs. By using the statistic, the identified cell-specific miRNA-
MRNA regulatory networks should be robust in the case of high dropout rate (also
called technical noise from single-cell sequencing technology) and adding new cells
(pseudo-cells in this work). Based on this, for each cell (including both red cells and
interpolated pseudo-cells) in the given single-cell dataset, we apply the statistic used
in the CSN method [8] to build a miRNA-MmRNA regulatory network. In the case of
high dropout rate and adding new cells, it is demonstrated that the CSN method is
robust in identifying cell-specific networks. Therefore, when building the network, we
adapt the CSN method for the discovery of miRNA-MmRNA regulation. Specifically,

for each mIRNA-mRNA pair miR and mR; in cell k, we evaluate the association
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between the miIRNA and mRNA using the statistical test as described in the
following.

To estimate the association between miR. and mR; in cell k, the CSN method draws a
scatter diagram using the expression values of miR and mR:.. As shown in Fig. 5, ri
and tx denote expression values of miR. and mR; in cell k respectively, and the
medium, light and dark grey boxes represent the neighborhood of ry, txand (rg, t)

respectively. The number of points in the medium, light and dark grey boxes are n,%,

n® and n.* respectively. Then we construct the statistic, p ) as:

OIS CIING)
plo=t T gh 1)
n n-n
. . . o .
where n is the total number of cells in the given dataset, —— and—— are the marginal
n n

CIE
probabilities of the expression levels of miR, and mR; respectively (n’— “N _o1as
n n

()
empirically suggested by the CSN method), and M s the joint probability of miR
n

and mR.

It has been proved in [8] that p ' approximately follows a normal distribution, and
the normalized statistic 2 is:

(k) (k)
0 _ P M
VANES (K)

O-rt
_ noi (- nn)
Jnn® (n-n®)(n-n®)

)

o (n—nf)(n-n®)

A (n—1) are the mean value and standard

where 1% =0and o = \/

deviation of p! , respectively. ! obeys standard normal distribution with mean
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value of 0 and standard deviation of 1. Eachz* value corresponds to a p-value for
evaluating the significance of the association between miR. and mR.. The smaller p-
value indicates that the miRNA miR. and the mMRNA mR. are more likely to be
associated with each other in cell k. Here, the significant p-value cutoff is set to 0.01.

For example, if we have a single-cell transcriptomics dataset containing 100 cells, the
association between miR, and mR; in cell k is calculated as follows. Fig. 5 is the

scatter diagram using the expression values of miR. and mR.. Then, we draw the two
boxes near r and t based on the predetermined n,* and n® (n® =n® =0.1n=10).
The value of n{ is 4 by counting the red points in the third box which is the
intersection between the drawn two boxes. According to Eq. (1) and Eq. (2), the

association p ' and normalized association 2 between miR. and mR; in cell kis 0.03

and+/11 . By using pnorm R function, the corresponding significance p-value of
79=\/11is 4.56E-04 (1— pnorm(~/11)). Given the significant p-value cutoff of 0.01,
the mMiIRNA miR; and the mMRNA mR; are regarded as to be associated with each other
incell k.

Unstable estimation between the miRNA miR. and the mRNA mR; in cell k caused by
small number of samples is a chalenge to CSmiR. It is known that bootstrapping is a
re-sampling technique used to obtain a reasonably accurate estimate of the population,
and can be used to tackle the small sample problem. Therefore, to tackle thisissue, we
regard the median value of all the normalized associationsz{ calculated in all the B
runs of booststrapping as the final estimation of the asscociation between miR, and
mR in cell k. If the final association corresponds a small significance p-value (i.e. less
than 0.01), the miIRNA miR, and the mRNA mR; are associated with each other in cell

k. As we are only interested in the miRNA-mRNA regulatory networks for each of the
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real cells (in the K562 dataset, they are the 19 real half K562 cells in the original
dataset), at the end of this stage, we only keep the cell-specific miRNA-mMRNA
regulatory networks for the real cells. It is noted that each cell-specific miRNA-
MRNA regulatory network is a bipartite graph where nodes are miRNAs and mRNAs
and an edges is pointing from a miRNA to amRNA.

Downstream analysis with cell-specific networks

At the network level, it is known that gene regulatory network provides an insight into
investigating gene regulation. In the same vein, the discovered cell-specific miRNA-
MRNA regulatory networks in the previous step could also help to explore miRNA
regulation. To explore cell-specific miRNA regulation, based on the identified cell-
specific mMIRNA-mRNA regulatory networks, CSmiR conduct the following types of
downstream analyses: i) Discovering conserved and rewired miRNA regulation, ii)
Single-cell clustering analysis, iii) Cell-cell crosstalk analysis, and iv) Functional
analysis of miRNA regulation.

Discovering conserved and rewired miRNA regulation
In a cell, the regulation of some MiIRNAS is “on” whereas the regulation of some

mMiRNAs is “off” [27], indicated by having outgoing edges from the miRNAs or
having no outgoing edges in the cell-specific network, respectively. It is possible that
the regulation of some miRNAs is “on” in multiple cells and some MiRNA
regulations only maintain “on” in one cell. This “on/off state” phenomenon could help
reveal the heterogeneity and commonality of miRNA regulation across different cells.
Assuming that each cell is characterized by miRNA regulation, the conserved and
rewired miRNA regulation across different cells can reflect the commonality and
heterogeneity of cells, respectively. In this work, we discover conserved and rewired
mMiRNA regulation in terms of both miRNA-mRNA regulatory network and hub

mMiRNAS. Previous studies [28, 29] have shown that nearly 20% of the nodes in a

-17 -


https://doi.org/10.1101/2020.10.14.340299
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.14.340299; this version posted June 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

biological network are regarded as essential nodes. The essential nodes in a biological
network are subject to several topological properties (e.g. hode degree) or biological
relevance. Here, for simplicity, we select the top 20% of miRNAs based on node
degrees in each cell-specific mMIRNA-mRNA regulatory network as hub miRNAs.
Normally, if a miRNA-mRNA interaction or hub miRNA exists in more single-cells,
the miIRNA-mRNA interaction or hub miRNA tends to be more conservative. Here,
the miRNA-mRNA interactions or hub miRNAs that are always “on” in at least 17
real K562 cells (~90%, generally ranked as a highly conservative level) are defined as
conserved interactions or hubs, and the miIRNA-mRNA interactions or hub miRNAsS
that are “on” in only one K562 cell are defined as rewired interactions or hubs. By
assembling the conserved and rewired miRNA-mRNA interactions or hubs, we can
obtain conserved and rewired miRNA-mRNA regulatory networks or hub miRNAS,
respectively. These networks and hubs could provide insights into the heterogeneity
and similarity of miRNA regulation across different single-cells.

Single-cell clustering analysis
Clustering single-cells based on single-cell RNA sequencing data is a fundamental

task to understand tissue complexity, e.g. the number of subtypes [31]. In this paper,
instead of directly using single-cell RNA sequencing data, we can use cell-cell
similarity matrices for clustering single-cells, i.e. clustering cells based on their
similarities on miRNA-mRNA interactions or hub miRNAs.

To reveal the heterogeneity of miRNA regulation across different cells, we investigate
cell-cell similarity in terms of their miIRNA-mRNA regulatory networks. The smaller
the similarity between two single-cellsis, the more heterogeneous they are.

We consider two types of similarities between two single-cells: the similarity on

mMiRNA-mRNA interactions in their networks and the similarity on hub miRNAs in

-18-


https://doi.org/10.1101/2020.10.14.340299
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.14.340299; this version posted June 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

their networks. Following the similarity calculation method in [32], we calculate the
interaction similarity and hub miRNA similarity using Eq. (3) below.

B intersect(term), term, )
~ min(term, term)

©)

i
where termy and termy denote the numbers of interactions or numbers of hub miRNAs

in the cell-specific miIRNA-mRNA regulatory networks of cells i and j,

respectively, intersect(term,term,) denotes the number of mMiRNA-MRNA

interactions or hub miRNAs common to the cell-specific miRNA-mRNA regulatory

networks of cellsi and j, andmin(term,term;) returns the smaller value out of term

and term, i.e. the smaller value out of the numbers of miRNA-mRNA interactions or
the numbers of hub miRNAs in the cell-specific mMIRNA-mRNA regulatory networks
of cellsi and j.

For comparison, we also calculate the similarity between two single-cells based on

single-cell expression data. The normalized Euclidean distance nor _dis; between

cellsi and | iscalculated asfollows:
dis; —min(dis)
max(dis) —min(dis)
dis;, =/(8,-€,)° (6 —€)° +.. (8, ~ )’ (@)
dis=(dis)ei ™

where g, and e, denote the expression levels of gene kiin cellsi and j respectively, g

nor _dis; =

is the total number of genes (MiRNAs and mMRNAS), m is the number of real K562
single-cells.
After calculating the similarity and the distance between each pair of real half K562

cells, we obtain two similarity matrices S, ,and SH,_ ., (where mis the number of

real cells) in terms of cell-specific mMIRNA-MRNA interactions and cell-specific hub
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miRNAs respectively, and one distance matrix dis, ., in terms of single-cell

expression data. Based on the similarity and distance matrices, we can conduct single-
cell clustering analysis, e.g. hierarchical clustering analysis.

Cell-cell crosstalk analysis
In addition to single-cell clustering analysis, the similarity matrices can also be used

for cell-cell crosstalk analysis. The cell-cell crosstalk is an indirect cell-cell
communication and plays an important role in biological systems. For instance, cell-
cell crosstalk can influence gene expression patterns [33], and involve in the
development and regeneration of the respiratory system as well [34]. For each cell-
cell pair, a higher similarity means sharing more number of mMiRNA-mRNA
interactions or hub miRNAs between two cells. Previous studies [35, 36] have shown
that miRNAs and their targets play important roles in cell signaling pathways.
Therefore, when the shared miRNA-mRNA interactions or hub miRNASs involve in
cell signaling pathways, a higher similarity between the cell pair implies that the two
cells share more common cell signaling pathways and have a higher probability of
signaling with each other (crosstalk). Based on this assumption, empirically, we use
the median similarity value of all cell-cell pairs in the interaction or hub miRNA
similarity matrix as the cutoff to evaluate whether two cells have crosstalk
relationship or not. That is, if the similarity value between cell; and cell; is larger than
the median similarity value, cell; and cell; have a crosstalk relationship. Following the
empirical principle, we can evaluate whether each cell-cell pair has a crosstalk
relationship or not. After assembling the cell-cell crosstalk relationships in terms of
mMiRNA-mRNA interactions or hub miRNAs, we can obtain a cell-cell crosstalk

network.
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Functional analysis of miRNA regulation
To validate and apply the identified cell-specific miRNA regulatory networks, we also

conduct functional analysis of miRNA regulation at both network and module levels.
At the network level, we conduct functional validation of the cell-specific miRNA-
MRNA regulatory networks by using third-party databases. Since there are no
experimentally validated databases at single-cell level, we use two well-known
experimentally validated databases named miRTarBase v8.0 [37] and TarBase v8.0
[38] at bulk-cell level for validation. Meanwhile, since the K562 cells used are closely
associated with chronic myelogenous leukemia (CML), we collect a list of miRNAs
and mRNAs associated with CML to investigate CML-related miRNA regulation.
The list of CML-related miRNAs is from Human MicroRNA Disease Database
HMDD v3.0 [39], and the list of CML-related mRNAS is from DisGeNET v5.0 [40],
which is one of the largest publicly available collections of genes and variants
associated to human diseases. We focus on identifying CML-related miRNA-mMRNA
pairs where the miRNAs and mRNAs individually are in the list of CML-related
miRNAs and mRNAs.

At the module level, we discover miRNA-mRNA regulatory modules by using the
bicligue R package [41]. We consider each miIRNA-mRNA regulatory module is a
complete bipartite graph or a biclique, and the numbers of miRNAs and mRNAS in
each module are at least 2 and 3, respectively. Here, a complete bipartite graph or a
biclique is a special type of bipartite graph where every miRNA is connected to every
MRNA. To understand potential biological implications associated with the identified
mMiRNA-mRNA regulatory modules, we perform Gene Ontology (GO) [42], Kyoto
Encyclopedia of Genes and Genomes (KEGG) [43], Reactome [44], Cancer hallmark
[45], and Cell marker [46] enrichment analysis by using the cluster Profiler R package

[47]. A GO, KEGG, Reactome, Hallmark or Cell marker term with adjusted p-value <
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0.05 (adjusted by Benjamini-Hochberg method) is regarded as a significant term. We
also conduct CML enrichment analysis by using a hyper-geometric test to evaluate
whether the miRNAs and mRNAs in each module are significantly enriched in CML

or not. The significance p-value of each module enriched in CML is calculated as:

b
s-1 _
p_vajue:]__ZX—MX (5)
x=0 N
)
where Nis the total number of genes (miRNAs and mRNAS) expressed in the dataset,
Qrepresents the number of CML-related genes in the dataset, M is the total number of

genes in each module, and sis the number of CML-related genes in each module. The

cutoff of p-valueis set as 0.05.
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Figures

Figure 1 - Workflow of CSmiR.
For each pseudo-cell, we sample from the original dataset (i.e. the 19 single-cells

uniformly with replacement) to generate it. Based on the B bootstrapping datasets
(matched miRNA and mRNA expression data in the single-cells of the original
dataset and interpolated pseudo-cells), we identify m cell-specific miRNA-mRNA
regulatory networks for the real m cells (one miRNA-mRNA regulatory network for
one cell). Finally, we conduct downstream analysis with the identified m cell-specific
miRNA-mMRNA regulatory networks.

Figure 2 - Single-cell similarity plot.

(A) Similarity plot in terms of cell-specific miIRNA-mRNA interactions. (B)
Similarity plot in terms of cell-specific hub miRNAs. Colored areas indicate higher
similarity between single-cells.

Figure 3 - The miR-17/92 family regulation.

(A) Difference in predicted targets of miR-17/92 family. (B) Difference in validated
targets of miR-17/92 family. (C) Difference in CML-related targets of miR-17/92
family. (D) Number of conserved and rewired targets of miR-17/92 family. Empty
sgquare shapes denote p-values > 0.05.

Figure 4 - Hierarchical cluster analysis of the 19 K562 single-cells.

(A) Hierarchical cluster analysis by using interaction similarity. (B) Hierarchical
cluster analysis by using hub miRNA similarity. (C) Hierarchical cluster analysis by
using expression similarity. Each color denotes a cluster.

Figure 5 - Statistic model for regulation between miR, and mR; in cell k.
In the scatter diagram, r¢ and tx denote expression values of miR; and mR; in cell k

respectively. The medium and light grey boxes denote the neighbourhood of r and t,

-30-


https://doi.org/10.1101/2020.10.14.340299
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.14.340299; this version posted June 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

respectively. The dark grey box (the intersection between the medium and light grey
boxes) is the neighbourhood of (ry, t). The number of points in the medium, light and

dark grey boxesisn,®, n® and n" respectively.
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Additional files
Additional file 1 — Supplementary figure S1 and tables S1-S2.

Additional file 2 — Conserved and rewired targets associated with miR-17/92
family.

Additional file 3— Enrichment analysis of conserved and rewired miRNA-mRNA
modules associated with miR-17/92 family.

Additional file 4 — Cdll-cell crosstalk networks.
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A Difference in predicted targets of miR-17/92 family
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