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ABSTRACT 15 

Targeted mRNA expression panels, measuring up to 800 genes, are used in academic and clinical 16 

settings due to low cost and high sensitivity for archived samples. Most samples assayed on targeted 17 

panels originate from bulk tissue comprised of many cell types, and cell-type heterogeneity confounds 18 

biological signals. Reference-free methods are used when cell-type-specific expression references are 19 

unavailable, but limited feature spaces render implementation challenging in targeted panels. Here, we 20 

present DeCompress, a semi-reference-free deconvolution method for targeted panels. DeCompress 21 

leverages a reference RNA-seq or microarray dataset from similar tissue to expand the feature space of 22 

targeted panels using compressed sensing. Ensemble reference-free deconvolution is performed on this 23 

artificially expanded dataset to estimate cell-type proportions and gene signatures. In simulated mixtures, 24 

four public cell line mixtures, and a targeted panel (1199 samples; 406 genes) from the Carolina Breast 25 

Cancer Study, DeCompress recapitulates cell-type proportions with less error than reference-free 26 

methods and finds biologically relevant compartments. We integrate compartment estimates into cis-27 

eQTL mapping in breast cancer, identifying a tumor-specific cis-eQTL for CCR3 (C-C Motif Chemokine 28 
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Receptor 3) at a risk locus. DeCompress improves upon reference-free methods without requiring 29 

expression profiles from pure cell populations, with applications in genomic analyses and clinical settings. 30 

 31 

INTRODUCTION 32 

Academic and clinical settings have prioritized the collection of tissue samples of mixed cell types for 33 

molecular profiling and biomarker studies (1–3). Bulk tissue, especially from cancerous tumors, is 34 

comprised of different cell types, many rare, and each contributing varied biological signal to an assay 35 

(e.g. mRNA expression) (4, 5). This cell-type heterogeneity makes it difficult to distinguish variability that 36 

reflects shifts in cell populations from variability that reflects changes in cell-type-specific expression (6). 37 

Since RNA-seq technology was developed, cell-type deconvolution from mRNA expression has become 38 

important in genetic and genomic association studies: either using compositions in regression models as 39 

covariates to adjust for the association between cell type and phenotype (7–10), or using them as inputs 40 

to solve for cell-type specific quantities (11, 12). Cell-type deconvolution methods can be reference-based 41 

(supervised) (13–19) or reference-free (unsupervised) (20–26), depending on whether cell-type-specific 42 

expression profiles are available for the component cell-types. When reference panels are unavailable, as 43 

in understudied tissues or populations (27), reference-free deconvolution is the only viable option. Even in 44 

cases where reference expression profiles are available, reference-based methods may provide 45 

inaccurate proportion estimates if the mixed tissue and references represent different clinical settings or 46 

phenotypes (28). 47 

Given the advent of single-cell technologies and studies into cell trajectories, the concept of cell types 48 

in bulk tissue has been debated (29). Especially in perturbed or diseased tissues, like cancer, individual 49 

cells may present in different states, or various cells of possibly different identities may contribute, in 50 

aggregate, to the same biological process and have similar molecular profiles (30–32). While previous 51 

reference-free methods rely on searching the feature space for compartment-specific molecular features 52 

from the entire transcriptome and thus require a large feature space (22, 24–26), reference-free 53 

deconvolution methods can, with fewer assumptions, identify tissue compartments, or isolated units of a 54 

tissue that represent either a biological process or a cell type (33). Thus, reference-free methods have 55 
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important advantages over reference-based methods but may require a large number of features for 56 

optimal performance (25, 34). 57 

Many important datasets may have fewer expression targets than those required for existing 58 

reference-free deconvolution methods. Targeted mRNA expression assays are optimized for gene 59 

expression quantification in samples stored clinically and use a panel of up to 800 genes without requiring 60 

cDNA synthesis or amplification steps (35–37). These technologies offer key advantages in sensitivity, 61 

technical reproducibility, and strong robustness for profiling formalin-fixed, paraffin-embedded (FFPE) 62 

samples (35, 38). Given these advantages, targeted expression profiling is increasingly being used for 63 

molecular studies (36, 37, 39–42), especially prospective studies involving FFPE samples stored over 64 

several years (43) and diagnostic assays in clinical settings (3, 44). Due to its viability in diagnostics, it is 65 

important to identify reference-free deconvolution methods that overcome the need for searching for 66 

compartment-specific genes from the assay’s feature space (22, 24–26), given the limited feature space 67 

in targeted panels. 68 

Previous groups have proposed methods for efficiently reconstructing full gene expression profiles 69 

from sparse measurements of the transcriptome, borrowing techniques from image reconstruction using 70 

compressed sensing (45, 46) and machine learning (47–50). For example, Cleary et al developed a blind 71 

compressed sensing method that recovers gene expression from multiple composite measurements of 72 

the transcriptome (up to 100 times fewer measurements than genes) by using modules of interrelated 73 

genes in an unsupervised manner. Another imputation method by Viñas et al (51) used recent machine 74 

learning methodology (52) to provide efficient and accurate transcriptomic reconstruction in healthy, 75 

unperturbed tissue from the Genotype-Tissue Expression (GTEx) Project (53, 54). The performance of 76 

these methods provides a promising avenue to expand the feature space of targeted panels, rendering 77 

them more applicable for reference-free deconvolution methods. 78 

Here, we present DeCompress, a semi-reference-free deconvolution method for targeted panels. 79 

DeCompress requires a reference RNA-seq or microarray dataset from the same bulk tissue assayed by 80 

the targeted expression panel to train a compressed sensing model to expand the feature space in a 81 

targeted panel. We show the advantages of using DeCompress over other reference-free methods with 82 

simulation analyses and real data applications. Lastly, we examine the impact of tissue compartment 83 
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deconvolution on downstream analyses, such as cis-eQTL analysis using expression data from the 84 

Carolina Breast Cancer Study (CBCS) (55). DeCompress is available freely as an R package on GitHub 85 

at https://github.com/bhattacharya-a-bt/DeCompress. 86 

 87 

MATERIAL AND METHODS 88 

The Decompress algorithm 89 

DeCompress takes in two expression matrices from similar bulk tissue as inputs: the target expression 90 

matrix from a targeted panel of gene expression with 𝑛 samples and 𝑘 genes, and a reference expression 91 

matrix from an RNA-seq and microarray panel with 𝑁 samples and 𝐾 > 𝑘 genes. Ideally, both the target 92 

and reference expression matrices should be on the raw expression scale (not log-transformed), as we 93 

presume the total RNA abundance for a given gene in bulk tissue is a linear combination of that gene’s 94 

compartment-specific RNA abundance. We refer to DeCompress as a semi-reference-free method, as it 95 

requires a reference expression matrix but not compartment-specific expression profiles (as in reference-96 

based methods). For a user-defined number of compartments, DeCompress outputs compartment 97 

proportions for all samples in the target and the compartment-specific expression profiles for the genes 98 

used in deconvolution. The method follows three general steps, as detailed in Figure 1: (1) selection of 99 

the compartment-specific genes from the reference, (2) compressed sensing to expand the targeted 100 

panel to a DeCompressed expression matrix with these compartment-specific genes, and (3) ensemble 101 

deconvolution on the DeCompressed dataset. Full mathematical and algorithmic details for DeCompress 102 

are provided in Supplemental Methods. DeCompress is available as an R package on GitHub 103 

(https://github.com/bhattacharya-a-bt/DeCompress). 104 

The first step of DeCompress is to use the reference dataset to find a set of 𝐾′ < 𝐾 genes that are 105 

representative of different compartments that comprise the bulk tissue. These 𝐾′ genes, called the 106 

compartment-specific genes, can be supplied by the user if prior gene signatures can be applied. If any 107 

such gene signatures are not available, DeCompress borrows from previous reference-free methods to 108 

determine this set of genes (Linseed (22) or TOAST (25)). If the user cannot determine the total number 109 

of compartments, using the reference, the number of compartments can be estimated by assessing the 110 

cumulative total variance explained by successive singular value decomposition modes. 111 
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After a set of compartment-specific genes are determined, DeCompress uses the reference to infer a 112 

model that predicts the expression of each of these compartment-specific genes from the genes in the 113 

target. Predictive modeling procedures borrow ideas from compressed sensing (45, 46, 56), a technique 114 

that was developed to reconstruct a full image from sparse measurements of it: the estimation procedure 115 

can be broken down into solving a system of equations using either linear or non-linear regularized 116 

optimization, with options for parallelization when the sample size of the reference dataset is large. These 117 

optimization methods are detailed in Supplemental Methods. The predictive models are curated into a 118 

compression matrix, which is then used to expand the original target (with 𝑘 < 𝐾′ < 𝐾 genes) into the 119 

artificially DeCompressed expression matrix (with the 𝐾’ compartment-specific genes). In practice, we 120 

observed that regularized linear regression (lasso, ridge, or elastic net regression (48)) provides the best 121 

prediction of gene expression (Supplemental Figure S1), and the user may either model the gene 122 

expression using the traditional Gaussian family or assume that the errors follow a Poisson distribution to 123 

account for the scale of the original data (not log-transformed). 124 

Lastly, ensemble deconvolution is performed on the DeCompressed expression matrix to estimate (1) 125 

compartment proportions on the samples in the target, and (2) the compartment-specific expression 126 

profiles for the 𝐾′ genes used in deconvolution. Several options for reference-free deconvolution are 127 

provided in DeCompress. We also provide options that uses a reference-based method, unmix from the 128 

DESeq2 package (57), based on compartment expression profiles estimated from the reference RNA-seq 129 

or microarray dataset (i.e. an approximate compartment expression profile is estimated from a non-130 

negative matrix factorization of the reference dataset). Estimates from the method that best recovers the 131 

DeCompressed expression matrix is chosen. Supplemental Table S1 provides summaries of the 132 

methods employed in DeCompress. 133 

 134 

Benchmarking analysis 135 

Using simulations and published datasets, we benchmarked DeCompress against five other reference-136 

free methods: deconf (20), CellDistinguisher (26), Linseed (22), DeconICA (24), and iterative non-137 

negative matrix factorization with feature selection using TOAST (25) (see Supplemental Table S1). All 138 

these datasets provide a matrix of known compartment proportions. To measure the performance of each 139 
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method, we calculate the error between the estimated and true compartment proportions as the mean 140 

square error (MSE) (i.e. the mean row-wise MSE between the two matrices). We also permute the 141 

columns the estimated matrix (corresponding to compartments) to align compartments accordingly 142 

between the known and estimated proportions to minimize the MSE for each method. 143 

 144 

In-silico mixing with GTEx 145 

We performed in-silico mixing experiments using expression data from the Genotype-Tissue Expression 146 

(GTEx) Project (dbGAP accession number phs000424.v7.p2) (53, 54). Here, we obtained median 147 

transcripts per kilobase million (TPM) data for four tissue types: mammary tissue, EBV-transformed 148 

lymphocytes, transformed fibroblasts, and subcutaneous adipose. We randomly generated compartment 149 

proportions for each of these tissue types and simulated mixed RNA-seq expression data for 200 150 

samples. We then scaled these mixed expression profiles with multiplicative noise randomly generated 151 

from a Normal distribution with 0 mean and standard deviations of 4 and 8. We then generated 25 152 

pseudo-targeted expression panels by randomly selecting 200, 500, and 800 of the genes with mean and 153 

standard deviations above the median mean and standard deviations of all genes. For benchmarking, we 154 

randomly select 100 samples for the target matrix. For DeCompress, the simulated RNA-seq data on the 155 

other 100 samples are used as the reference matrix. We added more normally-distributed multiplicative 156 

noise with zero mean and unit variance to simulate a batch difference between the reference and target 157 

matrix. For comparison to compartments with dissimilar expression profiles, we repeated these 158 

simulations for four other tissues: mammary tissue, pancreas, pituitary, and whole blood. Full details for 159 

this simulation framework are provided in Supplemental Methods. 160 

 161 

Existing mixing experiments 162 

We also benchmarked DeCompress in four published mixing experiments: (1) microarray expression for 163 

mixed rat brain, liver, and lung biospecimens (GEO Accession Number: GSE19830), commonly used as a 164 

benchmarking dataset in deconvolution studies (𝑁 =  42) (11), (2) RNA-seq expression (GSE123604) for 165 

a mixture of breast cancer cells, fibroblasts, normal mammary cells, and Burkitt’s lymphoma cells (𝑁 =166 

 40) (23), (3) microarray expression (GSE97284) for laser capture micro-dissected prostate tumors (𝑁 =167 
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 30) (58), and (4) RNA-seq expression (GSE64098) for a mixture of two lung adenocarcinoma cell lines 168 

(𝑁  =  40) (59, 60). As in the in-silico mixing using GTEx data, we generated pseudo-targeted panels by 169 

randomly selecting 200, 500, and 800 of the genes with mean and standard deviations above the median 170 

mean and standard deviations of all genes. For the rat mixture dataset, we used 30 of the 42 samples as 171 

a reference microarray matrix (with multiplicative noise, as in GTEx) and deconvolved on the remaining 172 

12 samples in the target matrix. In the remaining three datasets, we obtained normalized RNA-seq 173 

reference matrices from The Cancer Genome Atlas: TCGA-BRCA breast tumor expression for the breast 174 

cancer cell line mixture, TCGA-PRAD prostate tumor expression for the prostate tumor microarray study, 175 

and TCGA-LUAD for the lung adenocarcinoma mixing study. These datasets are summarized in 176 

Supplemental Table S2. 177 

 178 

Applications in Carolina Breast Cancer Study (CBCS) data 179 

We lastly used expression data from the Carolina Breast Cancer Study for validation and analysis (55). 180 

Paraffin-embedded tumor blocks were requested from participating pathology laboratories for each 181 

samples, reviewed, and assayed for gene expression using the NanoString nCounter system, as 182 

discussed previously (43). As described before (10, 61), the expression data (406 genes and 11 183 

housekeeping genes) was pre-processed and normalized using quality control steps from the 184 

NanoStringQCPro package, upper quartile normalization using DESeq2 (57, 62), and estimation and 185 

removal of unwanted technical variation using the RUVSeq and limma packages (63, 64). The resulting 186 

normalized dataset comprised of samples from 1,199 patients, comprising of 628 women of African 187 

descent (AA) and 571 women of European descent (EA). A study pathologist analyzed tumor microarrays 188 

(TMAs) from 148 of the 1,199 patients to estimate area of dissections originating from epithelial tumor, 189 

intratumoral stroma, immune infiltrate, and adipose tissue (10). These compartment proportions of the 190 

148 samples were used for benchmarking of DeCompress against other reference-free methods. 191 

Date of death and cause of death were identified by linkage to the National Death Index. All 192 

diagnosed with breast cancer have been followed for vital status from diagnosis until date of death or date 193 

of last contact. Breast cancer-related deaths were classified as those that listed breast cancer 194 

(International Statistical Classification of Disease codes 174.9 and C-50.9) as the underlying cause of 195 
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death on the death certificate. Of the 1,199 samples deconvolved, 1,153 had associated survival data 196 

with 330 total deaths, 201 attributed to breast cancer. 197 

 198 

Over-representation and gene set enrichment analysis 199 

We conducted over-representation (ORA) and gene set enrichment analysis (GSEA) to identify 200 

significantly enriched gene ontologies using WebGestaltR (65). Specifically, we considered biological 201 

process ontologies categorized by The Gene Ontology Consortium (66, 67) at FDR-adjusted 𝑃 <  0.05. 202 

 203 

Survival analysis 204 

Here, we defined a relevant event as a death due to breast cancer. We aggregated all deaths not due to 205 

breast cancer as a competing risk. Any subjects lost to follow-up were treated as right-censored 206 

observations. We built cause-specific Cox models (68) by modeling the hazard function of breast cancer-207 

specific mortality with the following covariates: race, PAM50 molecular subtype (69), age, compartment-208 

specific proportions, and an interaction term between molecular subtype and compartment proportion. We 209 

compared these compartment-specific survival models with the nested baseline model that did not 210 

include compartment proportions using partial likelihood ratio tests. We tested for the statistical 211 

significance of parameter estimates using Wald-type tests, adjusting for multiple testing burden using the 212 

Benjamini-Hochberg procedure at a 10% false discovery rate (70). 213 

 214 

eQTL analysis 215 

CBCS genotype data is measured on the OncoArray. Approximately 50% of the SNPs for the OncoArray 216 

were selected as a “GWAS backbone” (Illumina HumanCore), which aimed to provide high coverage for 217 

many common variants through imputation. The remaining SNPs were selected from lists supplied by six 218 

disease-based consortia, together with a seventh list of SNPs of interest to multiple disease-focused 219 

groups. Approximately 72,000 SNPs were selected specifically for their relevance to breast cancer. The 220 

sources for the SNPs included in this backbone, as well as backbone manufacturing, calling, and quality 221 

control, are discussed in depth by the OncoArray Consortium (71, 72). All samples were imputed using 222 

the October 2014 (v.3) release of the 1000 Genomes Project (73) as a reference panel in the standard 223 
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two-stage imputation approach, using SHAPEIT2 for phasing and IMPUTEv2 for imputation (74–76). All 224 

genotyping, genotype calling, quality control, and imputation was done at the DCEG Cancer Genomics 225 

Research Laboratory (71, 72). 226 

From the provided genotype data, we excluded variants (1) with a minor frequency less than 1% 227 

based on genotype dosage and (2) that deviated significantly from Hardy-Weinberg equilibrium 228 

at P < 10−8 using the appropriate functions in PLINK v1.90b3 (77). Finally, we intersected genotyping 229 

panels for the AA and EA samples, resulting in 5,989,134 autosomal variants. We excluded 334,391 230 

variants on the X chromosome. CBCS genotype data was coded as dosages, with reference and 231 

alternative allele coding as in the National Center for Biotechnology Information’s Single Nucleotide 232 

Polymorphism Database (dbSNP) (78). 233 

As previously described (10), using the 1,199 samples (621 AA, 578 EA) with expression data, we 234 

assessed the additive relationship between the gene expression values and genotypes with linear 235 

regression analysis using MatrixeQTL (79). We consider a baseline linear model with log-transformed 236 

gene expression of a gene of interest as the dependent variable, SNP dosage as the primary predictor of 237 

interest, and the following covariates: age, BMI, post-menopausal status, and the first 5 principal 238 

components of the joint AA and EA genotype matrix. We also considered a compartment-specific 239 

interaction model that adds compartment proportion from DeCompress and an interaction term between 240 

the SNP dosage and compartment proportion (8, 9). This interaction model subtly changes the 241 

interpretation of the main SNP dosage effect, representing an estimate of the eQTL effect size at 0% 242 

compartment-specific cells. Thus, we recover compartment-specific eQTLs by testing the interaction 243 

effect, which measures how the magnitude of an eQTL differs between the two cell types. The interaction 244 

model was fit using MatrixeQTL’s linear-cross implementation. It is important to note that we model the 245 

log-transformed expression here, as existing methods for modeling expression on genotype do not 246 

support interaction terms (80–82). 247 

We compared eQTLs mapped in CBCS here with eQTLs in GTEx. We downloaded healthy tissue 248 

eQTLs from the Genotype-Tissue Expression (GTEx) Project and cross-referenced eGenes and 249 

corresponding eSNPs between CBCS and GTEx in healthy breast mammary tissue, EBV-transformed 250 

lymphocytes, transformed fibroblasts, and subcutaneous adipose tissue. We considered these tissues 251 
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mainly due to their high relative composition in bulk breast tumor samples, as shown previously in many 252 

studies (23, 83–85). The Genotype-Tissue Expression (GTEx) Project was supported by the Common 253 

Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, 254 

NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from the 255 

GTEx Portal on 05/14/20. We also downloaded iCOGs GWAS summary statistics for breast cancer risk 256 

(86–88) to assess any overlap between CBCS eQTLs and GWAS-detected risk variants. 257 

 258 

RESULTS 259 

Overview of the DeCompress algorithm 260 

DeCompress takes in two expression matrices from similar bulk tissue as inputs: an expression matrix 261 

from a targeted panel of gene expression with 𝑛 samples and 𝑘 genes, and an expression matrix from an 262 

RNA-seq and microarray panel with 𝑁 samples and 𝐾 > 𝑘 genes. For shorthand, we will refer to RNA-seq 263 

or microarray panel as the reference and the targeted expression panel as the target. DeCompress 264 

outputs tissue compartment proportions for a user-defined number of all samples in the target and the 265 

compartment-specific expression profiles for the genes used in deconvolution. The method follows three 266 

general steps, as detailed in Figure 1: (1) feature selection of the compartment-specific genes from the 267 

reference, (2) compressed sensing to expand the targeted panel to a DeCompressed expression matrix 268 

with these compartment-specific genes, and (3) ensemble deconvolution on the DeCompressed dataset 269 

using existing reference-free methods. We provide further details about DeCompress in Methods and full 270 

mathematical and algorithmic details in Supplemental Methods. 271 

 272 

Benchmarking DeCompress against other reference-free deconvolution methods 273 

We benchmarked DeCompress performance across 6 datasets (see Supplemental Table S2): (1) in-274 

silico mixing experiments using tissue-specific expression profiles from the Genotype-Tissue Expression 275 

(GTEx) Project (53, 54), (2) expression from 4 published datasets with known compartment proportions 276 

(11, 23, 58, 59), and (3) and tumor expression from the Carolina Breast Cancer Study (43, 55). We 277 

compared the performance of DeCompress against 5 other reference-free deconvolution methods 278 

(summarized in Supplemental Table S1): deconf (20), Linseed (22), DeconICA (24), iterative non-279 
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negative matrix factorization with feature selection using TOAST (TOAST + NMF) (25), and 280 

CellDistinguisher (26). Estimated compartment proportions are compared to simulated or reported true 281 

compartment proportions with the mean square error (MSE) between the two matrices (see Methods). In 282 

total, we observed that DeCompress recapitulates compartment proportions with the least error compared 283 

to reference-free deconvolution methods. 284 

 285 

In-silico GTEx mixing 286 

We generated artificial targeted panels by mixing median tissue specific expression profiles from GTEx in-287 

silico with randomly simulated compartment proportions for mammary tissue, EBV-transformed 288 

lymphocytes, transformed fibroblasts, and subcutaneous adipose. We added multiplicative noise to the 289 

mixed expression to simulate measurement error and contributions to the bulk expression signal from 290 

other sources (see Methods). Figure 2A shows the performance of DeCompress compared to other 291 

reference-free methods across 25 simulated targeted panels of increasing numbers of genes on the 292 

simulated targeted panels. In general, we find that DeCompress gives more accurate estimates of 293 

compartment proportions than the other 5 methods at both settings for multiplicative noise. As the number 294 

of genes in the targeted panel increased, the difference in MSE between DeCompress and the other 295 

methods remains largely constant. Linseed and DeconICA, methods that search for mutually independent 296 

axes of variation that correspond to compartments, consistently perform poorly on these simulated 297 

datasets, possibly due to the relative similarity between the expression profiles for these compartments 298 

and the small number of genes on the targeted panels. deconf, TOAST + NMF (matrix factorization-based 299 

methods) and CellDistinguisher (topic modeling) perform similarly to one another and only moderately 300 

worse in comparison to DeCompress. 301 

We also investigated how the number of component compartments affects the performance of all six 302 

reference-free methods. We generated another set of in-silico mixed targeted panels (500 genes) using 2 303 

(mammary tissue and lymphocytes), 3 (mammary, lymphocytes, fibroblasts), and 4 (mammary, 304 

fibroblasts, lymphocytes, and adipose) and applied all six methods to estimate the compartment 305 

proportions. Figure 2B provides boxplots of the MSE across 25 simulated targeted panels using 306 

DeCompress and the other 5 benchmarked methods. For all 6 methods, the median MSE for these 307 
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datasets remained similar as the number of compartments increased, though the range in the MSE 308 

decreases considerably. In particular, the performance of DeconICA increases considerably as more 309 

compartments were used for mixing, as mentioned in its documentation (24). Here again, we found that 310 

DeCompress gave the smallest median MSE between the true and estimated cell proportions. In total, 311 

results from these in-silico mixing experiments show both the accuracy and precision of DeCompress in 312 

estimated compartment proportions. 313 

The four cell types we used for the above analyses simulated bulk mammary tissue but contained 314 

compartments with highly correlated gene expression profiles (Supplemental Figure 2A). We recreated 315 

the in-silico mixing experiments with four compartments with minimal correlations: mammary tissue, 316 

pancreas, pituitary gland, and whole blood (Supplemental Figure 2A). In mixtures with these tissues, we 317 

found that DeCompress also outperformed the reference-free methods, with a clear decrease in median 318 

MSE as the number of genes on the simulated targeted panels are increased (Supplemental Figure 2B). 319 

This trend between MSE and number of genes in this setting provides some evidence that dissimilar 320 

compartments may be easier to deconvolve with more genes on the targeted panel. 321 

 322 

Publicly available datasets 323 

Although in-silico mixing experiments with GTEx data showed strong performance of DeCompress, we 324 

sought to benchmark DeCompress against reference-free methods in previously published datasets with 325 

known compartment mixture proportions. We downloaded expression data from a breast cancer cell-line 326 

mixture (RNA-seq) (23), rat brain, lung, and liver cell-line mixture (microarray) (11), prostate tumor with 327 

compartment proportions estimated with laser-capture microdissection (microarray) (58), and lung 328 

adenocarcinoma cell-line mixture (RNA-seq) (59) and generated pseudo-targeted panels with 200, 500, 329 

and 800 genes (see Methods). For the rat mixture dataset, we trained the compression sensing model on 330 

a randomly selected training split with added noise to simulate a batch effect between the training and 331 

targeted panel; for the other three cancer-related datasets, reference RNA-seq data was downloaded 332 

from The Cancer Genome Atlas (TCGA) (2). We then performed semi-reference-free deconvolution in 333 

these datasets using DeCompress and the reference-free methods. 334 
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Overall, DeCompress showed the lowest MSE across all three datasets, in comparison to the other 335 

reference-free methods (Figure 2C). The patterns observed in the GTEx results are evident in these real 336 

datasets, as well. As the number of genes in the targeted panel increases, the range in the distribution of 337 

MSEs decreases. Deconvolution using Linseed gave variable performance across datasets (high 338 

variability in model performance), with very small ranges in MSEs in the rat microarray and lung 339 

adenocarcinoma datasets while highly variable MSEs in the breast cancer and prostate cancer datasets. 340 

We do not present DeconICA in these comparisons due to its large errors across all datasets (see 341 

Supplemental Figure S3 for comparisons to DeconICA). Specific to DeCompress, we assessed the 342 

performance of different deconvolution methods (4 reference-free methods and unmix from the DESeq2 343 

package (57)) on the DeCompressed expression matrix for the breast, prostate, and lung cancer datasets 344 

(Supplemental Figure S4). We found that unmix gives accurate estimates of compartment proportions in 345 

the breast cancer and prostate tumor datasets, where the component compartments are like those in bulk 346 

tumors. However, in the case of the lung adenocarcinoma mixing dataset (mixture of two lung cancer cell 347 

lines), unmix does not consistently outperform the reference-free methods, perhaps owing to a 348 

dissimilarity between the lung adenocarcinoma mixture dataset and TCGA-LUAD reference dataset. We 349 

lastly investigated a scenario where the reference and target assays measure different bulk tissue. Using 350 

the breast cancer cell-line mixtures pseudo-targets and a TCGA-LUAD reference, DeCompress estimated 351 

compartment proportions with larger errors, such that the distribution of MSEs intersect with a null 352 

distribution of MSEs from randomly generated compartment proportion matrices (Supplemental Figure 353 

S5). 354 

 355 

Carolina Breast Cancer Study (CBCS) expression 356 

We finally benchmarked DeCompress against the other 5 reference-free deconvolution methods in breast 357 

tumor expression data from the Carolina Breast Cancer Study (CBCS) (43, 55) on 406 breast cancer-358 

related genes on 1,199 samples. We used RNA-seq breast tumor expression from TCGA to train the 359 

compression matrix for deconvolution in CBCS using DeCompress; 393 of the 406 genes on the CBCS 360 

panel were measured in TCGA-BRCA. For validation, a study pathologist trained a computational 361 

algorithm to estimate compartment proportions using 148 tumor microarrays (TMAs) (89). We treat these 362 
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estimated compartment proportions for epithelial tumor, adipose, stroma, and immune infiltrate as a “gold 363 

standard.” 364 

To determine whether the DeCompressed expression matrix accurately predicts expression for 365 

samples in the target, we split the 393 genes into 5 groups and trained TCGA-based predictive models of 366 

genes in each group using those in the other four. Overall, in-sample cross-validation prediction per-367 

sample in TCGA is strong (median adjusted 𝑅2 = 0.53), with a drop-off in out-sample performance in 368 

CBCS (median adjusted 𝑅2 = 0.38), shown in Figure 3A. We also trained models stratified by estrogen-369 

receptor (ER) status, a major, biologically-relevant classification in breast tumors (90, 91). These ER-370 

specific models showed slightly better out-sample performance (median adjusted 𝑅2 =  0.34), though in-371 

sample performance was similar to overall models with the same median 𝑅2 (Figure 3B). Next, as in the 372 

GTEx mixing simulations and the 4 published datasets, DeCompress recapitulated true compartment 373 

proportions with the minimum error (Figure 3B), approximately 33% less error than TOAST + NMF, the 374 

second-most accurate method. To provide some context to the magnitude of these errors, we randomly 375 

generated 10,000 compartment proportion matrices for 148 samples and 4 compartments. The mean 376 

MSE is provided in Figure 3B, showing that 2 of the 5 benchmarked methods (CellDistinguisher and 377 

DeconICA) exceeded this randomly generated null MSE value. We also observed that correlations 378 

between true and DeCompress-estimated compartment proportions are positive and significantly non-379 

zero for three of four compartment components (Figure 3C). Unlike those from TOAST + NMF, 380 

DeCompress estimates of compartment-specific compartment proportions were positively correlated with 381 

the truth (Supplemental Figure S6).  382 

 383 

Comparison of computational speed 384 

The computational cost of DeCompress is high, owing primarily to training the compressed sensing 385 

models. Non-linear estimation of the columns of the compression matrix is particularly slow 386 

(Supplemental Figure S7). In practice, we recommend running an elastic net method (LASSO, elastic 387 

net, or ridge regression) which are both faster (Supplemental Figure S7) and give larger cross-validation 388 

𝑅2 (Supplemental Figure S1). The median cross-validation 𝑅2 for elastic net and ridge regression is 389 

approximately 16% larger than least angle regression and LASSO, and nearly 25% larger than the non-390 
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linear optimization methods. Using CBCS data with 1,199 samples and 406 genes, we ran all 391 

benchmarked deconvolution methods 25 times and recorded the total runtimes (Supplemental Figure 392 

S8). For DeCompress, we used TCGA-BRCA data with 1,212 samples as the reference. As shown in 393 

Supplemental Figure S8, running DeCompress in serial (approximately 62 minutes) takes around 40 394 

times longer than the slowest reference-free deconvolution method (TOAST + NMF, approximately 1.5 395 

minutes), though DeCompress is comparable in runtime to TOAST + NMF if run in parallel with enough 396 

workers (approximately 2.6 minutes). These computations were conducted on a high-performance cluster 397 

(RedHat Linux operating system) with 25 GB of RAM. 398 

 399 

Applications of DeCompress in the Carolina Breast Cancer Study 400 

Given the strong performance of DeCompress in benchmarking experiments, we estimated compartment 401 

proportions for 1,199 subjects in CBCS with transcriptomic data assayed with NanoString nCounter. 402 

Using TCGA breast cancer (TCGA-BRCA) expression as a training set, we iteratively searched for cell 403 

type-specific features (25) (Step 1 in Figure 1) and included canonical compartment markers for guidance 404 

using a priori knowledge (30, 92, 93) (see Methods). After expanding the targeted CBCS expression to 405 

these genes, we estimated proportions for 5 compartments. As reference-free methods output 406 

proportions for agnostic compartments, identifying approximate descriptors for compartments is often 407 

difficult. Here, we first outline a framework for assigning modular identifiers for compartments identified by 408 

DeCompress, guided by compartment-specific gene signatures. Then, we assess performance of using 409 

compartment-specific proportions in downstream analyses of breast cancer outcomes and gene 410 

regulation. 411 

 412 

Identifying approximate modules for DeCompress-estimated compartments 413 

We leveraged compartment-specific gene signatures to annotate each compartment with modular 414 

identifiers. First, we computed Spearman correlations between the compartment-specific gene expression 415 

profiles and median tissue-specific expression profiles from GTEx (53, 54) and single cell RNA-seq 416 

profiles of MCF7 breast cancer cells (94) (Figure 4A). Here, we find that Compartment 4 (C4) shows 417 

strong positive correlations with fibroblasts, lymphocytes, multiple collagenous organs (such as blood 418 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.14.250902doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.250902
http://creativecommons.org/licenses/by/4.0/


15 

 

vessels, skin, bladder, vagina, and uterus (95–97)), and MCF7 cells. We hypothesize that strong 419 

correlation with lymphocytes reflects tumor-infiltrating lymphocytes. The C3 gene signature was 420 

significantly correlated with expression profiles of secretory organs (salivary glands, pancreas, liver) and 421 

contained a strong marker of HER2-enriched breast cancer (ERBB2) (98).  422 

We conducted over-representation analysis (ORA) (65) of gene signatures for all five compartments, 423 

revealing cell cycle regulation ontologies for C4 that are consistent with the hypothesis generated from 424 

GTEx profiles at FDR-adjusted 𝑃 <  0.05 (Figure 4B). We conducted gene set enrichment analysis 425 

(GSEA) for the C4 gene signature (99), revealing significant enrichments for cell differentiation and 426 

development process ontologies (Supplemental Figure S9). ORA analysis also assigned immune-427 

related ontologies to the C2 gene signatures at FDR-adjusted 𝑃 <  0.05 and ERBB signaling to C4, 428 

though this enrichment did not achieve statistical significance. C1 and C5 gene signatures were not 429 

enriched for ontologies that allowed for conclusive compartment assignment, showing catabolic, 430 

morphogenic, and extracellular process ontologies (Figure 4B). From these results, we hypothesized that 431 

C3 and C4 resembled epithelial tumor cells, C2 an immune compartment (possibly excluding lymphocytes 432 

that may infiltrate tumors), and C1 and C5 presumptively stromal and/or mammary tissue. 433 

Distributions of the hypothesized immune (C2) and tumor (C3 + C4 proportions) revealed significant 434 

differences across PAM50 molecular subtypes (Figure 4C; Kruskal-Wallis test of differences with 𝑃 <435 

2.2 × 10−16) (69). These trends across subtypes were consistent with evidence that Basal-like and HER2-436 

enriched subtypes had the largest proportions of estimated tumor and immune compartments, while 437 

Luminal A, Luminal B, and Normal-like subtypes showed lower proportions (43, 69, 100). Furthermore, we 438 

found strong differences in C4 and total tumor compartment estimates across race (Supplemental 439 

Figure S10A). C3 and C4 also have strong correlations with ER- (estrogen receptor) and HER2-scores, 440 

gene-expression based continuous variables that indicate clinical subtypes based on ESR1 and ERBB2 441 

gene modules (Supplemental Figure S10B); however, none of the C3, C4, immune, or tumor 442 

compartment estimates showed significant differences across clinical ER status determined by 443 

immunohistochemistry (Supplemental Figure S10C). We considered the incorporation of estimates of 444 

compartment proportions in building models of breast cancer survival (Supplemental Results and 445 

Supplemental Table S3). 446 
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 447 

Incorporating compartment proportions into eQTL models detects more tissue-specific gene regulators 448 

We investigated how incorporating estimated compartment proportions affect cis-expression quantitative 449 

trait loci (cis-eQTL) mapping in breast tumors, a common application of deconvolution methods in 450 

assessing sources of variation in gene regulation (9, 101). In previous eQTL studies using CBCS 451 

expression, several bulk breast tumor cis-eGenes (i.e. the gene of interest in an eQTL association 452 

between SNP and gene expression) were found in healthy mammary, subcutaneous adipose, or 453 

lymphocytes from GTEx (10). We included DeCompress proportion estimates for the tumor (C3 + C4 454 

estimates) and immune (C2) compartments in a race-stratified, genetic ancestry-adjusted cis-eQTL 455 

interaction model (see Methods), as proposed by Geeleher et al and Westra et al (8, 9). We found that 456 

sets of compartment-specific cis-eGenes generally had few intersections with bulk cis-eGenes (Figure 457 

5A), though we detected more cis-eQTLs with the immune- and tumor-specific interaction models 458 

(Supplemental Figure S11). At FDR-adjusted 𝑃 <  0.05, of 209 immune-specific cis-eGenes identified in 459 

women of European ancestry (EA), 7 were also mapped in the bulk models (with no compartment 460 

proportion covariates), and no tumor-specific cis-eGenes were identified with the bulk models. Similarly, 461 

at FDR-adjusted 𝑃 <  0.05, in women of African ancestry (AA), 27 of 331 and 9 of 124 cis-eGenes 462 

identified with the immune- and tumor-compartment interaction models were also mapped with the bulk 463 

models, respectively. Manhattan plots for cis-eQTLs across the whole genome across bulk, tumor, and 464 

immune show the differences in eQTL architecture in these compartment-specific eQTL mappings in EA 465 

and AA samples (Supplemental Figures S12 and S13, respectively). Furthermore, we generally 466 

detected more cis-eQTLs at FDR-adjusted 𝑃 <  0.05 with the immune-specific interactions than the bulk 467 

and tumor-specific interactions (EA: 565 bulk cis-eQTLs, 65 tumor cis-eQTLs, 8927 immune cis-eQTLs; 468 

AA: 237 bulk cis-eQTLs, 449 tumor cis-eQTLs, 7676 immune cis-eQTLs; Supplemental Figure S11). All 469 

eQTLs with FDR-adjusted 𝑃 <  0.05 are provided in Supplemental Data 470 

(https://github.com/bhattacharya-a-bt/DeCompress_supplement) (102). 471 

We analyzed the sets of EA and AA tumor- and immune-specific eGenes in CBCS with ORA analysis 472 

for biological processes (Figure 5B). We found that, in general, these sets of eGenes were concordant 473 

with the compartment in which they were mapped. All at FDR-adjusted 𝑃 <  0.05, AA tumor-specific 474 
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eGenes showed enrichment for cell cycle and developmental ontologies, while immune-specific eGenes 475 

were enriched for leukocyte activation and migration and response to drug pathways. Similarly, EA tumor-476 

specific eGenes showed enrichments for cell death and proliferation ontologies, and immune-specific 477 

eGenes showed cytokine and lymph vessel-associated processes. We then cross-referenced bulk and 478 

tumor-specific cis-eGenes found in the CBCS EA sample with cis-eGenes detected in healthy tissues 479 

from GTEx: mammary tissue, fibroblasts, lymphocytes, and adipose (see Methods), similar to previous 480 

pan-cancer germline eQTL analyses (10, 103). We attributed several of the bulk cis-eGenes to healthy 481 

GTEx tissue (all but 2), but tumor-specific cis-eGenes were less enriched in healthy tissues 482 

(Supplemental Figure S14). We compared the cis-eQTL effect sizes for significant CBCS cis-eSNPs 483 

found in GTEx. As shown in Figure 5C, 98 of 220 bulk cis-eQTLs detected in CBCS that were also found 484 

in GTEx were mapped in healthy tissue, with strong positive correlation between effect sizes (Spearman 485 

𝜌 = 0.93). The remaining 122 eQTLs that could not be detected in healthy GTEx tissue contained some 486 

discordance in the direction of effects, though correlations between these effect sizes were also high (𝜌 =487 

0.71). In contrast, we were unable to detect any of the CBCS tumor-specific cis-eQTLs in as significant 488 

eQTLs in GTEx healthy tissue, and the correlation of these effect sizes across CBCS and GTEx was poor 489 

(Spearman 𝜌 =  −0.07). These results suggest that this compartment-specific eQTL mapping, especially 490 

those that are tumor-specific, identified eQTLs that are not enriched for eQTLs from healthy tissue.  491 

To evaluate any overlap of compartment-specific eQTLs with SNPs implicated with breast cancer 492 

risk,  we extracted 932 risk-associated SNPs in women of European ancestry from iCOGS (86–88) at 493 

FDR-adjusted 𝑃 <  0.05 that were available on the CBCS OncoArray panel (71). Figure 5D shows the 494 

raw − log10 𝑃-values of the association of these SNPs with their top cis-eGenes in the bulk and tumor- 495 

and immune-specific interaction models. In large part, none of these eQTLs reached FDR-adjusted 𝑃 <496 

 0.05, except for three cis-eQTLs, with their strengths of association favoring the bulk eQTLs. However, 497 

we detected 3 tumor-specific EA cis-eQTLs in near-perfect linkage disequilibrium of 𝑟2 ≥ 0.99 (strongest 498 

association with rs56387622) with chemokine receptor CCR3, a gene whose expression was previously 499 

found to be associated with breast cancer outcomes in luminal-like subtypes (104, 105). As estimated 500 

tumor purity increases, the cancer risk allele C at rs56387622 has a consistently strong negative effect on 501 

CCR3 expression (Figure 5E). We find that CCR3 expression is insignificantly different across tumor 502 
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stage and ER status but is significantly different across PAM50 molecular subtype (Supplemental Figure 503 

S15). In sum, results from our cis-eQTL analysis show the advantage of including DeCompress-estimated 504 

compartment proportions in downstream genomic analyses to identify compartment-specific associations 505 

that may be relevant in disease pathways. 506 

 507 

DISCUSSION 508 

Here, we presented DeCompress, a semi-reference-free deconvolution method catered towards targeted 509 

expression panels that are commonly used for archived tissue in clinical and academic settings (3, 35). 510 

Unlike traditional reference-based methods that require compartment-specific expression profiles, 511 

DeCompress requires only a reference RNA-seq or microarray dataset on similar bulk tissue to train a 512 

compressed sensing model that projects the targeted panel into a larger feature space for deconvolution. 513 

Such reference datasets are much more widely available than compartment-specific expression on the 514 

same targeted panel. We benchmarked DeCompress against reference-free methods (20, 22, 24–26) 515 

using in-silico GTEx mixing experiments (53, 54), 4 published datasets with known compartment 516 

proportions (11, 23, 58, 59), and a large, heterogeneous NanoString nCounter dataset from the CBCS 517 

(43, 55). In these analyses, we showed that DeCompress recapitulated true compartment proportions 518 

with the minimum error and the strongest compartment-specific positive correlations, especially when the 519 

reference dataset is properly aligned with the tissue assayed in the target. We tested the performance of 520 

DeCompress by incorporating compartment estimates in eQTL mapping to reveal immune- and tumor-521 

compartment-specific breast cancer eQTLs.  522 

While DeCompress has several important strengths, it has some limitations. First, DeCompress has a 523 

high computational cost, owing mainly to its lengthy compressed sensing training step. We recommend 524 

running mainly linear optimization methods in this step and have implemented parallelization options to 525 

bring computation time on par with the iterative framework proposed in TOAST (25). However, 526 

DeCompress estimates compartment proportions both accurately and precisely, compared to other 527 

reference-free methods, and provides a strong computational alternative that is much faster than costly 528 

lab-based measurement of composition. Second, DeCompress, as a semi-reference-free method, shares 529 

the limitations of reference-based methods – namely concerns with the proper selection of a reference 530 
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dataset. As seen in the lung adenocarcinoma example, where TCGA-LUAD data was not an accurate 531 

reflection of a mixture of adenocarcinoma cell-lines, DeCompress performance has slightly lower 532 

performance than datasets properly matched to their references. Yet, in this setting, DeCompress 533 

performance was on par with that of the other reference-free methods that do not use a misaligned 534 

reference. Lastly, also in common with reference-free methods, the compression model may also be 535 

sensitive to phenotypic variation in the reference, as evidenced by the increase in out-sample prediction 536 

𝑅2 in ER-specific models compared to overall models in CBCS. This specificity may be leveraged to train 537 

more accurate models by using more than one reference dataset to reflect clinical or biological 538 

heterogeneity in the targeted panel. Researchers may employ more systematic methods of assessing the 539 

similarity of the reference and target datasets, like measuring the distance between the two matrices (i.e. 540 

norms based on the singular values of matrices) or comparing the correlation structure of overlapping 541 

genes in the feature spaces of the reference and target. These evaluations will help with selecting a 542 

proper reference for a targeted panel to be deconvolved using DeCompress. 543 

DeCompress also shares some challenges with reference-free deconvolution methods, such as the 544 

selection of an appropriate number of compartments. Previous groups have emphasized reliance on a 545 

priori knowledge for deconvolving well-studied tissues, such as blood and brain (106, 107). However, 546 

diseased tissues, like bulk cancerous tumors, especially in understudied subtypes or populations, are 547 

more difficult to deconvolve due to the similarity between compartments, many of which may be rare or 548 

reflect transient cell states (30, 91, 108, 109). For this reason, we included several data-driven 549 

approaches in estimating the number of compartments from variation in the gene expression and 550 

recommended applying prior domain knowledge about the tissue of interest. It is also important to 551 

carefully consider the gene module-based annotations for the unidentified estimated compartments, 552 

especially in bulk tissue where traditional ideas of compartments are inapplicable (29). Several previous 553 

reference-free methods have leveraged in vitro mixtures of highly distinct cell lines in training and testing 554 

previous reference-free deconvolution methods (11, 22), namely the rat cell line mixture (GSE19830) 555 

(11). Though this dataset is easy to deconvolve and thus useful in testing methodology, the extreme 556 

differences in gene expression between these three tissue types renders this dataset sub-optimal for 557 

methods benchmarking. Furthermore, assigning estimated compartments to known tissues in this dataset 558 
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is straightforward and does not capture the difficulty of this task in typical deconvolution applications. 559 

Instead, our applications in breast cancer expression with CBCS provided such a difficult statistical 560 

challenge. Our outlined approach of first comparing compartment-specific gene signatures to known 561 

tissue profiles from GTEx or single-cell profiles, then analyzing these signatures with ORA or GSEA, and 562 

lastly checking hypotheses against known biological trends provides a structured framework for 563 

addressing the compartment identification problem. 564 

Our downstream eQTL analysis in CBCS breast tumor expression also provided some insight into 565 

gene regulation, similar to recent work into deconvolving immune subpopulation eQTL signals from bulk 566 

blood eQTLs (101). In breast cancer, Geeleher et al previously showed that a similarly implemented 567 

interaction eQTL model gave better mapping of compartment-specific eQTLs (8, 9). Our results are 568 

consistent with this finding, especially since tumor- and immune-specific eGenes were enriched for 569 

commonly associated ontologies. However, unlike Geeleher et al, we generally detected a larger number 570 

of immune- and tumor-specific eQTLs and eGenes than in the bulk, unadjusted models. We believe that 571 

this larger number of compartment-specific eGenes may be due to the specificity of the genes assayed by 572 

the CBCS targeted panel. As the panel included 406 genes, all previously implicated in breast cancer 573 

pathogenesis, proliferation, or response (10, 43, 110), the interaction model will detect SNPs that have 574 

large effects on compartment-specific genes. The interaction term is interpreted as the difference in eQTL 575 

effect sizes between samples of 0% and 100% of the given compartment; accordingly, for genes 576 

implicated in specific breast cancer pathways, we expect to see large differences in compartment-specific 577 

eQTL effects (111–113). Though this interaction model is straight-forward in its interpretation for the 578 

tumor compartment (i.e. a sample of 100% tumor cells versus 100% tumor-associated normal cells), this 579 

interpretation may be tenuous for less well-defined compartments, like an immune compartment that 580 

includes several different immune cells. This interaction term’s effect size may also be inflated for 581 

compartment estimates that have low mean and high variance across the samples. In addition, we did not 582 

consider trans-acting eQTLs that are often attributed to compartment heterogeneity, though we believe 583 

that methods employing mediation or cross-condition analysis can be integrated with compartment 584 

estimates to map compartment-specific trans-eQTLs relevant in breast cancer (114–116). 585 
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Relevant to risk and proliferation of breast cancer, we detected a locus of cis-eSNPs associated with 586 

expression of CCR3 (C-C chemokine receptor type 3) that were GWAS-identified risk SNPs (86–88) 587 

but were not significantly associated with CCR3 expression using the bulk models and were not detected 588 

in GTEx. If one or more causal SNPs in this genomic region affects CCR3 expression only in cancer cells 589 

and the effect on CCR3 expression is the main mechanism by which the locus predisposes individuals to 590 

breast cancer, we can hypothesize that an earlier perturbation in the development of cancer (e.g. 591 

transcription factor or microRNA activation) may cause this SNP’s tumorigenic effect. Given this 592 

perturbation in precancerous mammary cells, individuals with the risk allele would convey the tumorigenic 593 

effects of decreased CCR3 expression. It has been previously shown that increased peritumoral CCR3 594 

expression is associated with improved survival times in luminal-like breast cancers (104, 105). The 595 

CCR3 receptor has been shown to be the primary binding site of CCL11 (eotaxin-1), an eosinophil-596 

selective chemoattractant cytokine (117, 118), and accordingly CCR3 antagonism prohibited chemotaxis 597 

of basophils and eosinophils, a phenomenon observed in breast cancer activation and proliferation (119, 598 

120). Without DeCompress and the incorporation of estimated compartment proportions in the eQTL 599 

model, this association between eSNP and CCR3 expression would not have been detected in this 600 

dataset (121). 601 

DeCompress, our semi-reference-free deconvolution method, provides a powerful method to estimate 602 

compartment-specific proportions for targeted expression panels that have a limited number of genes and 603 

only requires RNA-seq or microarray expression from a similar bulk tissue. Our method’s estimates 604 

recapitulate known compartments with less error than reference-free methods and provides 605 

compartments that are biologically relevant, even in complex tissues like bulk breast tumors. We provide 606 

examples of using these estimated compartment proportions in downstream studies of outcomes and 607 

eQTL analysis. Given the wide applications of reference-free deconvolution, the popularity of targeted 608 

panels in both academic and clinical settings, and increasing need for analyzing heterogeneous and 609 

dynamic tissues, we anticipate creative implementations of DeCompress to give further insight into 610 

expression variation in complex diseases.  611 
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The DeCompress package is available as R software on GitHub: https://github.com/bhattacharya-a-614 

bt/DeCompress. Sample code for replication and results from the eQTL analysis are provided: 615 

https://github.com/bhattacharya-a-bt/DeCompress_supplement (102). CBCS expression data is publicly 616 

available at GSE148426. CBCS genotype datasets analyzed in this study are not publicly available as 617 

many CBCS patients are still being followed and accordingly is considered sensitive; the data is available 618 

from M.A.T upon reasonable request. GTEx median expression profiles are available from dbGAP 619 

accession number phs000424.v7.p2. Data from the published mixture experiments are available from 620 

GEO: GSE19830, GSE123604, GSE97284, and GSE64098. Single-cell expression profiles of MCF7 cells 621 

were obtained from GSE52716. Expression data from The Cancer Genome Atlas is available from the 622 

Broad GDAC Firehose repository (https://gdac.broadinstitute.org/) with accession number 623 

phs000178.v11.p8. 624 
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FIGURE LEGENDS 976 

Figure 1: Schematic for the DeCompress algorithm. DeCompress takes in a reference RNA-seq or 977 

microarray matrix with 𝑁 samples and 𝐾 genes, and the target expression with 𝑛 samples and 𝑘 < 𝐾 978 

genes. The algorithm has three general steps: (1) finding the 𝐾′ < 𝐾 genes in the reference that are cell-979 

type specific, (2) training the compressed sensing model that projects the feature space in the target from 980 

𝑘 genes to the 𝐾′ cell-type specific genes, and (3) decompressing the target to an expanded dataset and 981 

deconvolving this expanded dataset. DeCompress outputs cell-type proportions and cell-type specific 982 

profiles for the 𝐾′ genes. 983 

 984 

Figure 2: Benchmarking results for in-silico GTEx mixing experiments and real data examples. (A) 985 

Boxplots of mean square error (𝑌-axis) between true and estimated cell-type proportions in in-silico GTEx 986 

mixing experiments across various methods (𝑋-axis), with 25 simulated datasets per number of genes. 987 

GTEx mixing was done at two levels of multiplicative noise, such that errors were drawn from a Normal 988 

distribution with zero mean and standard deviation 8 (left) and 4 (right). Boxplots are colored by the 989 

number of genes in each simulated dataset. (B) Boxplots of MSE (𝑌-axis) between true and estimated 990 

cell-type proportions over 25 simulated GTEx mixed expression datasets with 500 genes, multiplicative 991 

noise drawn from a Normal distribution with zero mean and standard deviation 10, and 2 (left), 3 (middle), 992 

and 4 (right) different cell-types. Boxplots are collected by the reference-free method tested. (C) Boxplots 993 

of mean square error (𝑌-axis) between true and estimated cell-type proportions in 25 simulated targeted 994 

panels of 200, 500, 800, and 1,000 genes (𝑋-axis), using four different datasets: breast cancer cell-line 995 

mixture (top-left) (23), rat brain, lung, and liver cell-line mixture (top-right) (11), prostate tumor samples 996 

(bottom-left) (58), and lung adenocarcinoma cell-line mixture (bottom-right) (59). Boxplots are colored by 997 

the benchmarked method. The red line indicates the median null MSE when generating cell-type 998 

proportions randomly. If a red line is not provided, then the median null MSE is above the scale provided 999 

on the 𝑌-axis. 1000 

 1001 

Figure 3: Benchmarking results with Carolina Breast Cancer Study expression data. (A) Kernel density 1002 

plots of predicted adjusted 𝑅2 per-sample in in-sample TCGA prediction (left) through cross-validation 1003 
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and out-sample prediction in CBCS (right), colored by overall and ER-specific models. (B) MSE (Y-axis) 1004 

between true and estimated cell-type proportions in CBCS across all methods (𝑋-axis). Random indicates 1005 

the mean MSE over 10,000 randomly generated cell-type proportion matrices. (C) Spearman correlations 1006 

(𝑌-axis) between compartment-wise true and estimated proportions across all benchmarked methods (𝑋-1007 

axis). Correlations marked with a star are significantly different from 0 at 𝑃 <  0.05. 1008 

 1009 

Figure 4: Identification of Decompress-estimated compartments. (A) Heatmap of Pearson correlations 1010 

between compartment-specific gene signatures (𝑋-axis) and GTEx median expression profiles and MCF7 1011 

single-cell profiles (Y-axis). Significant correlations at nominal 𝑃 <  0.01 are indicated with an asterisk. 1012 

(B) Bar plot of − log10 𝐹𝐷𝑅-adjusted 𝑃-values for top gene ontologies (𝑌-axis) enriched in compartment-1013 

specific gene signatures. (C) Boxplots of estimated immune (left) and tumor (C3 + C4 compartments, 1014 

right) proportions (𝑌-axis) across PAM50 molecular subtypes (𝑋-axis) 1015 

 1016 

Figure 5: Compartment-specific cis-eQTL mapping in the Carolina Breast Cancer Study. (A) Venn 1017 

diagram of bulk, tumor-, and immune-specific cis-eGenes identified European-ancestry (left) and African-1018 

ancestry samples (right) in CBCS. (B) Enrichment analysis of immune- (red) and tumor-specific (blue) cis-1019 

eGenes in CBCS plotting the −𝑙𝑜𝑔10 𝑃-value of enrichment (𝑋-axis) and description of gene ontologies 1020 

(𝑌-axis). The size of the point represents the relative enrichment ratio for the given ontology. (C) 1021 

Scatterplots of GTEx (𝑋-axis) and CBCS effect size (𝑌-axis) for significant CBCS cis-eQTLs that were 1022 

mapped in GTEx. Each point is colored by the GTEx tissue in which the cis-eQTL has the lowest 𝑃-value. 1023 

Reference dotted lines for the 𝑋- and 𝑌-axes are provided. (D) For risk variants from GWAS for breast 1024 

cancer from iCOGs (86–88), scatterplot of −𝑙𝑜𝑔10 𝑃-values of bulk (𝑋-axis) and compartment-specific cis-1025 

eQTLs (𝑌-axis), colored blue for tumor- and red for immune-specific models. A 45-degree reference line 1026 

is provided. In the top right corner, 3 tumor-specific cis-eQTLs are labeled with the eGene CCR3 as they 1027 

are significant at FDR-adjusted 𝑃 <  0.05. (E) Tumor-specific eQTL effect sizes and 95% confidence 1028 

intervals (𝑌-axis) for rs56387622 on CCR3 expression across various estimates of tumor purity. The 1029 

eQTL effect size from the bulk model is given in blue. 1030 
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Figure 1: Schematic for the DeCompress algorithm. DeCompress takes in a reference RNA-seq or microarray matrix with 𝑁 samples and 𝐾 

genes, and the target expression with 𝑛 samples and 𝑘 < 𝐾 genes. The algorithm has three general steps: (1) finding the 𝐾′ < 𝐾 genes in the 

reference that are cell-type specific, (2) training the compressed sensing model that projects the feature space in the target from 𝑘 genes to the 𝐾′ 
cell-type specific genes, and (3) decompressing the target to an expanded dataset and deconvolving this expanded dataset. DeCompress outputs 
cell-type proportions and cell-type specific profiles for the 𝐾′ genes. 
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Figure 2: Benchmarking results for in-silico GTEx mixing experiments and real data examples. (A) 
Boxplots of mean square error (𝑌-axis) between true and estimated cell-type proportions in in-silico GTEx 

mixing experiments across various methods (𝑋-axis), with 25 simulated datasets per number of genes. 
GTEx mixing was done at two levels of multiplicative noise, such that errors were drawn from a Normal 
distribution with zero mean and standard deviation 8 (left) and 4 (right). Boxplots are colored by the 
number of genes in each simulated dataset. (B) Boxplots of MSE (𝑌-axis) between true and estimated 
cell-type proportions over 25 simulated GTEx mixed expression datasets with 500 genes, multiplicative 
noise drawn from a Normal distribution with zero mean and standard deviation 10, and 2 (left), 3 (middle), 
and 4 (right) different cell-types. Boxplots are collected by the reference-free method tested. (C) Boxplots 
of mean square error (𝑌-axis) between true and estimated cell-type proportions in 25 simulated targeted 

panels of 200, 500, 800, and 1,000 genes (𝑋-axis), using four different datasets: breast cancer cell-line 
mixture (top-left) (23), rat brain, lung, and liver cell-line mixture (top-right) (11), prostate tumor samples 
(bottom-left) (58), and lung adenocarcinoma cell-line mixture (bottom-right) (59). Boxplots are colored by 
the benchmarked method. The red line indicates the median null MSE when generating cell-type 
proportions randomly. If a red line is not provided, then the median null MSE is above the scale provided 
on the 𝑌-axis.
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Figure 3: Benchmarking results with Carolina Breast Cancer Study expression data. (A) Kernel density 

plots of predicted adjusted 𝑅2 per-sample in in-sample TCGA prediction (left) through cross-validation 
and out-sample prediction in CBCS (right), colored by overall and ER-specific models. (B) MSE (Y-axis) 
between true and estimated cell-type proportions in CBCS across all methods (𝑋-axis). Random indicates 
the mean MSE over 10,000 randomly generated cell-type proportion matrices. (C) Spearman correlations 
(𝑌-axis) between compartment-wise true and estimated proportions across all benchmarked methods (𝑋-
axis). Correlations marked with a star are significantly different from 0 at 𝑃 <  0.05.
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Figure 4: Identification of Decompress-estimated compartments. (A) Heatmap of Pearson correlations 
between compartment-specific gene signatures (𝑋-axis) and GTEx median expression profiles and MCF7 

single-cell profiles (Y-axis). Significant correlations at nominal 𝑃 <  0.01 are indicated with an asterisk. 
(B) Bar plot of − log10 𝐹𝐷𝑅-adjusted 𝑃-values for top gene ontologies (𝑌-axis) enriched in compartment-
specific gene signatures. (C) Boxplots of estimated immune (left) and tumor (C3 + C4 compartments, 
right) proportions (𝑌-axis) across PAM50 molecular subtypes (𝑋-axis)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.14.250902doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.250902
http://creativecommons.org/licenses/by/4.0/


Figure 5: Compartment-specific cis-eQTL mapping in the Carolina Breast Cancer Study. (A) Venn diagram of bulk, 
tumor-, and immune-specific cis-eGenes identified European-ancestry (left) and African-ancestry samples (right) in CBCS. 
(B) Enrichment analysis of immune- (red) and tumor-specific (blue) cis-eGenes in CBCS plotting the −𝑙𝑜𝑔10 𝑃-value of 
enrichment (𝑋-axis) and description of gene ontologies (𝑌-axis). The size of the point represents the relative enrichment 

ratio for the given ontology. (C) Scatterplots of GTEx (𝑋-axis) and CBCS effect size (𝑌-axis) for significant CBCS cis-

eQTLs that were mapped in GTEx. Each point is colored by the GTEx tissue in which the cis-eQTL has the lowest 𝑃-

value. Reference dotted lines for the 𝑋- and 𝑌-axes are provided. (D) For risk variants from GWAS for breast cancer from 
iCOGs (86–88), scatterplot of −𝑙𝑜𝑔10 𝑃-values of bulk (𝑋-axis) and compartment-specific cis-eQTLs (𝑌-axis), colored blue 
for tumor- and red for immune-specific models. A 45-degree reference line is provided. In the top right corner, 3 tumor-
specific cis-eQTLs are labeled with the eGene CCR3 as they are significant at FDR-adjusted 𝑃 <  0.05. (E) Tumor-
specific eQTL effect sizes and 95% confidence intervals (𝑌-axis) for rs56387622 on CCR3 expression across various 
estimates of tumor purity. The eQTL effect size from the bulk model is given in blue. 
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