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Abstract

Realistic mappings of genes to morphology are inherently multivariate on both sides of the
equation. The importance of coordinated gene effects on morphological phenotypes is clear from
the intertwining of gene actions in signaling pathways, gene regulatory networks, and
developmental processes underlying the development of shape and size. Yet, current approaches
tend to focus on identifying and localizing the effects of individual genes and rarely leverage the
information content of high dimensional phenotypes. Here, we explicitly model the joint effects
of biologically coherent collections of genes on a multivariate trait—craniofacial shape — in a
sample of n = 1,145 mice from the Diversity Outbred (DO) experimental line. We use biological
process gene ontology (GO) annotations to select skeletal and facial development gene sets and
solve for the axis of shape variation that maximally covaries with gene set marker variation. We
use our process-centered, multivariate genotype-phenotype (MGP) approach to determine the
overall contributions to craniofacial variation of genes involved in relevant processes and how
variation in different processes corresponds to multivariate axes of shape variation. Further, we
compare the directions of effect in phenotype space of mutations to the primary axis of shape
variation associated with broader pathways within which they are thought to function. Finally,
we leverage the relationship between mutational and pathway-level effects to predict phenotypic
effects beyond craniofacial shape in specific mutants. We also introduce an online application
which provides users the means to customize their own process-centered craniofacial shape
analyses in the DO. The process-centered approach is generally applicable to any continuously

varying phenotype and thus has wide-reaching implications for complex-trait genetics.

Keywords: multivariate genotype-phenotype map, complex traits, mouse, craniofacial, diversity

outbred
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Introduction

Variation in human craniofacial shape is moderately to highly heritable (~30-70% (Cole et al.,
2017; Tsagkrasoulis et al., 2017)), and resemblances among close relatives as well as twins
underscore the strong relationship between shared genetics and shared phenotype(Johannsdottir
et al., 2005; Nakata, 1985). Despite many studies in humans and in mice (Claes et al., 2018;
Cole et al., 2016; Shaffer et al., 2016), however, we know very little about the genetic basis for
variation in craniofacial shape. This is likely due to genetic complexity (Katz et al., 2019;
Richtsmeier and Flaherty, 2013; Visscher, 2008; Wood et al., 2014; Wray et al., 2013). Like
many aspects of morphological variation, craniofacial shape is extraordinarily polygenic. Genes
with major mechanistic roles in facial development such as Fgf8 often contribute little to
standing phenotypic variation(Green et al., 2017) while genetic influences without obvious
connections to craniofacial development emerge as significant contributors(Kenney-Hunt et al.,
2008; Klingenberg and Leamy, 2001; Maga et al., 2015; Pallares et al., 2015, 2014). The effects
of genetic variants on phenotype often depend on genetic background (Mackay and Moore,
2014; Percival et al., 2017) and many mutations have variably penetrant effects even when
background is controlled (Hallgrimsson et al, 2009; Rendel, 1967). These issues likely arise
because genetic influences act through multiple layers of interacting developmental processes to
influence phenotypic traits, resulting in complex patterns of epistasis and variance
heterogeneity(Hallgrimsson et al., 2018, 2014; Kawauchi et al., 2009; Wagner and Zhang, 2011).
Solutions that go beyond studies of single gene effects are required to overcome these significant
challenges in complex-trait genetics. Here, we implement an enhanced form of the more general
candidate gene approach to evaluate the conjoint effects of multiple genes on a complex trait —

craniofacial shape.

There are two basic approaches to mapping genetic effects on to phenotypic variation. A
candidate gene approach measures genotypic values with known physiological and biochemical
relationships to the phenotypes of interest (Cheverud and Routman, 1993). In contrast, a random
marker or genome-wide approach seeks to associate any potential genetic variant with variation
in the trait of interest. There are advantages and disadvantages to these two approaches. The

candidate gene approach is blind to the unknown — phenotypic variation is often associated with
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99  genes not expected to be important. On the other hand, a candidate gene approach allows direct
100  measurement of genotypic values and produces results that are interpretable in terms of trait
101  physiology or development. A genome-wide or random marker approach can produce
102 unexpected insight by revealing novel gene-phenotype associations. However, this comes at a
103 great cost in power (Visscher et al., 2017). For highly polygenic traits, this approach often
104  produces a “tip of the iceberg” effect in which studies reveal a small and often incoherent subset
105  of the genes that actually determine variation in the trait of interest (Broman and Sen, 2009, p.
106  123-124).
107
108 Several strategies have been developed that partially overcome these tradeoffs. One
109  solution is the use of polygenic risk scores. Polygenic risk scores assess the overall genetic
110  influence on a trait without regard to the genome-wide significance of individual SNP effects
111 (Dudbridge, 2013; Wray et al., 2007). Approaches such as meta-analyses of genome-wide
112 association studies (GWAS) or studies based on extreme phenotypes (Morozova et al., 2015)
113 have expanded gene lists for a variety of complex traits. However, lengthy lists of genes or
114 overall genomic risk for specific phenotypes do not necessarily constitute tractable genetic
115  explanations for phenotypic variation. When 1000s of genes are required to explain heritable
116  wvariation in stature, for instance, it is not clear what such lists tell you beyond the obvious fact
117  that stature is heritable and polygenic (Yang et al., 2010; Wood et al., 2014). This tension
118  between hypothesis-driven and hypothesis-free approaches and their attendant tradeoffs between
119  statistical power and interpretability is, arguably, a major issue within complex trait genetics. To
120  resolve this conceptual conflict, approaches are needed that integrate quantitative genetics with
121  biological insights regarding the cellular and developmental processes through which genes
122 influence phenotypic variation.
123
124 Existing approaches to complex trait genetics also tend to treat phenotypic traits as
125  singular and one-dimensional. Even for morphological variation, most studies reduce shape
126  variation to linear distances, principal components, regression scores or measures of size which
127  are then mapped as individual traits (Xiong et al. 2019; Shaffer et al, 2016; Cole et al, 2016).
128  This approach disregards the information content of multivariate phenotypic variation. While

129  univariate traits only vary along one dimension, high dimensional traits such as craniofacial
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130  shape can vary in direction as well as magnitude within a multi-dimensional shape space. To

131  identify the distinctive axes of gene effects on a multivariate trait, one must model such multiple
132 multivariate relationships directly.

133

134 Building on Mitteroecker et al.’s (2016) multivariate genotype-phenotype (MGP) method,
135  we extend the candidate-gene framework to evaluate the combined contributions of genes to

136  variation in high-dimensional phenotypic traits such as craniofacial shape. Grouping genes by
137  ontological information such as membership in pathways or other relevant biological hypotheses,
138  our process-centered, multivariate approach brings traditional GWAS together with a simplified
139  model of the hierarchical genotype-phenotype (GP) map. GP maps describe the relationship

140  between genetic and phenotypic measurements(Lewontin, 1974). Understanding the genetic

141  determinants of craniofacial variation, as with most complex traits, represents a many-to-many
142 GP map problem (Fig 1). Both phenotypic and genotypic measurements have complex within-set
143 covariance structures. On the genetic side, the covariance structure is represented by

144  pathway/biochemical interactions, as well as chromosomal structure like linkage, chromatin, and
145 3D chromosomal organization. For shape-related phenotypes, the covariance matrix is structured
146 by the chosen set of landmarks and their resulting coordinates. The functional relationship from
147  genotype to phenotype is then described by a between-set covariance (Klingenberg and Leamy,
148  2001; Mitteroecker et al., 2016). To dissect these relationships, we use a regularized partial least
149  squares (PLS) (Lorenzo et al., 2019) approach to estimate a low-dimensional mapping from the
150  alleles in our sample to variation in adult mouse craniofacial shape. While PLS is well suited for
151  analysis of covariation between two sets of measurements, regularization is essential for

152  mitigating overfitting when there are many alleles simultaneously modelled. We focus on how
153  allelic variation in processes relevant to craniofacial development maps to craniofacial shape

154  variation. We ask the following five questions:

155

156 1) How much shape variation is communally accounted for by genes contributing to a
157 process, e.g., chondrocyte differentiation?

158 2) How similar are the effects of different processes on shape? For instance, do cell

159 proliferation genes affect face shape in a similar way to genes in the bone morphogenic
160 protein pathway?
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3) What is the overarching structure of process effects? Do process effects align with major
axes of variation such as allometry or other principal directions in morphospace?

4) How similar are mutant model effects and process effects? For example, do chondrocyte
mutant effects align with the effects of natural variants in chondrocyte differentiation
genes?

5) Can one use the similarity of a mutational effect to MGP process effects predict

unobserved phenotypes associated with that mutation?

Together, these questions demonstrate the ability of the MGP approach to add meaningful
understanding of the complex relationships between genotype and phenotype by quantifying
higher level regularities between complex phenotypic and genomic data. We also demonstrate its
potential as a resource for the study of mutational effects on complex traits such as craniofacial

shape.
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Results

Process Multivariate Genotype-Phenotype (MGP) Mapping

We demonstrate regularized-PLS MGP mapping with three examples. The first estimates the
primary axis of skull shape covariation with genes involved in chondrocyte differentiation (Fig
2). Differentiation of chondrocytes is one of several key developmental processes involved in
endochondral ossification. Endochondral bones form the majority of the cranial base through a
cartilage model of bone formation (Percival and Richtsmeier, 2013). There are 38 genes
annotated to chondrocyte differentiation in the Ensembl database (Yates et al., 2020). In the
figure, genetic effects are shown as zero-centered bars that span the range of estimated allele
effects across the 8 DO founders; individual founder allele effects—S8 per marker—are color-
coded within those bars (Fig 2A). Among chondrocyte differentiation genes, Nov, Mapkl4, and
Bmprib (Alk6) are most implicated in the major axis of pathway covariation with craniofacial
shape. The phenotypic effects at each landmark—magnified 4x— primarily relate to antero-
posterior positioning of the zygomatic arches and dorso-ventral jugal position (Fig 2B, 2C). The
chondrocyte differentiation GP map explains 2.15% of the total variance in craniofacial shape.
Compared to 1000 randomly generated marker sets of the same size (38), chondrocyte
differentiation explains substantially more variation in phenotype than random markers (Supp fig

1A).

Figure 2B and 2C also compare the direction of the chondrocyte differentiation MGP axis
to the axis of shape variation of a relevant mutant phenotype. We chose homozygous Bmprib
mutants for this comparison for two reasons. The first is because Bmprlb heterodimerization
with other bone morphogenic protein pathway receptors is essential for chondrocyte
differentiation and proliferation (Liu et al., 2005; Yoon et al., 2005). The second reason we chose
Bmpr1b mutant comparisons is because the marker selected for BmpIrb in the genomic analysis
is contains one of the strongest allelic effects associated with the morphological effect. The
overall phenotypic directions of Bmprib mutant variation and chondrocyte differentiation
variation are moderately correlated at r = 0.312, but the direction at landmarks with large effects

in mutant and MGP are clearly coincident. Over the landmarks we measured, the chondrocyte
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209 differentiation effect is less global than the Bmprib effect, likely due to the difference in severity
210  of the mutant phenotype.

211

212 The similarity of the chondrocyte differentiation effect with the Bmprib mutant and the
213 high loading Bmprlib allele in the DO genome suggests that Bmprlb mutants may produce

214 chondrocyte differentiation defects in the developing neurocranium. We quantified cell size and
215  distribution in the intersphenoid synchondroses (ISS) of several mutant and control Bmprib

216  mice. Homozygotes show overall larger cell sizes as well as a differing distribution of cell sizes
217  throughout the width of the ISS (Fig 3A-C; y* =21.23, df = 3, p <.0001). The presence of larger
218  cell sizes in the homozygote Bmprlb mutants suggests that the synchondroses possess more

219  hypertrophic chondrocytes. Additionally, Bmprib homozygous mutant mice show premature
220  fusion of the coronal suture (Fig 3D).

221

222 The second example quantifies cranial shape covariation with the 81 genes annotated to
223 “determination of left/right symmetry”. The phenotype associated with left/right symmetry

224 alleles is predominately related to a larger neurocranium volume relative to the outgrowth of the
225  face (Fig 4B, 4C). We also visualized the asymmetry in the phenotypic response, which shows
226  subtle asymmetry, particularly in the position of the anterior zygomatic landmark (Fig 4D).

227  Left/right symmetry loci explain 2.2% of the total variance in craniofacial shape, which exceeds
228  the variance explained by 1000 randomly selected marker sets of the same size (Supp fig 1B).
229  There are several high loading alleles that contribute to the left/right symmetry phenotype. In
230  particular, an Fgf10 allele inherited from the Castaneus founder background was among the most
231  important (Fig 4A). FGF10 is a key ligand in early development, directing proliferation as well
232 as differentiation for many craniofacial components, including the palate, teeth, and bones

233 (Hilliard et al., 2005; Prochazkova et al., 2018; Watson and Francavilla, 2018). We compared the
234 estimated left/right symmetry MGP effect with the direction of an Figf70 homozygous mutant
235  because of the relative importance of the allelic effect. The vector correlation between the Fgf70
236  mutant and the estimated left/right symmetry effect is 0.63.

237

238 The high-loading Fgf10 allele for left/right symmetry along with the similar genomic and
239  mutant phenotypes suggests that Figf70 mutants could show directional asymmetry in the
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240  cranium. To test this, we measured a sample of 8 Fgf70 adult mutant crania for object symmetry
241  and detected significant directional asymmetry (Fig 4E; F =4.91, df = 52, p <.0001).

242

243 The final example estimates the shape covariation attributed to the 73 genes annotated to
244  “palate development.” Formation and fusion of the palatal shelves are crucial for proper orofacial
245  development and heavily influences overall facial shape (Greene and Pisano, 2010). Several

246  genes contribute strongly to the palate development MGP effect including Ephb2, Gli3, and

247  Lrp6. The estimated phenotype shows corresponding variation in palate length as well as strong
248  effects in the majority of the cranial base landmarks (Fig 5B, 5C). Palate development MGP loci
249  explain 2.4% of the total variance in cranial shape, which is greater than variance explained by
250 1000 randomly permuted marker sets of the same size (Supp fig 1C). We compared the palate
251  development phenotype to a heterozygous Ankrdl 1, neural-crest specific knockout mouse. The
252 Ankrdll locus is associated with KBG syndrome in humans, which presents with generally

253  delayed bone mineralization as well craniofacial characteristics including palate abnormalities
254  (Low etal., 2016). While the vector correlation between the palate development MGP effect and
255  the Ankrdll mutant over the complete set of cranial landmarks is moderate at r = .284, the vector
256  correlation for palate landmarks is substantially higher at r = .536.

257

258 In each case above, we have shown how association of gene sets and phenotypic

259  wvariation can produce highly informative results that can guide future hypothesis testing. For a
260  given biological process, we identified genes that load strongly on the primary axis of MGP

261  covariation for which mutant samples were available to us, as well. Future investigations could
262  also use this information about genes with high loadings to generate new mutants for analysis.
263  For each example, we focus only on the first PLS axis, so other alleles for other genes may

264  contribute to novel phenotypic directions in lower PLS axes. In the next sections we will

265  examine how MGP phenotypes relate to each other, as well as the phenotypic directions of many
266  mutant mouse models.

267

268

269

270
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271  Pairwise comparison of craniofacial development processes

272

273  We chose 15 processes integral to craniofacial development and compared the pairwise

274  similarity of effect on craniofacial shape using a heatmap based on clustering of the correlation
275  matrix (R core team, 2017). Processes with similar effects on craniofacial shape will be highly
276  correlated, while processes that affect distinct aspects of craniofacial variation will be

277  uncorrelated to each other. The clustering algorithm resulted in two main blocks of strongly
278  correlated effects (Fig 6A). The largest block of highly correlated phenotypic effects includes
279  neural crest cell migration, epithelial to mesenchymal transition, forebrain development, as well
280  as some of the most general developmental processes like cell proliferation, bone development,
281  apoptosis, A/P pattern specification, and FGFR signaling. In addition, there is a general BMP
282  block, with Bmp signaling, dorsoventral pattern formation, endochondral ossification, and

283  positive regulation of skeletal muscle tissue growth. Interestingly, phenotypic variation

284  associated with cranial suture morphogenesis, neural tube patterning, and intramembranous

285  ossification is largely uncorrelated with the other craniofacial developmental processes included
286  here.

287

288 To assess the stability of the clustering result, we estimated the vector correlation

289  between the cluster distances—also known as the cophenetic distance— and the original

290  correlation matrix. A high vector correlation suggests reliable clustering, whereas a low

291  correlation suggests a random clustering result. The correlation between the cophenetic distance
292  matrix and the correlation matrix is 0.648 (t = 8.64, df = 103, p = 7.6''%), suggesting a moderate,
293  though significant structure in the similarity of effects amongst this set of MGP processes.

294

295  Comparison of processes to principal component directions

296

297  Almost a third of the 15 pairwise process comparisons showed a vector correlation > 0.5,

298  suggesting that many processes may feed into a limited set of directions in morphospace. To
299  assess the extent to which different processes affect the same aspects of facial shape we

300 randomly chose 1,000 process annotations, fit individual regularized PLS models to each set of

301  markers for a given annotation term, and then compared the direction of phenotypic effects for

10
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302  each model to principal components 1-4 of the DO shape data (Fig 6B). Doing so with principal
303  components allows us to highlight similarities in directions of process effects. Process effects
304  range from completely uncorrelated to PC1 to highly correlated (0.0 - 0.8). However, the central
305 tendency of randomly selected process effects is one of moderate-to-high correlation with PC1.
306  Moderate correlations (0.55 - 0.6) with PC1 are more common than uncorrelated effects.

307  Supplemental table 1 contains the 10 most highly correlated processes with PC1 as well as the
308  corresponding correlations to PC 2-4. The most highly correlated process to PC1 is “zinc ion
309  binding”, which is 0.86 correlated to the PC1 direction. The remaining 9 processes most highly
310  correlated to PC1 includes “sensory perception of sound”, “Calcium ion transport”, “Protein

311  homooligomerization”, “Dendrite morphogenesis”, “Neuropeptide signaling pathway”, “Focal
312 adhesion”, “Chromosome segregation”, “Sarcomere organization”, and “Integral component of
313  endoplasmic reticulum membrane”.

314

315 Process correlations with PCs 2-4 are generally less strong. The maximum correlated
316  process with PCs 2-4 was “V(D)J recombination”, “n-terminal protein myristoylation”, and

317  “branching morphogenesis of an epithelial tube” with vector correlations of 0.72, 0.89, and 0.56,
318  respectively. Processes with high vector correlations for a given PC tend to be uncorrelated with
319  other PCs (Supp table 1), although some processes load moderately high across several PCs. For
320 example, “negative regulation of I-kappaB kinase/NF-kappaB signaling” shows vector

321  correlations between 0.25 - 0.54 for the first four PCs (Supp table 2).

322

323 Process effects in the mutant morphospace

324

325  To assess the extent to which craniofacial shape variation associated with developmental

326  processes aligns with variation from mutants of major effect, we projected 7 process effects onto
327  the first two principal components (PCs) of a dataset containing the DO sample, and samples
328  from 30 mutant genotypes (Fig 7A). Each black label represents the mean shape score of the
329  listed mutant genotype. The shaded ellipse with an orange border displays the 95% confidence
330 ellipse of PCs 1 and 2 of DO cranial shape variation. The DO mean shape is contrasted by the
331  mutant variation along PC1. The first PC describes vault size relative to the length of the face.

332 The phenotype shown along the x-axis of figure 7A depicts the maximum positive PC1 shape,

11
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333  while the heatmap drawn on the crania represents the local deformations towards the minimum
334  PCI1 shape. The positive direction of PC2 describes coordinated variation that includes a

335  relatively wider vault, narrower zygomatic, and shorter premaxilla (Fig 7A, y-axis margin).

336

337 Process effects—highlighted with orange vectors originating at the DO mean shape —
338 are necessarily of smaller magnitude than the total variation in the DO sample. Therefore, to
339  better compare the direction of process effects the vector magnitudes were magnified 4x. Several
340  process effects align in distinct directions of mutant effects, such as bmp signaling pathway and
341  endochondral ossification in the direction of Shh, Nipbl, and Ifi88 mutants. Neurotransmitter
342  transport and Wnt signaling pathway is similar in direction to Mceph and B9d1 mutant effects.
343  Execution phase of apoptosis and intracellular transport both show similar effects to a cluster of
344  Bmp mutants.

345

346 Finally, we show the similarity of 30 process MGP effects to 30 mouse mutant models in
347  figure 7B. The heatmap shows the correlation in direction with yellow/green denoting higher
348  correlation and teal/blue denoting lower correlation. The bottom right of the heatmap

349  (highlighted by a white border) shows a block of mutants for which there are strong process
350  correlations. These are among the most extreme phenotypes along PC1 (Fig 5A) and include
351  mutants for Nosip, Bmp2, Grml, Bmp2; Bmp7 transheterozygote, Bmp7, Ghrhr, Fgf10, and
352 Papps2. The processes most strongly correlated to these mutants are histone methylation,

353  dendrite morphogenesis, chromosome segmentation, vasodilation, and fibroblast growth factor
354  binding.

355

356 There are a set of mutant phenotypes that have generally low correlations to the set of
357  processes chosen. These mutants include Fgf3, Shh, Nipbl, Disp, Pten, Hhat, and Alk2; Alk3
358 transheterozygote. Interestingly, this group of mutants vary more along PC2 than PC1 (Fig 7A).
359  Notably, regulation of intracellular protein transport and regulation of cell death are strongly
360  uncorrelated with the majority of mutant directions.

361

362

363

12


https://doi.org/10.1101/2020.11.12.378513
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.378513; this version posted March 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

364  Real-time process GP mapping

365

366  Finally, we provide an online tool to visualize process effects and make comparisons to mutant
367  effects in real time. This application is found at genopheno.ucalgary.ca/MGP and can be used
368  for analyses similar to those described in this paper. When the user selects gene ontology terms,
369  the program searches for genotype markers adjacent to each gene listed and uses the selected
370  markers to fit a regularized PLS model. The result is an estimate of the many-to-many

371  relationship between the selected markers and cranial shape variation. The visual outputs include
372 barplots depicting the relative allele effect sizes for each gene in the process and a 3D plot of the
373  corresponding axis of shape variation. Users can compare the effects of different processes and
374  also compare process effects to mutant effects from a provided database of 30 mutant genotypes.
375

376 To illustrate how to use this application, we have provided the graphical user interface
377  used to select the parameters (Fig 8). As an example, in the “Process text” entry field, supply a
378  starting term; we chose “brain.” The GO database is then filtered, returning a user-selectable
379  subset of biological process ontology annotation terms in the “Process filter” field. We chose
380  “forebrain morphogenesis,” which has 11 associated genes. We chose to magnify the process
381  phenotype vectors 4x and compare the effect to a heterozygous /ft88 mutant. [ft88 is a core

382  component of the primary cilia, which are responsible for promoting developmental signals

383  involved in many facets of facial development (Tian et al., 2017). Further, the plots that are

384  generated are interactive. For example, marker loadings can be highlighted and subset by genes
385  ofinterest (Plotly, 2015). There is further information about using this online tool in the “About
386  this app” tab.

F87

388  Discussion and Conclusion

389

390 A key goal in genomics is to create tractable genetic explanations for phenotypic variation. In
391  this study, we used a regularized PLS approach to model the joint effects of genomic markers on
392  multivariate craniofacial shape. This innovative approach allows us to address the joint

393  contributions of multiple genes that share ontological characteristic such as pathway membership

394  on craniofacial shape as a multivariate trait. Specifically, we chose markers adjacent to genes
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395  annotated under a developmental process of interest. We showed three process MGP analyses in
396  depth, each with distinct phenotypic effects. The chondrocyte differentiation MGP effect mainly
397  showed effects on the shape of the zygomatic and jugal bones with Ccn3/Nov as the most highly
398  loaded corresponding marker effect. The left/right symmetry MGP phenotype was primarily a
399  smaller cranial vault volume with a longer facial outgrowth, broadly similar to the primary axis
400  of shape change during mouse growth and development (Gonzalez et al., 2013). The most highly
401  loaded markers for the left/right symmetry effect were related to Figf70 and Rpgripll. We then
402  compared process MGP phenotypic effects to each other, to mutant phenotypes, and the first four
403  principal components of the diversity outbred sample. Each of these comparisons highlighted the
404  integrated structure of phenotypic variation in mouse craniofacial shape. We found that while
405  there are processes with distinct and localized effects, genetic effects generally converge on a
406  limited set of directions in phenotype space. Further, these process effects often correspond with
407  the directions of major mutations known to affect these same processes.

408

409 Many recent studies have addressed the genetics of craniofacial shape in humans and
410  mice (reviewed in: Roosenboom et al., 2016; Weinberg et al., 2018). While these studies are

411  yielding a growing list of genes, suggesting that facial shape is highly polygenic, they have left
412  the vast majority of heritable variation unexplained. Existing studies have either used univariate
413  measures of facial shape such as linear measurements or univariate summaries of multivariate
414  shape (eg. Procrustes distances or PC scores). In addition, most genomic studies of craniofacial
415  shape quantify the effects of each genomic marker independently, with notable exceptions

416  focusing on epistatic effects (eg. Varon-Gonzalez et al., 2019). Our approach shares common
417  features with some predecessor GP mapping strategies in which candidate genes/SNPs are

418  selected a priori because of common involvement in a pathway (or other mechanistic cluster)
419  (Claes et al., 2014; Liu et al., 2012; Wang et al., 2010, 2007). In particular, Wang and colleagues
420  selected SNPs based on proximity to genes of interest and effect size to jointly model the

421  pathway-level effects on Parkinson disease data. Their approach is similar to gene-set

422  enrichment analysis, weighing over-representation of statistical effects related to case-control
423 group membership. In contrast, our approach focuses on estimating a multivariate continuous set
424  of craniofacial responses. Importantly, our approach jointly identifies genotype-phenotype axes

425  that maximally covary. This differs significantly from approaches that determine phenotypes for
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426  analysis a priori or based on a pre-determined method of data reduction such as PCA. Our

427  approach also differs from methods that associate single locus effects with a multivariate

428  phenotype (Claes et al., 2018).

429

430 A key finding of our application of the MGP method to craniofacial shape is that

431  multivariate phenotypic variation aligns nonrandomly to genetic markers associated with

432 pathways or developmental processes. For most process MGP maps, multiple markers for gene
433 sets with known developmental relationships covary in their relationship with craniofacial shapes
434  (Supp fig 2). These covarying effects represent joint genetic effects of multiple contributors to
435  phenotypic variance. While these patterns of multivariate genotype-phenotype covariation may
436  include genetic variants that do not actually affect the phenotype, many others will be

437  contributors that we lack statistical power to detect under a typical univariate approach (Pitchers
438  etal, 2019; Varon-Gonzélez et al., 2019). Here, the overall pattern of genotype-phenotype

439  covariance is the level of genetic explanation for phenotypic variation. When such patterns

440  involve genes that are ontologically linked in meaningful ways, they provide a level of insight
441  into the developmental-genetics of phenotypic variation that is beyond reach for most genome-
442  wide association studies for complex traits.

443

444 Another valuable asset that arises from the MGP approach is the ability to generate

445  testable hypotheses or predictions from multivariate genotype-phenotype observations. The

446  chondrocyte differentiation analysis suggested differentiation defects in the Bmprlb mutant.
447  Subsequent histological analysis of Bmprlb mutants showed premature suture fusion as well as
448  atypical distribution of hypertrophic chondrocytes in the intersphenoid synchondrosis. Similarly,
449  the MGP analysis of left/right symmetry genes suggested that Figf70 alleles can contribute to
450  directional asymmetry. A follow up morphometric analysis of symmetry showed that Figf70

451  mutants do display significant craniofacial asymmetry (Fig 4E). MGP can also be used to test
452  existing hypotheses about genotype-phenotype relationships. The relative importance of the

453 Ankrdll locus in the palate development analysis and the similarity between the genomic and
454  mutant phenotype further validates the role of Ankrd11 in palate development. These examples

455  illustrate the additional insights that an MGP analysis of a mutational effect can provide. Given
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456  that such comparisons can be run quickly, this creates a tool with tremendous potential for

457  hypothesis generation and initial screening for hypotheses about process-level effects.

458

459 In aggregate, our results show substantial covariance in the directions of phenotypic

460  effects among different developmental processes (Figure 6A). The largest of these captures

461  processes general to development such as cell proliferation or pattern specification. The second
462  captures processes more specific to craniofacial development such as cranial suture/ossification
463  and neural tube patterning. While processes are structured in their effects, our data suggest that
464  many processes likely “add up” to produce variation. Thus, of 1000 randomly selected processes,
465  25.7% had a PCI correlation higher than 0.6, supporting not only a highly polygenic model of
466  facial variation, but one in which hundreds or even thousands of developmental processes that
467  contribute to craniofacial variation. Importantly, this result shows how many processes and

468  pathways converge to produce central axes of variation in craniofacial shape.

469

470 The explicit modeling of multivariate relationships between phenotypes and genotypes
471  also allows a focus on pleiotropy. Developmental studies in mice demonstrate widespread

472  craniofacial morphological effects from localized developmental perturbations (Martinez-

473  Abadias et al., 2012; Stelzer et al., 2007; Young et al., 2010) Perturbations to specific processes
474  in development generally produce effects on multiple aspects of phenotype due to knock-on

475  effects at later stages or to interactions at the level of tissues or anatomical structures

476  (Hallgrimsson et al, 2007). A change in cartilage growth in basicranial synchondroses produces a
477  global change in craniofacial form, for example (Parsons et al, 2015). Remarkably, enhancers
478  with highly specific temporospatial effects on gene expression also produce global rather than
479  localized changes in craniofacial shape (Attanasio et al., 2013). Given that pleiotropy is likely
480  ubiquitous (Hill and Zhang, 2012; Wagner et al, 2008), explicitly multivariate approaches to
481  understanding genotype-phenotype maps are clearly needed.

482

483 This convergence of genetic effects on axes of covariation is also reflected in our finding
484  that mutations to major developmental genes produce effects that tend to align with the

485  directions of effect associated with the corresponding broader pathways or ontological groups.

486  Our analysis focused on two specific processes— FGF signaling and chondrocyte differentiation.
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487  There was a strong correlation between the Figf7(0 mutant and the FGF signaling pathway effect,
488  while the Bmprlb mutant effect was moderately correlated to the chondrocyte differentiation
489  direction. For both process MGP maps, other mouse models in the same pathway showed

490  significant but weaker correlations in direction of effect. These results suggest that perturbations
491  that are developmentally similar tend to move the phenotype in the same direction in multivariate
492  space (Figure 7B). Even so, both mutational and higher-level pathway/process effects tend to
493  converge on a few directions of variation suggesting that multiple pathways and processes lead
494  to common developmental outcomes. This conclusion is further supported by our finding that the
495  genetic axes of covariance for individual processes/pathways can align with multiple directions
496  of mutational effect. For example, the process MGP phenotypes highlighted in the white

497  rectangle in figure 7B are all highly correlated with a set of BMP and growth hormone-related
498  mutants.

499

500 In some cases, mutants and MGP map directions do not correspond. There are several
501  ways this can occur. The first is that the DO population may simply lack alleles as deleterious as
502  found in mutant lines. A small effect allele in the DO may not align with the direction of a

503  mutant almost completely lacking expression of the target gene. Further, there are many

504  examples where a mutation may have different and sometimes even opposite effects depending
505  on genetic background (Mackay, 2014; Percival et al., 2017). Mutations of major effect may also
506  differ in direction from variants in related genes that have smaller phenotypic effects due to

507  underlying nonlinearities in development (Green et al., 2017). Investigating how variants in

508  genes that are functionally related vary in phenotypic effect is an important avenue of inquiry
509 thatis revealed by analyses such as those we have performed here. Additionally, relationships
510  between process and mutant effects may stimulate hypotheses about previously unknown or

511  unvalidated interactions between loci or pathways.

512

513 A second potential reason that MGP effects may not correspond to major mutation effects
514  is the use of only one PLS axis for each process analysis. With only one axis, we select the

515  phenotypic direction with greatest covariance with genetic marker variation. If there are multiple
516  large marker effects that do not covary, the weaker marker effect will be masked in the analysis.

517  For instance, there may be a PLS axis for “chondrocyte differentiation” that corresponds more

17


https://doi.org/10.1101/2020.11.12.378513
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.378513; this version posted March 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

518  strongly with the Bmp2 mutant phenotype (Supp fig 3). This phenomenon may be particularly
519  prominent for pathways with substantially different mutant effects, like FGF (Fig 7A).

520

521 Finally, our analysis shares the limitation of all approaches based on gene annotation
522  data. Incomplete annotation may contribute to lead to faulty or incomplete groupings of genes
523 when defining pathway/process hypotheses. Gene annotation is a huge undertaking, and there is
524  substantial variation in the completeness of different process annotations. Many process

525  annotations are manually assigned using inference from the literature, while most are a

526  combination of automated efforts based on transcript similarity and human curation (Mudge and
527  Harrow, 2015). Related to this, we assign gene annotation data to genetic markers based on the
528  closest protein-coding region. While this is a reasonable proxy, there will be regulatory sites that
529  affect genes other than the one immediately adjacent and this is a potential source of uncertainty
530  in our analysis.

531

532 The MGP method represents a deliberate decision to trade higher level insight from

533 genotype-phenotype association data at the expense of statistical certainty about the significance
534  of individual gene effects. The current implementation of the method also does not allow for
535  quantification of individual epistatic effects. Epistasis occurs when the genotypic trait value for a
536  locus is altered by the genotype of a different locus. Such effects generate nonlinear genotype
537  phenotype maps, but when considered genome-wide, contribute mainly to additive variance

538  (Cheverud and Routman, 1995; Hill, 2017). The MGP method is additive in that it models only
539  the linear effects of genes. However, since it captures the covariances among genotypic effects,
540  much of this “additive” variation is likely epistatic in origin.

541

542 Complex traits present a massive challenge in genomics because so many are turning out
543  to be enormously polygenic. To generate tractable explanations of the genetic basis for such
544  traits, methods are needed that extract higher-level representation of genotype-phenotype

545  relationships than those that emerge from single-locus focused approaches. Here, we present an
546  hypothesis-driven framework for deriving such higher-level genetic explanations for phenotypic
547  variation. Our approach leverages the biological tendency for developmental processes to

548  produce covariation among aspects of a multivariate phenotypic trait (Hallgrimsson et al., 2009;
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549  Wagner et al., 2007). The underlying assumption in this approach is that there are latent variables
550  within high-dimensional genotype-phenotype data that correspond to developmental architecture.
551  We believe that analyses aimed at defining and characterizing such latent variables represent a
552 level of genetic explanation for phenotypic variation that is complementary to genetic analyses
553  designed to establish the significance of single locus effects. Pursuing such questions will help
554  bridge the gap between emerging mechanistic accounts of morphogenesis and our growing

555  understanding of the genetics of morphological variation.

556

557  Methods
558

559  Mice
560

561  We use a sample (n = 1,145) of Diversity Outbred mice (DO; Jackson Laboratory, Bar Harbor,
562  ME) to map GP relationships for craniofacial shape (Churchill et al., 2012, 2004). The DO is a
563  multiparental outcross population derived from the eight founding lines of the Collaborative

564  Cross (CC). Each animal’s genome is a unique mosaic of the genetic diversity found in the CC—
565  more than 45 million segregating SNPs (Consortium, 2012). Random outcrossing over many DO
566  generations maintains this diversity and, with recombination, increases mapping resolution.

567

568 Our DO sample was sourced from three separate laboratories and seven DO generations.
569 386 are from the Jackson Laboratory (JAX), 287 from the University of North Carolina (UNC),
570  and 472 come from the Scripps Research Institute. Supplemental figure 4 shows the distribution
571  of the sample by lab source and generation of breeding. Imaging of mice at the University of
572  Calgary was performed under IACUC protocol AC13-0268. Ankrdl1 and Bmprlb mutant mice
573  were bred at the University of Alberta by the Graf lab under Animal Use and Care Committee
574  protocol AUP1149, in accordance with guidelines of the Canadian Council of Animal Care.

575

576  Genotyping

577

578  Genotyping was performed by Neogen (Lincoln, NE). Ear clippings were used to extract DNA
579  for all samples. Mice from generations 9, 10, and 15 were genotyped using the MegaMUGA
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580  genotyping array (77,808 markers); mice from generations 19, 21, 23, and 27 were genotyped
581  using the larger GigaMUGA array (143,259 markers) (Morgan et al., 2016). To pool the

582  genotype data from these two SNP arrays with differing numbers of markers, we imputed

583  markers between the two genotyping arrays using the “calc_genoprob” function in the qtl2

584  package (Broman et al., 2018). The function uses a hidden Markov model to estimate genotype
585  probabilities and missing genotype data (Gatti et al., 2014). After imputation, the merged genetic
586  dataset consists of 123,309 SNPs which vary among CC founders. Each animal’s genetic record
587  isa 123,309*8 matrix of estimated diplotype contributions of each CC founder to each marker.
588

589  Scanning and landmarking

590

591  We used micro-computed tomography to acquire 3D scans of the full heads of the mice.

592  Scanning was done at the University of Calgary at .035 mm voxel resolution (Scanco vivaCT40).
593  One of us (WL) then acquired 54 3D landmarks (Fig 9) manually on each volume using Analyze
594  3D. A discussion of the error associated with manual landmarking can be found in Percival et al
595  (Percival et al., 2019).

596

597  Landmark registration

598

599  We symmetrized landmarks along the midline of the skull using Klingenberg et al.’s method for
600  object symmetry which configures landmark pairs into a common orientation with reflection and
601  subsequently removes variation associated with translation, scale, and rotation, using

602  Generalized Procrustes Analysis (Adams and Otérola-Castillo, 2013; Klingenberg et al., 2002;
603  Mardia, 2000; Schlager, 2017). To focus on shared, within-generation patterns in our

604  multigenerational DO sample, we regressed symmetric shape on DO generation, and used the
605  residual shapes with the grand mean added as the observations for analysis.

606

607  Genetic relatedness

608

609  Adjustment of phenotypes for the influence of genetic relatedness is a common approach in

610  genomic studies to prevent spurious associations. However, it is not necessary in all cases, such

20


https://doi.org/10.1101/2020.11.12.378513
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.378513; this version posted March 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

611 as situations with low genetic relatedness and little variation in relatedness. We evaluated

612 whether accounting for genetic relatedness was important for our sample. To do so, we estimated
613  akinship matrix based on DO genotype correlations (Cheng et al., 2013; Broman et al., 2019).
614  The kinship values in our sample have a mean of 0 and a standard deviation of .047 (Supp fig 5).
615  As aresult of these findings, we performed all subsequent analyses on the within-generation

616  symmetric shape data, without an adjustment for relatedness.

617

618  Regularized PLS analysis

619

620  Multivariate genotype-phenotype methods for explicitly modeling multivariate phenotypes and
621  for overcoming the limitations of simple linear regression are increasingly common in mapping
622  studies. Claes et al. (Claes et al., 2018) used canonical correlation analysis to quantify individual
623  SNP effects for a multivariate measurement of facial shape. Each test returns a vector of the

624  linear combination of phenotypic effects that maximally correlates to the alleles at a given locus.
625  Mitteroecker et al. (Mitteroecker et al., 2016) developed a multivariate strategy around a singular
626  value decomposition (SVD) of GP covariation. Partial least squares (PLS) describes a family of
627  approaches that use SVD to decompose cross covariance matrices (Lee et al., 2011; Mitteroecker
628  and Gunz, 2009; Singh et al., 2016). PLS is increasingly used with large genetic datasets in order
629  to model how genomic effects extend to multiple traits (BIORNSTAD et al., 2004; Mehmood et
630 al., 2011; Tyler et al., 2017). However, its implementation for MGP mapping is, thus far, much

631 more limited.

632

633  SVD decomposes the covariance matrix into three matrices:
634

635 Y =UDV'

636

637  Where Y is the mean-centered covariance matrix, U denotes the left singular vectors, a set of
638  vectors of unit length describing the relative weighting of each variable on each axis, and D
639  denotes the variance along each axis. V denotes the set of right singular vectors. For a full
640  (square, symmetric) covariance matrix, U and V are identical, and the decomposition is

641  equivalent to PCA. For a non-symmetric matrix of covariances, i.e., one describing covariance
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642  between two distinct blocks of traits, each successive column of U and V provide a pair of

643  singular vectors describing the best least squares approximation of covariance between the two
644  blocks, in order of greatest covariance explained to least.

645

646 PLS is most often used to find low-rank linear combinations that maximize covariance
647  between two sets of features. Here, we use a data-driven regularized PLS model implemented in
648  the mddsPLS package to find paired axes that maximize covariance between allelic and shape
649  variation (Lorenzo et al., 2019). The model uses a lasso penalty to minimize the coefficients

650  (loadings) towards zero to prevent overfitting (James et al., 2013). Overfitting can occur in when
651  many genotypic markers are included in the model, particularly when markers are colinear. The
652  genotype block is composed of the full set of DO founder probabilities for each selected marker.
653  Thus, an analysis of 20 markers would estimate 160 genotype coefficients. The phenotype block
654  consists of the full set of 54 3-dimensional landmarks (162 phenotype coefficients). In all

655  biological process analyses undertaken herein, we used a regularization parameter of 0.06 and
656  report only the first paired axes of the PLS model, i.e., the genotype and phenotype axes which
657  explain the most covariance.

658

659  Biological process gene sets

660

661  For process-specific MGP analyses, we used the mouse genome informatics database (Bult et al.,
662  2018) to identify genes annotated to a given process. Each annotation term has an associated GO
663  ID. For example, “chondrocyte differentiation” has GO ID We

664  cross-reference the GO ID with the Ensemble genome database (GRCm38.p6) to find the name,
665  chromosome, and base pair start/end position for each gene (Fig 10, box 2) annotated to the

666  process. For genes with multiple splice variants, we select the full transcript start/end positions.
667  For each gene, we compare marker base pair positions and select the closest upstream and

668  downstream markers to the center of each gene. The 8-state genotype probability is then

669  calculated as the average founder allele probabilities between the two selected markers. (Fig 10,
670  box 3). After marker selection, we fit the regularized PLS model using the founder allele

671  probabilities (8 variables/marker) and full landmark data set (Fig 10, box 4).

672
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673 We generate graphical displays of process results using the R packages ggplot2

674  (Wickham, 2016) and Morpho (Schlager, 2017). An example script to reproduce the analyses is
675  provided at github.com/jOvid.

676

677  Statistical results and comparisons

678

679  We estimate the magnitude and direction of MGP process effects using R? and vector

680  correlations, respectively. R?is calculated as the ratio of trace of the predicted model covariance
681  to the trace of the phenotypic covariance matrix. We contextualize the MGP process R? by

682  comparing it to the R? value of 1000 randomly drawn marker sets of the same size. For instance,
683  aprocess annotated with 40 genes would be compared to 1000 40-gene MGP analyses with

684  random markers selected in each iteration. Random marker selection for permutation is

685  constrained to follow similar patterns of linkage disequilibrium to the observed marker set of
686 interest. The null expectation in this scenario is that gene annotation does not provide better

687  information about coordinated marker effects than a randomly selected set of markers.

688

689 Vector correlations between process MGP effects are calculated by taking the Pearson
690  product-moment correlation of the two sets of process PLS1 phenotypic loadings. Vector

691  correlations between process effects and mutant effects are calculated by taking the correlation
692  between the process PLS1 phenotypic loadings and mutant MANOVA coefficients. The

693 MANOVA compares the mutant group phenotype with the DO sample specified as the reference
694  group.

695

696  Chondrocyte morphometrics
697
698  Chondrocyte morphometrics were performed using a novel technique developed by the Marcucio

699  laboratory. Images of the intersphenoid synchondrosis (ISS) were stained with H&E, SafO, or
700  picrosirius red were captured and imported into ImageJ (2-6 sections from at least 4

701  mice/genotype/synchondrosis). Landmarks were placed in a defined order (left, right, top,

702 bottom) of visible chondrocytes in the synchondrosis using the ImageJ’s multi-tool. Data points
703  were then exported as XY coordinates and imported into Microsoft Excel for calculation of

704  major and minor axes relative to overall width of synchondrosis. Area of individual cells was
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705  determined from height and width values based on assumption that each cell is roughly

706  ellipsoidal. An example of major and minor axis measurements and ellipsoidal area

707  measurements on a slide is provided in supplemental figure 6.

708

709 We compared differences in the distribution of cell sizes along normalized synchondroses
710  between Bmprilb mutants and controls with a mixed effects model approach. We used ellipsoidal
711  area of cell size (in microns) as our dependent variable. For fixed effects, we modelled the

712 normalized synchondrosis position (1%t and 2™ order), where a value of 0 represents the relative
713 midline of the synchondrosis and values of -1 and 1 represent the most distant cells in that

714 synchondrosis. We also modelled genotype as a fixed effect as well as a genotype by cell

715  position interaction (both 1% and 2™ order interactions). For each individual within each

716  genotype, we measured multiple histological sections. These repeated and nested measurements
717  of cell size in multiple sections for each individual were modelled as random effects. To test for
718  cell size differences between genotypes, we used a likelihood ratio test to compare the full model
’719 to a reduced model with the fixed effect of genotype removed.

720

721  Visualization tools

722

723  We introduce an interactive web application that allows the user to select processes of interest
724 with a graphical user interface and see the resulting craniofacial effect at

725  genopheno.ucalgary.ca/MGP. The web apps were written using the shiny package in R (Chang
726  etal., 2018). The application dynamically filters the MGI GO database based on the initial user
727  input. Queries will only list GO terms with exact matches. For example, “chond” will return GO
728  terms that incorporate either “chondrocyte” and “mitochondria”.

729

730 Multiple queries can be selected. An analysis of “chondrocyte differentiation” and

731  “chondrocyte hypertrophy” will select the joint gene set of both processes. Processes with

732 different names can be jointly queried with the pipe operator

“I”, which is interpreted as an OR
733 (union) operator. For example, to generate the list of GO terms associated with either apoptosis

734 or WNT, we used the “apoptosis| WNT” query and selected the processes “Wnt signaling

24
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735  pathway” and “execution phase of apoptosis” to perform the analysis on the joint set of

736  associated genes (Supp fig 7).

737

738 Several other parameters can be specified by the user including the type of plot to be
739  generated for the genetic loadings, the amount of magnification applied to the phenotype effect
740  vectors, the regularization parameter, and the option to overlay a mutant phenotype for

741  comparison. The comparative database currently includes craniofacial shape contrast data (wild-
742 type vs. mutant) for 30 mutant genotypes. If a mutant comparison is selected, the full set of DO
743  specimens are registered with the mutants added (with size removed). We then provide the

744  vector correlation between the process effect and the mutant effect (see Fig 8). The database also
745  includes PCI of the DO sample for comparison.

746

747 The app enables users to save results. A save request will generate and download an

748  HTML report of the analysis which includes several versions of the genetic effect plot and an
749  interactive 3D model of the estimated phenotypic effect. If a mutant comparison is selected, it
750  will also appear in the report.

751

752 The application tracks recent searches by the user for their reference. A heatmap of

753  process vector correlations of the PLS phenotype loadings is also available under the “recent
754  searches” tab. The user can select between a heatmap of the processes in their search history or a
755  random assortment of process correlations from past, anonymous user searches.

756
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Fig 1. Schematic of the many-to-many relationship between genetic and phenotypic variation.
From left to right: Allelic variation (colored dots) at individual genes is organized into
developmental processes. Processes differ in start/end and duration during development. Genes
are reused for different processes at different times. Processes are substantially pleiotropic in
their effects contributing to global variation as well as local variation.


https://doi.org/10.1101/2020.11.12.378513
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.378513; this version posted March 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

%,

Founder

Genotype
* 129S1/SvimJ

A

* C57BL/6J

! * CASTIEIJ
. + NOD/ShiLtJ

* NZO/MILtJ

* PWK/PhJ

* WSB/EWJ

Genetic marker loading
%
|
L]
i ]
I |
I,
mm
[T ]
mm
| 1]
1]
nms
I
1
w
I
I —
I —
[1]
]
| ——
1/
|
| 1]

Chondrocyte differentiation map -> Bmpr1b -/-
r=.312

Fig 2. Process MGP for chondrocyte differentiation. A) PLS1 genetic loadings are shown for
each gene in the model. Individual founder allele effect sizes are colored within each bar. B-C)
Estimated chondrocyte differentiation MGP phenotype is shown with black vectors multiplied
4x. A Bmprlb (Alk6) homozygous mutant is shown with red vectors for comparison. The vector
correlation between chondrocyte differentiation MGP and Bmpr1b is shown below the
phenotypic effects.
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A. Cell size distributions by region Fig 3. Chondrocyte defects in Bmprlb
o mutants. A-B) Quantification of cell size in
L A‘ ‘ the sections of the intersphenoid synchonrosis
T e e aw e shows an increase in relative cell size as well

as a change in the distribution of cell sizes
throughout the width of the synchondrosis. C)
. Sections of intersphenoid synchondroses. D)
snope  PrEmature fusion of the coronal suture is

& e yisible in Bmprlb homozygous mutants.
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B. Cell size against relative position along the synchondrosis
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Fig 4. Process MGP for determination of left/right symmetry. A) PLS1 genetic loadings are
shown for each gene in the model. Individual founder allele effect sizes are colored within each
bar. B-C) Estimated left/right symmetry MGP phenotype is shown with black vectors multiplied
4x. An Fgf10 homozygous mutant is shown with red vectors for comparison. The vector
correlation between left/right symmetry MGP and the Figf70 mutant is shown below the
phenotypic effects. D-E) Visualizations of asymmetry in the L/R MGP response and the Fgf10
homozygous mutant. Asymmetry vectors are magnified 4x.
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Fig 5. Process MGP for palate development. A) PLS1 genetic loadings are shown for each gene
in the model. Individual founder allele effect sizes are colored within each bar. B-C) Estimated
palate development MGP phenotype is shown with black vectors multiplied 4x. An Ankrdil
mutant is shown with red vectors for comparison. The vector correlation between palate
development MGP and the Ankrdl1 mutant is shown below the phenotypic effects.
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Fig 6. Pairwise MGP vector correlations and random process correlations to principal
components. A) Pairwise correlations of phenotypic effects for 15 process MGP analyses. Scale
on the right denotes color correspondences to vector correlation, where yellows are high
correlations, greens are moderate, and blues are low. B) The densities of vector correlations
between 1000 randomly chosen process MGP effects and PCs 1-4.
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Fig 7. Comparisons of MGP and mouse mutant directions. A) Seven MGP phenotypes projected
onto a PCA of the DO and a sample of 30 mutant mouse genotypes. Mutant means are labeled in
black. The directions of MGP effects are shown with orange vectors from the DO mean to the
associated process MGP. The range of DO variation on PCs 1 and 2 is shown with the shaded
ellipse with an orange border. B) A heatmap of vector correlations between 30 mutant effects
and 30 process MGP effects.
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Correlation between forebrain morphogenesis MGP and IFT88_het mutant: -0.407
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Fig 8. Example screenshot of web version of process analysis. Analyses include a barplot of the
relative effect sizes of each selected marker and the associated phenotype shown with black
vectors at each landmark. If a mutant comparison is selected, the vector correlation is provided
and the mutant phenotype is shown with red vectors. Selecting “send me the results” generates
an HTML report with an interactive 3D model.
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Fig 9. 54 3D landmark configuration. A) Sagittal view of representative scan with landmarks
shown as red spheres. B) Dorsal view of landmark configuration. C) Ventral view of landmark
configuration.
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Fig 10. Process MGP schematic. Once a process is selected, we cross-reference the known gene
locations with the locations of the genotyped markers in the DO sample. The founder
probabilities of the nearest upstream and downstream markers are averaged for each gene. The
compiled founder probabilities and landmark coordinates are then used in a regularized PLS
model to estimate latent axes of covariation.
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Supplemental Material
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Supplemental figure 1. Permutation of marker sets of fixed size. A) The permuted R? distribution
of 1000 38-marker MGP analyses is shown in blue. The estimated R? of the chondrocyte
differentiation MGP is shown as a black vertical line. B) The permuted R? distribution of 1000
81-marker MGP analyses is shown in blue. The estimated R? of the L/R symmetry MGP is
shown as a black vertical line. C) The permuted R? distribution of 1000 73-marker MGP
analyses is shown in blue. The estimated R? of the palate development MGP is shown as a black
vertical line.
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Supplemental figure 2. Genetic effect loadings for multiple process MGPs. Selected processes
are listed above their respective plots. Marker loadings are not scaled to a common range.


https://doi.org/10.1101/2020.11.12.378513
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.378513; this version posted March 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A) Chondrocyte differentiation map -> Bmp2 -/-
r=.028

Supplemental figure 3. Additional process-to-mutant comparisons. A) The estimated
chondrocyte differentiation MGP phenotype magnified 4x (black) with Bmp2 homozygous
mutant (red).
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Supplemental figure 4. Demographic plots for the DO sample. A) The distribution of the sample
by generation and data source (lab). B) Distribution of sex by source (lab).
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Supplemental figure 5. Histogram of kinship matrix values in the DO sample.
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Supplemental figure 6. Chondrocyte orphometric example. Landmarks are placed in the top,
bottom, left, and right sides of the cell to best capture the height and width of the cells (show
here as crosses). The height and width measurements are then used to calculate the area of an

ellipsoid as an approximation of cell size.
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Supplemental figure 7. Combining queries in the MGP shiny app with the pipe operator. In order
to filter the GO database with multiple terms, the pipe operator can be used as shown. Here, the
user has selected processes associated with either the apoptosis or Wnt pathway process. The
barplot shows the relative effect sizes for markers associated to both “Wnt signaling pathway”

and “execution phase of apoptosis” GO terms.
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Supplemental table 1. Top 10 MGP vector correlations with PC1. Corresponding PC2- 4 vector
correlations are also provided.

PROCESS PC1 PC2 PC3 PC4

ZINC ION BINDING 0.859 0.013 0.072 0.206
SENSORY PERCEPTION OF SOUND 0.848 0.110 0.041 0.204
CALCIUM ION TRANSPORT 0.848 0.161 0.052 0.112
PROTEIN HOMOOLIGOMERIZATION 0.847 0.208 0.016 0.162
DENDRITE MORPHOGENESIS 0.847 0.068 0.100 0.077
NEUROPEPTIDE SIGNALING PATHWAY 0.846 0.215 0.029 0.132
FOCAL ADHESION 0.846 0.135 0.044 0.219
CHROMOSOME SEGREGATION 0.846 0.104 0.034 0.162
SARCOMERE ORGANIZATION 0.839 0.153 0.026 0.029
INTEGRAL COMPONENT OF ENDOPLASMIC 0.838 0.167 0.035 0.027
RETICULUM MEMBRANE

Supplemental table 2. Processes with moderate vector correlations to PC 1-4.

PROCESS PC1 PC2 PC3 PC4
NEGATIVE REGULATION OF I-KAPPAB 0.541 0.256 0.492 0.259
KINASE/NF-KAPPAB SIGNALING

LOCOMOTORY EXPLORATION BEHAVIOR 0.380 0.211 0.689 0.241
AU-RICH ELEMENT BINDING 0.570 0.330 0.403 0.208
TRANSCRIPTION REGULATORY REGION 0.701  0.093 0.444 0.263
SEQUENCE-SPECIFIC DNA BINDING

DYNEIN COMPLEX 0.685  0.246 0.314 0.194
PRESYNAPTIC CYTOSOL 0.392 0.383 0.135 0.508
NEGATIVE REGULATION OF FAT CELL 0.391 0.245 0.730 0.030
DIFFERENTIATION

CELL BODY 0.802 0.251 0.069 0.263
ADULT BEHAVIOR 0.746  0.392 0.035 0.210
PROTEASOMAL UBIQUITIN-INDEPENDENT 0.617 0.400 0.010 0.263
PROTEIN CATABOLIC PROCESS
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