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ABSTRACT

Targeted mRNA expression panels, measuring up to 800 genes, are used in academic and clinical
settings due to low cost and high sensitivity for archived samples. Most samples assayed on targeted
panels originate from bulk tissue comprised of many cell types, and cell-type heterogeneity confounds
biological signals. Reference-free methods are used when cell-type-specific expression references are
unavailable, but limited feature spaces render implementation challenging in targeted panels. Here, we
present DeCompress, a semi-reference-free deconvolution method for targeted panels. DeCompress
leverages a reference RNA-seq or microarray dataset from similar tissue to expand the feature space of
targeted panels using compressed sensing. Ensemble reference-free deconvolution is performed on this
artificially expanded dataset to estimate cell-type proportions and gene signatures. In simulated mixtures,
four public cell line mixtures, and a targeted panel (1199 samples; 406 genes) from the Carolina Breast
Cancer Study, DeCompress recapitulates cell-type proportions with less error than reference-free
methods and finds biologically relevant compartments. We integrate compartment estimates into cis-

eQTL mapping in breast cancer, identifying a tumor-specific cis-eQTL for CCR3 (C-C Motif Chemokine
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Receptor 3) at a risk locus. DeCompress improves upon reference-free methods without requiring

expression profiles from pure cell populations, with applications in genomic analyses and clinical settings.

INTRODUCTION

Academic and clinical settings have prioritized the collection of tissue samples of mixed cell types for
molecular profiling and biomarker studies (1-3). Bulk tissue, especially from cancerous tumors, is
comprised of different cell types, many rare, and each contributing varied biological signal to an assay
(e.g. mRNA expression) (4, 5). This cell-type heterogeneity makes it difficult to distinguish variability that
reflects shifts in cell populations from variability that reflects changes in cell-type-specific expression (6).
Since RNA-seq technology was developed, cell-type deconvolution from mRNA expression has become
important in genetic and genomic association studies: either using compositions in regression models as
covariates to adjust for the association between cell type and phenotype (7-10), or using them as inputs
to solve for cell-type specific quantities (11, 12). Cell-type deconvolution methods can be reference-based
(supervised) (13-19) or reference-free (unsupervised) (20-26), depending on whether cell-type-specific
expression profiles are available for the component cell-types. When reference panels are unavailable, as
in understudied tissues or populations (27), reference-free deconvolution is the only viable option. Even in
cases where reference expression profiles are available, reference-based methods may provide
inaccurate proportion estimates if the mixed tissue and references represent different clinical settings or
phenotypes (28).

Given the advent of single-cell technologies and studies into cell trajectories, the concept of cell types
in bulk tissue has been debated (29). Especially in perturbed or diseased tissues, like cancer, individual
cells may present in different states, or various cells of possibly different identities may contribute, in
aggregate, to the same biological process and have similar molecular profiles (30—32). While previous
reference-free methods rely on searching the feature space for compartment-specific molecular features
from the entire transcriptome and thus require a large feature space (22, 24-26), reference-free
deconvolution methods can, with fewer assumptions, identify tissue compartments, or isolated units of a

tissue that represent either a biological process or a cell type (33). Thus, reference-free methods have
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important advantages over reference-based methods but may require a large number of features for
optimal performance (25, 34).

Many important datasets may have fewer expression targets than those required for existing
reference-free deconvolution methods. Targeted mMRNA expression assays are optimized for gene
expression quantification in samples stored clinically and use a panel of up to 800 genes without requiring
cDNA synthesis or amplification steps (35-37). These technologies offer key advantages in sensitivity,
technical reproducibility, and strong robustness for profiling formalin-fixed, paraffin-embedded (FFPE)
samples (35, 38). Given these advantages, targeted expression profiling is increasingly being used for
molecular studies (36, 37, 39-42), especially prospective studies involving FFPE samples stored over
several years (43) and diagnostic assays in clinical settings (3, 44). Due to its viability in diagnostics, it is
important to identify reference-free deconvolution methods that overcome the need for searching for
compartment-specific genes from the assay’s feature space (22, 24—26), given the limited feature space
in targeted panels.

Previous groups have proposed methods for efficiently reconstructing full gene expression profiles
from sparse measurements of the transcriptome, borrowing techniques from image reconstruction using
compressed sensing (45, 46) and machine learning (47-50). For example, Cleary et al developed a blind
compressed sensing method that recovers gene expression from multiple composite measurements of
the transcriptome (up to 100 times fewer measurements than genes) by using modules of interrelated
genes in an unsupervised manner. Another imputation method by Vifias et al (51) used recent machine
learning methodology (52) to provide efficient and accurate transcriptomic reconstruction in healthy,
unperturbed tissue from the Genotype-Tissue Expression (GTEX) Project (53, 54). The performance of
these methods provides a promising avenue to expand the feature space of targeted panels, rendering
them more applicable for reference-free deconvolution methods.

Here, we present DeCompress, a semi-reference-free deconvolution method for targeted panels.
DeCompress requires a reference RNA-seq or microarray dataset from the same bulk tissue assayed by
the targeted expression panel to train a compressed sensing model to expand the feature space in a
targeted panel. We show the advantages of using DeCompress over other reference-free methods with

simulation analyses and real data applications. Lastly, we examine the impact of tissue compartment
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84  deconvolution on downstream analyses, such as cis-eQTL analysis using expression data from the
85 Carolina Breast Cancer Study (CBCS) (55). DeCompress is available freely as an R package on GitHub

86 at https://github.com/bhattacharya-a-bt/DeCompress.

87
88  MATERIAL AND METHODS
89  The Decompress algorithm
90 DeCompress takes in two expression matrices from similar bulk tissue as inputs: the target expression
91 matrix from a targeted panel of gene expression with n samples and k genes, and a reference expression
92 matrix from an RNA-seq and microarray panel with N samples and K > k genes. Ideally, both the target
93 and reference expression matrices should be on the raw expression scale (not log-transformed), as we
94 presume the total RNA abundance for a given gene in bulk tissue is a linear combination of that gene’s
95 compartment-specific RNA abundance. We refer to DeCompress as a semi-reference-free method, as it
96 requires a reference expression matrix but not compartment-specific expression profiles (as in reference-
97 based methods). For a user-defined humber of compartments, DeCompress outputs compartment
98 proportions for all samples in the target and the compartment-specific expression profiles for the genes
99  used in deconvolution. The method follows three general steps, as detailed in Figure 1: (1) selection of
100  the compartment-specific genes from the reference, (2) compressed sensing to expand the targeted
101 panel to a DeCompressed expression matrix with these compartment-specific genes, and (3) ensemble
102 deconvolution on the DeCompressed dataset. Full mathematical and algorithmic details for DeCompress
103 are provided in Supplemental Methods. DeCompress is available as an R package on GitHub

104 (https://github.com/bhattacharya-a-bt/DeCompress).

105 The first step of DeCompress is to use the reference dataset to find a set of K’ < K genes that are
106 representative of different compartments that comprise the bulk tissue. These K’ genes, called the

107 compartment-specific genes, can be supplied by the user if prior gene signatures can be applied. If any
108  such gene signatures are not available, DeCompress borrows from previous reference-free methods to
109 determine this set of genes (Linseed (22) or TOAST (25)). If the user cannot determine the total number
110 of compartments, using the reference, the number of compartments can be estimated by assessing the

111 cumulative total variance explained by successive singular value decomposition modes.
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112 After a set of compartment-specific genes are determined, DeCompress uses the reference to infer a
113 model that predicts the expression of each of these compartment-specific genes from the genes in the
114  target. Predictive modeling procedures borrow ideas from compressed sensing (45, 46, 56), a technique
115  that was developed to reconstruct a full image from sparse measurements of it: the estimation procedure
116 can be broken down into solving a system of equations using either linear or non-linear regularized

117  optimization, with options for parallelization when the sample size of the reference dataset is large. These
118  optimization methods are detailed in Supplemental Methods. The predictive models are curated into a
119 compression matrix, which is then used to expand the original target (with k < K' < K genes) into the

120 artificially DeCompressed expression matrix (with the K” compartment-specific genes). In practice, we
121 observed that regularized linear regression (lasso, ridge, or elastic net regression (48)) provides the best
122 prediction of gene expression (Supplemental Figure S1), and the user may either model the gene

123  expression using the traditional Gaussian family or assume that the errors follow a Poisson distribution to
124 account for the scale of the original data (not log-transformed).

125 Lastly, ensemble deconvolution is performed on the DeCompressed expression matrix to estimate (1)
126 compartment proportions on the samples in the target, and (2) the compartment-specific expression

127 profiles for the K' genes used in deconvolution. Several options for reference-free deconvolution are

128  provided in DeCompress. We also provide options that uses a reference-based method, unmix from the
129 DESeq2 package (57), based on compartment expression profiles estimated from the reference RNA-seq
130 or microarray dataset (i.e. an approximate compartment expression profile is estimated from a non-

131 negative matrix factorization of the reference dataset). Estimates from the method that best recovers the
132 DeCompressed expression matrix is chosen. Supplemental Table S1 provides summaries of the

133 methods employed in DeCompress.

134

135 Benchmarking analysis

136 Using simulations and published datasets, we benchmarked DeCompress against five other reference-
137  free methods: deconf (20), CellDistinguisher (26), Linseed (22), DeconlICA (24), and iterative non-

138 negative matrix factorization with feature selection using TOAST (25) (see Supplemental Table S1). All

139  these datasets provide a matrix of known compartment proportions. To measure the performance of each
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140  method, we calculate the error between the estimated and true compartment proportions as the mean
141 square error (MSE) (i.e. the mean row-wise MSE between the two matrices). We also permute the

142 columns the estimated matrix (corresponding to compartments) to align compartments accordingly

143 between the known and estimated proportions to minimize the MSE for each method.

144

145 In-silico mixing with GTEXx

146 We performed in-silico mixing experiments using expression data from the Genotype-Tissue Expression
147 (GTEX) Project (dbGAP accession number phs000424.v7.p2) (53, 54). Here, we obtained median

148 transcripts per kilobase million (TPM) data for four tissue types: mammary tissue, EBV-transformed

149 lymphocytes, transformed fibroblasts, and subcutaneous adipose. We randomly generated compartment
150 proportions for each of these tissue types and simulated mixed RNA-seq expression data for 200

151 samples. We then scaled these mixed expression profiles with multiplicative noise randomly generated
152 from a Normal distribution with 0 mean and standard deviations of 4 and 8. We then generated 25

153 pseudo-targeted expression panels by randomly selecting 200, 500, and 800 of the genes with mean and
154 standard deviations above the median mean and standard deviations of all genes. For benchmarking, we
155 randomly select 100 samples for the target matrix. For DeCompress, the simulated RNA-seq data on the
156  other 100 samples are used as the reference matrix. We added more normally-distributed multiplicative
157 noise with zero mean and unit variance to simulate a batch difference between the reference and target
158 matrix. For comparison to compartments with dissimilar expression profiles, we repeated these

159 simulations for four other tissues: mammary tissue, pancreas, pituitary, and whole blood. Full details for
160 this simulation framework are provided in Supplemental Methods.

161

162 Existing mixing experiments

163  We also benchmarked DeCompress in four published mixing experiments: (1) microarray expression for
164 mixed rat brain, liver, and lung biospecimens (GEO Accession Number: GSE19830), commonly used as a
165 benchmarking dataset in deconvolution studies (N = 42) (11), (2) RNA-seq expression (GSE123604) for
166  a mixture of breast cancer cells, fibroblasts, normal mammary cells, and Burkitt's lymphoma cells (N =

167 40) (23), (3) microarray expression (GSE97284) for laser capture micro-dissected prostate tumors (N =
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168 30) (58), and (4) RNA-seq expression (GSE64098) for a mixture of two lung adenocarcinoma cell lines
169 (N = 40) (59, 60). As in the in-silico mixing using GTEx data, we generated pseudo-targeted panels by
170 randomly selecting 200, 500, and 800 of the genes with mean and standard deviations above the median
171 mean and standard deviations of all genes. For the rat mixture dataset, we used 30 of the 42 samples as
172 a reference microarray matrix (with multiplicative noise, as in GTEx) and deconvolved on the remaining
173 12 samples in the target matrix. In the remaining three datasets, we obtained normalized RNA-seq

174 reference matrices from The Cancer Genome Atlas: TCGA-BRCA breast tumor expression for the breast
175 cancer cell line mixture, TCGA-PRAD prostate tumor expression for the prostate tumor microarray study,
176 and TCGA-LUAD for the lung adenocarcinoma mixing study. These datasets are summarized in

177 Supplemental Table S2.

178

179  Applications in Carolina Breast Cancer Study (CBCS) data

180 We lastly used expression data from the Carolina Breast Cancer Study for validation and analysis (55).
181 Paraffin-embedded tumor blocks were requested from participating pathology laboratories for each

182 samples, reviewed, and assayed for gene expression using the NanoString nCounter system, as

183 discussed previously (43). As described before (10, 61), the expression data (406 genes and 11

184 housekeeping genes) was pre-processed and normalized using quality control steps from the

185 NanoStringQCPro package, upper quartile normalization using DESeqg2 (57, 62), and estimation and

186 removal of unwanted technical variation using the RUVSeq and limma packages (63, 64). The resulting
187 normalized dataset comprised of samples from 1,199 patients, comprising of 628 women of African

188 descent (AA) and 571 women of European descent (EA). A study pathologist analyzed tumor microarrays
189 (TMASs) from 148 of the 1,199 patients to estimate area of dissections originating from epithelial tumor,
190 intratumoral stroma, immune infiltrate, and adipose tissue (10). These compartment proportions of the
191 148 samples were used for benchmarking of DeCompress against other reference-free methods.

192 Date of death and cause of death were identified by linkage to the National Death Index. All

193 diagnosed with breast cancer have been followed for vital status from diagnosis until date of death or date
194  of last contact. Breast cancer-related deaths were classified as those that listed breast cancer

195 (International Statistical Classification of Disease codes 174.9 and C-50.9) as the underlying cause of
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196 death on the death certificate. Of the 1,199 samples deconvolved, 1,153 had associated survival data
197  with 330 total deaths, 201 attributed to breast cancer.

198

199 Over-representation and gene set enrichment analysis

200  We conducted over-representation (ORA) and gene set enrichment analysis (GSEA) to identify

201  significantly enriched gene ontologies using WebGestaltR (65). Specifically, we considered biological
202 process ontologies categorized by The Gene Ontology Consortium (66, 67) at FDR-adjusted P < 0.05.
203

204 Survival analysis

205 Here, we defined a relevant event as a death due to breast cancer. We aggregated all deaths not due to
206 breast cancer as a competing risk. Any subjects lost to follow-up were treated as right-censored

207 observations. We built cause-specific Cox models (68) by modeling the hazard function of breast cancer-
208  specific mortality with the following covariates: race, PAM50 molecular subtype (69), age, compartment-
209 specific proportions, and an interaction term between molecular subtype and compartment proportion. We
210 compared these compartment-specific survival models with the nested baseline model that did not

211 include compartment proportions using partial likelihood ratio tests. We tested for the statistical

212 significance of parameter estimates using Wald-type tests, adjusting for multiple testing burden using the
213 Benjamini-Hochberg procedure at a 10% false discovery rate (70).

214

215 eQTL analysis

216 CBCS genotype data is measured on the OncoArray. Approximately 50% of the SNPs for the OncoArray
217  were selected as a “GWAS backbone” (lllumina HumanCore), which aimed to provide high coverage for
218 many common variants through imputation. The remaining SNPs were selected from lists supplied by six
219 disease-based consortia, together with a seventh list of SNPs of interest to multiple disease-focused

220 groups. Approximately 72,000 SNPs were selected specifically for their relevance to breast cancer. The
221 sources for the SNPs included in this backbone, as well as backbone manufacturing, calling, and quality
222 control, are discussed in depth by the OncoArray Consortium (71, 72). All samples were imputed using

223 the October 2014 (v.3) release of the 1000 Genomes Project (73) as a reference panel in the standard
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224  two-stage imputation approach, using SHAPEIT2 for phasing and IMPUTEvV2 for imputation (74-76). All
225  genotyping, genotype calling, quality control, and imputation was done at the DCEG Cancer Genomics
226 Research Laboratory (71, 72).

227 From the provided genotype data, we excluded variants (1) with a minor frequency less than 1%
228 based on genotype dosage and (2) that deviated significantly from Hardy-Weinberg equilibrium

229 at P <1078 using the appropriate functions in PLINK v1.90b3 (77). Finally, we intersected genotyping
230  panels for the AA and EA samples, resulting in 5,989,134 autosomal variants. We excluded 334,391
231  variants on the X chromosome. CBCS genotype data was coded as dosages, with reference and

232 alternative allele coding as in the National Center for Biotechnology Information’s Single Nucleotide

233 Polymorphism Database (dbSNP) (78).

234 As previously described (10), using the 1,199 samples (621 AA, 578 EA) with expression data, we
235 assessed the additive relationship between the gene expression values and genotypes with linear

236 regression analysis using MatrixeQTL (79). We consider a baseline linear model with log-transformed
237 gene expression of a gene of interest as the dependent variable, SNP dosage as the primary predictor of
238 interest, and the following covariates: age, BMI, post-menopausal status, and the first 5 principal

239 components of the joint AA and EA genotype matrix. We also considered a compartment-specific

240 interaction model that adds compartment proportion from DeCompress and an interaction term between
241  the SNP dosage and compartment proportion (8, 9). This interaction model subtly changes the

242 interpretation of the main SNP dosage effect, representing an estimate of the eQTL effect size at 0%
243 compartment-specific cells. Thus, we recover compartment-specific eQTLs by testing the interaction
244 effect, which measures how the magnitude of an eQTL differs between the two cell types. The interaction
245 model was fit using MatrixeQTL’s linear-cross implementation. It is important to note that we model the
246 log-transformed expression here, as existing methods for modeling expression on genotype do not

247  support interaction terms (80-82).

248 We compared eQTLs mapped in CBCS here with eQTLs in GTEx. We downloaded healthy tissue
249 eQTLs from the Genotype-Tissue Expression (GTEX) Project and cross-referenced eGenes and

250 corresponding eSNPs between CBCS and GTEXx in healthy breast mammary tissue, EBV-transformed

251 lymphocytes, transformed fibroblasts, and subcutaneous adipose tissue. We considered these tissues
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252 mainly due to their high relative composition in bulk breast tumor samples, as shown previously in many
253  studies (23, 83—-85). The Genotype-Tissue Expression (GTEX) Project was supported by the Common
254 Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA,
255 NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from the
256 GTEX Portal on 05/14/20. We also downloaded iCOGs GWAS summary statistics for breast cancer risk
257  (86-88) to assess any overlap between CBCS eQTLs and GWAS-detected risk variants.

258

259 RESULTS

260 Overview of the DeCompress algorithm

261 DeCompress takes in two expression matrices from similar bulk tissue as inputs: an expression matrix
262  from a targeted panel of gene expression with n samples and k genes, and an expression matrix from an
263 RNA-seq and microarray panel with N samples and K > k genes. For shorthand, we will refer to RNA-seq
264 or microarray panel as the reference and the targeted expression panel as the target. DeCompress

265 outputs tissue compartment proportions for a user-defined number of all samples in the target and the
266 compartment-specific expression profiles for the genes used in deconvolution. The method follows three
267 general steps, as detailed in Figure 1: (1) feature selection of the compartment-specific genes from the
268 reference, (2) compressed sensing to expand the targeted panel to a DeCompressed expression matrix
269  with these compartment-specific genes, and (3) ensemble deconvolution on the DeCompressed dataset
270 using existing reference-free methods. We provide further details about DeCompress in Methods and full
271 mathematical and algorithmic details in Supplemental Methods.

272

273  Benchmarking DeCompress against other reference-free deconvolution methods

274  We benchmarked DeCompress performance across 6 datasets (see Supplemental Table S2): (1) in-
275  silico mixing experiments using tissue-specific expression profiles from the Genotype-Tissue Expression
276 (GTEX) Project (53, 54), (2) expression from 4 published datasets with known compartment proportions
277 (11, 23, 58, 59), and (3) and tumor expression from the Carolina Breast Cancer Study (43, 55). We

278  compared the performance of DeCompress against 5 other reference-free deconvolution methods

279 (summarized in Supplemental Table S1): deconf (20), Linseed (22), DeconICA (24), iterative non-
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280 negative matrix factorization with feature selection using TOAST (TOAST + NMF) (25), and

281  CellDistinguisher (26). Estimated compartment proportions are compared to simulated or reported true
282 compartment proportions with the mean square error (MSE) between the two matrices (see Methods). In
283  total, we observed that DeCompress recapitulates compartment proportions with the least error compared
284  to reference-free deconvolution methods.

285

286 In-silico GTEx mixing

287 We generated artificial targeted panels by mixing median tissue specific expression profiles from GTEX in-
288 silico with randomly simulated compartment proportions for mammary tissue, EBV-transformed

289 lymphocytes, transformed fibroblasts, and subcutaneous adipose. We added multiplicative noise to the
290 mixed expression to simulate measurement error and contributions to the bulk expression signal from

291 other sources (see Methods). Figure 2A shows the performance of DeCompress compared to other

292 reference-free methods across 25 simulated targeted panels of increasing numbers of genes on the

293 simulated targeted panels. In general, we find that DeCompress gives more accurate estimates of

294 compartment proportions than the other 5 methods at both settings for multiplicative noise. As the number
295 of genes in the targeted panel increased, the difference in MSE between DeCompress and the other

296  methods remains largely constant. Linseed and DeconlICA, methods that search for mutually independent
297 axes of variation that correspond to compartments, consistently perform poorly on these simulated

298 datasets, possibly due to the relative similarity between the expression profiles for these compartments
299 and the small number of genes on the targeted panels. deconf, TOAST + NMF (matrix factorization-based
300 methods) and CellDistinguisher (topic modeling) perform similarly to one another and only moderately
301 worse in comparison to DeCompress.

302 We also investigated how the number of component compartments affects the performance of all six
303  reference-free methods. We generated another set of in-silico mixed targeted panels (500 genes) using 2
304 (mammary tissue and lymphocytes), 3 (mammary, lymphocytes, fibroblasts), and 4 (mammary,

305 fibroblasts, lymphocytes, and adipose) and applied all six methods to estimate the compartment

306 proportions. Figure 2B provides boxplots of the MSE across 25 simulated targeted panels using

307 DeCompress and the other 5 benchmarked methods. For all 6 methods, the median MSE for these

10


https://doi.org/10.1101/2020.08.14.250902
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.250902; this version posted August 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

308 datasets remained similar as the number of compartments increased, though the range in the MSE

309 decreases considerably. In particular, the performance of DeconlCA increases considerably as more

310 compartments were used for mixing, as mentioned in its documentation (24). Here again, we found that
311 DeCompress gave the smallest median MSE between the true and estimated cell proportions. In total,
312 results from these in-silico mixing experiments show both the accuracy and precision of DeCompress in
313 estimated compartment proportions.

314 The four cell types we used for the above analyses simulated bulk mammary tissue but contained
315 compartments with highly correlated gene expression profiles (Supplemental Figure 2A). We recreated
316 the in-silico mixing experiments with four compartments with minimal correlations: mammary tissue,

317 pancreas, pituitary gland, and whole blood (Supplemental Figure 2A). In mixtures with these tissues, we
318 found that DeCompress also outperformed the reference-free methods, with a clear decrease in median
319 MSE as the number of genes on the simulated targeted panels are increased (Supplemental Figure 2B).
320  This trend between MSE and number of genes in this setting provides some evidence that dissimilar

321 compartments may be easier to deconvolve with more genes on the targeted panel.

322

323 Publicly available datasets

324  Although in-silico mixing experiments with GTEx data showed strong performance of DeCompress, we
325  sought to benchmark DeCompress against reference-free methods in previously published datasets with
326  known compartment mixture proportions. We downloaded expression data from a breast cancer cell-line
327 mixture (RNA-seq) (23), rat brain, lung, and liver cell-line mixture (microarray) (11), prostate tumor with
328 compartment proportions estimated with laser-capture microdissection (microarray) (58), and lung

329 adenocarcinoma cell-line mixture (RNA-seq) (59) and generated pseudo-targeted panels with 200, 500,
330 and 800 genes (see Methods). For the rat mixture dataset, we trained the compression sensing model on
331 a randomly selected training split with added noise to simulate a batch effect between the training and
332  targeted panel; for the other three cancer-related datasets, reference RNA-seq data was downloaded

333  from The Cancer Genome Atlas (TCGA) (2). We then performed semi-reference-free deconvolution in

334  these datasets using DeCompress and the reference-free methods.
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335 Overall, DeCompress showed the lowest MSE across all three datasets, in comparison to the other
336 reference-free methods (Figure 2C). The patterns observed in the GTEXx results are evident in these real
337 datasets, as well. As the number of genes in the targeted panel increases, the range in the distribution of
338 MSEs decreases. Deconvolution using Linseed gave variable performance across datasets (high

339  variability in model performance), with very small ranges in MSEs in the rat microarray and lung

340  adenocarcinoma datasets while highly variable MSEs in the breast cancer and prostate cancer datasets.
341  We do not present DeconlCA in these comparisons due to its large errors across all datasets (see

342 Supplemental Figure S3 for comparisons to DeconICA). Specific to DeCompress, we assessed the

343 performance of different deconvolution methods (4 reference-free methods and unmix from the DESeq?2
344 package (57)) on the DeCompressed expression matrix for the breast, prostate, and lung cancer datasets
345 (Supplemental Figure S4). We found that unmix gives accurate estimates of compartment proportions in
346  the breast cancer and prostate tumor datasets, where the component compartments are like those in bulk
347  tumors. However, in the case of the lung adenocarcinoma mixing dataset (mixture of two lung cancer cell
348 lines), unmix does not consistently outperform the reference-free methods, perhaps owing to a

349 dissimilarity between the lung adenocarcinoma mixture dataset and TCGA-LUAD reference dataset. We
350 lastly investigated a scenario where the reference and target assays measure different bulk tissue. Using
351  the breast cancer cell-line mixtures pseudo-targets and a TCGA-LUAD reference, DeCompress estimated
352 compartment proportions with larger errors, such that the distribution of MSEs intersect with a null

353 distribution of MSEs from randomly generated compartment proportion matrices (Supplemental Figure
354  Sb).

355

356 Carolina Breast Cancer Study (CBCS) expression

357  We finally benchmarked DeCompress against the other 5 reference-free deconvolution methods in breast
358  tumor expression data from the Carolina Breast Cancer Study (CBCS) (43, 55) on 406 breast cancer-

359 related genes on 1,199 samples. We used RNA-seq breast tumor expression from TCGA to train the

360 compression matrix for deconvolution in CBCS using DeCompress; 393 of the 406 genes on the CBCS
361 panel were measured in TCGA-BRCA. For validation, a study pathologist trained a computational

362 algorithm to estimate compartment proportions using 148 tumor microarrays (TMAS) (89). We treat these

12


https://doi.org/10.1101/2020.08.14.250902
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.250902; this version posted August 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

363 estimated compartment proportions for epithelial tumor, adipose, stroma, and immune infiltrate as a “gold
364  standard.”

365 To determine whether the DeCompressed expression matrix accurately predicts expression for

366 samples in the target, we split the 393 genes into 5 groups and trained TCGA-based predictive models of
367 genes in each group using those in the other four. Overall, in-sample cross-validation prediction per-

368 sample in TCGA is strong (median adjusted R? = 0.53), with a drop-off in out-sample performance in

369  CBCS (median adjusted R? = 0.38), shown in Figure 3A. We also trained models stratified by estrogen-
370 receptor (ER) status, a major, biologically-relevant classification in breast tumors (90, 91). These ER-
371  specific models showed slightly better out-sample performance (median adjusted R? = 0.34), though in-
372 sample performance was similar to overall models with the same median R? (Figure 3B). Next, as in the
373 GTEXx mixing simulations and the 4 published datasets, DeCompress recapitulated true compartment
374 proportions with the minimum error (Figure 3B), approximately 33% less error than TOAST + NMF, the
375  second-most accurate method. To provide some context to the magnitude of these errors, we randomly
376 generated 10,000 compartment proportion matrices for 148 samples and 4 compartments. The mean
377 MSE is provided in Figure 3B, showing that 2 of the 5 benchmarked methods (CellDistinguisher and

378 DeconlICA) exceeded this randomly generated null MSE value. We also observed that correlations

379 between true and DeCompress-estimated compartment proportions are positive and significantly non-
380 zero for three of four compartment components (Figure 3C). Unlike those from TOAST + NMF,

381 DeCompress estimates of compartment-specific compartment proportions were positively correlated with
382  the truth (Supplemental Figure S6).

383

384 Comparison of computational speed

385 The computational cost of DeCompress is high, owing primarily to training the compressed sensing

386 models. Non-linear estimation of the columns of the compression matrix is particularly slow

387 (Supplemental Figure S7). In practice, we recommend running an elastic net method (LASSO, elastic
388 net, or ridge regression) which are both faster (Supplemental Figure S7) and give larger cross-validation
389 R? (Supplemental Figure S1). The median cross-validation R? for elastic net and ridge regression is

390 approximately 16% larger than least angle regression and LASSO, and nearly 25% larger than the non-
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391 linear optimization methods. Using CBCS data with 1,199 samples and 406 genes, we ran all

392 benchmarked deconvolution methods 25 times and recorded the total runtimes (Supplemental Figure
393 S8). For DeCompress, we used TCGA-BRCA data with 1,212 samples as the reference. As shown in

394  Supplemental Figure S8, running DeCompress in serial (approximately 62 minutes) takes around 40
395 times longer than the slowest reference-free deconvolution method (TOAST + NMF, approximately 1.5
396 minutes), though DeCompress is comparable in runtime to TOAST + NMF if run in parallel with enough
397  workers (approximately 2.6 minutes). These computations were conducted on a high-performance cluster
398 (RedHat Linux operating system) with 25 GB of RAM.

399

400 Applications of DeCompress in the Carolina Breast Cancer Study

401 Given the strong performance of DeCompress in benchmarking experiments, we estimated compartment
402 proportions for 1,199 subjects in CBCS with transcriptomic data assayed with NanoString nCounter.

403 Using TCGA breast cancer (TCGA-BRCA) expression as a training set, we iteratively searched for cell
404 type-specific features (25) (Step 1 in Figure 1) and included canonical compartment markers for guidance
405 using a priori knowledge (30, 92, 93) (see Methods). After expanding the targeted CBCS expression to
406 these genes, we estimated proportions for 5 compartments. As reference-free methods output

407 proportions for agnostic compartments, identifying approximate descriptors for compartments is often

408 difficult. Here, we first outline a framework for assigning modular identifiers for compartments identified by
409 DeCompress, guided by compartment-specific gene signatures. Then, we assess performance of using
410 compartment-specific proportions in downstream analyses of breast cancer outcomes and gene

411 regulation.

412

413 Identifying approximate modules for DeCompress-estimated compartments

414  We leveraged compartment-specific gene signatures to annotate each compartment with modular

415 identifiers. First, we computed Spearman correlations between the compartment-specific gene expression
416 profiles and median tissue-specific expression profiles from GTEx (53, 54) and single cell RNA-seq

417 profiles of MCF7 breast cancer cells (94) (Figure 4A). Here, we find that Compartment 4 (C4) shows

418  strong positive correlations with fibroblasts, lymphocytes, multiple collagenous organs (such as blood
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vessels, skin, bladder, vagina, and uterus (95-97)), and MCF7 cells. We hypothesize that strong
correlation with lymphocytes reflects tumor-infiltrating lymphocytes. The C3 gene signature was
significantly correlated with expression profiles of secretory organs (salivary glands, pancreas, liver) and
contained a strong marker of HER2-enriched breast cancer (ERBB2) (98).

We conducted over-representation analysis (ORA) (65) of gene signatures for all five compartments,
revealing cell cycle regulation ontologies for C4 that are consistent with the hypothesis generated from
GTEX profiles at FDR-adjusted P < 0.05 (Figure 4B). We conducted gene set enrichment analysis
(GSEA) for the C4 gene signature (99), revealing significant enrichments for cell differentiation and
development process ontologies (Supplemental Figure S9). ORA analysis also assigned immune-
related ontologies to the C2 gene signatures at FDR-adjusted P < 0.05 and ERBB signaling to C4,
though this enrichment did not achieve statistical significance. C1 and C5 gene signatures were not
enriched for ontologies that allowed for conclusive compartment assignment, showing catabolic,
morphogenic, and extracellular process ontologies (Figure 4B). From these results, we hypothesized that
C3 and C4 resembled epithelial tumor cells, C2 an immune compartment (possibly excluding lymphocytes
that may infiltrate tumors), and C1 and C5 presumptively stromal and/or mammary tissue.

Distributions of the hypothesized immune (C2) and tumor (C3 + C4 proportions) revealed significant
differences across PAM50 molecular subtypes (Figure 4C; Kruskal-Wallis test of differences with P <
2.2 X 1071%) (69). These trends across subtypes were consistent with evidence that Basal-like and HER2-
enriched subtypes had the largest proportions of estimated tumor and immune compartments, while
Luminal A, Luminal B, and Normal-like subtypes showed lower proportions (43, 69, 100). Furthermore, we
found strong differences in C4 and total tumor compartment estimates across race (Supplemental
Figure S10A). C3 and C4 also have strong correlations with ER- (estrogen receptor) and HER2-scores,
gene-expression based continuous variables that indicate clinical subtypes based on ESR1 and ERBB2
gene modules (Supplemental Figure S10B); however, none of the C3, C4, immune, or tumor
compartment estimates showed significant differences across clinical ER status determined by
immunohistochemistry (Supplemental Figure S10C). We considered the incorporation of estimates of
compartment proportions in building models of breast cancer survival (Supplemental Results and

Supplemental Table S3).
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447

448 Incorporating compartment proportions into eQTL models detects more tissue-specific gene regulators
449  We investigated how incorporating estimated compartment proportions affect cis-expression quantitative
450 trait loci (cis-eQTL) mapping in breast tumors, a common application of deconvolution methods in

451 assessing sources of variation in gene regulation (9, 101). In previous eQTL studies using CBCS

452 expression, several bulk breast tumor cis-eGenes (i.e. the gene of interest in an eQTL association

453 between SNP and gene expression) were found in healthy mammary, subcutaneous adipose, or

454  lymphocytes from GTEx (10). We included DeCompress proportion estimates for the tumor (C3 + C4
455 estimates) and immune (C2) compartments in a race-stratified, genetic ancestry-adjusted cis-eQTL

456 interaction model (see Methods), as proposed by Geeleher et al and Westra et al (8, 9). We found that
457 sets of compartment-specific cis-eGenes generally had few intersections with bulk cis-eGenes (Figure
458 5A), though we detected more cis-eQTLs with the immune- and tumor-specific interaction models

459 (Supplemental Figure S11). At FDR-adjusted P < 0.05, of 209 immune-specific cis-eGenes identified in
460 women of European ancestry (EA), 7 were also mapped in the bulk models (with no compartment

461 proportion covariates), and no tumor-specific cis-eGenes were identified with the bulk models. Similarly,
462 at FDR-adjusted P < 0.05, in women of African ancestry (AA), 27 of 331 and 9 of 124 cis-eGenes

463  identified with the immune- and tumor-compartment interaction models were also mapped with the bulk
464 models, respectively. Manhattan plots for cis-eQTLs across the whole genome across bulk, tumor, and
465 immune show the differences in eQTL architecture in these compartment-specific eQTL mappings in EA
466 and AA samples (Supplemental Figures S12 and S13, respectively). Furthermore, we generally

467 detected more cis-eQTLs at FDR-adjusted P < 0.05 with the immune-specific interactions than the bulk
468 and tumor-specific interactions (EA: 565 bulk cis-eQTLs, 65 tumor cis-eQTLs, 8927 immune cis-eQTLs;
469 AA: 237 bulk cis-eQTLs, 449 tumor cis-eQTLs, 7676 immune cis-eQTLs; Supplemental Figure S11). All
470 eQTLs with FDR-adjusted P < 0.05 are provided in Supplemental Data

471 (https://github.com/bhattacharya-a-bt/DeCompress _supplement) (102).

472 We analyzed the sets of EA and AA tumor- and immune-specific eGenes in CBCS with ORA analysis
473  for biological processes (Figure 5B). We found that, in general, these sets of eGenes were concordant

474  with the compartment in which they were mapped. All at FDR-adjusted P < 0.05, AA tumor-specific
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475 eGenes showed enrichment for cell cycle and developmental ontologies, while immune-specific eGenes
476 were enriched for leukocyte activation and migration and response to drug pathways. Similarly, EA tumor-
477 specific eGenes showed enrichments for cell death and proliferation ontologies, and immune-specific

478 eGenes showed cytokine and lymph vessel-associated processes. We then cross-referenced bulk and
479  tumor-specific cis-eGenes found in the CBCS EA sample with cis-eGenes detected in healthy tissues

480  from GTEx: mammary tissue, fibroblasts, lymphocytes, and adipose (see Methods), similar to previous
481 pan-cancer germline eQTL analyses (10, 103). We attributed several of the bulk cis-eGenes to healthy
482  GTEx tissue (all but 2), but tumor-specific cis-eGenes were less enriched in healthy tissues

483 (Supplemental Figure S14). We compared the cis-eQTL effect sizes for significant CBCS cis-eSNPs
484 found in GTEX. As shown in Figure 5C, 98 of 220 bulk cis-eQTLs detected in CBCS that were also found
485 in GTEx were mapped in healthy tissue, with strong positive correlation between effect sizes (Spearman
486 p = 0.93). The remaining 122 eQTLs that could not be detected in healthy GTEx tissue contained some
487 discordance in the direction of effects, though correlations between these effect sizes were also high (p =
488 0.71). In contrast, we were unable to detect any of the CBCS tumor-specific cis-eQTLs in as significant
489  eQTLs in GTEX healthy tissue, and the correlation of these effect sizes across CBCS and GTEx was poor
490 (Spearman p = —0.07). These results suggest that this compartment-specific eQTL mapping, especially
491 those that are tumor-specific, identified eQTLs that are not enriched for eQTLs from healthy tissue.

492 To evaluate any overlap of compartment-specific eQTLs with SNPs implicated with breast cancer

493 risk, we extracted 932 risk-associated SNPs in women of European ancestry from iCOGS (86-88) at

494 FDR-adjusted P < 0.05 that were available on the CBCS OncoArray panel (71). Figure 5D shows the
495 raw — log,, P-values of the association of these SNPs with their top cis-eGenes in the bulk and tumor-
496 and immune-specific interaction models. In large part, hone of these eQTLs reached FDR-adjusted P <
497 0.05, except for three cis-eQTLs, with their strengths of association favoring the bulk eQTLs. However,
498  we detected 3 tumor-specific EA cis-eQTLs in near-perfect linkage disequilibrium of 2 > 0.99 (strongest
499  association with rs56387622) with chemokine receptor CCR3, a gene whose expression was previously
500 found to be associated with breast cancer outcomes in luminal-like subtypes (104, 105). As estimated
501  tumor purity increases, the cancer risk allele C at rs56387622 has a consistently strong negative effect on

502 CCR3 expression (Figure 5E). We find that CCR3 expression is insignificantly different across tumor
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503  stage and ER status but is significantly different across PAM50 molecular subtype (Supplemental Figure
504  S15). In sum, results from our cis-eQTL analysis show the advantage of including DeCompress-estimated
505 compartment proportions in downstream genomic analyses to identify compartment-specific associations
506  that may be relevant in disease pathways.

507

508 DISCUSSION

509  Here, we presented DeCompress, a semi-reference-free deconvolution method catered towards targeted
510 expression panels that are commonly used for archived tissue in clinical and academic settings (3, 35).
511 Unlike traditional reference-based methods that require compartment-specific expression profiles,

512 DeCompress requires only a reference RNA-seq or microarray dataset on similar bulk tissue to train a
513 compressed sensing model that projects the targeted panel into a larger feature space for deconvolution.
514  Such reference datasets are much more widely available than compartment-specific expression on the
515  same targeted panel. We benchmarked DeCompress against reference-free methods (20, 22, 24-26)

516 using in-silico GTEx mixing experiments (53, 54), 4 published datasets with known compartment

517 proportions (11, 23, 58, 59), and a large, heterogeneous NanoString nCounter dataset from the CBCS
518 (43, 55). In these analyses, we showed that DeCompress recapitulated true compartment proportions

519  with the minimum error and the strongest compartment-specific positive correlations, especially when the
520 reference dataset is properly aligned with the tissue assayed in the target. We tested the performance of
521 DeCompress by incorporating compartment estimates in eQTL mapping to reveal immune- and tumor-
522 compartment-specific breast cancer eQTLSs.

523 While DeCompress has several important strengths, it has some limitations. First, DeCompress has a
524 high computational cost, owing mainly to its lengthy compressed sensing training step. We recommend
525 running mainly linear optimization methods in this step and have implemented parallelization options to
526 bring computation time on par with the iterative framework proposed in TOAST (25). However,

527 DeCompress estimates compartment proportions both accurately and precisely, compared to other

528 reference-free methods, and provides a strong computational alternative that is much faster than costly
529 lab-based measurement of composition. Second, DeCompress, as a semi-reference-free method, shares

530 the limitations of reference-based methods — namely concerns with the proper selection of a reference
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531  dataset. As seen in the lung adenocarcinoma example, where TCGA-LUAD data was not an accurate
532 reflection of a mixture of adenocarcinoma cell-lines, DeCompress performance has slightly lower

533 performance than datasets properly matched to their references. Yet, in this setting, DeCompress

534 performance was on par with that of the other reference-free methods that do not use a misaligned

535 reference. Lastly, also in common with reference-free methods, the compression model may also be

536  sensitive to phenotypic variation in the reference, as evidenced by the increase in out-sample prediction
537  R?in ER-specific models compared to overall models in CBCS. This specificity may be leveraged to train
538  more accurate models by using more than one reference dataset to reflect clinical or biological

539 heterogeneity in the targeted panel. Researchers may employ more systematic methods of assessing the
540 similarity of the reference and target datasets, like measuring the distance between the two matrices (i.e.
541 norms based on the singular values of matrices) or comparing the correlation structure of overlapping
542 genes in the feature spaces of the reference and target. These evaluations will help with selecting a

543 proper reference for a targeted panel to be deconvolved using DeCompress.

544 DeCompress also shares some challenges with reference-free deconvolution methods, such as the
545 selection of an appropriate number of compartments. Previous groups have emphasized reliance on a
546 priori knowledge for deconvolving well-studied tissues, such as blood and brain (106, 107). However,
547 diseased tissues, like bulk cancerous tumors, especially in understudied subtypes or populations, are
548  more difficult to deconvolve due to the similarity between compartments, many of which may be rare or
549 reflect transient cell states (30, 91, 108, 109). For this reason, we included several data-driven

550 approaches in estimating the number of compartments from variation in the gene expression and

551 recommended applying prior domain knowledge about the tissue of interest. It is also important to

552 carefully consider the gene module-based annotations for the unidentified estimated compartments,

553 especially in bulk tissue where traditional ideas of compartments are inapplicable (29). Several previous
554  reference-free methods have leveraged in vitro mixtures of highly distinct cell lines in training and testing
555 previous reference-free deconvolution methods (11, 22), namely the rat cell line mixture (GSE19830)
556 (11). Though this dataset is easy to deconvolve and thus useful in testing methodology, the extreme

557 differences in gene expression between these three tissue types renders this dataset sub-optimal for

558 methods benchmarking. Furthermore, assigning estimated compartments to known tissues in this dataset
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559 is straightforward and does not capture the difficulty of this task in typical deconvolution applications.

560 Instead, our applications in breast cancer expression with CBCS provided such a difficult statistical

561 challenge. Our outlined approach of first comparing compartment-specific gene signatures to known

562  tissue profiles from GTEX or single-cell profiles, then analyzing these signatures with ORA or GSEA, and
563 lastly checking hypotheses against known biological trends provides a structured framewaork for

564  addressing the compartment identification problem.

565 Our downstream eQTL analysis in CBCS breast tumor expression also provided some insight into
566 gene regulation, similar to recent work into deconvolving immune subpopulation eQTL signals from bulk
567 blood eQTLs (101). In breast cancer, Geeleher et al previously showed that a similarly implemented

568 interaction eQTL model gave better mapping of compartment-specific eQTLs (8, 9). Our results are

569 consistent with this finding, especially since tumor- and immune-specific eGenes were enriched for

570 commonly associated ontologies. However, unlike Geeleher et al, we generally detected a larger number
571  of immune- and tumor-specific eQTLs and eGenes than in the bulk, unadjusted models. We believe that
572 this larger number of compartment-specific eGenes may be due to the specificity of the genes assayed by
573 the CBCS targeted panel. As the panel included 406 genes, all previously implicated in breast cancer

574 pathogenesis, proliferation, or response (10, 43, 110), the interaction model will detect SNPs that have
575 large effects on compartment-specific genes. The interaction term is interpreted as the difference in eQTL
576  effect sizes between samples of 0% and 100% of the given compartment; accordingly, for genes

577 implicated in specific breast cancer pathways, we expect to see large differences in compartment-specific
578 eQTL effects (111-113). Though this interaction model is straight-forward in its interpretation for the

579 tumor compartment (i.e. a sample of 100% tumor cells versus 100% tumor-associated normal cells), this
580 interpretation may be tenuous for less well-defined compartments, like an immune compartment that

581 includes several different immune cells. This interaction term’s effect size may also be inflated for

582 compartment estimates that have low mean and high variance across the samples. In addition, we did not
583 consider trans-acting eQTLs that are often attributed to compartment heterogeneity, though we believe
584  that methods employing mediation or cross-condition analysis can be integrated with compartment

585 estimates to map compartment-specific trans-eQTLSs relevant in breast cancer (114-116).
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586 Relevant to risk and proliferation of breast cancer, we detected a locus of cis-eSNPs associated with
587 expression of CCR3 (C-C chemokine receptor type 3) that were GWAS-identified risk SNPs (86—88)

588 but were not significantly associated with CCR3 expression using the bulk models and were not detected
589 in GTEX. If one or more causal SNPs in this genomic region affects CCR3 expression only in cancer cells
590 and the effect on CCR3 expression is the main mechanism by which the locus predisposes individuals to
591 breast cancer, we can hypothesize that an earlier perturbation in the development of cancer (e.g.

592 transcription factor or microRNA activation) may cause this SNP’s tumorigenic effect. Given this

593 perturbation in precancerous mammary cells, individuals with the risk allele would convey the tumorigenic
594 effects of decreased CCR3 expression. It has been previously shown that increased peritumoral CCR3
595 expression is associated with improved survival times in luminal-like breast cancers (104, 105). The

596 CCRa3 receptor has been shown to be the primary binding site of CCL11 (eotaxin-1), an eosinophil-

597  selective chemoattractant cytokine (117, 118), and accordingly CCR3 antagonism prohibited chemotaxis
598 of basophils and eosinophils, a phenomenon observed in breast cancer activation and proliferation (119,
599 120). Without DeCompress and the incorporation of estimated compartment proportions in the eQTL

600 model, this association between eSNP and CCR3 expression would not have been detected in this

601 dataset (121).

602 DeCompress, our semi-reference-free deconvolution method, provides a powerful method to estimate
603 compartment-specific proportions for targeted expression panels that have a limited number of genes and
604  only requires RNA-seq or microarray expression from a similar bulk tissue. Our method’s estimates

605 recapitulate known compartments with less error than reference-free methods and provides

606 compartments that are biologically relevant, even in complex tissues like bulk breast tumors. We provide
607 examples of using these estimated compartment proportions in downstream studies of outcomes and

608 eQTL analysis. Given the wide applications of reference-free deconvolution, the popularity of targeted
609  panels in both academic and clinical settings, and increasing need for analyzing heterogeneous and

610  dynamic tissues, we anticipate creative implementations of DeCompress to give further insight into

611 expression variation in complex diseases.

612

613 DATA AVAILABILITY

21


https://doi.org/10.1101/2020.08.14.250902
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.250902; this version posted August 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

614  The DeCompress package is available as R software on GitHub: https://github.com/bhattacharya-a-
615  bt/DeCompress. Sample code for replication and results from the eQTL analysis are provided:

616 https://github.com/bhattacharya-a-bt/DeCompress_supplement (102). CBCS expression data is publicly

617 available at GSE148426. CBCS genotype datasets analyzed in this study are not publicly available as
618 many CBCS patients are still being followed and accordingly is considered sensitive; the data is available
619  from M.A.T upon reasonable request. GTEx median expression profiles are available from dbGAP

620 accession number phs000424.v7.p2. Data from the published mixture experiments are available from

621 GEO: GSE19830, GSE123604, GSE97284, and GSE64098. Single-cell expression profiles of MCF7 cells
622 were obtained from GSE52716. Expression data from The Cancer Genome Atlas is available from the

623 Broad GDAC Firehose repository (https://gdac.broadinstitute.org/) with accession number

624  phs000178.v11.p8.

625

626 SUPPLEMENTARY DATA

627 Additional File 1. Supplemental Methods, Results, Tables, and Figures
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976 FIGURE LEGENDS
977 Figure 1: Schematic for the DeCompress algorithm. DeCompress takes in a reference RNA-seq or
978 microarray matrix with N samples and K genes, and the target expression with n samples and k < K
979 genes. The algorithm has three general steps: (1) finding the K’ < K genes in the reference that are cell-
980  type specific, (2) training the compressed sensing model that projects the feature space in the target from
981 k genes to the K’ cell-type specific genes, and (3) decompressing the target to an expanded dataset and
982 deconvolving this expanded dataset. DeCompress outputs cell-type proportions and cell-type specific
983  profiles for the K' genes.
984
985 Figure 2: Benchmarking results for in-silico GTEx mixing experiments and real data examples. (A)
986 Boxplots of mean square error (Y-axis) between true and estimated cell-type proportions in in-silico GTEx
987 mixing experiments across various methods (X-axis), with 25 simulated datasets per number of genes.
988 GTEXx mixing was done at two levels of multiplicative noise, such that errors were drawn from a Normal
989  distribution with zero mean and standard deviation 8 (left) and 4 (right). Boxplots are colored by the
990 number of genes in each simulated dataset. (B) Boxplots of MSE (Y-axis) between true and estimated
991 cell-type proportions over 25 simulated GTEx mixed expression datasets with 500 genes, multiplicative
992 noise drawn from a Normal distribution with zero mean and standard deviation 10, and 2 (left), 3 (middle),
993 and 4 (right) different cell-types. Boxplots are collected by the reference-free method tested. (C) Boxplots
994 of mean square error (Y-axis) between true and estimated cell-type proportions in 25 simulated targeted
995 panels of 200, 500, 800, and 1,000 genes (X-axis), using four different datasets: breast cancer cell-line
996 mixture (top-left) (23), rat brain, lung, and liver cell-line mixture (top-right) (11), prostate tumor samples
997 (bottom-left) (58), and lung adenocarcinoma cell-line mixture (bottom-right) (59). Boxplots are colored by
998  the benchmarked method. The red line indicates the median null MSE when generating cell-type
999 proportions randomly. If a red line is not provided, then the median null MSE is above the scale provided
1000  on the Y-axis.
1001
1002 Figure 3: Benchmarking results with Carolina Breast Cancer Study expression data. (A) Kernel density

1003 plots of predicted adjusted R? per-sample in in-sample TCGA prediction (left) through cross-validation
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1004 and out-sample prediction in CBCS (right), colored by overall and ER-specific models. (B) MSE (Y-axis)
1005 between true and estimated cell-type proportions in CBCS across all methods (X-axis). Random indicates
1006  the mean MSE over 10,000 randomly generated cell-type proportion matrices. (C) Spearman correlations
1007 (Y-axis) between compartment-wise true and estimated proportions across all benchmarked methods (X-
1008 axis). Correlations marked with a star are significantly different from 0 at P < 0.05.

1009

1010 Figure 4: Identification of Decompress-estimated compartments. (A) Heatmap of Pearson correlations
1011 between compartment-specific gene signatures (X-axis) and GTEx median expression profiles and MCF7
1012 single-cell profiles (Y-axis). Significant correlations at nominal P < 0.01 are indicated with an asterisk.
1013 (B) Bar plot of —log;, FDR-adjusted P-values for top gene ontologies (Y-axis) enriched in compartment-
1014 specific gene signatures. (C) Boxplots of estimated immune (left) and tumor (C3 + C4 compartments,
1015 right) proportions (Y-axis) across PAM50 molecular subtypes (X-axis)

1016

1017 Figure 5: Compartment-specific cis-eQTL mapping in the Carolina Breast Cancer Study. (A) Venn

1018 diagram of bulk, tumor-, and immune-specific cis-eGenes identified European-ancestry (left) and African-
1019 ancestry samples (right) in CBCS. (B) Enrichment analysis of immune- (red) and tumor-specific (blue) cis-
1020 eGenes in CBCS plotting the —log,, P-value of enrichment (X-axis) and description of gene ontologies
1021 (Y-axis). The size of the point represents the relative enrichment ratio for the given ontology. (C)

1022 Scatterplots of GTEx (X-axis) and CBCS effect size (Y-axis) for significant CBCS cis-eQTLs that were
1023 mapped in GTEX. Each point is colored by the GTEX tissue in which the cis-eQTL has the lowest P-value.
1024 Reference dotted lines for the X- and Y-axes are provided. (D) For risk variants from GWAS for breast
1025 cancer from iCOGs (86-88), scatterplot of —log,, P-values of bulk (X-axis) and compartment-specific cis-
1026 eQTLs (Y-axis), colored blue for tumor- and red for immune-specific models. A 45-degree reference line
1027  is provided. In the top right corner, 3 tumor-specific cis-eQTLs are labeled with the eGene CCR3 as they
1028 are significant at FDR-adjusted P < 0.05. (E) Tumor-specific eQTL effect sizes and 95% confidence
1029 intervals (Y-axis) for rs56387622 on CCR3 expression across various estimates of tumor purity. The

1030 eQTL effect size from the bulk model is given in blue.
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Figure 1: Schematic for the DeCompress algorithm. DeCompress takes in a reference RNA-seq or microarray matrix with N samples and K
genes, and the target expression with n samples and k < K genes. The algorithm has three general steps: (1) finding the K' < K genes in the
reference that are cell-type specific, (2) training the compressed sensing model that projects the feature space in the target from k genes to the K’
cell-type specific genes, and (3) decompressing the target to an expanded dataset and deconvolving this expanded dataset. DeCompress outputs
cell-type proportions and cell-type specific profiles for the K’ genes.
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Figure 2: Benchmarking results for in-silico GTEx mixing experiments and real data examples. (A)
Boxplots of mean square error (Y-axis) between true and estimated cell-type proportions in in-silico GTEX
mixing experiments across various methods (X-axis), with 25 simulated datasets per number of genes.
GTEx mixing was done at two levels of multiplicative noise, such that errors were drawn from a Normal
distribution with zero mean and standard deviation 8 (left) and 4 (right). Boxplots are colored by the
number of genes in each simulated dataset. (B) Boxplots of MSE (Y-axis) between true and estimated
cell-type proportions over 25 simulated GTEx mixed expression datasets with 500 genes, multiplicative

noise drawn from a Normal distribution with zero mean and standard deviation 10, and 2 (left), 3 (middle),
and 4 (right) different cell-types. Boxplots are collected by the reference-free method tested. (C) Boxplots
of mean square error (Y-axis) between true and estimated cell-type proportions in 25 simulated targeted
panels of 200, 500, 800, and 1,000 genes (X-axis), using four different datasets: breast cancer cell-line
mixture (top-left) (23), rat brain, lung, and liver cell-line mixture (top-right) (11), prostate tumor samples
(bottom-left) (58), and lung adenocarcinoma cell-line mixture (bottom-right) (59). Boxplots are colored by
the benchmarked method. The red line indicates the median null MSE when generating cell-type
proportions randomly. If a red line is not provided, then the median null MSE is above the scale provided
on the Y-axis.
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Figure 3: Benchmarking results with Carolina Breast Cancer Study expression data. (A) Kernel density
plots of predicted adjusted R? per-sample in in-sample TCGA prediction (left) through cross-validation
and out-sample prediction in CBCS (right), colored by overall and ER-specific models. (B) MSE (Y-axis)
between true and estimated cell-type proportions in CBCS across all methods (X-axis). Random indicates
the mean MSE over 10,000 randomly generated cell-type proportion matrices. (C) Spearman correlations
(Y-axis) between compartment-wise true and estimated proportions across all benchmarked methods (X-
axis). Correlations marked with a star are significantly different from 0 at P < 0.05.
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Figure 4: Identification of Decompress-estimated compartments. (A) Heatmap of Pearson correlations
between compartment-specific gene signatures (X-axis) and GTEx median expression profiles and MCF7
single-cell profiles (Y-axis). Significant correlations at nominal P < 0.01 are indicated with an asterisk.
(B) Bar plot of —log,, FDR-adjusted P-values for top gene ontologies (Y-axis) enriched in compartment-
specific gene signatures. (C) Boxplots of estimated immune (left) and tumor (C3 + C4 compartments,
right) proportions (Y-axis) across PAM50 molecular subtypes (X-axis)
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Figure 5: Compartment-specific cis-eQTL mapping in the Carolina Breast Cancer Study. (A) Venn diagram of bulk,
tumor-, and immune-specific cis-eGenes identified European-ancestry (left) and African-ancestry samples (right) in CBCS.
(B) Enrichment analysis of immune- (red) and tumor-specific (blue) cis-eGenes in CBCS plotting the —log,, P-value of
enrichment (X-axis) and description of gene ontologies (Y-axis). The size of the point represents the relative enrichment
ratio for the given ontology. (C) Scatterplots of GTEx (X-axis) and CBCS effect size (Y-axis) for significant CBCS cis-
eQTLs that were mapped in GTEx. Each point is colored by the GTEXx tissue in which the cis-eQTL has the lowest P-
value. Reference dotted lines for the X- and Y-axes are provided. (D) For risk variants from GWAS for breast cancer from
iICOGs (86—-88), scatterplot of —log,, P-values of bulk (X-axis) and compartment-specific cis-eQTLs (Y-axis), colored blue
for tumor- and red for immune-specific models. A 45-degree reference line is provided. In the top right corner, 3 tumor-
specific cis-eQTLs are labeled with the eGene CCR3 as they are significant at FDR-adjusted P < 0.05. (E) Tumor-
specific eQTL effect sizes and 95% confidence intervals (Y-axis) for rs56387622 on CCR3 expression across various
estimates of tumor purity. The eQTL effect size from the bulk model is given in blue.
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