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Abstract

Assessing the effects of climate and interspecific relationships on communitiesis challenging
because of the complex interplay between species population dynamics, their interactions, and
the need to integrate information across several biological levels (individuals — populations —
communities). Usually used to quantify species interactions, integrated population models
(IPMs) have recently been extended to communities. These models allow fitting multispecies
matrix models to data from multiple sources while simultaneously accounting for various sources
of uncertainty in each data source. We used multispecies |PMs accommodating climate
conditions to quantify the relative contribution of climate vs. interspecific interactions on
demographic parameters, such as survival and breeding success, in the dynamics of a predator-
prey system. We considered a stage-structured predator—prey system combining 22 years of
capture—recapture data and population counts of two seabirds, the Brown Skua (Catharacta
[6nnbergi) and its main prey the Blue Petrel (Halobaena caerulea) both breeding on the
Kerguelen Islands in the Southern Ocean. Our results showed that climate and predator-prey
interactions drive the demography of skuas and petrelsin different ways. The breeding success
of skuas appeared to be largely driven by the number of petrels and to alesser extent by
intraspecific density-dependence. In contrast, there was no evidence of predation effects on the
demographic parameters of petrels, which were affected by oceanographic factors (chlorophyll a
and sea surface temperature anomalies). We conclude that bottom-up mechanisms are the main
drivers of this skua-petrel system. We discuss the mechanisms by which climate variability and

predator-prey relationships may affect the demographic parameters of these seabirds. Taking into
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account both species interactions and environmental covariates in the same analysis improved

our understanding of species dynamics.

Keywor ds: Bayesian inference, Demography, Environmental variations, Integrated Population

Model, Matrix population model, Nimble, Predator-Prey interactions

I ntroduction

The effects of climate changes on the diversity and the structure of communities have been
reported repeatedly (Walther et al. 2002, Parmesan 2006, Hoegh-Guldberg and Bruno 2010,
Miller et al. 2018). However, the underlying mechanisms remain poorly understood due to the
complex dynamics of interacting species: within species, between species and between species
and the environment (Godfray and May 2014). Following disturbance, such as changesin
environmental conditions, the abundance and distribution of species are expected to be modified
according to the position and extent of the species’ niche (Thomas et al. 2004). Because the
effects of environmental variability on mortality, fecundity and dispersal may differ between
species (Grosbois et a. 2008, Jenouvrier 2013), changes in structure and diversity appear at the
community level. However, studying species-by-species responses to environmental changes
may overlook the role played by species interactions on those responses, and contribute to a
lesser extent to the larger understanding of species interactions that is required by community

ecology.

Population dynamics models have been used to understand the effect of interspecific interactions
and environment on species demography. However, these models are in general not

demographically structured (Stenseth et al. 2015, Pacoureau et al. 2019a, Stoessel et al. 2019) or
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only partially (Millon et al. 2014, Saunders et al. 2018, Pacoureau et al. 2019b). Unstructured
approaches consider individuals as being equivalent but differencesin size, age and ontogenic
stages exist within a population and may be of importance in the context of interspecific
interactions. As argued by Miller and Rudolf (2011), the consideration of the stage structure of
populations can lead to a better understanding of community structure and dynamics.

I nteractions between species such as predation or competition do not necessarily have a
homogeneous impact on the different stages of the interacting species. For example, young
individuals might be predominantly preyed upon in carnivore-ungulate systems (Gervasi et al.
2015). Therefore, to detect and understand species interactions, we need to consider jointly the

demography of several stage-structured populations (Oken and Essington 2015).

Although well developed for single-species dynamics (Tuljapurkar and Caswell 1997, Caswell
2001), demographic stage-structured models have received little attention in community ecology
(but see Chu and Adler (2015) on a plant system). The difficulty isthat multispecies demography
analysis requires integrating information across several biological levels (individual — population
— community) which, in turn, requires unifying all available data sourcesinto asingle
framework. Integrated population models (IPMs) have been recently developed to infer
population demography by making complete use of all available sources of information (see
Schaub and Abadi 2011, and Zipkin and Saunders 2018 for reviews). In their simplest form,
these models combine population counts and demographic datainto a single framework, which
allows the estimation of demographic parameters while simultaneously accounting for various
sources of uncertainty in each data source (e.g. measurement error or parameter estimation)

(Besbeas et a. 2002). The IPM framework has been extended to multiple species (Péron and
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83  Koons 2012) for competition/parasitism, and more recently for predator-prey interactions

84  (Barraguand and Gimenez 2019).

85 Here, our main objective was to quantify the relative contribution of environmental changes and
86  gpeciesinteractions on demographic parameters of a predator and its prey. Therefore, we used a
87  multispecies IPM framework accommodating the effects of local and global climatic conditions
88  on demographic parameters, such as survival and breeding, while explicitly considering species
89 interactions. We applied our approach on a stage-structured predator—prey system combining 22
90 yearsof capture-recapture data and population counts on two seabirds, the Brown Skua

91 (Catharactalonnbergi) and its main prey the Blue Petrel (Halobaena caerulea) (‘skua’ and

92 ‘petrd’ hereafter) breeding on the Kerguelen Islandsin the Southern Ocean.

93  Because seabirds often occupy high level positionsin food-webs, bottom-up forcing which

94  implies population regulation through climate driven limitation in food availability, has long

95  been featured as the dominant paradigm to understand their dynamics (Lack 1967, Aebischer et

96 a. 1990, Stenseth et al. 2002). Seabird foraging behavior and demography reflect the influences

97  of climate variability which directly impacts biological processes in marine ecosystems and

98 cascade through food webs up to seabirds (Barbraud and Weimerskirch 2001, Jenouvrier et al.

99  2003). However, top-down pressures as predation at breeding colonies are also known to affect
100 thevital rates of seabirds (Hipfner et al. 2012). Thereisincreasing evidence that bottom-up and
101 top-down processes often act in concert and differently affect demographic parameters (Suryan
102 et al. 2006, Horswill et al. 2014, 2016). For example, the effects of predation and resources
103 limitation caused breeding failure of Black-legged Kittiwakes (Rissa tridactyla) (Regehr and

104  Montevecchi 1997) and population declines of Arctic Skuas (Sercorarius parasiticus) (Perkins

5
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105 et al. 2018). Therefore, quantifying the relative strength of environmental conditions and

106 predator-prey effectsis essential for a better understanding of the drivers of population dynamics
107 inseabirds. Thisisall the more important as climate changes impact the physical properties of
108 the oceans, including the Southern Ocean (Gille 2002, Han et al. 2014) and, through the trophic
109 food web, affect demography and population dynamics of seabirds (Barbraud et al. 2012,

110  Sydeman et al. 2015), including some of the species studied here (Barbraud and Weimerskirch

111 2003).

112  Using amultispecies IPM, we assessed the relative contribution of environment and predator-
113  prey interactions on seabirds demographic parameters. We estimated survival and adult

114  breeding success for the two interacting species, and assessed the impacts of climatic conditions
115  on these demographic parameters to understand the contribution of predator-prey interactionsin

116  shaping population dynamics.

117 Materialsand Methods

118 Study siteand Species

119  Skuasand petrels were studied on Mayes Island (49°28'S, 69°57'E), a 2.8 km? uninhabited island
120 of the Kerguelen Idlands in the Southern Ocean where the two species breed during the austral

121  summer (October-February).

122  The petrel isasmall (150-250q9) long-lived seabird belonging to the family of Procellariiformes.
123 At Kerguden Islands, petrels feed on macrozooplankton and micronekton feeder, mainly

124  crustaceans and fishes (Cherd et al. 2002, 2014). Individuals from Mayes Island spend the
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nonbreeding season (from mid-February to September) between the polar front and the northern
limit of the pack-ice (57-62°S) between longitudes 20°W and 90°E (Cherel et al. 2016). Birds
return to breeding coloniesin early September (Quillfeldt et al. 2020). Mayes Island is covered
with dry soils and dense vegetation, providing suitable breeding sites for approximately 142,000
breeding pairs of these burrowing petrels (Barbraud and Delord 2006). In late October, asingle
eggislaidinaburrow dug in peat soil under tall and dense vegetation. The incubation lasts 45-
49 days and the chick rearing period 43-60 days (Jouventin et al. 1985). The chick fledgesin
early February. Both sexes participate in parental care by alternating foraging trips during the

incubation and fledging periods.

The skuaisamedium sized (1.1 — 2.2 kg) long-lived seabird belonging to the family of
Charadriiformes. On Mayes Island between 80 and 120 pairs breed annually (Mougeot et al.
1998). Breeding pairs form in October with a high mate fidelity, and generally establish
themselves in the same territory each year (Parmelee and Pietz 1987), which they tenaciously
defend throughout the breeding season. Generally, two eggs are laid between October and
December. The incubation lasts 28-32 days and the chicks rearing period 40-50 days (Higgins
and Davied 1996). Skuas are extremely plastic in their foraging techniques and adapt their diet
depending on the local availability of prey (Carneiro et a. 2015). On Mayes Island, during the
breeding season, Blue Petrels represent 95% of the skua diet (Pacoureau et al. 2019c). Skuas
from Mayes Island overwinter in the southern hemisphere between 10°E and 150°E (Delord et

al. 2018).

During the breeding period on Mayes Island, the predation of petrels by skuas takes place mainly

at night, when petrels come out or arrive at their burrows (Mougeot and Bretagnolle 2000a).
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Skuas mostly prey on petrels on the ground, but they can aso catch petrelsin flight (Mougeot et
al. 1998, Pacoureau et al. 2019c). Vocalizing petrels, especially those without partners, are more
easily detected by skuas during the courtship period (Mougeot and Bretagnolle 2000b). Skuas

may also prey on chicks during the fledging period.

Count and capture-recaptur e data

Data of both skuas and petrels were collected during the breeding seasons from 1996/1997 to
2017/2018. For convenience, breeding seasons are named from 1996 to 2017 hereafter. The time
interval used in our model starts before the wintering of species and ends at the end of the
breeding period. Two types of data were used: count data corresponding to the number of
burrows or territories occupied by seabirds and capture-recapture (CR) data of adult seabirds
found on the monitored area. Each year, adult individuals of both species were checked at
specific times following the species phenology to determine the breeding status of each bird. The
breeding status of marked birds was determined at the end of the breeding period. In the
following we describe how the data were collected for the two species. For clarity, all parameters

for skuas are indicated by Sand by P for petrels.

Around 200 individually marked burrows of petrels were inspected each year from early-to-mid
November just after the egg-laying to check for eggs and to identify marked adults, and then in
late January just before fledging of the chicks. Each year since 1985 (see Barbraud and
Weimerskirch 2005), all fledglings aswell as new individuals found in burrows were marked
with a stainless steel band (captured by hand, marked, and replaced in their burrow). Petrels

never observed with an egg or a chick during a given breeding season were considered as
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168 nonbreeders (NB). Individuals were identified as breedersif they laid asingle egg or raised a
169 chick and as successful breedersif their chick fledged (SB). Two categories of failed breeders
170  were used depending on the stage of failure: egg stage (FBE) or chick stage (FBC). Given that
171 thefirst sampling period occurred just after laying, it isvery unlikely that nonbreeders were
172  failed breeders. These breeding statuses allowed the construction of the individual capture

173  histories (Chp) and constituted our CR data. The annual number of adult petrels (Y), i.e. count
174  data, was estimated as the number of occupied burrows. Each occupied burrow was considered
175 asbeing frequented by apair of petrels. We considered that this count included all adult

176 individuals, both breeders and non-breeders.

177  For skuas, each year since 1991, the eastern side of Mayes Island was inspected to identify

178 territories of skuas. A territory was considered established when a pair strongly defended an area
179 against other skuas (Mougeot et al. 1998). Around 50 nesting territories were visited four to eight
180 timesfrom mid-October (after egg-laying) to late-February (just before fledging of the chicks)
181  each year. Chicksjust before fledging, as well as new adult individuals, were marked with a

182 metal ring and a plastic ring to facilitate individual identification using binoculars. Breeding

183  statuswas determined by checking the nest contents for the presence of eggs or young chicks.
184  Skuas never observed with an egg or a chick were considered as nonbreeders (NB). Individuals
185 wereidentified asbreedersif they laid at least one egg or raised a chick. If the eggs did not hatch
186  or the chicks died, both members of the pair were considered as failed breeders (FB). Given that
187 thefirst sampling period occurred just after laying, it isvery unlikely that nonbreeders

188  represented failed breeders. Successful breeders were defined as individuals that fledged one or

189  two chicks, and were denoted as SB1 or SB2, respectively. These breeding statuses alowed the

9
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190  construction of the individual capture histories (Chg) and constituted our CR data. The annual
191 number of skuas (Ys), i.e. count data, was estimated as the number of territories and each
192 territory was considered occupied by a pair of skuas. We considered that this count included all

193  adult individuas, both breeders and non-breeders.

194  For both species, individual breeding status could be considered as “uncertain” (C) in case of
195 difficultiesto assign their breeding status (lack of information, missed checks, individuals never
196 re-observed). Only adult individuals that have bred at |east once between the 1996 and the 2017
197  breeding seasons were kept in the data set for analysis to eliminate potential transient individuals
198 (n=318for skuasand n = 1210 for petrels). Individual capture histories (Ch) started at their first
199  breeding attempt recorded. Based on the high probability of observing breedersin the study site,
200 we assumed that the first breeding attempt was correctly detected. New individuals found in

201  monitored burrows or territories are considered as immigrants to the study site (N;,,,).

202  The presence of chicks was used to assign a breeding status to adult individuals captured in the
203  breeding area. In order to maintain the independence of the data, we did not include information
204  on chicksin the model. Therefore, the fecundity was a fixed value. We considered one chick for
205 each pair of seabird, considered as successful breeders (Ngp p) for petrels or successful breeders
206  with one chick (Ngg, s) for skuas (fsp p and fsz, s are equal to 1, respectively). For skuas that
207  successfully fledged two chicks (Nsp, ), we considered two chicks per pair of skuas ( fsp, s IS
208 equal to 2). Since juveniles only return to the breeding sites as adults to attempt to breed for the

209 first time (from four year old or older), we did not have data on juvenile states.

10
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210 Integrated Population M odel

211  Webuilt atwo-species IPM that combines count and CR data and allows estimating abundances
212  and demographic rates (Besbeas et al. 2002, Schaub and Abadi 2011). More specifically, we
213  connected two IPMs, one for predatory skuas and one for petrels, their main prey, through

214  explicit predator-prey relationships (Barraguand and Gimenez 2019). We incorporated the

215  effects of predation within species-specific vital rates such as survival and breeding parameters.
216  ThisIPM isstructured by states which represent life history states (Fig. 1). We built two

217  likelihoods, one for the CR data and the other for the count data which we combined into ajoint

218  likelihood.

219 Inthefollowing, we detail the state process following abiological timeline and we explain the
220 different likelihood used. The structure was the same for the two species but states differed in
221  relation to species biology (Fig. 1). The two main differences were: (1) skuas could have up to
222  two chicks versus only onefor petrels, (2) the failed-breeder stage in petrels could be split

223  further according to the timing of failure (failure at the incubation vs. chick-rearing stage). For
224  clarity, parameters are indexed by S (for skuas) or P (for petrels) when differences occur, or by X
225  (for Sor P) when the structure is the same for both species. We used Poisson (Po) and binomial
226  (Bin) distributionsto account for demographic stochasticity. Notations of all parameters and state

227 variables are detailed in Appendix S1: Table S1.

11
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State process

Offspring production

The estimated number of skuas and petrelsin their first year i.e. between 0 and 1 year old
(N;1,5,¢) @t year t, is modelled with a Poisson distribution:

Nyise ~Po(0.5 X fop16 X Npise—1+ 0.5 X fopas X Nepase-1) 1)
Njypt ~P0o(0.5 X fogp X Neppr_1) (2

with N, ¢ the number of chicks produced by all successful skua breeders (N, s and Nsg; )
according to their fecundity (fsz, s 1 chick and fsp, 5: 2 chicks per female skua, sex ratio: 0.5).
For petrels, N;, p is also Poisson distributed but with only one chick (fsp ») per estimated

successful female breeder (Ngp p With asex ratio of 0.5).

Juvenile survival

The number of juveniles between one and two years (N,,), two and three years (N,;), and three

and four years (N,,), are modelled with binomial distributions:

Njpxt ~ Bin( b1x N]l,X,t—l) (3)
Njsxt~ Bin( br2x N]Z,X,t—l) (4)
Nyjgxt ~ Bin( Dr3x N]3,X,t—1) (5)

with the apparent survival between one and two years (¢;,), between two and three years (¢;,)
and between three and four years (¢,3) respectively. As we observed only adult breeding birds,

we had no information on the juvenile phase. We assumed that juvenile apparent survival
12
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247  increased with age (Greig et al. 1983, Grande et al. 2009, Fay et al. 2015), as experienced birds
248  are on average more effective in foraging (Daunt et al. 2007), in competing with conspecifics or

249  inavoiding predators:

250 logit(d)]age_i,x) = Mxt+Ax Xage_i (6)

251  where ¢, isthe juvenile apparent survival, age_i the age of the juvenile state (from N;; to N;,),

252 A, theintercept and A, the slope which is constrained to be positive.

253  Juvenilefirst breeding attempt

254  Thefirst breeding attempt in skuas and petrels could start from age four. Four years old
255  individuals and older that did not attempt to breed are in the state (N, ). The individuals that
256  attempted to breed for thefirst time with afirst breeding attempt probability Pr arein the state

257  Nj,p and theindividuals that did not attempt to breed are in the state Ny

258  Nppx:~ Bin (P Tt Prax X N]4+,X,t—1) (7)
259 Npunpxt=®jax X Njawxe—1— Nupxr (8

260  with ¢;, the apparent survival for the N;,, state. The N, state includesindividualsthat did not

261  attempt to breed (N,,yp) and individuals aged between three and four years (N, ):

262 Npwxt= Nuxe+ Nunpxe 9

13
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263  Adult survival

264  For the two species, we modelled the number of surviving adults (N;;,.) @ year t among the
265  total number of adult individuals (N,4:,:) a year t-1 with abinomial distribution, with ¢ the

266  adult apparent survival:

267  Ngjjpext ~ Bin (¢X,t—1r Nadtot,X,t—l) (10)
268  Breeding probability

269  The number of adult individuals that have bred or not bred among those that survived (N,;;,,.) 1S

270 moddled as:
271 NBalive,X,t~ Bin (ﬁX,t—l ’ Nalive,X,t) (11)

272 NNB,X,t = Nalive,X,t - NBalive,X,t (12)

273 with g the probability of breeding, N, the number of adult breeders that survived and Ny
274 the number of adult nonbreeders. As capture histories started at their first breeding attempt

275  recorded, theimmigrants, i.e. newly marked individuals (N;,,,) coming for thefirst timein the
276  colony, were considered as breeders. Then, the total number of breeders (Ny) correspondsto the
277  sum of the number of adult breeders that survived (Ngq;ive), the number of immigrants (N;,,,)

278  and the number of juveniles attempting to breed for the first time (N,5):
2719 Npx: = Npawex,e T Nupxe + Nimx.t (13)

280 Thetotal number of adults (N, 4:.:) COrresponds to the sum of nonbreeders (Ny ) and breeders

281 (Np):

14
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282 Nuatotxt = Nypxt+ Npxe (14)

283  Breeding success

284  Breeding success and failure are modelled differently for skuas and petrels. For skuas, the
285  numbers of failed breeders (Ngp ) and successful breeders (Nsjp ) are modelled following a

286  binomial distribution:
287  Ngps:~ Bin (YS,t—ll Ng st ) (15)
288 NFB,S,t = NB,S,t - NSB,S,t (16)

289  with y, the probability of a successful breeding. A successful breeder can then have one or two

290  chicks, respectively Nsg, s and Ngp, s and thisis modelled following a binomial distribution:
291  Ngpps¢ ~ Bin (6s¢-1,Nspst) a7
292 Nspyst = Nspse— Nopase (18)
293  with §, the probability of producing two chicks rather than one among the successful breeders.

294  For petrels, there are two states for failed breeders: one with petrels that failed to hatch their egg
295  (named failed breeder at the egg stage N5 p) and the second with petrels that failed to fledge
296  their chick (named failed breeder at the chick stage Ny p). Hence, there is a parameter of

297  successful hatching (wp). The numbers of petrels with an egg that successfully hatched (Ngy p)
298  and the failed breeders at the egg stage (Nppr ») Were modelled following a binomial

299 didribution:

300 Nsype ~ Bin (wp,t—1 yNppt ) (19)

15
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301 NFBE,P,t = NB,P,t - NSH,P,t (20)

302  with wp the probability of successful hatching. Successful breeders (Nsp p) and failed breeders

303  atthechick stage (Ngpc p) Were modelled following abinomial distribution:

304 Ngg p:~ Bin (YP,t—lr NSH,P,t) (21)
305 NFBC,P,t = NSH,P,t - NSB,P,t (22)
306 with y, the probability of successful breeding.

307 Count data

308 The observation equation links the observed adult population count (Y) (i.e. the number of
309 territories/burrows multiplied by two for a pair of seabird) with the true adult population size

310  (N_g4t0:), With an additional term for observation error:
311 Yx:~ N(Nagtot,x,t »Ex,t)
312 SX,t ~ N(O, O-I%X) (23)

313 wheret isthe error term and o¢ its variance. As only the adult states were observed on the field,
314  we excluded the juvenile states from the observation equation. The likelihood for the population

315  count dataisdenoted asL, s (Ys|bj1,s) P25 Pr3.50 Pras: Prs, ds, Bs, Vs, O, Naator,s) for skuas and
316 aSLcop(YelPy1p Pj2ps @y @raps Pre, dp, Bps @p, ¥V, Naator p) fOr petrels.
317 Capture-recapturedata

318  For adult CR data, we used multievent capture—recapture models to estimate the demographic

319 parameters (Pradel 2005). These models take into account the imperfect detectability of the
16
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320 individualsas well asthe uncertainty in the assgnment of statesto individuals (Gimenez et al.

321 2012).

322  For skuas, our multievent model includes five states: NB, FB, SB1, SB2, dead, and six events:
323  not seen, seen as NB, seen as FB, seen as SB1, seen as SB2, seen as C. For petrels, the five states
324 are: NB, FBE, FBC, SB, dead, and the six events are: not seen, seen as NB, seen as FBE, seen as
325 FBC, seen as SB, seen as C. The following demographic parameters were estimated for the two
326  species: the adult apparent survival probability (¢y), the breeding probability (Sy), the

327  probability of successful breeding (yx). The probability of successful breeding with two

328  chicks(ds) was also estimated for skuas, as well as the probability of hatching (wp) for petrels.
329 Two additional parameters were also estimated: the detection probability (px) and the state

330 assignment probability of individuals with uncertain state (uy). All parameters were time-

331 varying through ayearly random effect, except u (Table 1). State transitions were set to be state
332  dependent according to the breeding status in the previous breeding season (Table 1): Breeder
333  (B) representing birds that attempted to breed the previous breeding season (FB, SB1, SB2 for
334 skuasor FBE,FBC,SB for petrels) or Nonbreeder (NB) representing birds that already bred

335 previously but did not attempt to breed during the previous breeding season (NB). The detection
336  probability and the state assignment probability also depended on the breeding status (Table 1).
337  Thelikeihood for the CR datafor skuasis denoted as L., s(Chs|®s, fs, Vs, Os, Ps, Us)

338 and L.y p(Chpldp, Br, Ve, Op, Pp, up) for petrels.

17
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Joint likelihood

Thejoint likelihood of the skua IPM isthe product of the likelihood for the count data (L, s)

and CR data (L., s):

Lipm,S (Ys,Chg |¢]1,s ) ¢]2,s ’ ¢]3,5 ’ ¢]4,5 P15, ¢s,Bs, Vs, 0s, Naatot,s s » Ug) =
Leos (Ys |¢]1,s ) ¢]2,s ’ ¢]3,s ’ ¢]4,s P15, ds,Bs, Vs, 0, Nadtot,S)

X Lcr,S(ChSld)S rﬁS ;Vs ) 65 )pS !uS) (24)

For petrels, the product of the likelihood for the count data (L., p) and CR data (L., p) is

denoted as. Ly p(Yp, Chp|®j1p, Pj2p» Praps $rap, Pro,Pp,Bp, Wp, Ve s Naator,p » Pp » Up)-

I nter specific relationships, intraspecific density-dependence, and environmental

covariates

We used different covariates to investigate their effects on the adult demographic parameters
estimated for the two species (Table 2). We focused only on the demographic parameters of adult
individuals because only adults were observed on the field. We tested interspecific predator-prey
relationships between skua and petrel, and intraspecific relationships with density-dependence
for both species. Moreover, we considered several climatic covariates that were suspected to
affect demographic parameters of skuas and petrels, the Southern Annular Mode (SAM) on a
large scale, and the Sea Surface Temperature anomalies (SSTa) and Chlorophyll a concentration
(Chla) on alocal scale. In the following, we provide more details on covariates and how they

may affect the demography of skuas and petrels.

18
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Predator -prey interactions

Multispecies IPMs allow usto explicitly include interspecific relationships between vital rates of
one species and estimated population sizes of the other. Based on the high proportion of petrels
in the diet of the skuas during the breeding season (Mougeot et al. 1998, Pacoureau et a. 2019c),
we predicted that petrel adult apparent survival (¢ ) should decrease with the number of skuas.
As skuas prey on adults and chicks during the fledging period, we predicted that the hatching
success (wp) and fledging success (yp) would be impacted by the number of predators.
Inversely, we predicted that alarge number of petrelsin the breeding colony would provide
enough food resources for skua and then be favorable to their breeding success (y) and breeding

success with two chicks (Js).

I ntraspecific density-dependence

We investigated the effect of intraspecific density-dependence on the demography of the two
species as higher density of individuals on the breeding area can lead to and increasing
competition for food resources or for territories. Skuas are highly territorial and defend their
territories vigorously during the whole breeding season. The most violent fights may even lead to
their death. Moreover, the limited number of territories could cause emigration of skuas without
territory. Thus, we predicted that the apparent survival (¢s), i.e. thejoint estimation of the
mortality and emigration, would be negatively impacted by the number of skuas. This limited
number of territories could also lead to a negative density-dependence relationship between
breeding probability (5s) and population density. The energetic cost and the time spent in
defending aterritory throughout the breeding season may limit the time spent searching for food,

potentially limiting energy investment in reproduction. We thus predicted a negative effect of
19
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380 population density on the successful breeding parameter (y) and the probability to have two
381 chicksrather than one for successful breeders (J5). For petrels, we also tested the effects of
382 intraspecific competition for food resources, which could affect their adult apparent survival
383 (¢p) and their breeding parameters. breeding probability (8p), hatching (wp) and fledging

384  success (yp)-

385 Environmental covariates

386 Climate variability impacts biological processes in marine ecosystems, which cascade through
387 food webs and are integrated by seabirds (Barbraud and Weimerskirch 2001, Jenouvrier et al.
388  2003). Hence, we considered several covariates that are suspected to affect populations of petrels
389  and skuas through these bottom-up mechanisms. All covariates are used as proxies of food

390 availahility at sea at different scales. In the following, we explain how environmental conditions

391 may impact the two species based on their diet and distribution.

392  Because skuas have broad wintering areas (Delord et al. 2018), we tested alarge-scale

393  environmental covariate, the SAM. In contrast with their diet during the breeding season

394  specialized on the Blue Petrel, during winter skuas adopt a mixed diet composed of low trophic
395 level preys, such as macrozooplankton and crustaceans (Delord et al. 2018). We hypothesized
396 that availability of food resources at sea during the austral winter might have an effect on the
397  body condition of skuas and then affect the survival of skuas. Moreover, skuas may experience a
398 carry-over effect asthe additional energy invested by individuals to maintain themselves during
399  poor wintering conditions may have repercussion on their ability to breed the next breeding

400 season (Harrison et al. 2011, Bogdanova et al. 2017).

20


https://doi.org/10.1101/2020.06.26.174250
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.26.174250; this version posted November 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

401  For petrels, the wintering areas have been determined (Cherd et a. 2016) allowing us to test two
402  covariates used at local scale, the SSTa and the Chla, in addition of the SAM. Astheir diet is
403  mainly composed of crustaceans and fish feeding at low trophic levels (Cherel et a. 2002, 2014),
404 thefood availability at sea may impact the survival of petrels. Moreover, during the breeding
405 season, male and female petrels take turns, one incubating the egg and fasting and the other

406 foraging at sea, which results in substantial variation in their body mass (Chaurand and

407  Weimerskirch 1994a, 1994b, Weimerskirch et al. 1994, Chastel et al. 1995). Therefore, high

408 food availability at sea may allow a good foraging success of the foraging partner that may return
409 toland after ashort stay at sea, allowing a good synchronization of the breeding partners on the
410 nest. In contrast, poor conditions could increase the time spent at sea by the foraging partner,
411  which would increase desertion of the nest by the fasting partner and then, reduce the breeding
412  success. We thus predicted that conditions at sea during the breeding season would also affect

413  thebreeding success of petrels.

414  Southern Annular Mode

415 The SAM isalarge-scale climateindex. SAM isthe leading mode of climate variability over the
416  Southern Hemisphere. SAM is defined as the difference of atmospheric pressure between the
417  40°S and 65°S latitudes (Marshall 2003). SAM influences surface wind, sea surface temperature
418  (SST) and surface chlorophyll concentration. A large majority of the skuas from Mayes Island
419  overwinter north of the polar front (Delord et al. 2018). In the subtropical zone, SAM positive
420  phasesinduced warm SSTa, low surface chlorophyll concentration and easterly winds driving
421  Ekman trangport (the 90° wind-driven net transport on the sea surface), while in the Subantarctic
422  zonethereis aconvergence of waters that increase downwelling and positive SSTa (L ovenduski

21
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and Gruber 2005). We thus predicted that the positive phases of SAM, potentially leading to
poorer food availability in the areas used by skuas during the nonbreeding period, would have
negative impacts on skua survival and limit their ability to breed the next breeding season. South
of the polar front, where petrels spend the winter, positive phases of the SAM are associated with
westerly winds. Thisinduces cold SSTa, increased equatorward Ekman transport and drives
increased upwelling (Lovenduski and Gruber 2005). Consequently, the biological productivity
and potential prey availability for petrels are higher during positive phases of the SAM. We thus
predicted that the positive phases of SAM would be favorable for petrel demographic
parameters. Data were obtained from the online database of the British Antarctic Survey

(http://www.nerc-bas.ac.uk/ icd/gjma/sam.html).

Sea Surface Temperature anomalies

SSTareflect local oceanographic conditions that influence the whole marine trophic food web.
High SST generally reduces vertical mixing and provides poor growing conditions for
zooplankton communities which, through bottom-up mechanisms, induces reduced trophic
resources for seabirds (Barbraud et al. 2012, Sydeman et al. 2015). Consequently, year-to-year
variation of SST was previously found to be negatively correlated with petrel body condition
(Guinet et a. 1998). Therefore, we predicted that high SSTa would negatively affect overwinter
survival and breeding success of petrels. The SSTa data were downloaded from the National
Oceanic and Atmospheric Administration (“data: NOAA NCEP EMC CMB GLOBAL

Reyn_SmithOlv2 monthly ssta’) from 1996 to 2018.
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443  Chlorophyll a

444 Chlorophyll alies at the bottom of the marine food web and provides resources for higher trophic
445  organisms up to seabirds. Because petrel diet is mainly composed of crustaceans and fish feeding
446  at low trophic levels (Cherel et al. 2002, 2014), we predicted that high concentrations of Chla
447  would be favorable to the survival and breeding success of petrels. The Chla data were

448  downloaded from the NASA Ocean Data with a 9km mapped concentration data of chlorophyll a
449  for the years 1997 to 2001 and from the Nasa Earth Observation (NEO AQUA/MODI S data)

450  monthly for the years 2002 to 2018.

451  Assessing the effect of environmental covariates and population densities

452  Wefitted asingle multispecies IPM including al the biologically relevant effects. Logit-linear
453  regressions were used to estimate the effect of environmental (SAM, SSTaand Chla) and inter-
454  and intra-specific interactions on demographic parameters (adult apparent survival, breeding
455  probability, hatching probability, breeding success) (Table 2). We used state variables

456  Nggroes@nd Nygeoe p , respectively the number of adult skuas and petrels, to assess the effects of
457  inter- and intra-specific interactions. For example, we modelled the hatching probability for

458  petrelsthat bred the previous year (wp 3) using alogit link:

459  logit(wppr-1) =
460  pyps t Asamwps X SAMyp: + Assrawps X SSTAupr + Achigwps X Chlagp: +

461  appwps X Naatorpt + %ppwps X Naatotst + Ewpit

462 EopBt ™ N(O, O-Zs,w,P,E’) (25)
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with u,, p 5 theintercept, ag AMy, p 5 the slope for the climatic covariate SAM,, p, 5514w p,5 the

slope for the climatic covariate SSTa,, p, cpia 0 p,5 the Slope for the climatic covariate Chla,, p,
@pp,ep.5 the sopeindicating the strength of the intraspecific density-dependence with

Ngatot,p the number of adult petrels, app ,, p 5 the Slope indicating the strength of the predator-
prey relationship with N4, s the number of adult skuas, ¢, p 5 isayearly random effect and
0”. o,p,5 Itstemporal variance. The descriptions of all logit-linear relationships used on

demographic parameters are available in Appendix S2.

For local covariates (SSTa and Chla), we calculated the average values of the covariatesin the
areas in which petrels were located (Cherel et a. 2016) in a specific time period during which the
environment might affect the demographic parameter under investigation (Table 2). Each
environmental covariate was standardized to have zero mean and unit variance. However, the
inter- and intra-specific covariates were not standardized prior to the analyses because the
population sizes were estimated step by step each year. To compare the relative contribution of
the effects of each covariate, we calculated the standardized effect of population size (for inter-
and intra-specific relationship) posterior to the analyses by multiplying their slopes (@) by the
standard deviation of the estimated population sizes. Then, we compared the relative contribution

of each covariate using the regression estimate which we used as a measure of effect size.

We computed the 95% and 80% credible intervals (CRI) for the regression coefficients a.. We
did not interpret uncertain effects (i.e. 80% CRI including zero) and focused particularly on clear

effects whose sign could be reliably assessed (i.e. 95% CRI excluding zero).
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483 Model implementation

484  Tofit thejuvenile apparent survival parameters increasing with age, we modelled them asa

485 positive linear function of age by assigning to the slope 4, aU(0,1) prior, and by defining the
486 intercept A, withanormal N(0,1) prior. The probability of the first breeding attempt (Pr) is
487  time-dependent with a uniform prior: Pr,~U(0,1). Normal priors N(0,10*) were assigned to the
488  regression coefficients (o) of the covariate effects. For the variance of the random year

489  effects (o), weused aU(0,10) vague prior. The state assignment probability of individuals

490  with uncertain state parameter (u) was defined a priori with a U (0,10) vague prior.

491  Bayesian posterior distributions were approximated via Markov chain Monte Carlo (MCMC)
492  agorithms. Two independent MCMC chains of 200,000 iterations were used with aburn-in

493  period of 100,000. One out of fiveiterations was kept and final inferences were derived from a
494  sampleof 2 x 20,000 iterations that resulted from merging the two chains. Gelman-Rubin

495  convergence diagnostic (Brooks and Gelman 1998) was below 1.5 for each parameter and the
496  mixing of the chains was satisfactory. We performed the analyses using Nimble (de Valpine et
497 a. 2017 ; version 0.9.1) and program R (R Core Team 2020 ; R version 4.0.3). Code and data are

498 available on GitHub at https://github.com/maudqueroue/MultispeciesIPM  SkuaPetrel.

499 Results

500 Predator-prey relationships

501 We estimated positive relationships between two breeding parameters of skuas and the number

502  of adult petrels. The breeding success for at least one chick (ys 3) [Slope mean (appysﬁ) = 0.66;
25
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95% CRI (0.37, 1.05)] (Fig. 2a) and the breeding success with two chicks (85 ) [Slope mean
(ap P&Sﬂ) = 1.24; 95% CRI (0.59, 2.12)] (Fig. 2b) for skuas that were breeders the previous
breeding season increased with an increasing number of prey. Even though the effects were less
clear (95% CRI including zero), the breeding success of petrels tended to be positively impacted
by the number of predators (Table 3). We detected a positive relationship between the number of
adult skuas and the hatching success of petrels that were breeders the previous breeding

season (wp 5), and with the breeding success of petrels that were nonbreeders the previous
breeding season (yp 53). We found no other interspecific relationship on the other parameters

(Table 3).
I ntraspecific density-dependence

The number of skuas had a clear effect on two demographic parameters, namely the breeding
success and the breeding success with two chicks for skuas that were breeders the previous

breeding season. We found negative density-dependence for the breeding success (y; 5) [slope
mean (ap Dy,s,ﬁ) =-0.39; 95% CRI (-0.65, -0.12)] (Fig. 2c) and for the probability of producing
two chicks rather than one (& 5) [slope mean (ap D&Sﬁ) =-0.53; 95% CRI (-1.02, -0.10)] (Fig.
2d). These two breeding parameters were also affected by interspecific relationships and we

observed that the predator-prey effects were stronger than intraspecific effects (| mean &pp .

0.66; |mean App,, ¢ 5 |: 0.39 respectively) for the breeding success and (|mean aPP&S’§| =124,

|mean by |= 0.53 respectively) for the breeding success with two chicks (Table 3).

26


https://doi.org/10.1101/2020.06.26.174250
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.26.174250; this version posted November 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

941

available under aCC-BY-NC-ND 4.0 International license.

For petrels, we estimated a positive effect of increased number of adult petrels on the breeding
probability for individuals that were breeders the previous breeding season (S5 ) [slope

mean (ap) ﬁpg) =0.51; 95% CRI (0.03, 0.98)] (Fig. 2€). Moreover, the number of petrels tended

to negatively affect the breeding success of petrels that did not bred the previous breeding

season (vp 5p) (Table 3).
Environmental covariates

We found ecologically relevant relationships between environmental covariates and
demographic parameters of the two species (Table 3). For petrels, we found positive
relationships between the two local environmental covariates (SSTa and Chla) and the breeding
probability for individuals that were nonbreeders the previous breeding season (f» 53). The

effect of these environmental covariates on the breeding probability was stronger for the Chla

covariate than for the SSTa covariate (|mean Achlag p g

= 0.63; |mean sty | = 0-36

respectively). We estimated a positive relationship between the SAM covariate and the apparent

survival of skuas that were nonbreeders the previous breeding season (¢s iz )-

In addition to the results above, we also estimated the demographic parameters and the number

of individuals in each state for both species from 1996 to 2017 (see Appendix S3: Figs. S1— S6).

Discussion
In this paper, we provide the first application of a multispecies IPM in a predator-prey context.

Joint analysis of empirical datafor two seabird species allowed usto estimate demographic

parameters and population size for both simultaneously. The key advantage of using a
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multispecies IPM was that it enabled us to use the population sizes estimated by the model for
one species to analyze its effect on the demographic parameters of the other species while
propagating all sources of uncertainty. Hence, it allowed us to understand the contribution of
interspecific interactions on the demographic parameters while further taking into account the
effects of climatic conditions. Our results showed that the demography of the predatory skua was
mainly driven by the number of petrel prey during the breeding season and by the environment
during the nonbreeding season, whereas petrels were mostly impacted by the environment. This
suggests that this predator-prey system is mainly driven by bottom-up processes and density-

dependent processes.

Effects of predator-prey relationships

The number of prey is a determining factor in the breeding success of skuas according to our
results. Food availability is known to be positively related with breeding parameters in seabirds
(Cairns 1988, Piatt et al. 2007, Oro et al. 2014). As diet of skuas during the breeding period is
dominated by petrels (Mougeot et a. 1998, Pacoureau et al. 2019c¢), a large abundance of petrels
provides easier conditions for skuasto feed themselves and their chicks resulting in a higher

breeding success.

Interestingly, we did not find the opposite relationship in the prey dynamics. Our model provided
no evidence for a negative effect of the number of skuas on the demographic parameters of the
petrel. As skuas prey on both adults and juveniles during the breeding season, we expected a
negative effect of the number of skuas on the petrel breeding parameters. This lack of effect

could be explained by the large abundance of petrels compared to the skuas on Mayes Island.
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563 Oro et al. (2006) reported that in another seabird predator-prey system, the highest breeding

564  success of the prey occurred when the prey/predator ratio was very high. On Mayes Island, the
565  breeding population of petrelsis estimated at approximately 142,000 breeding pairs (Barbraud
566 and Delord 2006), and this does not include chicks (around 71,000 each year) and nonbreeders
567 (approximately 30% of the petrels). Hence, there are about 476,000 petrels during a breeding
568  season versus about 200 skuas, resulting in avery high prey/predator ratio. Moreover, Mougeot
569 et al. (1998) showed that skuas breeding at Mayes Island preyed on about 40,000 petrels each
570 breeding season. This corresponds to about 8% of the petrel population of theisland. It is

571 therefore possible that skua predation is only a minor factor in shaping petrel demographics, and
572 thiseffect may betoo weak to be detected by our model. Inversely, although the relationships
573 estimated were less clear, our results suggest that the density of skuas tended to increase slightly
574  with the hatching success and breeding success of the prey. However, it isunlikely that the

575  presence of predatorsincreased the reproductive success of petrels. To explain these

576 relationships, we might rely on the other strong effects estimated by our model. Indeed, we found
577  that the number of petrels positively affected the breeding success of skuas and that skuas were
578 senditive to intraspecific density-dependence. Therefore, years when preys experience a high
579  breeding success correspond to years with particularly abundant food resources for skuas and
580 thisuntil the end of the breeding season. Since skuas are potentially less affected by intraspecific
581 density-dependence than by abundance of prey, they could consequently breed in higher

582  numbersin the breeding area.
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Effects of intraspecific density-dependence

For skuas, we found negative density-dependent effects on breeding success and probability to
fledge two chicks, in accordance with our predictions. Egg and chick predation by conspecifics
has been reported in the Great Skua (Catharacta skua) (Hamer et al. 1991, Ratcliffe and Furness
1999). Hence, a higher abundance of skuas increases the risk of predation on eggs and chicks,
resulting in higher breeding failure. To avoid predation by conspecifics, the skuas start defending
thelir territories from conspecificsjust a few days after arrival on a breeding site until the end of
the season. This activity is energetically costly and may also limit the time spent searching for
food, potentially limiting energy investment in reproduction. The heterogeneous habitat
hypothesis already demonstrated in territorial birds (Dhondt et al. 1992, Kriiger and Lindstrom
2001, Ferrer and Donazar 2015) could also explain the relationships we found. Indeed, when the
population increases, some individuals may be forced to occupy poorer quality habitats, resulting
in lower reproductive success. We did not find an effect of density-dependence on the breeding
probability of skuas. As skuas areterritorial with high site fidelity, we hypothesized that in years
with a high abundance of skuas, the breeding probability would decrease, as all the skuas would
not succeed in acquiring aterritory. It is possible that we did not observe this effect because the
logistic function used for density-dependence does not accurately model the territory acquisition

dynamics by floaters (e.g. van de Pal et al. 2010, Barraquand et al. 2014).

We estimated that the breeding success of skuas was affected by both predator-prey relationships
and intraspecific density-dependence. Predator-prey relationships had a higher contribution to
the variability in breeding success of skuas than the density-dependent effect. Hamer et al.

(1991) reported that, following a reduction of sandeel (Ammodytes marinus) abundance, great
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skuaincreased their foraging effort reducing the adult territorial attendance. In turn, breeding
failure increased due to predation from adults of neighboring territories. We then may assume
that petrel abundance allowed a suitable territorial attendance for skuas reducing the negative

density-dependent effects such as chick predation by conspecifics.

For petrels, we found a negative relationship between the breeding success of petred that did not
breed the previous year and the number of petrels on the colony. Combined effects of density-
dependence and climate have already been observed in petrels, with alower winter survival
when density is high (Barbraud and Weimerskirch 2003), suggesting a mechanism of
competition between conspecifics for food resources. As nonbreeders are known to be in poorer
condition than breeders (Chastel et al. 1995), they are potentially more sensitive to the
competition for food resources explaining why this effect was only found on petrels that were
nonbreeders the previous years. Interestingly, we found a positive intraspecific density-
dependence relationship on the breeding probability of petrelsthat bred the previous year. This
suggests that years with a high abundance of petrels reflected a good return rate to the breeding
site because environmental conditions were favorable for breeding. Thisisin agreement with
studies showing that petrels might skip breeding and take sabbatical years when environmental

conditions are poor (Warham 1990, Chastd et al. 1995).

Effects of environmental conditions

Breeding probability of petrels tended to be impacted by two of the environmental covariates
tested, namely SSTa and Chla. This effect of environmental conditions on the breeding

probability isin accordance with previous research showing that the body condition of petrels
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626  might impact their decision to attempt breeding (Warham 1990, Chastel et al. 1995). High Chla
627  increases resources availability for organisms at higher trophic levels (macrozooplankton,

628  fishes), which are consumed by petrels (Cherel et al. 2002). Consequently, high Chla may

629 increase abundance of petrel prey, with a positive effect on the breeding performances and body
630 condition of petrels. Unexpectedly, we detected a positive effect of SSTa on breeding probability
631  of petrels. Thisresult is surprising as previous study showed that warm SST events negatively
632  affected the breeding performances and body condition of petrels at Kerguelen Islands (Guinet et
633 al. 1998). Indeed, high SST generally reduces vertical mixing and provides poor growing

634  conditions for zooplankton communities that in turn reduce trophic resources for seabirds

635 (Barbraud et al. 2012, Sydeman et a. 2015). However, it has been showed recently that during
636 thepre-laying period petrels use water masses situated at more northerly latitudes than during the
637  winter period or the breeding period (Quillfeldt et al. 2020), where relationships between SST
638 and primary productivity may differ. Indeed, the covariance between SST and Chla depends on
639 location and shows particularly complex patterns in the Southern Ocean (Dunstan et al. 2018).
640 Positive effects of SSTa have already been identified in other sub-antarctic seabirds (Pinaud and
641  Weimerskirch 2002, Nevoux et al. 2007, Horswill et a. 2014). Furthermore, we estimated that
642 Chla, at the bottom of the trophic food chain, had a higher effect on the breeding probability than
643  SSTawhich reflect oceanographic conditions. Thisindicated that the effect size of

644  environmental covariates increased when the covariates approached the trophic level occupied
645 by the prey of the petrels, suggesting a bottom-up mechanism. This result is cons stent with

646  many studies showing that climatic conditions affect seabirds through indirect processes by

647 influencing prey availability and resulting in changes in their dynamics (Frederiksen et al. 2006,

648 Barbraud et al. 2012, Jenouvrier 2013, Lauria et al. 2013).
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We did not detect any relationship between the breeding parameters of the skua and the
environmental covariates. Thislack of effect could be explained by an absence of adirect link
between skuas and the environmental covariates tested, as breeding skuas remain on their
territory to defend it or to forage. However, we found an effect of SAM on the apparent survival.
This effect was detected only for skuas that were nonbreeders during the previous season. It was
proposed that only seabirds attaining a threshold condition decide to breed (Weimerskirch 1992),
suggesting that nonbreeders are generally in poorer conditions than breeders (Chastel et al. 1995,
Cam et al. 1998) and thus more sensitive to environmental conditions. Nevertheless, we found a
positive relationship between survival and SAM whereas we expected a negative relationship.
Indeed, skuas mainly overwinter north of the polar front (Delord et al. 2018) where positive
phases of SAM induce warm SST, low surface Chla concentration (Lovenduski and Gruber
2005), and thus potentially poor feeding conditions. However, only breeding skuas were studied
in Delord et al. (2018) and nonbreeding individuals may use different wintering areas where the
relationships between SAM and oceanographic variables differ. Several studiesreviewed in
Jenouvrier (2013) highlighted multifaceted effects of climatic conditions on the demography of
seabirds involving direct, time-lagged and non-linear effect, which we did not considered here.
Therefore, despite the important contribution of our approach in understanding the effect of the
environment in our predator-prey system, disentangling in details the complex mechanisms
between environmental covariates and their effects on the demography of the two seabirds

remain challenging.
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A bottom-up dynamic in a predator-prey system

Overdl, our study has highlighted the important role of bottom-up processes in the dynamics of
this marine predator-prey system, i.e. the dynamics of these two seabirds was mostly driven by
food availability. Petrel dynamics were more strongly affected by environmental covariates near
to their trophic level and the number of petrels impacted the dynamics of skuas. The bottom-up
control of demographic rates in oceanic predators have been largely assumed (Jenouvrier 2013).
Thisis because the functioning of oceanic systemsis controlled and structured by physical
processes impacting nutrient fluxes (Behrenfeld et al. 2006) and then the whole trophic food
web. We found no evidence of top-down processes, i.e. predation effects, in this system,
although these two mechanisms have been found to jointly affect ecosystems (Hunter and Price
1992, Sinclair et al. 2003) including other seabird systems (Horswill et al. 2014, 2016, Perkins et
al. 2018). Effects of skua predation on petrels were expected, based on their diet during the
breeding season. However, given the very large number of petrels present on the island
compared to the number of predators, the impact of predation may have been too small to be

detected by our mode.

Conclusion

This multispecies IPM framework allowed us to estimate demographic parameters and
abundances for both skuas and petrels. Taking into account both species interactions and
environmental covariates in the same analysis improved our understanding of species dynamics.
We concluded that bottom-up mechanisms are the main drivers of this skua-petrel system.
Generalizing such assessments of interspecific relationships and environmental conditionsin a
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690 single demographic framework may be essential to predict how contrasted climatic scenarios will
691 affect communities. A promising avenue of research in multispecies IPMs liesin fitting models
692 todataonalarge number of species, which will much likely require further methodol ogical

693  developments.
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Tables

Table 1: Summary of the demographic parameters and their specificities (year random effect or
state dependence) for the two species. the Brown Skua (top) and the Blue Petrel (bottom).

Notations are NB: Nonbreeder the previous year, B: Breeder the previous year, NB: Nonbreeder,

FB: Failed Breeder, SB1: Successful Breeder with one fledged chick, SB2: Successful Breeder
with two fledged chicks, FBE: Failed Breeder at the Egg stage, FBC: Failed Breeder at the Chick
stage and SB: Successful Breeder.
Species  Parameter foegrctrandom State dependence

Adult apparent survival ¢g NBg| Bg

Breeding probability S NBs| Bs
s Breeding success yg Nfﬂ %

Breeding success 2 chicks 6 NBg| B

Detection probability p NBg| B,

Uncertain state assignment probability ug NBg | FBg | SB1g| SB2;

Adult apparent survival ¢p NB,| B,

Breeding probability B NB,| Bp
oetrdl Hatching success wp T| %

Breeding success yp NB,| Bp

Detection probability pp NBy| By

Uncertain state assignment probability up

=l

NBp| FBEs| FBCp| SB,
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976 Table2: Summary of the covariates tested on the demographic parameters of the two species —
977  the Brown Skua (top) and the Blue Petrel (bottom) — and the time period (in months) considered
978  for each demographic parameter. Notations are PP: Predator-Prey interactions, DD: intraspecific
979  Density-Dependence, SAM: Southern Annual Mode, SSTa: Sea Surface Temperature anomalies,

980 Chla: Chlorophyll a concentration.

Species Parameter Covariatestested Time period
Adult apparent survival ¢g DD|SAM Wintering (March-September)
Skua Breeding probability S DD|SAM Pre-Breeding (July-November)
Breeding success ys PPIDD|SAM Breeding (October-February)
Breeding success 2 chicks ¢  PP|DD|SAM Breeding (October-February)

Adult apparent survival ¢p PPIDDISAM|SSTalChla  Wintering (February-September)

Petrel Breeding probability Sp DD|SAM|SST&|Chla Pre-Breeding (August-October)
Hatching success wp PP|DD|SAM|SSTalChla Breeding (October — December)
Breeding success yp PPIDD|SAM|SSTa|Chla Breeding (December-January)
981
982
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Table 3: Regression coefficients estimates for the relationships between covariates (DD:
intraspecific Density-Dependence, PP: Predator-Prey interactions, SAM: Southern Annular
Mode, SSTa: Sea Surface Temperature anomalies, Chla: Chlorophyll a concentration) and
demographic parameters (¢: adult apparent survival, 5: breeding probability, y: breeding

success, §: breeding success with two chicks, w: hatching success) for Brown Skuas (top) and

Blue Petrels (bottom), B: breeders or NB: non breeders the previous years. 80% credible
intervals that do not include zero arein bold.

SKUA DD PP SAM

Parameters sSlope sd  10% 90% slope sd  10% 90% slope sd  10% 90%

¢s,§ -0.09 0.11 -0.22 0.06 -0.38 041 -0.88 0.12

¢s,ﬁi; -0.12 0.15 -0.28 0.09 1.25 096 0.14 242

ﬁs,ﬁ 0.23 0.22 -0.08 0.51 0.73 0.69 -0.13 1.61

ﬁS,lVi? 0.11 0.19 -0.16 0.33 0.80 0.65 0.00 1.60

Vs -0.39 0.14 -056 -0.22 066 0.17 045 0.89 0.12 020 -0.14 0.37

Ys.nB -0.23 028 -054 015 0.20 0.39 -0.26 0.65 0.21 0.54 -0.45 0.86

55,1? -0.53 0.24 -0.85 -0.22 1.24 038 0.78 1.74 0.02 0.41 -0.49 0.53

5S,N§ -0.40 044 -095 0.16 071 0.9 -0.47 1.80 -1.30 2.33 -4.07 0.79

PETREL DD PP SAM SSTa Chla
Parameters Sope sd 10% 90% slope sd 10% 90% slope sd 10% 90% slope sd 10% 90% dope sd 10% 90%
¢P,§ -0.14 030 -0.51 0.24 025 024 -0.06 056 -0.34 0.39 -0.83 0.16 -0.22 0.24 -0.53 0.07 -0.51 0.47 -1.08 0.05
q)leg -0.38 1.05 -1.67 1.04 043 049 -025 101 127 226 -1.11 451 001 09 -1.01 1.25 -056 1.70 -2.43 1.59
ﬁP,E 0.51 025 0.19 0.86 -0.34 0.39 -0.85 0.14 0.07 022 -0.22 0.34 0.34 0.38 -0.16 0.82
ﬁ”ﬁ; 0.21 0.33 -0.22 0.67 040 0.38 -0.07 0.85 0.36 0.22 0.09 0.63 0.63 040 0.12 113
Wp i 0.12 0.25 -0.18 043 0.28 0.14 011 044 -0.10 0.25 -041 020 0.08 0.16 -0.12 0.28 -0.35 0.29 -0.70 0.01
Wp 7 -0.47 052 -1.08 0.08 0.26 0.33 -0.16 0.66 -0.17 0.61 -0.87 053 -0.12 047 -0.56 0.37 -0.51 0.69 -1.30 0.28
Yri 0.05 0.61 -0.68 0.81 -0.12 0.31 -0.49 0.27 0.32 046 -0.22 093 -0.44 042 -098 0.05 -0.13 0.64 -0.91 0.70
Yp.aB -0.79 059 -153 -0.12 0.46 033 0.01 0.89 -043 045 -0.99 0.08 -0.34 051 -0.99 0.25 -0.85 0.79 -1.84 0.06
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Figure Legends

Figure 1. Structure of the multispecies Integrated Population Model. Squares represent the state
variables, circles represent the parameters. Data and fixed values are represented with a dark
background, estimated state variables and parameters with a white background. Two types of
data are used, capture histories (Ch) from capture-recapture data and count data (Y). Adult
apparent survival (¢), breeding probability (), hatching success (w), breeding success (y),
breeding success with two chicks (&), juvenile apparent survival for one to four years old and
older (¢;1to ¢;4), probability of first reproduction (Pr), state assgnment probability (u) and
detection probability (p) are parameters estimated in the model. Fecundity (f) isfixed. The
number of adults (N 4¢0t), dead (Nyeqq), alive (Nyip,e ), breeders (Ng), nonbreeders (Nyp),
failed breeders (Ny3), failed breeders at the stage egg (Npgg), breeders with an egg hatched
(Ngy), failed breeders at the stage chick (Ngp), successful breeders (Ngz), successful breeders
with one chick (Ngg,) or with two chicks (Ngg,) and the number of juveniles of one year old to
four years old and older (N, to N,,,) are state variables estimated by the model. The number of
immigrants (N;,,,) isafixed vector. The blue part is for Blue Petrels and the brown part isfor

Brown Skuas. Interspecific relationships are represented with thick arrows.

Figure 2: Effects of predator-prey relationships (top panels) and intraspecific density-dependence
(bottom panel) on adult demographic parameters for the two seabirds, the Brown Skua and the
Blue Petrel. Solid lines represent the estimated relationship between the covariates and the
demographic parameters. Shaded areas are the 50% and 95% credibility intervals. Points
represent demographic parameter estimates each year (21 years) plotted against covariate. Error

bars are standard deviation. Prey effect on (a) the estimated breeding success probability
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(appysﬁ) and (b) breeding success with two chicks for skuas that bred the previous breeding

season (app, ,.)- Intraspecific density-dependence effect on (c) the breeding success (a;, D]/SE)

and on (d) breeding success of skuas that were breeders the previous breeding season (aD Dssi?)

and (e) on the breeding probability of petrels that bred the previous breeding season (a BPE).
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