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Abstract 
Influential accounts postulate distinct roles of the catecholamine and acetylcholine 

neuromodulatory systems in cognition and behavior. But previous work found similar effects of 
these modulators on the response properties of individual cortical neurons. Here, we report a 
double dissociation between catecholamine and acetylcholine effects at the level of cortex-wide 25 
network interactions in humans. A pharmacological boost of catecholamine levels increased 
cortex-wide interactions during a visual task, but not rest. Conversely, an acetylcholine-boost 
decreased correlations during rest, but not task. Cortical circuit modeling explained this 
dissociation by differential changes in two circuit properties: the local excitation-inhibition balance 
(more strongly altered by catecholamines) and intracortical transmission (more strongly reduced 30 
by acetylcholine). The inferred catecholaminergic mechanism also predicted increased behavioral 
exploration, which we confirmed in human behavior during both a perceptual and value-based 
choice task. In sum, we identified specific circuit mechanisms for shaping cortex-wide network 
interactions and behavior by key neuromodulatory systems.  
  35 
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Introduction  
The catecholaminergic (noradrenergic and dopaminergic) and cholinergic modulatory systems 

of the brainstem are important regulators of global brain state and cognition (Arnsten, 2015; Aston-
Jones and Cohen, 2005; Bear and Singer, 1986; Cools, 2019; Harris and Thiele, 2011; Robbins 
and Arnsten, 2009). Their brainstem centers send ascending projections to large parts of the 40 
cerebral cortex (Aston-Jones and Cohen, 2005; Breton-Provencher and Sur, 2019; Schwarz and 
Luo, 2015), which is equipped with similarly widely distributed receptors for those 
neuromodulators (van den Brink et al., 2019; Burt et al., 2018). Consequently, these systems are 
in an ideal position to shape cortex-wide network activity in a coordinated fashion. Indeed, 
mounting evidence indicates that these systems have a profound impact on large-scale correlations 45 
in cortical activity, as measured by neuroimaging or electrophysiological mass signals (van den 
Brink et al., 2016, 2018, 2019; Coull et al., 1999; Leopold et al., 2003; Turchi et al., 2018). 

Influential theoretical accounts postulate highly specific roles of the catecholaminergic and 
cholinergic systems in the regulation of cognition and behavior (Aston-Jones and Cohen, 2005; 
Montague et al., 2004; Yu and Dayan, 2005). One prominent idea holds that catecholamines 50 
increase the responsivity (‘gain’) of neuronal populations to synaptic input (Aston-Jones and 
Cohen, 2005; Eldar et al., 2013; Servan-Schreiber et al., 1990). Through this mechanism, 
catecholamines can increase behavioral variability to promote exploratory decision-making when 
required by the environmental context (e.g. to learn about new sources of reward) (Aston-Jones 
and Cohen, 2005). Acetylcholine, on the other hand, has been proposed to reduce the impact of 55 
prior knowledge (intra-cortical signaling) relative to new information (bottom-up signaling) (Yu 
and Dayan, 2005). Such specific functional roles imply that these modulators should also have 
specific effects on the activity of the cortical circuits that implement cognitive computation.  

Due to a lack of experimental comparisons, physiological evidence for a distinct shaping of 
cortical activity and behavior through catecholamines and acetylcholine is sparse. At the cellular 60 
level, catecholamines and acetylcholine, in fact, both increase the gain of cortical neurons (Disney 
et al., 2007; Herrero et al., 2008; Hurley et al., 2004; Polack et al., 2013), which translates into an 
increased neuronal ‘signal-to-noise ratio’(Aston-Jones and Cohen, 2005; Robbins and Arnsten, 
2009). However, the relative magnitudes of the catecholaminergic versus cholinergic gain 
modulations have not been assessed. Further, while some studies have shown a suppression of 65 
intra-cortical signaling through acetylcholine (Hsieh et al., 2000; Roberts et al., 2005; Silver et al., 
2008), it remains unknown whether the same holds for catecholamines, to a similar degree. A 
direct comparison between the circuit-level, large-scale, and behavioral effects of catecholamines 
and acetylcholine is required for pinpointing potential differences between the modulatory 
systems, which might emerge at any of the above levels.   70 

Here, we set out to conduct such a direct comparison. Our approach was inspired by insights 
from theoretical neuroscience (Deco et al., 2014; Shine et al., 2018) – specifically, that (i) the 
large-scale interaction of relatively subtle local microcircuit effects can give rise to substantial 
effects at the level of cortex-wide network dynamics, and (ii) just as for single neurons (Servan-
Schreiber et al., 1990), the network effects of gain modulation should depend on the external drive 75 
the network receives. We performed a direct comparison between the effects of placebo-controlled 
pharmacological increases of catecholamine or acetylcholine levels on large-scale cortical 
interactions in humans in two behavioral contexts: a visual task (i.e., external drive) and rest 
(absence of drive). This yielded an unexpected, context-dependent double-dissociation between 
the effects of catecholamines and acetylcholine. We then used computational modeling, across 80 
multiple levels of cortical organization, to infer the circuit mechanisms underlying this 
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dissociation. Model simulations explained the catecholaminergic effect through a net increase in 
the population gain of local cortical regions, likely mediated by a ‘disinhibition’ of the underlying 
microcircuits. By contrast, model simulations explained the cholinergic effect through a 
suppression of intra-cortical signal transmission combined with weaker net gain modulation. The 85 
catecholaminergic circuit disinhibition also predicted an increase in behavioral choice variability 
in a circuit model for decision-making. We confirmed this prediction for human behavior in two 
datasets under the same manipulation of catecholamine levels, for the domains of perceptual and 
value-based decision-making (Sugrue et al., 2004, 2005). Our results provide critical constraints 
for future computational theories of neuromodulatory function and set the stage for the 90 
development of non-invasive biomarkers for the integrity of neuromodulatory function. 

 
Results 

We increased central catecholamine and acetylcholine levels through the placebo-controlled 
administration of atomoxetine and donepezil, respectively (Fig. 1A, left; see Methods; data re-95 
analyzed from a previous report on local cortical variability (Pfeffer et al., 2018)). Atomoxetine is 
a selective noradrenaline reuptake inhibitor. Consequently, atomoxetine increases noradrenaline 
levels across cortex (Robbins and Arnsten, 2009) and dopamine levels in its more restricted 
cortical projection targets (mainly frontal cortex) (Bymaster et al., 2002). Donepezil is a 
cholinesterase inhibitor (Silver et al., 2008), which blocks the enzymatic breakdown of synaptic 100 
acetylcholine and thus boosts cortical acetylcholine levels. Both drugs are routinely used in the 
clinical practice for treating important neuropsychiatric disorders, such as attention deficit 
hyperactivity disorder (atomoxetine) and Alzheimer’s disease (donepezil). 

Atomoxetine (catecholamines), but not donepezil (acetylcholine), increased pupil size (Fig. 1B, 
Fig. S1, an established peripheral marker of central arousal state (Breton-Provencher and Sur, 105 
2019; de Gee et al., 2017; Joshi et al., 2016; McGinley et al., 2015; Reimer et al., 2016). 

The rationale of our analyses, and hence organization of the Results is as follows. We (i) 
measured the effects of these pharmacological interventions on large-scale cortical network 
dynamics (assessed with magnetoencephalography; MEG) and behavior, and (ii) simulated 
cortical circuit models in order to develop a mechanistic understanding of our empirical results. 110 
By (iii) extending the model into a circuit that generates selection (i.e., choice) behavior, we turned 
the mechanistic inference into a prediction for behavior, which (iv) we finally confirmed in two 
independent datasets that probed into both, perceptual and value-based decision-making (Sugrue 
et al., 2005). 
 115 
Distinct, context-dependent drug effects on large-scale network dynamics 

Large-scale cortical network interactions were quantified as the frequency-resolved, cortex-
wide correlations of intrinsic activity fluctuations (Fig. 1C). Critically, we measured these intrinsic 
correlations in two behavioral contexts: a visual task with continuous input and eyes-open ‘rest’ 
(Fig. 1A, right). The task entailed the continuous presentation of an ambiguous visual stimulus, 120 
which, in turn, induced spontaneous and ongoing alternations in perception (Leopold and 
Logothetis, 1999) (Fig. 1A and Movie S1). During MEG blocks, we asked participants to silently 
count perceived perceptual alternations and report the total count at the end of each run. 
Consequently, we could assess intrinsic fluctuations in MEG activity in the absence of transients 
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in visual input and motor movements. In separate blocks, participants reported each perceived 125 
alternation with an immediate button press.  

We used a previously established approach (Hipp et al., 2012) that attenuates spurious 
correlations due to signal leakage (see Methods and Fig. S2A for illustration). We computed 
pairwise correlations between 400 cortical locations and compiled them into a matrix, separately 
for a range of carrier frequencies. Averaged across the placebo-rest condition, this yielded a similar 130 
spatial and spectral structure of correlations as previously reported (Hipp et al., 2012) (Fig. S2B,C). 
We then compared the correlation matrices between task and rest (Fig. S3), and between each drug 
condition and placebo condition (Fig. S4). Neuromodulators may potentially cause correlations 
between cortical mass signals to shift in a common direction (e.g., toward larger positive 
correlations), or change in magnitude (e.g. shift toward more negative and more positive 135 
correlations (Eldar et al., 2013)), depending on the underlying mechanism (van den Brink et al., 
2019). To statistically assess the differences between our experimental condition in an unbiased 
fashion, we computed the fraction of significantly increased and decreased correlations, separately 
for each frequency bin. We then tested those fractions for their deviation from the expected chance-
level, while accounting for multiple comparisons across frequencies (Methods and Fig. S3, S4). 140 

 

Fig. 1. Dissociated catecholaminergic and cholinergic effects on cortex-wide correlations in activity. (A) Experimental design. 
Top: Atomoxetine (40 mg), donepezil (5 mg), or a visually indistinguishable placebo was administered before each session. Bottom: 
MEG activity was recorded during a visual task (left) or eyes-open ‘rest’ (right). (B) Drug effect on baseline pupil diameter (rest 
and task collapsed. Atx, atomoxetine; Pbo, placebo; Dpz, donepezil; * P < 0.05, paired two-sided permutation test) (C) Drug effects 145 
on cortex-wide activity correlations (at 16 Hz), for task (upper triangle) and rest (lower triangle). Left: atomoxetine – placebo; 
Right: donepezil – placebo. (D) Cortical distribution of drug effects on correlations. Left: Atomoxetine – placebo (task). Right: 
Donepezil – placebo (rest). (E) Frequency spectrum of drug effects on the fraction of significantly (P<0.05, paired t-test) altered 
correlations across brain regions, for atomoxetine (left) and donepezil (left) as well as for rest (top) and task (bottom). Fractions of 
significantly increased (solid black lines) and decreased (dashed gray lines) correlations are shown separately. (F) Effect of 150 
behavioral context on correlations (difference between upper and lower rows in E). (G) Spectrum of double dissociation between 
atomoxetine and donepezil effects, measured as the difference between (panel E): solid black line (left) and dashed gray line (right). 
Open circles, P < 0.05; filled circles, P < 0.01 (paired two-sided single-threshold permutation test).  

Atomoxetine increased correlations across most pairs of regions during task (Fig. 1C, left; upper 
triangular part; Fig. S4A). This effect was evident in all four cerebral lobes (Fig. 1D, left) and 155 
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peaked in the ‘alpha/beta’ frequency band (9.51-16 Hz; Fig. 1E, left). The effect was absent during 
rest (Fig. 1E; upper vs. lower triangular part in Fig. 1C).  

In sharp contrast, donepezil (acetylcholine) decreased correlations across most region pairs, but 
only during rest (Fig. 1C, right, lower triangular part; Fig. 1E, right; Fig. S4B). Consequently, both 
drugs had opposite effects on correlations, dependent on behavioral context within overlapping 160 
frequency bands (Fig. 1F). These opposite effects translated into a robust, frequency-specific and 
context-dependent double dissociation between the atomoxetine and donepezil effects on cortical 
network dynamics (Fig. 1G; all P-values < 0.01 for the range: 9.51-16 Hz).  

The double dissociation was neither present at the level of local activity fluctuations (see Pfeffer 
et al., 2018 and Fig. S5), nor did it depend on specific choices of analysis parameters (Fig. S6-7). 165 
 
Distinct changes in circuit parameters explain drug effects on large-scale network dynamics  

Catecholamines and acetylcholine both increase the gain of cortical neurons (Aston-Jones and 
Cohen, 2005; Herrero et al., 2008; Polack et al., 2013; Servan-Schreiber et al., 1990). How, then, 
did the dissociation between their large-scale effects arise? To illuminate this question, we 170 
modeled the mass activity of coupled cortical regions (‘nodes’), each of which was composed of 
an interconnected excitatory and inhibitory neural population (Wilson and Cowan, 1972) (Fig. 2A, 
B, see also Methods and Supplementary Discussion). The model had four free parameters: the 
background inputs to excitatory (𝑏") and inhibitory (𝑏#) populations, the slope of the input-output 
function (‘gain’ at the neural population level) and a global coupling parameter.  175 

Our simulations were constrained by two assumptions derived from established physiology (see 
also Supplementary Discussion). First, we assumed that cortical mass activity exhibits noise-
driven oscillations, as opposed to sustained oscillations. In the noise-driven (also referred to as 
fluctuation-driven) regime, stochastic fluctuations in activity drive damped oscillations in the local 
nodes. Superposition of such damped oscillations, triggered at random moments in time, give rise 180 
to the ongoing variations in the amplitude of band-limited activity. Second, we assumed increased 
background input (𝑏) to excitatory populations (𝑏") and inhibitory populations (𝑏#) in many 
cortical regions during task (Haider et al., 2013). This assumption rests on the notion that our visual 
task increased the input to visual as well as higher-order ‘task-related’ cortical regions, and 
affected both excitatory and inhibitory neural populations in these regions. Indeed, sensory input 185 
increases not only excitation (i.e., drive of pyramidal cells), but also inhibition (i.e., drive of 
interneurons) in sensory cortex (McCasland and Hibbard, 1997; Swadlow, 2002). 
Correspondingly, in the model, task increased the background input to excitatory as well as 
inhibitory populations relative to rest, resulting in an upward-rightward shift in the (𝑏", 𝑏#)-plane. 
Fig. 2C illustrates these two assumptions in terms of the gray shaded area (top left; sustained 190 
oscillations) and the dashed black outline (task-related increase in background input; shown for a 
version of the model made up of only two nodes). 
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Fig. 2. Circuit mechanisms of context-dependent effects on cortex-wide correlations. (A) Schematic of a single node (brain 195 
region) consisting of an excitatory (E) and an inhibitory population (I), with full connectivity and independent background input to 
E and I (Wilson-Cowan model(Wilson and Cowan, 1972)). Inset, input-output function of each population for various gain 
parameters (slope of the input-output function). (B) Left: Correlations were computed between the firing rates of the E populations 
of two or more nodes. Right: For the cortex-wide model, an estimate of the human structural connectome was used to connect a 
total of 76 nodes, and the model was fitted to the rest-placebo data (see Methods). (C) Change in correlation under an increase in 200 
gain (+0.1) in the (𝑏", 𝑏#)-plane of the ‘two-nodes model’. Inset: sustained and noise-driven oscillations. The area defined by the 
dashed black line highlights the assumed task-related shift in the (𝑏", 𝑏#)-plane. (D) Effect of gain increase (+0.1) across all 76x76 
node pairs (right; white circle: rest; yellow circle: task) (E) As D, but for donepezil with gain increase by +0.04 (see Fig. S9 for 
+0.1) and decrease in global coupling (-0.04). (F) Top: Architecture of microcircuit consisting of excitatory and inhibitory integrate-
and-fire neurons (all-to-all connectivity). Bottom, left: Effect of change in E/I (feedback inhibition) on gain for increases (decreased 205 
E/I; black line; filled black circles) and decreases in feedback inhibition (increased E/I; gray line; filled gray circles), with respect 
to baseline (dashed line; open circles). Bottom, right: fitted response gain parameter (𝑅()*) of the stimulus-response function for 
three levels of E/I. 

We used the model to test the hypothesis that differences in gain modulation and/or changes in 
global coupling could explain the double dissociation observed in the data. Gain increase under 210 
catecholamines has been established for the input-output functions of single cortical neurons 
(Aston-Jones and Cohen, 2005; Hurley et al., 2004; Servan-Schreiber et al., 1990) as well as of 
neural mass activity assessed with neuroimaging (Eldar et al., 2013; Shine et al., 2018). Our 
simulations showed that an increase in gain was, in fact, sufficient to explain the context-dependent 
effect of atomoxetine on cortical correlations (Fig. 2C). Just as observed in the empirical data (Fig. 215 
1E, left), increasing the gain in the ‘two-node model’ produced distinct changes in correlations for 
different contexts situated in the (𝑏", 𝑏#)-plane (i.e., different levels of background drive; rest: 
white circle; task: yellow circle; Fig. 2C). In a realistic model of the whole cortex (Fig. 2B, right), 
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which was fitted to the measured correlation matrix for rest-placebo (Fig. S8F), an increase in gain 
boosted correlations in the same context-dependent fashion, with no change at rest (Fig. 2D, light 220 
gray circle or bar), but a robust increase during task (Fig. 2D, yellow circle or bar). 

Increases in neural gain result from complex synaptic interactions (Ferguson and Cardin, 2020), 
at a spatial scale smaller than the one of our neural mass model of entire cortical nodes. We 
reasoned that the inferred catecholaminergic gain increase may have resulted from a 
catecholaminergic increase the ratio between excitation and inhibition (henceforth termed ‘E/I’) 225 
within cortical microcircuits (Froemke, 2015; Murphy and Miller, 2003; Polack et al., 2013). 
Indeed, noradrenaline tonically suppresses ongoing inhibitory inputs to pyramidal cells (Martins 
and Froemke, 2015; Polack et al., 2013), which may translate into an increase in the gain of the 
whole microcircuit. We simulated cortical microcircuit model to test this idea (Methods; Fig. 2F, 
top; Fig. S10). The microcircuit model was made up of recurrently connected excitatory and 230 
inhibitory conductance-based spiking neurons. We increased the circuit’s E/I by decreasing the 
strength of feedback inhibition and of quantified the effect on response gain the input-output 
function of the excitatory cells of the circuit (Methods). In line with our reasoning, increasing E/I 
translated into a response gain increase (Fig. 2F, bottom). 

Our neural mass model could also explain the opposite, context-dependent effect of 235 
acetylcholine on large-scale cortical dynamics (Fig. 1E, right). While acetylcholine, like 
catecholamines, increases the gain of single neurons (Disney et al., 2007; Herrero et al., 2008, 
2017; Soma et al., 2012), cholinergic and noradrenergic effects on E/I (i.e., gain) differ: the 
cholinergic E/I (i.e., gain) increase affects a smaller fraction of neurons in the circuit for a shorter 
duration (Froemke, 2015; Froemke et al., 2007), which likely translates into a smaller impact on 240 
the microcircuit’s (i.e. node’s) net gain (see Discussion). An increase in gain, indeed smaller than 
the catecholaminergic increase, selectively decreased correlations during rest (not task) – but, 
critically, this gain modulation had to be combined with a decrease in the model’s global coupling 
parameter (Fig. 2E). Such a decreased global coupling is in line with a reduction of intracortical 
(lateral and/or feedback) signaling observed in sensory cortex (Hsieh et al., 2000; Roberts et al., 245 
2005; Silver et al., 2008) (see Discussion).  

 
E/I increase under catecholamines also accounts for increased behavioral variability 

The above circuit modeling insights, specifically the cortical E/I increase under catecholamines, 
also accounted for the observed drug effects on visually-guided behavior, further validating our 250 
conclusions (Fig. 3). Atomoxetine (not donepezil) increased the number of perceptual alternations 
reported by participants during MEG (Fig. 3A), a simple readout of behavioral variability (Renart 
and Machens, 2014). This effect was not due to a change in eye movements or blinks (Pfeffer et 
al., 2018), and it was evident both when participants silently counted the perceptual transitions and 
when they reported each perceptual transition with an immediate button press (Fig. S11).  255 

To make the above microcircuit model produce selection behavior, we expanded it by means 
of two populations of excitatory neurons encoding a specific decision (‘D1’ and ‘D2’), which 
competed via feedback inhibition (Fig. 3B, left), yielding an architecture equivalent to a well-
established model in the context of 2AFC tasks (Wang, 2002). Increasing E/I in this model has 
been shown to yield more variable decision-making in two-alternative forced choice tasks (Lam 260 
et al., 2017). To model our current task, we adjusted some parameters (see Methods) and simulated 
the model under sustained, and equally strong, input to D1 and D2, modelling unbiased 
competition. The model exhibited ongoing alternations in the activity dominance of D1 or D2 (Fig. 
3B, right) and, just as our participants under atomoxetine, an increase in the alternation rate under 
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increased E/I due to decreased feedback inhibition (Fig. 3C). In other words, participants, as well 265 
as the model, were more prone to ‘explore’ different perceptual interpretations of a constant, 
ambiguous input.   

 
Fig. 3. Catecholamine-induced increase in E/I ratio can increase perceptual variability (A) Effect of atomoxetine on rate of 
alternations in the judgment of continuous input (changes in the apparent direction of rotation of the seemingly rotating sphere). 270 
(B) Left: Schematic of the decision circuit, endowed with two excitatory decision populations, D1 and D2, and a non-selective 
population (DN), fully connected to a pool of inhibitory neurons. The two decision populations receive noisy Poisson input, 
reflecting the ambiguous nature of the visual stimulus. Right: The model exhibits spontaneous firing rate fluctuations. Perceptual 
transitions in the model are defined as changes in the dominance of one population over the other (i.e., one having a higher firing 
than the other). (C) Effect of E/I increase in circuit model on number of transitions in the judgment of continuous input. E/I increase 275 
in the circuit model is implemented via decrease in feedback inhibition (red/blue arrows). 

The tradeoff between behavioral exploration and exploitation is commonly studied in other 
contexts than perceptual multistablity – specifically during foraging for reward in environments 
with changing reward contingencies (Cohen et al., 2007). An influential view holds that 
catecholamines render choice behavior more variable in order to facilitate behavioral exploration 280 
just when the uncertainty about the environment has increased (Aston-Jones and Cohen, 2005; 
Cools, 2019; Frank et al., 2009). We, thus, performed a second behavioral experiment to probe the 
effect of atomoxetine (same dose as for the perceptual task, Fig. 4A) on value-based choice during 
foraging. We used a modified version of a dynamic foraging task previously used in monkeys 
(Sugrue et al., 2004) (Methods, Fig. 4B,C). As in the first dataset, atomoxetine increased baseline 285 
pupil diameter (Fig. 4D). Participants chose between two visual targets (horizontal/vertical Gabor 
patches, displayed in different hemifields) which were associated with different reward histories 
(Fig. 4B,C; Fig. S12B). All but three participants performed the task well, reaching a performance 
of ~70% (Fig. 4E).  

In order to quantify the drug effect on behavioral exploration, we fitted choice fractions with 290 
an algorithmic model made up of four parameters that could differ between atomoxetine and 
placebo (Fig. 4F). The ‘noise’ (1/b) parameter, governing choice variability (exploration), 
selectively increased under atomoxetine (Fig. 4G, left). This effect on decision noise was 
independent of reward integration, which are commonly linked to the dopamine system (Montague 
et al., 2004). The latter were quantified by the leak (inverse of integration time constant t, see Fig. 295 
4F), for which we observed no effect (Fig. 4G, second from left). Atomoxetine also did not affect 
the other two parameters of the model (Fig. 4G). The finding of increased internal noise is in line 
with the circuit model prediction for E/I increase for forced choice tasks(Lam et al., 2017). In sum, 
elevated catecholamine levels increased behavioral exploration in sensory- and value-guided 
behavior, likely via increasing E/I in cortical circuits.  300 
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Fig. 4. Catecholamines promote exploratory choice during foraging. (A, B) Experimental design for value-based choice 
experiment. (A) Administration protocol for the value-based choice experiment: atomoxetine or placebo was administered before 
each session (B) Reward scheme illustrated for example sequence of rewards and choices across seven trials (see Methods for 305 
details). (C) Choice behavior vs. reward contingencies for an example subject and session. Continuous blue curve, cumulative 
choices of horizontal vs. vertical targets. Black lines, average ratio of incomes earned from both targets (horizonzal:vertical) within 
each block). (D) Effect of atomoxetine on baseline pupil diameter. (E) Harvesting efficiency (fraction of collected over available 
rewards) per subject and experimental session. Red circles, subjects excluded due to poor performance (F) Schematic of the 
algorithmic model for value-based choice task (dynamic foraging). Choice behavior was analyzed with a reward integration model 310 
consisting of four parameters: integrator leak, decision noise (1/b of softmax transformation), weight of ‘win-stay, loose-switch’ 
heuristic, overall (static) bias (see Methods). (G) From left to right: Effect of atomoxetine on the decision noise (1/b), leak (inverse 
of integration time constant), Win-Stay-Lose-Switch heuristic and bias. 

 
Discussion 315 
Previous animal work has reported differences between noradrenergic and cholinergic effects on 
the firing rates or membrane potential fluctuations of single neurons (Castro-Alamancos and 
Gulati, 2014; Polack et al., 2013). Here, we uncovered a behavioral context-dependent double 
dissociation between catecholaminergic and cholinergic effects on large-scale cortical network 
dynamics, developed a mechanistic account of this observation, and validated this account through 320 
two independent behavioral tests. Our results may constitute a physiological basis for the distinct 
roles of catecholamines and acetylcholine in cognition postulated by computational theory (Aston-
Jones and Cohen, 2005; Yu and Dayan, 2005). Specifically, a prominent idea holds that the 
noradrenaline and acetylcholine systems track two forms of uncertainty during inference in 
changing environments: Acetylcholine signals so-called ‘expected uncertainty’, which originates 325 
from the inherent noise corrupting the information received in a given (constant) state of the 
environment; noradrenaline signals ‘unexpected uncertainty’, stemming from hidden changes in 
the state of the environment (Yu and Dayan, 2005). These two forms of uncertainty should have 
separable influences on the neural computations in the cortex that underlie inference. Our results 
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suggest that such functional distinction may be mediated by distinct modulatory effects on local 330 
and cortical microcircuits, which in turn translate into massive differences at the level of large-
scale cortical interactions. 

Our behavioral results establish a general catecholaminergic effect on perceptual and value-
based decision-making and confirm a key prediction from a prominent account of 
catecholaminergic (noradrenergic) modulation of learning and decision-making (Aston-Jones and 335 
Cohen, 2005). In this view, the noradrenergic system controls the exploration-exploitation 
tradeoff, whereby high tonic noradrenaline levels boost behavioral variability. While this is 
detrimental to performance in static environments, it is adaptive in the presence of hidden 
environmental changes, as were present in our foraging task, by promoting exploration of 
alternatives (Aston-Jones and Cohen, 2005; Cohen et al., 2007; Usher et al., 1999). Indeed, animal 340 
behavior becomes more variable during periods of high tonic firing of the locus coeruleus in 
perceptual tasks in static environments (Aston-Jones et al., 1999; Usher et al., 1999) as well in 
value-based choice in changing environments (Kane et al., 2017; Tervo et al., 2014). In particular, 
chemogenetic stimulation of locus coeruleus tonic activity, increased decision noise during a 
foraging task (Kane et al., 2017), , just as in the present Figure 4. These findings in animals are in 345 
line with our current results in humans.  

One atomoxetine study in humans used a similar pharmacological protocol to ours during a 
gambling task and decomposed random and directed modes of behavioral exploration (Warren et 
al., 2017). Unexpectedly, this yielded a decrease in random exploration under atomoxetine 
(Warren et al., 2017), a finding that appears to be at odds with the above animal work as well as 350 
the increase in behavioral variability reported in the two tasks of the present study. One possibility 
is that the predominant effect of atomoxetine on tonic versus phasic noradrenaline level differed 
between our experiments and the one from (Warren et al., 2017). Such differences may have 
occurred for several reasons including (i) the different latencies of the behavioral measurements 
relative to drug intake (1.5 in our study vs. 3 h in theirs), (ii) inter-session differences in baseline 355 
arousal/noradrenaline levels, and/or (iii) inter-individual differences in atomoxetine sensitivity 
between participants. For both our experiments, we found a robust increase of baseline pupil 
diameter under atomoxetine (Figs. 1B and 4D), consistent with increased tonic noradrenaline 
levels (Joshi et al., 2016; McGinley et al., 2015; Reimer et al., 2016), an effect not tested by Warren 
et al. (2017). The decreased exploration in the latter study may have resulted from a predominant 360 
increase in phasic noradrenaline release in line with Aston-Jones & Cohen (2005) and also alluded 
to by the authors (Warren et al., 2017).  

In our behavioral model, internal noise (1/b) affected the reward-dependent component of 
behavior before its combination with WSLS. This was motivated by model comparisons indicating 
that noise should be applied before, not after, combination of the reward-dependent choice 365 
probability with the WSLS heuristic (Fig. S12D). This observation is largely consistent with recent 
evidence pointing to reward integration, rather than response selection, as the dominant source of 
behavioral variability (Findling et al., 2019). Separating between noise at each integration step and 
noise at the transformation from integrated reward (LFI) into choice probability (as in Findling et 
al., 2019) would require a different modeling approach. Our aim here was to unravel the 370 
mechanistic basis of the impact of catecholamines on internal noise, regardless of the exact locus 
of this noise, based on the monkey work that inspired our task (Corrado et al., 2005; Sugrue et al., 
2004). Future work should further constrain the locus of the catecholaminergic noise boost. 

Our multi-scale circuit modeling shows that subtle differences in the effects of catecholamines 
and acetylcholine at the cellular level (e.g. gain increases of different magnitude (Aston-Jones and 375 
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Cohen, 2005; Herrero et al., 2008; Servan-Schreiber et al., 1990)) can combine to yield context-
dependent dissociations at the level of large-scale cortical network dynamics. This principle 
accounts for the context-dependent (task vs. rest) double dissociation between the modulatory 
effects observed here. Importantly, our model-based inferences about the underlying circuit 
mechanisms are consistent with insights from single-cell physiology (Aston-Jones and Cohen, 380 
2005; Froemke, 2015; Haider et al., 2013; Herrero et al., 2008; Martins and Froemke, 2015). The 
first inference that catecholamines and acetylcholine both increase overall gain (and hence E/I), 
but with different magnitudes is supported by the observation that noradrenaline and acetylcholine 
differentially modulate E/I in rodent auditory cortex (Froemke, 2015). Acetylcholine suppresses 
stimulus-evoked, inhibitory transients in pyramidal cells (Froemke et al., 2007; Letzkus et al., 385 
2011) while noradrenaline suppresses ongoing inhibition in a persistent fashion (Martins and 
Froemke, 2015). Such synaptic and cellular differences can translate into a differential net gain 
increase of the whole microcircuit (with a smaller net gain increase under acetylcholine) as 
described by the nodes of our neural mass model.  

Our second inference, of reduced intra-cortical communication (global coupling) under 390 
acetylcholine, is also consistent the reduction of intracortical (lateral and/or feedback) signaling 
that has been observed in in visual and auditory cortex (Hsieh et al., 2000; Roberts et al., 2005; 
Silver et al., 2008) and in perception (Gratton et al., 2017), possibly mediated by muscarinic 
receptors(Hsieh et al., 2000). At the computational level, this inference aligns well with the idea 
that acetylcholine reduces the impact of prior knowledge (intra-cortical signaling) relative to 395 
incoming evidence (bottom-up signaling) (Yu and Dayan, 2005). However, evidence from 
prefrontal cortex suggests that acetylcholine can also increase synaptic efficacy on recurrent intra-
cortical connections, through both nicotinic and muscarinic receptors (Arnsten et al., 2010). 
Further work is needed to elucidate the synaptic basis of the cholinergic effects observed here.  

The mechanistic insights put forward here shed new light on apparently inconsistent findings 400 
reported in previous studies on pharmacological effects on intrinsic cortical correlations as 
assessed through neuroimaging (van den Brink et al., 2019). One PET study found cortical an 
increase in cortical correlations during a task but decrease during rest under clonidine (an a2-
adrenergic auto-receptor agonist that reduces noradrenaline release) (Coull et al., 1999), similar to 
the context-dependence in the present Fig. 1C left. By contrast, a study of atomoxetine (same dose 405 
as ours) effects on resting-state fMRI found a robust decrease in correlations (van den Brink et al., 
2016), in contrast to weak effect during rest in our present measurements (Fig. 1C, left, lower 
triangular part). While this may reflect differences in the underlying signals (fMRI vs. band-limited 
MEG power), our model simulations (Fig. 2) demonstrate how subtle differences in the baseline 
state of the system (i.e., location on the (𝑏", 𝑏#)-plane) can lead to qualitatively different effects 410 
(i.e., sign reversals) of the same gain increase (catecholamines) on intrinsic activity correlations. 
Differences in environmental factors (e.g. scanner noise), age, or participants’ baseline arousal 
levels may all shift the baseline state. Such differences in baseline state can translate into 
qualitative differences of drug effects (including sign reversals) on cortical correlations, even 
under the same drug and pharmacological protocol (dosage, timing of administration, etc.). This 415 
highlights the importance of circuit modeling for understanding the results from pharmacological 
neuroimaging studies.   

Intrinsic  correlations in brain activity are widely used in basic human neuroscience and clinical 
biomarker development (Deco et al., 2014; Fox and Greicius, 2010; Hipp et al., 2012). The 
behavioral context-dependence of the neuromodulatory effects we uncovered here implies that 420 
resting-state measurements alone lack a critical dimension: the comparison between rest and task 
contexts was necessary to uncover the specific impact of neuromodulators on cortical dynamics. 
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It is likely that the same holds for other classes of neurotransmitters, and their disturbances in brain 
disorders. Our approach sets the stage for the development of new non-invasive assessments of 
the integrity of neuromodulatory systems.   425 

In sum, we have pinpointed candidate circuit mechanisms for the distinct catecholaminergic 
and cholinergic shaping of large-scale cortical network interactions. Our results can guide future 
work into the underlying cellular and molecular mechanisms in animals and set the stage for the 
development of non-invasive biomarkers for the integrity of neuromodulatory systems in humans. 
 430 
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Methods 
 
Pharmacological MEG experiment (resting-state and continuous perceptual choice task) 

 
Participants 460 

30 healthy human participants (16 females, age range 20-36, mean 26.7) participated in the 
study after informed consent. All included participants were non-smokers. The study was approved 
by the Ethics Committee of the Medical Association Hamburg. Two participants were excluded 
from analyses, one due to excessive MEG artifacts, the other due to not completing all 3 recording 
sessions. Thus, we report results from N=28 participants (15 females).  465 

The present dataset was also used in a previous report (Pfeffer et al., 2018), which focused on 
the effects of both drugs (see below) on the long-range temporal correlations in the local activity 
fluctuations. The present analyses of the correlations between these fluctuations across different 
cortical regions are independent from the results presented in this previous work. A different 
version of the behavioral result shown in Fig. 3A was also shown in the previous paper (Pfeffer et 470 
al., 2018).      

 
Experimental design 

General protocol. We manipulated the levels of catecholamines (noradrenaline and dopamine) 
and acetylcholine through pharmacological intervention (Fig. 1A). Each participant completed 475 
three experimental sessions, consisting of drug or placebo intake at two time points, a waiting 
period of 3 hours, and an MEG recording session. During the recordings, participants were seated 
on a chair inside a magnetically shielded chamber. Each recording session consisted of six 
measurement blocks with different behavioral tasks (see below). Each block was 10 minutes long 
and followed by a short break of variable duration.  480 

Pharmacological intervention. We tested for the effects of two different drugs in a double-
blind, randomized, placebo-controlled, and cross-over experimental design. We used the selective 
noradrenaline transporter inhibitor atomoxetine to boost the levels of catecholamines 
(noradrenaline and dopamine (Bymaster et al., 2002; Robbins and Arnsten, 2009)). We used the 
cholinesterase inhibitor donepezil to boost acetylcholine levels. A mannitol-aerosil mixture was 485 
administered as placebo. The dosages for both drugs were chosen to be below common clinical 
steady-state dosages and in accord with previous fMRI work showing clear effects of the same 
dosages on cortical processing (van den Brink et al., 2016; Silver et al., 2008): 40 mg for 
atomoxetine (clinical steady-state dose for adults: 80 mg) and 5 mg for donepezil (common clinical 
entry dose). All substances were encapsulated identically in order to render them visually 490 
indistinguishable. Peak plasma concentrations are reached ~3-4 hours after administration for 
donepezil (Tiseo et al., 1998) and 1-2 hours after administration for atomoxetine (Sauer et al., 
2005). In order to maximize plasma drug levels during MEG, participants received two pills in 
each session, 3 h and 1.5 h before MEG (Fig. 1A): placebo (t = -3 h) followed by atomoxetine (t 
= -1.5 h) in the ATOMOXETINE condition; donepezil (t = -3 h) followed by placebo (t = -1.5 h) 495 
in the DONEPEZIL condition; placebo at both times in the PLACEBO condition. The three 
sessions were scheduled at least 2 weeks apart to allow plasma levels to return to baseline (plasma 
half-life of atomoxetine: ~5.2 h – 21.6 h(Sauer et al., 2005); half-life of donepezil: ~70 h).  

Behavioral tasks. Within each session (and each of the above-defined pharmacological 
conditions), participants alternated between three different behavioral conditions, all entailing 500 
absent or continuous sensory input (2 runs à 10 minutes per condition), here referred to as REST, 
TASK, and TASK-PRESSING (Fig. 1A, right; see also Supplementary Video 1). REST and TASK 
were steady-state conditions (absent or minimal variations in sensory input or motor output) 
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tailored to quantifying intrinsic correlations between fluctuations in cortical activity. TASK-
PRESSING was used to validate the behavioral results from the TASK condition. During REST, 505 
participants were instructed to fixate a green fixation disk (radius = 0.45º visual angle) in the center 
of an otherwise gray screen. During TASK and TASK-PRESSING, participants viewed a 
perceptually ambiguous 3D structure-from-motion stimulus, which was perceived as a rotating 
sphere (Wallach and O’connell, 1953). The stimulus subtended 21º of visual angle, consisted of 
1000 dots (500 black and 500 white, radius: 0.18º of visual angle) arranged on a circular aperture 510 
presented on a mean-luminance gray background, and a green fixation dot in the center. In TASK, 
participants were instructed to count the number of changes in the perceived rotation direction and 
verbally report the total count at the end of the run. In TASK-PRESSING, the participants were 
instructed to press (and keep pressed) one of two buttons whenever they perceived a change in the 
rotation direction. The order of the conditions was as follows for 18 out of 28 participants: (1) 515 
REST, (2) TASK-PRESSING, (3) TASK, (4) REST, (5) TASK-PRESSING, (6) TASK. For 10 
out of 28 participants the order was reversed: (1) TASK, (2) TASK-PRESSING, (3) REST, (4) 
TASK, (5) TASK-PRESSING, (6) REST. 

The experiment was programmed in MATLAB (The MathWorks, Inc., Natick, United States), 
using the Psychophysics Toolbox extensions (Brainard, 1997) (PTB-3). 520 

Data acquisition. MEG was recorded using a whole-head CTF 275 MEG system (CTF Systems, 
Inc., Canada) at a sampling rate of 1200 Hz. In addition, eye movements and pupil diameter were 
recorded with an MEG-compatible EyeLink 1000 Long Range Mount system (SR Research, 
Osgoode, ON, Canada) and electrocardiogram (ECG) as well as vertical, horizontal and radial 
EOG was acquired using Ag/AgCl electrodes.  525 

 
Pupil and behavioral data analysis 

The pupil diameter recordings were preprocessed as follows: eye blinks as well as eye 
movements were identified using the manufacturer’s default routines, then padded (+/- 200 ms), 
linearly interpolated and bandpass-filtered using a second-order Butterworth filter with a passband 530 
from 0.01 to 10 Hz. Next, the effect of blinks and saccades on pupil diameter was estimated 
through deconvolution and removed by means of linear regression (Knapen et al., 2016). Mean 
pupil diameter was computed in a baseline interval from 6s to 3s prior to the start of each recording 
block and for all conditions (REST, TASK, TASK-PRESSING). Pupil signals were averaged 
across the two corresponding blocks. In some cases, pupil diameter was not recorded, or the signal 535 
was too noisy. If this was the case for both blocks of a session (placebo, atomoxetine or donepezil), 
the corresponding subject was not included in the respective analysis. The following number of 
subjects was excluded/included per combination of conditions: during REST-PLACEBO (N = 
0/28), REST-ATOMOXETINE (N=0/28), REST-DONEPEZIL (N = 2/26), during TASK-
PLACEBO (N = 0/28), TASK-ATOMOXETINE (N=0/28), TASK-DONEPEZIL (N = 1/27). 540 
Behavioral data from TASK and TASK-PRESSING was averaged across the two blocks, resulting 
in N=28 for all drug conditions for TASK. In the case of TASK-PRESSING, one participant had 
to be excluded due to missing triggers in the atomoxetine condition, resulting in N=27. 

 
MEG signal processing 545 

The MEG signal processing pipeline described is illustrated in Fig. S2A and entailed the 
following steps.   

1) Preprocessing. The sensor-level MEG data were first preprocessed: strong transient muscle 
artifacts and squid jumps were detected through visual inspection as well as semi-automatic artifact 
rejection procedures, as implemented in the FieldTrip toolbox (Oostenveld et al., 2011) for 550 
MATLAB. To this end, data segments contaminated by such artifacts (+/- 500 ms) were removed 
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from the data (across all channels). Subsequently, the data were downsampled to 400 Hz split into 
low ([0.5-2]-40 Hz; the lower cutoff was variable across (but identical within) subjects at 0.5, 1 or 
2 Hz) and high (>40 Hz) frequency components, using a 4th order Butterworth filter. Both signal 
components were separately submitted to independent component analysis(Bell and Sejnowski, 555 
1995) using the FastICA algorithm (Hyvarinen, 1999). Artifactual components (eye 
blinks/movements, muscle artifacts, heartbeat and other extra-cranial artifacts) were identified 
based on three established criteria (Hipp and Siegel, 2013): power spectrum, fluctuation in signal 
variance over time (in bins of 1s length), and topography. Artifact components were reconstructed 
and subtracted from the raw signal and low- and high frequencies were combined into a single data 560 
set. On average, 20 (+/- 14) artifact components were identified for the low-frequencies and 13 
(+/- 7) artifactual components were identified for the high frequencies.  

2) Spectral analysis. From the cleaned MEG signal, spectral estimates were obtained using 
Morlet’s wavelets (Tallon-Baudry and Bertrand, 1999), similar to previous reports (Hipp et al., 
2012; Siems et al., 2016): 565 

 

𝑤(𝑡, 𝑓) = /𝜎1√𝜋4
567𝑒

5 97

7:9
7	𝑒5<=>?1      (Eq. 1) 

 
We constructed wavelets for 17 logarithmically spaced (base 2) center frequencies, ranging 

from 4 Hz to 64 Hz. In keeping with previous work (Hipp et al., 2012; Siems et al., 2016), the 570 
spectral band-width was set to half of an octave (𝑓/𝜎1~5.83) and amplitude as well as phase 
estimates were obtained for consecutive, half-overlapping segments of a length of ±3𝜎1. Segments 
that contained artifactual samples (see Preprocessing) were omitted from the analysis.  

3) Source analysis. For the main analyses, we projected the sensor-level signal onto 400 vertices 
located on the cortical surface, resulting in an estimated source level signal 𝑋HIJ(𝑟, 𝑡, 𝑓). To this 575 
end, we estimated source-level power by means of adaptive spatial filtering (linear 
“beamforming”; Veen et al., 1997), separately for each participant and recording session. For each 
source location 𝑟 and frequency 𝑓, a spatial filter	𝐴(𝑟, 𝑓) was computed according to: 

 
𝐴(𝑟, 𝑓) = /𝐿N(𝑟)𝐶IP)Q(𝑓)5R𝐿(𝑟)4

5R𝐿N(𝑟)𝐶(𝑓)5R  (Eq. 2) 580 
 

where 𝐿 was the magnetic leadfield, 𝑇 denoted matrix transpose, and 𝐶IP)Q(𝑓) the real part of the 
(complex-valued and regularized) cross spectral density (CSD) matrix of the sensor-level data for 
frequency 𝑓. 𝐴(𝑟, 𝑓)	contained three orthogonal projections. We used singular value 
decomposition of the CSD matrix to determine the direction of the dipole maximizing power (i.e. 585 
the first eigenvector) at location 𝑟. We then computed the corresponding spatial filter for this 
direction, henceforth referred to as 𝐵(𝑟, 𝑓). This filter was used to project the sensor-level data 
𝑋(𝑡, 𝑓) onto that dominant dipole, as follows: 
 
𝑋HIJ(𝑟, 𝑡, 𝑓) = 𝐵(𝑟, 𝑓)𝑋(𝑡, 𝑓)      (Eq. 3) 590 
 

where 𝑋HIJ(𝑟, 𝑡, 𝑓) denoted the complex-valued, source-level spectral estimates for location	𝑟. 
Prior to computing the spatial filter, the CSD matrix was regularized with the mean of its diagonal 
multiplied by a scaling parameter 𝛼. For the results shown in the main section of this article, this 
parameter was chosen to be 𝛼 = 0.3 (see Fig. S6 for alternative values of 𝛼). 595 

4) Orthogonalized power envelope correlations. Inter-regional correlations were computed as 
the correlations of the power estimates at carrier frequency 𝑓 between two regions 𝑖 and 𝑗, across 
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all non-artifactual segments. In order to reduce spurious correlations arising from instantaneous 
signal leakage, we used a procedure established previously (Brookes et al., 2012; Hipp et al., 
2012). Specifically, we orthogonalized each signal Y with respect to signal X according to: 600 

 
𝑌Z[(𝑡, 𝑓) = 	𝑖𝑚𝑎𝑔	(	𝑌(𝑡, 𝑓)	 [(1,?)

∗

|[(1,?)|
	)    (Eq. 4) 

 
where	𝑌Z[(𝑡, 𝑓)	was the signal 𝑌(𝑡, 𝑓) orthogonalized with respect to signal 𝑋(𝑡, 𝑓) and * the 
complex conjugate. Next, the absolute value was taken and the resulting signal was squared, 605 
yielding source-level power envelopes, and log-transformed to render the distribution more 
normal. The orthogonalization was performed in two directions, 𝑌Z[(𝑡, 𝑓) as well as 𝑋Za(𝑡, 𝑓). 
Correlation coefficients were computed for both directions and the resulting (Fisher transformed) 
values were averaged. Doing this for all pairs of vertices and for each frequency band resulted in 
a correlation matrix of size 400x400 for each of the 17 carrier frequencies. In what follows, we 610 
refer to these correlation matrices as ‘functional connectivity (FC)’ matrices. 

In order to compare the empirical results to results obtained from simulations of a neural mass 
model (see: Computational modeling below), we repeated the above-described procedure for 
computing source-level FC matrices, but now at coarser granularity. To this end, we selected the 
76 cortical regions of the Automatic Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 615 
2002), excluding the cerebellum and subcortical regions (see Table S1 for included regions). 
Source locations were first arranged on an equally spaced grid (of 4 mm x 4 mm x 4 mm resolution) 
covering the entire brain and each grid point was either assigned to one of the 76 selected cortical 
AAL regions or omitted from further analysis. For each of the vertices that were assigned to one 
of the 76 AAL regions, frequency-specific source-level estimates for each time point 𝑋HIJ(𝑟, 𝑡, 𝑓) 620 
were computed following the procedure outlined above. Next, for each vertex within region 𝑖 (with 
𝑖 ∈ {1,…,76}, we computed its average correlation to all vertices of region 𝑗 (after Fisher 
transformation). This was repeated for all vertices of region 𝑖 after which the correlation values 
were again averaged across all vertices within region 𝑖. This procedure was repeated for all 76 
regions, resulting in a 76x76 FC matrix for each of the 17 carrier frequencies.  625 

 
Quantification of the topology of MEG correlation structure 

Degree centrality. We computed frequency-resolved degree centrality	𝑘(𝑓) (i.e., collapsed 
across all nodes) as well as local degree 𝑘<(𝑓) for each of the 𝑖 = 1…400 locations (Fig. S2B/C). 
Degree is defined by the number of edges that connect a given node to all other nodes in the 630 
network (Rubinov and Sporns, 2010). To this end, the FC matrices of all subjects (400x400x28) 
were first submitted to a procedure described previously (van den Brink et al., 2016; Hipp et al., 
2012): for each connection between nodes 𝑖 and 𝑗, where 𝑖 = 1…400 and 𝑗 = 1…400 we 
assessed if a connection was present as follows: a connection was determined to be present if the 
correlation between 𝑖 and 𝑗 was significantly larger (P < 0.05; two-sided t-test) than the 635 
correlations from 𝑖 to all other nodes or from 𝑗 to all other nodes. In case of a present connection, 
the corresponding entry in the adjacency matrix 𝐴(𝑖, 𝑗) was set to 1. If no connection was present, 
𝐴(𝑖, 𝑗)	was set to 0. This was repeated for all possible pairs of vertices and the full adjacency matrix 
was computed. From this, we computed degree by: 

 640 
𝐷< = (𝑁 − 1)5R ∑ 𝐴(𝑖, 𝑗)k

lmR      (Eq. 5) 
 

where N denoted the number of cortical vertices (N = 400).  
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Statistical tests of MEG effects 645 

Cortex-wide changes in cortical correlations. We adopted a previously described two-stage 
procedure for an unbiased statistical assessment of cortex-wide changes in power envelope 
correlations (Hawellek et al., 2013). The procedure is illustrated in Fig. S3. The rationale behind 
the analysis was as follows. Both neuromodulator classes (catecholamines and acetylcholine) 
might, in principle, increase correlations between some pairs of areas and, at the same time, 650 
suppress correlations between other pairs of areas (Eldar et al., 2013). In this case, drug effects 
might cancel when averaging correlations indiscriminately across all area pairs and comparing 
average FC between conditions. Instead, our procedure first identified any pairs exhibiting drug-
induced increases or decreases above a certain threshold and then tested if the fraction of these 
pairs was significantly different from what would be expected by chance, separately for pairs with 655 
increased and decreased correlations. This procedure was repeated across a wide range of 
frequencies, yielding the spectra of drug effects shown in Fig. 1E. 

For each center frequency 𝑓, we statistically compared the Fisher-transformed FC matrices, 
across subjects, between the two drug conditions and placebo, using a two-sided paired t-test. Then 
we counted the number of significantly positively (P < 0.05 and T > 0) and the number of 660 
significantly negatively altered correlations (P < 0.05 and T < 0). The resulting value was divided 
by the number of possible connections M (with M = N*N-N, where N = 400 or N = 76, see above) 
to obtain the fraction of significantly altered correlations for both effect directions. This procedure 
was repeated for all 17 frequencies bands (Fig. S3). We employed a single threshold permutation 
procedure to derive P-values that accounted for multiple comparisons across frequencies (Nichols 665 
and Holmes, 2002). For each of 𝑁n = 10000 permutations, the experimental labels (drug 
conditions) were randomly re-assigned within subjects and the aforementioned procedure was 
repeated. This resulted in a 𝑁nx17 matrix for both effect directions (significantly increased and 
significantly decreased correlations). Next, for each permutation, the maximum value across all 
frequencies (independently for increased and decreased correlations) was determined, yielding a 670 
maximum permutation distribution. In order to derive P-values, the empirical results were now 
compared to this maximum permutation distribution. This procedure is analogous to a single-
threshold permutation test commonly applied in fMRI (Nichols and Holmes, 2002), with the 
single-threshold test being performed across frequencies instead of space (i.e., voxels). In order to 
test the robustness of the obtained results, we repeated the procedure described above using various 675 
alpha values for the initial paired t-test, ranging from a=0.01 to a=0.10, which led to numerically 
different, but qualitatively similar results (Fig. S7). Through applying an initial thresholding (t-
test), spurious and weak changes in correlations are less likely to contribute to the observed result. 
The initial t-test thus ensures that only changes that are somewhat robust are taken into account.  

Significant alterations in the correlations between two regions can be achieved in different 680 
ways. A decrease in correlations, for instance, can mean that a positive correlation becomes 
weaker, or that a negative correlation becomes more negative. However, only the former would 
qualify as a meaningful reduction in correlation, whereas the latter correlation gets numerically 
smaller (i.e., more negative), but stronger in terms of the linear dependence between two signals. 
Hence, a “significant decrease” does not always carry the same meaning, and the same is true for 685 
increases. In this data set, the number of positive correlations by far outnumbered the number of 
negative correlations. In fact, in the alpha and beta frequency range, where the main effects for 
atomoxetine and donepezil are observed, more than 90% of all connections were positive (across 
all blocks, and contexts; placebo only). Thus, we interpret an increase (decrease) in correlation in 
terms of a positive correlation becoming stronger (weaker). 690 
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Cortex-wide changes in local cortical variability. Changes in the correlation between two 
signals can be driven by changes in their covariance (numerator of correlation coefficient) as well 
as changes in the variance of one or both of the signals (denominator). In order to rule out this 
possibility, we tested for drug-related changes in the variance of local power envelopes across 
frequencies (Fig. S5). To this end, we have adopted a procedure similar to the one employed to 695 
assess changes in cortex-wide activity correlations. First, we computed the variance of the power 
estimates across half-overlapping temporal segments (see Spectral estimation), separately for each 
of the 17 carrier frequencies. Next, we counted the fraction of nodes that exhibited significantly 
altered variance, separately for increases and decreases. We employed the same permutation 
procedure described above in order to derive corresponding permutation distributions from which 700 
P-values were computed (two-sided single threshold permutation test). Analogous to the ‘fraction 
of significantly altered correlations’, this procedure yielded, per frequency band, the fraction of 
vertices (nodes) with significantly positively or negatively altered variance.  
 
Cortical circuit modeling 705 
 
Large-scale neural mass model 

Single node dynamics. We simulated neural population activity using a mean field model based 
on the Wilson-Cowan (WC) equations (Deco et al., 2009; Wilson and Cowan, 1972). Each local 
WC node consists of an excitatory and an inhibitory neuronal population (Fig. 2A). The dynamics 710 
of the E and I populations of each node are governed by the following stochastic differential 
equations: 

 
𝜏"

p"
p1
= 𝐹"(𝐸, 𝐼) = 	−𝐸 + 𝜎(𝑤""𝐸 − 𝑤"#𝐼 + 𝑏" + ∆𝑏") + 𝜂,  (Eq. 6) 

𝜏#
p#
p1
= 𝐹#(𝐸, 𝐼) = 	−𝐼 + 𝜎(𝑤#"𝐸 − 𝑤##𝐼 + 𝑏# + ∆𝑏#) + 𝜂,  (Eq. 7) 715 

where 𝐸 and 𝐼 represent the firing rates of excitatory and inhibitory populations, respectively. 
Since we were interested in neural oscillations, the model parameters were chosen to generate 
oscillatory dynamics. The local synaptic weights interconnecting the excitatory and inhibitory 
populations were given as 𝑤"" = 12, 𝑤#" = 16, 𝑤## = 4	and 𝑤"# = 12. 𝑏"	and 𝑏# represented 
external background inputs to the he excitatory and an inhibitory, respectively, ∆𝑏",# represents 720 
task-induced input (∆𝑏" = ∆𝑏# = 0, for resting dynamics), and 𝜂 was uncorrelated Gaussian noise 
with amplitude equal to 0.005. Time constants were set to 𝜏" = 9 ms and 𝜏# = 18 ms for excitatory 
and inhibitory populations, respectively. The (non-linear) transfer function converting input 
currents into output firing rates, 𝜎(𝑢), was chosen to be a sigmoid: 

 725 
𝜎(𝑢) = R

Rzexp(5~�)
 ,       (Eq. 8) 

where 𝑔 determined the slope of the input-output function for both excitatory and inhibitory 
populations (i.e., response gain of the node).  

The solutions (𝐸∗, 𝐼∗), or fixed points, of the coupled equations 6 and 7, were given by 𝐸∗ =
𝜎(𝑤""𝐸∗ − 𝑤"#𝐼∗ + 𝑏") and  𝐼∗ = 𝜎(𝑤#"𝐸∗ − 𝑤##𝐼∗ + 𝑏#), yielding solutions depending on the 730 
external inputs (𝑏", 𝑏#), which are the bifurcation parameters of the system. In the (𝑏", 𝑏#) 
parameter space, we observed a region of noise driven oscillations (i.e., a spiral; damped 
oscillations that, in the presence of noise, result in noisy oscillations) and a region of sustained 
oscillations (i.e., a limit cycle) (Fig. S8A).  
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Two coupled nodes. We first studied the effect of gain modulation on correlations during REST 735 
and TASK in a minimal network composed of two WC nodes (Fig. 2B, left). This step will provide 
intuitions before studying the whole-brain network composed of 76 nodes interconnected through 
a connectome. Let the excitatory populations of the nodes be connected through a reciprocal 
coupling 𝑐 (in the two-node model,	𝑐 = 1; see below for cortex-wide model) . The firing rates of 
node 1 evolve as: 740 

 
𝜏"

p"6
p1
= 	−𝐸R + 𝜎(𝑤""𝐸R − 𝑤"#𝐼R + 𝑐𝐸= + 𝑏" + ∆𝑏) + 𝜂,  (Eq. 9) 

𝜏#
p#6
p1
= 	−𝑟# + 𝜎(𝑤#"𝐸R − 𝑤##𝐼R + 𝑏# + ∆𝑏) + 𝜂,    (Eq. 10) 

and analogously for the firing rates, 𝐸= and 𝐼=, of node 2. 
To study the correlations between nodes in the parameter space, we used a linear noise 745 

approximation described in detail in the Supplementary Information. Using this approximation, 
we studied how changes in gain, i.e., 𝑔 → 𝑔 + ∆𝑔, and inputs, i.e., (𝑏", 𝑏#) → (𝑏" +	∆𝑏, 𝑏# + ∆𝑏), 
change the correlation between the two excitatory populations both during REST (∆𝑏 = 0) and 
TASK (∆𝑏 ≠ 0). In this way, we can test hypotheses on the parameter changes induced by 
ATOMOXETINE and DONEPEZIL, assuming that TASK changed the background inputs 𝑏" and 750 
𝑏# and the drugs changed 𝑔. Note that in the case of the two-node model the task-related change 
of the background inputs was equal for E and I, i.e., ∆𝑏" = 	∆𝑏# = ∆𝑏.  

In sum, the change in correlation between excitatory populations during REST was given as: 
 
∆𝑐"" = 𝑐""(𝑏", 𝑏#, 𝑔 + ∆𝑔) − 𝑐""(𝑏", 𝑏#, 𝑔),   (Eq. 11)  755 
 

and the change in correlation between excitatory populations during TASK was given as:  
 
∆𝑐"" = 𝑐""(𝑏" + ∆𝑏, 𝑏# + ∆𝑏, 𝑔 + ∆𝑔)	760 
−𝑐""(𝑏" + ∆𝑏, 𝑏# + ∆𝑏, 𝑔),       (Eq. 12) 

 
Fig. 2C maps the change of correlations during REST under gain modulation in the (𝑏", 𝑏#)-

plane. The combined effect of drugs on parameters 𝑏" and 𝑏#, and the effect of TASK, were 
obtained by translating the state of the system in this map. 

Cortex-wide model. In order to directly compare the computational model to the empirical 765 
results, we simulated a cortex-wide variant of the model. For each of 76 cortical AAL nodes, the 
dynamics were governed by the following differential equations: 

 
𝜏"

p"�
p1
= 	−𝐸< + 𝜎/𝑤""𝐸< − 𝑤"#𝐼< + 𝑐 ∑ 𝐶<l𝐸ll + 𝑏" + ∆𝑏"4 + 𝜂, (Eq. 13) 

𝜏#
p#�
p1
= 	−𝑟< + 𝜎(𝑤#"𝐸< − 𝑤##𝐼< + 𝑏# + ∆𝑏#) + 𝜂,    (Eq. 14) 770 

where 𝑖, 𝑗	𝜖	{1,2, … ,76}. In this cortex-wide model, an additional parameter was incorporated: 
long-range cortical connectivity between all possible pairs of regions, given by 𝐶<l, which is scaled 
by the global coupling parameter 𝑐. The matrix 𝐶<l was given by a structural connectivity matrix 
used in previous studies (Deco et al., 2017, 2018) and was estimated by means of diffusion tensor 
imaging (DTI). Details can be found in the respective publications.  775 

For the simulation, equations 13 and 14 were integrated using the Euler method with dt	 =
	0.01. 
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The model was run for a wide range of background inputs to excitatory (𝑏")	and inhibitory 
populations (𝑏#). In order to assess activity correlations (functional connectivity) in the model, we 
computed all-to-all (76x76) pairwise correlations between the raw time series of excitatory firing 780 
rates 𝐸<. The model was simulated, for a total of 58.5s for each parameter combination prior to 
each run, initial conditions were randomized and the first 1.8 seconds were excluded from further 
analysis in order to avoid transient effects due to the initial conditions. All simulations and 
corresponding analyses were carried out in MATLAB2019b. 

Identification of the oscillatory regime in the cortex-wide model. In all model-based analyses, 785 
we assume that the (healthy) human brain never resides in a dynamical regime of sustained 
oscillations (Fig. S8A, top panel; see also Supplementary Information). We therefore identified, 
and excluded, parameter combinations resulting in sustained oscillations in the cortex-wide model 
(see above). In order to identify parameter combinations where simulated population activity 
settled in the oscillatory regime, the cortex-wide model was simulated without noise (i.e., 𝜂 = 0) 790 
for a total of 58.5s (plus 1.8s initialization, as outlined above). Next, for non-overlapping segments 
of 27 ms, the maximum and minimum of 𝑟" was computed. In a regime of noise-driven (damped) 
oscillations, the activity relaxed back to a fixed point over time (Fig. S8A, middle and bottom). 
Hence, the computed maximum and the minimum should converge on the same value, whereas in 
a regime of sustained oscillations, the maximum and the minimum will remain different 795 
throughout the entire simulation (Fig. S8A, top). Consequently, the regime was defined as non-
oscillatory or noise driven, if: (1) the maximum and minimum were identical at any point in time 
or (2) the difference between maximum and minimum decreased monotonously over time 
(indicative of a damped oscillation); if none of the two were true, the signal was defined as a 
sustained oscillation (see Supplementary Information).  800 

Model fitting procedure. We fit the free parameters of the cortex-wide model through an 
iterative procedure. The purpose of this procedure was to identify two working points, mimicking 
the two behavioral conditions (REST and TASK). First, we estimated the global coupling 
parameter	𝛼. This this end, we simulated the cortex-wide model (76 regions) over a range of 41 
different coupling parameters 𝛼 (with 𝛼	𝜖	{0, 0.05, … ,2}) and across 61x61 combinations of 805 
background inputs (with 𝐼"	𝜖	{−4,−3.9, … ,−1} and 𝐼#	𝜖	{−5,−4.9, … ,−2}). We then estimated 
the similarity of the simulated functional connectivity matrix FCsim and the empirical functional 
connectivity matrix FCemp (Rest and Placebo only; averaged across frequencies that showed 
significant changes for both drugs; see Fig 1E), separately for each combination of 𝐼" and 𝐼#, by 
means of a distance metric 𝛿 based on Pearson correlation(Demirtaş et al., 2019a): 810 

 

𝛿 = 1 − �R
k
∑ 𝜌�����,���,��� −	�〈R

k
∑ 𝐹𝐶<,P(nk
<mR 〉 − 〈𝐹𝐶H<(〉�k

<mR
=
�  (Eq. 15) 

 

where 𝜌�����,���,��� was the correlation (i.e., pattern similarity) between the empirical FC 
matrix for subject 𝑖 (averaged across frequencies, with 𝑖	𝜖	{1,2, … ,28}) and the simulated FC 815 
matrix and 〈	〉 denotes the average across all possible connections. We averaged the resulting 
distance values 𝛿 across all external background inputs (𝑏" and 𝑏#), while omitting parameter 
combinations where the network activity settled into a regime of sustained oscillations (see above). 
This resulted in a mean distance 〈𝛿〉 for each level of global coupling 𝛼 (Fig. S8C). Additionally, 
we repeated the procedure but instead computed Pearson correlation between FCsim and FCemp 820 
(Fig. S8D). We identified the level of 𝛼 where the mean distance 〈𝛿〉 between FCsim and FCemp 
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was minimized (𝛼 = 1.2). The parameter with lowest 〈𝛿〉 also yields a high correlation between 
FCsim and FCemp (Fig. S8D). 

 After having fixed the global coupling parameter, we aimed to identify the combination of 𝑏" 
and 𝑏# for each individual participant, that resulted in the highest similarity between FCsim and 825 
FCemp during REST and PLACEBO (i.e., lowest distance). To this end, we first identified the 
combinations of 𝑏" and 𝑏# where the distance between FCsim and FCemp was below the 2.5th 
percentile. The resulting binary matrix was then submitted to a clustering procedure (using SPM’s 
‘bwlabel’ function) and the single largest cluster was extracted. This was to reduce the influence 
of spurious correlations on the fitting procedure. Next, the geometric center of the largest cluster 830 
was computed and defined as the best fitting combination of 𝐼" and 𝐼#, yielding a working point 
for RESTsim. This procedure was repeated separately for each of the 28 participants (Fig. S8F). In 
order to determine the corresponding TASK parameter TASKsim, we assumed that the constant 
visual stimulation during TASK increases both excitatory (𝑏") and inhibitory drive (𝑏#), consistent 
with electrophysiological recordings in rodent visual cortex V1(Adesnik, 2017; Haider et al., 2013) 835 
(see Supplementary Information). Thus, in order to simulate TASK (TASKsim) we increased the 
background input to both excitatory and inhibitory populations, i.e., 𝑏" and 𝑏#. We chose to 
increase background input to inhibitory populations by ∆𝑏# = 	0.475	and to excitatory population 
by ∆𝑏" = 	0.25	(Fig. 2D,E, cortex-wide model). Note that, for simplicity, we here assume that the 
change in background inputs due to TASK is global and homogenous across all nodes and identical 840 
for all participants. This assumption is certainly oversimplified and model fits can likely be 
improved by heterogeneous scaling of these effects  as well as by taking individual differences into 
account. 

 
Local microcircuit models 845 

Microcircuit model of local node. In order to assess how changes in neural gain can be achieved 
through specific changes in synaptic weights, we simulated a model of a canonical cortical 
microcircuit, as a conductance-based neural network (Fig. 2F) comprised of 400 leaky integrate-
and-fire units (20% inhibitory). Model equations and parameters follow (Wang, 2002), with some 
modifications as mentioned below. The model architecture is depicted in Fig. 2F. The membrane 850 
potential dynamics of the excitatory units below threshold were governed by: 

 
𝐶(

p�(1)
p1

= 𝑔�(𝑉(𝑡) − 𝑉�) − 𝐼H��(𝑡) )      (Eq. 16) 
 
Here, 𝐼H��(𝑡) denotes the total synaptic current, which was composed of two glutamatergic 855 

excitatory currents (with AMPA and NMDA components) and GABAergic inhibitory currents. 
External input as well as external noise to the network were mediated exclusively via AMPA 
receptors. Baseline parameters were identical to the original version (Wang, 2002), with the 
exception of 𝑔#",�� � = 1.99 (weight of inhibitory to excitatory synapses) and 𝑔P*1,�¡¢� = 2.5 
(weight of external input on excitatory neurons). Moreover, the rate of the external Poisson input 860 
to excitatory and inhibitory neurons was changed to 𝑣P*1 = 881	𝐻𝑧 (originally 𝑣P*1 = 2400	𝐻𝑧). 
From these baseline values, we parametrically scaled the conductance parameters 𝑔"",�¡¢� and 
𝑔#",�� � (AMPA-mediated recurrent excitation and feedback inhibition, respectively) in order to 
achieve plausible spontaneous dynamics (see Supplemental Information and Fig. S10 for details). 
Next, we presented the network with stimuli in form of external excitatory input (added to the 865 
background input) to all excitatory cells, mediated through AMPA receptors, and assessed the 
effect on resulting excitatory population firing rate (Murphy and Miller, 2003). In visual cortex, 
neurons respond to stimuli with increasing contrast with higher firing rates. This relation between 
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a neurons output and the visual input strength is well-described by a hyperbolic ratio function 
known as the Naka-Rushton function: 870 

 
𝑅(𝐶) = 𝑅()*

�¦

�¦z�§¨¦
+ 𝑆       (Eq. 17) 

 
where 𝑅(𝐶) is the firing rate at input contrast 𝐶, 𝑅()* is the response gain, 𝑆 reflects the level 

of the spontaneous (background) activity and 𝐶ª« is the stimulus strength that yields a firing rate 875 
at half the maximum. Using this equation, we generated a set of stimuli (with varying “contrast”, 
i.e., varying levels of 𝐶) that were transformed into firing rates of different frequency and were 
subsequently fed into the network as an AMPA-mediated excitatory Poisson input. The parameters 
used in the current study were identical to the parameters used in a previous theoretical study on 
the effects of excitation and inhibition on response gain of single neurons (Murphy and Miller, 880 
2003): 𝑅()* = 2000	𝐻𝑧, 𝐶 = 20.133, 𝑛 = 	1.2 and 𝑆 = 0. This approach allowed us to measure 
the response of a neural population to inputs of varying contrast strength, which is typically 
depicted as a contrast-response curve (Fig. 2F, bottom panel). In order to assess the effect of 
excitation-inhibition ratio on the shape of the contrast-response curve, we either decreased or 
increased feedback inhibition in the model, through adjusting 𝑔"#,�� � (see Supplemental 885 
Information for details). Using nonlinear least squares estimation, we fit the hyperbolic ratio 
function (Eq. 17), with four free parameters (𝑅()*, 𝐶ª«� , 𝑆  and 𝑛), to the resulting contrast-
response curves. This yielded, among others, response gain parameters (𝑅()*) for different levels 
of feedback inhibition (Fig. 2F, bottom panel). The network was simulated for 3s per parameter 
combination, with a similar period of external stimulation. All simulations and analyses were 890 
carried out in Python 2.7.15, using the Brian spiking neural network simulator (version 1.4.4) 
(Goodman, 2009; Goodman et al., 2014), the Elephant toolbox for Python as well as custom code. 
The Python code for the model simulations was adapted from publicly available code (Wimmer et 
al., 2015). 

Decision circuit. In order to understand how the increase in reported perceptual transitions 895 
during ambiguous visual stimulation under atomoxetine (Fig. 3A; Fig. S11) could be related to 
changes in synaptic activity, we extended the above neural circuit by equipping the model with 
two excitatory populations, which competed for dominance via common feedback inhibition. The 
synaptic equations were identical to the homogeneous microcircuit described in the previous 
section. Unless stated otherwise, model architecture and parameters were identical to the original 900 
description (Wang, 2002) (Fig. 3B, left). The circuit consisted of N=2000 leaky integrate-and-fire 
neurons, endowed with full connectivity. 1600 of the neurons were excitatory and 400 inhibitory. 
The excitatory cells were assigned to one of three subpopulations: two decision populations (240 
neurons each), D1 and D2, as well as one non-specific population (DN; 1120 neurons). The two 
decision populations were assumed to represent the populations that encode the two possible 905 
perceived rotation directions of the ambiguous stimulus. All neurons, excitatory and inhibitory, of 
all populations (D1, D2, DN and I) received independent AMPA-mediated excitatory background 
input in the form of a Poisson spike train with a frequency of 2880 Hz. In addition, the neurons of 
the decision populations D1 and D2 received independent AMPA-mediated excitatory input with 
a mean firing rate of 55.6 Hz which was to reflect the stimulus-related sensory input. The identical 910 
mean in input to both decision populations was to mimic the ambiguous nature of the structure-
from-motion stimulus. Recurrent connections within D1 and D2 were stronger than connections 
within DN, by a factor of 𝑤z = 1.6. The network was simulated for 600s and population firing 
rates were estimated for time bins of 100 ms length. Perceptual transitions in the model were 
defined as the time points where the firing rate of one decision population exceeded the firing rate 915 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.06.25.171199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171199
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 
 
 

of the other decision population, i.e., at those time points where the difference between firing rates 
of D1 and D2 changed in sign (Fig. 3B, right). In order to attenuate the effect of very fast 
fluctuations on the number of perceptual transitions, we low-pass filtered the firing rates of both 
decision populations prior to computing the perceptual transitions (cutoff frequency 1 Hz). In order 
to understand the effect of execution and inhibition on perceptual transitions, we again modified 920 
feedback inhibition by means of adjusting 𝑔"#,�� � and computing the number of perceptual 
transitions for each level of feedback inhibition. For each level of feedback inhibition, the network 
was simulated 20 times.  
 
Pharmacological behavioral experiment (value-based choice task)  925 

 
Participants  

We measured 32 participants (21 females, age range 20 – 36, mean 27.28) that performed two 
sessions of a value-based choice task (Fig. 4A; Fig. S12A) after informed consent. All included 
participants were non-smokers. The study was approved by the Ethical Committee responsible for 930 
the University Medical Center Hamburg-Eppendorf. We excluded three participants from the 
analysis based on foraging efficiency, which we here defined as the fraction of collected rewards 
over the total number of available rewards: we excluded participants whose foraging efficiency 
deviated more than three times the median from the median, scaled by a constant (c»1.4826, using 
MATLAB’s ‘isoutlier’ function). Based on this criterion, the same three participants were 935 
excluded for both experimental sessions (Fig. 4E). This resulted in in 29 included participants.  

 
Experimental design 

General protocol. We manipulated the levels of catecholamines (noradrenaline and dopamine) 
in a double-blind, randomized, placebo-controlled pharmacological intervention using 940 
atomoxetine (see above, section Pharmacological MEG experiment). Each participant completed 
two experimental sessions, consisting of drug or placebo intake, a waiting period of 1.5 h, and 
performance of the behavioral task during MEG recordings. During task performance, participants 
were seated on a chair inside a magnetically shielded chamber and the (visual) task stimuli were 
presented on a screen in front of them (Fig. 4A; Fig. S12A). Because this was a standard trial-945 
based task design entailing many sensory and motor transients, the MEG data from this task were 
not used for the analysis of correlations between intrinsic fluctuations in cortical activity. The 
MEG data will be reported in a separate study.  

Behavioral task. We used a modified version of a dynamic foraging used in a previous monkey 
physiology study (Sugrue et al., 2004). Participants chose freely between two visual target stimuli 950 
(identified by orientation, randomized by position), which were associated with different histories 
of monetary rewards. The sequence of events during each trial is shown in Fig. S12A. Participants 
were asked to fixate a white box in the center of a uniform grey background. Each trial started with 
the presentation of the two targets (full-contrast Gabor patches with vertical or horizontal 
orientations) that were presented on either side of the fixation mark (eccentricity ~8.5°, diameter 955 
~4.25° visual angle). The horizontal target’s (left vs. right) location was randomly drawn on each 
trial, under the constraint that it would appear equally frequently on each side within a block of 
trials with equal ‘income ratio’ (see below). After a 0. 5-1.5 s delay, the fixation mark changed 
shape (from box to diamond), prompting the subject’s choice. Participants then pressed a button 
with their left or right index finger to choose the target at the corresponding location. After another 960 
variable delay (2-5 s), subjects received auditory feedback on the outcome of their choice (reward 
or no reward) by means of a low- or high-pitched tone (low: 200 Hz, high: 880 Hz; each with 
duration: 150 ms). The mapping of the tones to ‘reward’ or ‘no-reward’ was counterbalanced 
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across participants and instructed before the start of each experimental session. If the participant 
had not yet responded within a deadline of 3 s, another tone (440 Hz, 50 ms) signaled their missed 965 
response (no reward), and the trial was aborted. Targets disappeared after feedback tone, so that 
only the fixation mark remained for an inter-trial-interval (ITIS) 2-5 s, during which the subjects 
kept fixating. The next trial started upon the new onset of the targets. Trial duration varied between 
4.5 and 11.5 s plus reaction time (reaction times could range between 0 and 3 s) respectively, with 
an average trial duration of 8 s plus reaction time (0 to 3s). Participants completed 525 trials in 970 
each experimental session, taking about 75 min, excluding breaks in between blocks of 100 trials.  

Each target was baited with a separate Poisson process for generating rewards, under the 
following constraints (Fig. 4B,C): (i) the ‘income’ (i.e., reward) rate averaged across both targets 
was 0.8 rewards per trial; (ii) the ratios between the reward rates associated with each target for a 
given block of trials (see below) were drawn from a predefined set {7:1, 5:1, 3:1, 1:1, 1:1, 1:3, 1:5, 975 
1:7}; (iii) a reward assigned to a target (i.e., orientation) remained available there until this target 
was chosen; (iv) when a reward was available at a target, no new reward could become available 
there (i.e., there was never more than one reward available per target). Correspondingly, both or 
one or none of the targets could carry a reward in a given trial – the rewards associated with both 
targets were uncoupled. 980 

The ratios between reward rates (‘local income ratios’; Sugrue et al., 2004) changed between 
blocks of trials, without this being signaled to the participants. The block duration was sampled 
from a uniform distribution which ranged between 40 and 60 trials (Fig. 4C). Subjects were not 
informed about these changes. Because of this dynamic nature of the foraging task, a successful 
policy is to integrate rewards earned from choosing each target, but only ‘locally’ in time, over the 985 
last trials (see Sugrue et al., 2004, and Behavioral modeling).  

Subjects were not instructed about the statistics of the process generating the rewards. They 
were only instructed to (i) try to earn as many rewards as possible and that this would translate to 
a bonus payment at the end of the session; and (ii) to be ‘flexible’ in their behavior because the 
relative income of the two targets could change over time. 990 

Subjects were rewarded €0-20 bonus based on performance. The lower boundary was chance 
level performance; the maximum bonus could be earned by performing on par with an ideal 
observer model, which chose based on full information about the reward ratio at every trial. 
 
Pupil analysis 995 
The pupil diameter recordings were preprocessed similar to experiment 1 (see Pharmacological 
MEG experiment): eye blinks as well as eye movements were identified using the manufacturer’s 
default routines, then padded (+/- 200 ms), linearly interpolated and bandpass-filtered using a 
second-order Butterworth filter with a passband from 0.01 to 10 Hz. Next, the effect of blinks and 
saccades on pupil diameter was estimated through deconvolution and removed by means of linear 1000 
regression (Knapen et al., 2016). Mean pupil diameter was computed in a pre-target baseline 
interval from 500 ms to 0 ms prior to target onset. Pupil recordings were not available for 4 
participants. Hence, the analysis was performed for the remaining 25. 
 
Behavioral modelling  1005 
We fitted an algorithmic model of behavior to quantify the effects of atomoxetine on the different 
computations governing decision-making in the task. Our model extended the model previously 
developed to account for monkey choices in the task(Corrado et al., 2005; Sugrue et al., 2004). A 
schematic of the model is depicted in Fig. 4E. In words, model choices were computed through 
the following steps: (i) leaky integration of the rewards gathered from choosing each option over 1010 
the recent trials (locally in time); (ii) combination of the ‘incomes’ earned from each reward into 
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a relative value signal, the ‘local factional income’ (LFI); (iii) non-linear (softmax) transformation 
of LFI into a probability of choosing the horizontal option; (iv) a weighted contribution of a win-
stay-loose-switch (WSLS) heuristic and (v) a weighted contribution of general bias (preference for 
one of the targets) to the final choice probability. Leaky reward integration was applied in order to 1015 
account for rapid adaption to the hidden changes in income ratio across blocks (see above: 
Experimental design and (Corrado et al., 2005; Sugrue et al., 2004)).  

Please note that the WSLS heuristic had been suppressed, by design, in Sugrue et al. 
(2004)(Sugrue et al., 2004) through a so-called ‘change-over-delay’ (i.e., punishment for switching 
targets after one choice). We did not include this change-over-delay in our task to render the 1020 
foraging task even more naturalistic. We found that subjects’ behavior could be well accounted 
for by a linear mixture of the leaky reward integration described by steps (i)-(iii), the heuristic 
from step (iv) (Fig. 4F).  

In line with Sugrue et al., 2004, we fitted the model by minimizing the negative log-likelihood 
between the model choice probability from step (iv) and the subjects’ binary choices, giving the 1025 
set of parameter values (for  similar approach see Sugrue et al., 2004). We first found the minimum 
in a rough grid search. These parameter values were then used as starting point for MATLAB’s 
‘fminsearchbnd’.  

For each trial t, the model computed 𝐿𝐼­®I, the ‘local income’ earned from choosing the 
horizontal option, as follows: 1030 

 
𝐿𝐼­®I =

R
P¯9/°

∙ 𝑜R:1­®I ,      (Eq. 18) 
 
where 𝑜R:1­®I were the outcomes of horizontal choices on trials 1: 𝑡 and 𝜏 was the reward 

integration time constant (model leak l = R
t
). Rewards earned from choosing the horizontal option 1035 

were coded as 1 and all non-rewarded horizontal choices, or choices to the vertical option 
(irrespective of reward) were coded as 0. The same equation was used to update 𝐿𝐼 PI, now coding 
rewards earned from choosing the vertical option as 1 and all other outcomes as 0.  

The local fractional income LFIhor was defined as: 
 1040 
𝐿𝐹𝐼­®I = 	

�#µ¶·
�#µ¶·z	�#¸�·

 ,      (Eq. 19) 
 
𝐿𝐹𝐼­®Iwas transformed into the choice probability 𝑝(𝑐1 = ℎ𝑜𝑟), defined with respect to the 
horizontal target, through a sigmoidal (softmax) function (Corrado et al., 2005): 
 1045 

𝑝(𝑐 = ℎ𝑜𝑟) = 	 P»∙¼½¾µ¶·

	P»∙¼½¾µ¶·	z	P»∙¼½¾¸�·		
,     (Eq. 20) 

 
where 𝛽 was the inverse temperature parameter that governed decision noise, i.e. corrupting the 
mapping from LFI to the behavioral choice. 𝛽 ranged from 0 to infinity (no noise). This placement 
of the softmax transformation was motivated by model comparison (Fig. S12D). 1050 

Choice probability 𝑝(𝑐1 = ℎ𝑜𝑟)	was further transformed by linear combination with the simple 
switching (WSLS) mechanism defined as follows: 

 
𝑊𝑆𝐿𝑆(𝑐1|𝑜15R) = Á	𝑜15R ≠ 0, 𝑐1 = 	 𝑐15R

𝑜15R = 0, 𝑐1 = 	−1 ∗ 𝑐15R
	,    (Eq. 21)  

 1055 
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Finally, 𝑝(𝑐1 = ℎ𝑜𝑟) was transformed into the final choice probability estimate by linear 
combination with general bias 𝛿, which could range between -1 (all choices to vertical option) to 
1 (all choices to horizontal option). 

In sum, the dynamics of choice probability (model quantity fitted to the data), was given by: 
 1060 

𝑝(𝑐1 = ℎ𝑜𝑟|	𝑐R:15R, 𝑜R:15R) = Â1 − 𝛿 Â(1 − 𝜔ÄÅ�Å) ∙ �
P»∙¼½¾µ¶·

	P»∙¼½¾µ¶·	z	P»∙¼½¾¸�·		
� 𝜔ÄÅ�Å ∙ 𝑊𝑆𝐿𝑆Æ + 𝛿Æ   

(Eq. 22), 
 

where 	𝑝(𝑐1 = ℎ𝑜𝑟|	𝑐R:15R, 𝑜R:15R)	was the probability of horizontal choice on trial t, given the 
choices made and outcomes (rewards) received from trial 1 to trial t-1,  𝜔ÄÅ�Å	was a free parameter 1065 
(ranging from 0 to 1) that controlled the contribution of the WSLS heuristic to choice probability. 

In the results reported here, the model included all four free parameters for each of the 
participants. The level of bias and tendency to rely on the WSLS heuristic varied substantially 
between participants. In a separate version of the analysis, where we determined the best-fitting 
set of parameters per participant using cross-validation, we replicated the increase of the softmax 1070 
parameter under influence of atomoxetine (data not shown). 
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Supplementary Methods 
 
Dynamics of a single-node Wilson Cowan model  
The mass dynamics of the local nodes were governed by the control parameters and 𝒃𝑬	and 𝒃𝑰, 
representing external drive (background input) to the excitatory and inhibitory populations, 1285 
respectively. The parameters of the model were tuned such that the model is in a dynamical state 
close to a so-called supercritical Adronov-Hopf bifurcation. The ‘Hopf-bifurcation’ separates a 
regime in which the system relaxes to a stable fixed point, or focus, by drawing a spiral in the 
phase space (noise-driven, damped oscillations;  Fig. 2C; Fig. S8A, middle and bottom), and a 
regime in which the network activity settles into a limit-cycle, a closed orbit in the phase space 1290 
corresponding to a periodic solution (sustained oscillations; Fig. 2C and Fig. S8A, top). When the 
system settles into the focus, intrinsic noise induces stochastic oscillations and gives rise to a broad 
spectral density with a single peak. In contrast, in the limit-cycle, autonomous regular oscillations 
are observed, with a spectral density presenting a narrow peak (Fig. S8E). The parameters 𝒘 as 
well as 𝒃𝑬	and 𝒃𝑰 were loosely adjusted in order to produce dynamics in the vicinity of a 1295 
supercritical Hopf bifurcation. In the context of the Hopf-bifurcation, the term ‘supercritical’ is 
not to be confused with the same term referring to self-organized criticality and power law scaling 
behavior (Beggs and Plenz, 2003; Poil et al., 2012). 
 
Linear noise approximation for two-nodes Wilson Cowan model  1300 
We used a linear noise approximation to study the linear fluctuations around the system’s fixed 
points, i.e., 𝐸< = 𝐸<∗ + 𝛿𝐸< and 𝐼< = 𝐼<∗ + 𝛿𝐼<, where the fixed points are given by: 
 
 
𝐸<∗ = 𝜎/𝑤""𝐸<∗ − 𝑤"#𝐼<∗ + 𝑐𝐸l∗ + 𝑏" + ∆𝑏4,  (23) 1305 

𝐼<∗ = 𝜎(𝑤#"𝐸<∗ − 𝑤##𝐼<∗ + 𝑏# + ∆𝑏).   (24) 

 
Dynamic equations for the linear fluctuations can be written as: 
 
p
p1
𝛿𝒓 = 𝑨𝛿𝒓 + 	𝜼,      (25) 1310 

 
where 𝛿𝒓 = [𝛿𝐸R, 𝛿𝐼R, 𝛿𝐸=, 𝛿𝐼=], 𝜼 is the noise matrix, and 𝑨 is the Jacobian matrix of the 

system evaluated at the fixed points, given by the 4-by-4 matrix: 
 
𝐴ÐÑ = Ò R

ÓÔ

Õ�Ô
ÕÑ
Ö
("6∗,#6∗,"7∗,#7∗)

,   (26) 1315 

 
where 𝛼, 𝛽	 ∈ {𝐸R, 𝐼R, 𝐸=, 𝐼=}. Noting that 𝜎×(𝑢) = 𝑔𝜎(𝑢)[1 − 𝜎(𝑢)] and that, by symmetry, 

𝐸R∗ = 𝐸=∗ = 𝐸∗ and 𝐼R∗ = 𝐼=∗ = 𝐼∗, we get: 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.06.25.171199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171199
http://creativecommons.org/licenses/by-nd/4.0/


 

 
 

 

𝐴 = Ø

𝐴"" 𝐴"#
𝐴#" 𝐴##

𝐾 0
0 0

𝐾 0
0 0

𝐴"" 𝐴"#
𝐴#" 𝐴##

Ú,  (27) 1320 

 
where: 
 
𝜏"𝐴"" = 	−1 + 𝑤""𝑔𝐸∗(1 − 𝐸∗),  (28) 
𝜏"𝐴"# = −𝑤"#𝑔𝐸∗(1 − 𝐸∗),  (29) 1325 
𝜏"𝐾 = 𝑐𝑔𝐸∗(1 − 𝐸∗),    (30) 
𝜏#𝐴#" = 𝑤#"𝑔𝐼∗(1 − 𝐼∗),   (31) 
𝜏#𝐴## = −1 − 𝑤##𝑔𝐼∗(1 − 𝐼∗),  (32) 
 
The stationary covariances 𝑪´ = 〈𝛿𝒓𝛿𝒓𝑻〉 between all populations can be obtained through the 1330 

Jacobian matrix, by solving the following equation: 
 
𝑨𝑪𝒗 + 𝑪𝒗𝑨𝑻 + 𝑸𝒏 = 0,      (33) 
 
where 𝑸𝒏 = 〈𝜼𝜼𝑻〉 is the covariance matrix of the noise (which is diagonal for uncorrelated 1335 

white noise) and the superscript T denotes the transpose operator. Note that the Jacobian matrix 
depends on the system’s fixed points, i.e., it depends on the state of the nonlinear system and, thus, 
on the external inputs (𝑏", 𝑏#). Hence, the correlations are also a function of the parameters 
(𝑏", 𝑏#). Equation 20 can be solved using the eigen-decomposition of the Jacobian matrix 
evaluated at the fixed points: 𝐴	 = 	𝐿𝐷𝐿5R, where 𝐷 is a diagonal matrix containing the eigenvalues 1340 
of 𝐴, denoted 𝜆<, and the columns of matrix 𝐿 are the eigenvectors of 𝐴. Multiplying Equation 20 
by 𝐿5R from the left and by 𝐿5á from the right (the superscript dagger being the conjugate 
transpose) we get: 

 
𝑪𝒗 = 𝑳𝑴𝑳á,   (34) 1345 
 
where 𝑴 is given by: 𝑀<l = −𝑄æ<l/(𝜆< + 𝜆l∗), and 𝑸ç = 𝑳5𝟏𝑴𝑳5á. 

 
Supplementary Discussion 
 1350 
Assumptions for large-scale (Wilson Cowan) modeling  

Our large-scale modeling approach was based on two assumptions. In the following, we discuss 
the physiological evidence supporting these assumptions. 

Assumption 1. Cortex operates in a regime of noise driven, not sustained, oscillations. We 
assumed that the cerebral cortex generally operates in a regime of noise-driven oscillations, rather 1355 
than self-sustained oscillations (Fig. 2C; Fig. S8A). In the noise-driven (also referred to as 
fluctuation-driven) regime, stochastic fluctuations in activity drive damped oscillations in the local 
nodes. Superposition of such damped oscillations, triggered at random moments in time, give rise 
to the same ongoing variations in the amplitude of band-limited activity that are commonly 
observed in electrophysiological data under steady-state conditions (Hipp et al., 2012; Leopold et 1360 
al., 2003), including the current data set (Pfeffer et al., 2018). The time-varying amplitudes (power 
envelopes) were used to compute the inter-regional correlations in the MEG data (Fig. S2). 
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Consequently, we eliminated all parameter combinations that fell outside of this regime of noise-
driven oscillations from further consideration (see Methods for identification of the parameters 
producing sustained oscillations to be excluded). 1365 

Assumption 2. TASK increased the drive of both, E- and I-populations. We assumed that the 
change from REST to TASK corresponded to a shift of the model’s dynamical regime in an 
upward-rightward direction in the (𝒃𝑬, 𝒃𝑰)-plane (Fig. 2C, area defined by dashed outline). This 
means that background input to both excitatory and inhibitory neural populations is increased for 
all nodes of the model. This assumption rests on the straightforward notion that our elementary 1370 
visual task increased the input to sensory and task-related cortical regions. There is substantial 
evidence for the idea that cortical circuits generally operate in a regime of rough balance between 
excitation and inhibition (Shadlen and Newsome, 1998; van Vreeswijk and Sompolinsky, 1996). 
Specifically, sensory input increases not only feedforward excitation (i.e., feedforward drive of 
pyramidal cells), but also feedforward inhibition (i.e., feedforward drive of interneurons) in 1375 
sensory cortex (McCasland and Hibbard, 1997; Swadlow, 2002), and it is assumed that this motif 
repeats across the cortical hierarchy (Shadlen and Newsome, 1998) likely augmented through 
circuit motifs for feedback inhibition (Womelsdorf et al., 2014). Correspondingly, we assumed 
that the visual task increased the background input to excitatory and inhibitory populations in a 
(loosely) balanced fashion, with a slight dominance of feedforward inhibition in the case of the 1380 
cortex-wide model (see Fig. 2D,E). Indeed, recent evidence from rodent physiology shows that 
visual stimulation leads to a more pronounced inhibitory response (Adesnik, 2017; Haider et al., 
2013) compared to the excitatory response, consistent with sensory input leading to even stronger 
feedforward inhibition compared to feedforward excitation. Note that this was in line with 
Assumption 1: if the task-induced increase in excitation was much larger than the task-induced 1385 
increase in inhibition, the dynamical regime of the network would change to oscillatory, 
inconsistent with physiological evidence.   
 
Simulation and fitting of cortex-wide Wilson Cowan model  
The dynamical regime was defined as noise- or fluctuation-driven if: (1) the maximum and 1390 
minimum were identical at any point in time or (2) the difference between maximum and minimum 
decreased monotonously over time (indicative of a damped oscillation). If none of the two were 
true, the signal was defined as a sustained oscillation. Note that this approach does not allow to 
distinguish between the two regimes with full certainty as the time scale with which the amplitude 
of an oscillation decays back to the fixed point increases as one approaches the Hopf-bifurcation 1395 
from the fluctuation-driven regime (see Fig. S8A, middle and bottom panels). Thus, the closer the 
dynamical regime is to the Hopf-bifurcation, the more simulation time is required to accurately 
distinguish a sustained oscillation from a damped oscillation.  
 
Microcircuit modeling (spiking neurons) 1400 

Microcircuit model of local node. We simulated the leaky integrate-and-fire circuit across a 
range of parameters to identify a stable working point where the network exhibits dynamics 
reminiscent of the “asynchronous state” (Renart et al., 2010). We defined the asynchronous state 
as being characterized by a low spontaneous firing rate (1-5 Hz) and low mean pairwise spike 
correlations (r < 0.1; averaged across all pairs of excitatory units). In addition, we identified a 1405 
working point in the “synchronized state”, where the pairwise spike correlations where relatively 
high (r > 0.3), but spontaneous firing rates were comparable to the asynchronous state. This was 
achieved by changing AMPA-mediated recurrent excitation as well as the GABA-mediated 
feedback inhibition in a multiplicative manner: we started from the baseline parameters of Wang 
(2002), with some minor changes (see Methods), and multiplied 𝑔"",�¡¢� (i.e., conductance of 1410 
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recurrent AMPA receptors) and 𝑔#",�� � (i.e., conductance of GABAergic feedback inhibition) 
with 24 and 12 (respectively) linearly spaced values, ranging from 0.2 to 5 and 2.7 to 5. Fig. S10A 
shows spike rate (left) and mean pairwise spike correlations (right) for all parameter combinations. 
While for the main part of the analysis, we focus on the asynchronous state (shown in Fig. 2F; 
mean firing rate FR = 4.14 Hz; mean pairwise spike correlations r = 0.05), we further wanted to 1415 
test whether the observed effect of feedback inhibition on response gain holds true also for the 
synchronous state. To this end, we first identified a dynamical regime reminiscent of the 
synchronous state, with low firing rates (FR = 5.11 Hz) but relatively high pairwise spike 
correlations (r = 0.27). We find that, irrespective of state, a reduction in feedback inhibition leads 
to an increase in response gain (Fig. S10B). 1420 

Tuning of parameters of decision circuit model. This model was based on a circuit model of 
decision-making developed to explain neural dynamics and choice behavior in standard two-
alternative forced choice tasks, entailing trials of a few seconds of duration (Wang, 2002). Without 
further adjustments to the parameters of the decision circuit, the network dynamics would rapidly 
enter one of the two possible attractor states, reflecting the preference for decision 1 or decision 2. 1425 
Moreover, without sufficient levels of external drive or noise, the network would dwell in those 
states indefinitely, as the lateral inhibition would dominate over the external input or the magnitude 
of the noise. In order to introduce dynamics that exceed beyond short timescales (single trials), we 
increased the level of background noise as well as the strength of the external stimulus. This way, 
we identified a state where the model would switch continuously between two attractors. Once this 1430 
point was identified, we only changed feedback inhibition in order to assess the influence of E/I 
ratio on perceptual transitions (Fig. 3C). 

Note that other studies that employed neural circuit models similar to the one used here for the 
study of perceptual fluctuations during ambiguous stimulations (Moreno-Bote et al., 2007) also 
included adaptation as an alternative mechanistic explanation for perceptual transitions. For the 1435 
sake of simplicity, we did not consider this in the current circuit.  
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Supplementary Figures 

 

 
 1460 
Fig. S1. Drug effect on baseline pupil diameter.  
Baseline pupil diameter after the administration of atomoxetine (Atx), placebo (Pbo) or donepezil 
(Dpz), separately for rest (left) and task (right). (*) indicates P < 0.05 (paired t-test). 
 
 1465 

 
 
Fig. S2. Quantifying cortex-wide correlation structure.  
(A) (0.) Whole-head magnetoencephalography (MEG) was recorded using 274 recording channels 
located in a helmet above the participants head. (1.) The sensor-level signal was cleaned from 1470 
transient and sustained artifacts (e.g. muscle and heart beat artifacts, respectively). (2.) Spectral 
estimates were obtained from the cleaned sensor-level signal using complex wavelet convolution. 
(3.) From the spectral estimates and individual head models, source level power time series were 
obtained, (4.) from which orthogonalized power envelope correlations were computed. (5.) This 
resulted in functional connectivity (FC) matrices for each of the 17 carrier frequency bands of 1475 
interest. (B) Global degree (see Methods) and mean FC as a function of frequency during the rest-
placebo condition. (C) Spatial map of degree during the rest-placebo condition. Correlations peak 
in the ‘alpha’ (center frequency 9.51 Hz; B) and ‘beta’ frequency range (center frequency 16 Hz; 
B), with strongest ‘connectedness’ (degree) in left and right posterior parietal cortex. These results 
are consistent with previous reports using an analogous approach to resting-state MEG data. 1480 
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Fig. S3. Quantifying task effects on cortical activity correlations.  
(A) Illustration of the approach to quantify changes in the global activity correlation structure: 1485 
First, the difference between two conditions (here: rest and task; placebo only) was tested by means 
of a paired t-test. Next, the number of statistically significantly (P < 0.05; uncorrected) increased 
(in red) and significantly decreased (in blue) connections was counted. (B) A fraction of 
significantly altered correlations (negative and positive alterations) can be computed for each 
frequency band of interest, resulting in a spectrum of fraction of significantly altered correlations. 1490 
(C) Spatial distribution of the difference in correlation between task and rest (placebo only) at a 
carrier frequency of 9.5 Hz. 
 
 

 1495 
 
Fig. S4. Quantifying drug effects on cortical activity correlations.  
(A) Functional connectivity matrices (only lower or upper triangular parts; at a carrier frequency 
of 16 Hz) for atomoxetine, placebo and the difference between the two (lower triangular part: 
during rest; upper triangular part: during task) and (B) for donepezil, placebo and the difference 1500 
between the two. 
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 1505 
Fig. S5. Changes in correlations were not driven by changes in local variance.  
Atomoxetine (left) induced a weak increase in the fraction of nodes with reduced power envelope 
variance compared to placebo during rest (open circles indicate P < 0.05, corrected for multiple 
comparisons across frequencies). Atomoxetine produced a tendency towards the opposite effect 
during task (increase in local variance) during task, albeit not statistically significant. Donepezil 1510 
(right) did not lead to any significant alterations in local power envelope variance. The pattern of 
local variance changes under atomoxetine (decrease during rest, increase during task) cannot 
explain the observed pattern of changes in correlations under atomoxetine (no effect during rest, 
increase during task). In particular, an increase in local variance during task would reduce, not 
increase, correlations, because the local variance enters in the denominator in the computation of 1515 
the correlation coefficient.   
 

 
 
Fig. S6. Fraction of significantly altered correlations for various regularization parameters.  1520 
(A-C) Fraction of significantly altered correlations (FAC; as in Fig. 1E) for different regularization 
parameters used for the source reconstruction procedure (see Methods; panel A: α = 0.05; panel 
B: α = 0.15; panel C: α = 1.00). In the top row, the drug effects during rest are shown, in the middle 
row the effects during task (Left: Atomoxetine vs. placebo; Right: donepezil vs. placebo). The 
bottom row shows the effect of behavioral state (or context), i.e., the difference between the drug 1525 
effect during Rest and the drug effect during Task. Significant differences are indicated by open 
circles (P < 0.05) and filled circles (P < 0.01; two-sided single-threshold permutation test).  
 

0

25

4 8 16 32 64
0

25

4 8 16 32 64

Donepezil vs. PlaceboAtomoxetine vs. Placebo

R
est

Task
Fr

ac
tio

n 
of

 n
od

es
 w

ith
si

gn
ifi

ca
nt

ly
 a

lte
re

d 
va

ria
nc

e 
[%

]

Carrier frequency [Hz] Carrier frequency [Hz]

Decreased variance
Increased variance

P < 0.05 (corrected)

0

25

25

-25

0

25

0

25

0

25

4 8 16 32 64
Carrier frequency [Hz]

-25

0

25

D
iff

er
en

ce
 in

 F
AC

(R
es

t -
 T

as
k)

 [%
]

4 8 16 32 64
Carrier frequency [Hz]

0

25

0

25

-25

25

Fr
ac

tio
n 

of
 s

ig
ni

fic
an

tly
 

al
te

re
d 

co
rre

la
tio

ns
 (F

AC
) [

%
]

4 8 16 32 64
Carrier frequency [Hz]

4 8 16 32 64
Carrier frequency [Hz]

4 8 16 32 64
Carrier frequency [Hz]

4 8 16 32 64
Carrier frequency [Hz]

0

0

A alpha0 = 0.05 B alpha0 = 0.15 C alpha0 = 1.00
Dpz. vs. Pbo.

R
est

Task
R

est
-

Task

4 8 16 32 64
Carrier frequency [Hz]

4 8 16 32 64
Carrier frequency [Hz]

4 8 16 32 64
Carrier frequency [Hz]

4 8 16 32 64
Carrier frequency [Hz]

4 8 16 32 64
Carrier frequency [Hz]

4 8 16 32 64
Carrier frequency [Hz]

Atx. vs. Pbo.Dpz. vs. Pbo.Atx. vs. Pbo.Dpz. vs. Pbo.Atx. vs. Pbo.
P < 0.05 (corrected)
P < 0.01 (corrected)

Decreased corr.
Increased corr.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.06.25.171199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171199
http://creativecommons.org/licenses/by-nd/4.0/


 

 
 

 
 1530 
Fig. S7. Fraction of significantly altered correlations for various alpha-thresholds 
parameters.  
The choice of the alpha-level for the initial paired t-test (Fig. 1E) does not affect the general 
qualitative pattern of the drug-induced changes in the fraction of significantly altered correlations. 
(A) Fraction of altered correlations as in Fig. 1E, but for various different alpha-values (for the 1535 
initial t-test; see Methods), ranging from 0.01 to 0.10, for atomoxetine and (B) donepezil.  
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Fig. S8. Dynamics of the Wilson-Cowan models and fitting procedure of the cortex-wide 
model.  1540 
(A) Dynamics of a single Wilson-Cowan node around the Hopf-bifurcation. Top: Dynamics in the 
oscillatory regime, exhibiting sustained oscillations. Middle and bottom: Dynamics in the noise-
driven regime, exhibiting damped oscillations. (B) The drug effects on fraction of significantly 
altered correlations for 76 AAL nodes and selected carrier frequency bands (ranging from ~6.7 to 
~19 Hz). (C) Estimation of the global coupling parameter. Left: across all participants and a 1545 
number of background input parameters (to E and I), the similarity (here: distance; see Methods) 
between the simulated and the empirical functional connectivity matrices was computed. Right: 
Distance (averaged across participants) for various levels of global coupling. (D) Same as (C), but 
for Pearson correlation. (E) Peak frequency of the model for various levels of background inputs 
to E and I. (F) Illustration of the fitting procedure: for each combination of background inputs to 1550 
E and I, as well as every participant, the distance between simulated and empirical FC (rest and 
placebo only) was computed. The resulting distance matrix was thresholded at the 2.5th percentile 
(all values larger were set to zero, all others to 1) and the largest connected cluster was identified. 
The geometric mean of this cluster was defined as the best-fitting value for a given participant. 
Repeating this procedure for all participants resulted in 28 fitted resting state parameters. 1555 
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 1560 
 

 
Fig. S9. Effect of identical gain increase as in Fig. 2D (+0.1) combined with decrease of global 
coupling (-0.04) in cortex-wide model.  
This produces a similar decrease of cortex-wide correlations during rest as observed in the data 1565 
under donepezil, but an increase in correlations during task, different from both, the donepezil and 
atomoxetine data. Note that the specific pattern of these effect depends on the amplitude of the 
task-related shift in the (𝒃𝑬, 𝒃𝑰)-plane; the parameter changes used here may capture the observed 
donepezil effect with a different task-related shift in the (𝒃𝑬, 𝒃𝑰)-plane. However, an equally big 
gain increase under acetylcholine as under catecholamines seems unlikely, given existing 1570 
physiological data (Supplementary Information) and given the difference between the effects of 
both drugs on the number of perceptual transitions during the task (Fig. 3A and Fig. S11). 
 
 

 1575 
 
Fig. S10. Increased E/I ratio increases response gain in asynchronous and synchronous 
states. 
(A) The parameters of the leaky integrate-and-fire model were tuned such that the network 
dynamics are indicative of a synchronized state (depicted pairwise spike count correlations r = 1580 
0.27) and low baseline firing rate (depicted FR = 5.11 Hz) or an asynchronous regime (pairwise 
spike count correlations r = 0.05), with comparable baseline firing rate (FR = 4.14 Hz). (B) The 
effects of altered feedback inhibition on response gain in the synchronous regime (C) Same as (B), 
but for the asynchronous regime (identical to Fig. 2F, replotted here for better comparison). 
 1585 
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Fig. S11. Behavior during task and task-pressing 
Left: Number of reported perceptual transitions after the administration of atomoxetine (Atx), 1590 
placebo (Pbo) or donepezil (Dpz), separately for task (silent counting of perceptual transitions). 
Right: same for task-button (perceptual transitions reported through pressing a button; right) (*) 
indicates P < 0.05 (two-sided paired t-test). 
 
 1595 

 
Fig. S12. Task design, behavior, and behavioral modeling for dynamic foraging task. 
(A) Behavioral task. Top: sequence of events during each trial. Two choice targets 
(vertical/horizontal Gabors, randomized location) are presented at trial onset. A go-cue (change of 
fixation marker) instructs subjects to indicate their choice, by pressing a button with left or right 1600 
index finger. Binary auditory feedback (reward or no-reward) is delivered after variable delay. (B) 
Change-point triggered change in choice fraction. (C) Cross-validated comparison between 
behavioral model from main Fig. 4F with a model entailing only WSLS or only leaky reward 
integration combined with softmax transformation. The latter fits the data better, indicating that a 
reward integration mechanism is needed to account for the data. (D) Cross-validated comparison 1605 
between behavioral model from main Fig. 4F and a model, in which softmax transformation of 
choice probability is applied after combination with WSLS heuristic. The model from Fig. 4F 
(softmax transformation before WSLS) fits the data better.  
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Table S1. List of included AAL regions. 
 1610 

REGION  
INDEX 

AAL 
REGION NAME 

REGION 
INDEX 

AAL   
REGION NAME 

1 Precentral_L 39 Temporal_Inf_R 
2 Frontal_Sup_L 40 Temporal_Pole_Mid_R 
3 Frontal_Sup_Orb_L 41 Temporal_Mid_R 
4 Frontal_Mid_L 42 Temporal_Pole_Sup_R 
5 Frontal_Mid_Orb_L 43 Temporal_Sub_R 
6 Frontal_Inf_Oper_L 44 Heschl_R 
7 Frontal_Inf_Tri_L 45 Paracentral_Lobule_R 
8 Frontal_Inf_Orb_L 46 Precuneus_R 
9 Rolandic_Oper_L 47 Angular_R 

10 Supp_Motor_Area_L 48 SupraMarginal_R 
11 Frontal_Supp_Medial_L 49 Parietal_Inf_R 
12 Frontal_Med_Orb_L 50 Parietal_Sup_R 
13 Rectus_L 51 Postcentral_R 
14 Cingulum_Ant_L 52 Fusiform_R 
15 Cingulum_Mid_L 53 Occipital_Inf_R 
16 Cingulum_Post_L 54 Occipital_Mid_R 
17 Hippocampus_L 55 Occipital_Sup_R 
18 ParaHippocampal L 56 Lingual_R 
19 Calcarine_L 57 Cuneus_R 
20 Cuneus_L 58 Calcarine_R 
21 Lingual_L 59 ParaHippocampal_R 
22 Occipital_Sup_L  60 Hippocampus_R 
23 Occipital_Mid_L 61 Cingulum_Post_R 
24 Occipital_Inf_L 62 Cingulum_Mid_R 
25 Fusiform_L 63 Cingulum_Ant_R 
26 Postcentral_L 64 Rectus_R 
27 Parietal_Sup_L 65 Frontal_Med_Orb_R 
28 Parietal_Inf_L 66 Frontal_Supp_Medial_R 
29 SupraMarginal_L 67 Supp_Motor_Area__ 
30 Angular_L 68 Rolandic_Oper_R 
31 Precuneus_L 69 Frontal_Inf_Orb_R 
32 Paracentral_Lobule_L 70 Frontal_Inf_Tri_R 
33 Heschl_L 71 Frontal_Inf_Oper_R 
34 Temporal_Sub_L 72 Frontal_Mid_Orb_R 
35 Temporal_Pole_Sup_L 73 Frontal_Mid_R 
36 Temporal_Mid_L 74 Frontal_Sup_Orb_R 
37 Temporal_Pole_Mid_L 75 Frontal_Sup_R 
38 Temporal_Inf_L 76 Precentral_R 

List of cortical AAL regions included in the model-based analysis. 
 

Movie S1. 3D-Structure-from-motion stimulus. 
https://www.youtube.com/watch?v=baZqACCbQqk 

The 3D-Structure-from-Motion stimulus presented to the participants during the visual task. 1615 
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