

1 Multispecies integrated population model reveals bottom-up dynamics in a seabird predator-prey
2 system

3

4 Maud Quéroué¹, Christophe Barbraud², Frédéric Barraquand³, Daniel Turek⁴, Karine Delord²,
5 Nathan Pacourea⁵, Olivier Gimenez¹

6

7 ¹CEFE UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3,
8 Montpellier, France

9 ²CEBC UMR7372, CNRS – La Rochelle Université, 79360 Villiers en Bois, France

10 ³Institute of Mathematics of Bordeaux, CNRS, Talence, France

11 ⁴Department of Mathematics and Statistics, Williams College, Williamstown, MA, USA

12 ⁵Department of Biological Sciences, Earth to Ocean Research Group, Simon Fraser University,
13 Burnaby, British Columbia, Canada

14

15

16 Correspondence author: Maud Quéroué, CEFE UMR 5175, Univ Montpellier, CNRS, EPHE,
17 IRD, Univ Paul Valéry Montpellier 3, Montpellier, France

18 E-mail: maud.queroue@gmail.com

19 Abstract

20 Assessing the effects of climate and interspecific relationships on communities is challenging
21 because of the complex interplay between species population dynamics, their interactions, and
22 the need to integrate information across several biological levels (individuals – populations –
23 communities). Usually used to quantify species interactions, integrated population models
24 (IPMs) have recently been extended to communities. These models allow fitting multispecies
25 matrix models to data from multiple sources while simultaneously accounting for various sources
26 of uncertainty in each data source. We used multispecies IPMs accommodating climate
27 conditions to quantify the relative contribution of climate vs. interspecific interactions on
28 demographic parameters, such as survival and breeding success, in the dynamics of a predator-
29 prey system. We considered a stage-structured predator–prey system combining 22 years of
30 capture–recapture data and population counts of two seabirds, the Brown Skua (*Catharacta*
31 *lönbergi*) and its main prey the Blue Petrel (*Halobaena caerulea*) both breeding on the
32 Kerguelen Islands in the Southern Ocean. Our results showed that climate and predator-prey
33 interactions drive the demography of skuas and petrels in different ways. The breeding success
34 of skuas appeared to be largely driven by the number of petrels and to a lesser extent by
35 intraspecific density-dependence. In contrast, there was no evidence of predation effects on the
36 demographic parameters of petrels, which were affected by oceanographic factors (chlorophyll a
37 and sea surface temperature anomalies). We conclude that bottom-up mechanisms are the main
38 drivers of this skua-petrel system. We discuss the mechanisms by which climate variability and
39 predator-prey relationships may affect the demographic parameters of these seabirds. Taking into

40 account both species interactions and environmental covariates in the same analysis improved
41 our understanding of species dynamics.

42 **Keywords:** Bayesian inference, Demography, Environmental variations, Integrated Population
43 Model, Matrix population model, Nimble, Predator-Prey interactions

44 **Introduction**

45 The effects of climate changes on the diversity and the structure of communities have been
46 reported repeatedly (Walther et al. 2002, Parmesan 2006, Hoegh-Guldberg and Bruno 2010,
47 Miller et al. 2018). However, the underlying mechanisms remain poorly understood due to the
48 complex dynamics of interacting species: within species, between species and between species
49 and the environment (Godfray and May 2014). Following disturbance, such as changes in
50 environmental conditions, the abundance and distribution of species are expected to be modified
51 according to the position and extent of the species' niche (Thomas et al. 2004). Because the
52 effects of environmental variability on mortality, fecundity and dispersal may differ between
53 species (Grosbois et al. 2008, Jenouvrier 2013), changes in structure and diversity appear at the
54 community level. However, studying species-by-species responses to environmental changes
55 may overlook the role played by species interactions on those responses, and contribute to a
56 lesser extent to the larger understanding of species interactions that is required by community
57 ecology.

58 Population dynamics models have been used to understand the effect of interspecific interactions
59 and environment on species demography. However, these models are in general not
60 demographically structured (Stenseth et al. 2015, Pacourea et al. 2019a, Stoessel et al. 2019) or

61 only partially (Millon et al. 2014, Saunders et al. 2018, Pacourea et al. 2019b). Unstructured
62 approaches consider individuals as being equivalent but differences in size, age and ontogenetic
63 stages exist within a population and may be of importance in the context of interspecific
64 interactions. As argued by Miller and Rudolf (2011), the consideration of the stage structure of
65 populations can lead to a better understanding of community structure and dynamics.

66 Interactions between species such as predation or competition do not necessarily have a
67 homogeneous impact on the different stages of the interacting species. For example, young
68 individuals might be predominantly preyed upon in carnivore–ungulate systems (Gervasi et al.
69 2015). Therefore, to detect and understand species interactions, we need to consider jointly the
70 demography of several stage-structured populations (Oken and Essington 2015).

71 Although well developed for single-species dynamics (Tuljapurkar and Caswell 1997, Caswell
72 2001), demographic stage-structured models have received little attention in community ecology
73 (but see Chu and Adler (2015) on a plant system). The difficulty is that multispecies demography
74 analysis requires integrating information across several biological levels (individual – population
75 – community) which, in turn, requires unifying all available data sources into a single
76 framework. Integrated population models (IPMs) have been recently developed to infer
77 population demography by making complete use of all available sources of information (see
78 Schaub and Abadi 2011, and Zipkin and Saunders 2018 for reviews). In their simplest form,
79 these models combine population counts and demographic data into a single framework, which
80 allows the estimation of demographic parameters while simultaneously accounting for various
81 sources of uncertainty in each data source (e.g. measurement error or parameter estimation)
82 (Besbeas et al. 2002). The IPM framework has been extended to multiple species (Péron and

83 Koons 2012) for competition/parasitism, and more recently for predator-prey interactions
84 (Barraquand and Gimenez 2019).

85 Here, our main objective was to quantify the relative contribution of environmental changes and
86 species interactions on demographic parameters of a predator and its prey. Therefore, we used a
87 multispecies IPM framework accommodating the effects of local and global climatic conditions
88 on demographic parameters, such as survival and breeding, while explicitly considering species
89 interactions. We applied our approach on a stage-structured predator–prey system combining 22
90 years of capture-recapture data and population counts on two seabirds, the Brown Skua
91 (*Catharacta lönbergi*) and its main prey the Blue Petrel (*Halobaena caerulea*) ('skua' and
92 'petrel' hereafter) breeding on the Kerguelen Islands in the Southern Ocean.

93 Because seabirds often occupy high level positions in food-webs, bottom-up forcing which
94 implies population regulation through climate driven limitation in food availability, has long
95 been featured as the dominant paradigm to understand their dynamics (Lack 1967, Aebischer et
96 al. 1990, Stenseth et al. 2002). Seabird foraging behavior and demography reflect the influences
97 of climate variability which directly impacts biological processes in marine ecosystems and
98 cascade through food webs up to seabirds (Barbraud and Weimerskirch 2001, Jenouvrier et al.
99 2003). However, top-down pressures as predation at breeding colonies are also known to affect
100 the vital rates of seabirds (Hipfner et al. 2012). There is increasing evidence that bottom-up and
101 top-down processes often act in concert and differently affect demographic parameters (Suryan
102 et al. 2006, Horswill et al. 2014, 2016). For example, the effects of predation and resources
103 limitation caused breeding failure of Black-legged Kittiwakes (*Rissa tridactyla*) (Regehr and
104 Monteverchi 1997) and population declines of Arctic Skuas (*Stercorarius parasiticus*) (Perkins

105 et al. 2018). Therefore, quantifying the relative strength of environmental conditions and
106 predator-prey effects is essential for a better understanding of the drivers of population dynamics
107 in seabirds. This is all the more important as climate changes impact the physical properties of
108 the oceans, including the Southern Ocean (Gille 2002, Han et al. 2014) and, through the trophic
109 food web, affect demography and population dynamics of seabirds (Barbraud et al. 2012,
110 Sydeman et al. 2015), including some of the species studied here (Barbraud and Weimerskirch
111 2003).

112 Using a multispecies IPM, we assessed the relative contribution of environment and predator-
113 prey interactions on seabirds' demographic parameters. We estimated survival and adult
114 breeding success for the two interacting species, and assessed the impacts of climatic conditions
115 on these demographic parameters to understand the contribution of predator-prey interactions in
116 shaping population dynamics.

117 **Materials and Methods**

118 **Study site and Species**

119 Skuas and petrels were studied on Mayes Island (49°28'S, 69°57'E), a 2.8 km² uninhabited island
120 of the Kerguelen Islands in the Southern Ocean where the two species breed during the austral
121 summer (October–February).

122 The petrel is a small (150–250g) long-lived seabird belonging to the family of *Procellariiformes*.
123 At Kerguelen Islands, petrels feed on macrozooplankton and micronekton feeder, mainly
124 crustaceans and fishes (Cherel et al. 2002, 2014). Individuals from Mayes Island spend the

125 nonbreeding season (from mid-February to September) between the polar front and the northern
126 limit of the pack-ice (57-62°S) between longitudes 20°W and 90°E (Cherel et al. 2016). Birds
127 return to breeding colonies in early September (Quillfeldt et al. 2020). Mayes Island is covered
128 with dry soils and dense vegetation, providing suitable breeding sites for approximately 142,000
129 breeding pairs of these burrowing petrels (Barbraud and Delord 2006). In late October, a single
130 egg is laid in a burrow dug in peat soil under tall and dense vegetation. The incubation lasts 45-
131 49 days and the chick rearing period 43-60 days (Jouventin et al. 1985). The chick fledges in
132 early February. Both sexes participate in parental care by alternating foraging trips during the
133 incubation and fledging periods.

134 The skua is a medium sized (1.1 – 2.2 kg) long-lived seabird belonging to the family of
135 *Charadriiformes*. On Mayes Island between 80 and 120 pairs breed annually (Mougeot et al.
136 1998). Breeding pairs form in October with a high mate fidelity, and generally establish
137 themselves in the same territory each year (Parmelee and Pietz 1987), which they tenaciously
138 defend throughout the breeding season. Generally, two eggs are laid between October and
139 December. The incubation lasts 28-32 days and the chicks rearing period 40-50 days (Higgins
140 and Davied 1996). Skuas are extremely plastic in their foraging techniques and adapt their diet
141 depending on the local availability of prey (Carneiro et al. 2015). On Mayes Island, during the
142 breeding season, Blue Petrels represent 95% of the skua diet (Pacourea et al. 2019c). Skuas
143 from Mayes Island overwinter in the southern hemisphere between 10°E and 150°E (Delord et
144 al. 2018).

145 During the breeding period on Mayes Island, the predation of petrels by skuas takes place mainly
146 at night, when petrels come out or arrive at their burrows (Mougeot and Bretagnolle 2000a).

147 Skuas mostly prey on petrels on the ground, but they can also catch petrels in flight (Mougeot et
148 al. 1998, Pacourea et al. 2019c). Vocalizing petrels, especially those without partners, are more
149 easily detected by skuas during the courtship period (Mougeot and Bretagnolle 2000b). Skuas
150 may also prey on chicks during the fledging period.

151 **Count and capture-recapture data**

152 Data of both skuas and petrels were collected during the breeding seasons from 1996/1997 to
153 2017/2018. For convenience, breeding seasons are named from 1996 to 2017 hereafter. The time
154 interval used in our model starts before the wintering of species and ends at the end of the
155 breeding period. Two types of data were used: count data corresponding to the number of
156 burrows or territories occupied by seabirds and capture-recapture (CR) data of adult seabirds
157 found on the monitored area. Each year, adult individuals of both species were checked at
158 specific times following the species phenology to determine the breeding status of each bird. The
159 breeding status of marked birds was determined at the end of the breeding period. In the
160 following we describe how the data were collected for the two species. For clarity, all parameters
161 for skuas are indicated by *S* and by *P* for petrels.

162 Around 200 individually marked burrows of petrels were inspected each year from early-to-mid
163 November just after the egg-laying to check for eggs and to identify marked adults, and then in
164 late January just before fledging of the chicks. Each year since 1985 (see Barbraud and
165 Weimerskirch 2005), all fledglings as well as new individuals found in burrows were marked
166 with a stainless steel band (captured by hand, marked, and replaced in their burrow). Petrels
167 never observed with an egg or a chick during a given breeding season were considered as

168 nonbreeders (*NB*). Individuals were identified as breeders if they laid a single egg or raised a
169 chick and as successful breeders if their chick fledged (SB). Two categories of failed breeders
170 were used depending on the stage of failure: egg stage (*FBE*) or chick stage (*FBC*). Given that
171 the first sampling period occurred just after laying, it is very unlikely that nonbreeders were
172 failed breeders. These breeding statuses allowed the construction of the individual capture
173 histories (Ch_P) and constituted our CR data. The annual number of adult petrels (Y_P), *i.e.* count
174 data, was estimated as the number of occupied burrows. Each occupied burrow was considered
175 as being frequented by a pair of petrels. We considered that this count included all adult
176 individuals, both breeders and non-breeders.

177 For skuas, each year since 1991, the eastern side of Mayes Island was inspected to identify
178 territories of skuas. A territory was considered established when a pair strongly defended an area
179 against other skuas (Mougeot et al. 1998). Around 50 nesting territories were visited four to eight
180 times from mid-October (after egg-laying) to late-February (just before fledging of the chicks)
181 each year. Chicks just before fledging, as well as new adult individuals, were marked with a
182 metal ring and a plastic ring to facilitate individual identification using binoculars. Breeding
183 status was determined by checking the nest contents for the presence of eggs or young chicks.
184 Skuas never observed with an egg or a chick were considered as nonbreeders (*NB*). Individuals
185 were identified as breeders if they laid at least one egg or raised a chick. If the eggs did not hatch
186 or the chicks died, both members of the pair were considered as failed breeders (*FB*). Given that
187 the first sampling period occurred just after laying, it is very unlikely that nonbreeders
188 represented failed breeders. Successful breeders were defined as individuals that fledged one or
189 two chicks, and were denoted as *SB1* or *SB2*, respectively. These breeding statuses allowed the

190 construction of the individual capture histories (Ch_S) and constituted our CR data. The annual
191 number of skuas (Y_S), *i.e.* count data, was estimated as the number of territories and each
192 territory was considered occupied by a pair of skuas. We considered that this count included all
193 adult individuals, both breeders and non-breeders.

194 For both species, individual breeding status could be considered as “uncertain” (C) in case of
195 difficulties to assign their breeding status (lack of information, missed checks, individuals never
196 re-observed). Only adult individuals that have bred at least once between the 1996 and the 2017
197 breeding seasons were kept in the data set for analysis to eliminate potential transient individuals
198 ($n = 318$ for skuas and $n = 1210$ for petrels). Individual capture histories (Ch) started at their first
199 breeding attempt recorded. Based on the high probability of observing breeders in the study site,
200 we assumed that the first breeding attempt was correctly detected. New individuals found in
201 monitored burrows or territories are considered as immigrants to the study site (N_{im}).

202 The presence of chicks was used to assign a breeding status to adult individuals captured in the
203 breeding area. In order to maintain the independence of the data, we did not include information
204 on chicks in the model. Therefore, the fecundity was a fixed value. We considered one chick for
205 each pair of seabird, considered as successful breeders ($N_{SB,P}$) for petrels or successful breeders
206 with one chick ($N_{SB1,S}$) for skuas ($f_{SB,P}$ and $f_{SB1,S}$ are equal to 1, respectively). For skuas that
207 successfully fledged two chicks ($N_{SB2,S}$), we considered two chicks per pair of skuas ($f_{SB2,S}$ is
208 equal to 2). Since juveniles only return to the breeding sites as adults to attempt to breed for the
209 first time (from four year old or older), we did not have data on juvenile states.

210 **Integrated Population Model**

211 We built a two-species IPM that combines count and CR data and allows estimating abundances
212 and demographic rates (Besbeas et al. 2002, Schaub and Abadi 2011). More specifically, we
213 connected two IPMs, one for predatory skuas and one for petrels, their main prey, through
214 explicit predator-prey relationships (Barraquand and Gimenez 2019). We incorporated the
215 effects of predation within species-specific vital rates such as survival and breeding parameters.
216 This IPM is structured by states which represent life history states (Fig. 1). We built two
217 likelihoods, one for the CR data and the other for the count data which we combined into a joint
218 likelihood.

219 In the following, we detail the state process following a biological timeline and we explain the
220 different likelihood used. The structure was the same for the two species but states differed in
221 relation to species biology (Fig. 1). The two main differences were: (1) skuas could have up to
222 two chicks versus only one for petrels, (2) the failed-breeder stage in petrels could be split
223 further according to the timing of failure (failure at the incubation vs. chick-rearing stage). For
224 clarity, parameters are indexed by S (for skuas) or P (for petrels) when differences occur, or by X
225 (for S or P) when the structure is the same for both species. We used Poisson (Po) and binomial
226 (Bin) distributions to account for demographic stochasticity. Notations of all parameters and state
227 variables are detailed in Appendix S1: Table S1.

228 **State process**

229 *Offspring production*

230 The estimated number of skuas and petrels in their first year *i.e.* between 0 and 1 year old

231 ($N_{J1,S,t}$) at year t , is modelled with a Poisson distribution:

$$232 N_{J1,S,t} \sim Po(0.5 \times f_{SB1,S} \times N_{SB1,S,t-1} + 0.5 \times f_{SB2,S} \times N_{SB2,S,t-1}) \quad (1)$$

$$233 N_{J1,P,t} \sim Po(0.5 \times f_{SB,P} \times N_{SB,P,t-1}) \quad (2)$$

234 with $N_{J1,S}$ the number of chicks produced by all successful skua breeders ($N_{SB1,S}$ and $N_{SB2,S}$)

235 according to their fecundity ($f_{SB1,S}$: 1 chick and $f_{SB2,S}$: 2 chicks per female skua, sex ratio: 0.5).

236 For petrels, $N_{J1,P}$ is also Poisson distributed but with only one chick ($f_{SB,P}$) per estimated

237 successful female breeder ($N_{SB,P}$ with a sex ratio of 0.5).

238 *Juvenile survival*

239 The number of juveniles between one and two years (N_{J2}), two and three years (N_{J3}), and three

240 and four years (N_{J4}), are modelled with binomial distributions:

$$241 N_{J2,X,t} \sim Bin(\phi_{J1,X}, N_{J1,X,t-1}) \quad (3)$$

$$242 N_{J3,X,t} \sim Bin(\phi_{J2,X}, N_{J2,X,t-1}) \quad (4)$$

$$243 N_{J4,X,t} \sim Bin(\phi_{J3,X}, N_{J3,X,t-1}) \quad (5)$$

244 with the apparent survival between one and two years (ϕ_{J1}), between two and three years (ϕ_{J2})

245 and between three and four years (ϕ_{J3}) respectively. As we observed only adult breeding birds,

246 we had no information on the juvenile phase. We assumed that juvenile apparent survival

247 increased with age (Greig et al. 1983, Grande et al. 2009, Fay et al. 2015), as experienced birds
248 are on average more effective in foraging (Daunt et al. 2007), in competing with conspecifics or
249 in avoiding predators:

250 $\text{logit}(\phi_{\text{age}_i, X}) = \lambda_{1,X} + \lambda_{2,X} \times \text{age}_i$ (6)

251 where ϕ_J is the juvenile apparent survival, age_i the age of the juvenile state (from N_{J1} to N_{J4}),
252 λ_1 the intercept and λ_2 the slope which is constrained to be positive.

253 *Juvenile first breeding attempt*

254 The first breeding attempt in skuas and petrels could start from age four. Four years old
255 individuals and older that did not attempt to breed are in the state (N_{J4+}). The individuals that
256 attempted to breed for the first time with a first breeding attempt probability Pr are in the state
257 N_{J4B} and the individuals that did not attempt to breed are in the state N_{J4NB} :

258 $N_{J4B,X,t} \sim \text{Bin} (Pr_{X,t}, \phi_{J4,X} \times N_{J4+,X,t-1})$ (7)

259 $N_{J4NB,X,t} = \phi_{J4,X} \times N_{J4+,X,t-1} - N_{J4B,X,t}$ (8)

260 with ϕ_{J4} the apparent survival for the N_{J4+} state. The N_{J4+} state includes individuals that did not
261 attempt to breed (N_{J4NB}) and individuals aged between three and four years (N_{J4}):

262 $N_{J4+,X,t} = N_{J4,X,t} + N_{J4NB,X,t}$ (9)

263 *Adult survival*

264 For the two species, we modelled the number of surviving adults (N_{alive}) at year t among the
265 total number of adult individuals (N_{adtot}) at year $t-1$ with a binomial distribution, with ϕ the
266 adult apparent survival:

$$267 \quad N_{alive,X,t} \sim Bin(\phi_{X,t-1}, N_{adtot,X,t-1}) \quad (10)$$

268 *Breeding probability*

269 The number of adult individuals that have bred or not bred among those that survived (N_{alive}) is
270 modelled as:

$$271 \quad N_{Balive,X,t} \sim Bin(\beta_{X,t-1}, N_{alive,X,t}) \quad (11)$$

$$272 \quad N_{NB,X,t} = N_{alive,X,t} - N_{Balive,X,t} \quad (12)$$

273 with β the probability of breeding, N_{Balive} the number of adult breeders that survived and N_{NB}
274 the number of adult nonbreeders. As capture histories started at their first breeding attempt
275 recorded, the immigrants, *i.e.* newly marked individuals (N_{im}) coming for the first time in the
276 colony, were considered as breeders. Then, the total number of breeders (N_B) corresponds to the
277 sum of the number of adult breeders that survived (N_{Balive}), the number of immigrants (N_{im})
278 and the number of juveniles attempting to breed for the first time (N_{J4B}):

$$279 \quad N_{B,X,t} = N_{Balive,X,t} + N_{J4B,X,t} + N_{im,X,t} \quad (13)$$

280 The total number of adults (N_{adtot}) corresponds to the sum of nonbreeders (N_{NB}) and breeders
281 (N_B):

282 $N_{adtot,X,t} = N_{NB,X,t} + N_{B,X,t}$ (14)

283 *Breeding success*

284 Breeding success and failure are modelled differently for skuas and petrels. For skuas, the
285 numbers of failed breeders ($N_{FB,S}$) and successful breeders ($N_{SB,S}$) are modelled following a
286 binomial distribution:

287 $N_{SB,S,t} \sim Bin(\gamma_{S,t-1}, N_{B,S,t})$ (15)

288 $N_{FB,S,t} = N_{B,S,t} - N_{SB,S,t}$ (16)

289 with γ_S the probability of a successful breeding. A successful breeder can then have one or two
290 chicks, respectively $N_{SB1,S}$ and $N_{SB2,S}$ and this is modelled following a binomial distribution:

291 $N_{SB2,S,t} \sim Bin(\delta_{S,t-1}, N_{SB,S,t})$ (17)

292 $N_{SB1,S,t} = N_{SB,S,t} - N_{SB2,S,t}$ (18)

293 with δ_s the probability of producing two chicks rather than one among the successful breeders.

294 For petrels, there are two states for failed breeders: one with petrels that failed to hatch their egg
295 (named failed breeder at the egg stage $N_{FBE,P}$) and the second with petrels that failed to fledge
296 their chick (named failed breeder at the chick stage $N_{FBC,P}$). Hence, there is a parameter of
297 successful hatching (ω_P). The numbers of petrels with an egg that successfully hatched ($N_{SH,P}$)
298 and the failed breeders at the egg stage ($N_{FBE,P}$) were modelled following a binomial
299 distribution:

300 $N_{SH,P,t} \sim Bin(\omega_{P,t-1}, N_{B,P,t})$ (19)

301 $N_{FBE,P,t} = N_{B,P,t} - N_{SH,P,t}$ (20)

302 with ω_P the probability of successful hatching. Successful breeders ($N_{SB,P}$) and failed breeders
303 at the chick stage ($N_{FBC,P}$) were modelled following a binomial distribution:

304 $N_{SB,P,t} \sim Bin(\gamma_{P,t-1}, N_{SH,P,t})$ (21)

305 $N_{FBC,P,t} = N_{SH,P,t} - N_{SB,P,t}$ (22)

306 with γ_P the probability of successful breeding.

307 **Count data**

308 The observation equation links the observed adult population count (Y) (*i.e.* the number of
309 territories/burrows multiplied by two for a pair of seabird) with the true adult population size
310 (N_{adtot}), with an additional term for observation error:

311 $Y_{X,t} \sim N(N_{adtot,X,t}, \varepsilon_{X,t})$

312 $\varepsilon_{X,t} \sim N(0, \sigma_{Y,X}^2)$ (23)

313 where ε is the error term and σ_Y^2 its variance. As only the adult states were observed on the field,
314 we excluded the juvenile states from the observation equation. The likelihood for the population
315 count data is denoted as $L_{co,S}(Y_S | \phi_{J1,S}, \phi_{J2,S}, \phi_{J3,S}, \phi_{J4,S}, Pr_S, \phi_S, \beta_S, \gamma_S, \delta_S, N_{adtot,S})$ for skuas and
316 as $L_{co,P}(Y_P | \phi_{J1,P}, \phi_{J2,P}, \phi_{J3,P}, \phi_{J4,P}, Pr_P, \phi_P, \beta_P, \omega_P, \gamma_P, N_{adtot,P})$ for petrels.

317 **Capture-recapture data**

318 For adult CR data, we used multievent capture–recapture models to estimate the demographic
319 parameters (Pradel 2005). These models take into account the imperfect detectability of the

320 individuals as well as the uncertainty in the assignment of states to individuals (Gimenez et al.
321 2012).

322 For skuas, our multievent model includes five states: NB, FB, SB1, SB2, dead, and six events:
323 not seen, seen as NB, seen as FB, seen as SB1, seen as SB2, seen as C. For petrels, the five states
324 are: NB, FBE, FBC, SB, dead, and the six events are: not seen, seen as NB, seen as FBE, seen as
325 FBC, seen as SB, seen as C. The following demographic parameters were estimated for the two
326 species: the adult apparent survival probability (ϕ_x), the breeding probability (β_x), the
327 probability of successful breeding (γ_x). The probability of successful breeding with two
328 chicks (δ_s) was also estimated for skuas, as well as the probability of hatching (ω_p) for petrels.
329 Two additional parameters were also estimated: the detection probability (p_x) and the state
330 assignment probability of individuals with uncertain state (u_x). All parameters were time-
331 varying through a yearly random effect, except u (Table 1). State transitions were set to be state
332 dependent according to the breeding status in the previous breeding season (Table 1): Breeder
333 (\tilde{B}) representing birds that attempted to breed the previous breeding season (*FB, SB1, SB2* for
334 skuas or *FBE, FBC, SB* for petrels) or Nonbreeder (\tilde{NB}) representing birds that already bred
335 previously but did not attempt to breed during the previous breeding season (*NB*). The detection
336 probability and the state assignment probability also depended on the breeding status (Table 1).
337 The likelihood for the CR data for skuas is denoted as $L_{cr,S}(Ch_s | \phi_s, \beta_s, \gamma_s, \delta_s, p_s, u_s)$
338 and $L_{cr,P}(Ch_p | \phi_p, \beta_p, \gamma_p, \delta_p, p_p, u_p)$ for petrels.

339 **Joint likelihood**

340 The joint likelihood of the skua IPM is the product of the likelihood for the count data ($L_{co,S}$)
341 and CR data ($L_{cr,S}$):

$$342 L_{ipm,S}(Y_S, Ch_S | \phi_{J1,S}, \phi_{J2,S}, \phi_{J3,S}, \phi_{J4,S}, Pr_S, \phi_S, \beta_S, \gamma_S, \delta_S, N_{adtot,S}, p_S, u_S) = \\ 343 L_{co,S}(Y_S | \phi_{J1,S}, \phi_{J2,S}, \phi_{J3,S}, \phi_{J4,S}, Pr_S, \phi_S, \beta_S, \gamma_S, \delta_S, N_{adtot,S}) \\ 344 \times L_{cr,S}(Ch_S | \phi_S, \beta_S, \gamma_S, \delta_S, p_S, u_S) \quad (24)$$

345 For petrels, the product of the likelihood for the count data ($L_{co,P}$) and CR data ($L_{cr,P}$) is
346 denoted as: $L_{ipm,P}(Y_P, Ch_P | \phi_{J1,P}, \phi_{J2,P}, \phi_{J3,P}, \phi_{J4,P}, Pr_P, \phi_P, \beta_P, \omega_P, \gamma_P, N_{adtot,P}, p_P, u_P)$.

347 **Interspecific relationships, intraspecific density-dependence, and environmental
348 covariates**

349 We used different covariates to investigate their effects on the adult demographic parameters
350 estimated for the two species (Table 2). We focused only on the demographic parameters of adult
351 individuals because only adults were observed on the field. We tested interspecific predator-prey
352 relationships between skua and petrel, and intraspecific relationships with density-dependence
353 for both species. Moreover, we considered several climatic covariates that were suspected to
354 affect demographic parameters of skuas and petrels, the Southern Annular Mode (SAM) on a
355 large scale, and the Sea Surface Temperature anomalies (SSTa) and Chlorophyll a concentration
356 (Chla) on a local scale. In the following, we provide more details on covariates and how they
357 may affect the demography of skuas and petrels.

358 **Predator-prey interactions**

359 Multispecies IPMs allow us to explicitly include interspecific relationships between vital rates of
360 one species and estimated population sizes of the other. Based on the high proportion of petrels
361 in the diet of the skuas during the breeding season (Mougeot et al. 1998, Pacourea et al. 2019c),
362 we predicted that petrel adult apparent survival (ϕ_P) should decrease with the number of skuas.
363 As skuas prey on adults and chicks during the fledging period, we predicted that the hatching
364 success (ω_P) and fledging success (γ_P) would be impacted by the number of predators.
365 Inversely, we predicted that a large number of petrels in the breeding colony would provide
366 enough food resources for skua and then be favorable to their breeding success (γ_S) and breeding
367 success with two chicks (δ_S).

368 **Intraspecific density-dependence**

369 We investigated the effect of intraspecific density-dependence on the demography of the two
370 species as higher density of individuals on the breeding area can lead to and increasing
371 competition for food resources or for territories. Skuas are highly territorial and defend their
372 territories vigorously during the whole breeding season. The most violent fights may even lead to
373 their death. Moreover, the limited number of territories could cause emigration of skuas without
374 territory. Thus, we predicted that the apparent survival (ϕ_S), *i.e.* the joint estimation of the
375 mortality and emigration, would be negatively impacted by the number of skuas. This limited
376 number of territories could also lead to a negative density-dependence relationship between
377 breeding probability (β_S) and population density. The energetic cost and the time spent in
378 defending a territory throughout the breeding season may limit the time spent searching for food,
379 potentially limiting energy investment in reproduction. We thus predicted a negative effect of

380 population density on the successful breeding parameter (γ_S) and the probability to have two
381 chicks rather than one for successful breeders (δ_S). For petrels, we also tested the effects of
382 intraspecific competition for food resources, which could affect their adult apparent survival
383 (ϕ_P) and their breeding parameters: breeding probability (β_P), hatching (ω_P) and fledging
384 success (γ_P).

385 **Environmental covariates**

386 Climate variability impacts biological processes in marine ecosystems, which cascade through
387 food webs and are integrated by seabirds (Barbraud and Weimerskirch 2001, Jenouvrier et al.
388 2003). Hence, we considered several covariates that are suspected to affect populations of petrels
389 and skuas through these bottom-up mechanisms. All covariates are used as proxies of food
390 availability at sea at different scales. In the following, we explain how environmental conditions
391 may impact the two species based on their diet and distribution.

392 Because skuas have broad wintering areas (Delord et al. 2018), we tested a large-scale
393 environmental covariate, the SAM. In contrast with their diet during the breeding season
394 specialized on the Blue Petrel, during winter skuas adopt a mixed diet composed of low trophic
395 level preys, such as macrozooplankton and crustaceans (Delord et al. 2018). We hypothesized
396 that availability of food resources at sea during the austral winter might have an effect on the
397 body condition of skuas and then affect the survival of skuas. Moreover, skuas may experience a
398 carry-over effect as the additional energy invested by individuals to maintain themselves during
399 poor wintering conditions may have repercussion on their ability to breed the next breeding
400 season (Harrison et al. 2011, Bogdanova et al. 2017).

401 For petrels, the wintering areas have been determined (Cherel et al. 2016) allowing us to test two
402 covariates used at local scale, the SSTa and the Chla, in addition of the SAM. As their diet is
403 mainly composed of crustaceans and fish feeding at low trophic levels (Cherel et al. 2002, 2014),
404 the food availability at sea may impact the survival of petrels. Moreover, during the breeding
405 season, male and female petrels take turns, one incubating the egg and fasting and the other
406 foraging at sea, which results in substantial variation in their body mass (Chaurand and
407 Weimerskirch 1994a, 1994b, Weimerskirch et al. 1994, Chastel et al. 1995). Therefore, high
408 food availability at sea may allow a good foraging success of the foraging partner that may return
409 to land after a short stay at sea, allowing a good synchronization of the breeding partners on the
410 nest. In contrast, poor conditions could increase the time spent at sea by the foraging partner,
411 which would increase desertion of the nest by the fasting partner and then, reduce the breeding
412 success. We thus predicted that conditions at sea during the breeding season would also affect
413 the breeding success of petrels.

414 *Southern Annular Mode*

415 The SAM is a large-scale climate index. SAM is the leading mode of climate variability over the
416 Southern Hemisphere. SAM is defined as the difference of atmospheric pressure between the
417 40°S and 65°S latitudes (Marshall 2003). SAM influences surface wind, sea surface temperature
418 (SST) and surface chlorophyll concentration. A large majority of the skuas from Mayes Island
419 overwinter north of the polar front (Delord et al. 2018). In the subtropical zone, SAM positive
420 phases induced warm SSTa, low surface chlorophyll concentration and easterly winds driving
421 Ekman transport (the 90° wind-driven net transport on the sea surface), while in the Subantarctic
422 zone there is a convergence of waters that increase downwelling and positive SSTa (Lovenduski

423 and Gruber 2005). We thus predicted that the positive phases of SAM, potentially leading to
424 poorer food availability in the areas used by skuas during the nonbreeding period, would have
425 negative impacts on skua survival and limit their ability to breed the next breeding season. South
426 of the polar front, where petrels spend the winter, positive phases of the SAM are associated with
427 westerly winds. This induces cold SSTa, increased equatorward Ekman transport and drives
428 increased upwelling (Lovenduski and Gruber 2005). Consequently, the biological productivity
429 and potential prey availability for petrels are higher during positive phases of the SAM. We thus
430 predicted that the positive phases of SAM would be favorable for petrel demographic
431 parameters. Data were obtained from the online database of the British Antarctic Survey
432 (<http://www.nerc-bas.ac.uk/icd/gjma/sam.html>).

433 *Sea Surface Temperature anomalies*

434 SSTa reflect local oceanographic conditions that influence the whole marine trophic food web.
435 High SST generally reduces vertical mixing and provides poor growing conditions for
436 zooplankton communities which, through bottom-up mechanisms, induces reduced trophic
437 resources for seabirds (Barbraud et al. 2012, Sydeman et al. 2015). Consequently, year-to-year
438 variation of SST was previously found to be negatively correlated with petrel body condition
439 (Guinet et al. 1998). Therefore, we predicted that high SSTa would negatively affect overwinter
440 survival and breeding success of petrels. The SSTa data were downloaded from the National
441 Oceanic and Atmospheric Administration (“data: NOAA NCEP EMC CMB GLOBAL
442 Reyn_SmithOlv2 monthly ssta”) from 1996 to 2018.

443 *Chlorophyll a*

444 Chlorophyll a lies at the bottom of the marine food web and provides resources for higher trophic
445 organisms up to seabirds. Because petrel diet is mainly composed of crustaceans and fish feeding
446 at low trophic levels (Cherel et al. 2002, 2014), we predicted that high concentrations of Chla
447 would be favorable to the survival and breeding success of petrels. The Chla data were
448 downloaded from the NASA Ocean Data with a 9km mapped concentration data of chlorophyll a
449 for the years 1997 to 2001 and from the Nasa Earth Observation (NEO AQUA/MODIS data)
450 monthly for the years 2002 to 2018.

451 **Assessing the effect of environmental covariates and population densities**

452 We fitted a single multispecies IPM including all the biologically relevant effects. Logit-linear
453 regressions were used to estimate the effect of environmental (SAM, SSTA and Chla) and inter-
454 and intra-specific interactions on demographic parameters (adult apparent survival, breeding
455 probability, hatching probability, breeding success) (Table 2). We used state variables
456 $N_{adtot,S}$ and $N_{adtot,P}$, respectively the number of adult skuas and petrels, to assess the effects of
457 inter- and intra-specific interactions. For example, we modelled the hatching probability for
458 petrels that bred the previous year ($\omega_{P,\tilde{B}}$) using a logit link:

$$\begin{aligned} 459 \quad & \text{logit}(\omega_{P,\tilde{B},t-1}) = \\ 460 \quad & \mu_{\omega,P,\tilde{B}} + \alpha_{SAM,\omega,P,\tilde{B}} \times SAM_{\omega,P,t} + \alpha_{SSTA,\omega,P,\tilde{B}} \times SSTa_{\omega,P,t} + \alpha_{Chla,\omega,P,\tilde{B}} \times Chla_{\omega,P,t} + \\ 461 \quad & \alpha_{DD,\omega,P,\tilde{B}} \times N_{adtot,P,t} + \alpha_{PP,\omega,P,\tilde{B}} \times N_{adtot,S,t} + \varepsilon_{\omega,P,\tilde{B},t} \end{aligned} \quad (25)$$

463 with $\mu_{\omega,P,\tilde{B}}$ the intercept, $\alpha_{SAM_{\omega,P,\tilde{B}}}$ the slope for the climatic covariate $SAM_{\omega,P}$, $\alpha_{SSTa,\omega,P,\tilde{B}}$ the
464 slope for the climatic covariate $SSTa_{\omega,P}$, $\alpha_{Chla,\omega,P,\tilde{B}}$ the slope for the climatic covariate $Chla_{\omega,P}$,
465 $\alpha_{DD,\omega,P,\tilde{B}}$ the slope indicating the strength of the intraspecific density-dependence with
466 $N_{adtot,P}$ the number of adult petrels, $\alpha_{PP,\omega,P,\tilde{B}}$ the slope indicating the strength of the predator-
467 prey relationship with $N_{adtot,S}$ the number of adult skuas, $\varepsilon_{\omega,P,\tilde{B}}$ is a yearly random effect and
468 $\sigma^2_{\varepsilon,\omega,P,\tilde{B}}$ its temporal variance. The descriptions of all logit-linear relationships used on
469 demographic parameters are available in Appendix S2.

470 For local covariates (SSTa and Chla), we calculated the average values of the covariates in the
471 areas in which petrels were located (Cherel et al. 2016) in a specific time period during which the
472 environment might affect the demographic parameter under investigation (Table 2). Each
473 environmental covariate was standardized to have zero mean and unit variance. However, the
474 inter- and intra-specific covariates were not standardized prior to the analyses because the
475 population sizes were estimated step by step each year. To compare the relative contribution of
476 the effects of each covariate, we calculated the standardized effect of population size (for inter-
477 and intra-specific relationship) posterior to the analyses by multiplying their slopes (α) by the
478 standard deviation of the estimated population sizes. Then, we compared the relative contribution
479 of each covariate using the regression estimate which we used as a measure of effect size.

480 We computed the 95% and 80% credible intervals (CRI) for the regression coefficients α . We
481 did not interpret uncertain effects (*i.e.* 80% CRI including zero) and focused particularly on clear
482 effects whose sign could be reliably assessed (*i.e.* 95% CRI excluding zero).

483 **Model implementation**

484 To fit the juvenile apparent survival parameters increasing with age, we modelled them as a
485 positive linear function of age by assigning to the slope λ_2 a $U(0,1)$ prior, and by defining the
486 intercept λ_1 with a normal $N(0,1)$ prior. The probability of the first breeding attempt (Pr) is
487 time-dependent with a uniform prior: $Pr_t \sim U(0,1)$. Normal priors $N(0,10^4)$ were assigned to the
488 regression coefficients (α) of the covariate effects. For the variance of the random year
489 effects (σ_ε^2), we used a $U(0,10)$ vague prior. The state assignment probability of individuals
490 with uncertain state parameter (u) was defined *a priori* with a $U(0,10)$ vague prior.

491 Bayesian posterior distributions were approximated *via* Markov chain Monte Carlo (MCMC)
492 algorithms. Two independent MCMC chains of 200,000 iterations were used with a burn-in
493 period of 100,000. One out of five iterations was kept and final inferences were derived from a
494 sample of $2 \times 20,000$ iterations that resulted from merging the two chains. Gelman-Rubin
495 convergence diagnostic (Brooks and Gelman 1998) was below 1.5 for each parameter and the
496 mixing of the chains was satisfactory. We performed the analyses using Nimble (de Valpine et
497 al. 2017 ; version 0.9.1) and program R (R Core Team 2020 ; R version 4.0.3). Code and data are
498 available on GitHub at https://github.com/maudqueroue/MultispeciesIPM_SkuaPetrel.

499 **Results**

500 **Predator-prey relationships**

501 We estimated positive relationships between two breeding parameters of skuas and the number
502 of adult petrels. The breeding success for at least one chick ($\gamma_{S,\tilde{B}}$) [slope mean ($\alpha_{PP_{\gamma_{S,\tilde{B}}}}$) = 0.66;

503 95% CRI (0.37, 1.05)] (Fig. 2a) and the breeding success with two chicks ($\delta_{S,\tilde{B}}$) [slope mean
504 ($\alpha_{PP_{\delta,S,\tilde{B}}}$) = 1.24; 95% CRI (0.59, 2.12)] (Fig. 2b) for skuas that were breeders the previous
505 breeding season increased with an increasing number of prey. Even though the effects were less
506 clear (95% CRI including zero), the breeding success of petrels tended to be positively impacted
507 by the number of predators (Table 3). We detected a positive relationship between the number of
508 adult skuas and the hatching success of petrels that were breeders the previous breeding
509 season ($\omega_{P,\tilde{B}}$), and with the breeding success of petrels that were nonbreeders the previous
510 breeding season ($\gamma_{P,\widetilde{N}\tilde{B}}$). We found no other interspecific relationship on the other parameters
511 (Table 3).

512 **Intraspecific density-dependence**

513 The number of skuas had a clear effect on two demographic parameters, namely the breeding
514 success and the breeding success with two chicks for skuas that were breeders the previous
515 breeding season. We found negative density-dependence for the breeding success ($\gamma_{S,\tilde{B}}$) [slope
516 mean ($\alpha_{DD_{\gamma,S,\tilde{B}}}$) = -0.39; 95% CRI (-0.65, -0.12)] (Fig. 2c) and for the probability of producing
517 two chicks rather than one ($\delta_{S,\tilde{B}}$) [slope mean ($\alpha_{DD_{\delta,S,\tilde{B}}}$) = -0.53; 95% CRI (-1.02, -0.10)] (Fig.
518 2d). These two breeding parameters were also affected by interspecific relationships and we
519 observed that the predator-prey effects were stronger than intraspecific effects ($|\text{mean } \alpha_{PP_{\gamma,S,\tilde{B}}}| =$
520 0.66 ; $|\text{mean } \alpha_{DD_{\gamma,S,\tilde{B}}}| = 0.39$ respectively) for the breeding success and ($|\text{mean } \alpha_{PP_{\delta,S,\tilde{B}}}| = 1.24$;
521 $|\text{mean } \alpha_{DD_{\delta,S,\tilde{B}}}| = 0.53$ respectively) for the breeding success with two chicks (Table 3).

522 For petrels, we estimated a positive effect of increased number of adult petrels on the breeding
523 probability for individuals that were breeders the previous breeding season ($\beta_{P,\tilde{B}}$) [slope
524 mean ($\alpha_{DD_{\beta,P,\tilde{B}}}$) = 0.51; 95% CRI (0.03, 0.98)] (Fig. 2e). Moreover, the number of petrels tended
525 to negatively affect the breeding success of petrels that did not breed the previous breeding
526 season ($\gamma_{P,\tilde{N}\tilde{B}}$) (Table 3).

527 **Environmental covariates**

528 We found ecologically relevant relationships between environmental covariates and
529 demographic parameters of the two species (Table 3). For petrels, we found positive
530 relationships between the two local environmental covariates (SSTa and Chla) and the breeding
531 probability for individuals that were nonbreeders the previous breeding season ($\beta_{P,\tilde{N}\tilde{B}}$). The
532 effect of these environmental covariates on the breeding probability was stronger for the Chla
533 covariate than for the SSTa covariate ($|\text{mean } \alpha_{Chla_{\beta,P,\tilde{N}\tilde{B}}}| = 0.63$; $|\text{mean } \alpha_{SST_{\beta,P,\tilde{N}\tilde{B}}}| = 0.36$
534 respectively). We estimated a positive relationship between the SAM covariate and the apparent
535 survival of skuas that were nonbreeders the previous breeding season ($\phi_{S,\tilde{N}\tilde{B}}$).

536 In addition to the results above, we also estimated the demographic parameters and the number
537 of individuals in each state for both species from 1996 to 2017 (see Appendix S3: Figs. S1–S6).

538 **Discussion**

539 In this paper, we provide the first application of a multispecies IPM in a predator-prey context.
540 Joint analysis of empirical data for two seabird species allowed us to estimate demographic
541 parameters and population size for both simultaneously. The key advantage of using a

542 multispecies IPM was that it enabled us to use the population sizes estimated by the model for
543 one species to analyze its effect on the demographic parameters of the other species while
544 propagating all sources of uncertainty. Hence, it allowed us to understand the contribution of
545 interspecific interactions on the demographic parameters while further taking into account the
546 effects of climatic conditions. Our results showed that the demography of the predatory skua was
547 mainly driven by the number of petrel prey during the breeding season and by the environment
548 during the nonbreeding season, whereas petrels were mostly impacted by the environment. This
549 suggests that this predator-prey system is mainly driven by bottom-up processes and density-
550 dependent processes.

551 **Effects of predator-prey relationships**

552 The number of prey is a determining factor in the breeding success of skuas according to our
553 results. Food availability is known to be positively related with breeding parameters in seabirds
554 (Cairns 1988, Piatt et al. 2007, Oro et al. 2014). As diet of skuas during the breeding period is
555 dominated by petrels (Mougeot et al. 1998, Pacourea et al. 2019c), a large abundance of petrels
556 provides easier conditions for skuas to feed themselves and their chicks resulting in a higher
557 breeding success.

558 Interestingly, we did not find the opposite relationship in the prey dynamics. Our model provided
559 no evidence for a negative effect of the number of skuas on the demographic parameters of the
560 petrel. As skuas prey on both adults and juveniles during the breeding season, we expected a
561 negative effect of the number of skuas on the petrel breeding parameters. This lack of effect
562 could be explained by the large abundance of petrels compared to the skuas on Mayes Island.

563 Oro et al. (2006) reported that in another seabird predator-prey system, the highest breeding
564 success of the prey occurred when the prey/predator ratio was very high. On Mayes Island, the
565 breeding population of petrels is estimated at approximately 142,000 breeding pairs (Barbraud
566 and Delord 2006), and this does not include chicks (around 71,000 each year) and nonbreeders
567 (approximately 30% of the petrels). Hence, there are about 476,000 petrels during a breeding
568 season versus about 200 skuas, resulting in a very high prey/predator ratio. Moreover, Mougeot
569 et al. (1998) showed that skuas breeding at Mayes Island preyed on about 40,000 petrels each
570 breeding season. This corresponds to about 8% of the petrel population of the island. It is
571 therefore possible that skua predation is only a minor factor in shaping petrel demographics, and
572 this effect may be too weak to be detected by our model. Inversely, although the relationships
573 estimated were less clear, our results suggest that the density of skuas tended to increase slightly
574 with the hatching success and breeding success of the prey. However, it is unlikely that the
575 presence of predators increased the reproductive success of petrels. To explain these
576 relationships, we might rely on the other strong effects estimated by our model. Indeed, we found
577 that the number of petrels positively affected the breeding success of skuas and that skuas were
578 sensitive to intraspecific density-dependence. Therefore, years when prey experience a high
579 breeding success correspond to years with particularly abundant food resources for skuas and
580 this until the end of the breeding season. Since skuas are potentially less affected by intraspecific
581 density-dependence than by abundance of prey, they could consequently breed in higher
582 numbers in the breeding area.

583 **Effects of intraspecific density-dependence**

584 For skuas, we found negative density-dependent effects on breeding success and probability to
585 fledge two chicks, in accordance with our predictions. Egg and chick predation by conspecifics
586 has been reported in the Great Skua (*Catharacta skua*) (Hamer et al. 1991, Ratcliffe and Furness
587 1999). Hence, a higher abundance of skuas increases the risk of predation on eggs and chicks,
588 resulting in higher breeding failure. To avoid predation by conspecifics, the skuas start defending
589 their territories from conspecifics just a few days after arrival on a breeding site until the end of
590 the season. This activity is energetically costly and may also limit the time spent searching for
591 food, potentially limiting energy investment in reproduction. The heterogeneous habitat
592 hypothesis already demonstrated in territorial birds (Dhondt et al. 1992, Krüger and Lindström
593 2001, Ferrer and Donazar 2015) could also explain the relationships we found. Indeed, when the
594 population increases, some individuals may be forced to occupy poorer quality habitats, resulting
595 in lower reproductive success. We did not find an effect of density-dependence on the breeding
596 probability of skuas. As skuas are territorial with high site fidelity, we hypothesized that in years
597 with a high abundance of skuas, the breeding probability would decrease, as all the skuas would
598 not succeed in acquiring a territory. It is possible that we did not observe this effect because the
599 logistic function used for density-dependence does not accurately model the territory acquisition
600 dynamics by floaters (e.g. van de Pol et al. 2010, Barraquand et al. 2014).

601 We estimated that the breeding success of skuas was affected by both predator-prey relationships
602 and intraspecific density-dependence. Predator-prey relationships had a higher contribution to
603 the variability in breeding success of skuas than the density-dependent effect. Hamer et al.
604 (1991) reported that, following a reduction of sandeel (*Ammodytes marinus*) abundance, great

605 skua increased their foraging effort reducing the adult territorial attendance. In turn, breeding
606 failure increased due to predation from adults of neighboring territories. We then may assume
607 that petrel abundance allowed a suitable territorial attendance for skuas reducing the negative
608 density-dependent effects such as chick predation by conspecifics.

609 For petrels, we found a negative relationship between the breeding success of petrel that did not
610 breed the previous year and the number of petrels on the colony. Combined effects of density-
611 dependence and climate have already been observed in petrels, with a lower winter survival
612 when density is high (Barbraud and Weimerskirch 2003), suggesting a mechanism of
613 competition between conspecifics for food resources. As nonbreeders are known to be in poorer
614 condition than breeders (Chastel et al. 1995), they are potentially more sensitive to the
615 competition for food resources explaining why this effect was only found on petrels that were
616 nonbreeders the previous years. Interestingly, we found a positive intraspecific density-
617 dependence relationship on the breeding probability of petrels that bred the previous year. This
618 suggests that years with a high abundance of petrels reflected a good return rate to the breeding
619 site because environmental conditions were favorable for breeding. This is in agreement with
620 studies showing that petrels might skip breeding and take sabbatical years when environmental
621 conditions are poor (Warham 1990, Chastel et al. 1995).

622 **Effects of environmental conditions**

623 Breeding probability of petrels tended to be impacted by two of the environmental covariates
624 tested, namely SSTa and Chla. This effect of environmental conditions on the breeding
625 probability is in accordance with previous research showing that the body condition of petrels

626 might impact their decision to attempt breeding (Warham 1990, Chastel et al. 1995). High Chla
627 increases resources availability for organisms at higher trophic levels (macrozooplankton,
628 fishes), which are consumed by petrels (Cherel et al. 2002). Consequently, high Chla may
629 increase abundance of petrel prey, with a positive effect on the breeding performances and body
630 condition of petrels. Unexpectedly, we detected a positive effect of SSTa on breeding probability
631 of petrels. This result is surprising as previous study showed that warm SST events negatively
632 affected the breeding performances and body condition of petrels at Kerguelen Islands (Guinet et
633 al. 1998). Indeed, high SST generally reduces vertical mixing and provides poor growing
634 conditions for zooplankton communities that in turn reduce trophic resources for seabirds
635 (Barbraud et al. 2012, Sydeman et al. 2015). However, it has been showed recently that during
636 the pre-laying period petrels use water masses situated at more northerly latitudes than during the
637 winter period or the breeding period (Quillfeldt et al. 2020), where relationships between SST
638 and primary productivity may differ. Indeed, the covariance between SST and Chla depends on
639 location and shows particularly complex patterns in the Southern Ocean (Dunstan et al. 2018).
640 Positive effects of SSTa have already been identified in other sub-antarctic seabirds (Pinaud and
641 Weimerskirch 2002, Nevoux et al. 2007, Horswill et al. 2014). Furthermore, we estimated that
642 Chla, at the bottom of the trophic food chain, had a higher effect on the breeding probability than
643 SSTa which reflect oceanographic conditions. This indicated that the effect size of
644 environmental covariates increased when the covariates approached the trophic level occupied
645 by the prey of the petrels, suggesting a bottom-up mechanism. This result is consistent with
646 many studies showing that climatic conditions affect seabirds through indirect processes by
647 influencing prey availability and resulting in changes in their dynamics (Frederiksen et al. 2006,
648 Barbraud et al. 2012, Jenouvrier 2013, Lauria et al. 2013).

649 We did not detect any relationship between the breeding parameters of the skua and the
650 environmental covariates. This lack of effect could be explained by an absence of a direct link
651 between skuas and the environmental covariates tested, as breeding skuas remain on their
652 territory to defend it or to forage. However, we found an effect of SAM on the apparent survival.
653 This effect was detected only for skuas that were nonbreeders during the previous season. It was
654 proposed that only seabirds attaining a threshold condition decide to breed (Weimerskirch 1992),
655 suggesting that nonbreeders are generally in poorer conditions than breeders (Chastel et al. 1995,
656 Cam et al. 1998) and thus more sensitive to environmental conditions. Nevertheless, we found a
657 positive relationship between survival and SAM whereas we expected a negative relationship.
658 Indeed, skuas mainly overwinter north of the polar front (Delord et al. 2018) where positive
659 phases of SAM induce warm SST, low surface Chla concentration (Lovenduski and Gruber
660 2005), and thus potentially poor feeding conditions. However, only breeding skuas were studied
661 in Delord et al. (2018) and nonbreeding individuals may use different wintering areas where the
662 relationships between SAM and oceanographic variables differ. Several studies reviewed in
663 Jenouvrier (2013) highlighted multifaceted effects of climatic conditions on the demography of
664 seabirds involving direct, time-lagged and non-linear effect, which we did not considered here.
665 Therefore, despite the important contribution of our approach in understanding the effect of the
666 environment in our predator-prey system, disentangling in details the complex mechanisms
667 between environmental covariates and their effects on the demography of the two seabirds
668 remain challenging.

669 **A bottom-up dynamic in a predator-prey system**

670 Overall, our study has highlighted the important role of bottom-up processes in the dynamics of
671 this marine predator-prey system, *i.e.* the dynamics of these two seabirds was mostly driven by
672 food availability. Petrel dynamics were more strongly affected by environmental covariates near
673 to their trophic level and the number of petrels impacted the dynamics of skuas. The bottom-up
674 control of demographic rates in oceanic predators have been largely assumed (Jenouvrier 2013).
675 This is because the functioning of oceanic systems is controlled and structured by physical
676 processes impacting nutrient fluxes (Behrenfeld et al. 2006) and then the whole trophic food
677 web. We found no evidence of top-down processes, *i.e.* predation effects, in this system,
678 although these two mechanisms have been found to jointly affect ecosystems (Hunter and Price
679 1992, Sinclair et al. 2003) including other seabird systems (Horswill et al. 2014, 2016, Perkins et
680 al. 2018). Effects of skua predation on petrels were expected, based on their diet during the
681 breeding season. However, given the very large number of petrels present on the island
682 compared to the number of predators, the impact of predation may have been too small to be
683 detected by our model.

684 **Conclusion**

685 This multispecies IPM framework allowed us to estimate demographic parameters and
686 abundances for both skuas and petrels. Taking into account both species interactions and
687 environmental covariates in the same analysis improved our understanding of species dynamics.
688 We concluded that bottom-up mechanisms are the main drivers of this skua-petrel system.
689 Generalizing such assessments of interspecific relationships and environmental conditions in a

690 single demographic framework may be essential to predict how contrasted climatic scenarios will
691 affect communities. A promising avenue of research in multispecies IPMs lies in fitting models
692 to data on a large number of species, which will much likely require further methodological
693 developments.

694 **Acknowledgments**

695 This study was made possible thanks to all the field workers involved in the monitoring
696 programs on Brown Skuas and Blue Petrels since 1985 at Mayes Island, Kerguelen Islands.
697 These monitoring programs were supported financially and logistically by the French Polar
698 Institute IPEV (program 109, resp. Henri Weimerskirch), the Zone Atelier Antarctique (CNRS-
699 INEE), Terres Australes et Antarctiques Françaises. All work was carried out in accordance with
700 the guidelines of the IPEV ethics committee. We thank Chloé R. Nater for constructive feedback
701 and helpful suggestions on the manuscript. We acknowledge Dominique Joubert for the
702 management of the demographic database. We thank Dave Koons and an anonymous reviewer
703 for useful comments that helped improved a previous version of the manuscript. This research
704 was funded by the French National Research Agency (grant ANR-16-CE02-0007).

705 **Literature Cited**

706 Aebischer, N. J., J. C. Coulson, and J. M. Colebrookl. 1990. Parallel long-term trends across four
707 marine trophic levels and weather. *Nature* 347:753–755.
708 Barbraud, C., and K. Delord. 2006. Population census of blue petrels *Halobaena caerulea* at
709 Mayes Island, Iles Kerguelen. *Antarctic Science* 18:199–204.

710 Barbraud, C., V. Rolland, S. Jenouvrier, M. Nevoux, K. Delord, and H. Weimerskirch. 2012.

711 Effects of climate change and fisheries bycatch on Southern Ocean seabirds: a review.

712 *Marine Ecology Progress Series* 454:285–307.

713 Barbraud, C., and H. Weimerskirch. 2001. Emperor penguins and climate change. *Nature*

714 411:183–186.

715 Barbraud, C., and H. Weimerskirch. 2003. Climate and density shape population dynamics of a

716 marine top predator. *Proceedings of the Royal Society B: Biological Sciences* 270:2111–

717 2116.

718 Barbraud, C., and H. Weimerskirch. 2005. Environmental Conditions and Breeding Experience

719 Affect Costs of Reproduction in Blue Petrels. *Ecology* 86:682–692.

720 Barraquand, F., and O. Gimenez. 2019. Integrating multiple data sources to fit matrix population

721 models for interacting species. *Ecological Modelling* 411.

722 Barraquand, F., T. T. Høye, J.-A. Henden, N. G. Yoccoz, O. Gilg, N. M. Schmidt, B. Sittler, and

723 R. A. Ims. 2014. Demographic responses of a site-faithful and territorial predator to its

724 fluctuating prey: long-tailed skuas and arctic lemmings. *Journal of Animal Ecology* 83:375–

725 387.

726 Behrenfeld, M. J., R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman,

727 A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss. 2006. Climate-driven trends

728 in contemporary ocean productivity. *Nature* 444:752–755.

729 Besbeas, P., S. N. Freeman, B. J. T. Morgan, and E. A. Catchpole. 2002. Integrating Mark-

730 Recapture-Recovery and Census Data to Estimate Animal Abundance and Demographic
731 Parameters. *Biometrics* 58:540–547.

732 Bogdanova, M. I., A. Butler, S. Wanless, B. Moe, T. Anker-Nilssen, M. Frederiksen, T.
733 Boulinier, L. S. Chivers, S. Christensen-Dalsgaard, S. Descamps, M. P. Harris, M. Newell,
734 B. Olsen, R. A. Phillips, D. Shaw, H. Steen, H. Strøm, T. L. Thórarinsson, and F. Daunt.
735 2017. Multi-colony tracking reveals spatio-Temporal variation in carry-over effects between
736 breeding success and winter movements in a pelagic seabird. *Marine Ecology Progress Series*
737 Series 578:167–181.

738 Brooks, S. P., and A. Gelman. 1998. General Methods for Monitoring Convergence of Iterative
739 Simulations. *Journal of Computational and Graphical Statistics* 7:434–455.

740 Cairns, D. K. 1988. Seabirds as Indicators of Marine Food Supplies. *Biological Ocenaography*
741 5:261–271.

742 Cam, E., J. E. Hines, J.-Y. Monnat, J. D. Nichols, and E. Danchin. 1998. Are Adult Nonbreeders
743 Prudent Parents? The Kitiwake Model. *Ecology* 79:2917.

744 Carneiro, A. P. B., A. Manica, W. Z. Trivelpiece, and R. A. Phillips. 2015. Flexibility in foraging
745 strategies of Brown Skuas in response to local and seasonal dietary constraints. *Journal of*
746 *Ornithology* 156:625–633.

747 Caswell, H. 2001. *Matrix Population Models: Construction, Analysis, and Interpretation*. Sinauer
748 Associates, Sunderland, Massachusetts, USA.

749 Chastel, O., H. Weimerskirch, and P. Jouventin. 1995. Influence of Body Condition on

750 Reproductive Decision and Reproductive Success in the Blue Petrel. *The Auk* 112:964–972.

751 Chaurand, T., and H. Weimerskirch. 1994a. The regular alternation of short and long foraging
752 trips in the blue petrel *Halobaena caerulea*: a previously undescribed strategy of food
753 provisioning in a pelagic seabird. *The Journal of Animal Ecology* 63:275–282.

754 Chaurand, T., and H. Weimerskirch. 1994b. Incubation routine, body mass regulation and egg
755 neglect in the Blue Petrel *Halobaena caerulea*. *Ibis* 136:285–290.

756 Cherel, Y., P. Bocher, C. Trouvé, and H. Weimerskirch. 2002. Diet and feeding ecology of blue
757 petrels *Halobaena caerulea* at Iles Kerguelen, Southern Indian Ocean. *Marine Ecology
758 Progress Series* 228:283–299.

759 Cherel, Y., M. Connan, A. Jaeger, and P. Richard. 2014. Seabird year-round and historical
760 feeding ecology: blood and feather $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values document foraging plasticity of
761 small sympatric petrels. *Marine Ecology Progress Series* 505:267–280.

762 Cherel, Y., P. Quillfeldt, K. Delord, and H. Weimerskirch. 2016. Combination of At-Sea
763 Activity, Geolocation and Feather Stable Isotopes Documents Where and When Seabirds
764 Molt. *Frontiers in Ecology and Evolution* 4.

765 Chu, C., and P. B. Adler. 2015. Large niche differences emerge at the recruitment stage to
766 stabilize grassland coexistence. *Ecological Monographs* 85:373–392.

767 Daunt, F., V. Afanasyev, A. Adam, J. P. Croxall, and S. Wanless. 2007. From cradle to early
768 grave: Juvenile mortality in European shags *Phalacrocorax aristotelis* results from
769 inadequate development of foraging proficiency. *Biology Letters* 3:371–374.

770 Delord, K., Y. Cherel, C. Barbraud, O. Chastel, and H. Weimerskirch. 2018. High variability in
771 migration and wintering strategies of brown skuas (*Catharacta antarctica lönbergi*) in the
772 Indian Ocean. *Polar Biology* 41:59–70.

773 Dhondt, A. A., B. Kempenaers, and F. Adriaensen. 1992. Density-dependent clutch size caused
774 by habitat heterogeneity. *Journal of Animal Ecology* 61:643–648.

775 Dunstan, P. K., S. D. Foster, E. King, J. Risbey, T. J. O’Kane, D. Monselesan, A. J. Hobday, J.
776 R. Hartog, and P. A. Thompson. 2018. Global patterns of change and variation in sea
777 surface temperature and chlorophyll a. *Scientific Reports* 8:1–9.

778 Fay, R., H. Weimerskirch, K. Delord, and C. Barbraud. 2015. Population density and climate
779 shape early-life survival and recruitment in a long-lived pelagic seabird. *Journal of Animal
780 Ecology* 84:1423–1433.

781 Ferrer, M., and J. A. Donazar. 2015. Density-Dependent Fecundity by Habitat Heterogeneity in
782 an Increasing Population of Spanish Imperial Eagles. *Ecology* 77:69–74.

783 Frederiksen, M., M. Edwards, A. J. Richardson, N. C. Halliday, and S. Wanless. 2006. From
784 plankton to top predators: bottom-up control of a marine food web across four trophic
785 levels. *Journal of Animal Ecology* 75:1259–1268.

786 Gervasi, V., E. B. Nilsen, and J. D. C. Linnell. 2015. Body mass relationships affect the age
787 structure of predation across carnivore-ungulate systems: A review and synthesis. *Mammal
788 Review* 45:253–266.

789 Gille, S. T. 2002. Warming of the Southern Ocean since the 1950s. *Science* 295:1275–1277.

790 Gimenez, O., J. D. Lebreton, J. M. Gaillard, R. Choquet, and R. Pradel. 2012. Estimating
791 demographic parameters using hidden process dynamic models. *Theoretical Population
792 Biology* 82:307–316.

793 Godfray, H. C. J., and R. M. May. 2014. Open questions: are the dynamics of ecological
794 communities predictable? *BMC Biology* 12.

795 Grande, J. M., D. Serrano, G. Tavecchia, M. Carrete, O. Ceballos, R. Díaz-Delgado, J. L. Tella,
796 and J. A. Donázar. 2009. Survival in a long-lived territorial migrant: effects of life-history
797 traits and ecological conditions in wintering and breeding areas. *Oikos* 118:580–590.

798 Greig, S. A., J. C. Coulson, and P. Monaghan. 1983. Age-Related differences in foraging success
799 in the herring gull (*Larus Argentatus*). *Anim. Behav.* 31:1237–1243.

800 Grosbois, V., O. Gimenez, J.-M. Gaillard, R. Pradel, C. Barbraud, J. Clobert, A. P. Møller, and
801 H. Weimerskirch. 2008. Assessing the impact of climate variation on survival in vertebrate
802 populations. *Biological Reviews* 83:357–399.

803 Guinet, C., O. Chastel, M. Koudil, J. P. Durbec, and P. Jouventin. 1998. Effects of warm sea-
804 surface temperature anomalies on the blue petrel at the Kerguelen Islands. *Proceedings of
805 the Royal Society B: Biological Sciences* 265:1001–1006.

806 Hamer, K. C., R. W. Furness, and R. W. G. Caldow. 1991. The effects of changes in food
807 availability on the breeding ecology of great skuas *Catharacta skua* in Shetland. *Journal of
808 Zoology* 223:175–188.

809 Han, W., J. Vialard, M. J. McPhaden, T. Lee, Y. Masumoto, M. Feng, and W. P. M. de Ruijter.

810 2014. Indian Ocean Decadal Variability: A Review. *Bull. Amer. Meteor. Soc.* 95:1679–
811 1703.

812 Harrison, X. A., J. D. Blount, R. Inger, D. R. Norris, and S. Bearhop. 2011. Carry-over effects as
813 drivers of fitness differences in animals. *Journal of Animal Ecology* 80:4–18.

814 Higgins, P. J., and S. J. Davied. 1996. *Handbook of Australia, New Zealand & Antarctic Birds.*
815 Vol. 3, Snipe to pigeons. Oxford University Press.

816 Hipfner, M. J., L. K. Blight, R. W. Lowe, S. I. Wilhelm, G. J. Robertson, R. T. Barrett, T. Anker-
817 Nilssen, and T. P. Good. 2012. Unintended consequences: How the recovery of sea eagle
818 *Haliaeetus* spp. populations in the northern hemisphere is affecting seabirds. *Marine
819 Ornithology* 40:39–52.

820 Hoegh-Guldberg, O., and J. F. Bruno. 2010. The Impact of Climate Change on the World's
821 Marine Ecosystems. *Science* 328:1523–1528.

822 Horswill, C., J. Matthiopoulos, J. A. Green, M. P. Meredith, J. Forcada, H. Peat, M. Preston, P.
823 N. Trathan, and N. Ratcliffe. 2014. Survival in macaroni penguins and the relative
824 importance of different drivers: Individual traits, predation pressure and environmental
825 variability. *Journal of Animal Ecology* 83:1057–1067.

826 Horswill, C., N. Ratcliffe, J. A. Green, R. A. Phillips, P. N. Trathan, and J. Matthiopoulos. 2016.
827 Unravelling the relative roles of top-down and bottom-up forces driving population change
828 in an oceanic predator. *Ecology* 97:1919–1928.

829 Hunter, M. D., and P. W. Price. 1992. Playing chutes and ladders: heterogeneity and the relative

830 roles of bottom-up and top-down forces in natural communities. *Ecology* 73:724–732.

831 Jenouvrier, S. 2013. Impacts of climate change on avian populations. *Global Change Biology*
832 19:2036–2057.

833 Jenouvrier, S., C. Barbraud, and H. Weimerskirch. 2003. Effects of climate variability on the
834 temporal population dynamics of southern fulmars. *Journal of Animal Ecology* 72:576–587.

835 Jouventin, P., J. L. Mougin, J.-C. Stahl, and H. Weimerskirch. 1985. Comparative biology of the
836 burrowing petrels of the Crozet Islands. *Notornis* 32:157–220.

837 Krüger, O., and J. Lindström. 2001. Habitat heterogeneity affects population growth in goshawk
838 *Accipiter gentilis*. *Journal of Animal Ecology* 70:173–181.

839 Lack, D. 1967. Interrelationships in breeding adaptations as shown by marine birds. In
840 Proceedings of the International Ornithological Congress. Vol. 14, pp. 3-42. Oxford. UK:
841 Blackwell Scientific Publications.

842 Lauria, V., M. J. Attrill, A. Brown, M. Edwards, and S. C. Votier. 2013. Regional variation in
843 the impact of climate change: Evidence that bottom-up regulation from plankton to seabirds
844 is weak in parts of the Northeast Atlantic. *Marine Ecology Progress Series* 488:11–22.

845 Lovenduski, N. S., and N. Gruber. 2005. Impact of the Southern Annular Mode on Southern
846 Ocean circulation and biology. *Geophysical Research Letters* 32.

847 Marshall, G. J. 2003. Trends in the Southern Annular Mode from Observations and Reanalyses.
848 *Journal of climate* 16:4134–4143.

849 Miller, D. A. W., E. H. C. Grant, E. Muths, S. M. Amburgey, M. J. Adams, M. B. Joseph, J. H.

850 Waddle, P. T. J. Johnson, M. E. Ryan, B. R. Schmidt, D. L. Calhoun, C. L. Davis, R. N.
851 Fisher, D. M. Green, B. R. Hossack, T. A. G. Rittenhouse, S. C. Walls, L. L. Bailey, S. S.
852 Cruickshank, G. M. Fellers, T. A. Gorman, C. A. Haas, W. Hughson, D. S. Pilliod, S. J.
853 Price, A. M. Ray, W. Sadinski, D. Saenz, W. J. Barichivich, A. Brand, C. S. Brehme, R.
854 Dagit, K. S. Delaney, B. M. Glorioso, L. B. Kats, P. M. Kleeman, C. A. Pearl, C. J.
855 Rochester, S. P. D. Riley, M. Roth, and B. H. Sigafus. 2018. Quantifying climate sensitivity
856 and climate-driven change in North American amphibian communities. *Nature
857 Communications* 9.

858 Miller, T. E. X., and V. H. W. Rudolf. 2011. Thinking inside the box□: community-level
859 consequences of stage-structured populations. *Trends in Ecology and Evolution* 26:457–
860 466.

861 Millon, A., S. J. Petty, B. Little, O. Gimenez, T. Cornulier, and X. Lambin. 2014. Dampening
862 prey cycle overrides the impact of climate change on predator population dynamics: a long-
863 term demographic study on tawny owls. *Global Change Biology* 20:1770–1781.

864 Mogeot, F., and V. Bretagnolle. 2000a. Predation risk and moonlight avoidance in nocturnal
865 seabirds. *Journal of Avian Biology* 31:376–386.

866 Mogeot, F., and V. Bretagnolle. 2000b. Predation as a cost of sexual communication in
867 nocturnal seabirds: an experimental approach using acoustic signals. *Animal Behaviour*
868 60:647–656.

869 Mogeot, F., F. Genevois, and V. Bretagnolle. 1998. Predation on burrowing petrels by the
870 brown skua (*Catharacta skua lönbergi*) at Mayes Island, Kerguelen. *Journal of Zoology*

871 244:429–438.

872 Nevoux, M., H. Weimerskirch, and C. Barbraud. 2007. Environmental variation and experience-
873 related differences in the demography of the long-lived black-browed albatross. *Journal of*
874 *Animal Ecology* 76:159–167.

875 Oken, K. L., and T. E. Essington. 2015. How detectable is predation in stage-structured
876 populations? Insights from a simulation-testing analysis. *Journal of Animal Ecology* 84:60–
877 70.

878 Oro, D., N. Hernández, L. Jover, and M. Genovart. 2014. From recruitment to senescence: food
879 shapes the age-dependent pattern of breeding performance in a long-lived bird. *Ecology*
880 95:446–457.

881 Oro, D., A. Martínez-Abraín, M. Paracuellos, J. C. Nevado, and M. Genovart. 2006. Influence of
882 density dependence on predator-prey seabird interactions at large spatio-temporal scales.
883 *Proceedings of the Royal Society B: Biological Sciences* 273:379–383.

884 Pacourea, N., M. Authier, K. Delord, and C. Barbraud. 2019a. Population response of an apex
885 Antarctic consumer to its prey and climate fluctuations. *Oecologia* 189:279–291.

886 Pacourea, N., K. Delord, S. Jenouvrier, and C. Barbraud. 2019b. Demographic and population
887 responses of an apex predator to climate and its prey: a long-term study of South Polar
888 Skuas. *Ecological Monographs* 89.

889 Pacourea, N., E. Gaget, K. Delord, and C. Barbraud. 2019c. Prey remains of brown skua is
890 evidence of the long-term decline in burrow occupancy of blue petrels and thin-billed prions

891 at Mayes Island, Kerguelen. *Polar Biology* 42:1873–1879.

892 Parmelee, D. F., and P. J. Pietz. 1987. Philopatry, Mate and Nest-Site Fidelity in the Brown
893 Skuas of Anvers Island, Antarctica. *The Condor* 89:916–919.

894 Parmesan, C. 2006. Ecological and Evolutionary Responses to Recent Climate Change. *Annual
895 Review of Ecology, Evolution, and Systematics* 37:637–669.

896 Perkins, A., N. Ratcliffe, D. Suddaby, B. Ribbands, C. Smith, P. Ellis, E. Meek, and M. Bolton.
897 2018. Combined bottom-up and top-down pressures drive catastrophic population declines
898 of Arctic skuas in Scotland. *Journal of Animal Ecology* 87:1573–1586.

899 Péron, G., and D. N. Koons. 2012. Integrated modeling of communities: parasitism, competition,
900 and demographic synchrony in sympatric ducks. *Ecology* 93:2456–2464.

901 Piatt, J. F., A. M. A. Harding, M. Shultz, S. G. Speckman, T. I. van Pelt, G. S. Drew, and A. B.
902 Kettle. 2007. Seabirds as indicators of marine food supplies: Cairns revisited. *Marine
903 Ecology Progress Series* 352:221–234.

904 Pinaud, D., and H. Weimerskirch. 2002. Ultimate and proximate factors affecting the breeding
905 performance of a marine top-predator. *Oikos* 99:141–150.

906 van de Pol, M., Y. Vindenes, B.-E. Sæther, S. Engen, B. J. Ens, K. Oosterbeek, and J. M.
907 Tinbergen. 2010. Effects of climate change and variability on population dynamics in a
908 long-lived shorebird. *Ecology* 91:1192–1204.

909 Pradel, R. 2005. Multievent: An Extension of Multistate Capture-Recapture Models to Uncertain
910 States. *Biometrics* 61:442–447.

911 Quillfeldt, P., H. Weimerskirch, K. Delord, and Y. Cherel. 2020. Niche switching and leapfrog
912 foraging: movement ecology of sympatric petrels during the early breeding season.
913 Movement Ecology 8.

914 R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation
915 for Statistical Computing, Vienna, Austria.

916 Ratcliffe, N., and R. W. Furness. 1999. The effect of parental age and experimentally
917 manipulated brood size on the foraging effort and breeding performance of great skuas
918 (*Catharacta skua*). Journal of Zoology 249:195–201.

919 Regehr, H. M., and W. A. Montevecchi. 1997. Interactive effects of food shortage and predation
920 on breeding failure of black-legged kittiwakes: Indirect effects of fisheries activities and
921 implications for indicator species. Marine Ecology Progress Series 155:249–260.

922 Saunders, S. P., F. J. Cuthbert, and E. F. Zipkin. 2018. Evaluating population viability and
923 efficacy of conservation management using integrated population models. Journal of
924 Applied Ecology 55:1380–1392.

925 Schaub, M., and F. Abadi. 2011. Integrated population models: a novel analysis framework for
926 deeper insights into population dynamics. Journal of Ornithology 152:227–237.

927 Sinclair, A. R. E., S. Mduma, and J. S. Brashares. 2003. Patterns of predation in a diverse
928 predator-prey system. Nature 425:288–290.

929 Stenseth, N. C., J. M. Durant, M. S. Fowler, E. Matthysen, F. Adriaensen, N. Jonzén, K. Chan,
930 H. Liu, J. De Laet, B. C. Sheldon, M. E. Visser, and A. A. Dhondt. 2015. Testing for effects

931 of climate change on competitive relationships and coexistence between two bird species.

932 Proceedings of the Royal Society B: Biological Sciences 282.

933 Stenseth, N. C., A. Mysterud, G. Ottersen, J. W. Hurell, K.-S. Chan, and M. Lima. 2002.

934 Ecological Effects of Climate Fluctuations. *Science* 297:1292–1296.

935 Stoessel, M., B. Elmhagen, M. Vinka, P. Hellström, and A. Angerbjörn. 2019. The fluctuating

936 world of a tundra predator guild: bottom-up constraints overrule top-down species

937 interactions in winter. *Ecography* 42:488–499.

938 Suryan, R. M., F. Sato, G. R. Balogh, K. David Hyrenbach, P. R. Sievert, and K. Ozaki. 2006.

939 Foraging destinations and marine habitat use of short-tailed albatrosses: A multi-scale

940 approach using first-passage time analysis. *Deep-Sea Research Part II: Topical Studies in*

941 *Oceanography* 53:370–386.

942 Sydeman, W. J., E. Poloczanska, T. E. Reed, and S. A. Thompson. 2015. Climate change and

943 marine vertebrates. *Science* 350:772–777.

944 Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F.

945 N. Erasmus, M. Ferreira de Siquiera, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S.

946 van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L.

947 Phillips, and S. E. Williams. 2004. Extinction risk from climate change. *Nature* 427:145–

948 148.

949 Tuljapurkar, S., and H. Caswell. 1997. Structured-Population Models in Marine, Terrestrial, and

950 Freshwater Systems. Chapman & Hall, New York.

951 de Valpine, P., D. Turek, C. J. Paciorek, C. Anderson-Bergman, D. T. Lang, and R. Bodik. 2017.

952 Programming With Models: Writing Statistical Algorithms for General Model Structures

953 With NIMBLE. *Journal of Computational and Graphical Statistics* 26:403–413.

954 Walther, G., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. Fromentin, O.

955 Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate change.

956 *Nature* 416:389–395.

957 Warham, J. 1990. The petrels: their ecology and breeding systems. Academic Press, London,

958 UK.

959 Weimerskirch, H. 1992. Reproductive effort in long-lived birds: age-specific patterns of

960 condition, reproduction and survival in the wandering albatross. *Oikos* 64:464–473.

961 Weimerskirch, H., O. Chastel, L. Ackermann, T. Chaurand, F. Cuenot-Chaillet, X. Hindermeyer,

962 and J. Judas. 1994. Alternate long and short foraging trips in pelagics seabird parents.

963 *Anim. Behav.* 47:472–476.

964 Zipkin, E. F., and S. P. Saunders. 2018. Synthesizing multiple data types for biological

965 conservation using integrated population models. *Biological Conservation* 217:240–250.

966

967 **Tables**

968 Table 1: Summary of the demographic parameters and their specificities (year random effect or
 969 state dependence) for the two species: the Brown Skua (top) and the Blue Petrel (bottom).

970 Notations are $\widetilde{N}B$: Nonbreeder the previous year, \widetilde{B} : Breeder the previous year, NB: Nonbreeder,
 971 FB: Failed Breeder, SB1: Successful Breeder with one fledged chick, SB2: Successful Breeder
 972 with two fledged chicks, FBE: Failed Breeder at the Egg stage, FBC: Failed Breeder at the Chick
 973 stage and SB: Successful Breeder.

Species	Parameter	Year random effect	State dependence
Skua	Adult apparent survival ϕ_S	?	$\widetilde{N}B_S \widetilde{B}_S$
	Breeding probability β_S	?	$\widetilde{N}B_S \widetilde{B}_S$
	Breeding success γ_S	?	$\widetilde{N}B_S \widetilde{B}_S$
	Breeding success 2 chicks δ_S	?	$\widetilde{N}B_S \widetilde{B}_S$
	Detection probability p_S	?	$\widetilde{N}B_S \widetilde{B}_S$
	Uncertain state assignment probability u_S	?	$NB_S FB_S SB1_S SB2_S$
Petrel	Adult apparent survival ϕ_P	?	$\widetilde{N}B_P \widetilde{B}_P$
	Breeding probability β_P	?	$\widetilde{N}B_P \widetilde{B}_P$
	Hatching success ω_P	?	$\widetilde{N}B_P \widetilde{B}_P$
	Breeding success γ_P	?	$\widetilde{N}B_P \widetilde{B}_P$
	Detection probability p_P	?	$\widetilde{N}B_P \widetilde{B}_P$
	Uncertain state assignment probability u_P	?	$NB_P FBE_P FBC_P SB_P$

974

975

976 Table 2: Summary of the covariates tested on the demographic parameters of the two species –
977 the Brown Skua (top) and the Blue Petrel (bottom) – and the time period (in months) considered
978 for each demographic parameter. Notations are PP: Predator-Prey interactions, DD: intraspecific
979 Density-Dependence, SAM: Southern Annual Mode, SSTA: Sea Surface Temperature anomalies,
980 Chla: Chlorophyll a concentration.

Species	Parameter	Covariates tested	Time period
Skua	Adult apparent survival ϕ_s	DD SAM	Wintering (March-September)
	Breeding probability β_s	DD SAM	Pre-Breeding (July-November)
	Breeding success γ_s	PP DD SAM	Breeding (October-February)
	Breeding success 2 chicks δ_s	PP DD SAM	Breeding (October-February)
Petrel	Adult apparent survival ϕ_p	PP DD SAM SSTA Chla	Wintering (February-September)
	Breeding probability β_p	DD SAM SSTA Chla	Pre-Breeding (August-October)
	Hatching success ω_p	PP DD SAM SSTA Chla	Breeding (October – December)
	Breeding success γ_p	PP DD SAM SSTA Chla	Breeding (December-January)

981

982

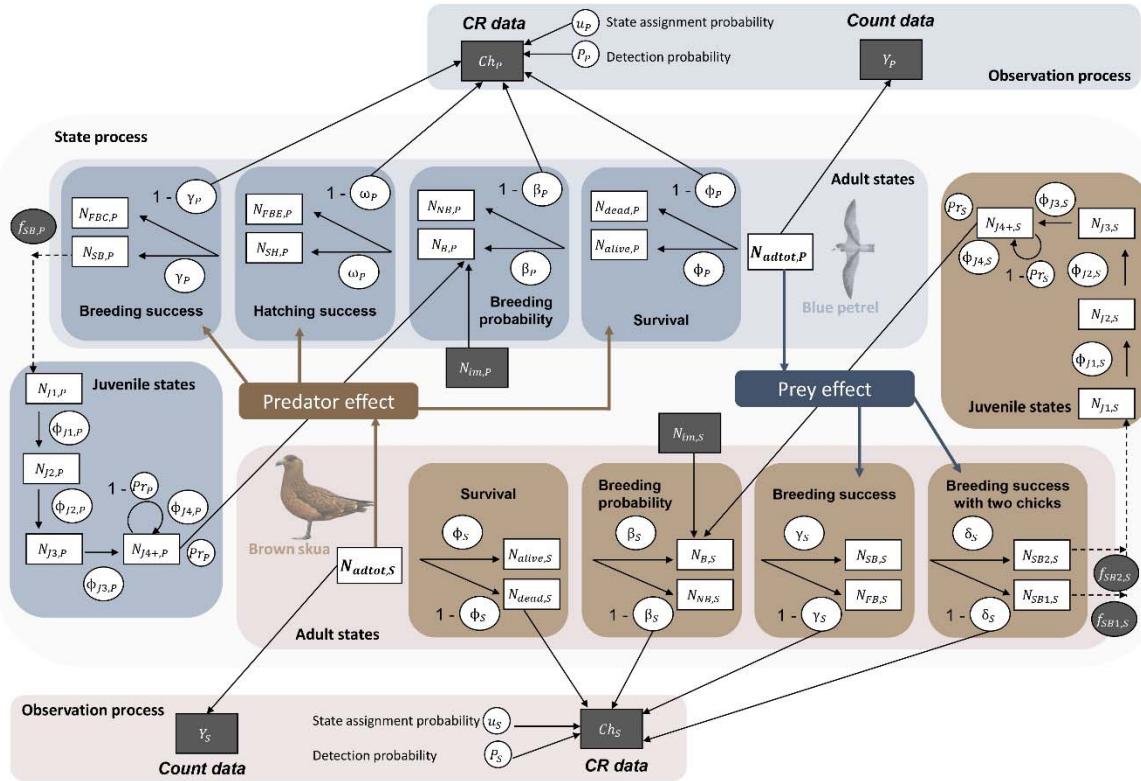
983 Table 3: Regression coefficients estimates for the relationships between covariates (DD:
984 intraspecific Density-Dependence, PP: Predator-Prey interactions, SAM: Southern Annular
985 Mode, SSTa: Sea Surface Temperature anomalies, Chla: Chlorophyll a concentration) and
986 demographic parameters (ϕ : adult apparent survival, β : breeding probability, γ : breeding
987 success, δ : breeding success with two chicks, ω : hatching success) for Brown Skuas (top) and
988 Blue Petrels (bottom), \tilde{B} : breeders or $\bar{N}\bar{B}$: non breeders the previous years. 80% credible
989 intervals that do not include zero are in bold.

SKUA	DD				PP				SAM							
	Parameters	slope	sd	10%	90%	slope	sd	10%	90%	slope	sd	10%	90%	slope	sd	10%
$\phi_{S,\tilde{B}}$	-0.09	0.11	-0.22	0.06					-0.38	0.41	-0.88	0.12				
$\phi_{S,\bar{N}\bar{B}}$	-0.12	0.15	-0.28	0.09					1.25	0.96	0.14	2.42				
$\beta_{S,\tilde{B}}$	0.23	0.22	-0.08	0.51					0.73	0.69	-0.13	1.61				
$\beta_{S,\bar{N}\bar{B}}$	0.11	0.19	-0.16	0.33					0.80	0.65	0.00	1.60				
$\gamma_{S,\tilde{B}}$	-0.39	0.14	-0.56	-0.22	0.66	0.17	0.45	0.89	0.12	0.20	-0.14	0.37				
$\gamma_{S,\bar{N}\bar{B}}$	-0.23	0.28	-0.54	0.15	0.20	0.39	-0.26	0.65	0.21	0.54	-0.45	0.86				
$\delta_{S,\tilde{B}}$	-0.53	0.24	-0.85	-0.22	1.24	0.38	0.78	1.74	0.02	0.41	-0.49	0.53				
$\delta_{S,\bar{N}\bar{B}}$	-0.40	0.44	-0.95	0.16	0.71	0.96	-0.47	1.80	-1.30	2.33	-4.07	0.79				
PETREL	DD				PP				SAM				SSTa			
	Parameters	slope	sd	10%	90%	slope	sd	10%	90%	slope	sd	10%	90%	slope	sd	10%
$\phi_{P,\tilde{B}}$	-0.14	0.30	-0.51	0.24	0.25	0.24	-0.06	0.56	-0.34	0.39	-0.83	0.16	-0.22	0.24	-0.53	0.07
$\phi_{P,\bar{N}\bar{B}}$	-0.38	1.05	-1.67	1.04	0.43	0.49	-0.25	1.01	1.27	2.26	-1.11	4.51	0.01	0.96	-1.01	1.25
$\beta_{P,\tilde{B}}$	0.51	0.25	0.19	0.86					-0.34	0.39	-0.85	0.14	0.07	0.22	-0.22	0.34
$\beta_{P,\bar{N}\bar{B}}$	0.21	0.33	-0.22	0.67					0.40	0.38	-0.07	0.85	0.36	0.22	0.09	0.63
$\omega_{P,\tilde{B}}$	0.12	0.25	-0.18	0.43	0.28	0.14	0.11	0.44	-0.10	0.25	-0.41	0.20	0.08	0.16	-0.12	0.28
$\omega_{P,\bar{N}\bar{B}}$	-0.47	0.52	-1.08	0.08	0.26	0.33	-0.16	0.66	-0.17	0.61	-0.87	0.53	-0.12	0.47	-0.56	0.37
$\gamma_{P,\tilde{B}}$	0.05	0.61	-0.68	0.81	-0.12	0.31	-0.49	0.27	0.32	0.46	-0.22	0.93	-0.44	0.42	-0.98	0.05
$\gamma_{P,\bar{N}\bar{B}}$	-0.79	0.59	-1.53	-0.12	0.46	0.33	0.01	0.89	-0.43	0.45	-0.99	0.08	-0.34	0.51	-0.99	0.25

990

991

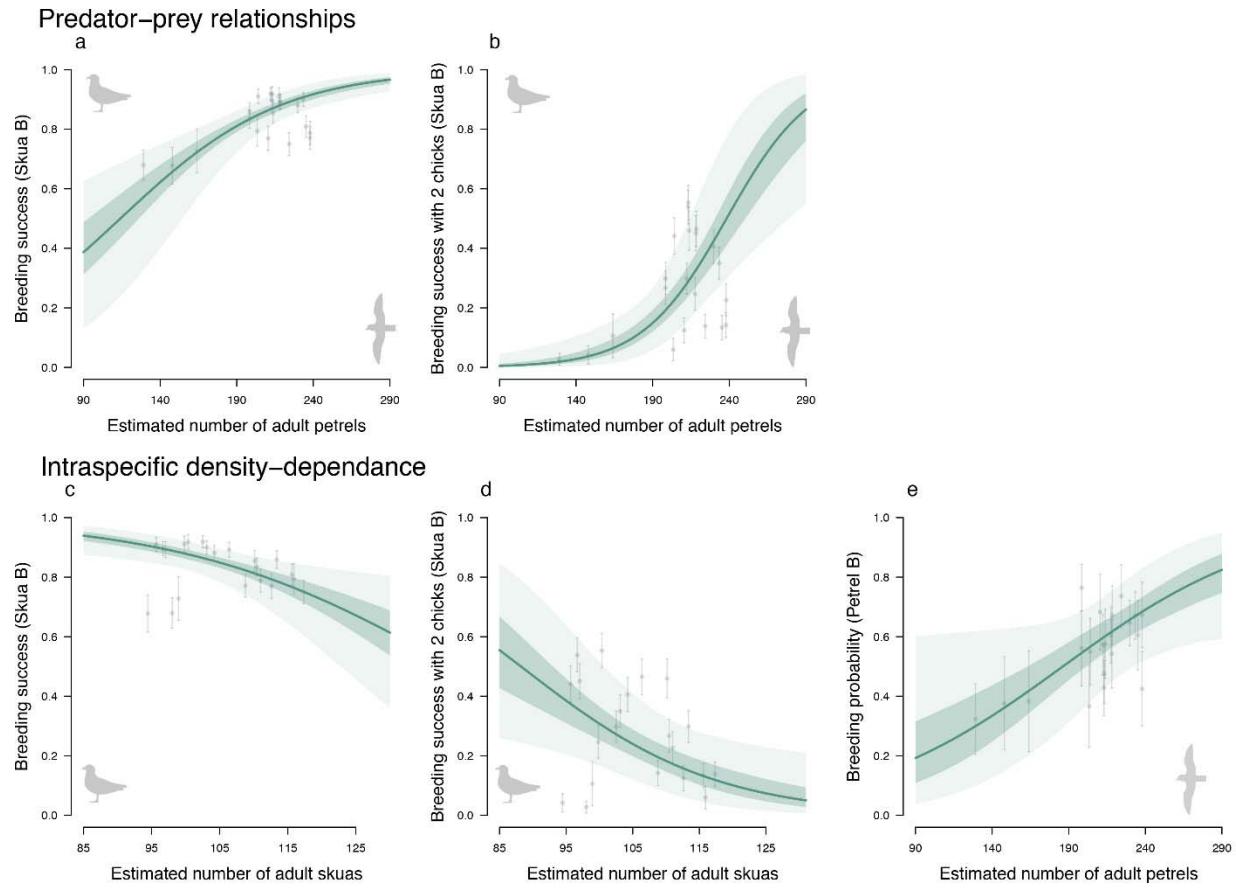
992 **Figure Legends**


993 Figure 1: Structure of the multispecies Integrated Population Model. Squares represent the state
994 variables, circles represent the parameters. Data and fixed values are represented with a dark
995 background, estimated state variables and parameters with a white background. Two types of
996 data are used, capture histories (Ch) from capture-recapture data and count data (Y). Adult
997 apparent survival (ϕ), breeding probability (β), hatching success (ω), breeding success (γ),
998 breeding success with two chicks (δ), juvenile apparent survival for one to four years old and
999 older (ϕ_{J1} to ϕ_{J4}), probability of first reproduction (Pr), state assignment probability (u) and
1000 detection probability (p) are parameters estimated in the model. Fecundity (f) is fixed. The
1001 number of adults (N_{adtot}), dead (N_{dead}), alive (N_{alive}), breeders (N_B), nonbreeders (N_{NB}),
1002 failed breeders (N_{FB}), failed breeders at the stage egg (N_{FBE}), breeders with an egg hatched
1003 (N_{SH}), failed breeders at the stage chick (N_{FBC}), successful breeders (N_{SB}), successful breeders
1004 with one chick (N_{SB1}) or with two chicks (N_{SB2}) and the number of juveniles of one year old to
1005 four years old and older (N_{J1} to N_{J4+}) are state variables estimated by the model. The number of
1006 immigrants (N_{im}) is a fixed vector. The blue part is for Blue Petrels and the brown part is for
1007 Brown Skuas. Interspecific relationships are represented with thick arrows.

1008 Figure 2: Effects of predator-prey relationships (top panels) and intraspecific density-dependence
1009 (bottom panel) on adult demographic parameters for the two seabirds, the Brown Skua and the
1010 Blue Petrel. Solid lines represent the estimated relationship between the covariates and the
1011 demographic parameters. Shaded areas are the 50% and 95% credibility intervals. Points
1012 represent demographic parameter estimates each year (21 years) plotted against covariate. Error
1013 bars are standard deviation. Prey effect on (a) the estimated breeding success probability

1014 (a) $\alpha_{PP_{\gamma,S,\tilde{B}}}$) and (b) breeding success with two chicks for skuas that bred the previous breeding
1015 season ($\alpha_{PP_{\delta,S,\tilde{B}}}$). Intraspecific density-dependence effect on (c) the breeding success ($\alpha_{DD_{\gamma,S,\tilde{B}}}$)
1016 and on (d) breeding success of skuas that were breeders the previous breeding season ($\alpha_{DD_{\delta,S,\tilde{B}}}$)
1017 and (e) on the breeding probability of petrels that bred the previous breeding season ($\alpha_{DD_{\beta,P,\tilde{B}}}$).

1018 **Figures**


1019 **Figure 1**

1020

1021

1022 **Figure 2**

