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Abstract 37 

Realistic mappings of genes to morphology are inherently multivariate on both sides of the 38 

equation. The importance of coordinated gene effects on morphological phenotypes is clear from 39 

the intertwining of gene actions in signaling pathways, gene regulatory networks, and 40 

developmental processes underlying the development of shape and size. Yet, current approaches 41 

tend to focus on identifying and localizing the effects of individual genes and rarely leverage the 42 

information content of high dimensional phenotypes. Here, we explicitly model the joint effects 43 

of biologically coherent collections of genes on a multivariate trait—craniofacial shape — in a 44 

sample of n = 1,145 mice from the Diversity Outbred (DO) experimental line. We use biological 45 

process gene ontology (GO) annotations to select skeletal and facial development gene sets and 46 

solve for the axis of shape variation that maximally covaries with gene set marker variation. We 47 

use our process-centered, multivariate genotype-phenotype (MGP) approach to determine the 48 

overall contributions to craniofacial variation of genes involved in relevant processes and how 49 

variation in different processes corresponds to multivariate axes of shape variation. Further, we 50 

compare the directions of effect in phenotype space of mutations to the primary axis of shape 51 

variation associated with broader pathways within which they are thought to function. Finally, 52 

we leverage the relationship between mutational and pathway-level effects to predict phenotypic 53 

effects beyond craniofacial shape in specific mutants.  We also introduce an online application 54 

which provides users the means to customize their own process-centered craniofacial shape 55 

analyses in the DO. The process-centered approach is generally applicable to any continuously 56 

varying phenotype and thus has wide-reaching implications for complex-trait genetics. 57 

 58 

 59 

 60 

 61 
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Introduction 68 

 69 
Variation in human craniofacial shape is moderately to highly heritable (~30-70% (Cole et al., 70 

2017; Tsagkrasoulis et al., 2017)), and resemblances among close relatives as well as twins 71 

underscore the strong relationship between shared genetics and shared phenotype(Johannsdottir 72 

et al., 2005; Nakata, 1985).  Despite many studies in humans and in mice (Claes et al., 2018; 73 

Cole et al., 2016; Shaffer et al., 2016), however, we know very little about the genetic basis for 74 

variation in craniofacial shape. This is likely due to genetic complexity (Katz et al., 2019; 75 

Richtsmeier and Flaherty, 2013; Visscher, 2008; Wood et al., 2014; Wray et al., 2013). Like 76 

many aspects of morphological variation, craniofacial shape is extraordinarily polygenic. Genes 77 

with major mechanistic roles in facial development such as Fgf8 often contribute little to 78 

standing phenotypic variation(Green et al., 2017) while genetic influences without obvious 79 

connections to craniofacial development emerge as significant contributors(Kenney-Hunt et al., 80 

2008; Klingenberg and Leamy, 2001; Maga et al., 2015; Pallares et al., 2015, 2014). The effects 81 

of genetic variants on phenotype often depend on genetic background (Mackay and Moore, 82 

2014; Percival et al., 2017) and many mutations have variably penetrant effects even when 83 

background is controlled (Hallgrimsson et al, 2009; Rendel, 1967).  These issues likely arise 84 

because genetic influences act through multiple layers of interacting developmental processes to 85 

influence phenotypic traits, resulting in complex patterns of epistasis and variance 86 

heterogeneity(Hallgrimsson et al., 2018, 2014; Kawauchi et al., 2009; Wagner and Zhang, 2011). 87 

Solutions that go beyond studies of single gene effects are required to overcome these significant 88 

challenges in complex-trait genetics. Here, we implement an enhanced form of the more general 89 

candidate gene approach to evaluate the conjoint effects of multiple genes on a complex trait – 90 

craniofacial shape. 91 

 92 

There are two basic approaches to mapping genetic effects on to phenotypic variation.  A 93 

candidate gene approach measures genotypic values with known physiological and biochemical 94 

relationships to the phenotypes of interest (Cheverud and Routman, 1993). In contrast, a random 95 

marker or genome-wide approach seeks to associate any potential genetic variant with variation 96 

in the trait of interest. There are advantages and disadvantages to these two approaches. The 97 

candidate gene approach is blind to the unknown – phenotypic variation is often associated with 98 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.11.12.378513doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.378513
http://creativecommons.org/licenses/by-nc/4.0/


 

 4 

genes not expected to be important. On the other hand, a candidate gene approach allows direct 99 

measurement of genotypic values and produces results that are interpretable in terms of trait 100 

physiology or development. A genome-wide or random marker approach can produce 101 

unexpected insight by revealing novel gene-phenotype associations. However, this comes at a 102 

great cost in power (Visscher et al., 2017). For highly polygenic traits, this approach often 103 

produces a “tip of the iceberg” effect in which studies reveal a small and often incoherent subset 104 

of the genes that actually determine variation in the trait of interest (Broman and Sen, 2009, p. 105 

123-124).    106 

 107 

Several strategies have been developed that partially overcome these tradeoffs. One 108 

solution is the use of polygenic risk scores. Polygenic risk scores assess the overall genetic 109 

influence on a trait without regard to the genome-wide significance of individual SNP effects 110 

(Dudbridge, 2013; Wray et al., 2007). Approaches such as meta-analyses of genome-wide 111 

association studies (GWAS) or studies based on extreme phenotypes (Morozova et al., 2015) 112 

have expanded gene lists for a variety of complex traits. However, lengthy lists of genes or 113 

overall genomic risk for specific phenotypes do not necessarily constitute tractable genetic 114 

explanations for phenotypic variation. When 1000s of genes are required to explain heritable 115 

variation in stature, for instance, it is not clear what such lists tell you beyond the obvious fact 116 

that stature is heritable and polygenic (Yang et al., 2010; Wood et al., 2014). This tension 117 

between hypothesis-driven and hypothesis-free approaches and their attendant tradeoffs between 118 

statistical power and interpretability is, arguably, a major issue within complex trait genetics. To 119 

resolve this conceptual conflict, approaches are needed that integrate quantitative genetics with 120 

biological insights regarding the cellular and developmental processes through which genes 121 

influence phenotypic variation. 122 

 123 

Existing approaches to complex trait genetics also tend to treat phenotypic traits as 124 

singular and one-dimensional.  Even for morphological variation, most studies reduce shape 125 

variation to linear distances, principal components, regression scores or measures of size which 126 

are then mapped as individual traits (Xiong et al. 2019; Shaffer et al, 2016; Cole et al, 2016).  127 

This approach disregards the information content of multivariate phenotypic variation. While 128 

univariate traits only vary along one dimension, high dimensional traits such as craniofacial 129 
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shape can vary in direction as well as magnitude within a multi-dimensional shape space. To 130 

identify the distinctive axes of gene effects on a multivariate trait, one must model such multiple 131 

multivariate relationships directly. 132 

 133 

Building on Mitteroecker et al.’s (2016) multivariate genotype-phenotype (MGP) method, 134 

we extend the candidate-gene framework to evaluate the combined contributions of genes to 135 

variation in high-dimensional phenotypic traits such as craniofacial shape. Grouping genes by 136 

ontological information such as membership in pathways or other relevant biological hypotheses, 137 

our process-centered, multivariate approach brings traditional GWAS together with a simplified 138 

model of the hierarchical genotype-phenotype (GP) map. GP maps describe the relationship 139 

between genetic and phenotypic measurements(Lewontin, 1974). Understanding the genetic 140 

determinants of craniofacial variation, as with most complex traits, represents a many-to-many 141 

GP map problem (Fig 1). Both phenotypic and genotypic measurements have complex within-set 142 

covariance structures. On the genetic side, the covariance structure is represented by 143 

pathway/biochemical interactions, as well as chromosomal structure like linkage, chromatin, and 144 

3D chromosomal organization. For shape-related phenotypes, the covariance matrix is structured 145 

by the chosen set of landmarks and their resulting coordinates. The functional relationship from 146 

genotype to phenotype is then described by a between-set covariance (Klingenberg and Leamy, 147 

2001; Mitteroecker et al., 2016). To dissect these relationships, we use a regularized partial least 148 

squares (PLS) (Lorenzo et al., 2019) approach to estimate a low-dimensional mapping from the 149 

alleles in our sample to variation in adult mouse craniofacial shape. While PLS is well suited for 150 

analysis of covariation between two sets of measurements, regularization is essential for 151 

mitigating overfitting when there are many alleles simultaneously modelled. We focus on how 152 

allelic variation in processes relevant to craniofacial development maps to craniofacial shape 153 

variation.  We ask the following five questions: 154 

 155 

1) How much shape variation is communally accounted for by genes contributing to a 156 

process, e.g., chondrocyte differentiation?  157 

2) How similar are the effects of different processes on shape? For instance, do cell 158 

proliferation genes affect face shape in a similar way to genes in the bone morphogenic 159 

protein pathway? 160 
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3) What is the overarching structure of process effects? Do process effects align with major 161 

axes of variation such as allometry or other principal directions in morphospace? 162 

4) How similar are mutant model effects and process effects? For example, do chondrocyte 163 

mutant effects align with the effects of natural variants in chondrocyte differentiation 164 

genes? 165 

5) Can one use the similarity of a mutational effect to MGP process effects predict 166 

unobserved phenotypes associated with that mutation?  167 

 168 

Together, these questions demonstrate the ability of the MGP approach to add meaningful 169 

understanding of the complex relationships between genotype and phenotype by quantifying 170 

higher level regularities between complex phenotypic and genomic data. We also demonstrate its 171 

potential as a resource for the study of mutational effects on complex traits such as craniofacial 172 

shape. 173 

 174 

 175 

 176 

  177 
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Results 178 

 179 

Process Multivariate Genotype-Phenotype (MGP) Mapping 180 

 181 

We demonstrate regularized-PLS MGP mapping with three examples. The first estimates the 182 

primary axis of skull shape covariation with genes involved in chondrocyte differentiation (Fig 183 

2). Differentiation of chondrocytes is one of several key developmental processes involved in 184 

endochondral ossification. Endochondral bones form the majority of the cranial base through a 185 

cartilage model of bone formation (Percival and Richtsmeier, 2013). There are 38 genes 186 

annotated to chondrocyte differentiation in the Ensembl database (Yates et al., 2020). In the 187 

figure, genetic effects are shown as zero-centered bars that span the range of estimated allele 188 

effects across the 8 DO founders; individual founder allele effects—8 per marker—are color-189 

coded within those bars (Fig 2A).  Among chondrocyte differentiation genes, Nov, Mapk14, and 190 

Bmpr1b (Alk6) are most implicated in the major axis of pathway covariation with craniofacial 191 

shape. The phenotypic effects at each landmark—magnified 4x— primarily relate to antero-192 

posterior positioning of the zygomatic arches and dorso-ventral jugal position (Fig 2B, 2C). The 193 

chondrocyte differentiation GP map explains 2.15% of the total variance in craniofacial shape. 194 

Compared to 1000 randomly generated marker sets of the same size (38), chondrocyte 195 

differentiation explains substantially more variation in phenotype than random markers (Supp fig 196 

1A). 197 

 198 

Figure 2B and 2C also compare the direction of the chondrocyte differentiation MGP axis 199 

to the axis of shape variation of a relevant mutant phenotype. We chose homozygous Bmpr1b 200 

mutants for this comparison for two reasons. The first is because Bmpr1b heterodimerization 201 

with other bone morphogenic protein pathway receptors is essential for chondrocyte 202 

differentiation and proliferation (Liu et al., 2005; Yoon et al., 2005). The second reason we chose 203 

Bmpr1b mutant comparisons is because the marker selected for Bmp1rb in the genomic analysis 204 

is contains one of the strongest allelic effects associated with the morphological effect. The 205 

overall phenotypic directions of Bmpr1b mutant variation and chondrocyte differentiation 206 

variation are moderately correlated at r = 0.312, but the direction at landmarks with large effects 207 

in mutant and MGP are clearly coincident. Over the landmarks we measured, the chondrocyte 208 
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differentiation effect is less global than the Bmpr1b effect, likely due to the difference in severity 209 

of the mutant phenotype. 210 

 211 

The similarity of the chondrocyte differentiation effect with the Bmpr1b mutant and the 212 

high loading Bmpr1b allele in the DO genome suggests that Bmpr1b mutants may produce 213 

chondrocyte differentiation defects in the developing neurocranium. We quantified cell size and 214 

distribution in the intersphenoid synchondroses (ISS) of several mutant and control Bmpr1b 215 

mice. Homozygotes show overall larger cell sizes as well as a differing distribution of cell sizes 216 

throughout the width of the ISS (Fig 3A-C; χ2 = 21.23, df = 3, p < .0001). The presence of larger 217 

cell sizes in the homozygote Bmpr1b mutants suggests that the synchondroses possess more 218 

hypertrophic chondrocytes. Additionally, Bmpr1b homozygous mutant mice show premature 219 

fusion of the coronal suture (Fig 3D).  220 

 221 

The second example quantifies cranial shape covariation with the 81 genes annotated to 222 

“determination of left/right symmetry”. The phenotype associated with left/right symmetry 223 

alleles is predominately related to a larger neurocranium volume relative to the outgrowth of the 224 

face (Fig 4B, 4C). We also visualized the asymmetry in the phenotypic response, which shows 225 

subtle asymmetry, particularly in the position of the anterior zygomatic landmark (Fig 4D). 226 

Left/right symmetry loci explain 2.2% of the total variance in craniofacial shape, which exceeds 227 

the variance explained by 1000 randomly selected marker sets of the same size (Supp fig 1B). 228 

There are several high loading alleles that contribute to the left/right symmetry phenotype. In 229 

particular, an Fgf10 allele inherited from the Castaneus founder background was among the most 230 

important (Fig 4A). FGF10 is a key ligand in early development, directing proliferation as well 231 

as differentiation for many craniofacial components, including the palate, teeth, and bones 232 

(Hilliard et al., 2005; Prochazkova et al., 2018; Watson and Francavilla, 2018). We compared the 233 

estimated left/right symmetry MGP effect with the direction of an Fgf10 homozygous mutant 234 

because of the relative importance of the allelic effect. The vector correlation between the Fgf10 235 

mutant and the estimated left/right symmetry effect is 0.63. 236 

 237 

The high-loading Fgf10 allele for left/right symmetry along with the similar genomic and 238 

mutant phenotypes suggests that Fgf10 mutants could show directional asymmetry in the 239 
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cranium. To test this, we measured a sample of 8 Fgf10 adult mutant crania for object symmetry 240 

and detected significant directional asymmetry (Fig 4E; F = 4.91, df = 52, p < .0001).  241 

 242 

The final example estimates the shape covariation attributed to the 73 genes annotated to 243 

“palate development.” Formation and fusion of the palatal shelves are crucial for proper orofacial 244 

development and heavily influences overall facial shape (Greene and Pisano, 2010). Several 245 

genes contribute strongly to the palate development MGP effect including Ephb2, Gli3, and 246 

Lrp6. The estimated phenotype shows corresponding variation in palate length as well as strong 247 

effects in the majority of the cranial base landmarks (Fig 5B, 5C). Palate development MGP loci 248 

explain 2.4% of the total variance in cranial shape, which is greater than variance explained by 249 

1000 randomly permuted marker sets of the same size (Supp fig 1C). We compared the palate 250 

development phenotype to a heterozygous Ankrd11, neural-crest specific knockout mouse.  The 251 

Ankrd11 locus is associated with KBG syndrome in humans, which presents with generally 252 

delayed bone mineralization as well craniofacial characteristics including palate abnormalities 253 

(Low et al., 2016). While the vector correlation between the palate development MGP effect and 254 

the Ankrd11 mutant over the complete set of cranial landmarks is moderate at r = .284, the vector 255 

correlation for palate landmarks is substantially higher at r = .536. 256 

 257 

In each case above, we have shown how association of gene sets and phenotypic 258 

variation can produce highly informative results that can guide future hypothesis testing. For a 259 

given biological process, we identified genes that load strongly on the primary axis of MGP 260 

covariation for which mutant samples were available to us, as well. Future investigations could 261 

also use this information about genes with high loadings to generate new mutants for analysis. 262 

For each example, we focus only on the first PLS axis, so other alleles for other genes may 263 

contribute to novel phenotypic directions in lower PLS axes. In the next sections we will 264 

examine how MGP phenotypes relate to each other, as well as the phenotypic directions of many 265 

mutant mouse models. 266 

 267 

 268 

 269 

 270 
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Pairwise comparison of craniofacial development processes 271 

 272 

We chose 15 processes integral to craniofacial development and compared the pairwise 273 

similarity of effect on craniofacial shape using a heatmap based on clustering of the correlation 274 

matrix (R core team, 2017). Processes with similar effects on craniofacial shape will be highly 275 

correlated, while processes that affect distinct aspects of craniofacial variation will be 276 

uncorrelated to each other. The clustering algorithm resulted in two main blocks of strongly 277 

correlated effects (Fig 6A). The largest block of highly correlated phenotypic effects includes 278 

neural crest cell migration, epithelial to mesenchymal transition, forebrain development, as well 279 

as some of the most general developmental processes like cell proliferation, bone development, 280 

apoptosis, A/P pattern specification, and FGFR signaling. In addition, there is a general BMP 281 

block, with Bmp signaling, dorsoventral pattern formation, endochondral ossification, and 282 

positive regulation of skeletal muscle tissue growth. Interestingly, phenotypic variation 283 

associated with cranial suture morphogenesis, neural tube patterning, and intramembranous 284 

ossification is largely uncorrelated with the other craniofacial developmental processes included 285 

here.  286 

 287 

To assess the stability of the clustering result, we estimated the vector correlation 288 

between the cluster distances—also known as the cophenetic distance— and the original 289 

correlation matrix. A high vector correlation suggests reliable clustering, whereas a low 290 

correlation suggests a random clustering result. The correlation between the cophenetic distance 291 

matrix and the correlation matrix is 0.648 (t = 8.64, df = 103, p = 7.6-14), suggesting a moderate, 292 

though significant structure in the similarity of effects amongst this set of MGP processes.  293 

 294 

Comparison of processes to principal component directions 295 

 296 

Almost a third of the 15 pairwise process comparisons showed a vector correlation > 0.5, 297 

suggesting that many processes may feed into a limited set of directions in morphospace. To 298 

assess the extent to which different processes affect the same aspects of facial shape we 299 

randomly chose 1,000 process annotations, fit individual regularized PLS models to each set of 300 

markers for a given annotation term, and then compared the direction of phenotypic effects for 301 
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each model to principal components 1-4 of the DO shape data (Fig 6B). Doing so with principal 302 

components allows us to highlight similarities in directions of process effects. Process effects 303 

range from completely uncorrelated to PC1 to highly correlated (0.0 - 0.8). However, the central 304 

tendency of randomly selected process effects is one of moderate-to-high correlation with PC1. 305 

Moderate correlations (0.55 - 0.6) with PC1 are more common than uncorrelated effects. 306 

Supplemental table 1 contains the 10 most highly correlated processes with PC1 as well as the 307 

corresponding correlations to PC 2-4. The most highly correlated process to PC1 is “zinc ion 308 

binding”, which is 0.86 correlated to the PC1 direction. The remaining 9 processes most highly 309 

correlated to PC1 includes “sensory perception of sound”, “Calcium ion transport”, “Protein 310 

homooligomerization”, “Dendrite morphogenesis”, “Neuropeptide signaling pathway”, “Focal 311 

adhesion”, “Chromosome segregation”, “Sarcomere organization”, and “Integral component of 312 

endoplasmic reticulum membrane”. 313 

 314 

Process correlations with PCs 2-4 are generally less strong. The maximum correlated 315 

process with PCs 2-4 was “V(D)J recombination”, “n-terminal protein myristoylation”, and 316 

“branching morphogenesis of an epithelial tube” with vector correlations of 0.72, 0.89, and 0.56, 317 

respectively. Processes with high vector correlations for a given PC tend to be uncorrelated with 318 

other PCs (Supp table 1), although some processes load moderately high across several PCs. For 319 

example, “negative regulation of I-kappaB kinase/NF-kappaB signaling” shows vector 320 

correlations between 0.25 - 0.54 for the first four PCs (Supp table 2).   321 

 322 

Process effects in the mutant morphospace 323 

 324 

To assess the extent to which craniofacial shape variation associated with developmental 325 

processes aligns with variation from mutants of major effect, we projected 7 process effects onto 326 

the first two principal components (PCs) of a dataset containing the DO sample, and samples 327 

from 30 mutant genotypes (Fig 7A). Each black label represents the mean shape score of the 328 

listed mutant genotype. The shaded ellipse with an orange border displays the 95% confidence 329 

ellipse of PCs 1 and 2 of DO cranial shape variation. The DO mean shape is contrasted by the 330 

mutant variation along PC1. The first PC describes vault size relative to the length of the face. 331 

The phenotype shown along the x-axis of figure 7A depicts the maximum positive PC1 shape, 332 
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while the heatmap drawn on the crania represents the local deformations towards the minimum 333 

PC1 shape. The positive direction of PC2 describes coordinated variation that includes a 334 

relatively wider vault, narrower zygomatic, and shorter premaxilla (Fig 7A, y-axis margin).  335 

 336 

Process effects—highlighted with orange vectors originating at the DO mean shape — 337 

are necessarily of smaller magnitude than the total variation in the DO sample. Therefore, to 338 

better compare the direction of process effects the vector magnitudes were magnified 4x. Several 339 

process effects align in distinct directions of mutant effects, such as bmp signaling pathway and 340 

endochondral ossification in the direction of Shh, Nipbl, and Ift88 mutants. Neurotransmitter 341 

transport and Wnt signaling pathway is similar in direction to Mceph and B9d1 mutant effects. 342 

Execution phase of apoptosis and intracellular transport both show similar effects to a cluster of 343 

Bmp mutants.  344 

 345 

Finally, we show the similarity of 30 process MGP effects to 30 mouse mutant models in 346 

figure 7B. The heatmap shows the correlation in direction with yellow/green denoting higher 347 

correlation and teal/blue denoting lower correlation. The bottom right of the heatmap 348 

(highlighted by a white border) shows a block of mutants for which there are strong process 349 

correlations. These are among the most extreme phenotypes along PC1 (Fig 5A) and include 350 

mutants for Nosip, Bmp2, Grm1, Bmp2; Bmp7 transheterozygote, Bmp7, Ghrhr, Fgf10, and 351 

Papps2. The processes most strongly correlated to these mutants are histone methylation, 352 

dendrite morphogenesis, chromosome segmentation, vasodilation, and fibroblast growth factor 353 

binding.  354 

 355 

There are a set of mutant phenotypes that have generally low correlations to the set of 356 

processes chosen. These mutants include Fgf3, Shh, Nipbl, Disp, Pten, Hhat, and Alk2; Alk3 357 

transheterozygote. Interestingly, this group of mutants vary more along PC2 than PC1 (Fig 7A). 358 

Notably, regulation of intracellular protein transport and regulation of cell death are strongly 359 

uncorrelated with the majority of mutant directions.  360 

 361 

 362 

 363 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.11.12.378513doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.378513
http://creativecommons.org/licenses/by-nc/4.0/


 

 13 

Real-time process GP mapping 364 

 365 

Finally, we provide an online tool to visualize process effects and make comparisons to mutant 366 

effects in real time. This application is found at genopheno.ucalgary.ca/MGP and can be used 367 

for analyses similar to those described in this paper. When the user selects gene ontology terms, 368 

the program searches for genotype markers adjacent to each gene listed and uses the selected 369 

markers to fit a regularized PLS model. The result is an estimate of the many-to-many 370 

relationship between the selected markers and cranial shape variation. The visual outputs include 371 

barplots depicting the relative allele effect sizes for each gene in the process and a 3D plot of the 372 

corresponding axis of shape variation. Users can compare the effects of different processes and 373 

also compare process effects to mutant effects from a provided database of 30 mutant genotypes. 374 

 375 

To illustrate how to use this application, we have provided the graphical user interface 376 

used to select the parameters (Fig 8). As an example, in the “Process text” entry field, supply a 377 

starting term; we chose “brain.” The GO database is then filtered, returning a user-selectable 378 

subset of biological process ontology annotation terms in the “Process filter” field. We chose 379 

“forebrain morphogenesis,” which has 11 associated genes. We chose to magnify the process 380 

phenotype vectors 4x and compare the effect to a heterozygous Ift88 mutant. Ift88 is a core 381 

component of the primary cilia, which are responsible for promoting developmental signals 382 

involved in many facets of facial development (Tian et al., 2017). Further, the plots that are 383 

generated are interactive. For example, marker loadings can be highlighted and subset by genes 384 

of interest (Plotly, 2015). There is further information about using this online tool in the “About 385 

this app” tab.  386 

 387 

Discussion and Conclusion 388 

 389 

A key goal in genomics is to create tractable genetic explanations for phenotypic variation. In 390 

this study, we used a regularized PLS approach to model the joint effects of genomic markers on 391 

multivariate craniofacial shape. This innovative approach allows us to address the joint 392 

contributions of multiple genes that share ontological characteristic such as pathway membership 393 

on craniofacial shape as a multivariate trait. Specifically, we chose markers adjacent to genes 394 
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annotated under a developmental process of interest. We showed three process MGP analyses in 395 

depth, each with distinct phenotypic effects. The chondrocyte differentiation MGP effect mainly 396 

showed effects on the shape of the zygomatic and jugal bones with Ccn3/Nov as the most highly 397 

loaded corresponding marker effect. The left/right symmetry MGP phenotype was primarily a 398 

smaller cranial vault volume with a longer facial outgrowth, broadly similar to the primary axis 399 

of shape change during mouse growth and development (Gonzalez et al., 2013). The most highly 400 

loaded markers for the left/right symmetry effect were related to Fgf10 and Rpgrip1l. We then 401 

compared process MGP phenotypic effects to each other, to mutant phenotypes, and the first four 402 

principal components of the diversity outbred sample. Each of these comparisons highlighted the 403 

integrated structure of phenotypic variation in mouse craniofacial shape. We found that while 404 

there are processes with distinct and localized effects, genetic effects generally converge on a 405 

limited set of directions in phenotype space. Further, these process effects often correspond with 406 

the directions of major mutations known to affect these same processes.  407 

 408 

Many recent studies have addressed the genetics of craniofacial shape in humans and 409 

mice (reviewed in: Roosenboom et al., 2016; Weinberg et al., 2018). While these studies are 410 

yielding a growing list of genes, suggesting that facial shape is highly polygenic, they have left 411 

the vast majority of heritable variation unexplained. Existing studies have either used univariate 412 

measures of facial shape such as linear measurements or univariate summaries of multivariate 413 

shape (eg. Procrustes distances or PC scores). In addition, most genomic studies of craniofacial 414 

shape quantify the effects of each genomic marker independently, with notable exceptions 415 

focusing on epistatic effects (eg. Varón-González et al., 2019). Our approach shares common 416 

features with some predecessor GP mapping strategies in which candidate genes/SNPs are 417 

selected a priori because of common involvement in a pathway (or other mechanistic cluster) 418 

(Claes et al., 2014; Liu et al., 2012; Wang et al., 2010, 2007). In particular, Wang and colleagues 419 

selected SNPs based on proximity to genes of interest and effect size to jointly model the 420 

pathway-level effects on Parkinson disease data. Their approach is similar to gene-set 421 

enrichment analysis, weighing over-representation of statistical effects related to case-control 422 

group membership. In contrast, our approach focuses on estimating a multivariate continuous set 423 

of craniofacial responses. Importantly, our approach jointly identifies genotype-phenotype axes 424 

that maximally covary. This differs significantly from approaches that determine phenotypes for 425 
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analysis a priori or based on a pre-determined method of data reduction such as PCA. Our 426 

approach also differs from methods that associate single locus effects with a multivariate 427 

phenotype (Claes et al., 2018). 428 

 429 

A key finding of our application of the MGP method to craniofacial shape is that 430 

multivariate phenotypic variation aligns nonrandomly to genetic markers associated with 431 

pathways or developmental processes. For most process MGP maps, multiple markers for gene 432 

sets with known developmental relationships covary in their relationship with craniofacial shapes 433 

(Supp fig 2). These covarying effects represent joint genetic effects of multiple contributors to 434 

phenotypic variance. While these patterns of multivariate genotype-phenotype covariation may 435 

include genetic variants that do not actually affect the phenotype, many others will be 436 

contributors that we lack statistical power to detect under a typical univariate approach (Pitchers 437 

et al., 2019; Varón-González et al., 2019). Here, the overall pattern of genotype-phenotype 438 

covariance is the level of genetic explanation for phenotypic variation. When such patterns 439 

involve genes that are ontologically linked in meaningful ways, they provide a level of insight 440 

into the developmental-genetics of phenotypic variation that is beyond reach for most genome-441 

wide association studies for complex traits.  442 

 443 

Another valuable asset that arises from the MGP approach is the ability to generate 444 

testable hypotheses or predictions from multivariate genotype-phenotype observations. The 445 

chondrocyte differentiation analysis suggested differentiation defects in the Bmpr1b mutant. 446 

Subsequent histological analysis of Bmpr1b mutants showed premature suture fusion as well as 447 

atypical distribution of hypertrophic chondrocytes in the intersphenoid synchondrosis. Similarly, 448 

the MGP analysis of left/right symmetry genes suggested that Fgf10 alleles can contribute to 449 

directional asymmetry. A follow up morphometric analysis of symmetry showed that Fgf10 450 

mutants do display significant craniofacial asymmetry (Fig 4E). MGP can also be used to test 451 

existing hypotheses about genotype-phenotype relationships. The relative importance of the 452 

Ankrd11 locus in the palate development analysis and the similarity between the genomic and 453 

mutant phenotype further validates the role of Ankrd11 in palate development. These examples 454 

illustrate the additional insights that an MGP analysis of a mutational effect can provide. Given 455 
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that such comparisons can be run quickly, this creates a tool with tremendous potential for 456 

hypothesis generation and initial screening for hypotheses about process-level effects. 457 

  458 

In aggregate, our results show substantial covariance in the directions of phenotypic 459 

effects among different developmental processes (Figure 6A). The largest of these captures 460 

processes general to development such as cell proliferation or pattern specification. The second 461 

captures processes more specific to craniofacial development such as cranial suture/ossification 462 

and neural tube patterning. While processes are structured in their effects, our data suggest that 463 

many processes likely “add up” to produce variation. Thus, of 1000 randomly selected processes, 464 

25.7% had a PC1 correlation higher than 0.6, supporting not only a highly polygenic model of 465 

facial variation, but one in which hundreds or even thousands of developmental processes that 466 

contribute to craniofacial variation. Importantly, this result shows how many processes and 467 

pathways converge to produce central axes of variation in craniofacial shape. 468 

 469 

The explicit modeling of multivariate relationships between phenotypes and genotypes 470 

also allows a focus on pleiotropy. Developmental studies in mice demonstrate widespread 471 

craniofacial morphological effects from localized developmental perturbations (Martínez-472 

Abadías et al., 2012; Stelzer et al., 2007; Young et al., 2010) Perturbations to specific processes 473 

in development generally produce effects on multiple aspects of phenotype due to knock-on 474 

effects at later stages or to interactions at the level of tissues or anatomical structures 475 

(Hallgrimsson et al, 2007). A change in cartilage growth in basicranial synchondroses produces a 476 

global change in craniofacial form, for example (Parsons et al, 2015). Remarkably, enhancers 477 

with highly specific temporospatial effects on gene expression also produce global rather than 478 

localized changes in craniofacial shape (Attanasio et al., 2013). Given that pleiotropy is likely 479 

ubiquitous (Hill and Zhang, 2012; Wagner et al, 2008), explicitly multivariate approaches to 480 

understanding genotype-phenotype maps are clearly needed.  481 

 482 

This convergence of genetic effects on axes of covariation is also reflected in our finding 483 

that mutations to major developmental genes produce effects that tend to align with the 484 

directions of effect associated with the corresponding broader pathways or ontological groups. 485 

Our analysis focused on two specific processes— FGF signaling and chondrocyte differentiation. 486 
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There was a strong correlation between the Fgf10 mutant and the FGF signaling pathway effect, 487 

while the Bmpr1b mutant effect was moderately correlated to the chondrocyte differentiation 488 

direction. For both process MGP maps, other mouse models in the same pathway showed 489 

significant but weaker correlations in direction of effect. These results suggest that perturbations 490 

that are developmentally similar tend to move the phenotype in the same direction in multivariate 491 

space (Figure 7B). Even so, both mutational and higher-level pathway/process effects tend to 492 

converge on a few directions of variation suggesting that multiple pathways and processes lead 493 

to common developmental outcomes. This conclusion is further supported by our finding that the 494 

genetic axes of covariance for individual processes/pathways can align with multiple directions 495 

of mutational effect. For example, the process MGP phenotypes highlighted in the white 496 

rectangle in figure 7B are all highly correlated with a set of BMP and growth hormone-related 497 

mutants.  498 

 499 

In some cases, mutants and MGP map directions do not correspond. There are several 500 

ways this can occur. The first is that the DO population may simply lack alleles as deleterious as 501 

found in mutant lines. A small effect allele in the DO may not align with the direction of a 502 

mutant almost completely lacking expression of the target gene. Further, there are many 503 

examples where a mutation may have different and sometimes even opposite effects depending 504 

on genetic background (Mackay, 2014; Percival et al., 2017). Mutations of major effect may also 505 

differ in direction from variants in related genes that have smaller phenotypic effects due to 506 

underlying nonlinearities in development (Green et al., 2017). Investigating how variants in 507 

genes that are functionally related vary in phenotypic effect is an important avenue of inquiry 508 

that is revealed by analyses such as those we have performed here. Additionally, relationships 509 

between process and mutant effects may stimulate hypotheses about previously unknown or 510 

unvalidated interactions between loci or pathways. 511 

 512 

A second potential reason that MGP effects may not correspond to major mutation effects 513 

is the use of only one PLS axis for each process analysis. With only one axis, we select the 514 

phenotypic direction with greatest covariance with genetic marker variation. If there are multiple 515 

large marker effects that do not covary, the weaker marker effect will be masked in the analysis. 516 

For instance, there may be a PLS axis for “chondrocyte differentiation” that corresponds more 517 
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strongly with the Bmp2 mutant phenotype (Supp fig 3). This phenomenon may be particularly 518 

prominent for pathways with substantially different mutant effects, like FGF (Fig 7A).  519 

 520 

Finally, our analysis shares the limitation of all approaches based on gene annotation 521 

data. Incomplete annotation may contribute to lead to faulty or incomplete groupings of genes 522 

when defining pathway/process hypotheses. Gene annotation is a huge undertaking, and there is 523 

substantial variation in the completeness of different process annotations. Many process 524 

annotations are manually assigned using inference from the literature, while most are a 525 

combination of automated efforts based on transcript similarity and human curation (Mudge and 526 

Harrow, 2015). Related to this, we assign gene annotation data to genetic markers based on the 527 

closest protein-coding region. While this is a reasonable proxy, there will be regulatory sites that 528 

affect genes other than the one immediately adjacent and this is a potential source of uncertainty 529 

in our analysis.  530 

  531 

The MGP method represents a deliberate decision to trade higher level insight from 532 

genotype-phenotype association data at the expense of statistical certainty about the significance 533 

of individual gene effects. The current implementation of the method also does not allow for 534 

quantification of individual epistatic effects. Epistasis occurs when the genotypic trait value for a 535 

locus is altered by the genotype of a different locus. Such effects generate nonlinear genotype 536 

phenotype maps, but when considered genome-wide, contribute mainly to additive variance 537 

(Cheverud and Routman, 1995; Hill, 2017). The MGP method is additive in that it models only 538 

the linear effects of genes. However, since it captures the covariances among genotypic effects, 539 

much of this “additive” variation is likely epistatic in origin.   540 

 541 

Complex traits present a massive challenge in genomics because so many are turning out 542 

to be enormously polygenic. To generate tractable explanations of the genetic basis for such 543 

traits, methods are needed that extract higher-level representation of genotype-phenotype 544 

relationships than those that emerge from single-locus focused approaches. Here, we present an 545 

hypothesis-driven framework for deriving such higher-level genetic explanations for phenotypic 546 

variation. Our approach leverages the biological tendency for developmental processes to 547 

produce covariation among aspects of a multivariate phenotypic trait (Hallgrimsson et al., 2009; 548 
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Wagner et al., 2007). The underlying assumption in this approach is that there are latent variables 549 

within high-dimensional genotype-phenotype data that correspond to developmental architecture.   550 

We believe that analyses aimed at defining and characterizing such latent variables represent a 551 

level of genetic explanation for phenotypic variation that is complementary to genetic analyses 552 

designed to establish the significance of single locus effects. Pursuing such questions will help 553 

bridge the gap between emerging mechanistic accounts of morphogenesis and our growing 554 

understanding of the genetics of morphological variation.  555 

 556 

Methods 557 

 558 

Mice 559 

 560 

We use a sample (n = 1,145) of Diversity Outbred mice (DO; Jackson Laboratory, Bar Harbor, 561 

ME) to map GP relationships for craniofacial shape (Churchill et al., 2012, 2004). The DO is a 562 

multiparental outcross population derived from the eight founding lines of the Collaborative 563 

Cross (CC). Each animal’s genome is a unique mosaic of the genetic diversity found in the CC—564 

more than 45 million segregating SNPs (Consortium, 2012). Random outcrossing over many DO 565 

generations maintains this diversity and, with recombination, increases mapping resolution.  566 

 567 

Our DO sample was sourced from three separate laboratories and seven DO generations. 568 

386 are from the Jackson Laboratory (JAX), 287 from the University of North Carolina (UNC), 569 

and 472 come from the Scripps Research Institute. Supplemental figure 4 shows the distribution 570 

of the sample by lab source and generation of breeding. Imaging of mice at the University of 571 

Calgary was performed under IACUC protocol AC13-0268.  Ankrd11 and Bmpr1b mutant mice 572 

were bred at the University of Alberta by the Graf lab under Animal Use and Care Committee 573 

protocol AUP1149, in accordance with guidelines of the Canadian Council of Animal Care.  574 

 575 

Genotyping  576 

 577 

Genotyping was performed by Neogen (Lincoln, NE). Ear clippings were used to extract DNA 578 

for all samples. Mice from generations 9, 10, and 15 were genotyped using the MegaMUGA 579 
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genotyping array (77,808 markers); mice from generations 19, 21, 23, and 27 were genotyped 580 

using the larger GigaMUGA array (143,259 markers) (Morgan et al., 2016). To pool the 581 

genotype data from these two SNP arrays with differing numbers of markers, we imputed 582 

markers between the two genotyping arrays using the “calc_genoprob” function in the qtl2 583 

package (Broman et al., 2018). The function uses a hidden Markov model to estimate genotype 584 

probabilities and missing genotype data (Gatti et al., 2014). After imputation, the merged genetic 585 

dataset consists of 123,309 SNPs which vary among CC founders. Each animal’s genetic record 586 

is a 123,309*8 matrix of estimated diplotype contributions of each CC founder to each marker.  587 

 588 

Scanning and landmarking 589 

 590 

We used micro-computed tomography to acquire 3D scans of the full heads of the mice. 591 

Scanning was done at the University of Calgary at .035 mm voxel resolution (Scanco vivaCT40). 592 

One of us (WL) then acquired 54 3D landmarks (Fig 9) manually on each volume using Analyze 593 

3D. A discussion of the error associated with manual landmarking can be found in Percival et al 594 

(Percival et al., 2019). 595 

 596 

Landmark registration 597 

 598 

We symmetrized landmarks along the midline of the skull using Klingenberg et al.’s method for 599 

object symmetry which configures landmark pairs into a common orientation with reflection and 600 

subsequently removes variation associated with translation, scale, and rotation, using 601 

Generalized Procrustes Analysis (Adams and Otárola‐Castillo, 2013; Klingenberg et al., 2002; 602 

Mardia, 2000; Schlager, 2017). To focus on shared, within-generation patterns in our 603 

multigenerational DO sample, we regressed symmetric shape on DO generation, and used the 604 

residual shapes with the grand mean added as the observations for analysis.  605 

 606 

Genetic relatedness 607 

 608 

Adjustment of phenotypes for the influence of genetic relatedness is a common approach in 609 

genomic studies to prevent spurious associations. However, it is not necessary in all cases, such 610 
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as situations with low genetic relatedness and little variation in relatedness. We evaluated 611 

whether accounting for genetic relatedness was important for our sample. To do so, we estimated 612 

a kinship matrix based on DO genotype correlations (Cheng et al., 2013; Broman et al., 2019). 613 

The kinship values in our sample have a mean of 0 and a standard deviation of .047 (Supp fig 5). 614 

As a result of these findings, we performed all subsequent analyses on the within-generation 615 

symmetric shape data, without an adjustment for relatedness.  616 

 617 

Regularized PLS analysis 618 

 619 

Multivariate genotype-phenotype methods for explicitly modeling multivariate phenotypes and 620 

for overcoming the limitations of simple linear regression are increasingly common in mapping 621 

studies. Claes et al. (Claes et al., 2018) used canonical correlation analysis to quantify individual 622 

SNP effects for a multivariate measurement of facial shape. Each test returns a vector of the 623 

linear combination of phenotypic effects that maximally correlates to the alleles at a given locus. 624 

Mitteroecker et al. (Mitteroecker et al., 2016) developed a multivariate strategy around a singular 625 

value decomposition (SVD) of GP covariation. Partial least squares (PLS) describes a family of 626 

approaches that use SVD to decompose cross covariance matrices (Lee et al., 2011; Mitteroecker 627 

and Gunz, 2009; Singh et al., 2016). PLS is increasingly used with large genetic datasets in order 628 

to model how genomic effects extend to multiple traits (BJØRNSTAD et al., 2004; Mehmood et 629 

al., 2011; Tyler et al., 2017). However, its implementation for MGP mapping is, thus far, much 630 

more limited. 631 

 632 

SVD decomposes the covariance matrix into three matrices: 633 

 634 

𝒀 = 𝑼𝑫𝑽! 635 

 636 

Where Y is the mean-centered covariance matrix, U denotes the left singular vectors, a set of 637 

vectors of unit length describing the relative weighting of each variable on each axis, and D 638 

denotes the variance along each axis. V denotes the set of right singular vectors. For a full 639 

(square, symmetric) covariance matrix, U and V are identical, and the decomposition is 640 

equivalent to PCA. For a non-symmetric matrix of covariances, i.e., one describing covariance 641 
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between two distinct blocks of traits, each successive column of U and V provide a pair of 642 

singular vectors describing the best least squares approximation of covariance between the two 643 

blocks, in order of greatest covariance explained to least.  644 

 645 

PLS is most often used to find low-rank linear combinations that maximize covariance 646 

between two sets of features. Here, we use a data-driven regularized PLS model implemented in 647 

the mddsPLS package to find paired axes that maximize covariance between allelic and shape 648 

variation (Lorenzo et al., 2019). The model uses a lasso penalty to minimize the coefficients 649 

(loadings) towards zero to prevent overfitting (James et al., 2013). Overfitting can occur in when 650 

many genotypic markers are included in the model, particularly when markers are colinear. The 651 

genotype block is composed of the full set of DO founder probabilities for each selected marker. 652 

Thus, an analysis of 20 markers would estimate 160 genotype coefficients. The phenotype block 653 

consists of the full set of 54 3-dimensional landmarks (162 phenotype coefficients). In all 654 

biological process analyses undertaken herein, we used a regularization parameter of 0.06 and 655 

report only the first paired axes of the PLS model, i.e., the genotype and phenotype axes which 656 

explain the most covariance. 657 

 658 

Biological process gene sets 659 

 660 

For process-specific MGP analyses, we used the mouse genome informatics database (Bult et al., 661 

2018) to identify genes annotated to a given process. Each annotation term has an associated GO 662 

ID. For example, “chondrocyte differentiation” has GO ID GO:000206 (Fig 10, box 1). We 663 

cross-reference the GO ID with the Ensemble genome database (GRCm38.p6) to find the name, 664 

chromosome, and base pair start/end position for each gene (Fig 10, box 2) annotated to the 665 

process. For genes with multiple splice variants, we select the full transcript start/end positions. 666 

For each gene, we compare marker base pair positions and select the closest upstream and 667 

downstream markers to the center of each gene. The 8-state genotype probability is then 668 

calculated as the average founder allele probabilities between the two selected markers. (Fig 10, 669 

box 3). After marker selection, we fit the regularized PLS model using the founder allele 670 

probabilities (8 variables/marker) and full landmark data set (Fig 10, box 4).  671 

 672 
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We generate graphical displays of process results using the R packages ggplot2 673 

(Wickham, 2016) and Morpho (Schlager, 2017). An example script to reproduce the analyses is 674 

provided at github.com/j0vid. 675 

 676 

Statistical results and comparisons 677 

 678 

We estimate the magnitude and direction of MGP process effects using R2 and vector 679 

correlations, respectively. R2 is calculated as the ratio of trace of the predicted model covariance 680 

to the trace of the phenotypic covariance matrix. We contextualize the MGP process R2 by 681 

comparing it to the R2 value of 1000 randomly drawn marker sets of the same size. For instance, 682 

a process annotated with 40 genes would be compared to 1000 40-gene MGP analyses with 683 

random markers selected in each iteration. Random marker selection for permutation is 684 

constrained to follow similar patterns of linkage disequilibrium to the observed marker set of 685 

interest. The null expectation in this scenario is that gene annotation does not provide better 686 

information about coordinated marker effects than a randomly selected set of markers. 687 

 688 

Vector correlations between process MGP effects are calculated by taking the Pearson 689 

product-moment correlation of the two sets of process PLS1 phenotypic loadings. Vector 690 

correlations between process effects and mutant effects are calculated by taking the correlation 691 

between the process PLS1 phenotypic loadings and mutant MANOVA coefficients. The 692 

MANOVA compares the mutant group phenotype with the DO sample specified as the reference 693 

group.  694 

 695 

Chondrocyte morphometrics 696 
  697 
Chondrocyte morphometrics were performed using a novel technique developed by the Marcucio 698 

laboratory. Images of the intersphenoid synchondrosis (ISS) were stained with H&E, SafO, or 699 

picrosirius red were captured and imported into ImageJ (2-6 sections from at least 4 700 

mice/genotype/synchondrosis). Landmarks were placed in a defined order (left, right, top, 701 

bottom) of visible chondrocytes in the synchondrosis using the ImageJ’s multi-tool. Data points 702 

were then exported as XY coordinates and imported into Microsoft Excel for calculation of 703 

major and minor axes relative to overall width of synchondrosis. Area of individual cells was 704 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.11.12.378513doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.378513
http://creativecommons.org/licenses/by-nc/4.0/


 

 24 

determined from height and width values based on assumption that each cell is roughly 705 

ellipsoidal. An example of major and minor axis measurements and ellipsoidal area 706 

measurements on a slide is provided in supplemental figure 6.  707 

 708 

 We compared differences in the distribution of cell sizes along normalized synchondroses 709 

between Bmpr1b mutants and controls with a mixed effects model approach. We used ellipsoidal 710 

area of cell size (in microns) as our dependent variable. For fixed effects, we modelled the 711 

normalized synchondrosis position (1st and 2nd order), where a value of 0 represents the relative 712 

midline of the synchondrosis and values of -1 and 1 represent the most distant cells in that 713 

synchondrosis. We also modelled genotype as a fixed effect as well as a genotype by cell 714 

position interaction (both 1st and 2nd order interactions). For each individual within each 715 

genotype, we measured multiple histological sections. These repeated and nested measurements 716 

of cell size in multiple sections for each individual were modelled as random effects. To test for 717 

cell size differences between genotypes, we used a likelihood ratio test to compare the full model 718 

to a reduced model with the fixed effect of genotype removed.  719 

 720 

Visualization tools 721 

 722 

We introduce an interactive web application that allows the user to select processes of interest 723 

with a graphical user interface and see the resulting craniofacial effect at 724 

genopheno.ucalgary.ca/MGP. The web apps were written using the shiny package in R (Chang 725 

et al., 2018). The application dynamically filters the MGI GO database based on the initial user 726 

input. Queries will only list GO terms with exact matches. For example, “chond” will return GO 727 

terms that incorporate either “chondrocyte” and “mitochondria”.  728 

 729 

Multiple queries can be selected. An analysis of “chondrocyte differentiation” and 730 

“chondrocyte hypertrophy” will select the joint gene set of both processes. Processes with 731 

different names can be jointly queried with the pipe operator “|”, which is interpreted as an OR 732 

(union) operator. For example, to generate the list of GO terms associated with either apoptosis 733 

or WNT, we used the “apoptosis|WNT” query and selected the processes “Wnt signaling 734 
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pathway” and “execution phase of apoptosis” to perform the analysis on the joint set of 735 

associated genes (Supp fig 7).  736 

 737 

Several other parameters can be specified by the user including the type of plot to be 738 

generated for the genetic loadings, the amount of magnification applied to the phenotype effect 739 

vectors, the regularization parameter, and the option to overlay a mutant phenotype for 740 

comparison. The comparative database currently includes craniofacial shape contrast data (wild-741 

type vs. mutant) for 30 mutant genotypes. If a mutant comparison is selected, the full set of DO 742 

specimens are registered with the mutants added (with size removed). We then provide the 743 

vector correlation between the process effect and the mutant effect (see Fig 8). The database also 744 

includes PC1 of the DO sample for comparison.  745 

 746 

The app enables users to save results. A save request will generate and download an 747 

HTML report of the analysis which includes several versions of the genetic effect plot and an 748 

interactive 3D model of the estimated phenotypic effect. If a mutant comparison is selected, it 749 

will also appear in the report.  750 

 751 

The application tracks recent searches by the user for their reference. A heatmap of 752 

process vector correlations of the PLS phenotype loadings is also available under the “recent 753 

searches” tab. The user can select between a heatmap of the processes in their search history or a 754 

random assortment of process correlations from past, anonymous user searches. 755 

 756 
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Fig 1. Schematic of the many-to-many relationship between genetic and phenotypic variation. 
From left to right: Allelic variation (colored dots) at individual genes is organized into 
developmental processes. Processes differ in start/end and duration during development. Genes 
are reused for different processes at different times. Processes are substantially pleiotropic in 
their effects contributing to global variation as well as local variation. 
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Fig 2. Process MGP for chondrocyte differentiation. A) PLS1 genetic loadings are shown for 
each gene in the model. Individual founder allele effect sizes are colored within each bar. B-C) 
Estimated chondrocyte differentiation MGP phenotype is shown with black vectors multiplied 
4x. A Bmpr1b (Alk6) homozygous mutant is shown with red vectors for comparison. The vector 
correlation between chondrocyte differentiation MGP and Bmpr1b is shown below the 
phenotypic effects. 
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Fig 3. Chondrocyte defects in Bmpr1b 
mutants. A-B) Quantification of cell size in 
the sections of the intersphenoid synchonrosis 
shows an increase in relative cell size as well 
as a change in the distribution of cell sizes 
throughout the width of the synchondrosis. C) 
Sections of intersphenoid synchondroses. D) 
Premature fusion of the coronal suture is 
visible in Bmpr1b homozygous mutants. 
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Fig 4. Process MGP for determination of left/right symmetry. A) PLS1 genetic loadings are 
shown for each gene in the model. Individual founder allele effect sizes are colored within each 
bar. B-C) Estimated left/right symmetry MGP phenotype is shown with black vectors multiplied 
4x. An Fgf10 homozygous mutant is shown with red vectors for comparison. The vector 
correlation between left/right symmetry MGP and the Fgf10 mutant is shown below the 
phenotypic effects. D-E) Visualizations of asymmetry in the L/R MGP response and the Fgf10 
homozygous mutant. Asymmetry vectors are magnified 4x. 
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Fig 5. Process MGP for palate development. A) PLS1 genetic loadings are shown for each gene 
in the model. Individual founder allele effect sizes are colored within each bar. B-C) Estimated 
palate development MGP phenotype is shown with black vectors multiplied 4x. An Ankrd11 
mutant is shown with red vectors for comparison. The vector correlation between palate 
development MGP and the Ankrd11 mutant is shown below the phenotypic effects. 
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Fig 6. Pairwise MGP vector correlations and random process correlations to principal 
components. A) Pairwise correlations of phenotypic effects for 15 process MGP analyses. Scale 
on the right denotes color correspondences to vector correlation, where yellows are high 
correlations, greens are moderate, and blues are low. B) The densities of vector correlations 
between 1000 randomly chosen process MGP effects and PCs 1-4. 
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Fig 7. Comparisons of MGP and mouse mutant directions. A) Seven MGP phenotypes projected 
onto a PCA of the DO and a sample of 30 mutant mouse genotypes. Mutant means are labeled in 
black. The directions of MGP effects are shown with orange vectors from the DO mean to the 
associated process MGP. The range of DO variation on PCs 1 and 2 is shown with the shaded 
ellipse with an orange border. B) A heatmap of vector correlations between 30 mutant effects 
and 30 process MGP effects. 
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Fig 8. Example screenshot of web version of process analysis. Analyses include a barplot of the 
relative effect sizes of each selected marker and the associated phenotype shown with black 
vectors at each landmark. If a mutant comparison is selected, the vector correlation is provided 
and the mutant phenotype is shown with red vectors. Selecting “send me the results” generates 
an HTML report with an interactive 3D model. 
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Fig 9. 54 3D landmark configuration. A) Sagittal view of representative scan with landmarks 
shown as red spheres. B) Dorsal view of landmark configuration. C) Ventral view of landmark 
configuration. 
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Fig 10. Process MGP schematic. Once a process is selected, we cross-reference the known gene 
locations with the locations of the genotyped markers in the DO sample. The founder 
probabilities of the nearest upstream and downstream markers are averaged for each gene. The 
compiled founder probabilities and landmark coordinates are then used in a regularized PLS 
model to estimate latent axes of covariation. 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.11.12.378513doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.378513
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

 
Supplemental Material 
 
 

 
Supplemental figure 1. Permutation of marker sets of fixed size. A) The permuted R2 distribution 
of 1000 38-marker MGP analyses is shown in blue. The estimated R2 of the chondrocyte 
differentiation MGP is shown as a black vertical line. B) The permuted R2 distribution of 1000 
81-marker MGP analyses is shown in blue. The estimated R2 of the L/R symmetry MGP is 
shown as a black vertical line. C) The permuted R2 distribution of 1000 73-marker MGP 
analyses is shown in blue. The estimated R2 of the palate development MGP is shown as a black 
vertical line. 
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Supplemental figure 2. Genetic effect loadings for multiple process MGPs. Selected processes 
are listed above their respective plots. Marker loadings are not scaled to a common range. 
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Supplemental figure 3. Additional process-to-mutant comparisons. A) The estimated 
chondrocyte differentiation MGP phenotype magnified 4x (black) with Bmp2 homozygous 
mutant (red).  
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Supplemental figure 4. Demographic plots for the DO sample. A) The distribution of the sample 
by generation and data source (lab). B) Distribution of sex by source (lab). 
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Supplemental figure 5. Histogram of kinship matrix values in the DO sample. 
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Supplemental figure 6. Chondrocyte morphometric example. Landmarks are placed in the top, 
bottom, left, and right sides of the cell to best capture the height and width of the cells (show 
here as crosses). The height and width measurements are then used to calculate the area of an 
ellipsoid as an approximation of cell size. 
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Supplemental figure 7. Combining queries in the MGP shiny app with the pipe operator. In order 
to filter the GO database with multiple terms, the pipe operator can be used as shown. Here, the 
user has selected processes associated with either the apoptosis or Wnt pathway process. The 
barplot shows the relative effect sizes for markers associated to both “Wnt signaling pathway” 
and “execution phase of apoptosis” GO terms. 
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Supplemental table 1. Top 10 MGP vector correlations with PC1. Corresponding PC2- 4 vector 
correlations are also provided. 
PROCESS PC1  PC2  PC3  PC4  
ZINC ION BINDING 0.859 0.013 0.072 0.206 
SENSORY PERCEPTION OF SOUND 0.848 0.110 0.041 0.204 
CALCIUM ION TRANSPORT 0.848 0.161 0.052 0.112 
PROTEIN HOMOOLIGOMERIZATION 0.847 0.208 0.016 0.162 
DENDRITE MORPHOGENESIS 0.847 0.068 0.100 0.077 
NEUROPEPTIDE SIGNALING PATHWAY 0.846 0.215 0.029 0.132 
FOCAL ADHESION 0.846 0.135 0.044 0.219 
CHROMOSOME SEGREGATION 0.846 0.104 0.034 0.162 
SARCOMERE ORGANIZATION 0.839 0.153 0.026 0.029 
INTEGRAL COMPONENT OF ENDOPLASMIC 
RETICULUM MEMBRANE 

0.838 0.167 0.035 0.027 

 
 
Supplemental table 2. Processes with moderate vector correlations to PC 1-4. 
PROCESS PC1  PC2  PC3  PC4  
NEGATIVE REGULATION OF I-KAPPAB 
KINASE/NF-KAPPAB SIGNALING 

0.541 0.256 0.492 0.259 

LOCOMOTORY EXPLORATION BEHAVIOR 0.380 0.211 0.689 0.241 
AU-RICH ELEMENT BINDING 0.570 0.330 0.403 0.208 
TRANSCRIPTION REGULATORY REGION 
SEQUENCE-SPECIFIC DNA BINDING 

0.701 0.093 0.444 0.263 

DYNEIN COMPLEX 0.685 0.246 0.314 0.194 
PRESYNAPTIC CYTOSOL 0.392 0.383 0.135 0.508 
NEGATIVE REGULATION OF FAT CELL 
DIFFERENTIATION 

0.391 0.245 0.730 0.030 

CELL BODY 0.802 0.251 0.069 0.263 
ADULT BEHAVIOR 0.746 0.392 0.035 0.210 
PROTEASOMAL UBIQUITIN-INDEPENDENT 
PROTEIN CATABOLIC PROCESS 

0.617 0.400 0.010 0.263 
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