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   The H7 subtype avian influenza viruses (AIV) have a much longer history 1 

and their adaptation through evolution pose continuous threat to humans 1. 2 

Since 2013 March, the novel reasserted H7N9 subtype have transmitted to 3 

humans through their repeated assertion in the poultry market. Through 4 

repeated transmission, H7N9 gradually became the second AIV subtype posing 5 

greater public health risk after H5N1 2,3. After infection, how the virus tunes its 6 

genome to adapt and evolve in humans remains unknown. Through direct 7 

amplification of H7N9 and high throughput (HT) sequencing of full genomes 8 

from the swabs and lower respiratory tract samples collected from infected 9 

patients in Shenzhen, China, we have analyzed the in vivo H7N9 mutations at the 10 

level of whole genomes and have compared with the genomes derived by in vitro 11 

cultures. These comparisons and frequency analysis against the H7N9 genomes 12 

in the public database, 40 amino acids were identified that play potential roles in 13 

virus adaptation during H7N9 infection in humans. Various synonymous 14 

mutations were also identified that might be crucial to H7N9 adaptation in 15 

humans. The mechanism of these mutations occurred in a single infection are 16 

discussed in this study. 17 

 18 

Earlier study have shown that after just one or two normal passages  19 

propagation in chick embryos, human Influenza virus A differs sharply from the in 20 

vivo ones 4. Not only were tissue tropism and binding properties altered, but the 21 
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mutations responsible also gave rise to detectable changes to their antigenic 1 

characteristics. Influenza A virus culture-based mutation phenomenon were also 2 

reported by several studies 5-8. Since the first outbreak of H7N9, full genomes of 3 

various isolates derived human have been sequenced. Genomes of most of the human 4 

H7N9 viruses were obtained after in vitro propagation in embryonated chicken eggs.  5 

Ren et al. also found that the consensus genomes from the original human patients 6 

and the embryonated eggs culture show differences12. Previous studies have shown 7 

that H7N9 viruses show mutations during infecting the ferret 9-11. Over time, ranging 8 

from 12.6-40 days 13, H7N9 virus in infected human host should have tuned their 9 

genetic information for adapting to novel mammalian host. We hypothesize that 10 

characterizing the genomes of H7N9 viruses in vivo, other than in vitro cultures can 11 

help to find out the mutations that might be playing roles during adaption in the host, 12 

and observing the intra-host  characteristics.. 13 

To verified this thought, we analyzed samples derived from H7N9 infected 14 

patients admitted to the Third People’s Hospital of Shenzhen (TPH-SZ). Nasal and 15 

pharyngeal swabs and phlegm samples from four patients (one mild and three severe 16 

patients) were collected and subjected to HT sequencing with and without 17 

embryonated chicken egg propagation (Supplementary Table 1, 2; Supplementary 18 

discussion) (Phase I). Surprisingly, pairwise alignment of the above 4 pair H7N9 19 

isolates showed that consensus sequences changed for the same sample before and 20 

after in vitro culture, with identities varying from 0% to 4.8% on each segment 21 
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(Figure 1a). The polymerase encoding segments, segment 1-3, maintained high 1 

identity following culture, when compared to the other five segments (5-8) (Figure 1a; 2 

supplementary table 3). The genetic variation in the NP and NS was the largest, 3 

showing rapid diversification, consistent with the previous findings in human at 4 

macro-evolution level 14. One pair (2014S4/cul.2014S4) maintained all 8 consensus 5 

genome segments well, with the exception of PA and M segments, which showed 6 

changing only 0.1% and 0.6% variation, respectively (Figure 1a; supplementary table 7 

3). The phylogenetic relationship based on the later five genome segments were also 8 

changed when compared against the isolated derived from in vitro egg culture 9 

(Supplementary figure 1). These sharply changes from in vitro propagation were also 10 

verified by compared our data in this study with cultured Shenzhen human H7N9 and 11 

avian H7N9 isolates report in Lam et al. (Supplementary discussion). 12 

For the three high-mutated pairs, on average about 1 out of 4 mutations were 13 

non-synonymous, 3 out of 4 were synonymous (Supplementary table 4). Surprisingly, 14 

most of these mutations were convergent (appeared at least in two isolates) 15 

(Supplementary table 4). Through depth frequency analysis, we found that most of 16 

these mutations were largely dominant (depth frequency >99%, supplementary table 17 

6,7), suggesting that these mutations can be established following just one passage (or 18 

once infection in human). From neutral evolution theory and by comparing with 19 

egg-cultured isolates in parallel, we found that the H7N9 NP, NS1/2, M1, and HA2 20 

suffered the strong purification effect, while the polymerase complex components 21 
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PB2, PB1, PA, and the two surface proteins HA1 and M2 are in a steady neutral 1 

evolution during host shift (supplementary table 4,5). 2 

Further, non-synonymous mutations, e.g. amino-acid level changes were 3 

observed in 75 residues compared with the egg cultures ones. 33 of them (41.3%) 4 

showed convergent (Figure 1b). We postulate that these 33 residues might be more 5 

adaptable in humans and play a vital role during establishment and evolution of 6 

infection in humans. To verify this, additional 35 isolates were further analyzed by 7 

HT sequencing from the H7N9-infecting patients collected from the 2014 and 2015 8 

pandemic season (Phase II). Data of 18 isolates directly from patients, 6 isolates of 9 

egg cultured human H7N9 (the 2013-2014 season) were obtained (Supplementary 10 

table 2). Overall, all 33 residues occurred in human in vivo H7N9 viruses 11 

(SZ_in-vivo-H7N9, n=22) at a higher frequency (>30%) than in cultured human 12 

H7N9 viruses (SZ_in-vitro-H7N9, n=10), with 28 residues showing statistics 13 

significance (Figure 2a). Between 2013-2014 and 2014-2015 endemic seasons (11 vs 14 

11) of SZ_in-vivo-H7N9, occurring frequencies showed no statistics differences 15 

except at 89S (M2) but all significant higher than SZ_in-vitro-H7N9, ruling out the 16 

influence of genetic background (Figure 2a). We also compared the occurrence 17 

frequency of these 33 shift residues between these SZ_in-vivo-H7N9 with the avian 18 

and human H7N9 sequences deposited in the GenBank (GB_avian-H7N9 and 19 

GB_human-H7N9) since 2013 in China. 22 residues in SZ_in-vivo H7N9 showed 20 

higher occurrence frequencies than in GB_avian-H7N9 (n=~400), and 19, included in 21 
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the above 22 than GB_human-H7N9 (n=~80), and 21, included in the above 22 than 1 

SZ_in-vitro-H7N9 with statistical significance (Figure 2b). Unexpectedly, most 2 

(22~23) of these 33 residues occurring frequencies showed no significant differences 3 

among the GB_avian-H7N9, GB_human-H7N9 and SZ_in-vitro-H7N9, except the 4 

residues in NP and NS1 segments (Figure 2b).  5 

Besides the above convergent mutations in four paired samples, we further 6 

identified other variable sites between SZ_in-vivo-H7N9 and SZ_in-vitro-H7N9, and 7 

then compared the mutations of these sites with GB_avian-H7N9 and 8 

GB_human-H7N9. Among the 55 variable residue sites, though only 1 site (57Q of 9 

PA) in SZ_in-vivo-H7N9 showed significant higher frequency than SZ_in-vitro-H7N9 10 

(Figure 2c), mount to 18 of the 55 residue sites showed higher occurrence frequencies 11 

than in GB_avian-H7N9 and 13 of them were higher than GB_human-H7N9 (Figure 12 

2d). Simliar to the convergent mutations identified in phase I, most (9-12) of 13 13 

residues showed no differences among GB_avian-H7N9 and GB_human-H7N9 and 14 

SZ_in-vitro-H7N9. Because most viruses of GB_human-H7N9 were derived through 15 

in vitro cultures, we postulate that human H7N9 have reversed to avian H7N9 status 16 

after in vitro culture, a trait not explained before. This sequence reversal could be 17 

attributed to the viral adaptation in the embryonated eggs. 18 

Collectively, the above results reveal that the in vitro culture has considerable 19 

influence on the H7N9 at the genome, viral proteins. 40 residue sites (Supplementary 20 

table 8) were identified in a high frequency (27-100%, Figure 2) in human in vivo 21 
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H7N9 virus. All these mutations were also verified by Illumnia Hiseq 2500 1 

sequencing (data not shown). Most of these mutations are not identified playing 2 

certain function in previous studies. Primary structure mapping and tetra-structure 3 

remodeling analysis were done to assess the functional influences of these mutations. 4 

Two surface glycoproteins, HA and NA contain the most mutations, amount to 7 on 5 

HA, and 6 on NA. In HA, all mutations are located in HA1: 3 (114K, 177I and 186A) 6 

were located near the receptor-binding pocket (Figure 3), 2 (88V, 273I) in the esterase 7 

subdomain，and 2 (276D, 300K) in the fusion domain. Due to their functional 8 

locations, these mutations could play a significant biological role in HA stability, cell 9 

fusion and/or receptor-binding specificity or affinity. In NA, all 6 (78K, 178A, 320S, 10 

345I, 396T, 431G) mutations were located on the head domain and close to the 11 

C-terminal, with 78K located near the stalk and trans-membrane region. These 12 

mutations might play important roles in HA-NA interaction and virion stability. 13 

When AIV jumps to a new host, sustainable and stable replication is its first key 14 

steps to survival, adaptation and establishment of infection 15. For the virion 15 

replication complex, ribonucleoproteins (RNP), mutations mostly occurred at the 16 

domains involved in RNP protein interaction (Figure 2; supplementary figure 3), 17 

might playing an important role in effective and stable replication establishment in 18 

human. It is know that PB2 plays key roles during host adaption. 570M mutation was 19 

identified located in the CAP binding domain and near the C-terminal NP and PB1 20 

interaction domain. Especially, at residue 627 and 701, besides the well-known host 21 
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adaption mutation 627K, 701N, two novel mutations, 627V and 701E, were also 1 

identified occurring at high frequency in in-vivo H7N9 respectively (Figure 2d), 2 

suggesting might be adapted in human host. In PB1, 2 mutations were identified, one 3 

located near the N terminal and the other in the PB2 interaction domain near the 4 

C-terminus (supplementary figure 3). As for the PA, 4 mutations were identified, 57Q 5 

localized at the N terminal, two in (237K)/near (262K) the NLS domain, and 444D at 6 

the middle of the PA. As for the NP, 4 mutations were identified, all localized in the 7 

NP-NP interaction domain, with 3 of them belonging to the NP-PB2 interaction 8 

domain implying roles in NP-NP complex stability in virus replication 9 

(supplementary figure 3). 10 

It is believed that the viral matrix protein M1 plays an important role during RNP 11 

nuclear transportation 16, NS1 is the main viral antagonist of the innate immune 12 

response during influenza virus infection to overcome the first barrier the host 13 

presents to halt the viral infection 17. 5 mutational changes were identified in the 14 

matrix protein, 2 (232N, 248M) were located at the RNP interaction domain on M1, 2 15 

(18K and 24E) were closely located at the N terminal of M2 with 24E belonging to 16 

the RNP interaction domain, and 1 (89S) was located close to the N terminal of M2 17 

(Supplementary figure 3). The distributions of these mutations are consistent with the 18 

possible role they may have in viral RNP complex transport, viral packaging and 19 

budding. 3 mutations were identified in the NS1/NEP, 2 of which resided in the NS1 20 

with 27M resident at N-terminal dsRNA/PABP1/RIGI/EIB-AP5 binding domain and 21 
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145V in the short intergenic region of CPSF30 and NES domain, the third mutation 1 

(92S) located in C-terminal of NEP (Supplementary figure 3). These mutations might 2 

play roles in RNP transportation or in escaping the host immune response. 3 

 In recent years, synonymous mutations, correlating with the codon usage bias 4 

issues, were believed to influence virus fitness and pathogenicity through translation 5 

efficiency regulation and CpG and TpA dinucleotides frequency changes 18. G+C 6 

content, CpG and ApT dinucleotide frequency, GC3 number and observed ENcs 7 

changed during host shift (supplementary figure 5). Through phase I four paired 8 

sample comparison, we found that, unlike the non-synonymous mutations in which 9 

A-C transversions (tv) occurred at a much higher frequency besides purine (A/G) to 10 

purine transitions (ts), the synonymous mutations showed that that (A/G), or 11 

pyrimidine (C/T) to pyrimidine tv occurred at a frequency higher than the purine to 12 

pyrimidine or pyrimidine to purine tv similar to other organisms 19(Supplementary 13 

figure 4). Further, most of the synonymous mutations are convergent across different 14 

pairs and not distributed randomly and uniformly on the genome segments, especially 15 

one to four synonymous mutations cluster found on the HA, NA, M1 and NS1 16 

segments (Supplementary figure 9). Collectively, these changes suggest H7N9 virus 17 

might be tune their genome to adapt to human, and might play important roles in viral 18 

replication and immune escape during H7N9 infecting human.  19 

To analyze how these viruses has been influenced by these accompanying 20 

mutations, we compared their intra-host diversity and show that in vitro H7N9 viruses 21 
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shows less diversity than in vivo human H7N9 viruses suggesting bottle-neck effect to 1 

have occurred during in vitro culture (Supplementary figure 7a), and display a 2 

different diversity profile (Supplementary figure 6). Most human adapted mutations 3 

might have been filtered during inoculation to the egg, the second host jump, and the 4 

minority egg suitable ones quickly arise during in vitro culture. Intra-host diversity 5 

correlation analysis showed that in human the NP and NS1/2, MP segments are 6 

closely linked, otherwise in embryo chicken, the HA are closely related with MP and 7 

NS1/2 (Supplementary figure 8), suggesting different intra-host fluctuation 8 

mechanisms. Thus, H7N9 might have utilized the unknown molecular strategy for 9 

adaptation, efficient replication and establishment in a new host. 10 

In summary, we found that in vivo H7N9 virus in the human host are enduring a 11 

genetic tune to adaption and in this context, we, identified various amino acids and 12 

synonymous mutations that might play a critical role in infection. This gives us a 13 

different aspect to recognize AIV infecting human or other mammal hosts and provide 14 

vital clues for further experimental and functional validation in vitro. We also found 15 

in vitro culture can change the intra-host diversity of in vivo H7N9 virus and produce 16 

various mutations during a single passage. These findings provide further molecular 17 

insights into functional identification of virus in vivo and design next generation of 18 

therapeutic strategies to halt virus infection at critical stages of life cycle in humans. 19 

 20 
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Third People’s Hospital of Shenzhen (TPH-SZ). In the second waves of H7N9 8 

outbreak in Shenzhen, i.e. third wave in China, 13 more patients infected with H7N9 9 

were confirm in Shenzhen and were admitted to TPH-SZ from Jan. 4th, 2015 to April 10 

2nd, 2015. In all these cases, diagnostic and treatment decisions were made by 11 

consortia of more than three panel members of clinical specialists. After admitted, we 12 

immediately collected the respiratory sample for clinical confirmation of H7N9 13 

infecting. Standard Real-time reverse transcription polymerase chain reaction 14 

(RT-PCR) assay for H7N9 confirmation were done in the Influenza Reference 15 

Laboratory of the Shenzhen municipal center for disease control (CDC) and 16 

Guangdong province key laboratory of emerging infectious diseases., CT value 17 

smaller than 38 were judged as H7N9 positive, according to the Guidelines authorized 18 

by China National Influenza Center of China CDC. Mild and severe cases were 19 

distinguished according to IDSA/ATS criteria.1 Severe cases met at least one of major 20 

criteria (Invasive mechanical ventilation/Septic shock with the need for vasopressors) 21 
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or more than three minor criteria 1. Analysis of the patient’s clinical samples for the 1 

identification of potential pathogens was approved by the ethics committee of 2 

TPH-SZ. 3 

Viral RNA preparation and high throughout Sequencing 4 

Nasopharyngeal swab, phlegm samples and some other respiratory specimens 5 

were collected for diagnosis and egg culture. Nasal, oropharyngeal swabs and/or 6 

tracheal aspirate samples from each patient were collected into transport medium and 7 

separated into two aliquots within two hours, one for diagnostic labs and the other for 8 

long term storage. For in vivo analysis, viral RNAs were extracted directly from 9 

pharyngeal and nasal swabs or phlegm samples using Qiagen viral RNA mini kit. For 10 

in vitro virus isolation, samples testing positive for both the H7 and N9 genes were 11 

propagated in 10-day-old embryonated chicken eggs and then cultured at 37 ℃ for 2 12 

days in a bio-safety level 3 laboratory. Viral RNA were extracted using Qiagen viral 13 

RNA mini kit from allantoic fluid, and tested for H7 and N9 genes by RT-PCR assays 14 

and, if positive, used for further genomic sequencing. 15 

To obtain whole H7N9 genome, reserves transcriptions were done from viral 16 

RNA samples using primer pair uniR_RT (5’-AGTAGAAACAAGG-3’) and uniF_RT 17 

(AGCGAAAGCAGG) to obtain viral full genomic cDNAs. Then PCR application 18 

using specific primer pairs (Supplemental Table 2) designed for H7N9 virus and 19 

Takara One-step RT-PCR kit (Takara, China) segment by segment. PCR products of 8 20 

segments were quantified by 1% gel, and mixed with equal mole and then subject to 21 
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library construction and HT sequencing using BGI seq100 (Ion proton, Life 1 

technology, USA).  2 

Consensus genome construction, comparison and phylogenetic analysis 3 

To obtain the consensus genome, we mapping all reads to a reference H7N9 4 

virus with the threshold match rate at 0.80, and at each site, we choose the dominant 5 

bases as final consensus genome. Sequences were aligned using MUSCLE v3.5. 6 

Phylogenies were inferred on the basis of Neighbor-Joining method, by using the 7 

maximum composite likelihood model in MEGA 6.0 2,3. Topological robustness was 8 

assessed by bootstrap test. For analysis the novel mutations in human H7N9, we 9 

retrieved all protein sequences of avian and human H7N9 genome segments with full 10 

length ORF from GenBank (until 08 Sep. 2015). 11 

Entropy, mutation rate, amino acid mutation rate and viral fitness 12 

Intra-host diversity implication viral fitness were assessed by the average 13 

Entropy or mutation rate of one genome segment or whole genome. Entropy were 14 

calculated by using equation, S = -100 * Sum (Pi * log Pi) where Pi is the frequency 15 

of the ith allele 5. Rate of minor nucleotide variant allele, other than the base with the 16 

largest depth, at each nucleic acid site were calculated by the minor allele depth 17 

deduced the total depth of this site. Mutation rate of each nucleic acid site were 18 

designate the ratio of the minor variant allele, that is adding all Rate of all Minor 19 

variant allele (MRi). Minor alleles changing the amino acid coding were designated as 20 

a no-synonymous SNV. At specific codon, the sum value of each no-synonymous 21 
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nucleotide mutations rate compared to consensus codon were designated as the at one 1 

amino acid site were add together were designated as amino acid mutation rate. 2 

Codon-based test of neutrality were done using Nei-Gojobori method in MEGA 3 

6 3. G+C content, CpG and ApT dinucleotide frequency, GC3 number and observed 4 

ENcs were calculated using SSE version 1.2 4.  5 

Linear mapping and tertiary structure of amino acid mutations 6 

The linear primary structural maps of HA, NA, PB2, PB1, PA, NP, M1/2 and 7 

NS1/NEP were derived and modified from the previous maps of Ping, J., et al.5. 8 

Tertiary structures were generated using the PyMOL viewer. For H7, Structural maps 9 

were generated using the structural files of two mature proteins, HA1 (PDB ID 10 

4ln6.1.A) and HA2 (PDB ID 4bsa.1.B).  11 

 12 
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 7 

Figure and table Legend 8 

Figure 1. Comparison of the human H7N9 consensus sequence obtained from 9 

direct clinical samples and embryonated chicken egg cultures in phase I. a), 10 

Identity of consensus nucleotide sequences between four in vivo H7N9 viruses and 11 

their in vitro cultured counterparts; 8 genomic segments are list in x-axis sequentially, 12 

y-axis are nucleotide sequence identities of each paired samples. b) Amino acids 13 

mutations identified by the four cultured and uncultured pair human H7N9 virus 14 

samples. Residues mutations occurred in more than two pairs are shaded in pink, 15 

singleton mutations are shaded in blue. *, T76A, the residue T, before the number 76 16 

is putative specific in avian host, and the residue A after 76 is putative specific in 17 

avian host.   18 

Figure 2. Occurring frequency comparison of mutation residues among SZ_in 19 

vivo-H7N9, SZ_in-vitro-H7N9, and GB_avian-H7N9 and GB_human-H7N9 20 

deposit in GenBank. a), comparison of convergent mutation residues (phase I) 21 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2021. ; https://doi.org/10.1101/2020.12.30.424890doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424890
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

between SZ_in-vivo-H7N9 (n=~22), SZ_in-vitro H7N9 (n=10); b), comparison of 1 

convergent mutation residues among SZ_in-vivo-H7N9, SZ_in-vitro-H7N9, and 2 

GB_avian-H7N9 (n=~99-411) and GB_human-H7N9 (n=~80-100); c), comparison of 3 

residues showing population bias between SZ_in-vivo-H7N9 and SZ_in-vitro-H7N9; 4 

d), comparison of residues showing population bias (from phase II) among 5 

SZ_in-vivo-H7N9, SZ_in-vitro-H7N9, GB_avian-H7N9 and GB_human-H7N9. 6 

Y-axis is occurring frequency (percentage) of mutation residues. Occurring frequency 7 

differences among different groups were compared using fisher exact test. Alignment 8 

files can be provided upon request. 9 

Figure 3. Structure modeling of mutation sites in HA of human H7N9. Structural 10 

modeling were generated using the structural files of two mature proteins, HA1 (PDB 11 

ID 4ln6.1.A) and HA2 (4bsa.1.B) in PyMOL viewer. 12 

 13 

Supplementary material legend 14 

Supplementary figures 15 

Supplementary figure 1. Phylogenies relationship of hemagglutinin (a), 16 

neuraminidase and PB2 (b) genes of 4 H7N9 clinical-culture pairs. Bootstrap 17 

support values (%) from 1,000 replicates are shown for selected lineages. The scale 18 

bar to the left of each tree represents the substitutions per site. Four phase I in-vivo 19 

and in vitro H7N9 pairs were indicated by colored solid circle. 20 

Supplementary figure 2. Sequence Comparison of SZ_in-vivo-H7N9 and 21 
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SZ_in-vitro-H7N9 with other Shenzhen human and avian H7N9 virus reported in 1 

Lam et al. a), heatmap and cluster analysis of pairwise identity data; b), with-in 2 

genetic diversity and between-group distance analysis of SZ_in-vivo-H7N9 and 3 

SZ_in-vitro-H7N9 with other Shenzhen human and avian H7N9 virus reported in 4 

Lam et al.   5 

Supplementary figure 3. Linear mapping of potential functional adaptive sites to 6 

primary structure of H7N9 structural and functional proteins. Boxes represent 7 

viral proteins are not drawn according to the actual length ratio. 8 

Supplementary figure. 4. Comparison of transition and transversion mutation 9 

frequency of four in vivo H7N9 and their in vitro cultured counterparts.  10 

Supplementary figure 5. Codon usage differences of four paired in vivo H7N9 11 

compared with in vitro H7N9 virus. Cells indicated with red, green and grey colors 12 

represent up, down and no significant change respectively, compared with in vitro 13 

H7N9 virus (fisher exact test).  14 

Supplementary figure 6. Whole genome intra-host diversity profile of Shenzhen 15 

H7N9 influenza viruses. Heatmap showing nucleotide mutation frequencies of 16 

genomic segment identified in SZ_in-vivo-H7N9 and SZ_in-vitro-H7N9. At each site, 17 

bases other than the base with the largest depth were designated as minor alleles. 18 

Nucleotide mutation frequencies were calculated by the minor allele depth deduced 19 

the total depth. 8 genomic segments are ordered sequentially, corresponding to PB2, 20 

PB1, PA, HA, NA, NP, M1/2, NS1/2 respectively. 21 
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Supplementary figure 7. Intra-host diversity of Shenzhen H7N9 influenza viruses. 1 

a, b, Comparison of mean nucleotide mutation frequency of whole genome. Mean 2 

nucleotide mutation frequency for each sample was calculated by adding all 3 

nucleotide mutation frequencies together then deduced the total length sequenced by 4 

Ion proton. Mean nucleotide mutation frequency was expressed as the negative log. 5 

Virus isolated were classified into three different patient prognosis groups, 6 

SZ_in-vivo-H7N9.S groups H7N9 represented patients manifesting severe symptoms 7 

but cured finally; and SZ_in-vivo-H7N9.M groups represented patients manifesting 8 

mild symptoms through the H7N9 infection and recovered; SZ_in-vivo-H7N9.D 9 

represented patients manifesting severe symptoms and finally dead. *P<0.05, 10 

two-tailed Mann–Whitney U-test. c, d, Comparison of mean nucleotide mutation 11 

frequency of whole genome segment by segment. 12 

Supplementary figure 8. Correlation analysis among different viral genomic 13 

segments of in vivo and in vitro H7N9 viruses. Pearson correlation coefficient were 14 

calculated using average entropy of each genomic segment of every sample from in 15 

vivo or in vitro. 16 

Supplementary figure 9. Synonymous mutation distributions analysis of four 17 

paired in vivo and in vitro H7N9 viruses. On each separate figure, above slide 18 

windows analysis shows mutation distribution density, low panel shows each 19 

mutation concretely. 20 

 21 
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Supplementary tables 1 

Supplementary table 1. Sample information of patients investigated in this study. 2 

Supplementary table 2. High throughput sequencing profiles of H7N9 viruses in this 3 

study. 4 

Supplementary table 3. Identity of consensus sequence Human H7N9 between in 5 

vivo samples and from egg cultured ones. 6 

Supplementary table 4. Synonymous and non-synonymous mutation statistics of 4 7 

paired H7N9 viruses in phase I. 8 

Supplementary table 5. Codon-based test of neutrality for analysis of 4 paired H7N9 9 

viruses in phase I. 10 

Supplementary table 6. Base composition of no-synonymous mutated sites in 4 11 

paired H7N9 viruses in phase I. 12 

Supplementary table 7. Base composition of synonymous mutated sites in 4 paired 13 

H7N9 viruses in phase I. 14 

Supplementary table 8. Functional residues list of H7N9 viral proteins identified in 15 

this study. 16 

Supplementary table 9. Correlation analysis among different viral genomic segments 17 

of in vivo and in vitro H7N9 viruses. 18 

Supplementary table 10. Estimates of average evolutionary divergence within and 19 

between H7N9 of different hosts. 20 

Supplementary table 11. Primers for H7N9 genome amplification in this study. 21 
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Figure 3
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