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Abstract

Influential accounts postulate distinct roles of the catecholamine and acetylcholine
neuromodulatory systems in cognition and behavior. But previous work found similar effects of
these modulators on the response properties of individual cortical neurons. Here, we report a
double dissociation between catecholamine and acetylcholine effects at the level of cortex-wide
network interactions in humans. A pharmacological boost of catecholamine levels increased
cortex-wide interactions during a visual task, but not rest. Conversely, an acetylcholine-boost
decreased correlations during rest, but not task. Cortical circuit modeling explained this
dissociation by differential changes in two circuit properties: the local excitation-inhibition balance
(more strongly altered by catecholamines) and intracortical transmission (more strongly reduced
by acetylcholine). The inferred catecholaminergic mechanism also predicted increased behavioral
exploration, which we confirmed in human behavior during both a perceptual and value-based
choice task. In sum, we identified specific circuit mechanisms for shaping cortex-wide network
interactions and behavior by key neuromodulatory systems.


https://doi.org/10.1101/2020.06.25.171199
http://creativecommons.org/licenses/by-nd/4.0/

40

45

50

55

60

65

70

75

80

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.171199; this version posted October 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Introduction

The catecholaminergic (noradrenergic and dopaminergic) and cholinergic modulatory systems
of the brainstem are important regulators of global brain state and cognition (Arnsten, 2015; Aston-
Jones and Cohen, 2005; Bear and Singer, 1986; Cools, 2019; Harris and Thiele, 2011; Robbins
and Arnsten, 2009). Their brainstem centers send ascending projections to large parts of the
cerebral cortex (Aston-Jones and Cohen, 2005; Breton-Provencher and Sur, 2019; Schwarz and
Luo, 2015), which is equipped with similarly widely distributed receptors for those
neuromodulators (van den Brink et al., 2019; Burt et al., 2018). Consequently, these systems are
in an ideal position to shape cortex-wide network activity in a coordinated fashion. Indeed,
mounting evidence indicates that these systems have a profound impact on large-scale correlations
in cortical activity, as measured by neuroimaging or electrophysiological mass signals (van den
Brink et al., 2016, 2018, 2019; Coull et al., 1999; Leopold et al., 2003; Turchi et al., 2018).

Influential theoretical accounts postulate highly specific roles of the catecholaminergic and
cholinergic systems in the regulation of cognition and behavior (Aston-Jones and Cohen, 2005;
Montague et al., 2004; Yu and Dayan, 2005). One prominent idea holds that catecholamines
increase the responsivity (‘gain’) of neuronal populations to synaptic input (Aston-Jones and
Cohen, 2005; Eldar et al., 2013; Servan-Schreiber et al., 1990). Through this mechanism,
catecholamines can increase behavioral variability to promote exploratory decision-making when
required by the environmental context (e.g. to learn about new sources of reward) (Aston-Jones
and Cohen, 2005). Acetylcholine, on the other hand, has been proposed to reduce the impact of
prior knowledge (intra-cortical signaling) relative to new information (bottom-up signaling) (Yu
and Dayan, 2005). Such specific functional roles imply that these modulators should also have
specific effects on the activity of the cortical circuits that implement cognitive computation.

Due to a lack of experimental comparisons, physiological evidence for a distinct shaping of
cortical activity and behavior through catecholamines and acetylcholine is sparse. At the cellular
level, catecholamines and acetylcholine, in fact, both increase the gain of cortical neurons (Disney
et al., 2007; Herrero et al., 2008; Hurley et al., 2004; Polack et al., 2013), which translates into an
increased neuronal ‘signal-to-noise ratio’(Aston-Jones and Cohen, 2005; Robbins and Arnsten,
2009). However, the relative magnitudes of the catecholaminergic versus cholinergic gain
modulations have not been assessed. Further, while some studies have shown a suppression of
intra-cortical signaling through acetylcholine (Hsieh et al., 2000; Roberts et al., 2005; Silver et al.,
2008), it remains unknown whether the same holds for catecholamines, to a similar degree. A
direct comparison between the circuit-level, large-scale, and behavioral effects of catecholamines
and acetylcholine is required for pinpointing potential differences between the modulatory
systems, which might emerge at any of the above levels.

Here, we set out to conduct such a direct comparison. Our approach was inspired by insights
from theoretical neuroscience (Deco et al., 2014; Shine et al., 2018) — specifically, that (i) the
large-scale interaction of relatively subtle local microcircuit effects can give rise to substantial
effects at the level of cortex-wide network dynamics, and (ii) just as for single neurons (Servan-
Schreiber et al., 1990), the network effects of gain modulation should depend on the external drive
the network receives. We performed a direct comparison between the effects of placebo-controlled
pharmacological increases of catecholamine or acetylcholine levels on large-scale cortical
interactions in humans in two behavioral contexts: a visual task (i.e., external drive) and rest
(absence of drive). This yielded an unexpected, context-dependent double-dissociation between
the effects of catecholamines and acetylcholine. We then used computational modeling, across
multiple levels of cortical organization, to infer the circuit mechanisms underlying this
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dissociation. Model simulations explained the catecholaminergic effect through a net increase in
the population gain of local cortical regions, likely mediated by a ‘disinhibition’ of the underlying
microcircuits. By contrast, model simulations explained the cholinergic effect through a
85 suppression of intra-cortical signal transmission combined with weaker net gain modulation. The
catecholaminergic circuit disinhibition also predicted an increase in behavioral choice variability
in a circuit model for decision-making. We confirmed this prediction for human behavior in two
datasets under the same manipulation of catecholamine levels, for the domains of perceptual and
value-based decision-making (Sugrue et al., 2004, 2005). Our results provide critical constraints
90 for future computational theories of neuromodulatory function and set the stage for the
development of non-invasive biomarkers for the integrity of neuromodulatory function.

Results

We increased central catecholamine and acetylcholine levels through the placebo-controlled

95 administration of atomoxetine and donepezil, respectively (Fig. 1A, left; see Methods; data re-

analyzed from a previous report on local cortical variability (Pfeffer et al., 2018)). Atomoxetine is

a selective noradrenaline reuptake inhibitor. Consequently, atomoxetine increases noradrenaline

levels across cortex (Robbins and Arnsten, 2009) and dopamine levels in its more restricted

cortical projection targets (mainly frontal cortex) (Bymaster et al., 2002). Donepezil is a

100 cholinesterase inhibitor (Silver et al., 2008), which blocks the enzymatic breakdown of synaptic

acetylcholine and thus boosts cortical acetylcholine levels. Both drugs are routinely used in the

clinical practice for treating important neuropsychiatric disorders, such as attention deficit
hyperactivity disorder (atomoxetine) and Alzheimer’s disease (donepezil).

Atomoxetine (catecholamines), but not donepezil (acetylcholine), increased pupil size (Fig. 1B,
105 Fig. S1, an established peripheral marker of central arousal state (Breton-Provencher and Sur,
2019; de Gee et al., 2017; Joshi et al., 2016; McGinley et al., 2015; Reimer et al., 2016).

The rationale of our analyses, and hence organization of the Results is as follows. We (i)
measured the effects of these pharmacological interventions on large-scale cortical network
dynamics (assessed with magnetoencephalography; MEG) and behavior, and (ii) simulated

110 cortical circuit models in order to develop a mechanistic understanding of our empirical results.
By (iii) extending the model into a circuit that generates selection (i.e., choice) behavior, we turned
the mechanistic inference into a prediction for behavior, which (iv) we finally confirmed in two
independent datasets that probed into both, perceptual and value-based decision-making (Sugrue
et al., 2005).

115
Distinct, context-dependent drug effects on large-scale network dynamics

Large-scale cortical network interactions were quantified as the frequency-resolved, cortex-
wide correlations of intrinsic activity fluctuations (Fig. 1C). Critically, we measured these intrinsic
correlations in two behavioral contexts: a visual task with continuous input and eyes-open ‘rest’

120 (Fig. 1A, right). The task entailed the continuous presentation of an ambiguous visual stimulus,
which, in turn, induced spontaneous and ongoing alternations in perception (Leopold and
Logothetis, 1999) (Fig. 1A and Movie S1). During MEG blocks, we asked participants to silently
count perceived perceptual alternations and report the total count at the end of each run.
Consequently, we could assess intrinsic fluctuations in MEG activity in the absence of transients


https://doi.org/10.1101/2020.06.25.171199
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.171199; this version posted October 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

125 in visual input and motor movements. In separate blocks, participants reported each perceived
alternation with an immediate button press.

We used a previously established approach (Hipp et al., 2012) that attenuates spurious
correlations due to signal leakage (see Methods and Fig. S2A for illustration). We computed
pairwise correlations between 400 cortical locations and compiled them into a matrix, separately

130 for a range of carrier frequencies. Averaged across the placebo-rest condition, this yielded a similar
spatial and spectral structure of correlations as previously reported (Hipp et al., 2012) (Fig. S2B,C).
We then compared the correlation matrices between task and rest (Fig. S3), and between each drug
condition and placebo condition (Fig. S4). Neuromodulators may potentially cause correlations
between cortical mass signals to shift in a common direction (e.g., toward larger positive
135 correlations), or change in magnitude (e.g. shift toward more negative and more positive
correlations (Eldar et al., 2013)), depending on the underlying mechanism (van den Brink et al.,
2019). To statistically assess the differences between our experimental condition in an unbiased
fashion, we computed the fraction of significantly increased and decreased correlations, separately
for each frequency bin. We then tested those fractions for their deviation from the expected chance-

140 level, while accounting for multiple comparisons across frequencies (Methods and Fig. S3, S4).
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Fig. 1. Dissociated catecholaminergic and cholinergic effects on cortex-wide correlations in activity. (A) Experimental design.
Top: Atomoxetine (40 mg), donepezil (5 mg), or a visually indistinguishable placebo was administered before each session. Bottom:
MEQG activity was recorded during a visual task (left) or eyes-open ‘rest’ (right). (B) Drug effect on baseline pupil diameter (rest

145 and task collapsed. Atx, atomoxetine; Pbo, placebo; Dpz, donepezil; * P < (.05, paired two-sided permutation test) (C) Drug effects
on cortex-wide activity correlations (at 16 Hz), for task (upper triangle) and rest (lower triangle). Left: atomoxetine — placebo;
Right: donepezil — placebo. (D) Cortical distribution of drug effects on correlations. Left: Atomoxetine — placebo (task). Right:
Donepezil — placebo (rest). (E) Frequency spectrum of drug effects on the fraction of significantly (P<0.05, paired t-test) altered
correlations across brain regions, for atomoxetine (left) and donepezil (left) as well as for rest (top) and task (bottom). Fractions of

150 significantly increased (solid black lines) and decreased (dashed gray lines) correlations are shown separately. (F) Effect of
behavioral context on correlations (difference between upper and lower rows in E). (G) Spectrum of double dissociation between
atomoxetine and donepezil effects, measured as the difference between (panel E): solid black line (left) and dashed gray line (right).
Open circles, P < 0.05; filled circles, P < 0.01 (paired two-sided single-threshold permutation test).

Atomoxetine increased correlations across most pairs of regions during task (Fig. 1C, left; upper
155 triangular part; Fig. S4A). This effect was evident in all four cerebral lobes (Fig. 1D, left) and
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peaked in the ‘alpha/beta’ frequency band (9.51-16 Hz; Fig. 1E, left). The effect was absent during
rest (Fig. 1E; upper vs. lower triangular part in Fig. 1C).

In sharp contrast, donepezil (acetylcholine) decreased correlations across most region pairs, but
only during rest (Fig. 1C, right, lower triangular part; Fig. 1E, right; Fig. S4B). Consequently, both
160 drugs had opposite effects on correlations, dependent on behavioral context within overlapping
frequency bands (Fig. 1F). These opposite effects translated into a robust, frequency-specific and
context-dependent double dissociation between the atomoxetine and donepezil effects on cortical

network dynamics (Fig. 1G; all P-values < 0.01 for the range: 9.51-16 Hz).

The double dissociation was neither present at the level of local activity fluctuations (see Pfeffer
165 et al., 2018 and Fig. S5), nor did it depend on specific choices of analysis parameters (Fig. S6-7).

Distinct changes in circuit parameters explain drug effects on large-scale network dynamics

Catecholamines and acetylcholine both increase the gain of cortical neurons (Aston-Jones and
Cohen, 2005; Herrero et al., 2008; Polack et al., 2013; Servan-Schreiber et al., 1990). How, then,
170 did the dissociation between their large-scale effects arise? To illuminate this question, we
modeled the mass activity of coupled cortical regions (‘nodes’), each of which was composed of
an interconnected excitatory and inhibitory neural population (Wilson and Cowan, 1972) (Fig. 2A,
B, see also Methods and Supplementary Discussion). The model had four free parameters: the
background inputs to excitatory (bg) and inhibitory (b;) populations, the slope of the input-output
175 function (‘gain’ at the neural population level) and a global coupling parameter.

Our simulations were constrained by two assumptions derived from established physiology (see
also Supplementary Discussion). First, we assumed that cortical mass activity exhibits noise-
driven oscillations, as opposed to sustained oscillations. In the noise-driven (also referred to as
fluctuation-driven) regime, stochastic fluctuations in activity drive damped oscillations in the local

180 nodes. Superposition of such damped oscillations, triggered at random moments in time, give rise
to the ongoing variations in the amplitude of band-limited activity. Second, we assumed increased
background input (b) to excitatory populations (bg) and inhibitory populations (b;) in many
cortical regions during task (Haider et al., 2013). This assumption rests on the notion that our visual
task increased the input to visual as well as higher-order ‘task-related’ cortical regions, and

185 affected both excitatory and inhibitory neural populations in these regions. Indeed, sensory input
increases not only excitation (i.e., drive of pyramidal cells), but also inhibition (i.e., drive of
interneurons) in sensory cortex (McCasland and Hibbard, 1997; Swadlow, 2002).
Correspondingly, in the model, task increased the background input to excitatory as well as
inhibitory populations relative to rest, resulting in an upward-rightward shift in the (bg, b;)-plane.

190 Fig. 2C illustrates these two assumptions in terms of the gray shaded area (top left; sustained
oscillations) and the dashed black outline (task-related increase in background input; shown for a
version of the model made up of only two nodes).
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195 Fig. 2. Circuit mechanisms of context-dependent effects on cortex-wide correlations. (A) Schematic of a single node (brain

region) consisting of an excitatory (E) and an inhibitory population (I), with full connectivity and independent background input to
E and I (Wilson-Cowan model(Wilson and Cowan, 1972)). Inset, input-output function of each population for various gain
parameters (slope of the input-output function). (B) Left: Correlations were computed between the firing rates of the E populations
of two or more nodes. Right: For the cortex-wide model, an estimate of the human structural connectome was used to connect a
200 total of 76 nodes, and the model was fitted to the rest-placebo data (see Methods). (C) Change in correlation under an increase in
gain (+0.1) in the (bg, b;)-plane of the ‘two-nodes model’. Inset: sustained and noise-driven oscillations. The area defined by the
dashed black line highlights the assumed task-related shift in the (bg, b;)-plane. (D) Effect of gain increase (+0.1) across all 76x76
node pairs (right; white circle: rest; yellow circle: task) (E) As D, but for donepezil with gain increase by +0.04 (see Fig. S9 for
+0.1) and decrease in global coupling (-0.04). (F) Top: Architecture of microcircuit consisting of excitatory and inhibitory integrate-
205 and-fire neurons (all-to-all connectivity). Bottom, left: Effect of change in E/I (feedback inhibition) on gain for increases (decreased
E/I; black line; filled black circles) and decreases in feedback inhibition (increased E/I; gray line; filled gray circles), with respect
to baseline (dashed line; open circles). Bottom, right: fitted response gain parameter (R4, ) of the stimulus-response function for

three levels of E/I.
We used the model to test the hypothesis that differences in gain modulation and/or changes in
210 global coupling could explain the double dissociation observed in the data. Gain increase under
catecholamines has been established for the input-output functions of single cortical neurons
(Aston-Jones and Cohen, 2005; Hurley et al., 2004; Servan-Schreiber et al., 1990) as well as of
neural mass activity assessed with neuroimaging (Eldar et al., 2013; Shine et al., 2018). Our
simulations showed that an increase in gain was, in fact, sufficient to explain the context-dependent
215 effect of atomoxetine on cortical correlations (Fig. 2C). Just as observed in the empirical data (Fig.
1E, left), increasing the gain in the ‘two-node model” produced distinct changes in correlations for
different contexts situated in the (bg, b;)-plane (i.e., different levels of background drive; rest:
white circle; task: yellow circle; Fig. 2C). In a realistic model of the whole cortex (Fig. 2B, right),
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which was fitted to the measured correlation matrix for rest-placebo (Fig. S8F), an increase in gain
220 boosted correlations in the same context-dependent fashion, with no change at rest (Fig. 2D, light
gray circle or bar), but a robust increase during task (Fig. 2D, yellow circle or bar).

Increases in neural gain result from complex synaptic interactions (Ferguson and Cardin, 2020),
at a spatial scale smaller than the one of our neural mass model of entire cortical nodes. We
reasoned that the inferred catecholaminergic gain increase may have resulted from a
225 catecholaminergic increase the ratio between excitation and inhibition (henceforth termed ‘E/T’)
within cortical microcircuits (Froemke, 2015; Murphy and Miller, 2003; Polack et al., 2013).
Indeed, noradrenaline tonically suppresses ongoing inhibitory inputs to pyramidal cells (Martins
and Froemke, 2015; Polack et al., 2013), which may translate into an increase in the gain of the
whole microcircuit. We simulated cortical microcircuit model to test this idea (Methods; Fig. 2F,
230 top; Fig. S10). The microcircuit model was made up of recurrently connected excitatory and
inhibitory conductance-based spiking neurons. We increased the circuit’s E/I by decreasing the
strength of feedback inhibition and of quantified the effect on response gain the input-output
function of the excitatory cells of the circuit (Methods). In line with our reasoning, increasing E/I
translated into a response gain increase (Fig. 2F, bottom).

235 Our neural mass model could also explain the opposite, context-dependent effect of
acetylcholine on large-scale cortical dynamics (Fig. 1E, right). While acetylcholine, like
catecholamines, increases the gain of single neurons (Disney et al., 2007; Herrero et al., 2008,
2017; Soma et al., 2012), cholinergic and noradrenergic effects on E/I (i.e., gain) differ: the
cholinergic E/I (i.e., gain) increase affects a smaller fraction of neurons in the circuit for a shorter

240 duration (Froemke, 2015; Froemke et al., 2007), which likely translates into a smaller impact on
the microcircuit’s (i.e. node’s) net gain (see Discussion). An increase in gain, indeed smaller than
the catecholaminergic increase, selectively decreased correlations during rest (not task) — but,
critically, this gain modulation had to be combined with a decrease in the model’s global coupling
parameter (Fig. 2E). Such a decreased global coupling is in line with a reduction of intracortical

245 (lateral and/or feedback) signaling observed in sensory cortex (Hsieh et al., 2000; Roberts et al.,
2005; Silver et al., 2008) (see Discussion).

E/I increase under catecholamines also accounts for increased behavioral variability

The above circuit modeling insights, specifically the cortical E/I increase under catecholamines,
250 also accounted for the observed drug effects on visually-guided behavior, further validating our
conclusions (Fig. 3). Atomoxetine (not donepezil) increased the number of perceptual alternations
reported by participants during MEG (Fig. 3A), a simple readout of behavioral variability (Renart
and Machens, 2014). This effect was not due to a change in eye movements or blinks (Pfeffer et
al., 2018), and it was evident both when participants silently counted the perceptual transitions and
255 when they reported each perceptual transition with an immediate button press (Fig. S11).

To make the above microcircuit model produce selection behavior, we expanded it by means
of two populations of excitatory neurons encoding a specific decision (‘D1’ and ‘D2’), which
competed via feedback inhibition (Fig. 3B, left), yielding an architecture equivalent to a well-
established model in the context of 2AFC tasks (Wang, 2002). Increasing E/I in this model has

260 been shown to yield more variable decision-making in two-alternative forced choice tasks (Lam
etal., 2017). To model our current task, we adjusted some parameters (see Methods) and simulated
the model under sustained, and equally strong, input to D1 and D2, modelling unbiased
competition. The model exhibited ongoing alternations in the activity dominance of D1 or D2 (Fig.
3B, right) and, just as our participants under atomoxetine, an increase in the alternation rate under
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265 increased E/I due to decreased feedback inhibition (Fig. 3C). In other words, participants, as well
as the model, were more prone to ‘explore’ different perceptual interpretations of a constant,
ambiguous input.

A, B Cc
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Fig. 3. Catecholamine-induced increase in E/I ratio can increase perceptual variability (A) Effect of atomoxetine on rate of

270 alternations in the judgment of continuous input (changes in the apparent direction of rotation of the seemingly rotating sphere).
(B) Left: Schematic of the decision circuit, endowed with two excitatory decision populations, D1 and D2, and a non-selective
population (DN), fully connected to a pool of inhibitory neurons. The two decision populations receive noisy Poisson input,
reflecting the ambiguous nature of the visual stimulus. Right: The model exhibits spontaneous firing rate fluctuations. Perceptual
transitions in the model are defined as changes in the dominance of one population over the other (i.e., one having a higher firing

275 than the other). (C) Effect of E/I increase in circuit model on number of transitions in the judgment of continuous input. E/I increase
in the circuit model is implemented via decrease in feedback inhibition (red/blue arrows).

The tradeoff between behavioral exploration and exploitation is commonly studied in other
contexts than perceptual multistablity — specifically during foraging for reward in environments
with changing reward contingencies (Cohen et al., 2007). An influential view holds that

280 catecholamines render choice behavior more variable in order to facilitate behavioral exploration
just when the uncertainty about the environment has increased (Aston-Jones and Cohen, 2005;
Cools, 2019; Frank et al., 2009). We, thus, performed a second behavioral experiment to probe the
effect of atomoxetine (same dose as for the perceptual task, Fig. 4A) on value-based choice during
foraging. We used a modified version of a dynamic foraging task previously used in monkeys

285 (Sugrue et al., 2004) (Methods, Fig. 4B,C). As in the first dataset, atomoxetine increased baseline
pupil diameter (Fig. 4D). Participants chose between two visual targets (horizontal/vertical Gabor
patches, displayed in different hemifields) which were associated with different reward histories
(Fig. 4B,C; Fig. S12B). All but three participants performed the task well, reaching a performance
of ~70% (Fig. 4E).

290 In order to quantify the drug effect on behavioral exploration, we fitted choice fractions with
an algorithmic model made up of four parameters that could differ between atomoxetine and
placebo (Fig. 4F). The ‘noise’ (1/P) parameter, governing choice variability (exploration),
selectively increased under atomoxetine (Fig. 4G, left). This effect on decision noise was
independent of reward integration, which are commonly linked to the dopamine system (Montague

295 et al., 2004). The latter were quantified by the leak (inverse of integration time constant t, see Fig.
4F), for which we observed no effect (Fig. 4G, second from left). Atomoxetine also did not affect
the other two parameters of the model (Fig. 4G). The finding of increased internal noise is in line
with the circuit model prediction for E/I increase for forced choice tasks(Lam et al., 2017). In sum,
elevated catecholamine levels increased behavioral exploration in sensory- and value-guided

300 behavior, likely via increasing E/I in cortical circuits.
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Fig. 4. Catecholamines promote exploratory choice during foraging. (A, B) Experimental design for value-based choice
experiment. (A) Administration protocol for the value-based choice experiment: atomoxetine or placebo was administered before

305 each session (B) Reward scheme illustrated for example sequence of rewards and choices across seven trials (see Methods for
details). (C) Choice behavior vs. reward contingencies for an example subject and session. Continuous blue curve, cumulative
choices of horizontal vs. vertical targets. Black lines, average ratio of incomes earned from both targets (horizonzal:vertical) within
each block). (D) Effect of atomoxetine on baseline pupil diameter. (E) Harvesting efficiency (fraction of collected over available
rewards) per subject and experimental session. Red circles, subjects excluded due to poor performance (F) Schematic of the

310 algorithmic model for value-based choice task (dynamic foraging). Choice behavior was analyzed with a reward integration model
consisting of four parameters: integrator leak, decision noise (1/p of softmax transformation), weight of ‘win-stay, loose-switch’
heuristic, overall (static) bias (see Methods). (G) From left to right: Effect of atomoxetine on the decision noise (1/B), leak (inverse
of integration time constant), Win-Stay-Lose-Switch heuristic and bias.

315 Discussion

Previous animal work has reported differences between noradrenergic and cholinergic effects on
the firing rates or membrane potential fluctuations of single neurons (Castro-Alamancos and
Gulati, 2014; Polack et al., 2013). Here, we uncovered a behavioral context-dependent double
dissociation between catecholaminergic and cholinergic effects on large-scale cortical network
320 dynamics, developed a mechanistic account of this observation, and validated this account through
two independent behavioral tests. Our results may constitute a physiological basis for the distinct
roles of catecholamines and acetylcholine in cognition postulated by computational theory (Aston-
Jones and Cohen, 2005; Yu and Dayan, 2005). Specifically, a prominent idea holds that the
noradrenaline and acetylcholine systems track two forms of uncertainty during inference in
325 changing environments: Acetylcholine signals so-called ‘expected uncertainty’, which originates
from the inherent noise corrupting the information received in a given (constant) state of the
environment; noradrenaline signals ‘unexpected uncertainty’, stemming from hidden changes in
the state of the environment (Yu and Dayan, 2005). These two forms of uncertainty should have
separable influences on the neural computations in the cortex that underlie inference. Our results


https://doi.org/10.1101/2020.06.25.171199
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.171199; this version posted October 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

330 suggest that such functional distinction may be mediated by distinct modulatory effects on local
and cortical microcircuits, which in turn translate into massive differences at the level of large-
scale cortical interactions.

Our behavioral results establish a general catecholaminergic effect on perceptual and value-

based decision-making and confirm a key prediction from a prominent account of

335 catecholaminergic (noradrenergic) modulation of learning and decision-making (Aston-Jones and

Cohen, 2005). In this view, the noradrenergic system controls the exploration-exploitation

tradeoff, whereby high tonic noradrenaline levels boost behavioral variability. While this is

detrimental to performance in static environments, it is adaptive in the presence of hidden

environmental changes, as were present in our foraging task, by promoting exploration of

340 alternatives (Aston-Jones and Cohen, 2005; Cohen et al., 2007; Usher et al., 1999). Indeed, animal

behavior becomes more variable during periods of high tonic firing of the locus coeruleus in

perceptual tasks in static environments (Aston-Jones et al., 1999; Usher et al., 1999) as well in

value-based choice in changing environments (Kane et al., 2017; Tervo et al., 2014). In particular,

chemogenetic stimulation of locus coeruleus tonic activity, increased decision noise during a

345 foraging task (Kane et al., 2017), , just as in the present Figure 4. These findings in animals are in
line with our current results in humans.

One atomoxetine study in humans used a similar pharmacological protocol to ours during a
gambling task and decomposed random and directed modes of behavioral exploration (Warren et
al., 2017). Unexpectedly, this yielded a decrease in random exploration under atomoxetine

350 (Warren et al., 2017), a finding that appears to be at odds with the above animal work as well as
the increase in behavioral variability reported in the two tasks of the present study. One possibility
is that the predominant effect of atomoxetine on tonic versus phasic noradrenaline level differed
between our experiments and the one from (Warren et al., 2017). Such differences may have
occurred for several reasons including (i) the different latencies of the behavioral measurements

355 relative to drug intake (1.5 in our study vs. 3 h in theirs), (ii) inter-session differences in baseline
arousal/noradrenaline levels, and/or (iii) inter-individual differences in atomoxetine sensitivity
between participants. For both our experiments, we found a robust increase of baseline pupil
diameter under atomoxetine (Figs. 1B and 4D), consistent with increased tonic noradrenaline
levels (Joshi et al., 2016; McGinley et al., 2015; Reimer et al., 2016), an effect not tested by Warren

360 et al. (2017). The decreased exploration in the latter study may have resulted from a predominant
increase in phasic noradrenaline release in line with Aston-Jones & Cohen (2005) and also alluded
to by the authors (Warren et al., 2017).

In our behavioral model, internal noise (1/f) affected the reward-dependent component of
behavior before its combination with WSLS. This was motivated by model comparisons indicating
365 that noise should be applied before, not after, combination of the reward-dependent choice
probability with the WSLS heuristic (Fig. S12D). This observation is largely consistent with recent
evidence pointing to reward integration, rather than response selection, as the dominant source of
behavioral variability (Findling et al., 2019). Separating between noise at each integration step and
noise at the transformation from integrated reward (LFI) into choice probability (as in Findling et
370 al., 2019) would require a different modeling approach. Our aim here was to unravel the
mechanistic basis of the impact of catecholamines on internal noise, regardless of the exact locus
of this noise, based on the monkey work that inspired our task (Corrado et al., 2005; Sugrue et al.,
2004). Future work should further constrain the locus of the catecholaminergic noise boost.

Our multi-scale circuit modeling shows that subtle differences in the effects of catecholamines
375 and acetylcholine at the cellular level (e.g. gain increases of different magnitude (Aston-Jones and
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Cohen, 2005; Herrero et al., 2008; Servan-Schreiber et al., 1990)) can combine to yield context-
dependent dissociations at the level of large-scale cortical network dynamics. This principle
accounts for the context-dependent (task vs. rest) double dissociation between the modulatory
effects observed here. Importantly, our model-based inferences about the underlying circuit

380 mechanisms are consistent with insights from single-cell physiology (Aston-Jones and Cohen,
2005; Froemke, 2015; Haider et al., 2013; Herrero et al., 2008; Martins and Froemke, 2015). The
first inference that catecholamines and acetylcholine both increase overall gain (and hence E/I),
but with different magnitudes is supported by the observation that noradrenaline and acetylcholine
differentially modulate E/I in rodent auditory cortex (Froemke, 2015). Acetylcholine suppresses

385 stimulus-evoked, inhibitory transients in pyramidal cells (Froemke et al., 2007; Letzkus et al.,
2011) while noradrenaline suppresses ongoing inhibition in a persistent fashion (Martins and
Froemke, 2015). Such synaptic and cellular differences can translate into a differential net gain
increase of the whole microcircuit (with a smaller net gain increase under acetylcholine) as
described by the nodes of our neural mass model.

390 Our second inference, of reduced intra-cortical communication (global coupling) under
acetylcholine, is also consistent the reduction of intracortical (lateral and/or feedback) signaling
that has been observed in in visual and auditory cortex (Hsieh et al., 2000; Roberts et al., 2005;
Silver et al., 2008) and in perception (Gratton et al., 2017), possibly mediated by muscarinic
receptors(Hsieh et al., 2000). At the computational level, this inference aligns well with the idea

395 that acetylcholine reduces the impact of prior knowledge (intra-cortical signaling) relative to
incoming evidence (bottom-up signaling) (Yu and Dayan, 2005). However, evidence from
prefrontal cortex suggests that acetylcholine can also increase synaptic efficacy on recurrent intra-
cortical connections, through both nicotinic and muscarinic receptors (Arnsten et al., 2010).
Further work is needed to elucidate the synaptic basis of the cholinergic effects observed here.

400 The mechanistic insights put forward here shed new light on apparently inconsistent findings
reported in previous studies on pharmacological effects on intrinsic cortical correlations as
assessed through neuroimaging (van den Brink et al., 2019). One PET study found cortical an
increase in cortical correlations during a task but decrease during rest under clonidine (an a2-
adrenergic auto-receptor agonist that reduces noradrenaline release) (Coull et al., 1999), similar to

405 the context-dependence in the present Fig. 1C left. By contrast, a study of atomoxetine (same dose
as ours) effects on resting-state fMRI found a robust decrease in correlations (van den Brink et al.,
2016), in contrast to weak effect during rest in our present measurements (Fig. 1C, left, lower
triangular part). While this may reflect differences in the underlying signals (fMRI vs. band-limited
MEG power), our model simulations (Fig. 2) demonstrate how subtle differences in the baseline

410 state of the system (i.e., location on the (bg, b;)-plane) can lead to qualitatively different effects
(i.e., sign reversals) of the same gain increase (catecholamines) on intrinsic activity correlations.
Differences in environmental factors (e.g. scanner noise), age, or participants’ baseline arousal
levels may all shift the baseline state. Such differences in baseline state can translate into
qualitative differences of drug effects (including sign reversals) on cortical correlations, even

415 under the same drug and pharmacological protocol (dosage, timing of administration, etc.). This
highlights the importance of circuit modeling for understanding the results from pharmacological
neuroimaging studies.

Intrinsic correlations in brain activity are widely used in basic human neuroscience and clinical

biomarker development (Deco et al., 2014; Fox and Greicius, 2010; Hipp et al., 2012). The

420 behavioral context-dependence of the neuromodulatory effects we uncovered here implies that
resting-state measurements alone lack a critical dimension: the comparison between rest and task

contexts was necessary to uncover the specific impact of neuromodulators on cortical dynamics.
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It is likely that the same holds for other classes of neurotransmitters, and their disturbances in brain
disorders. Our approach sets the stage for the development of new non-invasive assessments of
425 the integrity of neuromodulatory systems.

In sum, we have pinpointed candidate circuit mechanisms for the distinct catecholaminergic
and cholinergic shaping of large-scale cortical network interactions. Our results can guide future
work into the underlying cellular and molecular mechanisms in animals and set the stage for the
development of non-invasive biomarkers for the integrity of neuromodulatory systems in humans.
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Methods

Pharmacological MEG experiment (resting-state and continuous perceptual choice task)

460 Participants
30 healthy human participants (16 females, age range 20-36, mean 26.7) participated in the

study after informed consent. All included participants were non-smokers. The study was approved

by the Ethics Committee of the Medical Association Hamburg. Two participants were excluded

from analyses, one due to excessive MEG artifacts, the other due to not completing all 3 recording
465 sessions. Thus, we report results from N=28 participants (15 females).

The present dataset was also used in a previous report (Pfeffer et al., 2018), which focused on
the effects of both drugs (see below) on the long-range temporal correlations in the local activity
fluctuations. The present analyses of the correlations between these fluctuations across different
cortical regions are independent from the results presented in this previous work. A different

470 version of the behavioral result shown in Fig. 3A was also shown in the previous paper (Pfeffer et
al., 2018).

Experimental design
General protocol. We manipulated the levels of catecholamines (noradrenaline and dopamine)
475 and acetylcholine through pharmacological intervention (Fig. 1A). Each participant completed
three experimental sessions, consisting of drug or placebo intake at two time points, a waiting
period of 3 hours, and an MEG recording session. During the recordings, participants were seated
on a chair inside a magnetically shielded chamber. Each recording session consisted of six
measurement blocks with different behavioral tasks (see below). Each block was 10 minutes long
480 and followed by a short break of variable duration.

Pharmacological intervention. We tested for the effects of two different drugs in a double-
blind, randomized, placebo-controlled, and cross-over experimental design. We used the selective
noradrenaline transporter inhibitor atomoxetine to boost the levels of catecholamines
(noradrenaline and dopamine (Bymaster et al., 2002; Robbins and Arnsten, 2009)). We used the

485 cholinesterase inhibitor donepezil to boost acetylcholine levels. A mannitol-aerosil mixture was
administered as placebo. The dosages for both drugs were chosen to be below common clinical
steady-state dosages and in accord with previous fMRI work showing clear effects of the same
dosages on cortical processing (van den Brink et al., 2016; Silver et al., 2008): 40 mg for
atomoxetine (clinical steady-state dose for adults: 80 mg) and 5 mg for donepezil (common clinical

490 entry dose). All substances were encapsulated identically in order to render them visually
indistinguishable. Peak plasma concentrations are reached ~3-4 hours after administration for
donepezil (Tiseo et al., 1998) and 1-2 hours after administration for atomoxetine (Sauer et al.,
2005). In order to maximize plasma drug levels during MEG, participants received two pills in
each session, 3 h and 1.5 h before MEG (Fig. 1A): placebo (t = -3 h) followed by atomoxetine (t

495 = -1.5 h) in the ATOMOXETINE condition; donepezil (t = -3 h) followed by placebo (t =-1.5 h)
in the DONEPEZIL condition; placebo at both times in the PLACEBO condition. The three
sessions were scheduled at least 2 weeks apart to allow plasma levels to return to baseline (plasma
half-life of atomoxetine: ~5.2 h — 21.6 h(Sauer et al., 2005); half-life of donepezil: ~70 h).

Behavioral tasks. Within each session (and each of the above-defined pharmacological

500 conditions), participants alternated between three different behavioral conditions, all entailing
absent or continuous sensory input (2 runs a 10 minutes per condition), here referred to as REST,
TASK, and TASK-PRESSING (Fig. 1A, right; see also Supplementary Video 1). REST and TASK
were steady-state conditions (absent or minimal variations in sensory input or motor output)
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tailored to quantifying intrinsic correlations between fluctuations in cortical activity. TASK-
505 PRESSING was used to validate the behavioral results from the TASK condition. During REST,
participants were instructed to fixate a green fixation disk (radius = 0.45° visual angle) in the center
of an otherwise gray screen. During TASK and TASK-PRESSING, participants viewed a
perceptually ambiguous 3D structure-from-motion stimulus, which was perceived as a rotating
sphere (Wallach and O’connell, 1953). The stimulus subtended 21° of visual angle, consisted of
510 1000 dots (500 black and 500 white, radius: 0.18° of visual angle) arranged on a circular aperture
presented on a mean-luminance gray background, and a green fixation dot in the center. In TASK,
participants were instructed to count the number of changes in the perceived rotation direction and
verbally report the total count at the end of the run. In TASK-PRESSING, the participants were
instructed to press (and keep pressed) one of two buttons whenever they perceived a change in the
515 rotation direction. The order of the conditions was as follows for 18 out of 28 participants: (1)
REST, (2) TASK-PRESSING, (3) TASK, (4) REST, (5) TASK-PRESSING, (6) TASK. For 10
out of 28 participants the order was reversed: (1) TASK, (2) TASK-PRESSING, (3) REST, (4)
TASK, (5) TASK-PRESSING, (6) REST.
The experiment was programmed in MATLAB (The MathWorks, Inc., Natick, United States),
520 using the Psychophysics Toolbox extensions (Brainard, 1997) (PTB-3).
Data acquisition. MEG was recorded using a whole-head CTF 275 MEG system (CTF Systems,
Inc., Canada) at a sampling rate of 1200 Hz. In addition, eye movements and pupil diameter were
recorded with an MEG-compatible EyeLink 1000 Long Range Mount system (SR Research,
Osgoode, ON, Canada) and electrocardiogram (ECG) as well as vertical, horizontal and radial
525 EOG was acquired using Ag/AgCl electrodes.

Pupil and behavioral data analysis
The pupil diameter recordings were preprocessed as follows: eye blinks as well as eye
movements were identified using the manufacturer’s default routines, then padded (+/- 200 ms),
530 linearly interpolated and bandpass-filtered using a second-order Butterworth filter with a passband
from 0.01 to 10 Hz. Next, the effect of blinks and saccades on pupil diameter was estimated
through deconvolution and removed by means of linear regression (Knapen et al., 2016). Mean
pupil diameter was computed in a baseline interval from 6s to 3s prior to the start of each recording
block and for all conditions (REST, TASK, TASK-PRESSING). Pupil signals were averaged
535 across the two corresponding blocks. In some cases, pupil diameter was not recorded, or the signal
was too noisy. If this was the case for both blocks of a session (placebo, atomoxetine or donepezil),
the corresponding subject was not included in the respective analysis. The following number of
subjects was excluded/included per combination of conditions: during REST-PLACEBO (N =
0/28), REST-ATOMOXETINE (N=0/28), REST-DONEPEZIL (N = 2/26), during TASK-
540 PLACEBO (N = 0/28), TASK-ATOMOXETINE (N=0/28), TASK-DONEPEZIL (N = 1/27).
Behavioral data from TASK and TASK-PRESSING was averaged across the two blocks, resulting
in N=28 for all drug conditions for TASK. In the case of TASK-PRESSING, one participant had
to be excluded due to missing triggers in the atomoxetine condition, resulting in N=27.

545 MEG signal processing
The MEG signal processing pipeline described is illustrated in Fig. S2A and entailed the
following steps.
1) Preprocessing. The sensor-level MEG data were first preprocessed: strong transient muscle
artifacts and squid jumps were detected through visual inspection as well as semi-automatic artifact
550 rejection procedures, as implemented in the FieldTrip toolbox (Oostenveld et al., 2011) for
MATLAB. To this end, data segments contaminated by such artifacts (+/- 500 ms) were removed
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from the data (across all channels). Subsequently, the data were downsampled to 400 Hz split into
low ([0.5-2]-40 Hz; the lower cutoff was variable across (but identical within) subjects at 0.5, 1 or
2 Hz) and high (>40 Hz) frequency components, using a 4th order Butterworth filter. Both signal
555 components were separately submitted to independent component analysis(Bell and Sejnowski,
1995) using the FastICA algorithm (Hyvarinen, 1999). Artifactual components (eye
blinks/movements, muscle artifacts, heartbeat and other extra-cranial artifacts) were identified
based on three established criteria (Hipp and Siegel, 2013): power spectrum, fluctuation in signal
variance over time (in bins of 1s length), and topography. Artifact components were reconstructed
560 and subtracted from the raw signal and low- and high frequencies were combined into a single data
set. On average, 20 (+/- 14) artifact components were identified for the low-frequencies and 13
(+/- 7) artifactual components were identified for the high frequencies.
2) Spectral analysis. From the cleaned MEG signal, spectral estimates were obtained using
Morlet’s wavelets (Tallon-Baudry and Bertrand, 1999), similar to previous reports (Hipp et al.,
565 2012; Siems et al., 2016):

t2

wt, f) = (on) 2e 27 gmiznst (Eq. 1)

We constructed wavelets for 17 logarithmically spaced (base 2) center frequencies, ranging
570 from 4 Hz to 64 Hz. In keeping with previous work (Hipp et al., 2012; Siems et al., 2016), the
spectral band-width was set to half of an octave (f/0;~5.83) and amplitude as well as phase
estimates were obtained for consecutive, half-overlapping segments of a length of +30;. Segments

that contained artifactual samples (see Preprocessing) were omitted from the analysis.
3) Source analysis. For the main analyses, we projected the sensor-level signal onto 400 vertices
575 located on the cortical surface, resulting in an estimated source level signal X,..(r, t, f). To this
end, we estimated source-level power by means of adaptive spatial filtering (linear
“beamforming”; Veen et al., 1997), separately for each participant and recording session. For each

source location r and frequency f, a spatial filter A(r, f) was computed according to:

580 A, £) = (LT () Creaqr(F)1L() T LT () C () (Eq. 2)

where L was the magnetic leadfield, T denoted matrix transpose, and C,.4; (f) the real part of the
(complex-valued and regularized) cross spectral density (CSD) matrix of the sensor-level data for
frequency f. A(r,f) contained three orthogonal projections. We used singular value

585 decomposition of the CSD matrix to determine the direction of the dipole maximizing power (i.e.
the first eigenvector) at location r. We then computed the corresponding spatial filter for this
direction, henceforth referred to as B(r, ). This filter was used to project the sensor-level data
X(t, f) onto that dominant dipole, as follows:

590 Xsre(r,t, f) = B(r, )X (L, f) (Eq. 3)

where X,,..(r,t, f) denoted the complex-valued, source-level spectral estimates for location 7.
Prior to computing the spatial filter, the CSD matrix was regularized with the mean of its diagonal
multiplied by a scaling parameter a. For the results shown in the main section of this article, this
595 parameter was chosen to be & = 0.3 (see Fig. S6 for alternative values of a).
4) Orthogonalized power envelope correlations. Inter-regional correlations were computed as
the correlations of the power estimates at carrier frequency f between two regions i and j, across
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all non-artifactual segments. In order to reduce spurious correlations arising from instantaneous
signal leakage, we used a procedure established previously (Brookes et al., 2012; Hipp et al.,

600 2012). Specifically, we orthogonalized each signal Y with respect to signal X according to:
_ . X(t.f)”

where Y, x(t, f) was the signal Y (¢, f) orthogonalized with respect to signal X(t, f) and * the

605 complex conjugate. Next, the absolute value was taken and the resulting signal was squared,
yielding source-level power envelopes, and log-transformed to render the distribution more
normal. The orthogonalization was performed in two directions, Y, x(t, f) as well as X, (¢, f).
Correlation coefficients were computed for both directions and the resulting (Fisher transformed)
values were averaged. Doing this for all pairs of vertices and for each frequency band resulted in

610 a correlation matrix of size 400x400 for each of the 17 carrier frequencies. In what follows, we
refer to these correlation matrices as ‘functional connectivity (FC)’ matrices.

In order to compare the empirical results to results obtained from simulations of a neural mass
model (see: Computational modeling below), we repeated the above-described procedure for
computing source-level FC matrices, but now at coarser granularity. To this end, we selected the

615 76 cortical regions of the Automatic Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002), excluding the cerebellum and subcortical regions (see Table S1 for included regions).
Source locations were first arranged on an equally spaced grid (of 4 mm x 4 mm x 4 mm resolution)
covering the entire brain and each grid point was either assigned to one of the 76 selected cortical
AAL regions or omitted from further analysis. For each of the vertices that were assigned to one

620 of the 76 AAL regions, frequency-specific source-level estimates for each time point X, (7, t, )
were computed following the procedure outlined above. Next, for each vertex within region i (with
i€ {1,...,76}, we computed its average correlation to all vertices of region j (after Fisher
transformation). This was repeated for all vertices of region i after which the correlation values
were again averaged across all vertices within region i. This procedure was repeated for all 76

625 regions, resulting in a 76x76 FC matrix for each of the 17 carrier frequencies.

Quantification of the topology of MEG correlation structure
Degree centrality. We computed frequency-resolved degree centrality k(f) (i.e., collapsed
across all nodes) as well as local degree k;(f) for each of the i = 1...400 locations (Fig. S2B/C).
630 Degree is defined by the number of edges that connect a given node to all other nodes in the
network (Rubinov and Sporns, 2010). To this end, the FC matrices of all subjects (400x400x28)
were first submitted to a procedure described previously (van den Brink et al., 2016; Hipp et al.,
2012): for each connection between nodes i and j, where i =1...400 and j =1...400 we
assessed if a connection was present as follows: a connection was determined to be present if the
635 correlation between i and j was significantly larger (P < 0.05; two-sided t-test) than the
correlations from i to all other nodes or from j to all other nodes. In case of a present connection,
the corresponding entry in the adjacency matrix A(i, j) was set to 1. If no connection was present,
A(i,j) was set to 0. This was repeated for all possible pairs of vertices and the full adjacency matrix
was computed. From this, we computed degree by:

640
Di=(N-DTELAGH) (Eq. 5)

where N denoted the number of cortical vertices (N = 400).
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645 Statistical tests of MEG effects
Cortex-wide changes in cortical correlations. We adopted a previously described two-stage
procedure for an unbiased statistical assessment of cortex-wide changes in power envelope
correlations (Hawellek et al., 2013). The procedure is illustrated in Fig. S3. The rationale behind
the analysis was as follows. Both neuromodulator classes (catecholamines and acetylcholine)
650 might, in principle, increase correlations between some pairs of areas and, at the same time,
suppress correlations between other pairs of areas (Eldar et al., 2013). In this case, drug effects
might cancel when averaging correlations indiscriminately across all area pairs and comparing
average FC between conditions. Instead, our procedure first identified any pairs exhibiting drug-
induced increases or decreases above a certain threshold and then tested if the fraction of these
655 pairs was significantly different from what would be expected by chance, separately for pairs with
increased and decreased correlations. This procedure was repeated across a wide range of
frequencies, yielding the spectra of drug effects shown in Fig. 1E.
For each center frequency f, we statistically compared the Fisher-transformed FC matrices,
across subjects, between the two drug conditions and placebo, using a two-sided paired t-test. Then
660 we counted the number of significantly positively (P < 0.05 and 7 > 0) and the number of
significantly negatively altered correlations (P < 0.05 and 7 < 0). The resulting value was divided
by the number of possible connections M (with M = N*N-N, where N =400 or N = 76, see above)
to obtain the fraction of significantly altered correlations for both effect directions. This procedure
was repeated for all 17 frequencies bands (Fig. S3). We employed a single threshold permutation
665 procedure to derive P-values that accounted for multiple comparisons across frequencies (Nichols
and Holmes, 2002). For each of N, = 10000 permutations, the experimental labels (drug
conditions) were randomly re-assigned within subjects and the aforementioned procedure was
repeated. This resulted in a N,x17 matrix for both effect directions (significantly increased and

significantly decreased correlations). Next, for each permutation, the maximum value across all
670 frequencies (independently for increased and decreased correlations) was determined, yielding a
maximum permutation distribution. In order to derive P-values, the empirical results were now
compared to this maximum permutation distribution. This procedure is analogous to a single-
threshold permutation test commonly applied in fMRI (Nichols and Holmes, 2002), with the
single-threshold test being performed across frequencies instead of space (i.e., voxels). In order to
675 test the robustness of the obtained results, we repeated the procedure described above using various
alpha values for the initial paired t-test, ranging from a=0.01 to a=0.10, which led to numerically
different, but qualitatively similar results (Fig. S7). Through applying an initial thresholding (t-
test), spurious and weak changes in correlations are less likely to contribute to the observed result.
The initial t-test thus ensures that only changes that are somewhat robust are taken into account.
680 Significant alterations in the correlations between two regions can be achieved in different
ways. A decrease in correlations, for instance, can mean that a positive correlation becomes
weaker, or that a negative correlation becomes more negative. However, only the former would
qualify as a meaningful reduction in correlation, whereas the latter correlation gets numerically
smaller (i.e., more negative), but stronger in terms of the linear dependence between two signals.
685 Hence, a “significant decrease” does not always carry the same meaning, and the same is true for
increases. In this data set, the number of positive correlations by far outnumbered the number of
negative correlations. In fact, in the alpha and beta frequency range, where the main effects for
atomoxetine and donepezil are observed, more than 90% of all connections were positive (across
all blocks, and contexts; placebo only). Thus, we interpret an increase (decrease) in correlation in
690 terms of a positive correlation becoming stronger (weaker).
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Cortex-wide changes in local cortical variability. Changes in the correlation between two
signals can be driven by changes in their covariance (numerator of correlation coefficient) as well
as changes in the variance of one or both of the signals (denominator). In order to rule out this
possibility, we tested for drug-related changes in the variance of local power envelopes across

695 frequencies (Fig. S5). To this end, we have adopted a procedure similar to the one employed to
assess changes in cortex-wide activity correlations. First, we computed the variance of the power
estimates across half-overlapping temporal segments (see Spectral estimation), separately for each
of the 17 carrier frequencies. Next, we counted the fraction of nodes that exhibited significantly
altered variance, separately for increases and decreases. We employed the same permutation

700 procedure described above in order to derive corresponding permutation distributions from which
P-values were computed (two-sided single threshold permutation test). Analogous to the ‘fraction
of significantly altered correlations’, this procedure yielded, per frequency band, the fraction of
vertices (nodes) with significantly positively or negatively altered variance.

705 Cortical circuit modeling
Large-scale neural mass model

Single node dynamics. We simulated neural population activity using a mean field model based
on the Wilson-Cowan (WC) equations (Deco et al., 2009; Wilson and Cowan, 1972). Each local

710 WC node consists of an excitatory and an inhibitory neuronal population (Fig. 2A). The dynamics
of the E and I populations of each node are governed by the following stochastic differential
equations:

715 1,5 = F(E,1) = —I + o(wigE —wyl + by + Ab) +7, (Eq. 7)

where E and I represent the firing rates of excitatory and inhibitory populations, respectively.

Since we were interested in neural oscillations, the model parameters were chosen to generate
oscillatory dynamics. The local synaptic weights interconnecting the excitatory and inhibitory
populations were given as Wgg = 12, wz = 16, w;; = 4 and wg; = 12. bg and b; represented

720 external background inputs to the he excitatory and an inhibitory, respectively, Abg ; represents
task-induced input (Aby = Ab; = 0, for resting dynamics), and  was uncorrelated Gaussian noise

with amplitude equal to 0.005. Time constants were set to 7 =9 ms and 7; = 18 ms for excitatory

and inhibitory populations, respectively. The (non-linear) transfer function converting input

currents into output firing rates, o (u), was chosen to be a sigmoid:
725

1

o(u) = 1+exp(—gu) ’

(Eq. 8)
where g determined the slope of the input-output function for both excitatory and inhibitory
populations (i.e., response gain of the node).
The solutions (E*,I*), or fixed points, of the coupled equations 6 and 7, were given by E* =
730 o(WggE* —wgI* + bg) and I" = a(w;zE* — wyI* + b;), yielding solutions depending on the
external inputs (bg, b;), which are the bifurcation parameters of the system. In the (bg, b;)
parameter space, we observed a region of noise driven oscillations (i.e., a spiral; damped
oscillations that, in the presence of noise, result in noisy oscillations) and a region of sustained
oscillations (i.e., a limit cycle) (Fig. S8A).
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735 Two coupled nodes. We first studied the effect of gain modulation on correlations during REST
and TASK in a minimal network composed of two WC nodes (Fig. 2B, left). This step will provide
intuitions before studying the whole-brain network composed of 76 nodes interconnected through
a connectome. Let the excitatory populations of the nodes be connected through a reciprocal
coupling ¢ (in the two-node model, ¢ = 1; see below for cortex-wide model) . The firing rates of

740 node 1 evolve as:

and analogously for the firing rates, E, and I,, of node 2.

745 To study the correlations between nodes in the parameter space, we used a linear noise
approximation described in detail in the Supplementary Information. Using this approximation,
we studied how changes in gain, i.e., g = g + Ag, and inputs, i.e., (bg, b;) = (bg + Ab, b; + Ab),
change the correlation between the two excitatory populations both during REST (Ab = 0) and
TASK (Ab # 0). In this way, we can test hypotheses on the parameter changes induced by

750 ATOMOXETINE and DONEPEZIL, assuming that TASK changed the background inputs by and
b; and the drugs changed g. Note that in the case of the two-node model the task-related change
of the background inputs was equal for E and 1, i.e., Ab; = Ab; = Ab.

In sum, the change in correlation between excitatory populations during REST was given as:

755 Acgg = cgg(bg, by, g + Ag) — cge(bg, by, g), (Eq. 11)

and the change in correlation between excitatory populations during TASK was given as:

Fig. 2C maps the change of correlations during REST under gain modulation in the (bg, b;)-
plane. The combined effect of drugs on parameters by and b;, and the effect of TASK, were
obtained by translating the state of the system in this map.

765 Cortex-wide model. In order to directly compare the computational model to the empirical
results, we simulated a cortex-wide variant of the model. For each of 76 cortical AAL nodes, the
dynamics were governed by the following differential equations:

dE;
770 t (:Tlt = —1i+o(wigE; —wyl; + by + Aby) + 1, (Eq. 14)

where i,j € {1,2, ...,76}. In this cortex-wide model, an additional parameter was incorporated:
long-range cortical connectivity between all possible pairs of regions, given by C;;, which is scaled
by the global coupling parameter ¢. The matrix C;; was given by a structural connectivity matrix
used in previous studies (Deco et al., 2017, 2018) and was estimated by means of diffusion tensor
775 imaging (DTI). Details can be found in the respective publications.
For the simulation, equations 13 and 14 were integrated using the Euler method with dt =
0.01.
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The model was run for a wide range of background inputs to excitatory (bg) and inhibitory
populations (b;). In order to assess activity correlations (functional connectivity) in the model, we

780 computed all-to-all (76x76) pairwise correlations between the raw time series of excitatory firing
rates E;. The model was simulated, for a total of 58.5s for each parameter combination prior to
each run, initial conditions were randomized and the first 1.8 seconds were excluded from further
analysis in order to avoid transient effects due to the initial conditions. All simulations and
corresponding analyses were carried out in MATLAB2019b.

785 Identification of the oscillatory regime in the cortex-wide model. In all model-based analyses,
we assume that the (healthy) human brain never resides in a dynamical regime of sustained
oscillations (Fig. S8A, top panel; see also Supplementary Information). We therefore identified,
and excluded, parameter combinations resulting in sustained oscillations in the cortex-wide model
(see above). In order to identify parameter combinations where simulated population activity

790 settled in the oscillatory regime, the cortex-wide model was simulated without noise (i.e., n = 0)
for a total of 58.5s (plus 1.8s initialization, as outlined above). Next, for non-overlapping segments
of 27 ms, the maximum and minimum of rz was computed. In a regime of noise-driven (damped)
oscillations, the activity relaxed back to a fixed point over time (Fig. S8A, middle and bottom).
Hence, the computed maximum and the minimum should converge on the same value, whereas in

795 a regime of sustained oscillations, the maximum and the minimum will remain different
throughout the entire simulation (Fig. S8A, top). Consequently, the regime was defined as non-
oscillatory or noise driven, if: (1) the maximum and minimum were identical at any point in time
or (2) the difference between maximum and minimum decreased monotonously over time
(indicative of a damped oscillation); if none of the two were true, the signal was defined as a

800 sustained oscillation (see Supplementary Information).

Model fitting procedure. We fit the free parameters of the cortex-wide model through an
iterative procedure. The purpose of this procedure was to identify two working points, mimicking
the two behavioral conditions (REST and TASK). First, we estimated the global coupling
parameter a. This this end, we simulated the cortex-wide model (76 regions) over a range of 41

805 different coupling parameters a (with «a € {0, 0.05, ...,2}) and across 61x61 combinations of
background inputs (with Iy € {—4,—3.9,...,—1} and I; € {—5,—4.9, ..., —2}). We then estimated
the similarity of the simulated functional connectivity matrix FCgn and the empirical functional
connectivity matrix FCenp (Rest and Placebo only; averaged across frequencies that showed
significant changes for both drugs; see Fig 1E), separately for each combination of Iz and I;, by

810 means of a distance metric § based on Pearson correlation(Demirtas et al., 2019a):

1 - RC 1 2
6= 1= (2Zi prosimPCioms — (AT FCoamy) ~ (FCam)) ) (Ea. 15)

N

where pfCsimFCiemp was the correlation (i.e., pattern similarity) between the empirical FC

815 matrix for subject i (averaged across frequencies, with i € {1,2,...,28}) and the simulated FC
matrix and () denotes the average across all possible connections. We averaged the resulting

distance values § across all external background inputs (bg and b;), while omitting parameter
combinations where the network activity settled into a regime of sustained oscillations (see above).

This resulted in a mean distance (&) for each level of global coupling a (Fig. S8C). Additionally,

820 we repeated the procedure but instead computed Pearson correlation between FCgin and FCemp
(Fig. S8D). We identified the level of @ where the mean distance (&) between FCgim and FCoenp
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was minimized (@ = 1.2). The parameter with lowest (&) also yields a high correlation between
FCim and FCemp (Flg SgD)
After having fixed the global coupling parameter, we aimed to identify the combination of bg
825 and b; for each individual participant, that resulted in the highest similarity between FCi» and
FCenp during REST and PLACEBO (i.e., lowest distance). To this end, we first identified the
combinations of b and b; where the distance between FCjin and FCenp was below the 2.5
percentile. The resulting binary matrix was then submitted to a clustering procedure (using SPM’s
‘bwlabel’ function) and the single largest cluster was extracted. This was to reduce the influence
830 of spurious correlations on the fitting procedure. Next, the geometric center of the largest cluster
was computed and defined as the best fitting combination of I and I;, yielding a working point
for RESTsim. This procedure was repeated separately for each of the 28 participants (Fig. S8F). In
order to determine the corresponding TASK parameter TASK;im, we assumed that the constant
visual stimulation during TASK increases both excitatory (bg) and inhibitory drive (b;), consistent
835 with electrophysiological recordings in rodent visual cortex V1(Adesnik, 2017; Haider et al., 2013)
(see Supplementary Information). Thus, in order to simulate TASK (TASKsim) we increased the
background input to both excitatory and inhibitory populations, i.e., by and b;. We chose to
increase background input to inhibitory populations by Ab; = 0.475 and to excitatory population
by Ab; = 0.25 (Fig. 2D,E, cortex-wide model). Note that, for simplicity, we here assume that the
840 change in background inputs due to TASK is global and homogenous across all nodes and identical
for all participants. This assumption is certainly oversimplified and model fits can likely be
improved by heterogeneous scaling of these effects as well as by taking individual differences into
account.

845 Local microcircuit models
Microcircuit model of local node. In order to assess how changes in neural gain can be achieved
through specific changes in synaptic weights, we simulated a model of a canonical cortical
microcircuit, as a conductance-based neural network (Fig. 2F) comprised of 400 leaky integrate-
and-fire units (20% inhibitory). Model equations and parameters follow (Wang, 2002), with some
850 modifications as mentioned below. The model architecture is depicted in Fig. 2F. The membrane
potential dynamics of the excitatory units below threshold were governed by:

av(t
Con =2 = gLV (®) = V,) = Loy (£)) (Eq. 16)
855 Here, I5y,(t) denotes the total synaptic current, which was composed of two glutamatergic

excitatory currents (with AMPA and NMDA components) and GABAergic inhibitory currents.
External input as well as external noise to the network were mediated exclusively via AMPA
receptors. Baseline parameters were identical to the original version (Wang, 2002), with the
exception of g;r capa = 1.99 (weight of inhibitory to excitatory synapses) and gext ampa = 2.5
860 (weight of external input on excitatory neurons). Moreover, the rate of the external Poisson input
to excitatory and inhibitory neurons was changed to v,,; = 881 Hz (originally v,,; = 2400 Hz).
From these baseline values, we parametrically scaled the conductance parameters ggg 4ypa and
9iecapa (AMPA-mediated recurrent excitation and feedback inhibition, respectively) in order to
achieve plausible spontaneous dynamics (see Supplemental Information and Fig. S10 for details).
865 Next, we presented the network with stimuli in form of external excitatory input (added to the
background input) to all excitatory cells, mediated through AMPA receptors, and assessed the
effect on resulting excitatory population firing rate (Murphy and Miller, 2003). In visual cortex,
neurons respond to stimuli with increasing contrast with higher firing rates. This relation between
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a neurons output and the visual input strength is well-described by a hyperbolic ratio function
870 known as the Naka-Rushton function:

R(C) = Ryppy —— + S (Eq. 17)

max n
Cn+CLy

where R(C) is the firing rate at input contrast C, R,,,, is the response gain, S reflects the level

875 of the spontaneous (background) activity and Cs is the stimulus strength that yields a firing rate
at half the maximum. Using this equation, we generated a set of stimuli (with varying “contrast”,
i.e., varying levels of C) that were transformed into firing rates of different frequency and were
subsequently fed into the network as an AMPA-mediated excitatory Poisson input. The parameters
used in the current study were identical to the parameters used in a previous theoretical study on

880 the effects of excitation and inhibition on response gain of single neurons (Murphy and Miller,
2003): Ryax = 2000 Hz, C = 20.133, n = 1.2 and S = 0. This approach allowed us to measure
the response of a neural population to inputs of varying contrast strength, which is typically
depicted as a contrast-response curve (Fig. 2F, bottom panel). In order to assess the effect of
excitation-inhibition ratio on the shape of the contrast-response curve, we either decreased or

885 increased feedback inhibition in the model, through adjusting gg;gapa (see Supplemental
Information for details). Using nonlinear least squares estimation, we fit the hyperbolic ratio
function (Eq. 17), with four free parameters (R4, Ciy, S and n), to the resulting contrast-
response curves. This yielded, among others, response gain parameters (R,,,,) for different levels
of feedback inhibition (Fig. 2F, bottom panel). The network was simulated for 3s per parameter

890 combination, with a similar period of external stimulation. All simulations and analyses were
carried out in Python 2.7.15, using the Brian spiking neural network simulator (version 1.4.4)
(Goodman, 2009; Goodman et al., 2014), the Elephant toolbox for Python as well as custom code.
The Python code for the model simulations was adapted from publicly available code (Wimmer et
al., 2015).

895 Decision circuit. In order to understand how the increase in reported perceptual transitions
during ambiguous visual stimulation under atomoxetine (Fig. 3A; Fig. S11) could be related to
changes in synaptic activity, we extended the above neural circuit by equipping the model with
two excitatory populations, which competed for dominance via common feedback inhibition. The
synaptic equations were identical to the homogeneous microcircuit described in the previous

900 section. Unless stated otherwise, model architecture and parameters were identical to the original
description (Wang, 2002) (Fig. 3B, left). The circuit consisted of N=2000 leaky integrate-and-fire
neurons, endowed with full connectivity. 1600 of the neurons were excitatory and 400 inhibitory.
The excitatory cells were assigned to one of three subpopulations: two decision populations (240
neurons each), D1 and D2, as well as one non-specific population (DN; 1120 neurons). The two

905 decision populations were assumed to represent the populations that encode the two possible
perceived rotation directions of the ambiguous stimulus. All neurons, excitatory and inhibitory, of
all populations (D1, D2, DN and I) received independent AMPA-mediated excitatory background
input in the form of a Poisson spike train with a frequency of 2880 Hz. In addition, the neurons of
the decision populations D1 and D2 received independent AMPA-mediated excitatory input with

910 a mean firing rate of 55.6 Hz which was to reflect the stimulus-related sensory input. The identical
mean in input to both decision populations was to mimic the ambiguous nature of the structure-
from-motion stimulus. Recurrent connections within D1 and D2 were stronger than connections
within DN, by a factor of w, = 1.6. The network was simulated for 600s and population firing
rates were estimated for time bins of 100 ms length. Perceptual transitions in the model were

915 defined as the time points where the firing rate of one decision population exceeded the firing rate
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of the other decision population, i.e., at those time points where the difference between firing rates
of D1 and D2 changed in sign (Fig. 3B, right). In order to attenuate the effect of very fast
fluctuations on the number of perceptual transitions, we low-pass filtered the firing rates of both
decision populations prior to computing the perceptual transitions (cutoff frequency 1 Hz). In order

920 to understand the effect of execution and inhibition on perceptual transitions, we again modified
feedback inhibition by means of adjusting gg;capa and computing the number of perceptual
transitions for each level of feedback inhibition. For each level of feedback inhibition, the network
was simulated 20 times.

925 Pharmacological behavioral experiment (value-based choice task)

Participants
We measured 32 participants (21 females, age range 20 — 36, mean 27.28) that performed two

sessions of a value-based choice task (Fig. 4A; Fig. S12A) after informed consent. All included
930 participants were non-smokers. The study was approved by the Ethical Committee responsible for
the University Medical Center Hamburg-Eppendorf. We excluded three participants from the
analysis based on foraging efficiency, which we here defined as the fraction of collected rewards
over the total number of available rewards: we excluded participants whose foraging efficiency
deviated more than three times the median from the median, scaled by a constant (cx1.4826, using
935 MATLAB’s ‘isoutlier’ function). Based on this criterion, the same three participants were
excluded for both experimental sessions (Fig. 4E). This resulted in in 29 included participants.

Experimental design
General protocol. We manipulated the levels of catecholamines (noradrenaline and dopamine)
940 in a double-blind, randomized, placebo-controlled pharmacological intervention using
atomoxetine (see above, section Pharmacological MEG experiment). Each participant completed
two experimental sessions, consisting of drug or placebo intake, a waiting period of 1.5 h, and
performance of the behavioral task during MEG recordings. During task performance, participants
were seated on a chair inside a magnetically shielded chamber and the (visual) task stimuli were
945 presented on a screen in front of them (Fig. 4A; Fig. S12A). Because this was a standard trial-
based task design entailing many sensory and motor transients, the MEG data from this task were
not used for the analysis of correlations between intrinsic fluctuations in cortical activity. The
MEG data will be reported in a separate study.
Behavioral task. We used a modified version of a dynamic foraging used in a previous monkey
950 physiology study (Sugrue et al., 2004). Participants chose freely between two visual target stimuli
(identified by orientation, randomized by position), which were associated with different histories
of monetary rewards. The sequence of events during each trial is shown in Fig. S12A. Participants
were asked to fixate a white box in the center of a uniform grey background. Each trial started with
the presentation of the two targets (full-contrast Gabor patches with vertical or horizontal
955 orientations) that were presented on either side of the fixation mark (eccentricity ~8.5°, diameter
~4.25° visual angle). The horizontal target’s (left vs. right) location was randomly drawn on each
trial, under the constraint that it would appear equally frequently on each side within a block of
trials with equal ‘income ratio’ (see below). After a 0. 5-1.5 s delay, the fixation mark changed
shape (from box to diamond), prompting the subject’s choice. Participants then pressed a button
960 with their left or right index finger to choose the target at the corresponding location. After another
variable delay (2-5 s), subjects received auditory feedback on the outcome of their choice (reward
or no reward) by means of a low- or high-pitched tone (low: 200 Hz, high: 880 Hz; each with
duration: 150 ms). The mapping of the tones to ‘reward’ or ‘no-reward’ was counterbalanced
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across participants and instructed before the start of each experimental session. If the participant
965 had not yet responded within a deadline of 3 s, another tone (440 Hz, 50 ms) signaled their missed
response (no reward), and the trial was aborted. Targets disappeared after feedback tone, so that
only the fixation mark remained for an inter-trial-interval (ITIS) 2-5 s, during which the subjects
kept fixating. The next trial started upon the new onset of the targets. Trial duration varied between
4.5 and 11.5 s plus reaction time (reaction times could range between 0 and 3 s) respectively, with
970 an average trial duration of 8 s plus reaction time (0 to 3s). Participants completed 525 trials in
each experimental session, taking about 75 min, excluding breaks in between blocks of 100 trials.

Each target was baited with a separate Poisson process for generating rewards, under the
following constraints (Fig. 4B,C): (i) the ‘income’ (i.e., reward) rate averaged across both targets
was 0.8 rewards per trial; (ii) the ratios between the reward rates associated with each target for a

975 given block of trials (see below) were drawn from a predefined set {7:1, 5:1, 3:1, 1:1, 1:1, 1:3, 1:5,
1:7}; (iii) a reward assigned to a target (i.e., orientation) remained available there until this target
was chosen; (iv) when a reward was available at a target, no new reward could become available
there (i.e., there was never more than one reward available per target). Correspondingly, both or
one or none of the targets could carry a reward in a given trial — the rewards associated with both

980 targets were uncoupled.

The ratios between reward rates (‘local income ratios’; Sugrue et al., 2004) changed between
blocks of trials, without this being signaled to the participants. The block duration was sampled
from a uniform distribution which ranged between 40 and 60 trials (Fig. 4C). Subjects were not
informed about these changes. Because of this dynamic nature of the foraging task, a successful

985 policy is to integrate rewards earned from choosing each target, but only ‘locally’ in time, over the
last trials (see Sugrue et al., 2004, and Behavioral modeling).

Subjects were not instructed about the statistics of the process generating the rewards. They
were only instructed to (i) try to earn as many rewards as possible and that this would translate to
a bonus payment at the end of the session; and (ii) to be ‘flexible’ in their behavior because the

990 relative income of the two targets could change over time.

Subjects were rewarded €0-20 bonus based on performance. The lower boundary was chance
level performance; the maximum bonus could be earned by performing on par with an ideal
observer model, which chose based on full information about the reward ratio at every trial.

995 Pupil analysis
The pupil diameter recordings were preprocessed similar to experiment 1 (see Pharmacological

MEG experiment): eye blinks as well as eye movements were identified using the manufacturer’s
default routines, then padded (+/- 200 ms), linearly interpolated and bandpass-filtered using a
second-order Butterworth filter with a passband from 0.01 to 10 Hz. Next, the effect of blinks and

1000 saccades on pupil diameter was estimated through deconvolution and removed by means of linear
regression (Knapen et al., 2016). Mean pupil diameter was computed in a pre-target baseline
interval from 500 ms to 0 ms prior to target onset. Pupil recordings were not available for 4
participants. Hence, the analysis was performed for the remaining 25.

1005 Behavioral modelling
We fitted an algorithmic model of behavior to quantify the effects of atomoxetine on the different
computations governing decision-making in the task. Our model extended the model previously
developed to account for monkey choices in the task(Corrado et al., 2005; Sugrue et al., 2004). A
schematic of the model is depicted in Fig. 4E. In words, model choices were computed through
1010 the following steps: (i) leaky integration of the rewards gathered from choosing each option over
the recent trials (locally in time); (i1) combination of the ‘incomes’ earned from each reward into
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a relative value signal, the ‘local factional income’ (LFT); (iii) non-linear (sofimax) transformation
of LFI into a probability of choosing the horizontal option; (iv) a weighted contribution of a win-
stay-loose-switch (WSLS) heuristic and (v) a weighted contribution of general bias (preference for
1015 one of the targets) to the final choice probability. Leaky reward integration was applied in order to
account for rapid adaption to the hidden changes in income ratio across blocks (see above:
Experimental design and (Corrado et al., 2005; Sugrue et al., 2004)).
Please note that the WSLS heuristic had been suppressed, by design, in Sugrue et al.
(2004)(Sugrue et al., 2004) through a so-called ‘change-over-delay’ (i.e., punishment for switching
1020 targets after one choice). We did not include this change-over-delay in our task to render the
foraging task even more naturalistic. We found that subjects’ behavior could be well accounted
for by a linear mixture of the leaky reward integration described by steps (i)-(iii), the heuristic
from step (iv) (Fig. 4F).
In line with Sugrue et al., 2004, we fitted the model by minimizing the negative log-likelihood
1025 between the model choice probability from step (iv) and the subjects’ binary choices, giving the
set of parameter values (for similar approach see Sugrue et al., 2004). We first found the minimum
in a rough grid search. These parameter values were then used as starting point for MATLAB’s
‘fminsearchbnd’.
For each trial ¢, the model computed LI;,,, the ‘local income’ earned from choosing the
1030 horizontal option, as follows:

Llpgy = —=" 09", (Eq. 18)

e—t/t

where 0l9" were the outcomes of horizontal choices on trials 1:t and t was the reward

1035 integration time constant (model leak 1 = 1) Rewards earned from choosing the horizontal option
were coded as 1 and all non-rewarded horizontal choices, or choices to the vertical option
(irrespective of reward) were coded as 0. The same equation was used to update LI,,,,, now coding

rewards earned from choosing the vertical option as 1 and all other outcomes as 0.
The local fractional income LF 1, was defined as:

1040
Llpor
LFlyor = uhwi—uma (Eq. 19)
LFI,,,was transformed into the choice probability p(c; = hor), defined with respect to the
horizontal target, through a sigmoidal (softmax) function (Corrado et al., 2005):
1045

eBLFIpor

eBLFlpor 4 oB'LFIyer °

p(c = hor) = (Eq. 20)

where § was the inverse temperature parameter that governed decision noise, i.e. corrupting the
mapping from LFI to the behavioral choice. § ranged from O to infinity (no noise). This placement
1050 of the softmax transformation was motivated by model comparison (Fig. S12D).

Choice probability p(c; = hor) was further transformed by linear combination with the simple
switching (WSLS) mechanism defined as follows:

0¢-1#0, ¢ = €1

WSLS(celoe—1) = {Ot—l =0, cg= —1%cpq’

(Eq. 21)
1055
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Finally, p(c; = hor) was transformed into the final choice probability estimate by linear
combination with general bias §, which could range between -1 (all choices to vertical option) to
1 (all choices to horizontal option).
In sum, the dynamics of choice probability (model quantity fitted to the data), was given by:
1060

eBLFlpor

p(ce = hor| ¢y, 01:0-1) = (1 -6 ((1 — WysLs) * <eﬁ-LF1hor + eBLFlver )wWSLS . WSLS) * 6)
(Eq. 22),

where p(c; = hor| ¢y.t—1, 01.t—1) Was the probability of horizontal choice on trial ¢, given the
1065 choices made and outcomes (rewards) received from trial 1 to trial -7, wy, ;s Was a free parameter
(ranging from 0O to 1) that controlled the contribution of the WSLS heuristic to choice probability.

In the results reported here, the model included all four free parameters for each of the
participants. The level of bias and tendency to rely on the WSLS heuristic varied substantially
between participants. In a separate version of the analysis, where we determined the best-fitting

1070 set of parameters per participant using cross-validation, we replicated the increase of the softmax
parameter under influence of atomoxetine (data not shown).
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Supplementary Methods

Dynamics of a single-node Wilson Cowan model

The mass dynamics of the local nodes were governed by the control parameters and bg and by,
representing external drive (background input) to the excitatory and inhibitory populations,
respectively. The parameters of the model were tuned such that the model is in a dynamical state
close to a so-called supercritical Adronov-Hopf bifurcation. The ‘Hopf-bifurcation’ separates a
regime in which the system relaxes to a stable fixed point, or focus, by drawing a spiral in the
phase space (noise-driven, damped oscillations; Fig. 2C; Fig. S8A, middle and bottom), and a
regime in which the network activity settles into a limit-cycle, a closed orbit in the phase space
corresponding to a periodic solution (sustained oscillations; Fig. 2C and Fig. S8A, top). When the
system settles into the focus, intrinsic noise induces stochastic oscillations and gives rise to a broad
spectral density with a single peak. In contrast, in the limit-cycle, autonomous regular oscillations
are observed, with a spectral density presenting a narrow peak (Fig. S8E). The parameters w as
well as bg and b; were loosely adjusted in order to produce dynamics in the vicinity of a
supercritical Hopf bifurcation. In the context of the Hopf-bifurcation, the term ‘supercritical’ is
not to be confused with the same term referring to self-organized criticality and power law scaling
behavior (Beggs and Plenz, 2003; Poil et al., 2012).

Linear noise approximation for two-nodes Wilson Cowan model
We used a linear noise approximation to study the linear fluctuations around the system’s fixed
points, i.e., E; = Ej + §E; and I; = I + 61;, where the fixed points are given by:

E} = o(WegE; — wg/lf + cE] + by + Ab), (23)
Ii = o(wigE; —wyl; + by + Ab). (24)

Dynamic equations for the linear fluctuations can be written as:
d
E& = Aér + 1, (25)

where 6r = [§E,, 61, 6E,,81,], 1 is the noise matrix, and A is the Jacobian matrix of the
system evaluated at the fixed points, given by the 4-by-4 matrix:
105

Agp = | (26)

9
Ta OB (g5 13,B5,15)

where a, B € {E;, I}, E,, I,}. Noting that ¢'(u) = go(u)[1 — o(u)] and that, by symmetry,
Ef=E;=FE"andl] =1, =I", we get:
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Agg  Ag K 0
A Aj 0 0

132 A=
320 K 0 Agy Ag | (27)
0 0 A Ap
where:
5K = cgE*(1 — E™), (30)
T A = wiggl™ (1 - 1), (31
T Ay = -1 —wygl"(1 =1, (32)
1330 The stationary covariances C,, = (6T6rT) between all populations can be obtained through the

Jacobian matrix, by solving the following equation:
AC,+ C,AT + Q,, =0, (33)

1335 where Q,, = (ym7) is the covariance matrix of the noise (which is diagonal for uncorrelated
white noise) and the superscript 7 denotes the transpose operator. Note that the Jacobian matrix
depends on the system’s fixed points, i.e., it depends on the state of the nonlinear system and, thus,
on the external inputs (bg, b;). Hence, the correlations are also a function of the parameters
(bg, by). Equation 20 can be solved using the eigen-decomposition of the Jacobian matrix

1340  evaluated at the fixed points: A = LDL™1, where D is a diagonal matrix containing the eigenvalues
of 4, denoted A;, and the columns of matrix L are the eigenvectors of A. Multiplying Equation 20
by L™t from the left and by L™T from the right (the superscript dagger being the conjugate
transpose) we get:

1345 C,=LML", (34)
where M is given by: M;; = —Q;;/(4; + 2;), and Q = L"*ML™T.

Supplementary Discussion
1350
Assumptions for large-scale (Wilson Cowan) modeling
Our large-scale modeling approach was based on two assumptions. In the following, we discuss
the physiological evidence supporting these assumptions.
Assumption 1. Cortex operates in a regime of noise driven, not sustained, oscillations. We
1355  assumed that the cerebral cortex generally operates in a regime of noise-driven oscillations, rather
than self-sustained oscillations (Fig. 2C; Fig. S8A). In the noise-driven (also referred to as
fluctuation-driven) regime, stochastic fluctuations in activity drive damped oscillations in the local
nodes. Superposition of such damped oscillations, triggered at random moments in time, give rise
to the same ongoing variations in the amplitude of band-limited activity that are commonly
1360  observed in electrophysiological data under steady-state conditions (Hipp et al., 2012; Leopold et
al., 2003), including the current data set (Pfeffer et al., 2018). The time-varying amplitudes (power
envelopes) were used to compute the inter-regional correlations in the MEG data (Fig. S2).
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Consequently, we eliminated all parameter combinations that fell outside of this regime of noise-
driven oscillations from further consideration (see Methods for identification of the parameters
1365  producing sustained oscillations to be excluded).

Assumption 2. TASK increased the drive of both, E- and I-populations. We assumed that the
change from REST to TASK corresponded to a shift of the model’s dynamical regime in an
upward-rightward direction in the (bg, b;)-plane (Fig. 2C, area defined by dashed outline). This
means that background input to both excitatory and inhibitory neural populations is increased for

1370  all nodes of the model. This assumption rests on the straightforward notion that our elementary
visual task increased the input to sensory and task-related cortical regions. There is substantial
evidence for the idea that cortical circuits generally operate in a regime of rough balance between
excitation and inhibition (Shadlen and Newsome, 1998; van Vreeswijk and Sompolinsky, 1996).
Specifically, sensory input increases not only feedforward excitation (i.e., feedforward drive of

1375  pyramidal cells), but also feedforward inhibition (i.e., feedforward drive of interneurons) in
sensory cortex (McCasland and Hibbard, 1997; Swadlow, 2002), and it is assumed that this motif
repeats across the cortical hierarchy (Shadlen and Newsome, 1998) likely augmented through
circuit motifs for feedback inhibition (Womelsdorf et al., 2014). Correspondingly, we assumed
that the visual task increased the background input to excitatory and inhibitory populations in a

1380  (loosely) balanced fashion, with a slight dominance of feedforward inhibition in the case of the
cortex-wide model (see Fig. 2D,E). Indeed, recent evidence from rodent physiology shows that
visual stimulation leads to a more pronounced inhibitory response (Adesnik, 2017; Haider et al.,
2013) compared to the excitatory response, consistent with sensory input leading to even stronger
feedforward inhibition compared to feedforward excitation. Note that this was in line with

1385  Assumption I: if the task-induced increase in excitation was much larger than the task-induced
increase in inhibition, the dynamical regime of the network would change to oscillatory,
inconsistent with physiological evidence.

Simulation and fitting of cortex-wide Wilson Cowan model

1390  The dynamical regime was defined as noise- or fluctuation-driven if: (1) the maximum and
minimum were identical at any point in time or (2) the difference between maximum and minimum
decreased monotonously over time (indicative of a damped oscillation). If none of the two were
true, the signal was defined as a sustained oscillation. Note that this approach does not allow to
distinguish between the two regimes with full certainty as the time scale with which the amplitude

1395  of an oscillation decays back to the fixed point increases as one approaches the Hopf-bifurcation
from the fluctuation-driven regime (see Fig. S8A, middle and bottom panels). Thus, the closer the
dynamical regime is to the Hopf-bifurcation, the more simulation time is required to accurately
distinguish a sustained oscillation from a damped oscillation.

1400  Microcircuit modeling (spiking neurons)

Microcircuit model of local node. We simulated the leaky integrate-and-fire circuit across a
range of parameters to identify a stable working point where the network exhibits dynamics
reminiscent of the “asynchronous state” (Renart et al., 2010). We defined the asynchronous state
as being characterized by a low spontaneous firing rate (1-5 Hz) and low mean pairwise spike

1405  correlations (r < 0.1; averaged across all pairs of excitatory units). In addition, we identified a
working point in the “synchronized state”, where the pairwise spike correlations where relatively
high (r > 0.3), but spontaneous firing rates were comparable to the asynchronous state. This was
achieved by changing AMPA-mediated recurrent excitation as well as the GABA-mediated
feedback inhibition in a multiplicative manner: we started from the baseline parameters of Wang

1410  (2002), with some minor changes (see Methods), and multiplied ggg ampa (i-€., conductance of
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recurrent AMPA receptors) and g;g gapa (i.€., conductance of GABAergic feedback inhibition)
with 24 and 12 (respectively) linearly spaced values, ranging from 0.2 to 5 and 2.7 to 5. Fig. S10A
shows spike rate (left) and mean pairwise spike correlations (right) for all parameter combinations.
While for the main part of the analysis, we focus on the asynchronous state (shown in Fig. 2F;
1415  mean firing rate FR = 4.14 Hz; mean pairwise spike correlations r = 0.05), we further wanted to
test whether the observed effect of feedback inhibition on response gain holds true also for the
synchronous state. To this end, we first identified a dynamical regime reminiscent of the
synchronous state, with low firing rates (FR = 5.11 Hz) but relatively high pairwise spike
correlations (r = 0.27). We find that, irrespective of state, a reduction in feedback inhibition leads
1420  to an increase in response gain (Fig. S10B).

Tuning of parameters of decision circuit model. This model was based on a circuit model of
decision-making developed to explain neural dynamics and choice behavior in standard two-
alternative forced choice tasks, entailing trials of a few seconds of duration (Wang, 2002). Without
further adjustments to the parameters of the decision circuit, the network dynamics would rapidly

1425  enter one of the two possible attractor states, reflecting the preference for decision 1 or decision 2.
Moreover, without sufficient levels of external drive or noise, the network would dwell in those
states indefinitely, as the lateral inhibition would dominate over the external input or the magnitude
of the noise. In order to introduce dynamics that exceed beyond short timescales (single trials), we
increased the level of background noise as well as the strength of the external stimulus. This way,

1430  we identified a state where the model would switch continuously between two attractors. Once this
point was identified, we only changed feedback inhibition in order to assess the influence of E/I
ratio on perceptual transitions (Fig. 3C).

Note that other studies that employed neural circuit models similar to the one used here for the
study of perceptual fluctuations during ambiguous stimulations (Moreno-Bote et al., 2007) also

1435  included adaptation as an alternative mechanistic explanation for perceptual transitions. For the
sake of simplicity, we did not consider this in the current circuit.
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Fig. S1. Drug effect on baseline pupil diameter.
Baseline pupil diameter after the administration of atomoxetine (Atx), placebo (Pbo) or donepezil
(Dpz), separately for rest (left) and task (right). (*) indicates P < 0.05 (paired t-test).
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Fig. S2. Quantifying cortex-wide correlation structure.
(A) (0.) Whole-head magnetoencephalography (MEG) was recorded using 274 recording channels
1470  located in a helmet above the participants head. (1.) The sensor-level signal was cleaned from
transient and sustained artifacts (e.g. muscle and heart beat artifacts, respectively). (2.) Spectral
estimates were obtained from the cleaned sensor-level signal using complex wavelet convolution.
(3.) From the spectral estimates and individual head models, source level power time series were
obtained, (4.) from which orthogonalized power envelope correlations were computed. (5.) This
1475  resulted in functional connectivity (FC) matrices for each of the 17 carrier frequency bands of
interest. (B) Global degree (see Methods) and mean FC as a function of frequency during the rest-
placebo condition. (C) Spatial map of degree during the rest-placebo condition. Correlations peak
in the ‘alpha’ (center frequency 9.51 Hz; B) and ‘beta’ frequency range (center frequency 16 Hz;
B), with strongest ‘connectedness’ (degree) in left and right posterior parietal cortex. These results
1480  are consistent with previous reports using an analogous approach to resting-state MEG data.
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Fig. S3. Quantifying task effects on cortical activity correlations.

1485  (A) Illustration of the approach to quantify changes in the global activity correlation structure:
First, the difference between two conditions (here: rest and task; placebo only) was tested by means
of a paired t-test. Next, the number of statistically significantly (P < 0.05; uncorrected) increased
(in red) and significantly decreased (in blue) connections was counted. (B) A fraction of
significantly altered correlations (negative and positive alterations) can be computed for each

1490  frequency band of interest, resulting in a spectrum of fraction of significantly altered correlations.
(C) Spatial distribution of the difference in correlation between task and rest (placebo only) at a
carrier frequency of 9.5 Hz.
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Fig. S4. Quantifying drug effects on cortical activity correlations.

(A) Functional connectivity matrices (only lower or upper triangular parts; at a carrier frequency

of 16 Hz) for atomoxetine, placebo and the difference between the two (lower triangular part:
1500  during rest; upper triangular part: during task) and (B) for donepezil, placebo and the difference

between the two.
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Fig. S5. Changes in correlations were not driven by changes in local variance.
Atomoxetine (left) induced a weak increase in the fraction of nodes with reduced power envelope
variance compared to placebo during rest (open circles indicate P < 0.05, corrected for multiple
comparisons across frequencies). Atomoxetine produced a tendency towards the opposite effect
1510  during task (increase in local variance) during task, albeit not statistically significant. Donepezil
(right) did not lead to any significant alterations in local power envelope variance. The pattern of
local variance changes under atomoxetine (decrease during rest, increase during task) cannot
explain the observed pattern of changes in correlations under atomoxetine (no effect during rest,
increase during task). In particular, an increase in local variance during task would reduce, not
1515 increase, correlations, because the local variance enters in the denominator in the computation of
the correlation coefficient.
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1520  Fig. S6. Fraction of significantly altered correlations for various regularization parameters.
(A-C) Fraction of significantly altered correlations (FAC; as in Fig. 1E) for different regularization
parameters used for the source reconstruction procedure (see Methods; panel A: o = 0.05; panel
B: a=0.15; panel C: o= 1.00). In the top row, the drug effects during rest are shown, in the middle
row the effects during task (Left: Atomoxetine vs. placebo; Right: donepezil vs. placebo). The

1525  bottom row shows the effect of behavioral state (or context), i.e., the difference between the drug
effect during Rest and the drug effect during Task. Significant differences are indicated by open
circles (P < 0.05) and filled circles (P < 0.01; two-sided single-threshold permutation test).
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Fig. S7. Fraction of significantly altered correlations for various alpha-thresholds
parameters.
The choice of the alpha-level for the initial paired t-test (Fig. 1E) does not affect the general
qualitative pattern of the drug-induced changes in the fraction of significantly altered correlations.
1535  (A) Fraction of altered correlations as in Fig. 1E, but for various different alpha-values (for the
initial t-test; see Methods), ranging from 0.01 to 0.10, for atomoxetine and (B) donepezil.


https://doi.org/10.1101/2020.06.25.171199
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.171199; this version posted October 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

>
o
®
o
n
(@]
m

Peak frequency

lj=-4.8
IE=-1.4

o

o
o

Norm. firing rate |
o
I R
Norm. firing rate E

o
n
P R
n
[S =)
(=]
o

o
N

Sustained oscillation

L
Subjects
RN
(9]
&

aouejsig
Mean distance (<8>)

i Min.
06—+~
Limit cycle 0 05 1 15 2 0 05 1 15 2

Global coupling a

Background input to E

-4

-5 -4 -3 -2
Background input to |
5 20
N
Peak freq. [Hz]

o
o

o

g4 o
N

O

o
«»

o
(2]
L
~
o o
rrelation
o o
W A

Damped oscillation

Stable fixed point b

LI S S S E Global coupling

o

Subjects
[N
o
uone|8.10
0
o
N

Mean c
o
=

| Max.
"_'J_'_'_l'
0 05 1 15 2

n
o
o °

Norm. firing rate |
o o
D
Norm. firing rate E

o

o
©
o
3

M

Cortex-wide model Simulated Empical

Ii=-4.0 (numerical) FC matrix FC matrix

1/=-14 -1

o
o

Norm. firing rate |
o
D .
Norm. firing rate E

Damped oscillation

Stable fixed point

02 04 06 08 0
Norm. firing rate E

Subject #1

o

o
N
Background input to E
&

o

L, Compute

distance &
v

o

-4 -3 -2
Background input to |

B Threshold at 5th percentile
v
Identify largest connected cluster
rAtomoxetine vs. Placebo~ — Donepezil vs. Placebo— 8+ 1 v
> 751 1 -1 oo )
E = O P <0.05 (corrected) -O"“"'."'O o w w o Geometric mean
8 g ® P<0.01 (corrected) o 2 i< g kel
c= || e T =] . 3.
5 o g 2 -2 S Repeat £
S £ P £
S 6 75 71 — Increased correlations 7 T 5 < far_all <3z
s g ---- Decreased correlations &l > @ Subjects 3
o 7 o3 / Q = -
T2 x > @ 2
OL ol =l ... 1 PP o S ]
L ® T T T d T T T — © g
6.7 95 135 19 6.7 95 135 19 o
Carrier frequency [Hz] Carrier frequency [Hz] '4_5 4 3 2 1 N -
Background input to | Background input to |

Fig. S8. Dynamics of the Wilson-Cowan models and fitting procedure of the cortex-wide
1540  model.
(A) Dynamics of a single Wilson-Cowan node around the Hopf-bifurcation. Top: Dynamics in the
oscillatory regime, exhibiting sustained oscillations. Middle and bottom: Dynamics in the noise-
driven regime, exhibiting damped oscillations. (B) The drug effects on fraction of significantly
altered correlations for 76 AAL nodes and selected carrier frequency bands (ranging from ~6.7 to
1545 ~19 Hz). (C) Estimation of the global coupling parameter. Left: across all participants and a
number of background input parameters (to E and I), the similarity (here: distance; see Methods)
between the simulated and the empirical functional connectivity matrices was computed. Right:
Distance (averaged across participants) for various levels of global coupling. (D) Same as (C), but
for Pearson correlation. (E) Peak frequency of the model for various levels of background inputs
1550  to E and L. (F) Illustration of the fitting procedure: for each combination of background inputs to
E and I, as well as every participant, the distance between simulated and empirical FC (rest and
placebo only) was computed. The resulting distance matrix was thresholded at the 2.5 percentile
(all values larger were set to zero, all others to 1) and the largest connected cluster was identified.
The geometric mean of this cluster was defined as the best-fitting value for a given participant.
1555  Repeating this procedure for all participants resulted in 28 fitted resting state parameters.
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Fig. S9. Effect of identical gain increase as in Fig. 2D (+0.1) combined with decrease of global
coupling (-0.04) in cortex-wide model.

1565  This produces a similar decrease of cortex-wide correlations during rest as observed in the data
under donepezil, but an increase in correlations during task, different from both, the donepezil and
atomoxetine data. Note that the specific pattern of these effect depends on the amplitude of the
task-related shift in the (bg, b;)-plane; the parameter changes used here may capture the observed
donepezil effect with a different task-related shift in the (bg, by)-plane. However, an equally big

1570  gain increase under acetylcholine as under catecholamines seems unlikely, given existing
physiological data (Supplementary Information) and given the difference between the effects of
both drugs on the number of perceptual transitions during the task (Fig. 3A and Fig. S11).
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Fig. S10. Increased E/I ratio increases response gain in asynchronous and synchronous

states.

(A) The parameters of the leaky integrate-and-fire model were tuned such that the network
1580  dynamics are indicative of a synchronized state (depicted pairwise spike count correlations r =

0.27) and low baseline firing rate (depicted FR = 5.11 Hz) or an asynchronous regime (pairwise

spike count correlations r = 0.05), with comparable baseline firing rate (FR = 4.14 Hz). (B) The

effects of altered feedback inhibition on response gain in the synchronous regime (C) Same as (B),

but for the asynchronous regime (identical to Fig. 2F, replotted here for better comparison).
1585
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Fig. S11. Behavior during task and task-pressing

1590  Left: Number of reported perceptual transitions after the administration of atomoxetine (Atx),
placebo (Pbo) or donepezil (Dpz), separately for task (silent counting of perceptual transitions).
Right: same for task-button (perceptual transitions reported through pressing a button; right) (*)
indicates P < 0.05 (two-sided paired t-test).
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Fig. S12. Task design, behavior, and behavioral modeling for dynamic foraging task.
(A) Behavioral task. Top: sequence of events during each trial. Two choice targets
(vertical/horizontal Gabors, randomized location) are presented at trial onset. A go-cue (change of
1600 fixation marker) instructs subjects to indicate their choice, by pressing a button with left or right
index finger. Binary auditory feedback (reward or no-reward) is delivered after variable delay. (B)
Change-point triggered change in choice fraction. (C) Cross-validated comparison between
behavioral model from main Fig. 4F with a model entailing only WSLS or only leaky reward
integration combined with softmax transformation. The latter fits the data better, indicating that a
1605  reward integration mechanism is needed to account for the data. (D) Cross-validated comparison
between behavioral model from main Fig. 4F and a model, in which softmax transformation of
choice probability is applied after combination with WSLS heuristic. The model from Fig. 4F
(softmax transformation before WSLS) fits the data better.
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REGION AAL REGION AAL
INDEX REGION NAME INDEX REGION NAME
1 Precentral L 39 Temporal Inf R
2 Frontal Sup L 40 Temporal Pole Mid R
3 Frontal Sup Orb L 41 Temporal Mid R
4 Frontal Mid L 42 Temporal Pole Sup R
5 Frontal Mid Orb L 43 Temporal Sub R
6 Frontal Inf Oper L 44 Heschl R
7 Frontal Inf Tri L 45 Paracentral Lobule R
8 Frontal Inf Orb L 46 Precuneus R
9 Rolandic_Oper L 47 Angular R
10 Supp Motor Area L 48 SupraMarginal R
11 Frontal Supp Medial L 49 Parietal Inf R
12 Frontal Med Orb L 50 Parietal Sup R
13 Rectus L 51 Postcentral R
14 Cingulum_Ant L 52 Fusiform R
15 Cingulum Mid L 53 Occipital Inf R
16 Cingulum Post L 54 Occipital Mid R
17 Hippocampus_ L 55 Occipital Sup R
18 ParaHippocampal L 56 Lingual R
19 Calcarine L 57 Cuneus R
20 Cuneus L 58 Calcarine R
21 Lingual L 59 ParaHippocampal R
22 Occipital Sup L 60 Hippocampus R
23 Occipital Mid L 61 Cingulum Post R
24 Occipital Inf L 62 Cingulum Mid R
25 Fusiform L 63 Cingulum Ant R
26 Postcentral L 64 Rectus R
27 Parietal Sup L 65 Frontal Med Orb R
28 Parietal Inf L 66 Frontal Supp Medial R
29 SupraMarginal L 67 Supp Motor Area
30 Angular L 68 Rolandic Oper R
31 Precuneus L 69 Frontal Inf Orb R
32 Paracentral Lobule L 70 Frontal Inf Tri R
33 Heschl L 71 Frontal Inf Oper R
34 Temporal Sub L 72 Frontal Mid Orb R
35 Temporal Pole Sup L 73 Frontal Mid R
36 Temporal Mid L 74 Frontal Sup Orb R
37 Temporal Pole Mid L 75 Frontal Sup R
38 Temporal Inf L 76 Precentral R

List of cortical AAL regions included in the model-based analysis.

Movie S1. 3D-Structure-from-motion stimulus.

https://www.youtube.com/watch?v=baZgACCbQqgk

The 3D-Structure-from-Motion stimulus presented to the participants during the visual task.
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